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• Two different recursive state-observer models using reduced p2D.

• Influence of reduction schemes analyzed for estimation process.

• Adjusted finite volume method for improved robustness.

• Modified EKF uses improved initialization and mass conservation.

• Estimation accuracy analyzed for both global and local states.
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A B S T R A C T

Two time-varying linear state-space representations of the generally accepted physicochemical model (PCM) of a
lithium-ion cell are used to estimate local and global states during different charging scenarios. In terms of
computational speed and suitability towards recursive state observer models, the solid-phase diffusion in the
PCM of an exemplaric MCMB/LiCoO2 lithium-ion cell is derived with the aid of two different numerical re-
duction methods in the form of a Polynomial Profile and an Eigenfunction Method. As a benchmark, the PCM
using the original Duhamel Superposition Integral approximation serves for the comparison of accuracy and
computational speed. A modified spatial discretization via the finite volume method improves handling of
boundary conditions and guarantees accurate simulation results of the PCM even at a low level of spatial dis-
cretization. The Polynomial Profile allows for a significant speed-up in computational time whilst showing a
poor prediction accuracy during dynamic load profiles. The Eigenfunction Method shows a comparable accuracy
as the benchmark for all load profiles whilst resulting in an even higher computational effort. The two derived
observer models incorporate the state-space representation of the reduced PCM applying both the Polynomial
and Eigenfunction approach combined with an Extended Kalman Filter algorithm based on a novel initialization
algorithm and conservation of lithium mass. The estimation results of both models show robust and quick re-
duction of the residual errors for both local and global states when considering the applied current and the
resulting cell voltage of the benchmark model, as the underlying measurement signal. The carried out state
estimation for a 4C constant charge current showed a regression of the cell voltage error to 1mV within 30 s with
an initial SOC error of 42.4% under a standard deviation of 10mV and including process noise.

1. Introduction and literature review

The high energy and power density compared to other battery
chemistries [1] established the lithium-ion battery as the state of the art
technology for electrical energy storage systems for a wide application
field, ranging from small electronic devices up to large scale applica-
tions such as stationary storage systems or automotive battery packs
[2]. However, the manufacturing costs are still challenging [3], which
slows down a market penetration to an economically competitive

energy storage system especially in the automotive sector [3].
To address this circumstance, current efforts [4] aim to push the

price below US$200 per kW h or even lower for lithium-ion cells [2]
within the next few years. Other estimations are cautiously optimistic
and presume lower reduction of the production costs [5]. Besides the
development of enhanced battery materials such as the active materials,
the electrolyte, the metal collector foils and the separator [6] as well as
the economical factors through increased production volumes [7], the
size of lithium-ion cells [2] is regarded to be a substantial factor in
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order to decrease the production costs. The size of the cell is enlarged
either by longer electrodes or by thicker coatings of composite material.
Compared to small-sized cells, the application of large-sized (i.e.
>10 Ah) [8] cells offers potential towards the reduction of cost per kW h
[3]. This comes along with an influence on the cell performance based
on dynamics [9] and inhomogeneity effects [10] within the cell. With
increasing the cell’s size, safety hazards may also rise as the convertable
amount of energy during a failure scenario of a single cell correlates
directly to the cell size. Maximizing the efficiency and minimizing
safety threats [1] for a single cell or a whole battery pack consisting of
larger sized cells, brings up new challenges for battery management
systems (BMS). Battery monitoring algorithms mainly focus on an ac-
curate prediction of the state of charge (SOC), the state of health (SOH),
the capacity and impedance of a cell in order to ensure all operations
within its safe operating area (SOA) by means of BMS control strategy
[11]. Size effects must be considered for an accurate observing and
controlling of cells such as increased inhomogeneities for the local
current, concentration, potentials and temperature within the cell.
Since state of the art model-based monitoring algorithms incorporate
non-physicochemical models such as the equivalent circuit model
(ECM), besides the cell’s voltage, surface temperature and applied
current, no information on the local scale can be incorporated for state
estimation purposes. Falsely predicted SOC of a lithium-ion cell in-
creases the threat of using the cell out of the SOA and local harming
processes [12] may occur during operation. Considering electric ve-
hicles, a more simple but very meaningful worst-case scenario would be
a falsely predicted available range based on SOC and temperature es-
timation considering no local effects within large-sized cells, which
would compound the issue of range anxiety of the customer. A more
profound and mechanistic model for the lithium-ion cell which offers
information on the local scale is the physicochemical model (PCM),
commonly known as pseudo two-dimensional model [13]. The gen-
erally more complex and also more inaccurate model compared to the
strictly empirical ECM offers great potential to ease the problems ac-
companied with inhomogeneities in large sized cells. By reformulating
the underlying equations, state observer models can be derived, which
are able to incorporate information on the local scale to enhance the
accuracy of monitoring lithium-ion cell performance during challenging
tasks such as fast charging.

In this work, the PCM is used for implementation of two different
recursive state observer models to show the suitability for accurate state
monitoring of lithium-ion batteries under varying load scenarios. To the
author’s best knowledge, the presented work is the first attempt to es-
timate local states of a fully-spatially-resolved PCM solved via the finite
volume method (FVM) using a modified extended Kalman filter (EKF)
which conserves lithium mass and the states’ physical interpretation
along with their spatial distribution.

1.1. Models for monitoring lithium-ion batteries

The literature review reveals plenty of models to describe and
predict the behaviour of lithium-ion batteries. In the following part, the
decision for the PCM model is outlined in comparison to other, widely
used models of lithium-ion batteries in the application field of battery
monitoring algorithm.

Artificial neural networks (ANN) models incorporate mathematical
models which reduce the error between input and output signal using
weighting and cost functions, which are adjusted by training data. To
parameterize an ANN, all battery operation areas need to be covered
and the training process becomes a time and cost-intensive task. The
work of Cai et al. [14] deals with a model for a nickel-metal hydride
battery and uses the applied current and the cell voltage as input sig-
nals. Since a trial of different functions of these input signals is needed,
a dramatical increase of the computational costs is seen. The authors
aspire to a more computationally efficient model incorporating a me-
chanistic description of the electrochemical behaviour of a lithium-ion

cell and thus neglect this type of model for this work.
Besides ANN models, the equivalent circuit model (ECM) is widely

used in research and application field of the BMS for monitoring the
global states of a lithium-ion battery. The work of Hu et al. [15] pre-
sents a variety of different ECMs and the reader is referred to this
publication for more profound information. In short, the ECM is an
empirical, mathematical approach which requests little computational
power [11], therefore less simulation time and can be easily para-
meterized via experimental data of the cell [9]. The main drawback of
this approach is its limited validity beyond the chosen parameterization
window as the model parameters are fitted to experimental data under
specific operating conditions [9] and the model itself is not based on
general physical or chemical principles governing the performance of
electrochemical cells. In automotive applications, the extending oper-
ating window in terms of temperature, voltage and applied current may
lead to false predictions and subsequent reduction of lifetime, safety
and performance. Since the efforts of Plett et al. which firstly used a
non-linear Kalman filter (i.e. EKF) [16] to estimate the cell’s SOC and
subsequently a Sigma-Point Kalman Filter [17] to further increase the
accuracy of the estimated global states of the cell, the application of
filter and observer techniques is widely used in order to gain accurate
monitoring of lithium-ion batteries via the ECM. Other works focussing
on the same problem such as Zhang et al. [18] fitted the ECM para-
meters based on electrochemical properties and showed a distinct im-
provement compared to commonly used parameterization methods.

Most recent work of Wei et al. [19] seem to further ease the in-
accuracy as well via data-driven, online adapted ECM parameterization.
Nevertheless, since the ECM still lacks of a mechanistic description of
the cell’s electrochemical behaviour and no local states in the lithium-
ion battery can be estimated, this model is not suitable for this work.

The newman-type PCM [13] – often referenced as pseudo two-di-
mensional model – correlates the fundamental principles of transport
phenomena, thermodynamics and electrochemistry on a macroscopic
(i.e. electrolyte domain) and microscopic (i.e. particle domain) scale for
a lithium-ion battery [9]. Compared to the strictly empirical ECM, the
mechanistic PCM not only consumes more computational time based on
its complexity but also requires vast parameterization effort due to the
amount of more than 30 parameters and the nature of the parameters
such as transport properties, electrode’s morphology or reaction rate
constants. The comparably high computational demand and para-
meterization effort results in a model which then shows superior va-
lidity over a wider range of applications and offers the incorporation of
further physics-based processes such as aging phenomena [20], volume
expansion [21] and safety related effects [22]. Large-sized cells and
increased coating thicknesses of the electrodes inevitably promote
gradients in potential and concentration, which can be simulated by the
PCM. Based on the growing importance of localized cell utilization, the
PCM is the model of choice in order to describe the performance of
future cell generations accurately enough.

1.2. Recursive state observer models using PCM

The complexity of the parameterization for a PCM recommends an
application of filter techniques to iteratively reduce the deviance be-
tween simulated and measured states of a lithium-ion battery. Only a
few research efforts [23–25] are dealing with recursive state observer
models using the PCM [26], which shows the necessity of our work.

Smith et al. [23] reduced the PCM to a single input multiple output
model, which is linearized at 50% SOC. Based on this model, a linear
Kalman filter was implemented for the estimation of local potentials,
concentration gradients and the SOC from the applied current and cell
voltage measurements. The estimation for a 6 Ah lithium-ion cell shows
good performance within a SOC range from 30% to 70% by using 2 A
and 25mV process noise for the applied current and the cell voltage.
The computational efficiency is comparable to the performance of
ECMs [23], however, the filter performance beyond 70% SOC could be

J. Sturm et al. Applied Energy 223 (2018) 103–123

104



improved. In this work, we show a robust and accurate estimation re-
sults of two state observer models until the fully charged state of a
lithium-ion cell.

In the work of Domenico et al. [24], a simplified PCM was combined
with an EKF. The simplification yields to significant loss of re-
presentativity of a lithium-ion cell but was investigated in this pub-
lication towards its feasibility in observer applications. Regarding the
cell voltage as measured value, the focus lied on the estimation of the
SOC which revealed excellent performance under various test scenarios.
However, this work lacks an investigation of local states such as the
potential drop between the electrolyte and the electrodes, which is an
indicator for aging phenomena [27].

