
Noname manuscript No.
(will be inserted by the editor)

Versatile and Robust Bipedal Walking in Unknown
Environments
Real-Time Collision Avoidance and Disturbance Rejection

Arne-Christoph Hildebrandt · Robert Wittmann · Felix Sygulla · Daniel

Wahrmann · Daniel Rixen · Thomas Buschmann

Received: date / Accepted: date

Abstract Autonomous navigation in complex envi-

ronments featuring obstacles, varying ground composi-

tions, and external disturbances requires real-time mo-

tion generation and stabilization simultaneously. In

this paper, we present and evaluate a strategy for rejec-

tion of external disturbances and real-time motion gen-

eration in the presence of obstacles and non-flat ground.

We propose different solutions for combining the asso-

ciated algorithms and analyze them in simulations. The

promising method is validated in experiments with our

robot Lola. We found a hierarchical approach to be

effective for solving these complex motion generation

problems, because it allows us to decompose the prob-

lem into sub-problems that can be tackled separately

at different levels. This makes the approach suitable

for real-time applications and robust against perturba-
tions and errors. Our results show that real-time motion

planning and disturbance rejection can be combined to

improve the autonomy of legged robots.

1 Introduction

Although companies are starting to show increasing in-

terest in the topic, bipedal robots are still the subject

of fundamental research. Legged robots will only be

used in real applications if they are able to reliably

navigate through complex scenarios. We expect com-

plex scenarios to raise multiple issues for robotic sys-

tems: (1) motion generation problems in complex envi-

Arne-Christoph Hildebrandt · Robert Wittmann
Technical University of Munich,
85747 Garching, GER
Phone: +49 89289 15208
E-mail: arne.hildebrandt@tum.de
E-mail: robert.wittmann@tum.de

ronments have to be solved autonomously; (2) robots

have to be able to react quickly to dynamically chang-

ing environments or user input; (3) robots have to be

reliable and robust, even when subjected to unknown

disturbances or modeling errors. Recent research pro-

poses sophisticated solutions for each of these issues:

during the DARPA challenge, legged robots navigated

through static environments via teleoperation (Fallon

et al, 2015; Stumpf et al, 2014). Changing user in-

put and dynamically changing environments are fur-

thermore taken into account in real-time methods pre-

sented in Chestnutt et al (2009); Buschmann (2010).

The authors of Nishiwaki and Kagami (2009b); Take-

naka et al (2009) presented methods to reject large dis-

turbances such as pushes or unmodeled terrain while

walking. However, all three solutions need to perform

simultaneously when navigating in complex scenarios.

We call this versatile and robust walking.

– By versatility, we refer to strategies enabling the

robot to efficiently use its full physical capabilities in

various situations. This is important when stepping

over or onto complex, previously unknown obstacles

or when walking with large step lengths.

– By robustness, we mean the robot’s ability to re-

cover from severe disturbances resulting from ex-

ternal forces or errors in the environment model.

Only large modifications of the system’s originally

planned motion can achieve such robustness.

In this article, we present our hierarchical approach

to make humanoid walking more versatile and robust.

Furthermore, we present and analyze ways to combine

these methods, which will enable autonomous walking

in complex scenarios.

We first consider robust and versatile walking

strategies separately, and then, we present their com-



x y

z

Joint DoF
Head 2
Shoulder 2
Elbow 1
Pelvis 2
Hip 3
Knee 1
Ankle 2
Toe 1
Total 24

Fig. 1 Photo and kinematic structure of the humanoid robot
Lola. Joint distribution is shown on the right side.

bination. In Section 2, we provide an overview of cur-

rent related research projects. Section 3 presents a sys-

tem overview of the experimental platform used in this

work, the robot Lola, and its overall software frame-

work for versatile and robust walking. Our main con-

tribution is divided into three sections: first, we present

our methods for real-time motion generation and dis-

turbance rejection in Section 4 and in Section 5, respec-

tively. Then, in Section 6, we present methods to tightly

integrate both. Different methods are further analyzed

in simulation and the most promising one is validated

successfully in the experiments conducted. Experimen-

tal results are presented in Section 7. Finally, Section 8

is devoted to a conclusion as well as comments on lim-

itations and future work.

2 Literature

Methods for versatile walking and robust walking are

mostly handled separately in the state-of-the-art. These

methods are thus reviewed first, followed by published

work that combines both approaches.

2.1 Versatile Walking

To achieve autonomous navigation in real-time, the hu-

manoid robot’s motion generation is typically divided

hierarchically to reduce computational cost. Footholds

are determined first, to be able to take into account

cluttered environments. The multi-body system’s mo-

tion trajectories are planned based on these. Okada et al

(2001) presented early work on autonomous walking.

Based on a 2.5D approximation of the environment,

the robot H7 was able to navigate collision-free in the

presence of obstacles. Sabe et al (2004); Michel and

Chestnutt (2007); Gutmann et al (2008) improved this

concept. In 2004, Pfeiffer and Schmidt presented initial

experiments with the robot Johnnie, using an on-board

vision system to autonomously step over obstacles or

onto stairs (Lohmeier et al, 2004). This work produced

impressive results, but their strong assumptions about

the environment limited the concept they presented.

Chestnutt et al. presented more generally applicable

methods. They set up a laser scanner to construct an

accurate height map of the environment ((Chestnutt

et al, 2006, 2009)) and an external motion capture sys-

tem to localize the robot. Using the height map, an

A*–search was applied to find valid footholds. At the

DARPA Robotics Challenge Trails, Fallon et al (2015)

developed an interesting method differing from the pre-

vious graph-search-based approaches. Instead of rep-

resenting the environment based on a 2.5D map, the

vision system determines convex areas into which the

robot is able to step. Starting with a fixed number of

steps, the step planning problem can be solved using

mixed integer optimization. Buschmann et al (2010)

presented a different concept. Instead of using a global

map of the environment, they proposed analyzing a set

of 2D trajectories for feasibility. Using this method, the

robot Lola was able to navigate autonomously through

an unknown and changing environment. The presented

implementation limited the robot to 2D paths and did

not exploit the robot’s ability to step over obstacles.

Recently, Karkowski and Bennewitz (2016) proposed a

similar approach. They first plan a global 2D path us-

ing an A*–Search. Then sub-goals connected by line

segments are generated from the 2D path. The line

segments are subsequently used by a local step plan-

ner for geometrically generating the foothold positions.

