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Summary

Recent advances in sequencing techniques allow the measurement of various genomic
information on whole genome level, such as protein occupancy, which is used to study
DNA-protein interactions. Given a constantly increasing scientific focus on humans, in-
novations are not only required on the modeling side, but also must be capable of dealing
with the size of the human genome, which accumulates to over 3 billion data points in
a single experiment. So far common practice has been to focus on specific regions of
interest (such as genes) or use metrics (such as binning) to reduce the complexity of the
data, trading a gain in computational speed for a loss of information. However, new
cutting edge techniques are already capable of measurements at single-nucleotide level.
Thus advanced, sophisticated methods are required to make full use of this data within
feasible computation time.

This thesis explores the development of a general statistical framework providing a
robust basepair resolution fitting process based on longitudinal models. First, a statisti-
cal model is established for the analysis of data coming from experiments of chromatin
immunoprecipitation followed by deep sequencing (ChIP-Seq). An approach widely used
to study protein-DNA interactions. The quantities of interest are often the differential
occupancies relative to controls, between genetic backgrounds, treatments, or combina-
tions thereof. Although ChIP-Seq is a very generic methodology to study protein-DNA
interactions, statistical analysis methods have been so far dedicated to specific appli-
cations. Hence, practitioners rely on different statistical frameworks for different tasks
such as peak calling or differential binding. Additionally, current methods face a number
of issues: The reliance on subjective sliding window techniques, a lack of additional data
handling, such as replicates and control factors or limitation in statistical inference and
proper statistical error handling.

The proposed method, termed GenoGAM (Genome-wide Generalized Additive Model),
integrates the well-established and flexible generalized additive model framework into
genomic applications using a data parallelism strategy. ChIP-Seq data is modelled
jointly as a product of smooth functions along chromosomes. Smoothing parameters
are objectively estimated from the data by cross-validation, eliminating ad-hoc binning
and windowing needed by current approaches. Furthermore, it provides base-level and
region-level significance testing for full factorial designs. Application to a ChIP-Seq
dataset in yeast show increased sensitivity over existing differential occupancy methods
while controlling for type I error rate. Extension to a peak caller and analysis of a set
of DNA methylation data further illustrates the potential of GenoGAM as a generic
statistical modeling tool for genome-wide assays.

Upon having established the statistical framework, the scalability and an efficient im-
plementation of GenoGAM is developed in order to enable its use on all types of organ-
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isms, especially large gigabase genomes like mouse and human. Approaches for solving
linear systems are further explored, focusing in particular on exploiting the sparsity of
the model. Combining the SuperLU direct solver, sparse Cholesky factorization and the
sparse inverse subset algorithm yields a 2-3 orders of magnitude speedup. Furthermore
the HDF5 library is employed to store data efficiently on the hard drive, reducing mem-
ory footprint while keeping I/O low. As a result whole-genome fits for human ChIP-Seq
datasets (ca. 300 million parameters) can be obtained in less than 9 hours on a standard
60-core server. Moreover, the algorithmic improvements for fitting large GAMs could be
of interest to the statistical community beyond the genomics field.

In conclusion this thesis establishes statistical models for long longitudinal data coming
from genome-wide sequencing-based experiments. It is shown how generalized additive
models can be effectively applied to model chromatin immunoprecipitation followed by
sequencing data and how these models allow improved differential analysis and principled
peak calling. Effective algorithms to fit these models to complete genomes combining
approximated parallelization schemes and sparse matrix techniques are provided.

GenoGAM is implemented as an open source R package and available on GitHub and
Bioconductor.
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1 Introduction

1.1 Biological background

1.1.1 Characterization of the genome

The genome is the complete genetic material of an organism that provides a genetic
program instructing the cell how to behave. This genetic program consists of information
which is encoded in the DNA: A structure of two complementary chains composed of
sequences of the four nucleotides adenine (A), cytosine (C), guanine (G) and thymine
(T) and bound together by hydrogen bonds into a double helix. In eukaryotic cells DNA
is further compressed by wrapping around a protein core of eight histone molecules to
form nucleosomes. Those nucleosomes are then further packaged into chromatin.

The knowledge of a complete genome provides the foundation of functional studies
not only for the organism in question, but also other related organisms that share cer-
tain features. The first complete genome to be sequenced was bacteriophage ΦX174 by
Sanger et al. in 1977 [3]. A single-stranded DNA virus, which consisted of approxi-
mately 5,386 nucleotides. Further genomes of important model organisms followed in
the years of the human genome project [4]. Most notably yeast (Saccharomyces cere-
visiae, ∼12 megabases) in 1996 [5], the nematode worm (Caenorhabditis elegans, ∼100
megabases) in 1998 [6], the fruit fly (Drosophila melanogaster, ∼120 megabases) in 2000
[7] and mouse (Mus musculus, ∼2.8 gigabases) in 2002 [8]. Finally, the completion of
human genome sequencing in 2003 marked a major milestone in the history of modern
biology [4]. With the complete sequence at hand the focus turned to the annotation of
genomes for functional content, including protein-coding and non–protein-coding genes,
transcriptional regulatory elements, and sequences that mediate chromosome structure
and dynamics [9]. In particular it opened the door for characterization of the physical
genome, which is relevant to many different fundamental processes such as transcription,
DNA replication and repair, recombination and chromosome segregation.

1.1.1.1 Transcription factor binding

The ability of the cell to carry out those processes accurately relies on a complex, multi-
level regulatory system. At the lowest level, the transcription level, those processes are
controlled by regulatory elements that recruit transcription factors with specific DNA
recognition properties [10] (see Figure 1.1a). But even if the transcription factors are
known, their target sites or regulated target gene or element might be not. Genome-wide
studies can help reveal the connection between transcription factor binding site (TFBS),

1



1 Introduction

transcription factor (TF) and target element (e.g a gene) [11, 12]. Generally, those con-
nections may vary in different ways: by distance, by specificity and by role in the binding
process. Binding sites can be located locally at promoter regions just upstream of the
target gene [13, 14, 15, 16] or at distant enhancer regions up to 1Mbp (1,000,000 bp)
upstream or downstream of the transcription start site (TSS) [17, 18, 19, 20] (see Figure
1.1a and b). The specificity across TFBS can vary, with certain loci bound more fre-
quently than others despite the same consensus sequence [16, 21, 22, 23]. A TF might
not interact directly with DNA, but instead be involved in the recruitment process of
other proteins [24, 25] (see Figure 1.1b-d). Furthermore determining the binding sites of
these regulatory proteins in the genome is important for reconstruction of transcriptional
regulatory networks, which can identify global chromosomal features or periodicity in
interactions with the genome [26, 27, 28, 29, 30].

1.1.1.2 Histone modification

The behaviour of transcription factor binding in different tissues or pathways shows the
influence of additional factors beyond DNA sequence alone, such as chromatin structure
and its core component, the nucleosome. The link between transcription factors and
chromatin has been known for a long time [31]. However, study of this interaction has
been proven difficult until the emerging knowledge of complete genome sequences and
techniques to study protein-DNA interactions in vivo. That is, studies in which the
effects of various biological entities are tested on whole, living organisms or cells. As op-
posed to a tissue extract or dead organism, which is called in vitro. In particular the tails
of the eight core histones are subject to enzyme-catalyzed manipulations and modifica-
tions through acetylation, phosphorylation, methylation and ubiquitination. An attach-
ment of an acetyl, phosphoryl, methyl or ubiquitin group, respectively, that functions
as a marker for other molecular elements. Because nucleosomes are directly involved
in the packaging structure of DNA, various models have been proposed for functional
mechanisms between histone modifications and gene regulation [32, 33, 34, 35, 36, 37].
Moreover interplay between a combination of histone modifications add to the complex-
ity of the epigenetic code [38]. If DNA is tightly wrapped around the histones, it is
generally hard for other proteins to access and interact with it. Although this makes
a direct study of those DNA regions difficult, the very presence of histones at those
particular regions contains valuable information. They can be seen as marks for the cell,
associated with certain processes such as transcription of active genes [39, 40, 25, 41]
(see Figure 1.1).

1.1.1.3 DNA methylation

Another important regulator of gene expression is DNA methylation. Methylation occurs
at cytosine and adenine bases, though cytosine methylation is more widespread and of
greater importance for mammals [43, 44]. Although adenine has been observed as well
[45]. Most CpG dinucleotides (cytosine nucleotide sequentially followed by a guanine
nucleotide) are subject to methylation except for CpG islands that are mostly associated

2



1.1 Biological background

Figure 1.1: Transcription activation by RNA polymerase II. Taken from Ref. [42],
Figure 1. A simplified model for the main steps of transcription initiation by
Pol II in a chromatin context. Of note, the size and proportions of the depicted
components do not reflect their actual dimensions. (a) Transcription activation
starts with the binding of transcription factors (in this case, activators) on en-
hancer regions. These enhancer regions are located at different distances from
the core promoters. The TSS is indicated by an arrow to the right. (b) Ac-
tivators then recruit co-activator complexes that act as chromatin modifiers or
remodellers to alter chromatin structure and to make it more accessible for other
factors. Other co-activators are then recruited that act directly on the assembly of
basal transcriptional machinery, the so-called preinitiation complex (PIC). Many
co-activators act in cooperation, and some have functions both as chromatin reg-
ulators and as co-activators, contributing to PIC formation. The functions of
chromatin regulators are not depicted in detail. In general, transcriptional co-
regulators transmit the regulatory signals from the specific transcription factors
to the PIC. Mediator of RNA polymerase II transcription (Mediator) is one of
the key co-activator complexes. (c) The PIC is assembled at the core promoter.
It includes Pol II and a number of general transcription factors. Multiple steps
and pathways could be involved in PIC assembly in vivo, and Mediator acts to
facilitate recruitment and/or stability of different PIC components. (d) Phos-
phorylation (P) of Pol II is necessary for Pol II to escape from the promoter and
for the transition from the initiation step to the elongation step (creation of an
RNA copy from DNA).
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1 Introduction

with functional gene promoters [46]. CpG islands are usually C+G rich regions (content
above 50%) with a length greater than 200bp and a ratio of observed to expected CpG
greater than 0.6. Here, the ratio of observed to expected refers to the presence of CpG
pairs (observed) compared to the independent presence of C and G alone (expected). A
ratio of 1 would thus mean that within a genomic region the C and G content is solely due
to the presence of CpG pairs. Hypermethylation of CpG islands frequently contributes
to the development of cancer by silencing tumor suppressor genes [44]. Additionally
research has shown that extensive links and crosstalk between histone modifications and
DNA methylation exists [47].

1.1.2 A short history of ChIP-Seq

1.1.2.1 Chromatin immunoprecipitation (ChIP)

Since transcription factors are a key vehicle to regulate gene expression, many approaches
have been developed to identify their target sites in vivo. Among the first were direct
footprinting studies of targets in promoter regions upstream of the gene, which allowed
only for a handful of promoters to be examined at once [48]. Alternative methods ex-
amining transcription profiles over all known genes in the absence of a particular tran-
scription factor or expression analysis of mutants using microarrays enabled exploration
on whole-genome level [49, 50, 51]. However, those methods suffered from an indirect
approach, resulting in uncertain conclusions about the nature of change (or lack of it)
in transcription levels.

One of the first methods to successfully identify bound transcription factors directly in
a whole-genome analysis was ChIP-chip ([21, 12], see Figure 1.2), originally developed
by Horak and Snyder in 2002 for analysis in yeast [52]. It makes use of the idea of
ChIP, where proteins are crosslinked with DNA, fragmented by sonication and isolated
by immunoprecipitation (IP) to obtain chunks of DNA sequences, where the bound
transcription factor has been identified by an antibody. This idea goes back to Solomon
and Varshavsky [53], who used formaldehyde (HCHO) to stabilize a variety of cross-
links with virtually no reactivity towards free double-stranded DNA [54], opposed to a
treatment with other agents like UV-light or dimethyl sulfate [53]. In an later experiment
Solomon additionally used IP to examine in vivo the interaction between histone H4 and
heat shock protein 70 (hsp70) genes. Contrary to previous in vitro studies he could show
that although transcription perturbs nucleosome structure, at least histone H4 remains
bound to actively transcribed DNA sequences [55]. Further development, including
amplification by Polymerase chain reaction (PCR), was done by Dedon [56, 57], Orlando
[58, 59] and Strutt [60], but had its major breakthrough through the works of Hecht and
Strahl-Bolsinger [61, 62].

An alternative method to identify DNA loci which interact with proteins is DNA ade-
nine methyltransferase identification (DamID), developed by van Steensel and Henikoff
[63]. It is a methylation-based tagging technique in which DNA adenine methyltrans-
ferase (Dam) is fused to a protein of interest resulting in local DNA methylation at
native binding sites of the protein. Methylation-specific restriction enzymes or antibod-
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1.1 Biological background

ies are then used to map the regions. Therefore DamID bypasses the dependence on
antibodies and the need to chemically crosslink DNA–protein complexes. Although the
former is true, ChIP techniques can easily be generalized to proteins lacking antibodies
by tagging them with epitopes for which high quality antibodies are available. By con-
trast, DamID is of limited value for discriminating binding of a given factor depending
on its post-transcriptional modifications status [64].

The success of ChIP and its combination with microarrays (ChIP-chip) led to a number
of developments combining it with various other techniques to expand genome-wide
studies to more complex interactions and genomes (GMAT [65], ChAP [66], SACO [67]).
In particular strategies of ChIP in combination with sequencing have demonstrated a
way to overcome the limited scale of the original ChIP-chip protocol (STAGE [68],
ChIP-PET [69], MS-PET [70]).

1.1.2.2 Chromatin immunoprecipitation followed by massively parallel DNA
sequencing (ChIP-Seq)

Rapid technological developments in next-generation sequencing (NGS) enabled increas-
ingly large experiments. New sequencing platforms of Solexa/Illumina and 454 allowed
to sequence greater numbers of DNA fragments faster and cheaper than before. In
2007 several labs were developing a protocol that could be used in concert with ChIP
to produce high-quality protein-DNA interactome measurements, ultimately terming
it chromatin immunoprecipitation with massively parallel DNA sequencing (ChIP-Seq)
([72, 73, 74, 75, 76], see Figure 1.3). From the high number of DNA fragments pro-
duced by the new sequencing platforms through the ChIP protocol, short reads could be
determined and then mapped onto the reference genome, calculating the frequency of
the protein of interest in the sample. In contrast to ChIP-chip, ChIP-Seq yields higher
resolution, fewer artefacts and a greater coverage. This in turn improves the characteri-
zation of DNA-binding proteins and makes identification of sequence motifs possible. In
particular profiling of nucleosome-level features profits from increased precision and al-
lows a better systematic cataloguing of patterns of histone modifications and nucleosome
positioning.

As a successor to ChIP-chip, ChIP-Seq inherits some of its disadvantages. The crucial
dependence on antibody quality remains by nature of the experimental design. As well
as the bias towards GC-rich content in fragment selection, both in library preparation
and in amplification before and during sequencing [77]. Another bias occurs during
fragmentation of the genome: Open chromatin regions tend to be fragmented more easily
than closed regions, leading to a non-uniform distribution of reads. Two strategies are
essentially used to tackle those biases: The most widely used is input DNA, where a
portion of the DNA sample skips the IP step jumping directly to library preparation.
Therefore input DNA is cross-linked and fragmented under the same conditions as the
IP DNA. Additionally mock IP DNA (DNA obtained from IP without antibodies) can
be used to control for over representation of open chromatin regions [78, 79]. Of those
controls, input DNA seems to be the most efficient, while the mock IP is found to
contribute little to the overall result when the data is properly normalized [80].
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1 Introduction

Figure 1.2: Chromatin immunoprecipitation combined with DNA microarrays
(ChIP-chip). Taken from Ref. [71], Figure 2. This figure shows how ChIP-
chip is used to study histone modifications. Modified chromatin is first purified
by immunoprecipitating crosslinked chromatin using an antibody that is specific
to a particular histone modification (shown in green). DNA is then amplified to
obtain sufficient DNA. The colour-labelled ChIP DNA, together with the control
DNA prepared from input chromatin and labelled with a different colour, is hy-
bridized to a DNA microarray. The microarray probes can then be mapped to
the genome to yield genomic coordinates.