Regarding aging phenomena such as lithium-plating during char-
ging processes, the work of Klein et al. [28] showed a PCM based ob-
server model to identify the optimal charging strategy referring to the
local side-reaction overpotential in the anode and the cell temperature.
Since the electrolyte concentration was constant a certain loss of ac-
curacy has to be considered. In this work, the electrolyte concentration
is calculated via the fundamental mass balance equation of the PCM
and gains a more accurate state-estimation for the lithium-ion battery.
The publication of Bizeray et al. [25] was the first approach dealing
with a fully-spatially-resolved PCM incorporating Chebyshev ortho-
gonal collocation method using an EKF algorithm. The local states are
corrected via measured values of cell voltage, applied current and
surface temperature. The error in measured cell voltage and surface
temperature is set to 10mV and 0.5 K, respectively. The approach
showed robust behavior regarding falsified initialization of SOC (30%)
and less than 1% error for the anode bulk SOC after 185 s estimation
time for a 4C constant current discharge scenario. The publication lacks
a detailed analysis of the spatial distribution of the local states and the
total number of differential algebraic equations (DAEs) was not out-
lined. Since the microscopic domain is discretized with 15 nodes, the
number of the overall DAE increases and conservation of lithium mass
[29] is missing in the EKF algorithm in order to gain a more robust and
more accurate state-estimation.

In this work, the authors present the first approach of a fully-spa-
tially-resolved PCM solved by the FVM using a modified EKF algorithm
accounting for conservation of lithium mass. This allows for conserving
all the properties of the modeled dynamics over a wide operating
window with no further assumptions such as constant concentration in
the electrolyte [28]. Particular attention lies on the numerical reduction
of the microscopic particle domain to limit the total number of DAEs
and the modification of the FVM in terms of accurate handling of
boundary conditions of the PCM with a low number of discretization
elements.

1.3. Application of observer models for charging scenarios

The charging time is majorly affecting the customers’ experience of
any battery powered device. Improved battery monitoring algorithms
will further help to correctly estimate not only global but also local
states of the cell which is believed to allow for maximizing the charging
current whilst monitoring and controlling accompanied safety risks.
Hazardous processes inside the cell during charging scenarios were
indentified to be lithium-plating [12] at the interface of anode and
separator. With the aid of the estimated local states in the PCM, the
overpotential for this side reaction can be described as follows:

= − ⩽− =η (Φ Φ ) 0lithium plating s l x tL , kNEG (1)

The potential drop ( −Φ Φs l) between the solid (i.e. electrode) and the
liquid phase (i.e. electrolyte) at the anode-separator interface
(x=LNEG) at a certain time (tk) holds as indicator for possible lithium
plating when the state is 0 or becomes even negative [27]. The afore-
mentioned publication of Klein et al. [28] uses an algebraic constraint
for the side-reaction overpotential within the anode,which could be

estimated with a residual error of 15mV. In contrast to the observer
model of Klein et al. [28], the concentration within the electrolyte is not
assumed to be constant and improved accuracy of the gained simulation
results is expected in this work. The two observer models in this work
focus on the estimation accuracy and speed especially for the local
states such as the characteristic potential drop in Eq. (1) in order to
enable for a more precise indication of critical side reactions during
charging such as lithium plating.

2. Methodology

2.1. Physicochemical model

The PCM describes the lithium-ion cell on the macroscopic scale (i.e.
x-dimension) via two porous insertion electrodes, a single insulating
porous separator and the electrolyte. The porous electrodes are com-
posed of active material, additives (e.g. carbon black) and binder,
coated on a current collector foil [30], whereby the latter is neglected
for the modeling approach in this work due to its in orders of magnitude
higher electrical conductivity compared to the remaining materials. The
additional dimension on microscopic scale (i.e. r-dimension) describes
the particles of the active material, which is often referenced as
“pseudo” dimension of the PCM. In Fig. 1, the electrochemical cell with
MCMB/LiCoO2 as active material pairing is schematically shown with
the adjacent copper/aluminium current collector foils.

The underlying processes of charge and mass transport as well as
electrode kinetics are mathematically described by the model in ac-
cordance with Doyle et al. [13]. The active material in the solid phase is
modeled via symmetric, identically-sized spheres where the diffusion
equation is implemented. The liquid phase describes the electrolyte.
The coupling between the phases is implemented via mass and charge
balances as well as the electrode kinetics, which results in a potential
drop between the two phases [30]. A more precise description of the
PCM is presented elsewhere [31] and the reader is referred to this work
for more information, but for the readers’ convenience the governing
equations are summarized in the appendix (see Table 10). In addition,
the related boundary conditions are depicted in Table 11 included in
the appendix. In this work, the temperature dependency of the reaction
kinetics, thermodynamics and the transport parameters in solid and
liquid phase of the PCM is implemented and the temperature is calcu-
lated via the fundamental energy balance according to the work of
Bernardi et al. [32]. For all simulations in this work, the ambient
temperature was set to 25°C. The temperature of the cell is not included
in the dynamic state vector but calculated at every time step. In sum,
the PCM reduces the thermal-electrochemical performance of a lithium-
ion cell to a dynamic state vector of

=x t c x t c x t x t i x t j x t x tx( , ) [ ( , ) ( , ) Φ ( , ) ( , ) ( , ) Φ ( , ) ]l ss l l n s
T (2)

The state vector includes the concentrations (c c,l ss) and potentials
(Φ ,Φl s) in solid and liquid phase, the macroscopic current density in the
electrolyte (il) and the molar flux ( jn). One objective of this work is the
development of a robust discretization of the PCM in time and space
and the reduction of the solid-phase diffusion partial differential
equation (PDE) in a form, which enables for a computational efficient
and accurate model of a lithium-ion battery using a low number of
spatial discretization elements and can be used for recursive state ob-
server models.

2.1.1. Parameterization
The parameterization of the PCM includes thermodynamic, kinetic,

transport and geometrical parameters [30]. The basic parameters were
adopted from the publications of Mao et al. [33], which included a
MCMB/LiCoO2 cell with 1M LiPF6 in 1:1 EC/DMC electrolyte. The film
resistance accounting for deposit layers on the surface of the MCMB
particles was included in the PCM setup. The activity coefficient was
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adopted from the parameter set of Mao et al. [33] and thus set to zero.
The temperature dependency is applied to the parameters of the dif-
fusion coefficient in the active materials and the electrolyte, the reac-
tion rate constants, the ionic conductivity and the film resistance at the
anode surface. In the appendix of this work, the summary of the basic
PCM parameters is given in Table 12 and the thermal parameters are
depicted in Table 13. In terms of the lithium mass conservation in the
EKF used in the observer models, the total lithium in the solid phase is
calculated to 1.7040mol m−2. The initial concentrations are defined as
the reference concentration (cref ) for the electrolyte and according to
the stoichiometric coefficient for the active materials depending on the
regarded charge or discharge scenario. Note, that the initial stoichio-
metric coefficients for the charging scenarios were set to 0.1 and 0.96 in
the anode and cathode domain, respectively.

2.1.2. Discretization via FVM
The DUALFOIL model is taken as reference for the PCM in devel-

oped in this work, which was the latest release [22] of the PCM em-
bedded in FORTRAN of the Newman research group [34]. The funda-
mental equations (see Table 10) and the boundary conditions (see
Table 11) of the PCM form a non-linear DAE system with the six
aforementioned state variables (see Eq. (2)). The DAE consists of the
two PDEs for the mass balances in solid and liquid phase, three ordinary
differential equations (ODEs) for the charge balance and the definition
of the potentials as well as a single algebraic equation for the electrode
kinetics. The non-linearity is caused by the Butler-Volmer equation to
describe the electrode kinetics as well as the temperature and con-
centration dependent physical properties of the cell components [30].
As the non-linear DAE cannot be solved analytically, numerical

Fig. 1. Schematic representation of a MCMB/LiCoO2 lithium-ion cell shown in the upper part with the subsequent pseudo two-dimensional reduction to the PCM
[13]. The fundamental model equations are depicted for the solid (i.e. active material) and liquid (i.e. electrolyte) phase, including three different numerical
approximation methods (i.e. DSI, PP and EM) for the solid-phase diffusion. The PP- and EM-approach are used for the development of the recursive state observer
models using the EKF-algorithm.
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approximations in form of linearization schemes are used which include
discretization methods in time and space. For all state variables, the
time discretization is implemented by the Crank-Nicolson formulation
[30]. The spatial discretization over the three domains differs for each
equation and is explained more in detail. The numerical approximation
within both electrode and the separator domain is based on the FVM,
which uses Gauss’ theorem to approach a state variable within a spe-
cified control volume [35]. The implementation itself uses the finite
difference method (FDM) with differently oriented discretization di-
rections. Regarding the associated boundary conditions within each
domain and the type of the equation, the chosen approximation method
and its orientation for each equation is depicted in Table 1. The number
of discretization elements were set to 3, 2 and 5 in the anode, separator
and cathode domain, respectively. This corresponds to characteristic
spatial discretization lengths of 24, 12.5 and 10 μm. In this work, we
used only equidistant distribution for the 3-2-5 discretization and thus
the spatial discretization length is constant in each domain. Table 14 is
attached in the appendix for the readers’ convenience, which shows the
FDM implementation using the FVM formulation of the mass balance in
the liquid phase and the related three ODEs for the definition of the
potentials as well as the charge balance at the anode-separator interface
( =x LNEG) (see Table 2).