However, the robot’s kinematic capacities, such as step-

ping over obstacles, are not fully exploited, nor is the

solution’s optimality explicitly considered. The meth-

ods mentioned so far all concentrate on finding valid

step sequences. Collision avoidance is taken into ac-

count for motion generation only via heuristics. Perrin

et al (2012) proposed dividing the stepping movements

into static half-steps. These half-steps are analyzed for

collisions using collision geometries calculated offline.

For reaching approximately dynamic movements, the

half-steps are smoothed during a subsequent step. The

whole planning process needs 2.5 s, which entails high

latencies for fast, dynamic walking. In contrast to Per-

rin et al (2012), Maier et al (2013) combine percep-

tion, path planning and collision-free motion genera-

tion. They use an inverse height map of the robot Nao

for step suggestions in an A*-search based step planner

to check for collisions in discrete configurations. Com-

plementary to the presented approaches, another body



of literature focuses directly on the stepping motion.

Yisheng Guan et al (2005); Guan et al (2006) present

a method for collision-free, quasi-static motion genera-

tion to step over obstacles. Their method relies on a 2D

approximation of the robot in which obstacle represen-

tation is limited to a rectangle approximation. By tak-

ing the zero moment point (ZMP) into account, Stasse

et al (2009) were able to extend the method of Yisheng

Guan et al (2005); Guan et al (2006) to dynamic move-

ments. 2D line elements are still used for robot and

obstacle representation. Arbulu et al (2010) present

a method that generates collision-free swing foot tra-

jectories for stepping over quadratic-shaped obstacles.

Collision-checking is done at four discrete configura-

tions. Humanoid robots, like our robot Lola, are able

to execute complex stepping motions due to the kine-

matically redundant structure of their legs. The pub-

lished methods mentioned above would therefore arti-

ficially limit its capacities in complex environments, as

complex 3D geometries of the robot’s parts and the en-

vironment are approximated by line segments or sim-

ple boxes. Nor are potential self-collisions taken into

account. Horizontal swing foot movements are hence

largely restricted and the robot’s DoF are therefore

not fully exploited. Nonetheless, the presented meth-

ods produce remarkable results for the stepping-over

motion for one obstacle. However, the viability of the

methods has yet to be proven by integrating them into

frameworks involving perception and navigation and by

validating them in more general environments.

2.2 Robust Walking

There are many different methods to stabilize bipedal

walking. We first review two control frameworks that

include local modifications as well as an adaptation of

future motion. A feedback control framework for the

HRP2 biped is presented in Nishiwaki and Kagami

(2009b,a). It is based on continuous, moderate fre-

quency recalculation of the walking pattern and local,

high frequency adaption of the trajectories. The current

state is used as the initial value for solving the trajec-

tory planning problem, which is formulated as a preview

control of the linear inverted pendulum model (LIPM).

The second stabilization framework is presented in Hi-

rai et al (1998); Takenaka et al (2009), which is ap-

plied for the humanoid robot Asimo. The main feed-

back variable is the absolute inclination of the upper

body, which is treated as horizontal displacement error

of the CoM and is used to calculate a reaction moment.

This reaction moment aims at restoring an upright pos-

ture. Moment regulation is then distributed across three

control strategies: ground reaction force control, model

ZMP control and foot landing position control. To per-

form local modifications, Fujimoto et al (1998) intro-

duce a tracking control in task space for the biped’s

overall dynamics that is based on hybrid position/force

control. A walking controller that is based on the full

robot model was developed in Loffler et al (2002) for the

bipedal robot Johnnie. The authors used a feedback-

linearization technique to impose linear behavior for the

tracking errors. Buschmann (2010) presents a stabilizer

that first modifies desired contact forces and torques

and then applies hybrid position/force control which

generates local task space modifications. Two similar

approaches for a whole-body motion controller which

also considers long-term stability are presented in Kuin-

dersma et al (2014); Sherikov et al (2014). The stabilizer

solves a quadratic programming problem for the over-

all multibody dynamics at each control step taking, for

example, the dynamic constraints of the contact forces

and joint torques into account. For long-term stability,

the LIPM is used.

Another strategy to stabilize the robot consists in

adapting the next footsteps solely based on sensor in-

formation in order to adapt its future motion. There

are several approaches for the stabilizing step length

modifications, such as those that apply heuristics or

linear models (for example Pratt et al (2006); Rebula

et al (2007); Hodgins and Raibert (1991)). The capture

point introduced by Pratt et al (2006) is a method of-

ten applied for footstep placement and bipedal walking

control (Englsberger and Ott, 2012). Online model pre-

dictive control methods to calculate a CoM trajectory

and optimize the next footsteps using the LIPM are

presented in Urata et al (2011); Tajima et al (2009);

Wieber (2006). Urata et al (2011) formulate the opti-

mal control problem for the pendulum differently by

choosing the time derivative of the center of pressure

(CoP) as input and setting the input’s weight in the

cost function to zero. This allows an explicit solution to

the problem to be determined and more than hundred

iterations of the optimization to be computed in each

control cycle. To our knowledge, this is the only work

that includes an additional step time optimization.

2.3 Versatile and Robust Walking

The authors of Chestnutt and Takaoka (2010) showed

experiments with a robot walking on the spot and ad-

justing footstep locations to reject perturbations while

taking obstacles into account. They extended their step

planner to compute not only step sequences, but also

safe regions around the target footholds. The walking

controller uses those regions to calculate permissible



adjustments of the target footholds to reject pertur-

bations in the presence of obstacles. Following this ap-

proach, only the step planner takes the environment

into account. When the walking controller adjusts the

target footholds, it needs to recalculate the robot’s tra-

jectories. Collisions can thus only be avoided by using

large safety margins, which do not allow considering the

possibility for the robot to step close to or over obsta-

cles. Recently, Naveau et al (2017) published a method

to extend their walking controller by taking into ac-

count convex obstacles as additional constraints. Us-

ing the walking controller, the robot HRP2 can adjust

footholds locally to avoid circular obstacles in exper-

iments. They also proved their concept in simulation

to reject disturbances. To the best of our knowledge,

the combination of perturbations and obstacles has not

been shown. Integration into a whole planning frame-

work, including a step planner, is pending. It is a very

interesting approach, however, and in contrast to the

method presented in this work, the model predictive

control with nonlinear constraints is solved at a high fre-

quency. A simplified template model of the robot thus

has to be used to meet the real-time requirements. Ap-

proximation of the environment and of the robot is kept

simple. Complex scenes and self-collisions are therefore

difficult to consider in this framework.