6



1.1 Biological background

Figure 1.3: Chromatin immunoprecipitation combined with high-throughput se-
quencing techniques (ChIP-Seq). Taken from Ref. [71], Figure 4. This
figure shows how ChIP-Seq is used to study histone modifications. The first step
is the purification of modified chromatin by immunoprecipitation using an anti-
body that is specific to a particular histone modification (shown in green). The
ChIP DNA ends are repaired and ligated to a pair of adaptors, followed by lim-
ited PCR amplification. The DNA molecules are bound to the surface of a flow
cell that contains covalently bound oligonucleotides that recognize the adaptor
sequences. Clusters of individual DNA molecules are generated by solid-phase
PCR and sequencing by synthesis is performed. The resulting sequence reads are
mapped to a reference genome to obtain genomic coordinates that correspond to
the immunoprecipitated fragments.
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1 Introduction

In order to perform meaningful downstream analysis of ChIP-Seq data, a sufficient
number of reads has to be sequenced. This is especially true for input DNA that does
distribute more uniformly along the genome, contrary to IP DNA, which clusters around
the binding sites. Thus, in order to obtain a useful control sample, sequencing depth of
at least the same size as the IP is required [79], greatly increasing the overall number of
reads needed. Fortunately, in recent years, as further improvements in NGS were made
and adaptation of ChIP-Seq grew, obtaining a high number of reads has become less of
an issue, even for larger organisms like human.

One of the advantages of ChIP-Seq over ChIP-chip is the improved resolution (see
Figure 1.4b and c, Figure 1.7a). However, size heterogeneity of randomly sheared ChIP
DNA limits mapping resolution. In recent years further research have lead to advanced
techniques to address this issue in the development of ChIP-exo [81] (see Figure 1.4)
and ChIP-nexus [82]. Both methods enhance ChIP-Seq by treating ChIP DNA with
exonuclease during immunoprecipitation, cutting non-specific DNA left and right of the
bound protein (Figure 1.4a). This step leads to an overall higher technical complexity
and lower amount of recovered DNA, however resulting in a less robust experimental set-
ting [82]. ChIP-nexus improves the efficiency of library preparation and adds a unique,
randomized barcode to the adaptor to monitor overamplification during PCR [82]. De-
spite this advances adaptation of both protocols has been slow. Some applications do
not require base-pair resolution or can achieve sufficient results through computational
methods. Hence, the cost of adaptation and an increase in technical complexity ends up
dominating the advantages. Therefore, over 10 years after the introduction of ChIP-Seq,
it remains the most widely used protocol for quantification of protein-DNA interaction.

1.2 Computational background

1.2.1 ChIP-Seq workflow

Computational methods have always accompanied development in molecular quantifi-
cation methods, becoming increasingly important with growing amounts of data. Thus,
huge efforts have been made to improve tools for analysis of data and create com-
putational pipelines. It can be roughly divided into seven steps, for which numerous
specialized software have been developed: Pre-analysis steps like mapping reads and
computation of quality metrics for sequences and read counts. Preprocessing steps, such
as determination of fragment size, transformation of count data by binning, smoothing
and filtering. Normalization to account for different sequencing depth. Identification of
enriched regions or peak calling. Computation and multiple testing correction of sig-
nificance values. Differential binding analysis for multiple treatments and downstream
evaluation of results, such as peak annotation, motif analysis and motif discovery [83]
(Figure 1.5). Which of those steps will be performed greatly depends on the question of
interest. For example, differential binding analysis of genes does not require identifica-
tion of enriched regions, as they are known prior. Whereas identification of differentially
bound sites does require determination of such sites first. Throughout the development
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1.2 Computational background

Figure 1.4: Chromatin immunoprecipitation combined with high-throughput se-
quencing and exonuclease treatment (ChIP-exo). Taken from Ref. [81],
Figure 1. (A) Illustration of the ChIP-exo method. ChIP DNA is treated with
a 5’ to 3’ exonuclease (yellow) while still present within the immunoprecipitate.
(B) Comparison of ChIP-exo (red) to ChIP-chip (gray) and ChIP-Seq (green)
for Reb1 at specific loci. The plots show the distribution of raw signals. (C)
Aggregated raw Reb1 signal distribution around all 791 instances of the motif
TTACCCG in the yeast genome.

stages some steps, like normalization became indispensable. Thus, nowadays most soft-
ware implement an entire pipeline for the question of interest rather than a single step
within the pipeline.

1.2.1.1 Mapping and sequence alignment

Mapping reads is the procedure to find the most likely position of a certain read in the
reference genome. It is a complex process that has to take into account the numerous
variations of individual DNA deviating from the reference genome. Thus, each software
provides a mechanism to compute a mapping score that contains information about how
well the read fits an identified position. Additionally, organisms with a high fraction
of repetitive elements in their genome pose a particularly challenging task to mapping
software. The human genome, for example is estimated to contain around 66% of repet-
itive elements [84]. The landscape of DNA mappers is relatively narrow and has been
widely dominated by Bowtie [85] and BWA [86], but was recently joined by the RNA-Seq
aligner STAR [87] that can be easily used for DNA mapping as well. Once the reads are
mapped, their quality is assessed and low-quality reads are discarded or marked, such
that they can be accounted for. Usually candidates are checked for mapping quality or
library complexity due to antibody quality or PCR over-amplification.
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Figure 1.5: Workflow for computational analysis of ChIP-Seq. Similar to Figure 1 in
Ref. [83]. A typical software for ChIP-Seq starts at the third box from the top
(Preprocessing). It is usually meant to do one particular analysis: Peak calling
in the IP sample with or without control (right grey arrow). Differential binding
analysis in IP samples under multiple conditions on prior given regions (left grey
arrow). Differential binding analysis in IP samples under multiple conditions
without prior given regions (middle grey arrow). In the latter case, the peak
caller functions as the identifier of enriched regions, which are then given to the
differential binding algorithm. Methods which employ this complete pipeline
themselves, usually don’t call peaks like a (narrow) peak caller would, but rather
identify candidate regions more similar to a broad peak calling approach.
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1.2.1.2 Preprocessing

Once raw short reads (tags) are mapped and filtered for quality they have to be prepro-
cessed and quantified into proper format. In ChIP-Seq DNA is usually cut randomly in
fragments of pre-selected size, of which only one or both short ends are sequenced. In
case that both ends are sequenced (paired end sequencing), the fragment can be exactly
identified. In case that only one end is sequenced (single end sequencing) strategies
have to be applied to determine the entire fragment. The most widely used strategy
is strand cross-correlation (Figure 1.6). The assumption is that tags on both strands
accumulate on average around half a fragment length upstream of the actual binding site
(equivalent to the fragment being centered on the binding site) and thus form related
peaks downstream of the opposite strand (Figure 1.6 A and B). Therefore, the highest
correlation for a relative shift between two such peaks on opposite strands indicates the
offset to the binding site of the protein of interest (Figure 1.6C). Hence, the distance
between those peaks (equals two times the shift) constitutes the fragment size and the
center possibly a TFBS.

Often a sliding window approach is employed to transform overlapping positions of
short reads into counts. But the methodology widely varies how this is performed in the
pipeline: SISSRs [88] uses tags to directly identify TFBS on the fly by subtracting minus
strand reads from plus strand reads within a window and mark positions of sign change.
Some methods shift reads by the determined offset before counting them [89, 90, 91].
While other extend reads to full fragments first [92, 93, 94]. A few methods compute
fragment length but nevertheless conduct most of the computation on the tags directly
[95, 96].

In principle, analysis could be performed at every single base of the genome. How-
ever, the per-base coverage is in practice too low and too noisy for such an approach
to have enough statistical power. Testing for enriched sites has been therefore done by
integration of data over regions into windows (overlapping) or bins (consecutive). For
convenience both terms will be referred to as windows hereafter and specified if they
overlap or not only if required. Each fragment or read can theoretically overlap multiple
windows. Depending on the method it is either assigned to at most one [97] or multi-
ple windows [98, 99]. The total number of overlaps constitutes the window coverage.
Alternatively coverage is computed per base and sequentially summarized into windows
[100]. Those approaches are often coupled directly with a filter that discards low count
windows if they fall below a certain threshold. The threshold can be based on estima-
tion of a constant [101], a dynamic background signal [102], a probability obtained by
simulating random read distributions [100], or presence of artifacts, such as single tag
peaks [103] (an accumulation of tags on only one strand, without corresponding tags on
the other strand).
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Figure 1.6: Concept of strand cross-correlation. Taken from Ref. [95], Figure 1. Panel
A was removed and other panel letters adjusted accordingly. (A) A schematic il-
lustration of ChIP-Seq measurements. The protein of interest (green) is bound to
a DNA fragment. The 5’ ends (squares) of the selected fragments are sequenced,
typically forming groups of positive and negative strand tags on the two sides of
the protected region. The dashed red line illustrates a fragment generated from
a long cross-link that may account for the tag patterns observed in CTCF and
STAT1 datasets. (B) Tag distribution around a stable NRSF binding position.
Vertical lines show the number of tags (right axis) whose 5’ position maps to a
given location on positive (red) or negative (blue) strands. Positive and negative
values on the y-axis are used to illustrate tags mapping to positive and negative
strands respectively. The solid curves show tag density for each strand (left axis).
(C) Strand cross-correlation for the NRSF data. The y-axis shows Pearson linear
correlation coefficient between genome-wide profiles of tag density of positive and
negative strands, shifted relative to each-other by a distance specified on the x-
axis. The peak position (red vertical line) indicates a typical distance separating
positive- and negative-strand peaks associated with the stable binding positions.
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1.2.1.3 Normalization

Although in the very beginning following the ChIP-Seq development methods analyzed
the IP sample only [76, 74, 96], having an additional control sample became standard
procedure very quickly (see Figure 1.7a, bottom). Since then, more complex experimen-
tal designs evolved involving samples with different treatments and biological replicates
resulting in the need to normalize data to make it comparable. An intuitive and widely
used method to control for sequencing depth is linear normalization, where samples are
multiplied by a scaling factor [73]. However, the computation of the factor varies from
method to method. The most simple way to derive a normalization factor is by us-
ing the library size, i.e. the total number of fragments in a sample [95, 104, 103]. A
more sophisticated way in order to account for local fluctuations and outlier regions is
to use a representative sample of the fragments to avoid any bias from overrepresented
regions. For instance, PeakSeq excludes enriched candidate windows to estimate a slope
by linear regression on low count regions, which it regards as background [100]. Thus,
excluding bound regions that might bias the baseline normalization factor. In contrast,
diffReps calculates the scaling factor on enriched windows [101]. The reasoning is that
background coverage might be too low to estimate a proper factor. Hence, using only
abundant regions might yield a more reasonable scaling factor. A compromise is offered
by the trimmed median of M-values approach originally developed for RNA-Seq [105].
Here, windows with highest and lowest log fold change are discarded to estimate the
normalization factor on regions with moderate log fold change [98].

Furthermore, variations exists that try to approximate the scaling factor with a higher
precision: Iterative methods estimate the background threshold and the scaling factor
jointly in a greedy fashion [106, 107], compute regression lines on a mean-difference
plot [108] or use expression levels of housekeeping genes [109]. Alternatively, non-linear
normalization methods account for positional biological variations by estimating scaling
factors locally. Motivated by the mixed binding pattern expressed by RNA polymerase
II (Pol II) normalization methods based on Local Regression (LOESS) were developed
[110, 111]. Other methods employ sigmoid functions [112] inside each window or scale
the read coverage distribution of the IP sample to have the same mean and variance as
the control sample [113] and adjust each window accordingly.

1.2.1.4 Peak calling

After the data has been smoothed and normalized to make different samples comparable
the IP signal is controlled for background noise from the control sample or other sources
of bias such as mappability or GC content [114, 97]. Two basic approaches exist to con-
trol for an input sample: subtract or divide the normalized IP signal by the normalized
control signal and perform peak calling [109, 114, 115]. Or perform peak calling first and
then use probabilistic measures to compute the significance of the peak given the control
signal (see next subsection). In case a control sample does not exist, background signal
is estimated directly from the IP sample by simulation. The assumption is that low
count regions with no bound protein contain signal due to background noise. Therefore,
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Figure 1.7: ChIP profiles. Taken from Ref. [78], Figure 2. (a) Shown is a section of the
binding profiles of the chromodomain protein Chromator, as measured by ChIP-
chip (blue) and ChIP-Seq (red) in the Drosophila melanogaster S2 cell line. The
tag density profile obtained by ChIP-Seq reveals specific positions of Chromator
binding with higher spatial resolution and sensitivity. The ChIP-Seq input DNA
(control experiment) tag density is shown in grey for comparison. (b) Examples
of different types of ChIP-Seq tag density profiles in human Tcells. Profiles for
different types of proteins and histone marks can have different types of features,
such as: sharp binding sites, as shown for the insulator binding protein CTCF
(red); a mixture of shapes, as shown for RNA polymerase II (orange), which has
a sharp peak followed by a broad region of enrichment; medium size broad peaks,
as shown for histone H3 trimethylated at lysine 36 (H3K36me3; green), which
is associated with transcription elongation over the gene; or large domains, as
shown for histone H3 trimethylated at lysine 27 (H3K27me3; blue), which is a
repressive mark that is indicative of Polycomb-mediated silencing.
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Monte Carlo simulations are run to estimate the count distribution given that reads
could be mapped randomly to the genome [96, 100, 113]. However, often the resulting
background signal is not expressed in terms of a baseline threshold, but in terms of a
distribution, that is sequentially used to compute the False Discovery Rate (FDR) of a
given peak.

Peak calling is usually a two-step process. First identifying enriched windows and
subsequently merging them into intervals to form peaks (Figure 1.8). It is important to
note, that peak refers to a region of possibly several hundred basepairs which contains
at least one summit (a single position with highest count in the vicinity). Therefore, a
third step is sometimes employed to identify all subpeaks within peak regions or refine
the peak to a narrow vicinity of the summit (Figure 1.8 last step). In particular, narrow
peak callers make use of this step to identify sharp peaks (Figure 1.7b, top, red) in
contrast to broad peaks (Figure 1.7b, middle, green) and entire domains (Figure 1.7b,
bottom, blue).

Because the first step is concerned with filtering candidate regions from noisy back-
ground regions, probabilistic models are employed that can provide a measure of signifi-
cance. Methods that apply sliding windows techniques often base their threshold on the
distribution of the background signal, calling all regions lower than a certain FDR or p-
value [103, 100, 104]. Alternative methods make use of Hidden Markov Models (HMM)
[115, 116] or mixture models [97] to cluster windows into background and enriched win-
dows or combination thereof [117]. In differential binding analysis it is common to
divide the category of enriched windows further into the two categories enrichment in
first sample and enrichment in the second sample [109] (Figure 1.9). Close or overlapping
candidate windows are merged to form candidate peaks (narrow peak calling) or larger
domains (broad peak calling), which can be scanned for further subpeaks, for example
using kernel methods [118, 119, 120].

1.2.1.5 Differential binding analysis

In contrast to peak calling, differential binding analysis is concerned with identification
of enriched regions between two IP samples of which one received a different treatment.
For instance studying the cross-talk mechanism between histones by truncation of a core
enzyme [121]. Examining the epigenomic effects of cocaine on mouse nucleus accumbens
[122] or conducting an analysis of regulatory genomic features in lymphomas comparing
follicular lymphoma cells (FLs) with populations of B cells from healthy donors [123].
As well as further numerous experiment designs enabled by the most recent rise of
CRISPR/Cas9, following its relatively precise and cheap gene editing ability.

Since the computational task remains the same peak callers can be used to identify
regions by replacing the control sample with the second IP sample. However this prevents
the possibility of normalization by control. Furthermore, peak callers are designed for
one-way enrichment, that is one sample over the other. Whereas in differential binding
enrichment usually occurs in both directions. Additionally, regions of interest might
be known prior (e.g. genes) and thus there is no need for identification of regions, but
rather correct handling of type I error rates. Therefore special methods were developed
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adapting strategies from broad peak callers (if regions are not fixed) [99, 109] or methods
originally developed for differential expression analysis in RNA-Seq data (if regions are
fixed) [124, 98, 125]. Alternatively to the former methods, the latter are used in concert
with peak callers where peaks are supplied as fixed regions to get tested for differential
occupancy.

1.2.1.6 Significance computation

Finally, all identified regions are evaluated for significance and ranked accordingly. A
common way is to construct p-values from the underlying distributions used in the peak
calling step and correct them for multiple testing to obtain FDR values. In case no
control sample is available peak calling methods compute FDR values by constructing a
null distribution by Monte Carlo simulation and testing against it [103, 100]. Otherwise
the control sample is swapped with the IP sample to call negative peaks which serves
as the set of true negatives in the computation of FDR [104, 106, 93]. Alternatively,
positionwise permutation between samples can be performed to obtain a null distribution
[113]. Differential binding methods that originated from RNA-Seq usually take a count
matrix as input where samples are the rows, regions are the columns and the cells are
the sums of read counts over given regions. Therefore, above techniques for raw read
data can’t be used. Instead, they use a regression approach over all regions, sharing
information, like distributional parameters, between genes based on the assumption
that data from different genes follow similar patterns of variability [124].