An approximation via FDM for the mass balance in the solid phase
would increase the number of DAE since at every node in the electrode
domains, a single discretized solid phase diffusion PDE must be taken
into account. In order to save computational time and to limit the
number of the DAE, this equation is approximated via three different
numerical reduction methods and will be discussed later in this work.
Note that the total number of DAE (nDAE) is defined by the chosen
number of spatial discretization elements (nj) in each domain and
summarizes to

= + + + −n (n n 2)·6 (n 1)·3DAE
NEG POS SEP (3)

Looking into the discretization scheme for solving the ionic current
density, the internal boundary conditions at the separator interfaces to
the anode and cathode are already occupied (see Table 11 – “Charge

Balance”) and the discretization orientation is set to forward and
backward, respectively. Note, that the adjacent boundary conditions at
the current collector interface set the macroscopic ionic current density
to zero and are fully respected by the chosen discretization scheme. To
the authors’ best knowledge, the referenced PCM embedded in FOR-
TRAN includes similar boundary conditions at the interfaces and the
adjacent boundaries. In addition, a second model to compare the si-
mulation results was taken into account, namely the lithium-ion battery
interface embedded in the commercial FEM-solver COMSOL Multi-
physics®. As this model is based on the DUALFOIL model as well, the
same boundary conditions are implemented in this model.

In this work the robustness of the developed models is shown,
guaranteeing accurate handling of these internal and external in-
sulating boundary conditions with a low number of spatial discretiza-
tion elements (3-2-5) and the accuracy of the gained simulation results
in comparison to the FORTRAN and the COMSOL model.

2.1.3. Approximation of the solid-phase diffusion equation
As mentioned before, the spatial discretization of the microscopic

particle domain incorporates no FDM, but is approximated via three
different reduction schemes in this work. For instance, an arbitrarily
chosen number of 5 nodes in each electrode and 2 nodes in the se-
parator within the macroscopic electrolyte domain would lead to a total
number of 100 nodes only to discretize the solid-phase diffusion PDE, if
10 nodes in the particle domain are chosen as well. The aforementioned
total number of DAE would significantly increase when the FDM is used
for the spatial discretization of the particle domain, which comes along
with a larger computational time. The necessary memory space seems
not critical for desktop PCs or workstations, but for microcontroller
environments the size of the linearized DAE is crucial as typically, low
memory space (i.e. in the range of Kilobytes) for the calculation is
available. The total number of DAEs defines the size of the system
matrix which needs to be solved for the simulation and a low number of
DAE is important in the models presented in this work, as future work
of the authors will be dealing with the implementation on a micro-
controller, which is out of the scope of this paper but briefly discussed
in the following. For instance, the chosen 3-2-5 discretization generates
63 DAEs according to Eq. (3), which leads to a 66× 66 jacobian matrix
as the entries for the dynamic and algebraic states of the solid phase
have to be considered in the separator domain as well. On a standard
microcontroller equipped with 192 kB available RAM, the allocated
memory for this jacobian matrix accounts to 19.3% of the total RAM
available, when the values are stored with double precision (8 kB).
Since the solving process needs also the inverted matrix, the allocated
memory rises to 38.6%. This shows, that the number of DAEs is crucial
for the real application as the size of the jacobian matrix allocates the
major part of the memory space.

Therefore, one of the main objectives in this work is a lean DAE
which generates still accurate simulation results. The numerical ap-
proximation schemes in this work are adopted from other research
groups and account for the calculation of the surface concentration as it
is the relevant state for the PCM needed from the microscopic domain.
As the original DUALFOIL model from the Newman group [13] serves
as the reference for this work, the first approximation scheme is its in-
built Duhamel Superposition Integral (DSI). The PCM incorporating this
approximation is further used as a benchmark. Since the DSI is not
suitable for recursive state observer models as it takes into account all
previous concentration states in the solid phase, two other approx-
imations were chosen which allow a recursive implementation only
depending on the previous solid concentration states. The first ap-
proximation is a Polynomial Profile (PP) adopted from the work of
Subramanian et al. [36] and the second approximation is an Eigen-
function Method (EM) adopted from the work of Guo et al. [37]. As the
reduction schemes are only adopted from these works, the reader is
referred to the original works for more detailed information.

In short, with the aid of the three approximation schemes in the

Table 1
Spatial discretization for the non-linear DAE of the PCM using FDM with FVM
formulation [34].

Equation Phase Domain Orientation

Mass balance solid MCMB/LiCO2
a

liquid MCMB/SEP/LiCO2 Central Diff.

Potential solid MCMB Backward Diff.
LiCO2 Forward Diff.

liquid MCMB/SEP/LiCO2 Forward Diff.

Charge balance liquid MCMB Forward Diff.
SEP Conservation
LiCO2 Backward Diff.

Electrode kinetics solid+ liquid MCMB/LiCO2
b

Diff. = Difference.
a Numerical reduction method.
b Algebraic equation.

Table 2
Linearization of Kalman Filter algorithm [42].

Extension for non-linear DAE

̂̂ ̂≈ + −x z u f x z u x xf F( , , ) ( , , ) ( )k k k k k k k k k

̂ ̂≈ + −h x z u h x z u x xH( , , ) ( , , ) ( )k k k k k k k k k

̂
̂

= ∂
∂ =

F f x z u
x x x

k
k k k

k k k

( , , )

̂
= ∂

∂ =
H h x z u

x x x
k

k k k
k k k

( , , )
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microscopic particle domain, the total number of the linearized DAE
could be efficiently reduced for using the FDM in the macroscopic
electrolyte domain. The Polynomial and the Eigenfunction approx-
imation are used for the two models implemented in MATLAB (i.e. PP-
and EM-PCM) beside the benchmark model, which uses the DSI ap-
proach. The PP- and EM-PCM are crucial for enabling the im-
plementation of the recursive state observer models using the steady-
state representation of the fully-spatially-resolved PCM, which is of
high interest for battery management system applications.

2.1.4. Solving of the linearized DAE
The linearized DAE is solved via the Newton-Raphson formula [38].

Let f be the vector summarizing all system equations of number n, by
computing the Jacobian (Jf ) of f, the system equations can be linearized
around a trial function. The solution state vector ( +x i( 1)) can be gained
by iterating for i-times until the required convergency is reached [39]
as

= −+ −x x J x f x( )· ( )i i
f

i i( 1) ( ) 1 ( ) ( ) (4)

In terms of the convergency criteria [38], the absolute (∊abs) and
relative tolerance (∊rel) are defined as [40]

∊ = − = ∊ =+
+

+
+x xx x

x
max | | max |Δ | max Δ

abs
i i

i i rel
i i
i

( 1) ( )
| 1

| 1
( 1) (5)

In this work, the relative tolerance was set to 1×10−4 and the
absolute tolerance was set to 1× 10−10. The discrete time step is set to
25ms up to 1 s of simulation time and subsequently increased to 1 s.
The most computational effort is caused by generating and inverting the
jacobian matrix. The linearized DAE considered in this work, is forming
a block-tridiagonal matrix [31] when using the FDM. Thus, the system
equations can be defined as

=− +g x x x 0( , , )j j j j1 1 (6)

with gj representing the model equations evaluated at the node j with
the unknowns xj. The block-tridiagonal matrix is set of the matrices
A B,j j and Dj which represent the Jacobians of the model equations at
the node (j) and its adjacent ones (i.e. −j 1 and +j 1) as
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and thus the solving procedure can be depicted as

= −+
−x J x g xΔ ( )· ( )i i g

i i
| 1

1 ( ) ( ) (8)

according to the Newton-Raphson formula shown in Eq. (4). The matrix
inversion uses a MATLAB® 2016b in-built function [40], which adjust
the solving algorithm according to the sparsity of the current con-
stitution of the jacobian matrix. In short, only the matrix inversion was
implemented via an MATLAB in-built function. The whole solving
process is reduced to a simple matrix inversion. In terms of real ap-
plications, this function can be easily embedded by Gauß-Jordan [41]
matrix inversion schemes in order to transfer the solving routine into
compiled languages such as C which is used in microcontrollers.

2.2. Recursive state observer model

In order to enable for the recursive state estimation of a lithium-ion
cell and to overcome parameterization uncertainties such as deviations
for the reaction rate constants which increase the error of the simulated
states, filter algorithms like the EKF are useful model-enhancements to
reduce the residual error between measurement and simulation. Since
the work of Plett et al. [42], this has been a widely used method in
terms of state estimation for the lithium-ion battery.

As the state observer models need a recursive formulation, only the
PP- and EM-PCM models are suitable for implementation. The bench-
mark-PCM using the DSI approach generates the targeted states of the

lithium-ion cell in this work to enable the analysis of the estimation
accuracy and speed of local states within the lithium-ion cell. In-situ
measurements of local states in a lithium-ion battery are difficult and
not available for this work, nevertheless the analysis of the local esti-
mated states by the observer models can be evaluated by using the
presimulated, noise corrupted states of the DSI-PCM.

In short, the application of a Kalman Filter [43] on a DAE system is
performed by the prediction and the update step. First, the prediction
step generates estimates of the current state variables including all its
uncertainties. Second, the update step corrects the predicted states via
the noise corrupted measurement values. For the readers’ convenience,
the authors attached the basic steps of the Kalman Filter briefly in the
appendix (see Table 15) based on the works of Kalman et al. [43–45].
As the DAE of the PP- and EM-PCM is non-linear, the extended version
of the Kalman Filter (i.e. EKF) must be used in this work. Following the
general introduction of the Kalman filter and its extended version [46]
the linearized state-space representation is defined as

̂̂ ̂ ̂= + +−x x u ωF Bk k k k k k1 (9)

̂= +y x vHk k k k (10)

where Eq. (9) and (10) represent the process and the measurement
model, respectively. The algorithm steps of the Kalman Filter and the
EKF are the same except that the transition (Fk) and observation matrix
(Hk) are linearized (i.e. ̂Fk and Hk ). Note, that the vectors ̂xk and ̂uk refer
to the state (i.e. most recent estimate) and input vector of the linearized
state-space model. The algebraic states (zk) are not regarded for the
process model, as the EKF focuses on the dynamic states only. The
vectors ωk and vk represent the Gaussian white process and measure-
ment noise, which corrupt the process and the measurement model
with independent uncorrelated continuous random variables with zero
mean. The covariances of the noise vectors ωk and vk are defined as Qk
and Rk.

The linearized transition and observation matrix are derived as fol-
lows:

The functions f and h are mapping functions for the differential and
state-output equations. The symbols x z,k k and uk are the vectors of the
dynamic state, algebraic state and the input variables, respectively.