The authors of Kuindersma et al (2015) present

an optimization based framework that treats all tasks

for planning and control in complex scenarios. A step

planner calculates valid footholds using mixed integer

optimization. It is based on a height map segmented

into convex allowable regions represented as polytopes.

A human operator has to provide the algorithm seed

points to find the polytopes. To include arbitrary envi-

ronments, they perform the dynamic motion planning

with the robot’s complete linear and angular momen-

tum equations. This enables multi-contact problems as

well as the full kinematics of the robot to be included.

For feedback control, a QP is formulated that takes

long-term stability into account using the inverted pen-

dulum model. It provides motor commands via addi-

tional inverse dynamics for the current time-step. To

the authors’ knowledge, information about the environ-

ment is not used in the stabilization.

The following requirements arise from the shortcom-

ings of the methods described above. The work pre-

sented in this paper takes all of them into considera-

tion.

– A complete framework including vision system, step

planner and sensor-based trajectory adaptation is

presented.

– The framework follows a hierarchical approach

where each module takes the results of those pre-

ceding it into account.

– Sophisticated models approximate the robot’s ge-

ometry and dynamics. All computations are per-

formed in real-time.

– The environment can consist of multiple arbitrarily

shaped obstacles.

– The method’s efficiency will be validated in experi-

ments with complex scenarios, including several si-

multaneous obstacles and disturbances.

3 System Overview

This section provides a hardware and software overview

of the bipedal robot Lola.

3.1 Hardware Overview

Our humanoid robot Lola has a mass of about 60 kg

and is 180 cm tall. It has n = 24 position-controlled

joints, which are electrically actuated. A detailed view

of the kinematic configuration is shown in Fig. 1. Note

the kinematically redundant structure of the legs with

seven DoF and of the pelvis with two DoF. The robot is

equipped with an inertial measurement unit (IMU) in

the upper body and 6-axis force-torque sensors (FTS)

located in each foot. The IMU consists of three fiber-

optic gyroscopes and three MEMS accelerometers. The

system includes internal sensor fusion algorithms that

provide accurate, drift-free measurements for the abso-

lute orientation and rotation rate. See Lohmeier (2009)

for more detailed information. We set up an Asus Xtion

PRO LIVE RGB-D camera1 for environment recogni-

tion. It is mounted on a pan/tilt unit on the robot’s

head. The robot is equipped with two on-board com-

puters: each has an Intel Core i7-4770S@3.1GHz (4x)

processor and 8GB RAM. The computer with the vi-

sion processing software runs under a Linux OS and

the other, on which the walking control executes, runs

under a QNX-RTOS. Both computers use TCP to com-

municate via Ethernet.

3.2 Control Overview

Our control system follows a hierarchical approach that

consists of several modules (see Fig. 2). Before each

walking step of the robot, ideal motion planning gen-

erates the ideal walking pattern for the next nSteps

1 ASUS Xtion PRO LIVE, see http://www.asus.com/

Multimedia/Xtion_PRO_LIVE/



walking commandsvision system

finite state machine

A*-based step planner &
parameter optimization

ideal motion planning

model-predictive
trajectory adaptation

g
lo

b
a
l

co
n
tr

o
l

reactive collision avoidance

contact force control

inverse kinematics

robot
(with decentral joint control)

lo
ca

l
co

n
tr

o
l

ideal motion (wid)

adap. motion (wad)

mod. motion (wd)

joint target data (qd, q̇d)

sensor data

	 0.1 ms

	 20 ms

	 1 ms

� event

Fig. 2 Lola’s real-time walking control system.

steps. The walking pattern consists of the CoP refer-

ence trajectories and the ideal task space trajectories

wid(t) ∈ Rm, which are composed of the CoM posi-

tion, torso rotations, position and orientation of the

feet. These trajectories are calculated based on a three-

mass model to account for dynamic effects caused by

fast leg movements. Buschmann (2010) describes the

details. The robot’s walking pattern is configured by a

parameter set pwp. pwp contains the robot’s foothold

for each step, parameters describing the robot’s move-

ments (e.g. height of center of mass (CoM) or swing

foot height), and the step time TStep. pwp is determined

by an A*-based step planner & parameter optimization

(see Section 4) to allow for autonomous navigation and

collision-free motion generation in cluttered environ-

ments. The key contribution is its real-time capacity.

At each walking step of the robot, a new set of pwp
is calculated. This allows reactions to user input or dy-

namically changing environments. Details are explained

in Section 4. During step execution, model-predictive

trajectory adaptation takes external perturbations into

account by modifying the desired foot trajectories. The

modification depends on the robot’s current state pro-

vided mainly by the IMU. The output is an adapted

motion wad(t). It is in turn the input to the local con-

trol, running with a cycle time of ∆t = 1 ms. The de-

sired motion at time tk, wad,k = wad(tk) is modified

locally to take sensor input into account. Reactive col-

lision avoidance optimizes wad,k to prevent collisions

with obstacles and self-collisions, whereas contact force

control modifies wad,k to stabilize the robot. The in-

tegration of local collision avoidance is detailed in Sec-

tion 4, whereas Buschmann et al (2011) presents more

details about the stabilization. The modified task space

trajectories wmod,k resp. ẇmod,k are input to the in-

verse kinematics at the velocity level (Whitney, 1969;

A. Liegeois, 1977), to solve for the joint space veloci-

ties q̇d,k ∈ Rn from ẇmod,k. Since the dimension of the

workspace is much smaller than the number of degrees

of freedom of the robot, the redundancies can be ex-

ploited to minimize a cost function Hy. Thereby, the

motion in the nullspace of the robot is determined tak-

ing into account self-collision avoidance, constraints re-

lated to limits of the joints, and minimization of an-

gular momentum (Schwienbacher et al, 2011; Schwien-

bacher, 2012). The calculated qd,k, q̇d,k are then passed

to the distributed joint controllers. By following this de-

centralized concept, high sampling rates (50 µs current,

100 µs velocity and position) are reached for the cas-

caded feedback loops. This way tracking errors of less

than 2 mrad can be achieved on all joints. Our meth-

ods for versatile and for robust walking are presented

in more detail in the sections below.

4 Methods for Versatile Walking

In this section, we present the strategy developed in

the course of our research, which aims at integrating

obstacle recognition, collision-free walking in 2D, and

whole-body 3D collision avoidance. As will be explained

next, different levels of detail in perception as well as

in motion generation make real-time navigation possi-

ble while exploiting the robots physical capabilities. An

exemplary situation is depicted in Fig. 3.