1.2.1.7 Further downstream analysis

In the early years of ChIP-Seq analysis many methodological advances were concerned
with peak calling and differential occupancy. However, the approximate knowledge
of binding positions by itself is of little value, as it does not offer insights into the
functionality of the underlying sequence. Therefore, called regions are used as input
for further analysis like motif discovery or annotation. Specific tools look for close
associations with known sequences or positions from literature, like promoter regions or
repeatedly occurring sequence patterns in the peak region that might indicate a new
motif [126, 127, 128]. Another important task is to learn the sequence specificities
of binding proteins, an information essential to build models for regulatory processes.
With the recent rise of deep learning techniques, there has been growing interest in its
application to genomics data [129, 130, 131], where the initial set of sequence features
are extracted by peak callers. Therefore, despite the focus shifting to other challenges,
ChIP-Seq remains an established technique widely used in concert with other methods
as the first step in the analysis pipeline to study gene regulation.
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Figure 1.8: Example workflow for identification of enriched regions and differential
binding. Taken from PePr, Ref. [99], Figure 1. A tag shift is estimated and all
reads are shifted. Raw read data is then used to identify regions of abundance.
The average peaks width of the top abundant regions are used to estimated a
window size. The data is the split into windows overlapping by 50%. For each
window the sum of counts is modeled with a local negative binomial distribution
and tested for enrichment over the control sample with a Wald’s Test. The
window variance φk is assumed to be the same across all samples for the same
window position k and is estimated by a kernel functions from all windows in
the local region. Windows that pass the p-value cutoff are merged and optionally
refined. For differential binding experiments, the normalized input reads are
subtracted from the normalized ChIP reads for each window, and both directions
are tested with one ChIP group being the test and the other being control.
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Figure 1.9: Hidden Markov Model for differential binding. Taken from THOR, Ref.
[109], Figure 1A. Only the HMM part of Figure 1, penal A was taken. Shown is
a three state HMM with one state for Background (grey), one state for condition
2 having a higher read count over condition 1 (green) and one state for condition
1 having a higher read count over condition 2 (red). The different read count
distributions are schematically shown next to the states.
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1.2.2 Methodological issues of state-of-the-art methods

Parts of the introduction presented in this section are part of the manuscript ”GenoGAM:
genome-wide generalized additive models for ChIP-Seq analysis” from Stricker and En-
gelhardt et al. 2017 [1].

Analysis of ChIP-Seq data is an essential part of a genomics pipeline that is performed
on a regular basis. In order to identify the best methods for a given analysis, a number
of benchmarks has been conducted with inconsistent performances for each inspected
algorithm, leading to varying conclusions about the usability of each method [132, 133,
134, 135, 136, 137]. Despite the lack of clarity, there have been efforts to identify features
that generally work in favor of an analysis [138, 139].

These efforts have shown a number of components for a better performance: First,
differential occupancy tools achieve a higher precision if they can handle replicates.
Thus most newer methods support biological replicates. These include diffReps [101],
where a sliding window moves along the genome in a fixed step size and a robust test
based on negative binomial distribution is performed on the number of reads falling
into the window. PePr [99] follows a similar scanning approach and estimates local
variance (see also Figure 1.8). THOR [109] uses a HMM approach to segment the genome
into regions that are enriched, depleted or not differentially occupied (see also Figure
1.9). Complementary to testing for overall occupancies, MMDiff [94] allows testing for
differences in shapes in given regions.

However, those methods lack the capability of comparisons between more than two
groups of samples or supporting any full factorial designs including crossed designs.
One way to handle different experimental designs is to use an approach based on gen-
eralized linear model (GLM) [140] as demonstrated by DESeq/DESeq2 [124, 141] and
edgeR/csaw [125, 98]. DESeq [124] tests for differential overall occupancies at predefined
regions of interest by testing for differences in number of reads overlapping the region.
While csaw [98] devises how to test differential occupancies across windows in given
regions using edgeR [125] while properly controlling for FDR.

Second, tunable parameters often enable model flexibility for a particular analysis
at hand. For instance, allowing to test for different window sizes. Thus many methods
provide a large set of tunable parameters which in turn requires extensive parameter fine
tuning to achieve a good trade-off between precision and recall [139]. More importantly,
it adds a substantial level of subjectivity to each analysis. By far the most important
parameter to tune is window size, sometimes accompanied by step size. The latter
indicates by how many basepairs the window moves along the genome. A step size
of one is equivalent to a sliding window. A common default value is approximately
200bp or a multiple of estimated or given fragment size, which yields a similar number.
The justification lies on the one hand in the selected fragment size for most library
preparation protocols in ChIP-Seq, which is around 200bp [142]. On the other hand it is
approximately the length of the DNA in a single nucleosome including wound and linker
DNA, which is especially of interest in applications related to histone modifications [142].
While the latter might carry some biological meaning, the former is a technical byproduct
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of the ChIP-Seq protocol, since TFBS range from 8 to 20bp [143], while histone marks
express signals of various lengths [144]. An optimal window size will maximize useful
information content and minimize the incorporation of noise, while being generalizable
across a number of different profiles (see Figure 1.7b). This means, estimation of window
sizes should be based on the underlying biology rather than the artificial resolution of
ChIP-Seq. A more objective approach has been demonstrated by the peak caller JAMM
[145], which minimizes a cost function that balances window size with the density of
reads [146].

Another problematic area is the control of type I error through FDR. Its loss is demon-
strated in Lun et al. [98] for differential binding and more recently in Chitpin et al. for
peak calling [147]. Both examine the pitfalls of the common two step strategy that leads
to data snooping. In a first step, the data is used to identify candidate regions and in
the second, those regions are further examined for peaks (in peak calling) or analyzed
for differential occupancy (in differential binding). In both steps the same data is used
to identify and analyze the regions. Furthermore, this strategies can produce biased
p-values (see Figure 1.10) leading to a loss of basis to select a proper threshold as well
as loss of trust in the called peaks of differential regions. This is often mirrored in the
different default thresholds across all methods requiring fine tuning for each method
and analysis. Because of this, methods like JAMM [145] refrain from implementing a
proper cutoff, but rather advise to use the Irreproducible Discovery Rate (IDR) [148]. It
measures the consistency between replicates and uses reproducibility in score rankings
between peaks in each replicate to determine an optimal cutoff for significance.
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Figure 1.10: Biased p-values by MACS, SICER and diffReps. Taken from Ref. [147],
Figure 1, panel A - D. (A) Visualization of part of a simulated ChIP-Seq read
data set, with 500bp foreground regions every 20-25kbp, where read density
is greater. Control data was generated similarly, with matching foreground
regions, so a null hypothesis of no enrichment in IP versus control is true for
every possible genomic region. (B) Peaks called by the three algorithms have
p-values that are not uniformly distributed between zero and one, as should be
the case for this null hypothesis data if p-values were well calibrated. (C,D)
Empirical cumulative distribution functions on linear (C) and log (D) axes also
show the discrepancy from the uniform distribution.

1.3 Scope of the Thesis

Parts of the introduction presented in this section are part of the manuscript ”GenoGAM:
genome-wide generalized additive models for ChIP-Seq analysis” from Stricker and En-
gelhardt et al. 2017 [1].

In my thesis I developed a new method called GenoGAM (genome-wide generalized
additive models) which brings generalized additive models (GAM) to genomic applica-
tions. GAMs are extensions of GLMs for which covariates can be modeled as smooth
functions [149]. I use them to model ChIP-Seq count rates along the genome. GenoGAM
normalizes for sequencing depth and can handle factorial experimental designs, including
any number of biological replicates and multiple controls. The amount of smoothing is
estimated in an automatic, data-driven manner and thus avoids introducing subjectivity
from the user. Moreover, well-calibrated per-base-pair p-values and region-wise p-values
can be obtained to correctly control for type I error rates. In this thesis I will explore the
statistical foundations and efficient implementation of GenoGAM, as well as a number
of different applications and benchmarks:
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First, the statistical and mathematical background of GenoGAM is given (Chapter2).
The adaptation of the model to genomics, in particular differential binding, is described
and benchmarked against state-of-the-art methods (Chapter 3). By re-analyzing data
from a previous study on histone H3 Lysine 4 trimethylation (H3K4me3) [121] comparing
wild type yeast versus a mutant, GenoGAM is shown to be more sensitive than current
methods for testing differential occupancy, while still controlling for type I error rate.

Second, a number of algorithms are described that are adapted for the implementation
of GenoGAM to ensure its scalability to applications for gigabase-scale genomes (Chapter
4). Runtime and memory efficiency are demonstrated and compared with the previous
version of GenoGAM, which was based on a general implementation of GAMs. By
computing whole-genome fits for human ChIP-Seq datasets in less than 9 hours on a
standard 60-core server GenoGAMs utility is shown. On top of this, consistent biological
accuracy is shown by replication of all previous ChIP-Seq studies from chapter 3 and
chapter 5.

Finally, GenoGAMs flexibility is demonstrated by application to peak calling and a
proof-of-concept modeling of bisulfite sequencing data using a quasi-binomial distribu-
tion (Chapter 5).
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2 Statistical and mathematical
background

Before the GenoGAM model can be described, an introduction to a few core components
is needed. This chapter will give an overview to generalized additive models, which are
at the heart of GenoGAM. Explain spline functions, which are responsible for smoothing
the count data, with a focus on B- and P-splines. Finally, a very brief introduction is
made into sparse matrices and why they are essential to solve the scaling problem of
GenoGAM.

2.1 Generalized Additive Models

2.1.1 The model

A generalized additive model (GAM) [149] is a generalization of a generalized linear
model (GLM), where covariates can be modeled as a sum of smooth functions addition-
ally to the linear predictor Xθ. The model structure can be represented as follows:

g(µi) = Xiθ +
∑
k

fk(xki) (2.1)

where g is a link function, Xi the i-th row of the design matrix X, θ the correspond-
ing parameter vector, fk the smooth functions of covariates xk and µi = E(yi), the
expectation of yi, which is a random variable assumed to be distributed according to a
exponential family distribution. The dependence of response variable y on the covariates
can thus be specified very flexibly in terms of any suitable function f . In fact fk doesn’t
have to be the same for all k but can vary for each covariate.

In theory, a suitable function is any smooth function that can be represented as a linear
combination. This can range from a simple running mean smoother, over a running lines
smoother to kernel and spline smoothers. A more complete description of smoothers can
be found in chapter 2 of Hastie and Tibshirani (1990) [150]. In practice, cubic splines are
the preferred functions in GAMs. They are piecewise polynomials that can be defined
as follows:

f(x) =

p∑
r=1

br(x)βr (2.2)

with br(x) as a basis function and βr its respective coefficient. Plugging equation (2.2)
into equation (2.1) yields a GLM with br(x) functioning as a covariate variable:
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g(µi) = Xiθ +
∑
k

p∑
r=1

brk(xki)βrk (2.3)

Therefore, the spline functions can be merged with the linear predictor into a simplified
matrix-vector notation, yielding:

g(µi) = X̃iβ̃ (2.4)

with X̃ = (X, b1(x), b2(x), . . . , bp(x)) and β̃T = (θT ,βT ).

For convenience the tilde over the variables will be dropped and the complete design
matrix referred to as X and the parameter vector referred to as β. Once the model
is specified, the parameters guarding the relationship between response and covariates
can be estimated. In the case that the link function g is just the identity function, for
instance if yi ∼ N (µi, σ), parameter estimation can be performed analytically by least
square estimation just like in a regular linear model. However, if yi is not normally
distributed with a non-identity link function g, other approaches have to be employed
to find a satisfactory set of parameters.

2.1.2 Parameter estimation

Least square estimation is ultimately concerned with finding the orthogonal projection
of y on to the space of X. The identity link keeps the model linear and allows to find
a suitable linear combination of the columns of the design matrix by solving a linear
system. Whereas a non-linear link function, like the log function, makes it impossible to
find an exact orthogonal projection. Therefore, the idea is to approximate the solution
by iteratively solving a weighted least square problem of residuals regressed on the
response vector. Hence readjusting, or re-weighting the fit at each step till convergence.
This is called Iteratively Reweighted Least Squares (IRLS) [140] and is the most common
method used to estimate parameters in GLMs. The algorithm based on Wood (2017)
[151] is provided below (see Algorithm 1). The derivation of the algorithm can be found
in Wood (2017) [151] or in Nelder and Wedderburn (1972) [140].

In principle, IRLS is a Newton-Raphson method that is iteratively minimizing quadratic
approximations of the objective function around the current estimate. Then, the current
parameter vector β can be updated as:

βt+1 = βt −H−1(βt)Of(βt) (2.5)

where the inverse Hessian H−1(βt) captures the local curvature of the objective function,
and the gradient vector Of(βt) captures the local slope. The iteration stops when the
change in the log-likelihood or the norm of the gradient of the log-likelihood falls below a
specified convergence threshold. Generally, for distributions from the exponential family,
the penalized log-likelihood is convex and thus convergence is guaranteed.

However, IRLS differs from the default Newton-Raphson method in one core com-
ponent: Instead of using the Hessian matrix it uses the Fisher information matrix
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2.2 Penalized B-Spline functions

I(βt) = −E[H(βt)], that is the negative expectation over the Hessian matrix. In this
case the algorithm is also know as the Fisher Scoring Algorithm. If the canonical link
function is used, both matrices are the same [152]. Otherwise they might differ. This
is for example the case for the negative binomial distribution with known dispersion
parameter θ (a different θ than used above). The canonical link in this case is ln ( µ

µ+k
).

However, often the more intuitive link ln (µ) is used [153].

Algorithm 1 Iterative Reweighted Least Squares

1: while convergence criteria not met do
2: η

[t]
i ← Xiβ̂

[t]

3: µ
[t]
i ← g−1(η

[t]
i )

4: z
[t]
i ← g′(µ[t])(yi − µ[t]

i ) + η
[t]
i . calculate pseudodata z[t]

5: W
[t]
ii ← 1

V µ
[t]
i g

′(µ
[t]
i )2

. calculate weight matrix W[t]

6:

7: β̂[t+1] ← (XTW[t]X)−1XTW[t]z . Solve to obtain β̂[t+1]

8: t← t+ 1 . Increment t
9: end while

Once the final parameter vector β̂ is obtained, we can compute the vector of fits µ̂.
Since µ̂ are also estimates, one is generally interested in their variance Vµ̂, so called
standard error, often used to derive confidence intervals. Thus we have:

Vµ̂ = XVβ̂XT = X(XTWX)−1XT = XH−1XT (2.6)

with the standard errors σii on the diagonal of the final matrix. In case of a normal
distribution with identity link equation (2.6) simplifies to

Vµ̂ = XVβ̂XT = σ2X(XTX)−1XT (2.7)

A more complete introduction of GLMs and GAMs can be found in Hastie and Tib-
shirani (1990) [150] and Wood (2017) [151].

2.2 Penalized B-Spline functions

An essential step towards the specification of a generalized additive model is the selection
of a spline function. In practice, there are a handful that are widely used, and their
choice depends on the problem at hand. From equation (2.2) it can be seen that a
spline function is made up of a set of basis functions br(x). One straightforward way
to define such a function could be as a regular polynomial, e.g. b1(x) = 1, b2(x) =
x, b3(x) = x2, . . . , br(x) = xr−1. However, polynomials tend to have problems when
it comes to model effects over an entire domain [151]. Thus, a more practical way are
piecewise polynomials, where neighbouring pieces are joined at so called knots. Although
theoretically each data point could be a knot, formally equivalent to a smoothing spline,
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2 Statistical and mathematical background

it will be computationally expensive. In particular for longitudinal data. Therefore a
strategy is needed for the number and placement of knots.

One very widely used spline function basis is the B-spline basis [154], most easily
defined recursively:

B−1r (x) =

{
1 xr ≤ x < xr+1

0 otherwise
(2.8)

Bm
r (x) =

x− xr
xr+m+1 − xr

Bm−1
r (x) +

xr+m+2 − x
xr+m+2 − xr+1

Bm−1
r+1 (x), r = 1, . . . , p

with m + 1 the order of the basis function, p the number of parameters and each xr a
knot. In general, the order of the basis function should be at least cubic (here m = 2)
in order to allow for twice differentiation. Moreover, as can be seen from the indices of
x, a p parameter B-spline requires r+m+ 2 knots. That is, for a cubic spline four more
knots than parameters. Another characteristic that can be seen from equation (2.8),
is the local definition of B-splines bases over a finite support and zero otherwise. This
is an advantage when it comes to smooth over subsequent positions, where effects of
a given position should be kept local, not affecting other distant positions. Figure 2.1
shows an example cubic spline with 10 B-spline basis functions (the bell shaped curves)
in the space [0, 1]. Six of the ten knots can be seen (black dots at the bottom), while the
other four (two on each side) are outside of the evaluation space. However their function
curves can be partially seen. The bold blue smooth above the curves is the complete
spline, where at each position the value of the single curves were added.