The linearized matrices ̂Fk and Hk represent the Jacobians referring
to the dynamic states in case of our PP- and EM-PCM. The linearized
DAE of the PP- and EM-PCM is thus reformulated to a linearized state-
space representation around the most recent estimate ̂xk for every time
step k.

To the authors’ best knowledge, this is the first time the linear state-
space representation of the fully-spatially-resolved PCM is derived by
using the FDM with control volume formulation (i.e. FVM). The im-
plemented FDM of this work rectifies the insulting boundary conditions
in the electrolyte and is suitable for a low number of chosen dis-
cretization elements, which leads to a lean DAE of the PCM and its
state-space representation which makes it a suitable approach for mi-
crocontroller application, as discussed in the section before.

2.2.1. EKF with PP-PCM
The dynamic state vector for the PP-PCM based observer model is

defined as

̂ =x c x t c x t q x t[ ( , ) ( , ) ( , ) ]j k l j k s j k s j k
T

, (11)

where cs and qs represent the volume-averaged concentration in the
solid phase and the volume-averaged concentration flux, respectively.
These can be calculated at each node j and at each discrete time step k
referring to the previous time step by using the formulation according
to Subramanian et al. [36] as
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Accounting for all spatial discretization nodes, an overall re-
presentation can be defined for the concentration in the liquid phase as

= + → = +−
−

−
−c c i c c iM A b M A M bl l k l l k l l k l k l l l k l l l k, , 1 , ,

1
, 1

1
, (13)

where a matrix inversion allows for a definition, which relates the
electrolyte concentration to its previous state and the ionic current
density. For the reader’s convenience we attached an example of the
spatial discretization in the appendix (see Table 14), where the FDM for
the mass balance in the electrolyte with central orientation combined
with the Crank-Nicolson formulation over time is shown at the interface
between the anode and the separator. To the author’s best knowledge,
the linear state-space representation using the FDM including both the
solid and liquid concentration states was not shown before in literature.
Note, that the vectors of concentration (cl k, ) and ionic current density
(il k, ) include every node at a discrete time step (tk). The derived equa-
tions in Eqs. (12) and (13) yield to the linearized versions of the tran-
sition matrix (i.e. ̂Fk) and the input matrix (i.e. Bk). For instance, the
aforementioned discretization of 3-2-5 would lead to 31 equations,
which lead to a system matrix of 33x33 since zero-entries of the solid
dynamic states must be regarded in the separator as well. This would
lead to an allocated memory space (i.e. RAM) on the aforementioned
microcontroller of around 8.7 kB with double precision of the stored
variables, which corresponds to 4.5% of the available memory space.
This shows, that the implementation of the observer model in this mi-
crocontroller is possible since the implementation is based on a lean
DAE which generates accurate states even at a low chosen number of
discretization elements. The input vector can be defined as

̂ =u i x t j x t[ ( , ) ( , ) ]j k l j k n j k
T

, (14)

The process noise covariance matrix Qk is of diagonal shape and
dependent on the applied current in case of a pulsed charge or dis-
charge scenario. In terms of the electrolyte concentration, the process
noise variance refers to the amount of total lithium in the electrolyte
within the pore of the anode domain, which is consumed or generated
(i.e. charge or discharge scenario) for the estimated step ( tΔ k) as follows
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The process noise variance of the averaged concentration in the
solid phase is set to the amount of total lithium which enters or leaves
the microscopic particle domain of the anode and can be written as
follows
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In case of an applied pulsed current of 53.75 Am−2 (i.e. 2.5 C-rate)
and a time step of 1 s, the process noise variances would exemplarily
calculate to 75.7665(mol m−3)2 and 4.3642×104(mol m−3)2 which
corresponds to a standard deviation of 8.7mol m−3 and 208.9 mol m−3

for the liquid and averaged solid concentration, respectively. In case of
a constant applied current, the process noise variance is set to 10 and
100 (mol m−3)2 for the liquid and averaged solid concentration. The
corruption for the volume-averaged concentration flux qs is set to zero
for both the constant and pulsed applied current to avoid violations of
the mass conservations, which is explained later in this section.

The measurement noise covariance matrix Rk is set to 1× 10−4 V2

which corresponds to a standard deviation of 10mV and accounts for
sensor noise of the measured cell voltage.

The Kalman gain matrix (Kk) and the approximation error covar-
iance matrix (Pk) are calculated as shown in the appendix (see

Table 15). The initialization of the approximation covariance matrix is
set equal to the initial values of the process noise matrix. For more
profound information about the meaning and impact of the filter spe-
cific matrices, the reader is referred to the work of Campestrini et al.
[47]. The linearized observation matrix H is determined by the voltage
of the cell Vcell, which is derived from the potential difference in solid
phase between the external boundaries of the model.

= = −−V t y t t( ) Φ (L , ) Φ (0 , )cell k k k s k s k| 1
POS NEG (17)

Therefore, the potential in the solid phase is expressed via the dy-
namic states, the inversion of the electrode kinetics and the insertion of
the overpotential as
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whereas the surface concentration can be directly related to the dy-
namic states in Eq. (11) using the PP-approximation of the work of
Subramanian et al. [36]. The term Eeq represents the equilibrium po-
tential in each electrode, i0 describes the exchange current density
outlined in Table 14 and F and R represent Faraday’s constant and the
gas constant (see Table 17).

The linearized observation matrix is defined with respect to the
external nodes according to the partial derivatives of the dynamic states
as
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Due to the non-observability of the reformulated PCM, lithium-mass
conservation according to the work of Klein et al. [48] is included in the
EKF algorithm. In contrast to this work, the mass conservation is in-
cluded in an EKF algorithm and the linear state-space representation
does not assume a constant electrolyte concentration, but the fully-
spatially-resolved mass balance in the liquid phase of the PCM solved
by the FVM. Referring to the initial concentration within the electrodes
at the fully charged or discharged state of the cell, the total amount of
cycleable lithium is predefined. For all times, the total amount of li-
thium is calculated within both electrodes and separately within the
electrolyte. Both in the solid and liquid phase, the conservation of li-
thium referring to the predefined amount of cycleable lithium must
hold at any time, as no aging effects or other side reactions are con-
sidered in this work. In this work, the EKF was modified to improve the
estimation of the estimated solid-phase concentrations in the anode.
The chosen MCMB active material shows open circuit potential (OCP)
areas with low gradients referring to the lithiation level, which may
cause the estimation to fail. Therefore, the Kalman gains at the nodes
within the LiCoO2 domain are used in the anode domain for the con-
centration in the solid phase due to the relatively higher slope of the
OCP. Thus, a better estimation of the solid states can be achieved. The
mass conservation is subsequently used to correct the solid states in the
negative electrode via a correction factor (γs).

2.2.2. EKF with EM-PCM
The dynamic state vector for the EM-PCM based observer model

using the EKF is truncated in terms of the volume-averaged con-
centration flux q to the form of

̂ =x c x t c x t[ ( , ) ( , ) ]j k l j k s j k
T

, (20)

to reduce the computational effort and limit the computational time.
Hence, the reformulated model regards only the first row of Eq. (12)
and incorporates Eq. (13) as already presented for the PP-PCM based
observer model for determining the linear state-space representation.
The implementation of the EM-PCM based observer model is similar to
the aforegiven definition in Section 2.2.1, except that the dynamic state
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vector only incorporates two states. The linearization output matrix is
hence defined as
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as the volume-averaged concentration flux is neglected.
The EM-PCM is reformulated to a novel linear state-space re-

presentation using the fully spatially resolved PCM solved by the FVM,
which needs only a 22× 22 jacobian matrix with the chosen 3-2-5
discretization. As a consequence, the observer model would only allo-
cate around 5.8kByte (i.e. 3.0% of the total RAM) for the calculation
process on a microcontroller.

2.2.3. Initialization of the state estimation
Small derivatives of the OCP lead to several possible states at the

beginning ( =k 0), due to the missing prior state ( −k 1) for the state
estimation algorithm. To overcome this initialization problem, a novel
iterative Newton-Raphson method [40] is implemented, which solves
for the initial solid concentrations (cs,0) of each electrode.

= −y E c E c( ) ( )m k eq s eq s,
POS

,0
POS NEG

,0
NEG

(22)

= +n ε c ε cL LLi s s s s
NEG NEG

,0
NEG POS POS

,0
POS (23)

The cell voltage is calculated in Eq. (22) from the OCPs of each
electrode. The total amount of lithium in the solid phase is calculated in
Eq. (23) from the volumetric fraction of active material in each elec-
trode. As a first rough estimate, equilibrium is assumed and the current

measured cell voltage is set as boundary condition in Eq. (22) and the
second boundary condition in Eq. (23) takes into account the defined
total amount of lithium in the solid phase. The iterative solving algo-
rithm solves the non-linear system of Eqs. (22) and (23) until the re-
lative and absolute tolerance criteria are fulfilled (see Eq. (5)). As a
result, the initial concentrations in the solid phase are estimated and the
approach offers great potential to ease the issue of the initialization for
this kind of state observer models.

2.2.4. Process of the state estimation
The state estimation procedure used in this work is shown in Fig. 2

and shortly summarized in the following section. The initialization step
calculates the initial dynamic and algebraic state vectors. In case of

=k 0, the routine described in Section 2.2.3 proceeds, otherwise the
previous estimated states are used ( −k 1).

In the prediction step, the PCM simulates a priori state estimate
( −k k 1) from the initialization step ( − −k k1 1).

In the following correction gain, the linearized transition ( ̂Fk) and
observation (Hk ) matrix are derived from the linear state-space re-
presentation of the PCM using the priori estimated dynamic states and
the input vector. The approximate error covariance matrix − −Pk k1 1

from the previous time step is propagated in time using the transition
and the process noise matrix, to gain its priori estimate ( −Pk k 1). The
Kalman gain matrix Kk is calculated depending on H R,k k and −Pk k 1.