4.1 World Representation

Our approach is based on the representation of both the

robot’s geometry and the environment via swept sphere

volumes (SSVs). This representation allows efficient, ac-

curate geometry approximations and fast distance cal-

culations (Schwienbacher et al, 2011). The robot model,



Environment
representation E

Full collision model
Rcoll

Ideal step sequence

Lola with vision
system

Fig. 3 Left picture: experimental setup with vision system
and human disturbing Lola; right picture: Lola’s collision
model, approximated obstacles relevant at current time and
calculated step sequence.

R, and the environment model, E, form the approxima-

tion of the world W = {E,R} used. R and E consist of

nS robot segments and nO obstacles respectively. De-

pending on the desired level of detail, each segment

or obstacle i is approximated with nSSVi
SSV objects.

That way, also non-convex, complex shaped segments

can be modeled using multiple SSV objects. Compare,

for example, the approximation of the robot’s legs (see

Fig. 3). In contrast to R, obstacles in E are dynami-

cally added, removed, or modified during run-time.

In order to allow for stepping up on and down from

platforms, we added steppable surfaces to our world

representation. Surfaces are modeled as convex hulls

described via corner points pc and the normal of the

surface. Consistently, the edges of the surfaces are mod-

eled as SSV objects and included in E, since the robot

may collide with them. Fig. 4 depicts a surface model.

4.2 Perception

The vision system approximates the environment as 3D

SSV objects or steppable surfaces. It uses only an on-

board RGB-D sensor and updates the objects’ positions

constantly during walking due to the fast cycle time

(approx. 30 ms). This allows the system to track moving

obstacles or changes in the perceived environment and

Surface

p0

v0

p1

v1

p4

p3
p0

p2

p1

n

α

p2
v2

p3

v3

p4
v4

Fig. 4 Surface representation: corner points with edges.
Edges modeled as SSV Objects for collision avoidance.

makes it robust against errors such as the drifting of

the robot’s odometry. Due to real-time requirements,

the level of obstacle approximation detail is adapted as

a function of the distance to the robot. More details are

presented in (Wahrmann et al, 2016).

4.3 A*-based Step Planner

At every new physical step taken by the robot, an A*-

based step planner calculates a sequence of future steps.

That way, the robot is able to react to high-level user

input or changes in the perceived environment in real-

time. The A*-based step planner uses a simplified robot

model RA∗ for collision checking with E. It takes into

account the lower leg and the foot. The lower leg ap-
proximation rotates relative to the foot approximation

depending on the analyzed step suggestion. This helps

to accurately approximate the robot’s motion. It is es-

pecially important when taking large steps, both side-

ways and forward, without the need for large safety

margins.

In addition to collision checking, A*-based step plan-

ner evaluates the pose of the foothold positions with

respect to the surfaces. This is efficiently implemented,

since it only requires a check to determine whether a

foothold, represented by a point, lies in an area de-

scribed via corner points. The pose of the foothold can

be determined by using the normal of the surface.

Furthermore, the A*-based step planner determines

initial swing foot trajectories for stepping over or swing-

ing past obstacles by changing the corresponding pa-

rameter in pwp. It adapts the step time, TStep, based on

the desired user input, the robot’s stepping movement,

and the environment. Further details are published in

Hildebrandt et al (2015) and in Wahrmann et al (2017).



4.4 Parameter Optimization

Based on pwp, a three-mass model with simplified kine-

matics is used to plan the walking pattern. Therefore,

the validity of the kinematic movement and possible

collisions need to be checked in addition. The parameter

optimization (see Fig. 2) integrates the movement of the

robot’s next step using the whole kinematic model. It

takes into account the local methods for collision avoid-

ance and, consequently, the approximation of the whole

robot’s structure for collision checking (Rcoll) with E.

Based on the results of the time integration, pwp is ana-

lyzed and optimized. Since the future kinematic move-

ment is analyzed, complex motion generation and ad-

vanced error handling for complex scenarios is possible.

More details on the specific parameter optimization are

published in Hildebrandt et al (2016).

4.5 Reactive Collision Avoidance

In local control, the reactive collision avoidance locally

optimizes the initial solution calculated by the global

control for avoiding self-collisions or collisions with ob-

stacles. That way, modifications of the robot’s move-

ments or the perceived environment due to sensor in-

put can be taken into account. It uses the full robot

model, Rcoll, and modifies all six of the swing foot’s

DoF as part of wad. The influence of the modifications

on the swing foot’s trajectories on the robot’s stability

can be compensated, since the robot has a redundant

kinematic configuration and the real CoM is tracked –

not the torso position. More details are presented in

Hildebrandt et al (2014).

5 Methods for Robust Walking

To enable the biped to react to unknown disturbances,

we introduced a model-predictive trajectory adaptation.

The ideal planned motionwid(t) is adapted in the global

control module based on current sensor data. This is

done with a prediction model which allows trajectory

modifications to be optimized in real-time for a cer-

tain time horizon. This way, the robot’s adapted motion

takes robot dynamics (in a simplified manner), desired

motion, and current state into account. We choose to

modify the leg trajectories by changing final values for

the x–,y– and z–position as well as the final horizon-

tal orientation (Wittmann et al, 2015b) for the next

step. Stabilizing motions for more than one step could

be included, but will increase computational time dras-

tically. The horizontal CoM trajectories can further-

more be adapted (Wittmann et al, 2016). The main

goal of the presented method is to stabilize the robot’s

absolute inclinations with regard to the ground. For

stiff position-controlled robots, they are considered to

be the main DoFs that deviate from the ideal values

during disturbances. To estimate these quantities, the

IMU’s measurement data is filtered in a state observer

(Wittmann et al, 2015a).

5.1 Dynamic Prediction Model

We choose to use a planar dynamic model (Fig. 5) of the

biped that directly includes the inclinations mentioned

(Wittmann et al, 2014). The full multi-body model of

a bipedal robot is simplified as follows: the planned

CoM and foot trajectories are assumed to be per-

fectly tracked in the robot’s planning frame of reference

(FoR) which rotates with the robot (T-system). Anal-

ogous to the model used in ideal motion planning, in-

ertia effects are approximately included via three point

masses. We use the same planar model for the x- and y-

directions (the motion in the sagittal and frontal plane,

respectively) with different geometry and trajectories.

The following description is related to the x-direction.