Due to its properties, the B-spline basis is very flexible and capable of representing
any possible spline function through a linear combination. This flexibility comes with
a downside: As the positioning and total number of the knots are left to the user, a
strategy has to be found to avoid over- or undersmoothing. In 1996 a possible solution
was proposed by Eilers and Marx, introducing the concept of penalized B-splines (P-
splines) [155]: If a sufficiently high number of knots are placed, the spline coefficients
can be penalized through second order differences, which function as an approximation
of second order derivatives:

l(β,y)− λ
p∑

r=l+1

(∆lβr)
2 = l(β,y)− λβTSβ (2.9)

with l(y,β) the log-likelihood of the model and (∆lβr)
2 the difference penalty of order l,

which is commonly set to l = 2. The penalization is controlled by a smoothing parameter
λ that is estimated from the data by Generalized Cross Validation (GCV). Equation (2.9)
can be rewritten in matrix-vector notation, such that S represents a symmetric positive
matrix that encodes the squared second order differences of parameter vector β. Figure
2.2 illustrates the concept. Panel A shows the wiggly smooth due to a high number
of knots prior to penalization. Panel B shows the same fit after penalization has been
applied according to equation (2.9). A more complete overview of splines can be found
in deBoor (1978) [154] and Wood (2017) [151].
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2.2 Penalized B-Spline functions

Figure 2.1: The concept of a B-spline function. Shown is an example cubic B-spline
function with 10 basis functions (the colorful bell shaped curves) in the space
[0, 1]. Six of the ten knots can be seen at the bottom of the x-axis (black dots),
while the other four (two on each side) are outside of the evaluation space. How-
ever, parts of their function curves can be seen. Without the knots outside the
space, the B-spline function would always go down to zero at the borders. The
bold blue smooth above the curves is the complete spline, where at each position
the value of the single curves were summed up.

Figure 2.2: The concept of penalization of a B-spline function. (A) Due to a high
number of knots within the space [0, 1] the fit is wiggly. (B) The same fit from
A is shown after penalization. The curve resembles a smooth fit as one would
expect by eye from looking at raw data.
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2 Statistical and mathematical background

2.3 Sparse matrices

Sparse matrices constitute an important subset of matrices that are useful in solving
computationally expensive linear systems. They are simply matrices with a large number
of zeros. Although mathematically zero is a special number, computationally (that is,
in an implementation) it is a normal number, that occupies storage space according to
its type (e.g integer or double). Thus, in order to take advantage of sparse matrices a
different storage approach is needed.

Intuitively, a straightforward implementation could store the elements in the so called
triplet format. That is, in three vectors with column and row indices and their values,
respectively. Although this is easy to generate, it is harder to use in most sparse direct
methods [156]. Therefore, the inner representation of the sparse matrix object often
makes use of the compressed-column form (and in case of the transpose the compressed-
row form). An example based on an example from Davis (2006) [156] is shown in
equation (2.10). C code notation is used below to illustrate the inner representation.

A =


1.8 0 2.7 0
3.0 0.8 0 1.3
0 7.4 4.7 0

2.1 5.5 0 0.2

 (2.10)

int p [ ] = { 0, 3, 6, 8, 10 } ;

int i [ ] = { 0, 1, 3, 1, 2, 3, 0, 2, 1, 3 } ;

double a [ ] = { 1.8, 3.0, 2.1, 0.8, 7.4, 5.5, 2.7, 4.7, 1.3, 0.2 } ;

It shows a n×m matrix with k <= nm non-zero values. Then the vector i, containing
the row indices of each non-zero entry, and the vector a, containing the values, are of
length k (here k = 10). The vector p is of length m + 1 and contains values that help
map non-zero entries into the index space of i and a. That is, for a given column j the
row indices and the non-zero elements are located in i[p[j]] through i[p[j+1]-1] or
in a[p[j]] through a[p[j+1]-1], respectively. Because p helps identify the rows for a
given column, access to columns is very fast, while access to rows is expensive. Moreover
modification of this structure, e.g. inserting a new non-zero value, is not trivial. By
convention values that turn zero through computation are kept in as non-zero zeroes.

Methods developed to deal with sparse matrices take advantage of the structure to
perform usual tasks like matrix multiplication, transpose computation or factorization
faster and more memory efficient. A task that is often the computational bottleneck
in fitting of statistical models is matrix inversion (see Algorithm 1 and equation 2.6).
Although it can be sometimes solved without an actual matrix inversion by a direct solver
(e.g. in Algorithm 1), this is not always possible (e.g. in equation 2.6). Matrix inversion
can be split into three steps: Permutation, to find a more favorable representation.
Factorization into a product of matrices to reduce the amount of computational steps
and finally the solution of a linear system involving the factorized matrices. Almost all
methods for sparse matrices split the factorization further into two stages:
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2.3 Sparse matrices

1. Symbolic factorization computes an ordering, often using nested dissection or a
approximate minimum degree algorithm, such that the factors will be as sparse as
possible and allocates space to hold the result. The value of the matrix entries are
either not used or only used to make estimates about pivoting.

2. Numeric factorization computes the factorization given the ordering and sparsity
computed by symbolic factorization.

Additionally, using supernodal, frontal, or multifrontal methods during symbolic fac-
torization this strategy results in an efficient scheme of iterative operations on dense
submatrices during numeric factorization. A more complete overview and detailed de-
scription of sparse matrix methods can be found in Davis (2006)[156].

Given a GAM without the parametric part and with the functions represented as
B-splines, one can obtain a design matrix where each column is composed of non-zero
values stemming from the respective basis function and a set of zeros which lie outside
of the respective basis function. This does not necessarily guarantee a sparse matrix.
However in modeling problems with increasing number of basis functions the non-zero
set shrinks compared to the zero set (Fig. 2.3). In this cases sparse matrix methods can
provide a significant boost in computation.

Figure 2.3: Example sparse B-spline design matrices. (A) A sparse matrix with 100
data points (rows) and 10 basis functions (columns). The white colored space
are zeroes, whereas the blue scale represents non-zero values from low (gray) to
high (blue). Note, that the matrix is not squared, it is deliberately plotted this
way for a better visualization. (B) A sparse matrix with 100 data points (rows)
and 50 basis functions (columns). The white colored space are zeroes, wheres as
the blue scale represents non-zero values from low (gray) to high (blue). Due to
an increase in basis functions the zero set has increased relatively to the non-zero
set. Note, that the matrix is not squared, it is deliberately plotted this way for a
better visualization.
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3 GenoGAM model for differential
occupancy

The methodology, results and figures presented in this section are part of the manuscript
”GenoGAM: genome-wide generalized additive models for ChIP-Seq analysis” from Stricker
and Engelhardt et al. 2017 [1].

3.1 A generalized additive model for ChIP-Seq data

Given an experiment consisting of a set of ChIP-Seq samples, a data point is defined by
a pair of a ChIP-Seq sample and a genomic position. Denote by xi the genomic position
of the i-th data point, by ji its ChIP-Seq sample and by yi ≥ 0 the number of fragments
in sample ji centered at position xi. For paired-end libraries, the fragment center is
calculated by shifting the read start or end position by a half of the fragment size.
In case of single end data, the fragment length d is estimated using the Bioconductor
package chipseq and its coverage method. It is defined as the optimal shift for which
the number of bases covered by any read is minimized. Thus, the center was taken as the
start of the read shifted by d

2
downstream. When reducing ChIP-Seq data to fragment

centers rather than full base coverage, each fragment is counted only once. This reduces
artificial correlation between adjacent nucleotides. The counts yi are modelled using the
following generalized additive model:

yi ∼ NB(µi, θ) (3.1)

log(µi) = oi +
K∑
k=1

fk(xi) zji,k (3.2)

The counts yi are assumed to follow a negative binomial distribution with means
µi (Equation 3.1) and a dispersion parameter θ that relates the variance to the mean
such that Var(yi) = µi + µ2

i /θ. Consequently, the model accounts for dispersion beyond
Poisson noise [124].

The logarithm of the mean µi is the sum of an offset oi and one or more smooth
functions fk (Equation 3.2). The offsets oi are predefined data-point specific constants
that account for sequencing depth variations (see section 3.1.3). The indicator variable
zji,k is 1 if the smooth function fk contributes to the mean counts of sample ji and 0 oth-
erwise (see Table 3.1 for a schematic representation). As shown below, this formulation
allows modeling IP versus input experiments as well as factorial experimental designs.
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3 GenoGAM model for differential occupancy

f1(x) f2(x) . . . fK(x)

sample 1 1 1 . . . 0

sample 2 0 1 . . . 0

. . . . . . . . . . . . . . .

sample J 0 0 . . . 1

Table 3.1: Schematic factorial design table of variable zji,k

In the following the experimental setting of IP versus input will be used to explain the
fundamental components and functionalities of GenoGAM.

IP versus input experiments are modelled using GenoGAM with two smooth functions:
finput that contributes to both input and IP samples, and fprotein that only contributes
to IP samples. More specifically, finput models local ChIP-Seq biases common to input
and IP, whereas fprotein models the protein log-occupancy up to one genome-wide scaling
factor. Figure 3.1 shows the application of this model to one ChIP-Seq library for the S.
cerevisiae general transcription factor TFIIB and its input control (see Appendix A.3.1
for the experiment protocol).

In GenoGAM, the smooth functions are represented by cubic spline curves, which
are written as linear combinations of a set of regularly spaced basis functions br, i.e.
fk(x) =

∑
r

βrbr(x). Second order B-splines are chosen as basis functions, which are

bell-shaped cubic polynomials over a finite support [154] (see section 2.2). To avoid
overfitting, regularization of the functions fk is carried out by penalization of the second
order differences of the spline coefficients, which approximately penalizes second order
derivatives of fk – an approach called P-Spline or penalized B-splines [155] (see section
2.2). The optimization criterion for these P-Splines is the sum of the negative binomial
log-likelihood (depending on the response vector y and the vector β containing the
coefficients of all smooth functions) plus a penalty function that is weighted by the
smoothing parameter λ (see also Equation 2.9):

β̂ = argmax{ lNB(β;y, θ)− λβT (S + εI)β} (3.3)

where the εI term adds regularization on the squared values of the βs, which is partic-
ularly useful for regions with many zero counts. This regularization allows dense place-
ments of the basis functions (between 20 and 50 bp), while relying on the smoothing
parameter λ to protect against overfitting. Large values of λ yield smoother functions.
A single smoothing parameter common to all smooth functions proved to be sufficient
for the applications. For given λ and θ, model fitting can be performed by Penalized
Iteratively Reweighted Least Squares (P-IRLS) (see section 2.1.2 and following section
3.1.1).

Adapting a Bayesian view, the penalized likelihood can be interpreted as a posterior
probability, and the penalization term arises from a Gaussian prior on the parameters β.
Large-sample approximations then yield a multivariate Gaussian posterior distribution
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3.1 A generalized additive model for ChIP-Seq data

Figure 3.1: GenoGAM model overview ChIP-Seq analysis with GenoGAM yields base-
pair resolution occupancy profiles with confidence bands. Input (black) and IP
(blue) centered read counts (dots) and fitted smooth (solid line) with 95% confi-
dence intervals (ribbons) for the transcription factor TFIIB for a section of the
chromosome XIII of S. cerevisiae. Additionally, the extracted fold change of IP
over Input (green) and gene annotation at the very bottom. Simplified equations
depict model constituents.

for β, and, by the linearity of fk(x) =
∑
r

βrbr(x), Gaussian posteriors for the point

estimates fk(x). This allows for the construction of pointwise confidence bands [151].
An example of the fitted smooth functions and their confidence bands for the yeast
transcription factor TFIIB is shown in Figure 3.1.

3.1.1 Fitting of a GAM on a genome-wide scale, given the
smoothing and dispersion parameters λ and θ

Since the computation time of a GAM grows polynomially with the number of basis
functions, fitting one big model might be unfeasible. Instead, GAMs are fitted separate
on sequential overlapping intervals (or tiles, Fig. 3.2).

Each chromosome is partitioned into equally-sized intervals called chunks. Tiles are
defined as chunks extended on either side by equally-sized overhangs. The generalized
additive model is fitted on each tile separately and point estimates and their standard
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3 GenoGAM model for differential occupancy

errors extracted at each base pair of the smooth functions. The tile fits are then restricted
to their chunk to define the chromosome-wide fit.

As overlap length increases, agreement of the fit at the midpoint of the overlapping
region increases. A genome-wide fit is obtained by joining together tile fits at overlap
midpoints (Fig. 3.2). This approximation yields computation times that are linear in
the number of basis functions at no practical precision cost (Fig. 3.3). Furthermore,
it allows for parallelization, with speed-ups being linear in the number of cores (Fig.
3.4). This approximation parallelizes the computation over the data, which might allow
future implementation of GenoGAM in map-reduce frameworks such as Spark [157].

Figure 3.2: GenoGAM splits data into overlapping chunks (tiles) Read count (black
dots, capped at ≥ 7) and predicted rates (orange, blue, green, and yellow trans-
parent lines) for four successive tiles (lower track). Vertical dashed lines denote
the junction points

Figure 3.3: Relative error distribution at junction positions Distribution of the relative
error (difference over mean) at the junction point of neighboring tiles, for an
overhang of 8 basis functions.
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3.1 A generalized additive model for ChIP-Seq data

Figure 3.4: Embarrassing parallelization decreases computational runtime Comput-
ing time in seconds (y-axis in log scale) versus region length in bp (x-axis) for a
standard GAM (orange), GenoGAM on a single core (blue), and GenoGAM on
four cores (green). Tiles were 2,400 bp long and contained 100 basis functions
each. All fits were performed with mgcv.

3.1.2 Data-driven determination of the smoothing and dispersion
parameters λ and θ

To determine the optimal value for λ and θ, generalized cross-validation was tried, an
analytical leave-one-out large-sample approximation [151]. However, this yielded very
wiggly fits indicative of overfitting. Thus, an empirical cross-validation scheme was
developed.

For efficiency, cross-validation is performed using only a subset of the data. A suffi-
ciently large set of distinct regions is selected that are long enough to not suffer from
border effects common to spline fitting. Using 20 or more distinct regions containing at
least 100 basis functions gave satisfactory empirical results. Regions are selected that
have the most significant fold change of IP versus input read counts.

In each region, 10-fold cross-validation is performed, where a tenth of the data points
are removed, the model is fitted on the remaining data points, and the log-likelihood of
the left-out data points is computed. To avoid overfitting due to short range correlations,
each cross-validation fold does not consist of randomly selected single genomic positions,
which would recapitulate the leave-one-out scheme, but of short intervals. The length of
these intervals is set to 20 bp (approximately a tenth of the fragment length) in absence
of replicates and twice the average fragment sizes when replicates are available.

For a given pair of values for λ and θ, the score function is defined as the sum of out-
of-sample log-likelihood over all cross-validation folds and all tiles, restricted to the data
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3 GenoGAM model for differential occupancy

points within chunks to not depend on poor fitting in overhangs. Investigation on grid
values of θ and λ showed that the out-of-sample log-likelihood was typically unimodal.
Therefore the Nelder-Mead numerical optimizer is used to jointly fit the two parameters
[158].

3.1.3 Sequencing depth variations

In estimating sequencing depth variations, an approach is used originally suggested by
Meyer (2014) [159], that is robust to variations in signal-to-noise ratio. Variations for
sequencing depth is controlled by using size factors computed by DESeq2 ([141]). This
method robustly estimates fold-changes in overall sequencing depth by comparing read
counts of predefined regions. The selection criteria for these regions is application-
specific. For differential binding application, all tiles are considered. Whereas for peak
calling a set of the top tiles by fold change might proof for a better strategy.