In the following update step, the Kalman gain matrix is updated
with the constant gain of the positive electrode in both porous domains.
The posteriori state estimate ̂xk k is derived from the residual cell voltage

Fig. 2. Overview of the state-estimation process using the PP-PCM with an EKF. The dynamic state vector ( ̂x ) differs for the EM-PCM based observer model in terms
of neglecting the volume-averaged concentration flux (qs).
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error (∼yk) and the updated Kalman gain matrix Kk
#. To proof the con-

sistency of the updated states, the mass conservation is checked and
adjusts deviations of the solid states within the negative electrode.
According to this modification, the posteriori states are corrected as well
( ̂xk k|

# ). The posteriori approximation error covariance matrix Pk k is
calculated at the end of the update step.

To find a consistent solution for all states (xk) using the already
estimated dynamic states ( ̂x #), the priori estimated algebraic states
( −zk k 1) are propagated to find a consistent solution via applying the
iterative Newton-Raphson method to the algebraic equations (g) of the
PCM only.

In a nutshell, the presented recursive state observer models use the
fully-spatially-resolved PCM for the definition of the linear state-space
representation. The EKF algorithm is able to conserve lithium mass and
incorporates a robust initialization routine solved by the Newton-
Raphson formula which enables the observer-models to conserve the
states’ physical interpretation along with their spatial distribution. The
implementation focussed on a lean DAE for the PCM and the observer
models with no restrictions of the physical validity even for a low
chosen number of discretization elements, which makes it a suitable
approach for low computational environment such as microcontrollers.

3. Simulation results and discussion

3.1. Simulation results of the PCM

The first part of the result section analyzes the computational speed
and the error of the simulated local and global states of the PP-PCM and
the EM-PCM with reference to the benchmark, which is the PCM in-
corporating the original DSI approach. In particular, the accurate
handling of the internal and external boundary conditions of the PCM
compared to two reference models implemented in FORTRAN and
COMSOL Multiphysics® is outlined. The second part shows the esti-
mation results of the two observer models, which are designated with
“PP-EKF” and “EM-EKF”. The detailed analysis focusses on the time-
constants for accurately estimated global and local states, the compu-
tational speed and the possible application of the gained observer
models in real application scenarios. Both the PCMs and the observer
models are implemented in MATLAB® 2016b whereas the DUALFOIL
model is embedded in FORTRAN and the COMSOL model uses the
commercial FEM-solver COMSOL Multiphysics®. All simulations run on
a desktop computer equipped with a Intel(R) Core(TM) i5-6500 CPU @
3.20 GHz processor and 16 Gigabyte of RAM.

3.1.1. Constant discharge simulation
Four models are compared in the first analysis to show the accurate

handling of the internal and external boundary conditions especially
with a low chosen number of discretization elements (i.e. 3-2-5) for the
PCMs in this work. The first PCM model is embedded in FORTRAN [31]
(i.e. FORTRAN-PCM (3-2-5)), the second in COMSOL Multiphysics® (i.e.
COMSOL-PCM (3-2-5)) and the third model is the implementation in
MATLAB presented here, using the DSI-approach for the solid-phase
diffusion (i.e. DSI-PCM (benchmark, 3-2-5)). An additional COMSOL
model with a different, much larger number of discretization elements
by choosing the in-built mesh configuration “physics-controlled” and
“extremely fine” serves as additional reference (i.e. COMSOL-PCM
(“extremely fine”)). The simulation results for the current density in the
electrolyte for a 8C discharge simulation at 210 s is shown in Fig. 3a. In
terms of the COMSOL-PCM (3-2-5), the ionic current density is over-
estimated above the applied current in the narrow region close to the
separator within the electrode domains. Slight deviances are seen at the
external boundaries where the current density equals not exactly 0 A
m−2. The FORTRAN-PCM (3-2-5) underestimates the current density

near the separator interface of the cathode domain. Within the elec-
trode domains, the current density is permanently under- or over-
estimated compared to the extremely fine discretized reference
COMSOL-PCM (“extremely fine”). At the external boundary to the ad-
jacent copper current collector, the current density is overestimated and
the zero flux condition is not conserved. In contrast to that, the DSI-
PCM of this work (i.e. benchmark model) can handle the boundary
conditions accurately at both the internal and external interfaces and
shows marginal deviances compared to the extremely fine reference
COMSOL model within the electrode domains. Note, that for a higher
number of discretization elements all models generate very accurate
simulation results and only marginal differences are seen.

After showing the suitability of our PCM implementation in
MATLAB for simulating accurate states of a lithium-ion cell with a low
number of discretization elements, the difference between the chosen
approximation schemes for the solid-phase diffusion is analyzed in the
following. The simulation results of three different constant current
discharge scenarios (i.e. 0.2C-, 2C- and 8C-rate) using the PP- and the
EM-approach are compared to the benchmark model in the range from
4.1 and 3.0 V. In Fig. 3b, the error of the simulated cell voltage for the
8C discharge scenario is shown. The error of the cell voltage reveals a
slightly higher deviance of up to 20mV at the beginning of the

Fig. 3. The subplot (a) shows the ionic current density in the electrolyte for a
8C constant current discharge simulation at 210 s of the PCM embedded in
FORTRAN, COMSOL and MATLAB in order to analyze the handling of the
boundary conditions with a low spatial discretization. For each model, the
spatial discretization is indicated in the legend. The subplot (b) shows the si-
mulation error for the cell voltage of the PP- and EM-PCM compared to the
benchmark model for the 8C constant current discharge scenario.
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discharge simulation for the PP-PCM. In a wide range from six up to
17 Ahm−2 no significant difference can be seen between the PP- and
the EM-PCM and the error falls below 1mV. However, at the end of the
discharge scenario the EM-PCM shows a cell voltage error up to
52.6 mV which is more than 8 times higher compared to the PP-PCM.
The detailed analysis in terms of computational demand per time step
and the simulation error compared to the benchmark model in each
discharge scenario are shown in Table 3. The fastest computational time
and the lowest number of iterations to reach convergency is observed
for the PP-PCM. This computation is approximately 3.5 times faster
than the benchmark needing roughly the same number of iterations. At
8C, the benchmark shows a reduced computational time and is even
faster than the PP-PCM. This may be caused by the DSI approximation,
which is working much faster for short simulation times as the number
of previous stored states [49] is kept low. The EM-PCM requires both
the highest number of iterations and the longest time on average for
solving a single time step. This behavior improves for increasing C-rates
compared to the PP-PCM. Compared to the benchmark, the EM-PCM
shows an approximately 2.5 times higher computational time for each
discharge rate. Regarding the average and maximum voltage error in
Table 3, the PP-PCM generally provides a lower mean voltage error for
the discharge scenarios compared to the EM-PCM.

To sum up the constant discharge simulations, the PP-PCM shows
fast computational time and high accuracy up to 4C compared to the
benchmark. For high discharge rates like 8C, the accuracy and com-
putational speed is reduced, but still provides sufficient results. The EM-
PCM generally consumes more computational time and the average
voltage error is at least six times larger compared to the PP-PCM.
Despite the different performances of the PP- and EM-PCM, both models
reveal the same accurate handling of the internal and external
boundary conditions as the benchmark model with a low number of
discretization elements and thus guarantee sufficient accurate simula-
tion of a lithium-ion cell with a lean DAE system.

3.1.2. Pulsed discharge simulation
The performance of the PP- and EM-PCM are further investigated

under a dynamic load profile in the form of a 10C discharge pulse for
10 s followed by a 10 s resting phase. The cell voltage limits are kept as
for the constant load scenario. The performance results including the
average and maximum iteration steps and calculation times per single
time step as well as the cell voltage error compared to the benchmark
are shown in Table 4. Similar to the constant load profile, the PP-PCM
shows the fastest computational time, followed by the benchmark
model and again - as the slowest converging model - the EM-PCM takes
the longest computational time. A similar characteristic can be ob-
served for the maximum and average number of iterations. In terms of
numerical accuracy, the benefit of the EM-PCM for dynamic profiles
becomes apparent. The average voltage error is approximately six times
smaller compared to the PP-PCM and the maximum voltage error is
roughly 2.5 times lower. This shows the drawback of the PP approach

for the solid-phase diffusion PDE. When it comes to dynamic load
profiles, the prediction for the concentration profile is not accurate
enough due to overshoots at the beginning of each pulse period caused
by the parabolic approximation method. In addition to Table 4, Fig. 4
shows the impact of the chosen approximation method on the simulated
SOC (see Fig. 4a) and the cell voltage (see Fig. 4b) in form of the de-
viance to the benchmark. Regarding the SOC, which is derived from the
average lithiation level of the limiting cathode for the used parameter
set, the simulation error shown in Fig. 4a reveals more instable calcu-
lation by the PP-PCM with a maximum error of 0.15% compared to the
EM-PCM. The simulated deviance of the EM-PCM shows a rather stable
deviance of around 0.06%. In sum, the deviances for both approaches

Table 3
Computational time and accuracy for constant discharge scenario.

Model Benchmark PP-PCM EM-PCM

C-rate 0.5C 2C 8C 0.5C 2C 8C 0.5C 2C 8C

A/ms 30.5 31.2 8.2 8.6 8.3 11.1 72 50.7 23.4
B/– 3.87 3.74 3.96 3.87 3.67 3.77 9.03 5.70 5.47
C/mV Ref. 0.15 0.09 0.1 0.90 0.64 2
D/mV Ref. 4 1.8 6 2.4 16.8 52.6

A=Average time per step B=Average iterations per step.
C=Average voltage error D=Maximum voltage error.

Table 4
Computational time and accuracy for pulsed discharge scenario.

Model Benchmark PP-PCM EM-PCM

Max. time per step/ms 36.3 8.6 60.8
Av. time per step/ms 29.9 11.9 46.3
Max. iterations per step 5 4 9
Av. iterations per step 4.6 4.2 7.2
Av. voltage error/mV Ref. 12.6 2.1
Max. voltage error/mV Ref. 123.1 50.7

Av.=Average Max.=Maximum Min.=Minimum.