The unactuated DoFs are the inclination ϕx in the x-

direction and the vertical translation z (translation in

x-direction is neglected). They describe the transforma-

tion from an inertial (index I, xI , zI) to a FoR rotating

with the robot’s upper body (index T, xT , zT ). Further-

more, the ideal planned trajectories determined by the

walking pattern generation in the T-system correspond

to the trajectories for the robot’s upper body T rb(t)

and the feet T rf1(t), T rf2(t). The upper body and the

feet are approximated via point masses and the con-

tact between foot and ground is approximated as one

point contact located at the middle of the foot. The

relative position of the three masses is constrained to

follow a known trajectory determined by the planner.

The contacts are linear spring-damper pairs (stiffness

kc, damping dc) with the values identified from the real

robot’s rubber sole. They act only in zI -direction and

are considered to be unilateral. The overall equations

of motion (EoM) for the model with q = [z, ϕ]T can be

stated in the form

Mp(q, t)q̈ + hp(q, q̇, t) = λp(q, q̇, t) + T s (1)

where Mp is the mass matrix of the prediction model,

hp contains the nonlinear terms, and λp represents the

resultant force and moment of all active contacts pro-

jected on the model’s DoFs. T s describes an additional

stabilization torque which is calculated with a saturated

PD controller. It adds the robot’s contact force control

to the model. Due to the rotation with ϕ, the EoM are

nonlinear but can be stated analytically.



4Lx

rf1 = rf1,id +4rf1

rb,id

ϕxz

T-System

mf

mb, Θyy
zT

zI

xI

xT

Fig. 5 Prediction model with three point masses and swing
foot modification ∆rf1.

5.2 State Estimation

The algorithm requires an initial value z0 = [q0, q̇0]T

of the prediction model for the robot’s current state. It

is obtained by feeding the IMU measurements, namely

the absolute inclination ϕm and inclination rate ϕ̇m,

into a state observer. The observer is similar to the

one presented in Wittmann et al (2015a), except that

it uses the nonlinear model (1). It is based on an ex-

tended Kalman filter with compensation for model er-

rors and external disturbances. The observer is imple-

mented for both directions and provides an initial state

for the model in the x- and y-directions z0.

5.3 Model-Predictive Trajectory Optimization

The following description only treats footstep modifica-

tions, but the method can be extended to CoM modifi-

cations as shown in Wittmann et al (2016). A param-

eter ∆Lx which describes a horizontal displacement of

the final swing foot position is introduced. It is used

to calculate a quintic polynomial that begins at the

current position, velocity and acceleration and ends at

∆Lx with zero velocity and acceleration. This is shown

in Fig. 5, where the polynomial ∆Trf1(∆Lx) is added

to the ideal trajectory Trf1,id via

Trf1 = Trf1,id +∆ Trf1 (∆Lx). (2)

This consequently changes the contact force’s lever arm,

thereby influencing the state of the model (1). The over-

all first order differential equation with the additional

parameter yields

ż =

[
q̇

M−1
p (q, t)[λp(q, q̇, ∆Lx, t) + T s − hp(q, q̇, t)]

]
= f(z, t,∆Lx).

(3)

stance foot

obstacle

final swing foot
initial swing foot

xid

∆x

Fig. 6 Example of problem description: ideal collision-free
final swing foot position and the modified invalid position.

The presented stabilizer’s goal can be formulated math-

ematically as a minimization of a quadratic cost func-

tion

J = ∆zT (tf )Sz∆z(tf ) + sp∆L
2
x +

tf∫
t0

∆zTQ∆z dt (4)

for a certain time horizon t ∈ [t0, tf ]. Note that the

cost function weights, Sz and Q, are mainly parame-

terized to minimize the absolute inclination error ϕx
over a certain time horizon, which is included in the

state error ∆z = z − zref . zref is the reference state

in a perfect upright posture. The optimization prob-

lem is solved using a direct shooting method. The

model (3) can be solved numerically for a given ini-

tial value z(t0) = z0 and ∆Lx. The resulting trajec-

tory z(t,∆Lx) can then be used to compute the cost

function J(z(t,∆Lx), ∆Lx). This way, the problem is

converted into the static optimization problem

min
∆Lx∈As

J(∆Lx) (5)

which is unconstrained as long as the variable ∆Lx
remains inside the allowable set As. It can be solved

with nonlinear programming methods such as Newton’s

method (Nocedal and Wright, 2004). The set As can be

interpreted geometrically as a valid area. It takes into

consideration constraints due to the robot’s kinematics

as well as restrictions resulting from obstacles located

near the robot. The determination of As and its inte-

gration in the optimization is the subject of the next

section.

6 Versatile and Robust Walking

The methods presented are now combined to obtain

versatile and robust walking simultaneously. In keeping

with the hierarchical control system architecture, we

decide to first determine a collision-free motion that is

then adapted for disturbance rejection based on sensor



data. Furthermore, we define that avoiding a collision

has a higher priority than rejecting a disturbance. The

decision is based on the assumption that disturbance

rejection can take place during more than one step,

whereas a collision will lead to a system failure. This

means that the possible solutions of (5) are restricted

to reachable and obstacle-free regions. Fig. 6 shows an

exemplary situation which is addressed below.

We start from a valid final swing foot location xid,

determined by the A*-based step planner taking into

account E. Assuming an unknown disturbance, trajec-

tory adaptation then modifies this position by ∆x =

[∆Lx, ∆Ly]T to stabilize the robot. The resulting final

foothold position, however, would cause a collision. The

main question now is how such constraints can be de-

scribed and accounted for in a real-time optimization

procedure. Short computation time is crucial, since the

method is used with sensor feedback and has to re-

act instantaneously to unknown disturbances. Longer

calculation times would incur in higher latencies and,

therefore, would degrade the performance of the feed-

back control. The method’s desired output is a modified

yet collision-free foot position

x∗m = xid +∆x∗. (6)

with feasible modification ∆x∗ instead of the modifica-

tion ∆x which could lead to collisions.

There are basically two approaches to handle such

situations: The first is to determine an optimal step

length modification without constraints and project the

final solution onto the cone of As. The second accounts

for the constraints during optimization, however, this

requires an optimization for the step length modifica-

tions in both directions since the feasible set is at least

two-dimensional and the boundaries for ∆Lx and ∆Ly
are coupled. For this reason, we extend the decoupled

planar models presented in Subsection 5.1 to a single

3D model. The problem description is summarized as

follows:

– Short calculation time (� 1 ms)

– Several arbitrarily shaped obstacles

– Stepping over of obstacles should be possible

– Kinematic limits must be checked

– A collision-free position must be found reliably

The constraints for such situations are described be-

low. Projection of an invalid point onto a feasible re-

gion is discussed in the subsequent part. This projec-

tion method is then applied to the stated problem and

two solution strategies are discussed.

model-predictive
trajectory adaptation

ideal foothold

(xid)

SSV map (E)

(Obstacles)

sensor data

(ϕm, ϕ̇m)

x∗
m

Fig. 7 Overview of the main input and output data for the
sensor-based trajectory adaptation with additional obstacle
avoidance.

stance foot

kinematically
reachable
region AS

linear
equations

ĀS

Fig. 8 Kinematically reachable region (gray) and current
stance foot (blue). Kinematically reachable region bounded
by seven linear equations.