3.2 Differential binding

3.2.1 GenoGAM model

In an differential binding application comparing mutant with wildtype ChIP data, the
general model from section 3.1 is further specified. The following GenoGAM model is
used:

yi ∼ NB(µi, θ) (3.4)

log(µi) = log(sji) + fWT(xi) + fmutant/WT(xi)zji,mutant (3.5)

where zji,mutant = 1 for j index of mutant samples and 0 for wild-type samples. The
offsets log(sji) are log-size factors computed to control for sequencing depth variation
and overall H3K4me3 across all four samples (see section 3.3 for experimental setting).
Table 3.2 illustrates the factorial design.

fWT(x) fmutant/WT(x)

WT1 1 0

WT2 1 0

Mutant1 1 1

Mutant2 1 1

Table 3.2: Factorial design table for the differential binding application with two smooth
functions and four samples in total (two replicates each for wildtype and mutant)
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3.2.2 Position-level significance testing

Null hypotheses of the form H0 : fk(x) = 0 for a smooth function fk at a given position
x of interest are tested assuming approximate normal distribution of the corresponding
z-score, i.e.:

Tk(x) =
f̂k(x)

σ̂2
fk(x)

∼ N(0, 1) (3.6)

where f̂k(x) and σ̂2
fk(x)

denote point estimate and standard error of the smoothed value.

3.2.3 False discovery rate for predefined regions

Let R1, ..., Rp be p regions of interest, where a region is defined as a set of genomic
positions. Regions are typically, but not necessarily, intervals (e.g. genes or promoters).
For instance, all exons of a gene could make up a single region. Regions can be a priori
defined or defined on the data using independent filtering [160]. For instance, when
testing for significant differences between two conditions, regions can be selected for
having a large total number of reads over the two conditions [98].

For j in 1, .., p, let Hj
0 be the composite null hypothesis that the smooth function fk

values 0 at every position of the region Rj. The False Discovery Rate (FDR) is controlled
as in Lun and Smyth (2014) [98]:

1. Position-level p-values at all region positions are computed using position-level
significant testing as described above.

2. Within each region Rj, position-level p-values are corrected for multiple testing
using Hochberg family-wise error rate correction [161]. The p-value for the null
hypothesis Hj

0 is then computed as the minimal family-wise error rate corrected
position-level p-value. This step gives one p-value per region.

3. FDRs are controlled using the Benjamini-Hochberg procedure [162] applied to the
region-level p-values.

As a concrete example take the bottom smooth track in figure 3.5. Given the coor-
dinates of the gene YNL176C, at each position p-values are extracted (step 1). Those
are corrected using the Hochberg family-wise error rate correction, obtaining a single
p-value for this gene (step 2). Finally, a FDR is computed (step 3).

3.3 Benchmarking and results

To assess the performance of GenoGAM for calling differential occupancy, histone H3
Lysine 4 trimethylation (H3K4me3) ChIP-Seq data of a study [121] was re-analyzed
comparing wild type yeast versus a mutant with a truncated form of Set1, the H3
Lysine 4 methylase. H3K4me3 is a hallmark of promoters of actively transcribed genes.
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3 GenoGAM model for differential occupancy

Figure 3.5: Differential occupancy model fitting Read counts (dots) and fitted rates
with 95% confidence bands for wild-type (black) and mutant (blue) and the log-
ratio of mutant over wild-type with confidence band (bottom row, green) around
YNL176C. For comparison, log-ratios computed in sliding windows of size 184bp
(bottom row, gray, optimized window size, see section 3.3.3.2)

Thornton and colleagues [121] have reported genome-wide redistribution in the truncated
Set1 mutant of H3K4me3, which is depleted at the promoter and enriched in the gene
body. This dataset is interesting for differential occupancy analysis because it is not
about the overall number of counts, but about the redistribution of H3K4me3 within
the gene. Hence, methods must be sensitive to differences at any location within the
gene. We expect such redistribution of the mark at all genes that are transcriptionally
active for yeast cells grown in rich media.

The two replicate IPs for mutant and for the wild type each were modeled with
GenoGAM using one smooth function fWT for the wild type reference occupancy, and
one further smooth function fmutant/WT for the differential effect (see section 3.2.1). The
offsets were computed to control for variations in sequencing depth between replicates
and overall genome-wide H3K4me3 level (section 3.1.3). This yielded base-level log-ratio
estimates and their 95% confidence bands genome-wide. Figure 3.5 shows an example
region for data and fit at the gene YNL176C consistent with the report of reduced
binding at promoter regions.

3.3.1 P-value calibration

Confidence bands of GAMs are formally Bayesian credible intervals. However, previ-
ous studies based on simulated data showed that these confidence bands have close to
nominal coverage probabilities and can, in practice, be used in place of frequentist con-
fidence intervals [163]. Base-level p-values are therefore estimated using the point-wise
estimates and standard deviations according to equation 3.6. To empirically verify that
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the p-values were at least conservative, a negative control dataset was created by per-
base-pair independent permutation of the counts between the four samples. The offsets
were set to 0 and the smoothing and dispersion parameters were estimated again. This
non-parametric permutation scheme makes less assumptions than previous simulation
studies [163].

Nonetheless, per-base-pair p-values in this negative control experiment were slightly
overestimated (Fig. 3.6A). These results show that GenoGAM can be used to iden-
tify individual positions of significant differential occupancies with controlled type I
error. Here, correction for multiple testing can either be done using the Benjamini and
Hochberg procedure [162] (see section 3.2.3 above) or procedures that exploit dependen-
cies between adjacent positions [164].

3.3.2 Competitor methods

Benchmarking was conducted against several state-of-the-art differential occupancy meth-
ods that proved to be competitive in a more recent benchmark [139]. Two more methods
highlighted by Steinhauser et al. [139] were excluded: ChIPComp, as the R package is
hardcoded to be used on mouse and human datasets only, and the R package DiffBind,
which is redundant, since it is essentially a test for differences in overall counts based
on either DESeq2 (already present) or edgeR (used by csaw). Furthermore the more
recently published HMM-based method THOR [109] was included increasing the total
number of methods to six. MMDiff [94] was used in the more recent second version
(MMDiff2):

• csaw [98]

• DESeq2 [141]

• diffReps [101]

• MMDiff2 [94]

• PePr [99]

• THOR [109]

First, significance values were checked for proper calibration according to section
3.3.1 above. Since none of the methods computes positionwise p-values, calibration
was checked by calling differentially bound regions at a nominal p-value of 0.05. If
values are properly calibrated methods should return at most 5% of the regions being
significant.

The R/Bioconductor packages DESeq2 [141], MMDiff2 [94], and csaw[98] were applied
on the base-level permuted dataset for all genes. The log-size factors were set to 0 for
all methods when applied to the permuted datasets. While DESeq2 allows for a count
matrix as direct input, it was run on our permuted dataset. MMDiff2 and csaw on the
other hand have their own read in functions in order to generate their initial object.
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Figure 3.6: P-value calibration of GenoGAM and competitor methods (A) Empiri-
cal (y-axis) versus theoretical (x-axis) p-values in base-level permuted count data.
P-values at every 200 bp positions are shown. (B) Proportion number of called
genes on permuted data (false positives) at nominal p-value 0.05 (red dashed
line).

Permutation of data was then performed within this object. For THOR [109], PePr [99]
and diffReps [101] permutation of the data was not possible, as they directly operate
from Binary Alignment Map (BAM) files and don’t allow for easy interference in contrast
to the above methods, which are implemented as an R package. Figure 3.6B shows the
proportions of called genes for a given p-value of 0.05. All methods fall well below the
0.05 threshold, signaling conservative p-values.

On the original dataset DESeq2 was applied with default parameters. MMDiff2 was
applied with a bin length of 20 bp, the center positions of the fragment and the MMD
histogram distance. The csaw method was applied with window size of 150 bp and
otherwise default parameters. The window size was determined through a grid search
(see Figure 3.7), choosing the window size with the most significant genes. The reasoning
is, that if most of the genes are transcribed (and thus most of them should come out
significant) and the p-value is conservatively calibrated, then a higher number of called
genes indicates a better performance. In particular, csaw uses a different procedure to
estimate normalization factors than DESeq2. The default was used as it was in favor of
csaw for returning more significant genes.

THOR, PePr and diffReps do not allow for an input of fixed regions, although THOR
provides functionality to restrict the search to a set of pre-defined regions, which however
yield worse results. Therefore differential binding sites were called and then overlapped
with the gene coordinates. Any overlap of at least one base was counted as a positive call
and thus the gene was assigned the respective significance value (the lowest if multiple
overlaps were present). An alternative approach of using pre-filtered BAM/BED files
as input yielded worse results. THOR was applied without any optional fields. That is,
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Figure 3.7: Number of significant genes by window size Number of genes with sig-
nificant differential occupancies in mutant over wild type (FDR < 0.1) reported
by csaw (blue) as function of window size (x-axis). For comparison, the dashed
orange line marks GenoGAMs performance.

without GC-correction and input control and otherwise with default settings (binsize =
100, stepsize = 50 and p-value cutoff = 0.1). PePr was applied with default parameters,
that is, an empirical estimation of fragment size and window size, a default p-value
cutoff of 10−5 and the inter-sample normalization method. For diffReps also default
parameters were used: window size of 1000bp, step size of 100bp and p-value cutoff of
0.0001.

3.3.3 Results

3.3.3.1 Higher sensitivity in testing for differential occupancy

First, GenoGAM was compared to csaw, which is its most directly comparable method
because only GenoGAM and csaw can model flexible factorial designs and assess dif-
ferences in overall read counts and in shape. One fundamental difference is that csaw
is based on a sliding window approach requiring an a priori defined window size. In
contrast, the smoothing parameter of GenoGAM is learnt from the data by maximizing
the out-of-sample likelihood in cross-validation (see section 3.1.2). Across all investi-
gated window sizes, the csaw algorithm reported a maximum of 863 significant genes
at FDR < 0.1 (Fig. 3.7 and 3.8). Moreover, the number of identified genes depended
strongly on the choice of the window size (Fig. 3.7). In contrast, GenoGAM reported
4,717 significant genes at the same FDR cutoff, which is much closer to the number of
transcriptionally active genes [165]. The genes reported by GenoGAM included all the
genes reported by csaw except two, indicating that GenoGAM captured the same signal
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but with a higher sensitivity. The genes reported only by GenoGAM showed a differen-
tial occupancy pattern similar yet weaker to the genes common to csaw and GenoGAM,
with depletion in the promoter and enrichment in the gene body (Fig. 3.8), indicating
that GenoGAM captured true biological signal.

Next, GenoGAM was compared against the other occupancy methods. The least
number of significant genes (FDR < 0.1)or the respective default threshold set by the
method) were identified by DESeq2 (735), csaw (863) and diffReps (1193). The most
were reported by THOR (2687), PePr (3248) and MMDiff2 (3482), closer to GenoGAM.
The respective heatmap figures for all methods can be found in Appendix B.1.

To make sure that i) the reported genes indeed corresponded to transcriptionnaly
active genes (Fig. 3.9) and ii) that these results did not depend on FDR cutoffs, receiver
operating characteristic (ROC) were performed using expressed genes as a proxy for true
positives. Gene expression levels were computed as the median normalized probe levels
for the three replicate YPD conditions of all tiling array probes provided by Xu et al.
(2009) [165] overlapping gene coordinates defined by Xu et al. (2009) [165]. Genes from
Xu et al. (2009) [165] and from Thornton et al. (2014) [121] were matched by symbol.

To compute ROC curves, binary labels (expressed = 1 if above a given expression
level quantile cutoff, or otherwise = 0) were assigned to each gene, and for each method,
genes were ranked according to their respective significance value. For THOR, PePr and
diffReps, genes that did not overlap any differentially bound site, p-values were set to
1. Then, ROC curves and AUC for all expression level quantile cutoffs in steps of 0.01
were computed.

GenoGAM had the largest area under the ROC curve (AUC), when considering that
the 15% of the genes with lowest expression levels in Xu et al. (2009) [165] are not
expressed (Fig. 3.10). Moreover, GenoGAM consistently had the largest AUC for any
gene expression cutoff up to 60% genes to be not expressed (Fig. 3.11). These results
indicate that GenoGAM is more sensitive than current methods for testing differential
occupancy, while still controlling for type I error rate.

3.3.3.2 Comparison of GenoGAM fit with sliding window smoothing

In the uncommon situation where a benchmark is available as for the Thornton et al.
[121] dataset, one can objectively define an optimal window size for sliding window
approaches. The log-ratios estimated by GenoGAM fit well to log-ratios computed in
sliding windows of size 184bp, the window size maximizing the area under curve for
csaw for a gene expression quantile cutoff of 0.15 (Fig. 3.5). Also, the GenoGAM
95% confidence ribbon captures very well the short-range fluctuations of the sliding
window estimates. Hence, there is a general agreement between the two approaches.
However, the benefits of GenoGAM are clear: First, the GenoGAM fit is smooth and
differentiable. Second, unlike in the window-based approach, the amount of smoothing is
solely estimated from the ChIP-Seq data, without prior knowledge from the benchmark.
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Figure 3.8: Fold change signal across all genes. Fold-change of counts in mutant over
wild-type in 150 bp windows for all 6607 yeast genes in the -1 to 5 kb region
centered on TSS (vertical black line). The genes are sorted into four groups
(separated by the black horizontal lines) according to which method reports them
significant. From top to bottom: csaw only (2 genes, not visible), csaw and
GenoGAM (861 genes), GenoGAM only (3,856 genes) and none (1,888 genes).
Within each group genes are ordered by p-value (lowest to highest from top to
bottom). The ”csaw and GenoGAM” group is sorted by GenoGAM p-values.
Comparisons to all other methods can be found in Appendix. B.1.

43



3 GenoGAM model for differential occupancy

Figure 3.9: Gene expression Boxplots of gene expression levels by method split into the two
classes of significant and non-significant genes. Significant genes were called with
FDR < 0.1 (GenoGAM, DESeq2, MMDiff2, csaw) or the respective other cutoff
specified by the method (THOR, PePr, diffReps). All other genes are regarded as
not significant. For each of those two groups a boxplot of gene expression levels
is shown. It can be clearly seen (with the exception of MMDiff2) that significant
genes (green) seems to be associated with higher gene expression levels.

Figure 3.10: ROC curve. ROC curve based on a quantile cutoff of 0.15 (see Appendix B.1).
GenoGAM has a constantly higher recall with a lower false positive rate. The
partially straight lines for THOR, PePr and diffReps are stemming from tied
genes with no significance value.
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Figure 3.11: Area under the ROC curve. AUC for all possible quantile cutoffs from 0 to
1 in steps of 0.01. Up to a cutoff of 0.6, GenoGAM (red) performs consistently
better than all competitor methods by around 0.03-0.04 points above the second
best method (csaw and DESeq2, green and pink, respectively). The entire range
of quantile cutoffs is shown out of completeness, reasonable values are between
0.15 and 0.25.
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The methodology, results and figures presented in this section are part of the manuscript
”GenoGAM 2.0: Scalable and efficient implementation of genome-wide generalized ad-
ditive models for gigabase-scale genomes” from Stricker et al. 2018 [2].

Section 3.1 introduced the GenoGAM method from a statistical/modeling point of
view and illustrated its advantages through a study of differential binding. The results
showed increased sensitivity in detecting differential protein occupancies over competing
methods, while controlling for type I error rates. However, the primary focus of the
first implementation of GenoGAM was a mathematically and statistically sound method
that can leverage the underlying generalized additive models framework for genome-wide
ChIP-Seq data.

Specifically, it builds on top of the infrastructure provided by the Bioconductor soft-
ware project [166] and the R package mgcv. The latter is a general-purpose R library for
fitting GAMs [167] that provides a rich functionality for GAMs with a variety of basis
functions, distributions and further features for variable and smoothness selection.

Nonetheless, application of this implementation remains limited in practice to small
genomes organisms such as yeast or bacteria, or to selected subsets of larger genomes.
A genome-wide fit for the yeast genome (ca. 1 million basis functions, thus 1 million
parameters) took 20 hours on a 60-core server. Fits for the human genome could only
be restricted to filtered regions or the smallest chromosomes

This section depicts the implementation of a scalable version of GenoGAM, that allows
fitting of gigabase-scale genomes. This is achieved by exploiting the sparsity of the
model and by using out-of-core data processing. The computing time for parameter and
standard error estimation, as well as the memory footprint, is shown to be linear in the
number of parameters per tile. The same genome-wide fit for yeast can be obtained in 13
minutes on a standard 8-core desktop machine. Whole-genome fits for human datasets
(ca. 300 million parameters) can be obtained in less than 9 hours on the same 60-core
server.