Fig. 4. The upper plot (a) shows the SOC error derived from the deviance be-
tween the benchmark and the PP-/EM-PCM. The bottom plot (b) shows the
error of the simulated cell voltage with a magnified section (c) between 378 and
400 s, emphasizing the differences between the PP- and the EM-PCM during the
pulse and the resting period.
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referring to the benchmark are acceptable. In Fig. 4b,the simulated cell
voltage error illustrates the aforementioned more accurate calculation
of the EM-PCM which results in a lower maximum and average error.
The magnified section (see Fig. 4c) shows the pulse and resting period
from 378 to 400 s. The pulse period from 379 to 389 s reveals the much
higher deviance of the PP-PCM from the benchmark compared to the
EM-PCM. During the resting period from 389 to 399, the PP-PCM re-
covers its accuracy to a certain extent, but still remains less accurate
than the EM-PCM. In short, a certain deviation of the predicted SOC and
cell voltage is seen for both reduced PCM models, which is more dis-
tinct in terms of the PP-PCM. The PP-PCM approximately might gain a
factor of 2.5 and 4 on average in terms of computational speed com-
pared to the benchmark and the EM-PCM, but calculates a 6 times less
accurate cell voltage compared to the EM-PCM at the same time. This
finding supports the reported drawback of the parabolic profile for si-
mulating dynamic load-scenarios [50] which implies choosing the EM-
PCM in this case.

Since the surface concentration is the most important state from the
microscopic domain for the macroscopic domain of the PCM, Fig. 5
shows its error for the PP- (see Fig. 5a) and the EM-PCM (see Fig. 5b) at
the cathode-current collector interface. The cathode-current collector
interface is important for calculating the cell voltage, since the solid
potential at this node directly influences its calculation. In accordance
to Fig. 4a, the PP-PCM shows a more instable behavior in simulating the
surface concentration than the EM-PCM. The mean error for the EM-

PCM (−18.7mol m−3) is more than 15 times higher compared to the
PP-PCM (−283.1 mol m−3).

To sum up, the first part of the results in this work proofed the
accurate handling of the chosen FVM spatial discretization for the fully-
spatially-resolved PCM for constant load scenarios, which holds also for
the pulsed load scenario. The detailed analysis of the computational
speed and the generated error for the PP- and the EM-approximation
schemes revealed their suitability for both constant and pulsed load
scenario, which is summed up in Table 5.

As automotive applications include dynamic profiles while driving
as well as mainly constant load profiles during charging, a load-scenario
distinction and the derived choice for either the PP- or the EM-ap-
proximation routine could help to minimize the error of cell voltage and
SOC estimation. Since the PP- and the EM-approach require low com-
putational effort, less memory space compared to the remaining solved
equations and offer a recursive formulation, the implementation of both
approaches in parallel is suitable even on a microcontroller and de-
pending on the load scenario, the most appropriate approximation for
the solid-phase diffusion can be selected whereas the other approach
remains redundant.

The computational performance and accuracy was analysed for the
PP- and EM-PCM for a pulsed and constant discharge load scenario at
this point. The same performance applies for charging scenarios and
when it comes to control algorithms in the BMS, state observer models
are used in order to monitor the states of a lithium-ion cell for guar-
anteeing the SOA for charging and discharging, calculating the max-
imum available power and energy as well as predicting the SOH. In the
following, the estimation results of the presented two observer models
using the linear state-space representation based on the PP- or the EM-
PCM combined with an EKF are evaluated for three different charging
scenarios.

3.2. Recursive state estimation results

Knowing about the strengths and weaknesses of the PP- and EM-
PCM, the second part of the results deals with the performance of the
recursive state observer models and analyzes to which extent the
chosen approximation scheme influences the state estimation of local
and globals states within a lithium-ion battery, the regression speed of
the related errors and the robustness towards constant and dynamic
load scenarios.

The simulation results of the PP- and EM-EKF are presented for
three different charging scenarios, including a constant current scenario
(CCCV) at 2.5C current rate, a boost charging scenario with a high (4C)
and low (0.1C) constant current rate (BCCV) and finally a pulsed cur-
rent scenario (PCCV) at 10C for 10 s. Note, that for each charging
scenario an additional constant voltage period at 4.1 V with a limiting
applied current of 0.01C is added to avoid harming high potentials in
the active material within the LiCoO2-electrode [2]. The presimulated
states of the cell were set by the benchmark model which holds as the
measurement input for the filter algorithm.

The state estimation started at 300 s and 120 s, for the CCCV and

Fig. 5. Error of the simulated surface concentration in reference to the
benchmark model under a 10C pulsed discharge load for 10 s extracted from the
interface between the cathode and the aluminium current collector for the PP-
(a) and the EM-PCM (b).

Table 5
Suitability for constant and dynamic load profiles.

PP-PCM EM-PCM

Constant Load Accuracy + +
Speed + −

Dynamic Load Accuracy − +
Speed + −
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both for the BCCV and PCCV scenario, respectively. The error of the
initial SOC based on the averaged concentrations states of the limiting
cathode is arbitrarily set to 36.1%, 42.4% and 35.2% for the CCCV,
BCCV and PCCV, respectively. The specific initial errors depend on the
elapsed time between the start of the charging and the estimation
process. The initial error for the electrolyte concentration at the start of
the state estimation depends on the local position within the cell and
the applied charging scenario as well. For the CCCV, the minimum and
maximum error was 15.4% and 31.4%, with reference to the current
state when the state estimation started. In case of the BCCV and the
PCCV, the error ranged from 32.0% to 38.1% and from 44.8% to 48.7%,
respectively.

3.2.1. Constant current charging
In general, the estimation of the CCCV scenario shows comparable

results for both observer models with a slight tendency of quicker es-
timation for the EM-EKF. In Fig. 6,the simulation results of the
benchmark and the estimation results of the PP- and the EM-EKF are
shown in terms of the cell voltage, the estimation error of the cell

voltage and the error of the estimated potential drop between solid and
liquid phase according to Eq. (1), which will be referenced as “potential
drop” in this work. As seen in Fig. 6a, the estimation process starts at
300 s with a 36.1% error in the SOC and shows a deviation of less than
1% for the cell voltage error after 191 s and 187 s for the PP- and EM-
EKF. The magnified subplot (b) illustrates the regression of both ob-
server models between 800 and 900 s. Fig. 6c shows the regression of
the related cell voltage error and the magnified subplot d) reveals the
marginal differences of approximately 1mV between both observer
models in the same time limits as shown in subplot (b). In accordance to
Fig. 6, the numerical analysis is presented for the cell voltage and
various local states in Table 6. The relative error values are related to
the targeted present value of each state (i.e. predefined by the bench-
mark model) and the given time is related to the start of the estimation
process (i.e. 300 s). Comparing local and global states of both observer-
models, the potential in solid phase at the anode-separator interface
takes approximately 4 times longer reaching the 1%-threshold than the
cell voltage. The surface concentration takes approximately twice the
time of the local solid potential to fall below the 1% threshold. The
pore-wall flux converges far slower and even avoids a convergency to
the 1%-threshold for the PP-EKF.

In sum, the CCCV estimation results show the fast and robust re-
gression of the initial error regarding the cell voltage, but an accurate
estimation of the global cell voltage is not bound to a proper estimation
of the internal states. This results raises the question, to which extent
the internal states deviate over the thickness of the electrodes. Looking
into Fig. 6e, the residual error of the potential drop at the anode se-
parator interface shows a stable regression below 1mV after 700 s. Li-
thium plating most likely occurs at this location due to the largest
overpotential within the anode [12] and thus a control strategy in the
BMS could consider a lower limit of 0 V for this side-reaction over-
potential (see Eq. (1)) in order to reduce the applied charging current if
the limit is exceeded. The time to gain accurate values for this indicator
– in this case 700 s – must be known to evaluate the readiness for use of
this control algorithm.

The recovery of local states from only the measured current and the
cell voltage need further analysis of the spatial gradients over the
thickness of the cell to proof the functionality of the presented observer
models. To do so, Fig. 7 shows the estimated local states such as the
concentrations in both liquid and solid phase, the pore-wall flux and the
potential drop at two discrete times of 1315 (tA) and 1900 s (tB). These
times were chosen in accordance with the threshold between CC and CV
period (tA) and close to the 1% residual error for the pore-wall flux
during the CV period (tB). The concentration of the electrolyte in Fig. 7a

Fig. 6. Estimation results for the CCCV charging scenario. The subplot (a)
shows the presimulated cell voltage from the benchmark model and the esti-
mated cell voltages of the PP- and EM-EKF. The magnified region in subplot (b)
illustrates the regression of the residual cell voltage error between 800 and
900 s. The subplot (c) shows the related error of the cell voltage and the subplot
(d) illustrates the error in the same limits as in subplot (b). The subplot (e)
shows the error regression of the potential drop (i.e. −Φ Φs l, see Eq. (1)) at the
interface between anode and separator.

Table 6
Computational time and accuracy for the CCCV estimation.

PP-EKF EM-EKF

Statesa αe ⩽t 10% ⩽t 1% αe ⩽t 10% ⩽t 1%

Φl 100 27 509 100 28 515
css 67 193 993 67.0 194 985
jn 100 625 - 100 622 1903b

Φs 10.3 1 463 10.8 1 451
η 100 625 746 100 622 737

Vcell 2.1 1 191 2.1 1 187

αe =Initial deviance after EKF initialization/%.
⩽ ⩽t t,10% 1% =Estimation time for error threshold of 10% and 1% referring to
=t 300 s.
a 1 CC period at =x LNEG.
b 2 CV period at =x LNEG.
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shows the lowest deviation across the cell thickness at both times.
Keeping in mind the initial errors ranged between 15.4 and 31.4%, the
estimation error shows maximum values of 0.13% in the anode at the
reference time tA, which equals approximately a full recovery for the
liquid concentration. The differences between the PP- and EM-EKF are
negligible with a maximum deviation of 0.2% in the anode domain.

Regarding the surface concentration in Fig. 7b, the highest devia-
tion of around 0.85% occurs at the anode-separator interface at tB and
differences of less than 0.01% for the mean error over the electrode
thickness between both observer models can be seen.

The largest error is observed for the pore-wall flux (see Fig. 7c)
whereas the potential drop (see Fig. 7d) shows marginal deviances over
the thickness of the electrodes.