6.1 Geometrical Constraints

The key point when taking into account the geomet-

rical constraints imposed on robust walking, namely

kinematic constraints and obstacles, is their consistent

and dense representation. To allow fast calculations,

we chose convex polytopes to represent both kinematic

constraints and obstacles. This results in neq linear in-

equalities,

ceq,j := aTj x > bj . (7)

A set of nCI
linear inequalities, restricted by the corre-

sponding corner points, describes one convex polytope,

CI , which is an invalid region. In total, the invalid area

ĀS consists of np polytopes and is defined as follows:

ĀS :=

np⋃
i=1

CIi . (8)

The corresponding valid area, AS , is formally defined

as

AS := A− ĀS , (9)

based on the total search area A. The determination of

ĀS is described below.

6.1.1 Kinematic Limits

Starting with the current stance foot, the kinematically

reachable area is approximated by the convex polytope



q1 q2

q3

p1 p2

p3

r

p1

p2 p3

p4

q1 q2
r

p1

p2

p3

p4

p5

p6

r
q1

Fig. 9 Approximation of SSV Objects as polytopes.

as depicted in Fig. 8. The unreachable area results in nk
convex polytopes (see Fig. 8). The system of inequali-

ties for one convex polytope results in

CI,k,j = {x|∀i ∈ {1, ..., nk,j} : aTk,j,ix > bk,j,i}. (10)

6.1.2 Obstacles

As described in Section 4, 3D segments approximate

obstacles and areas of the environment the robot can-

not step onto. The former consist of nSSV convex SSV

objects to allow for a detailed approximation of the

real objects. Like the representation of the kinematic

limits, each of the nSSV,i convex SSV objects are re-

duced to 2D polytopes to comply with the hard tim-

ing constraints.2 The SSV objects are first projected

onto the ground. Then the three types of SSV objects –

sphere, line and triangle – are represented as polytopes

as shown in Fig. 9. For each object j, we get a convex

hull, which is described by

CI,SSV,j = {x|∀i ∈ {1, ..., neq,SSV,j} :

aTSSV,j,ix > bSSV,j,i}.
(11)

Kinematic limits already restrict the valid area for a

step. Therefore, only obstacles within this kinematically

reachable area are considered. This approach greatly

reduces the computational costs for the inequality con-

straints.

2 Note, one arbitrary shaped obstacle may be approximated
by nSSV,i convex SSV objects. Here, we reduce all SSV ob-
jects of all nO obstacles to 2D polytopes without taking into
account their belonging to same obstacles. That way, we get
only 2D polytopes representing the total of E.

xid

xm,1

xm,2

xm,3

foothold adjustments

large
obstacle

inaccessible region

Fig. 10 Large obstacle - Representation of inaccessible re-
gions.

p1

p2

p3

obstacle

y0

x0

α
xid

current
swing foot

enlarged obstacle

Fig. 11 Obstacle enlarged by foot geometry.

6.1.3 Large Obstacles

Considering the robot’s whole kinematic movement,

obstacle-free regions are not necessarily steppable or

kinematically reachable. Large obstacles, which the

robot cannot step over because of their height, make

adjacent obstacle-free regions inaccessible due to kine-

matic constraints. We already consider these large ob-

stacles in the environment representation to avoid re-

peated checks for obstacle-free regions and inaccessible

regions. Instead of introducing a polytope for the in-

accessible region, the large obstacle’s representation is

enlarged (refer to Fig. 10). That way, the obstacle ap-

proximation as well as the representation of the inac-

cessible region stay convex.

6.1.4 Foot Geometry

The sophisticated 3D representation of the foot and

lower leg geometry used in the A*-based step planner

helps to give a better approximation of the robot’s

whole kinematic movement. We nevertheless enlarge

the obstacles by the foot geometry as shown in Fig. 11.

Since the foot orientation does not have a large influ-

ence on perturbation rejection, the current robot’s foot

orientation α, calculated by the A*-based step planner,

is thereby taken into account. Thus the geometric con-

straints can be analyzed using only one point, which

describes the foothold position.



6.2 Finding Safe Footholds

Below, we try to answer the question initially asked:

Given a modified but invalid foothold position, how can

the closest valid one be determined (see Fig. 6)? Three

methods are described and compared in the following.

6.2.1 Sampling

One answer is to discretize the area around the modified

foothold position. The discrete positions are checked to

determine whether they are valid or not. From among

all the valid positions, the one closest to the modified

position is chosen. The advantage of this procedure is

that calculation time only depends on the number of

equations and on the discretization level. The calcula-

tion time is therefore deterministic, making the method

suitable for real-time application. Furthermore, all dis-

cretized points can be checked in parallel on multi-

processor platforms. The disadvantage is the strong de-

pendence between the solution’s quality and the dis-

cretization grid. Fine discretization is computationally

expensive, but is necessary to find a solution in complex

scenarios.

6.2.2 Geometric Testing

Another solution is to search for the closest valid point

on the boundaries, which are described by linear equa-

tions. This reduces the problem to a distance calcula-

tion between this valid point in CIi and line segments

describing the boundaries of CIi . The closest point on

the line segment can be calculated based on the small-

est distance between point and line segment. To accel-

erate the calculations, the residuum of the point and

the inequalities is used: A small residuum indicates a

small distance between the point and the boundaries

and is used to reduce the number of distance calcula-

tions. However, this procedure is not possible for multi-

ple invalid regions that intersect each other. The closest

point on one of the boundaries is not necessarily valid

since it may lie in another invalid region. This extended

problem is solved as follows: (1) The closest point on

all boundaries has to be found. (2) Each of these points

has to be checked for validity. If one is invalid, the next

nearest valid point on the same boundary is chosen. (3)

Finally, all resulting points have to be compared to find

the closest point. In contrast to the sampling-based ap-

proach, the quality of the solution does not depend on

the environment or prior assumptions (e.g., a discretiza-

tion grid). However, the closest point is searched for on

each boundary and thus the computational costs in-

crease significantly with the number of invalid regions.