4.1 Sparse matrices in GenoGAM

A crucial and possibly expensive step in the IRLS algorithm (Algorithm 1) is the inver-
sion of (XTW[k]X) in order to obtain β[k+1]. This final matrix product is know as the
Hessian matrix H (or in IRLS the Fisher Information matrix I). In case a penalization
term is used the Hessian is computed as:
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H = XTWX− 2λ(S + εI) (4.1)

If the diagonal matrix W is computed according to algorithm 1, then plugging equation
4.1 into line seven of algorithm 1 results in the method known as Penalized Iteratively
Reweighted Least Squares (P-IRLS) (with εI being optional). Because the computation
of H depends on X and S, its structure depends on them, too.

For each row of the design matrix X the number of nonzeros is at most 5 times the
number of smooth functions because every genomic position xi is overlapped by 5 cubic
B-splines br only. Moreover, the penalization matrix S only has 5 nonzeros per row, as it
encodes the second-order difference penalties between coefficients of neighboring splines
[155]. Hence, the matrices X and S, and therefore H, which appears in the majority of
the computations via Equations (2.5) and (2.6), are very sparse (see Figure 4.1). This
property is extremely useful when it comes to speed up the fitting of the parameters.

Figure 4.1: Example penalization and design matrix. Depicted are the penalization
matrix S (panel A) and the design matrix X (panel B) for the differential binding
application from section 3.2. It is taken from a region of 7kb, where each smooth
function consists of 350 basis functions, i.e. 700 in total. (A) The black diagonal
band represents values, whereas the white space are zeros. (B) The design matrix
is block banded with four blocks along the y-axis (the samples) and two blocks
along the x-axis (the smooth functions), leading to a total of eight blocks. The
black diagonal running lines represent nonzero matrix cells, whereas the rest are
zeros. The colors (blue for wildtype smooth and green for mutant over wildtype
smooth) and shades (light for wildtype samples and dark for mutant samples)
together with the labels help identify and relate the matrix to the experimental
design specified in table 3.2.
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4.2 Scaling coefficient estimation by Newton-Raphson

Parameters β are estimated by maximizing the penalized log-likelihood using the Newton-
Raphson iteration (Equation 2.5). Due to the sparsity of the matrices X, W and S, H is
sparse and cheap to compute. The inverse is never explicitly formed. Instead the linear
system is solved by a direct solver using the SuperLU library [168]. Furthermore all
matrices are stored in a sparse format, avoiding redundant storage of zeros (see section
2.3). The algorithm for a negative binomial distribution with known theta, the log link
and penalization term is provided below (Algorithm 2).

The new fitting algorithm differs from the one of mgcv in two ways. First, mgcv uses
QR decomposition of the design matrix X [151]. However, general QR decomposition
destroys the sparse structure of X, making it impossible to exploit it. Investigations in
the use of sparse QR decompositions proofed to be less efficient than the final imple-
mentation. Second, mgcv uses Iteratively Reweighted Least Squares, which employs the
Fisher information matrix I, instead of the exact Hessian. The substitute did not lead
to any measurable differences in the fitted parameters. It did however improve numerical
stability, after abandoning (the more numerically stable) QR decomposition.

Algorithm 2 Newton-Raphson for Negative Binomial

1: while convergence criteria not met do
2: η

[t]
i ← Xiβ̂

[t] . Initialize or update values

3: µ
[t]
i ← exp(η

[t]
i )

4: z
[t]
i ← (yi − µ[t]

i )/(1 +
µ
[t]
i

θ
)

5: W
[t]
ii ← µ

[t]
i (1 + yi

θ
)/(1 +

µ
[t]
i

θ
)2 . Compute exact weight matrix W[t]

6: Of(βt)← XTz[t] − 2λSβ[t] . Compute first derivative vector
7: H[t] ← XTW[t]X− 2λ(S + εI) . Compute exact Hessian matrix H[t]

8: β̂[t+1] ← βt − (H[t])−1Of(βt) . Solve to obtain β̂[t+1]

9: end while

4.3 Scaling standard error estimation by sparse inverse
subset algorithm

4.3.1 Structure of the inverse Hessian

The Hessian H is sparse (see Figure 4.2), but its inverse, the covariance matrix H−1, is
usually not. However, the variances of interest (Equation 2.6) can be computed using
only a subset of the elements of the inverse H−1. Specifically, denoting for any matrix
A:

• NZ(A) = {(i, j),Ai,j 6= 0} the indices of nonzero elements,
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• Ci(A) = {j : Ai,j 6= 0} the column indices of nonzero elements for the i-th row,

• Rj(A) = {i : Ai,j 6= 0} the column indices of nonzero elements for the j-th row,

Theorem 1. Then σ2 can be computed only using the elements (H−1)l,j, where (l, j) ∈
NZ(H)

Proof. On the one hand, we have:

σ2
i =

∑
l,j

Xi,l(H
−1)l,jXi,j (4.2)

=
∑

(l,j)∈C2
i (X)

Xi,l(H
−1)l,jXi,j

On the other hand, Equation 4.1 implies that NZ(H) = NZ(XTWX) ∪NZ(S) ∪NZ(I).
Since

(XTWX)l,j = (
∑
i

Xi,lWi,iXi,j), (4.3)

it follows that:

(XTWX)l,j 6= 0⇔ ∃i, i ∈ Rl(X) and i ∈ Rj(X)⇔ ∃i, (l, j) ∈ C2
i (X)

Moreover, the nonzeros of the identity matrix I is a subset of the nonzeros of the
second-order differences penalization matrix S [155]. Furthermore, the nonzeros of
the second-order differences penalization matrix S, which penalizes differences between
triplets of consecutive splines, is a subset of the nonzeros of XTX, since genomic po-
sitions overlap five consecutive splines when using cubic B-splines. Hence, NZ(H) =
{(l, j), ∃i, (l, j) ∈ C2

i (X)}. Together with Equation 4.2, this proves the result.

Using only the elements of H−1 that are in NZ(H) applies to computing the variance
of any linear combinations of the β based on the same sparse structure of X or a
subset of it. Hence, it applies to computing the variance of the predicted value for any
smooth function fk(x) or computing the variance of the derivatives of any order r of any

smooth drfk(x)
drx

. The former is particularly important, because computation of standard
errors according to equation 2.6 or 4.1 will yield standard errors of the full response
fit. However, one is usually more interested in the fold-change represented by one or
multiple smooths, e.g. fmutant/WT in the differential binding application. Hence only
a subset of H and X is required for the computation. For instance, in the differential
binding application only the right side of X (the complete green part in figure 4.1B) and
the lower right corner block of H (the green part in figure 4.2) is needed to compute the
variance of the smooth function fmutant/WT .

50



4.3 Scaling standard error estimation by sparse inverse subset algorithm

Figure 4.2: Example Hessian matrix. Depicted is the Hessian matrix H for the differential
binding application from section 3.2. It is taken from a region of 7kb, where each
smooth function consists of 350 basis functions, i.e. 700 in total. The Hessian
matrix is block banded with four blocks in total. Where each block represents
the inverse covariance matrix (also known as the precision matrix) between the
smooth functions. The black diagonal running lines represent nonzero matrix
cells, whereas the rest are zeros. The colors (blue for background, green for
Mutant/WT) help identify the inverse variance (that is the covariance of a smooth
with itself).

4.3.2 Exact standard error computation by the sparse inverse
subset algorithm

To obtain the elements of H−1 that are in NZ(H), the sparse inverse subset algorithm
in combination with the sparse Cholesky decomposition was used [169]. Given a sparse
Cholesky decomposition of symmetric matrix A = LLT , the sparse inverse subset algo-
rithm returns the values of the inverse A−1 that are nonzero in the Cholesky factor L.
Since the set of nonzero coordinates in the lower triangle of A is a subset of the nonzero
coordinates in the Cholesky factor L [156], the sparse inverse subset algorithm provides
the required elements of H−1 when applied to a sparse Cholesky decomposition of H.

The sparse inverse subset algorithm is concerned with computing the sparse inverse
subset, called Zsparse, of a symmetric matrix A through LU or Cholesky factorization
and the use of so called Takahashi equation(s) to relate those factors to Z = A−1 [169].
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Zsparse is defined as the set of entries in the upper part of A−1 that are given by the
location of non-zero entries in the factorized matrix:

Zsparse = {Zij|(U)ij 6= 0} ⊆ Z (4.4)

In case of Cholesky decomposition it can also be stated as:

Zsparse = {Zij|(L)ij 6= 0} ⊆ Z (4.5)

Then the Takahashi equation to compute Z can be stated as follows [169]:

Zij =
δij
Lii
−

n∑
k∈M(i)

LkiZkj, j ≥ i, i = n, . . . , 1 (4.6)

with M(i) the set of those k where Lki is nonzero:

M(i) = {k > i : Lki 6= 0} (4.7)

and δij = 1 if i = j and zero otherwise. Note, that Zij/Zkj can be found on both sides
of the equation. Therefore its values have to be computed recursively starting with Znn.
Furthermore, equation 4.6 actually only computes the lower triangle, which is sufficient
due to symmetry.

The standard error computation is gaining computational speedup from two algo-
rithms (sparse Cholesky decomposition and sparse inverse subset algorithm) which rely
on the same principles of the symmetric multifrontal method [170]. This method is
based on the use of dense submatrices called frontal matrices that are formed as the
multifrontal algorithm progresses.

In general, the symmetric multifrontal algorithm consists of a symbolic analysis phase
and a numerical factorization phase [156]. In the analysis phase a fill-reducing pivot
ordering algorithm is used to establish the pivot order and data structures. In addition,
the relationships among the frontal matrices are established and given by the assembly
tree [171]. The numerical work to actually compute the Cholesky factors is done in the
numerical factorization phase. The assembly tree is used to guide the computation in this
phase [169]. That is, the order in which the dense submatrices are factorized. The sparse
inverse subset algorithm works in a similar way but with inverted objects. Here, inverted
refers to the fact, that tree construction and computation is not executed from 1 to n,
but from n to 1 (see Equation 4.6). Thus, first the inverse assembly tree is constructed,
which establishes the connections between the inverse frontal matrices. Then, those
dense submatrices are inverted guided by the inverse assembly tree, evaluating a matrix-
vector form of the Takahashi equations [169]. For a detailed overview over the method
and other sparse matrix methods see Campbell and Davis (1995) [169] and Davis (2006)
[156]. See also Rue [172] for similar ideas for Gaussian Markov Fields.

On the implementation side the sparse inverse subset algorithm is performed, using
the R package sparseinv [173], itself a wrapper of relevant code from the SuiteSparse

software [174]. Once the sparse inverse subset of the Hessian is obtained, σ2
i can be

computed according to Equation (2.6) with a slight improvement: Because only the
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diagonal from the final matrix product is needed, the implementation does not perform
two matrix multiplications. Instead, only the first product is computed, then multiplied
element-wise with XT

k and summed over the columns.

4.4 Complete GenoGAM 2.0 Workflow

Additionally to the algorithmic improvements, the implementation of the second version
of GenoGAM (GenoGAM 2.0) involves an optimized Hierarchical Data Format (HDF5)
backend for data storage [175]. The complete workflow can then be described as follows:

Data preprocessing consists of reading raw read alignments from BAM files, centering
the fragments, computing the coverage vector y, and splitting the data by genomic
tiles (Figure 4.3). Afterwards, normalization factors for sequencing depth variation
are computed using DESeq2 [141]. Preprocessed data is stored in HDF5 files through
the R packages HDF5Array [176] and rhdf5 [177]. This allows writing in parallel as
the data is being preprocessed, which reduces the memory footprint of this step. For
all subsequent matrix operations the Matrix [178] package is used, which implements
routines for storage, manipulation and operations on sparse matrices.

Fitting GenoGAM models on tiles is achieved by the Newton-Raphson algorithm
(Algorithm 2 and section 4.2). This is done on few representative tiles during cross-
validation in order to identify optimal smoothing and dispersion parameters λ and θ,
and subsequently when fitting the model on the full dataset.

The variance of the smooth estimates (Equation 2.6) is obtained using the sparse
inverse subset algorithm as detailed in subsection 4.3.2. The implementation is based
on the R package sparseinv [173], which wraps relevant code from the SuiteSparse

software [174]. As in the previous GenoGAM model [1], fitting on different tiles is
conducted in parallel. The result objects for the fits, variances and parameters are
initialized prior to fitting on hard drive. This allows the processes to write results in
parallel on the fly, ensuring fast computation and low memory footprint. The HDF5
storage is further optimized for reading time by adjusting HDF5 chunk size to the size
of the tiles (for preprocessed count data) and chunks (for fits and variance). As HDF5
is not process-safe on R level, writing is serialized by a queuing mechanism.

The parallelization backend is provided by the R package BiocParallel [179]. It offers
an interface to a variety of backends and can be registered independently of GenoGAM.
Parallelization is performed over chromosomes during the read-in process. Over tuples
of folds and tiles during cross-validation process and over tiles during fitting process.
Because some backends have a particular long start-up time, the use of many processes
might end up dominating computation time. Specifically during cross-validation on small
and limited number of regions, this might pose a problem. Therefore an optimal number
of workers is automatically obtained and registered by the cross-validation function and
reset on exit.
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Figure 4.3: Schematic overview highlighting the difference between GenoGAM 1.0
and GenoGAM 2.0: Raw BAM Files are read-in, pre-processed, normalized
and written to hard drive in HDF5 format. Moreover, normalization factors
for sequencing depth variation are computed using DESeq2 [141]. The resulting
object is the dataset upon which fitting is done. Then, global hyperparameters λ
and θ are estimated by cross-validation and for each tile coefficients are estimated
via Newton-Raphson and standard errors via sparse inverse subset algorithm. The
final model is written as a new object to hard drive in HDF5 format. Note, that
the schematic view is a simplification: The pre-processed dataset and the fitted
model are not generated in memory and written to HDF5 in the end. Instead, all
HDF5 matrices are initialized on hard drive directly and the writing is done on
the fly. Blue (GenoGAM 1.0) and orange colors (GenoGAM 2.0) mark differences
between both GenoGAM versions.
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4.5 Runtime and memory footprint results

4.5.1 Results on coefficient estimation

Figure 4.4 displays the comparison in fitting runtime (A) and memory usage (B) of
the Newton-Raphson method (section 4.2) versus the method underlying the previous
GenoGAM version on a single core. Computation was capped at approximately 2 hours,
which leads the blue line (GenoGAM 1.0) to end after around 1,100 parameters. It can be
clearly seen, that exploiting the advantages of the data structures leads to improvements
by 2 to 3 orders of magnitude. At the last comparable point at 1,104 parameters it took
the previous method 1 hours and 37 minutes, while it was only 1 second for the Newton-
Raphson method. This number increased a little bit towards the end to almost 5 seconds
for 5,000 parameters.

Additionally, the more efficient storage of sparse matrices and the lightweight imple-
mentation reduces the overhead and memory footprint. Again at the last comparable
point, the memory used by the previous method is 8 Gbyte while it is 52 MByte by the
new method, increasing to 250 MByte at the 5,000 parameters mark. Moreover, run-
time per tile drops empirically from growing cubically with the number of parameters
in GenoGAM 1.0 to linearly in GenoGAM 2.0. The memory footprint drops empirically
from growing quadratically with the number of parameters in GenoGAM 1.0 to linearly
in GenoGAM 2.0 (dashed black lines fitted to the performance data).

4.5.2 Results on standard error estimation

Alternatively to the direct computation of the inverse Hessian with consecutive compu-
tation of variance vector σ2 (Equation 2.6), it is also possible to directly compute σ2.
Here and hereafter the smooth function specific index k is dropped for simplicity. In
a comment to the paper of Lee and Wand [180], a direct way to compute σ2 without
inverting H was proposed by Simon Wood ([181]). The comment states, that in general,
if y = Xβ, then

σ2
i =

p∑
j=1

((XPTL−1)i,j)
2 (4.8)

Where P is the permutation matrix and L−1 is the inverted lower triangular matrix
resulting from Cholesky decomposition of XTH−1X.

Figure 4.5 shows the comparison of both methods in time and memory on a single
core, with the above proposed method depicted as ”indirect” (blue). While both meth-
ods have linear memory footprint, the slope of the indirect method is around four times
higher. The computation time is significantly in favor of the sparse inverse algorithm.
This is because for every σ2

i a triangular system has to be solved to obtain (XPT )iL
−1.