To sum up, both observer models show a fast regression of the re-
sidual error below 1% of the cell voltage from an initial SOC error of
35.2% in less than 200 s. Similar performance can be seen for the PP-
and the EM-EKF with only marginal differences in estimation accuracy
and regression speed. In terms of the surface concentration, it takes up
to 5 times longer to reach similar residual errors compared to the global
cell voltage. The SOC estimation is derived on the averaged solid con-
centrations and thus needs about 5 times longer for accurate estimation

results. The error of local states over the cell thickness appeared to be
marginal, which proofs the functionality of the presented observer
models. In terms of the potential drop, accurate estimation below 1mV
after 700 s enables to evaluate the readiness of the estimation process
which is crucial for application of control algorithms especially for fast-
charging scenarios.

3.2.2. Boost current charging
The BCCV scenario aims to proof the suitability of the two observer

models towards varying boundary conditions in the form of changing
the applied current. The BCCV simulation included a constant current
rate of 4C during the boost period which was switched a 0.1C rate for
the following low period at 750 s (tC) to avoid an increase of the cell
voltage above 4.1 V within the first period. The additional constant
voltage period took place at 2135 s (tD). The estimation results for the
cell voltage, the error of the cell voltage and the potential drop at the
anode-separator interface as well as its spatial distribution within the
anode and the cathode at tC and tD are shown in Fig. 8.

As seen in Fig. 8a and c, the observer-models show a very quick

Fig. 8. Estimation results for the BCCV charging scenario. The subplot (a)
shows the presimulated cell voltage from the benchmark model and the esti-
mated cell voltages of the PP- and EM-EKF. The magnified region in subplot (b)
illustrates the regression of the residual cell voltage error after changing the
boundary condition. The subplot (c) shows the related error of the cell voltage
and the subplot (d) illustrates the error in the same limits as in subplot (b). The
subplot (e) shows the error regression of the potential drop (i.e. −Φ Φs l see Eq.
(1)) and subplots (f) and (g) show its spatial distribution for the times tC and tD.

Fig. 7. The estimation results of local states at two different times (i.e. tA and tB)
are shown in terms of the distribution over the cell thickness. The first subplot
shows the concentration within the electrolyte (a) over the whole cell thickness.
The plots b-g only depict the anode and cathode domain with the surface
concentration (see (b) and (c)), the pore-wall flux (see (d) and (e)) and the
potential drop (see (f) and (g)) over the related thicknesses.
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regression of the cell voltage recovery below 1% error within the first
5 s after the state estimation started at 120 s. Regarding the initial SOC
error of 42.4%, this proofs the robustness of the presented models in-
corporating the novel initialization process against large initial failures.
Again, the overall performance of the PP- and the EM-EKF show low
deviances with a tendency of quicker estimation for the EM-EKF.
Looking into Table 7, this can be seen especially in terms of the surface
concentration at the anode-separator interface falling below the 1%
error threshold 1/3 times faster than the PP-EKF. The slowest con-
vergency below the 1% error threshold is seen for the surface con-
centration (545 s) and the pore-wall flux (482 s) for the PP- and EM-
EKF, respectively. The cell voltage falls approximately after 150 s below
the 0.1% error threshold which is approximately 3–4 times faster than
the slowest estimated local state.

The magnified sections from 750 to 828 s in Fig. 8b and c show the
fast recovery of the cell voltage with a comparably similar behavior for
both observer-models at tC and emphasize, that the estimation is robust
for changing boundary conditions. As seen in Fig. 8e, the maximum
error of the potential drop at the anode-separator interface is around
12mV at tC , but recovers very fast afterwards. Looking at the local
states at tC and tB in Fig. 8f and g, also its estimated spatial distribution
reveal sufficient accurate results for both observer models even at the
change of the boundary condition. In short, the analysis of the BCCV
estimation revealed a very quick regression of the cell voltage error and
similar to the CCCV, longer estimation time is needed for accurate local
states. The analysis of the changing boundary conditions showed the
robustness of the presented observer models against an abrupt change
of the applied current.

3.2.3. Pulsed current charging
The last estimated charging scenario aims to proof the suitability of

the two observer models towards a pulsed input current. The PCCV
estimation results are shown in Fig. 9 and the related numerical ana-
lysis is depicted in Table 8. Looking into Fig. 9a, the whole charging
scenario is shown where the magnified subplot (see Fig. 9b) shows the
approximation behavior of both models and no significant difference in
terms of the cell voltage is seen between them. Both models converge
below 1% error after approximately 8 s. At this time, the voltage error is
around 39mV. After 71 s, the error for both models falls below 4mV.
Regarding the error of cell voltage in Fig. 9c, the quick regression is
shown and the magnified subplot (see Fig. 9d) between 205 and 300 s
shows the characteristic error progression during the pulse and the
resting period in the range of ±2mV. Contrairy to the charging sce-
narios discussed before, both observer-models do not converge below

Fig. 9. Estimation results for the PCCV charging scenario. The subplot (a)
shows the presimulated cell voltage from the benchmark model and the esti-
mated cell voltages of the PP- and EM-EKF. The magnified region in subplot (b)
illustrates the initial approximation process. The subplot (c) shows the related
error of the cell voltage and the subplot (d) illustrates the error between 210
and 300 s. The subplot (e) shows the error regression of the potential drop with
a magnified section between 445 and 465 s. The subplots (g) and (h) show its
spatial distribution for the times tE and tF .

Table 8
Computational time and accuracy for the PCCV estimation.

PP-EKF EM-EKF

Statesa αe ⩽t 10% ⩽t 5% ⩽t 1% αe ⩽t 10% ⩽t 5% ⩽t 1%

cl 5.5 21 43 352 5.5 21 61 351
Φl 100 29 63 303 100 29 80 363
css 5.5 32 50 – 5.4 32 120 –
jn 100 349 388 – 100 329 368 –

Φs 12.4 1 13 255 12.6 1 15 260
η 100 347 – – 100 308 – –

Vcell
1 1.7 – 1 8 1.7 – 1 7

αe =Initial deviance after EKF initialization/%.
⩽ ⩽ ⩽t t t,10% 5% 1% =Estimation time for error threshold of 10%, 5% and 1% re-
ferring to t=120 s.
2=CV period.

a Pulse period at =x LNEG.

Table 7
Computational time and accuracy for the BCCV estimation.

PP-EKF EM-EKF

Statesa αe ⩽t 10% ⩽t 1% αe ⩽t 10% ⩽t 1%

Φl 100 23 332 100 23 348
css 100 96 545 100 94 350
jn 100 340 514 100 337 482

Φs 9.2 1 227 9.4 1 233
η 100 344 491 100 338 466

Vcell 1.9 1 5 1.9 1 5

αe/%= Initial deviance after EKF initialization.
⩽ ⩽t t,10% 1% =Estimation time for error threshold of 10% and 1% referring to
t=120 s.

a Boost period at =x LNEG.
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1% for all local states such as the surface concentration, the over-
potential and the pore-wall flux as seen in Table 8. This is caused by the
pulsed load and gives the estimation process not enough time for con-
vergency during the pulse period. Therefore, an additional 5% error
threshold was added for the estimation performance in Table 8. In
general, the performance of both models is similar with a slight ten-
dency of faster convergency for the PP-EKF. In Fig. 9f, the potential
drop at the anode-separator interface is magnified between 445 and
465 s which reveals the slight better accuracy of the EM-EKF. Looking
into the spatial distribution of the potential drop over thickness of the
electrodes, sufficient accuracy can be seen for both observer models
exemplarily shown in Fig. 9g and h at 455 (tE) and 538 s, which depicts
the beginning of the CV-period (tF).

To sum up, both observer models showed a quick regression of the
cell voltage error below 1% in less than eight seconds with an initial
SOC error of 35.2%. Both the PP- and the EM-EKF showed robust re-
gression under the pulsed current with a slight tendency for better ac-
curacy for the EM-EKF. The analysis of the potential drop over time and
spatially within the electrodes at two different times revealed an ac-
curate estimation of the indicator state for lithium-plating.

3.2.4. Comparison of the state estimation performance
In general, the observer models gain comparable results in terms of

accuracy and computational speed for all charging scenarios regarded
in this work. The robustness against varying boundary conditions was
shown and the quick regression of the residual error was seen in all
charging scenarios. The regression speed is summarized for the three
charging scenarios referring to the initial SOC error, the remaining cell
voltage error of 1mV and the related estimation time in Table 9. Re-
garding only the cell voltage, the EM-EKF shows slightly faster regres-
sion compared to the PP-EKF. Particular interest is laid on the potential
drop at the anode-separator interface and its spatial distribution within
both electrodes. The observer models proofed the accurate recovery of
this local indicator state for lithium plating from the measured current
and cell voltage. As the observer models gain an accurate and robust
estimation for local states, these could be used for control strategies in
fast charging algorithms for controlling the applied current to the cell
based on this indicator. In Fig. 10, the regression of the SOC error of the
limiting cathode based on the average lithium concentration is shown
for all charging scenarios. Marginal differences are seen for the CCCV
and BCCV scenario, whereas the pulsed current charging revealed a
slightly quicker regression for the EM-EKF than for the PP-EKF, which is
well in line with the suitability for dynamic and constant discharge load
scenarios shown in the simulation results. Looking at the overall char-
ging times in Fig. 10, a reduction of 24.3%, 13.5% and 42.3% could be
reached for the CCCV, BCCV and PCCV scenario, compared to a con-
stant charge process comprising a 1C charging rate whilst avoiding
possible lithium plating, which was monitored via the indicator state.