6.2.3 Safe Regions

The previously presented solutions all begin with an in-

valid starting point, xm, and try to find a valid point,

x∗m. Another possibility is to invert the problem. This

idea comes from computer graphics and uses a decom-

position of the valid region (Greene, 1983): instead of

finding the closest valid point, AS is divided into a set

of convex valid regions CV . In each of these valid and

convex regions, the closest point to the invalid start-

ing point can be determined separately and, because

of the regions’ convexity very efficiently. In contrast

to the Geometric Testing method, intersections of the

valid convex regions do not pose a problem, because

the search is applied on a set of valid regions. The solu-

tions are consequently independent of each other. The

best one is chosen based on the calculated set of closest

points. This procedure of searching valid convex regions

instead of only considering the invalid regions is largely

inspired by Chestnutt and Takaoka (2010), who pre-

sented a method to calculate a valid convex area around

a valid starting point. The algorithm starts with a con-

vex area. It iterates around the starting point and it

removes invalid parts of the initial convex area. A draw-

back of the implementation is that only one convex area

around the starting point is found. Deits and Tedrake

(2015) presented a powerful open source tool, called

IRIS, which has already been applied to step planning

(Deits and Tedrake, 2014). IRIS uses the corner points

of invalid convex regions as input and calculates the cor-

responding inequalities. It also determines the largest

valid convex region which is closest to a starting point.

Although it seems to be well suited for the present prob-

lem, it exhibits some shortcomings with respect to our

application3:

– IRIS does not guarantee that the starting point lies

in the convex region.

– IRIS needs a predetermined search area. The algo-

rithms seem to be very sensitive to starting points

close to the borders.

– IRIS only determines one convex area. When it is

applied iteratively on the same search area by re-

spectively removing the determined regions, it often

fails to find additional valid regions.

Sarmiento et al (2005) and Liu et al (2010) present

methods to divide arbitrary areas in convex regions.

On the one hand, neither method is restricted to convex

invalid regions; however, neither benefits from reduced

computational costs for convex problems. In our appli-

cation, only convex invalid regions are used, to obtain

3 The following statements are based on the authors’ expe-
rience with the IRIS tool, which is available as open source.



Obstacles
1 2

pk

3

Valid convex regions

4

Fig. 12 Finding convex valid regions. (1) and (2) obstacles
and kinematic constraints. (3) Seed point pk. Already found
inequalities in green. Current closest line in blue. Remaining
active boundaries in red. (4) Output of Algorithm; Multiple
convex valid regions (ivory).

the benefit in terms of calculation times. Like Sarmiento

et al (2005) and Liu et al (2010), we want to completely

cover the valid area with multiple convex regions that

might intersect. We exploit the following characteris-

tics of this mathematical problem to meet our timing

limitation:

– CI,i are all convex.

– Our algorithm’s starting point, which is the ideal

step location, xid, calculated by A*-based step plan-

ner, always lies in AS .

– The kinematic constraints limit A.

Our algorithm takes an iterative approach. We set up

a grid of seed points over A. The seed points, which

lie in AS , successively become the starting points for

searching a convex region surrounding each. Once the

convex region around a seed point is determined, it is

removed from the remaining valid area to avoid repet-

itive searches. Since it is valid per definition, we use

the ideal footstep location as a first seed point. This

helps to reduce the computational costs. The number

of seed points is set to a value which ensures that no

valid regions are missed in the experiments. For one

seed point, the search for a valid convex region can be

summarized as follows: The closest boundaries to the

seed point are determined iteratively. The boundaries

are therefore considered to be line segments with start

and end points. Once the closest boundary, lj , is found,

it is added as a linear inequality to the valid region

CVk
. Here, the convexity of the invalid region is used to

efficiently find the closest boundaries. All boundaries

outside CVk
are skipped and considered inactive for the

following steps (see Fig. 12). The search stops when

there are no active boundaries left. The algorithm is

summarized in Algorithm 1. The calculation of CV has

Algorithm 1 Dividing AS in convex regions

1: function Find-convex-regions(AS , ĀS)
2: initialize set of seed points PS

3: CV = {}
4: for all pk ∈ PS do

5: verify pk valid?
6: j ← 0
7: repeat

8: Calculate closest boundary line lj of ĀS

9: Add lj as inequality to boundaries of CVk

10: Remove all inactive boundaries of ĀS

11: j ← j + 1
12: until no more active boundaries
13: remove CVk

from AS

14: update CV = CV ∪ CVk

15: end for
16: Output: CV
17: end function

to be done only once before each of the robot’s physical

steps. The kinematically reachable area lies outside the

camera’s field of view. Therefore, the representation of

the environment does not change during the execution

of the step.

6.2.4 Discussion

In summary, all of the methods presented can be used

to find a valid point which is close to the desired invalid

point. They have been evaluated in simulation. In our

implementation, the sampling-based method showed

strong dependence on the grid size. The Geometric

Testing method and the Safe regions method showed

similar results in terms of computational costs and qual-

ity of the solution. However, the latter has the advan-

tage that it calculates not only the closest point, but

also CV . These inequalities are suitable for optimiza-

tion algorithms as shown below. We therefore chose the

Safe Regions method for the final implementation on

the robot.

6.3 Footstep Modification with Geometrical

Constraints

Finally this section describes how the algorithm for

finding a point in the safe regions can be combined

with the optimization of the next foothold positions

(see Subsection 5.3) for stabilizing the robot.

6.3.1 Projected Optimization Result

One straightforward solution for considering safe re-

gions is to project the optimized quantities ∆x =



[∆Lx, ∆Ly]T onto the safe regions. This way, the step

length modifications can be optimized separately in the

x- and y-directions. The optimization results are pro-

jected onto the cone of AS . We tried two different crite-

ria to find the point that is closest to the optimal solu-

tion: the geometric distance between ∆x and ∆x∗ and

the point with the best (lowest) costs determined using

(4). For the second criteria several candidate points are

generated, all lying on the cone of AS . Nevertheless,

this requires additional time-consuming evaluations of

(3) and (4). We tried both methods with the result that

they perform similarly and consequently chose the clos-

est distance criterion.

6.3.2 Optimization with Inequality Constraints

A mathematically exact way is to include the inequality

constraints directly in the optimization. This can be re-

alized with hard constraints or using a penalty function.

The latter has the advantage that the problem is again

unrestricted and exhibits better computational time.