Although solving the complete system at once is faster, it had a high memory con-
sumption when it came to increased number of parameters in the test implementation.
Thus the performance presented is based on batches of σ2

i to obtain a fair trade-off
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Figure 4.4: Parameter estimation performance. (A) Empirical runtime for the esti-
mation of parameter vector β is plotted in log-scale against increasing number
of parameters (also log-scale). The runtime is capped at around 2 hours, such
that runtime of GenoGAM 1.0 (blue line) terminates after 1,100 parameters.
GenoGAM 2.0 (red line) achieves linear runtime in p (dotted line p), the num-
ber of parameters, compared to the previous cubic complexity (dotted line p3).
(B) Memory consumption in MByte for the estimation of coefficients vector β is
plotted against number of parameters (also log-scale). Due to the runtime cap
at around 2 hours the runtime of previous GenoGAM version (blue line) does
terminate after 1,100 parameters. The storage of matrices in sparse format and
direct solvers avoiding full inversion keep the memory footprint low and linear in
p (dotted line p) in GenoGAM 2.0 (red line) compared to quadratic in GenoGAM
1.0 (blue line, dotted line p2).

between runtime and memory. Nevertheless, the difference remains around 2 orders of
magnitude. Moreover runtime goes now linearly in practice for the sparse inverse subset
algorithm compared to quadratically for the indirect method (dashed black lines fitted
to the performance data).

4.5.3 Performance on human and yeast ChIP-Seq datasets

The previous version of GenoGAM could only be partially applied genome-wide for
megabase-scale genomes such as the yeast genome and was impractical for gigabase-
scale genomes such as the human genome. A genome-wide model fit with two conditions
and two replicates each took approximately 20 hours on 60 cores [1]. With computational
and numerical improvement on the one side and a data model largely stored on hard
drive on the other side, runtime and memory requirements have dropped significantly.
Figure 4.6 shows the runtime performance on seven human ChIP-Seq datasets with
two replicates for the IP and one or two replicates for the control. The analysis was
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Figure 4.5: Standard error computation. (A) Empirical runtime for the computation of
standard error vector σ2 is plotted in log-scale against increasing number of pa-
rameters (also log-scale). Computation based on sparse inverse subset algorithm
(red line) achieves linear runtime in p (dotted line p), the number of parameters,
compared to quadratic complexity (dotted line p2) of the ”indirect” method (blue
line). (B) Memory consumption in MByte for the computation of standard error
vector σ2 is plotted against number of parameters. Though both methods achieve
linear memory consumption in p, the slope of the ”indirect” method (blue line)
is around 4 times greater than of the sparse inverse subset algorithm (red line).
A consequence likely due to the recursive computation of the inverse instead of
solving of a triangular system.

performed with 60 cores on a cluster, the memory usage never exceeded 1.5GB per core
and was mostly significantly lower. The overall results show that around 20 minutes
are spent with pre-processing the data, which is largely occupied by writing the data to
HDF5 files. One hour of cross-validation, to find the right hyperparameters and around
7 to 8 hours of fitting, amounting to a total runtime of 8 to 9 hours. It is also notable,
that the transcription factors NRF1, MNT and FOXA1 include two controls instead of
one, thus efficiently increasing the amount of data to fit by a third, but the runtime by
around 40 minutes.

Additionally, the same yeast analysis is shown by running on a laptop with 8 cores
for comparison to the previous version. The total runtime is around 13 minutes with
the cross-validation significantly dominating both other steps (around 9 minutes). This
is due to the fact that the number of regions used is fixed at 20, resulting in 200 model
fitting runs for one 10-fold cross-validation iteration. Hence, for a small genome like the
yeast genome, hyperparameter optimization may take more time than the actual model
fitting. Note, that during cross-validation the only difference between human and yeast
analysis is the underlying data and the parallel backend. However the runtime on yeast
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is only 1/6 of the runtime in human. Both factors play a role in this: First, the parallel
backend in the yeast run uses the Multicore backend, allowing for shared memory on
one machine. While the human run uses the Snow (simple network of workstations)
backend, which needs to initiate the workers and copy the needed data first, resulting in
an overall greater overhead. Second, convergence on yeast data is generally faster due
to higher coverage resulting not only in less iterations by the Newton-Raphson, but also
during cross-validation.

Figure 4.6: Genome-wide performance for human and yeast. The performance of
GenoGAM 2.0 on seven human ChIP-Seq datasets for the transcription factors
NRF1, MNT, FOXA1, MAFG, KLF1, IRF9 and CEBPB. The first three of
which contain two replicates for the control, while the rest contains only one.
This increases the data by around a 1/3, but the runtime by around 40 minutes,
equivalent to approximately 1/11. Overall ca. 20 minutes are spent on data
processing (blue), up to one hour on cross-validation (green) and 7 - 8 hours of
fitting (red) amounting to a total of 8 - 9 hours runtime on 60 cores, with the
snow parallel backend and HDF5 data structure. At the very top yeast runtime
is shown on a regular machine with 8 cores, the Multicore backend and all data
kept in memory avoiding I/O to hard drive. Data processing (blue, almost not
visible) takes 40 seconds, cross-validation around 9 minutes (green) and fitting
3.5 minutes (red).

4.5.4 Replication of previous benchmark analyses show equivalent
biological accuracy

To demonstrate that GenoGAM 2.0 leads to the same results than GenoGAM 1.0 we
have re-generated benchmark analyses of the first paper [1]. The first benchmark is a
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differential occupancy application that demonstrates that GenoGAM has greater sensi-
tivity for same specificities than alternative methods. Figure 4.7 is a replication of figure
3.10 and figure 4.8 the replication of figure 3.11 with GenoGAM 2.0 added.

Figure 4.7: Replication of figure 3.10 with GenoGAM 2.0. ROC curve based on a
quantile cutoff of 0.15 (15% of the genes are assumed to be true negatives).
GenoGAM (orange and blue) has a constantly higher recall with a lower false
positive rate.
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Figure 4.8: Replication of figure 3.11 with GenoGAM 2.0. Area under the curve
(AUC) for all possible quantile cutoffs from 0 to 1 in steps of 0.01. GenoGAM
1.0 (blue) and GenoGAM 2.0 (orange) are almost identical and are thus largely
overlapping. Up to a cutoff of 0.6, GenoGAM (orange and blue) performs con-
sistently better than all competitor methods by around 0.03-0.04 points above
the second best method (csaw and DESeq2, pink and green, respectively). The
entire range of quantile cutoffs is shown out of completeness, reasonable values
are between 0.15 and 0.25.
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5 From differential occupancy to other
applications

The methodology, results and figures presented in this section are part of the manuscript
”GenoGAM: genome-wide generalized additive models for ChIP-Seq analysis” from Stricker
and Engelhardt et al. 2017 [1].

5.1 Peak calling

5.1.1 Building a peak caller

The smooth function estimates and their representation as P-splines provided by GAM
offer new opportunities for subsequent analyses apart from differential binding: First and
second order derivatives can be computed immediately (Fig. 5.1a). Those can be used to
infer summits of ChIP-Seq peaks (as positions x where f ′(x) = 0 and f ′′(x) < 0). Figure
5.1 illustrates the construction of such a peak caller. To assess statistical significance
of the peak heights, an empirical z-score is introduced that contrasts the estimate of
the log-occupancy µ at the peak to a robust estimate of background log-occupancy level
µ0, taking both background level variance σ2

0 and uncertainty of peak height σ2 into
account:

z =
µ− µ0√
σ2 + σ2

0

. (5.1)

In order to account only for the background without potential peaks, µ0 is estimated
as the shorth from the Bioconductor genefilter package for all f(xi), i = 1, . . . , n
(midpoint of the shortest interval containing half of the data) of all fitted values. The
fitted values smaller than the shorth are mirrored on it, such that a symmetric density is
created that excludes the values larger than the shorth, in particular those high values
in the right side tail representing peaks (Fig. 5.1b). The variance of this newly created
distribution is then estimated in a robust fashion by the median absolute deviation
(MAD) giving σ2

0.
Borders can be obtained by using the pointwise z-score around peak summits with the

respective cutoff. However, this is not advisable, since peak width depends on ChIP-
Seq fragment size. A fixed distance around the summit (e.gg +/-200 bp) can be as
justifiable. Regarding significance, a practical approach to model the null distribution
of peak scores is to assume that false positive peaks arise from symmetric fluctuations
of the background and thus distribute similarly to local minima, or peaks found when
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5 From differential occupancy to other applications

Figure 5.1: Construction of a peak caller. (a) Fit of protein log-occupancy fprotein(x)
(top), its first derivative f ′protein(x) (middle) and its second derivative f ′′protein(x)
(bottom). Same data as in Figure 3.1 is used (the left half), but extended a little
further downstream. (b) Illustration of the z-score computing procedure. See
detailed description in paragraph above.
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inverting the role of input and IP [104]. Therefore false discovery rate is estimated using
the z-score distributions of the local minima. That is, peaks are called on −fprotein (so
called valleys). Their z-scores are obtained by recomputing µ0 and σ0 and applying the

same formula. The FDR for a given minimum z-score z is estimated by |Vz |
|Pz | , where Pz

and Vz are the sets of peaks and valleys, respectively, with a z-score greater than or
equal to z.

Comparison of this approach to a few widely used peak callers (MACS [104], JAMM
[145] and ZINBA [97]) was performed on small size datasets (Human chromosome 22
and yeast).

5.1.2 The model

The TFIIB yeast dataset consisted of two samples: one input and one IP without repli-
cates. Therefore the following GenoGAM model was used for TFIIB yeast data:

yi ∼ NB(µi, θ) (5.2)

log(µi) = finput(xi) + fprotein(xi)zji,protein, (5.3)

where zji,protein = 1 whenever ji is the index of an IP sample and zji,protein = 0 whenever
ji is the index of an input sample. Since no replicates were present, there was no need
for an offset.

Human datasets contained two biological replicates for the protein samples and at
least one input sample. However, the library sizes of the input samples were too low for
a robust analysis. Therefore the following GenoGAM model was used for the human
datasets:

yi ∼ NB(µi, θ) (5.4)

log(µi) = log(sji) + fprotein(xi), (5.5)

where the offsets log(sji) are log-size factors computed to control for sequencing depth
variation between replicates. Contrary to the differential binding application where all
tiles were used in offset computation, in peak calling only top 1,000 tiles with smallest
p-value are selected. The p-values are determined by DESeq2 test for enrichment of
IP over input performed on total read counts per tile. This allows to select tiles that
were most likely containing peaks. Since in this case input was dropped from the model,
determination of p-values was not possible, tiles with the highest sum were used.

5.1.3 Benchmark and results

Benchmarking was conducted based on the correct identification of motifs by the peak
caller. In order to compute distances from peaks to motifs, peak summits and motif
centers were used. Only peaks with summits within 500 bp of a motif border (left or
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right) were considered. Otherwise the peak was regarded as due to other biological
process or fluctuation. Of these peaks, those within 30bp of the motif center were
regarded as correctly identified. For detailed competitor method specification refer to
appendix A.3.3.

5.1.3.1 Result on yeast dataset

First, the performance of GenoGAM, MACS [104], JAMM [145] and ZINBA [97] was
compared in identifying binding sites of TFIIB in an in-house dataset of S.cerevisiae ver-
sion 2 (sacCer2, see Appendix A.3.1 for experimental protocol). For about 20% of yeast
promoters, recruitment of TFIIB is triggered by the well-characterized DNA element
TATA-box, providing at these promoters a ground truth for a TFIIB occupancy peak
[182]. In total 1,105 TATA-boxes were mapped genome-wide by regular expression of a
consensus motif and considered 1 kb regions centered on TATA-boxes for benchmarking
(see Appendix A.3.2 for identification of TATA-box locations).

In these regions, significant peak summits (FDR < 0.1) from GenoGAM were substan-
tially closer to TATA-boxes than those of alternative methods (median absolute distance
58 bp, third quartile 144 bp for GenoGAM versus 152 and 247 bp for MACS, 82 and 174
bp for JAMM, and 155 and 237 bp for ZINBA, respectively Fig. 5.2a). Moreover, the
proportion of peak summits within 30 bp of a TATA-box center was twice as high as for
any other method independently of the number of reported peaks (Fig. 5.2b), showing
that the improvement was robust to the score threshold.

Figure 5.2: GenoGAM peak caller comparison with state-of-the-art methods (A)
Boxplot of distances between significant peaks (FDR< 0.1) and TATA box for the
yeast TFIIB dataset (Appendix A.3.1) for GenoGAM (orange), MACS (green)
and JAMM (blue) and ZINBA (yellow). (B) Proportion of TFIIB peaks (y-axis)
within 30 bp of a TATA box for GenoGAM (orange), MACS (green), JAMM
(blue) and ZINBA (yellow) versus number of selected peaks when ordered by
decreasing score (x-axis). For each method transparent colors indicate peaks
that the method considers not significant (FDR > 0.1).
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Figure 5.3: Peak positions at maximal fold change versus maximal significance.
(a) Example region in yeast with input (black dots), IP (blue dots) and the
smooth function IP over input with 95% confidence interval (green line) showing
a correctly identified peak by GenoGAM (orange vertical dashed line) and an
incorrect identified by MACS (green vertical dashed line), due to enrichment
in input. (b) Scatterplot of the sum of counts (input + IP) vs ratio of counts
(input/IP) for GenoGAM divided by MACS on all mutually called TATA box
positions. The red dot denotes the example region shown in (a)

Next, the reason for the drastic differences observed in the yeast TFIIB dataset be-
tween GenoGAM and the other methods was investigated. The TATA-box region of
IDH2 illustrates the issue (Fig. 5.3a). The peaks reported by GenoGAM are positions
with maximal a posteriori estimate of IP over input fold-changes. In contrast, MACS
and JAMM report positions with maximal statistical significance [104, 145]. Because
statistical significance increases with both effect size and sample size, this leads to peak
calls biased toward positions with high total counts in IP and input (Fig. 5.3a). Across
all 644 TATA-box regions at which both GenoGAM and MACS identify a peak, total
counts within 50 bp of peak positions were higher for MACS, but count ratios were
higher for GenoGAM (Fig. 5.3b), generalizing the observations made for IDH2.

5.1.3.2 Result on human dataset

Additionally, similar benchmark was performed on the human chromosome 22 for 6 tran-
scription factors of the ENCODE project [79] selected to be representative of accuracies
in predicting ChIP-Seq peak positions from sequence motifs [129] (CEBPB, CTCF,
MAX, USF1, PAX5, and YY1). Scaling up from the small genome of S.cerevisiae to the
large genome of human proved to be difficult for the first implementation of GenoGAM,
due to memory consumption and long runtime. The smallest chromosome (chr22) was
therefore selected for a benchmark to assess performance under low read coverage on
real data.
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Figure 5.4: GenoGAM peak caller comparison with state-of-the-art methods on
human. Proportion of significant peaks within 30 bp of motif center and 95%
bootstrap confidence interval (error bars) for all six ENCODE transcription fac-
tors (CEBPB, CTCF, USF1, MAX, PAX5, YY1) on chromosome 22 and for the
yeast TFIIB dataset.

On these data, GenoGAM performance was comparable to the other methods (95%
boostrap confidence intervals, Fig. 5.4 for significant peaks, and Appendix Fig. B.5
for distance distributions and Appendix Fig. B.6 for all cutoffs). Hence, improvement
comparable to the TFIIB benchmark could not have been repeated, but nonetheless
shown to be as performant as dedicated tools. Although benchmark on yeast suggest
favourable performance, benchmark on human data is of more practical value. Therefore,
due to the small size of the chromosome, conclusions regarding peak calling performance
on a whole human genome as well as peak calling in general should be considered with
care.

The yeast TFIIB dataset was sequenced at a much higher coverage than the ENCODE
dataset (0.9 unique fragments per base in average versus less than 0.03 unique fragments
per base in average), leading to stronger discrepancies between significance and robust
fold-changes. As sequencing depth is expected to increase in the near future, I anticipate
that robust fold-change estimates as provided by GenoGAM will be a more sustainable
criterion than mere significance for calling peak positions.

In order to confirm biological accuracy of GenoGAM 2.0, a replication benchmark
was conducted on the same data with GenoGAM 2.0. Figure 5.5 shows that GenoGAM
is on par with alternative methods to infer peak summit positions in ChIP-Seq data
of transcription factors. Consistently with the fact that GenoGAM 2.0 fits the same
function than GenoGAM 1.0, the performance on these two benchmarks matched.
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Figure 5.5: Replication of figure 5.4 with GenoGAM 2.0. Proportion of significant
peaks within 30 bp of motif center and 95% bootstrap confidence interval (er-
ror bars) for six ENCODE transcription factors (CEBPB, CTCF, USF1, MAX,
PAX5, YY1) on chromosome 22 and for the yeast TFIIB dataset. For simplicity,
ZINBA was excluded completely.