4. Conclusion

The generally accepted pseudo two-dimensional physicochemical
model (PCM) for lithium-ion batteries is used in this work for the si-
mulation of constant and dynamic load scenarios. The non-linear dif-
ferential algebraic equations were discretized in time via Crank-
Nicolson formulation and the finite difference method with finite vo-
lume formulation was used for the fully-spatially-resolved PCM.
Particular interest lied on the handling of boundary conditions with a
low number of spatial discretization elements and the validity of the
model was checked via comparison to reference models implemented in
FORTRAN and COMSOL Multiphysics®. Further reducing the compu-
tational effort and enabling for a recursive formulation, the solid-phase
diffusion equation was numerically approximated via a Polynomial
Profile and an Eigenfunction Method. The simulation results confirmed
the computational efficiency of the Polynomial Profile under constant
current load and the Eigenfunction Method under dynamic load sce-
narios. The two computationally efficient PCMs were further used for
implementation of two different linear state-space representations of
the PCM using an Extended Kalman Filter algorithm which conserves
lithium mass. To the authors best knowledge, this is the first approach
using the PCM solved by finite volume method together with a non-
linear Kalman Filter which accounts for lithium mass conservation and
incorporates a robust Newton-Raphson initialization routine to ease the
initial value problem. The state-estimation results showed a quick re-
covery of the cell’s state for the measured cell voltage and the applied
current together with robustness against changing boundary conditions
and pulsed current signals. The models were able to reduce the residual
cell voltage error to 2mV with an initial SOC error of 35.2% in less than
90 s for a 10C pulsed charging scenario. Current and future work of the
authors deals with the implementation of these two models on

Fig. 10. The regression of the SOC error based on the average lithium con-
centration within the cathode domain is shown for the CCCV (a), BCCV (b) and
the PCCV (c) scenario for both observer models.

Table 9
Error regression of cell voltage for the observer models.

CCCV BCCV PCCV

Initial SOC error 36.1% 42.4% – 35.2%
Current rate 2.5C 4C 0.1C 10C – pulse

Error of Vcell =1mV 650 s 67 s 210 s 130 sa PP-EKF
630 s 30 s 200 s 90 sa EM-EKF

a Error of Vcell =4mV.
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microcontrollers, as first implementations proofed the suitability of the
models presented in this work in low computational hardware en-
vironment. With the aid of this hardware-based implementation and a
further development of the presented observer models towards con-
straints on the local battery states, novel fast charging strategies will be
investigated to reduce charging time whilst avoiding lithium plating.
The state estimation process will also be extended in terms of in-
tegrating temperature effects. Further development of the presented
observer models can focus on the implementation of side-reactions such

as lithium-plating and solid-electrolyte interphase to account for aging
phenomena.
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Appendix A. PCM

See Table 10.

A.1. Boundary conditions

See Table 11.

Table 11
Internal and external boundary conditions of the PCM.

Model equation Phase Boundary conditions

Mass balance solid =∂
∂ =

0cs x r t
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Table 10
Equation system of the PCM.
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a Ref. [13].
b Ref. [22].
c Ref. [32].
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A.2. Parameterization

See Tables 12 and 13.

Table 12
Parameterization I.

Geometry MCMB Separator LiCoO2

Thickness L 96 μm a 25 μm a 60 μm a

Particle radius Rp 8 μm a 5 μm a

Active material
fraction εs

0.536 a 0.534 a

Porosity εl 0.40a 0.40a 0.36a

Thermodynamics

Equilibrium
potential Eeq

analytic terma,b analytic terma,b

Entropic coefficient
∂
∂
Eeq
T

analytic terma,b analytic terma,b

Stoichiometric
coefficient

0.8a,d 0.47e,d

Max. concentration
cs max,

24 984molm−3 e 51 219mol m−3 e

Kinetics

Reaction rate
constant k

3.0× 10−9 m s−1 a 3.0× 10−9 m s−1 a

Transfer coefficient
αa c/

0.5a 0.5a

Denominator ∗d 1a 1a

Transport

Solid diffusivity Ds 7×10−14 m2 s−1 a 3×10−14 m2 s−1 a

Solid conductivity σs 100 Sm−1 a 0.5 Sm−1 a

Film resistance Rf 3.5×10−3Ωm2 a 0Ωm2 a

Electrolyte (1M LiPF6 in 1:1 EC/DMC)

Salt diffusivity Dl
eff

5.34×−10
⎜ ⎟
⎛
⎝

⎞
⎠

−ε expl
cl

cref

m2

s
1.5 0.65 a,c

Ionic conductivity

κl
eff ⎜ ⎟ ⎜ ⎟

⎡

⎣
⎢ + − ⎛

⎝
⎞
⎠

+ ⎛
⎝

⎞
⎠

⎤

⎦
⎥ε 0.0911 1.052 0.1554l

cl
cref

cl
cref

cl
cref

S
m

1.5 1.9101
2 3

a,c

Activity ±d lnf
d lncl

0 a

Transference +t 0 0.4 a

Ref. concentration
cref

1000molm−3 a

Global

Grid resistance Rext 2×10−4Ωm2 a

a Ref. [33].
b Ref. [34].
c Ref. [51].
d Discharge scenario ( =k 0)
e estimated
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A.3. Spatial discretization using FDM with FVM formulation

See Table 14.

Table 13
Parameterization II.

Thermal Parameters I – Activation energy EA
R

c

Reaction rate constants ka c/ 1800 Ka

Film resistance Rf −1800 Ka

Solid diffusivity Ds a, 200 Ka

Solid diffusivity Ds c, 900 Ka

Salt diffusivity Dl
eff 2000 Ka

Ionic conductivity κl
eff 1690 Ka

Thermal Parameters II – Cell specifications

Specific mass M 0.4932 −kg m 2a

Heat capacity Cp 1000 − −J kg K1 1a

Heat transfer Coefficient hconv 1Wm−2 K−1b

a Ref. [33].
b Estimated.
c Arrhenius law [52]: = − −( )k A·exp EA T

R T
·( 298)

·298 .

Table 14
FDM-discretization for DAE of the PCM at =x LNEG

Mass balance in liquid phase

− − + − ⋯− − − −c x t c x t c x t c x t[ ( , ) ( , ) 3 ( , ) 3 ( , )]
εl h

t l j k l j k l j k l j k
NEG NEG

Δ 8 1 1 1 1

− − − ⋯− −ε D x D x c x t c x t( ) ( ( ) ( )) ( ( , ) ( , ))l l j l j h l j k l j kNEG 1.5 1
2 1

1
NEG 1

−⎡⎣ − + ⎤⎦ − ⋯+ + − −t x t x i x t i x t1 ( ( ) ( )) ( ( , ) ( , ))j j F l j k l j k
1
2

0 0
1

1
2 1

− − + − ⋯+ + − −c x t c x t c x t c x t[ ( , ) ( , ) 3 ( , ) 3 ( , )]
εl h

t l j k l j k l j k l j k
SEP SEP

Δ 8 1 1 1 1

+ − − ⋯+ +ε D x D x c x t c x t( ) ( ( ) ( )) ( ( , ) ( , ))l l j l j h l j k l j kSEP 1.5 1
2 1

1
SEP 1

+ ⎡⎣ − + ⎤⎦ ++ + + +t x t x i x t i x t1 ( ( ) ( )) ( ( , ) ( , ))j j F l j k l j k
1
2

0 0
1

1
2 1

Potential in liquid phase

⎜− + ⎡
⎣⎢

+ ⎤
⎦⎥

− ⎡
⎣⎢

⎛
⎝

⋯+
+

+
x t x tΦ ( , ) Φ ( , )l j k l j k

h
εl

il xj tk
κl xj

il xj tk
κl xj

R T
F cl xj tk

1
SEP

2( SEP)1.5
( , )

( )
( 1, )

( ( 1)
1

( , )

+
⎞

⎠
⎟⎟

− +
⎛

⎝
⎜⎜

+
⎞

⎠
⎟⎟

−
⎤

⎦

⎥
⎥

⋯±
+ + − ±

+
+ +t x c x t t x(1 ( )) ( , ) (1 ( ))

dlnf
d cl xj

j l j k
dlnf
d cl xj

j
0

1 1

1

0
1

−+c x t c x t·( ( , ) ( , ))l j k l j k1

Potential in solid phase

− − − + +− −x t x t h i x t i x t(Φ ( , ) Φ ( , )) ( ( , ) ( , ))s j k s j k
I tk
σ xj

h
σ xj

l j k l j k1 NEG ( )
( )

NEG

2 ( ) 1

Charge balance

−I t i x t( ) ( , )k l j k
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Appendix B. Linear Kalman filter algorithm

See Table 15.

Appendix C. Symbols

See Tables 16 and 17.

Table 15
Kalman Filter algorithm [43–45].

Vectors Discrete State-Space Model of DAE

x=Dynamic state = +− −x f x z u ω( , , )k k k k k1 1 = − −g x z u0 ( , , )k k k1 1

= +y x z u vh( , , )k k k k kz=Algebraic state
u=Measured input
y=Measured Output
v ω,k k=Noise

Filter Algorithm

Linear state-space = + +−x u ωx F Bk k k k k k1
representation [46] = +y x vHk k k k
Prediction = +− − −x x uF Bk k k k k k k1 1 1

Correction gain = +− − −P F P F Qk k k k k k
T

k1 1 1

= +− − −K P H H P H R[ ]k k k k
T

k k k k
T

k1 1 1

= −∼
−y y H xk k k k k 1

Update = + ∼
−x x K yk k k k k k1

= − −P I K H P( )k k k k k k 1,

Table 16
Symbols I.

Greek symbols

α Transfer coefficient
ε Volume fraction
∊ Numerical tolerance
η V Overpotential
κ Sm−1 Ionic conductivity
σ Sm−1 Electrical conductivity
τ Tortuosity
Φ V Electrical potential

Indices

0 Reference state
a anodic
c cathodic
eff Transport corrected
i Discrete iteration step
j Discrete node
k Discrete time step
l Liquid phase
NEG Negative electrode (MCMB)
POS Positive electrode (LiCoO2)
s Solid phase - Active particle
ss Solid phase - Active particle surface
SEP Separator
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±f Mean molar activity coefficient of electrolyte
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F Transition matrix
h Wm−2 K−1 Convective heat transfer coefficient
H Observation matrix
i Am−2 Current density
in Am−2 Current density normal to particle surface
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K Kalman gain matrix
L m Thickness
M kgm−2 Specific mass of the cell
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P Approximate error covariance matrix
Q Process noise covariance matrix
r m Dimension within active particles
R 8.314 Jmol−1 K−1 Gas constant
Rp m Particle radius
R Measurement noise covariance matrix
t s Time

tΔ s Discrete time step
T K Temperature

+t 0 Transport number of Li+

U0 V Open circuit voltage of the cell
x m Dimension through thickness of electrodes
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