5.2 Application to methylation

Generalized additive models are based on the generalized linear modeling framework
and thus allow any distribution of the exponential family for the response. Therefore,
GenoGAM can be also used to model continuous responses, for instance using the Gaus-
sian distribution, and proportions using the Binomial distribution. For ChIP-Seq data,
a log-linear predictor-response relationship of the form (Equation 3.2) is justified by the
fact that effects on the mean are typically multiplicative. However, other monotonic
link functions could also be used. Moreover, quasi-likelihood approaches are supported,
allowing for the specification of flexible mean-variance relationships [183].

To test the flexibility of GenoGAM, a proof-of-principle study on modeling bisulfite
sequencing of bulk embryonic mouse stem cells grown in serum was conducted [184].
Bisulfite sequencing quantifies methylation rate by converting cytosine residues to uracil,
leaving 5-methylcytosine residues unaffected. At each cytosine, the data consisted of the
number ni of fragments overlapping the cytosine and the number yi of these fragments
for which the cytosine was not converted to uracil. The quantity of interest was the
methylation rate, i.e. the expectation of the ratio yi/ni. In the original publication, single
nucleotide position methylation rates were estimated using a sliding window approach
with an ad-hoc choice of window size of 3 kb computed in steps of 600 bp. Figure
5.6 reproduces an original figure showing the fit in a 120kb section of chromosome
6. This 120 kb section was modeled with GenoGAM using a quasi-binomial model,
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Figure 5.6: Application to DNA methylation data. Estimated DNA methylation rates
in a 120 kb region of chromosome 6 of the mouse (cf. Smallwood et al.[184]).
Shown are the data for bulk embryonic mouse stem cells grown in serum; ratios
of methylated counts for each CpG position (black dots), with point size propor-
tional to the number of reads. The estimated rates are shown for the moving
average approach[184] of 3,000 bp bins in 600 bp steps (blue line) and for the
GenoGAM (orange line) with 95% confidence band (ribbon).

where the response was the number of successes yi out of ni trials, the log-odd ratio
was modeled as a smooth function of the genomic position, and the variance was equal
to a dispersion parameter times the variance of the binomial distribution. Smoothing
and dispersion parameters were determined by cross-validation. The GenoGAM fit was
consistent with the original publication [184], but did not rely on manually set window
sizes and provided confidence bands (Fig. 5.6). As expected, wider confidence bands
were obtained in regions of sparse data and tighter bands in regions with a lot of data
(Fig. 5.6).
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6 Conclusion

Parts of the conclusion presented in this section is part of the manuscript ”GenoGAM:
genome-wide generalized additive models for ChIP-Seq analysis” from Stricker and En-
gelhardt et al. 2017 [1] and the manuscript ”GenoGAM 2.0: Scalable and efficient
implementation of genome-wide generalized additive models for gigabase-scale genomes”
from Stricker et al. 2018 [2].

Advances in sequencing techniques enabled measurement of genomic information on
whole genome level, such as ChIP-Seq or Bisulfite sequencing. This opened up opportu-
nities beyond a set of well-known regions and towards the complete characterization of
the physical genome. First computational methods were developed partially unaware of
the underlying biases in the data with an application specific focus. Their evolution lead
to more sophisticated, but also more specialized models with particular strength in a cer-
tain application, such as narrow peak calling. In particular, many were designed flexible
in the parameter settings, to allow the user to tune them according to his needs. Target-
ing the specialization in applications and the subjectivity in hyperparameter selection
allowed me to investigate a new methodology for longitudinal genome-wide data that
can incorporate the strength of previous methods into a general, statistical framework.

In this thesis I have introduced this generic framework based on generalized additive
models to model ChIP-Seq data. Unlike most other methods for ChIP-Seq analysis,
GenoGAM is a data generative model, which gives an explicit likelihood of the data.
This in turn yields an objective criterion to set the amount of smoothing. Smoothing
and dispersion parameters are obtained by cross-validation, i.e. they are fitted for the
accuracy in predicting unseen data. This criterion turned out to provide useful values
of smoothing and dispersion for inference. Moreover it led to reasonable uncertainty
estimates since confidence bands of the fits were found to be only slightly conservative.
To my best knowledge, GenoGAM is the first method so far that has addressed the
setting of the amount of smoothing for ChIP-Seq data. The possibility exists to esti-
mate the smoothing and dispersion parameters separately for each sample, which would
result in more robust estimates at the cost of some flexibility. However, in the analyses
the samples within an experiment were all similar enough to estimate the parameters
globally.

The utilization of genome-wide GAMs comes with a number of advantages: First,
flexible modeling of factorial designs, as well as replicates with different sequencing
depths using size factors as offsets. More elaborate usage could include position- and
sample-specific copy number variations, or GC-biases. Second, applying GAMs yields
confidence bands as a measure of local uncertainty for the estimated rates. I have shown
how these can be the basis to compute point-wise and region-wise p-values. Third,
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GAMs outputs analytically differentiable smooth functions, allowing flexible downstream
analysis. I discussed how peak calling can be elegantly handled by making use of the
first and second derivatives. Fourth, various link functions and distributions can be
used, providing the possibility to model a wide range of genomic data beyond ChIP-Seq,
as illustrated with a first application on DNA methylation. Hence, I foresee GenoGAM
as a generic method for the analysis of genome-wide assays.

The method is implemented as a freely available Bioconductor R package GenoGAM.
Given a configuration file of the BAM files, experiment design matrix and model for-
mula, it will automatically estimate all parameters of the model. Alternatively, users can
provide their own size factors or smoothing and overdispersion parameters. GenoGAM pro-
vides downstream analysis functions for differential binding and peak calling as described
above. GenoGAM supports a number of parallel backends through the Bioconductor pa-
rallel framework BiocParallel.

Scalability to fit very long longitudinal data such as whole chromosomes at base-pair
resolution is made possible by parallelization over the data and allowing approximations
rather than exact computation of the fit [185]. Nonetheless, practical usage of the im-
plementation of GenoGAM 1.0 is limited to organisms with small genomes such as yeast
or bacteria, or to selected subsets of larger genomes, such as promoters. Improvements
on computation time and memory footprint are currently available in GenoGAM 2.0
(working title ”fastGenoGAM”) on GitHub only and will be available in the GenoGAM

package in the next release cycle on Bioconductor (October 2018).
GenoGAM 2.0 is a significantly improved implementation of GenoGAM 1.0 [1] on

three main aspects: Data storage, parameter estimation and standard error computa-
tion. Runtime and memory footprint are shown to scale linearly with the number of
parameters per tiles. As a result, GenoGAM can be applied overnight to gigabase-scale
genome datasets on a typical lab server. Runtime for mega-base genomes like the yeast
genome is within minutes on a standard PC. Finally, the algorithmic improvements
apply to GAMs of long longitudinal data and can therefore be relevant for a broader
community beyond the field of genomics.
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A.1 Differential binding data

The dataset consisted of four samples: two biological replicate IPs for the wild type
strain and two biological replicate IPs for the mutant strain. Raw sequencing files:

• H3K4ME3 Full length Set1 Rep 1.fastq

• H3K4ME3 Full length Set1 Rep 2.fastq

• H3K4ME3 aa762-1080 Set1 Rep 1.fastq

• H3K4ME3 aa762-1080 Set1 Rep 2.fastq

were obtained from the Sequence Read Archive (SRA) repository (http://www.ncbi.
nlm.nih.gov/sra). These were paired-end reads. Reads were aligned to the SacCer3
build of the S. cerevisiae genome with the STAR aligner [87] (version 2.4.0, default
parameters). Reads with ambiguous mapping were removed using samtools [86] (version
1.2 option -q 255 ). Gene boundaries were obtained from the S. cerevisiae genome
annotation R64.1.1, restricting gff file entries of type ”gene”.

A.2 Performance comparison data

These are the datasets used in the runtime and memory footprint comparison studies
(section 4 and figure 4.6):

• The yeast dataset is the same as in the differential binding application (see ap-
pendix A.1).

• CEBPB: https://www.encodeproject.org/experiments/ENCSR000EHE

• FOXA1: https://www.encodeproject.org/experiments/ENCSR267DFA

• IRF9: https://www.encodeproject.org/experiments/ENCSR926KTP

• KLF1: https://www.encodeproject.org/experiments/ENCSR550HCT

• MAFG: https://www.encodeproject.org/experiments/ENCSR818DQV

• MNT: https://www.encodeproject.org/experiments/ENCSR261EDU
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• NRF1: https://www.encodeproject.org/experiments/ENCSR135ANT

Human datasets were downloaded from the ENCODE project website, the IDs for
each dataset are the last parts of the URLs. Reads were aligned to the hg38 build of the
human genome with the STAR aligner [87] (version 2.4.0, default parameters). Reads
with ambiguous mapping were removed using samtools [86] (version 1.2 option -q 255 ).

A.3 Peak calling

A.3.1 Yeast TFIIB ChIP-Seq dataset

ChIP-Seq for TFIIB was performed essentially as described previously [186] with a few
modifications. Briefly, 600 ml BY 4741 S. cerevisiae culture with C-terminally TAP-
tagged TFIIB (Open Biosystems) was used. Immunoprecipitation was performed with
75 µl of IgG SepharoseTM 6 Fast Flow beads (GE Healthcare) for 3 hours at 4◦C on a
turning wheel. 30 µl of Input sample was taken before immunoprecipitation and stored
at 4◦C. IP and Input samples were reverse cross-linking for 2 hours with Proteinase K
at 65◦C and purified using Quiagen MinElute Kit. Samples were digested with 2.5 µl
RNase A/T1 Mix (2 mg/ml RNase A, 5000 U/ml RNase T1; Fermentas) at 37◦C for 1
h, purified and eluted in 50 µl H2O. ChIP-Seq libraries were prepared using NEB Next
library preparation kit following manufacturer’s instructions using the complete 50 µl
as input. 2 µl of 1.7 µM adapters containing a GGAT barcode and 2 µl of a 0.25 µM
adapter containing a CACT barcode were used for ligation with Input and IP samples,
respectively. The final library was amplified for 22 cycles using Phusion Polymerase and
purified using Agencourt Magnetic beads. 36 bp single end sequencing was performed on
an Illumina GAIIX sequencer at the LAFUGA core facility of the Gene Center, Munich.
Single-end 36 base reads and 4 base reads of barcodes were obtained and processed using
the Galaxy platform [187]. Reads were demultiplexed, quality-trimmed (Fastq Quality
Filter), and mapped with Bowtie 0.12.7 [188] to the SacCer2 genome assembly (Bowtie
options: -q -p 4 -S –sam-nohead -phred33-quals). ChIP-Seq data are available at Array
Express under the accession number E-MTAB-4175.

A.3.2 The data

The TFIIB yeast dataset consisted of two samples: one input and one IP without repli-
cates. For about 20% of yeast promoters, recruitment of TFIIB is triggered by the well
characterized DNA element TATA-box, providing at these promoters a ground truth for
a TFIIB occupancy peak [182]. Location of the TATA-boxes where defined as instances
of the motif TATAWAWR [182] at most 200 bp 5’ and 50 bp 3’ of one of the 7,272 transcript
5’-ends reported by Xu et al. (2009) [165]. In total 1,105 TATA-boxes were mapped
genome-wide by regular expression of the consensus motif.

For the human dataset alignment files (BAM files, aligned for the human genome
assembly hg19) for ChIP-Seq data for the transcription factors CEBPB, CTCF, MAX,
USF1, PAX5, and YY1 were obtained from the ENCODE website www.encodeproject.
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org. All these datasets contained two biological replicates for the protein samples and
at least one input sample. However, the library sizes of the input samples were so low
that including them resulted in higher uncertainty about the peaks. Therefore analy-
ses was conducted without correction for input. Motif occurrences in the genome were
determined by FIMO [189] using default threshold 10−4 with position weight matri-
ces (PWMs) from the JASPAR 2014 database [190] with the following IDs: CEBPB:
MA0466.1, CTCF: MA0139.1, MAX: MA0058.1, PAX5: MA0014.2, USF1: MA0093.2,
YY1: MA0095.2

A.3.3 Method specification

The version 2 of the MACS software, MACS2, was run with the default parameters and
the additional flag call-summits. In case of TFIIB, the nomodel parameter was used to
avoid building the shifting model. This was necessary since the default values for mfold
were too high and resulted in worse performance if reduced, compared to absence of a
model.

JAMM was run with default values and peak calling mode (-m) set to narrow assuming
a three component mixture model for background, enriched regions and tails of enriched
regions. Although JAMM computes a score to rank peaks it does not provide a method
to define a threshold for a given FDR or significance. Nevertheless, JAMM applies some
filtering on the complete list of peaks to output a filtered list. Instead of using this
filtered output directly, the complete, sorted (by score) peak list was used and the top
N results where taken, where N is the number of peaks in the filtered output. This
improved the performance of JAMM in some cases (and left unchanged in others). For
analysis, where a cutoff for JAMM was still needed the same number of peaks that
MACS reported was used.

For ZINBA, the mappability score was generated (generateAlignability) with the map-
pability files for 36 bp reads, taken from the ZINBA website https://code.google.

com/p/zinba/. The average fragment length (extension) was specified at 190 bp, win-
dow size (winSize) at 250 and offset (offset) at 125. The FDR threshold was set to 0.1
and window gap to 0. Peaks were refined (default) and model selection was activated.
The complete model was used (selecttype = ”complete”), input was included as a covari-
ate (selectcovs = ”input count”) and interactions were allowed. The chromosome used
to build the model was selected randomly to be ”chrXVI” (selectchr). The parameter
“method” was set method = ”mixture”. During application to human chromosome 22,
ZINBA was very unstable resulting in errors. It was therefore excluded from analysis
on human data, but kept for yeast.
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B.1 Differential binding

Figure B.1: Segmented gene heatmap: DESeq2 and MMDiff2 Read count ratio of
all 6607 genes (y-axis) centered on the TSS. The genes are segmented into four
groups: Significant genes called only by the competitor method, called by com-
petitor method and GenoGAM, only GenoGAM and neither of both (top to
bottom). Within each segment the genes are ordered by p-value (top is the low-
est and bottom the highest) of the respective method or in case of both methods
present: GenoGAM. (a) For competitor method DESeq2. The number of the re-
spective genes is stated in brackets. All DESeq2 genes are a subset of GenoGAM
genes. (b) For competitor method MMDiff2. The number of the respective genes
is stated in brackets. Both methods seem to agree on the visually most significant
genes (clear depletion around TSS and increase in the gene body)
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B Appendix: Additional Figures

Figure B.2: Segmented gene heatmap: THOR and PePr Read count ratio of all 6607
genes (y-axis) centered on the TSS. The genes are segmented into four groups:
Significant genes called only by the competitor method, called by competitor
method and GenoGAM, only GenoGAM and neither of both (top to bottom).
Within each segment the genes are ordered by p-value (top is the lowest and
bottom the highest) of the respective method or in case of both methods present:
GenoGAM. (a) For competitor method THOR. The number of the respective
genes is stated in brackets. Whereas many common called genes seem to be
visually valid, THOR misses a large number of strongly differentially bound
genes, while calling some with a weaker signal (b) For competitor method PePr.
The number of the respective genes is stated in brackets. Whereas many common
called genes seem to be visually valid, PePr misses a large number of strongly
differentially bound genes, while calling some with a weaker signal.
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B.1 Differential binding

Figure B.3: Segmented gene heatmap: diffReps Read count ratio of all 6607 genes (y-
axis) centered on the TSS. The genes are segmented into four groups: Significant
genes called only by the competitor method, called by competitor method and
GenoGAM, only GenoGAM and neither of both (top to bottom). Within each
segment the genes are ordered by p-value (top is the lowest and bottom the high-
est) of the respective method or in case of both methods present: GenoGAM.
The number of the respective genes is stated in brackets. Whereas many common
called genes seem to be visually valid, they seem nonetheless to be less differen-
tially bound then a large number of genes called by GenoGAM. The number of
genes called by diffReps alone seem to reflect this even more.
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B Appendix: Additional Figures

Figure B.4: ROC curves Further ROC curves as in figure 3.10 with quantile cutoffs of
0.2 (top left), 0.25 (top right), 0.3 (bottom left) and 0.35 (bottom right). In
all plots GenoGAM shows consistently a higher True positive rate (TPR) while
maintaining a lower False positive rate (FPR).
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B.2 Peak calling

B.2 Peak calling

Figure B.5: Distances to motif center for ENCODE data. As in Figure 5.2a for the
ENCODE transcription factors CEBPP (a), CTCF(b), USF1 (c), MAX (d),
PAX5 (e), and YY1 (f).
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B Appendix: Additional Figures

Figure B.6: Proportion of peaks for ENCODE data. As in Figure 5.2b for the ENCODE
transcription factors CEBPP (a), CTCF(b), USF1 (c), MAX (d), PAX5 (e), and
YY1 (f).
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