We extend the prediction model (3) by an additional

passive DoF, ϕy, which is an inclination in y-direction.

The foot trajectory

Trf1 = Trf1,id +∆ Trf1 (∆Lx, ∆Ly) (12)

includes both final foot step modification quantities

∆Lx and ∆Ly. The EoM of the spatial model with

qs = [z, ϕx, ϕy]T can be derived and written as first

order differential equation

żs = fs(zs, t,∆Lx, ∆Ly) , zs = [qs, q̇s]
T . (13)

The cost function for the optimization is rewritten for

the spatial model (13) as

Js = zTs Szzs +∆xTSp∆x+

tf∫
t0

zTsQzsdt

+ h(∆x)

(14)

and extended by an additional penalty term

h(∆x) =

{
β (xm − xp)2 xm ∈ ĀS
0 xm ∈ AS

(15)

that includes the distance from xm = xid +∆x to the

closest valid point xp at the cone of AS . The additional

weight β is set to a value higher than all other weight-

ing matrix entries. The optimization result from (13)

and (14) is not necessarily valid, since invalid solutions

are penalized but not completely avoided. Nonetheless,

the solution is at least close to AS . Consequently, the

validity of the optimization result, xm, will be veri-

fied and if necessary projected onto AS as described in

Subsection 6.3.1. In simulation and experiments, this

strategy shows the ability to find solutions that require

stepping over of obstacles to maintain the robot’s bal-

ance. This is possible because instead of using just one

safe region, a set of safe regions is used. Instead of using

always the closest point as the starting point for the op-

timization, we could use starting points in each of the

safe regions as well. That way, we could run multiple

optimization processes in parallel, and chose, as the fi-

nal result, the optimal result out of all optimization

processes. So far, this approach has not shown superior

results to just using the closest point as the starting

point. The same extension is applicable for the Footstep

Modification with Geometrical Constraints method.

. . . Step k Step k+1

Proc.1:

A*-thread Step (k + 1) to (k + nstep)

Ideal

Comp.As

Adapt

Upd.SSV 	 50 ms

Proc.2:

LocalCon. 	 1 ms

Fig. 13 Multi-process and multi-thread software architecture
of Lola’s real-time walking control system.

6.4 Implementation Details

The following paragraph provides more details about

the implementation and real-time realization of the pre-

sented framework. Since several computationally ex-

pensive algorithms have to be solved, the overall control

system is split into three main processes. Fig. 13 shows

an overview. Process 1 includes global planning and has

an additional thread for the A*-based step planner and

the parameter optimization (A*-thread) to compute the

step sequence for the following (k + 1) to (k + nstep)

steps. After the A*-search and before a new step k be-

gins, the ideal motion is planned (Ideal) and the set of

valid regions AS is computed from the SSV map. The

map is continuously updated with data from the vision

system (Upd.SSV ). While the robot executes its cur-

rent step, the model-predictive trajectory adaptation

(Adapt) uses sensor data to modify the ideal motion

according to the strategy detailed in Section 5 and Sec-



tion 6. Local control runs in a second process (Local-

Con.), while a third process (not shown) performs low-

level communication with the EtherCAT bus as well as

sensor and target data exchange. Communication be-

tween the different processes is realized via the system’s

shared memory. Both the local control and EtherCAT

bus run with a cycle time of 1 kHz.

As is computed only once before a new physical

step. This is sufficient since obstacles that are within

the kinematic limit of one step do not lie inside the

camera’s field of view and and, therefore, are no no

longer updated. Reactive collision avoidance prevents

self-collisions of the robot or collisions of the robot with

obstacles that a footstep adaptation might cause due to

modified motion kinematics. This may otherwise occur

since only the final position is checked and the swing

foot height is adapted via a heuristic.

Table 1 Computational time summary for maximal 4 obsta-
cles. Runtimes are obtained from the real-time QNX com-
puter.

method avg. [µs] max. [µs]

Comp.AS 600 2000

Find closest point 4 250

Adapt 1000 2500

7 Results

The videos for the presented results can be found on the

project’s website as well as on our YouTube channel.4

7.1 Further Results

In this work, we presented the overall framework

for versatile and robust walking. The framework

was validated in multiple environments including

vision-based stepping up and down platforms (see

https://youtu.be/rKsx8HKvBkg), moving obstacles

(see https://youtu.be/-VvxzFg9ATU and https://

youtu.be/6PLN6B4vSHM), and different perturbations

(see https://youtu.be/46YIWkYWuoY). Furthermore,

it was presented in several public demonstrations (see,

for example, https://youtu.be/g6UACMHgt20). Due

to the limited space, we focused in this article on ex-

periments with explicit disturbances, such as external

4 Project’s website: https://www.amm.mw.tum.de/

en/research/current-projects/humanoid-robots/

walkinguneventerrain/. Videos presenting the results:
https://youtu.be/RjqAh3Blxng

pushes in the presence of obstacles. For the robot to suc-

ceed in these test cases, the methods presented in this

paper need to act simultaneously. This makes the test

cases on the one hand more complex for the methods

and on the other hand more complex for the authors

to set up experiments which show the influence of all

methods.

7.2 Simulation

Simulation results for the walking control framework

described above are presented below. The control sys-

tem is implemented for Lola’s multi-body simulation.

The simulation environment takes unilateral and com-

pliant contacts, motor dynamics, as well as the joint

control loops into consideration. The simulation exam-

ple is a simple synthetic one, since it is used to show the

algorithm for footstep adaptation with one additional

obstacle. The humanoid is commanded to walk in place

while it is subjected to a disturbance force in its walk-

ing direction (x-direction). One obstacle is placed close

to the robot to limit feasible footstep modifications.

Fig. 14 shows the disturbance force and the resulting in-

clination errors for the constrained optimization result

(Subsection 6.3.1). The robot is still able to stabilize it-

self with the limited foot positions (Fig. 15). A snapshot

of each walking step of the 3D collision model and the

2D polytopes is shown in Fig. 16. An explanation of the

2D plot is given in Fig. 17. The same simulation exper-

iment was conducted with the 3D prediction model, in-

cluding the inequality constraints during optimization

(Subsection 6.3.2). Results are not presented separately

since they closely resemble those shown above. Due to

its reduced computational time, we decided to test the

footstep optimization with the restriction of the opti-

mization result on the real robot.

7.3 Experiment

Two experiments will be presented to show the pro-

posed method’s effectiveness under real-world condi-

tions. The first experiment is a synthetic case resem-

bling the simulation case, whereas the second exhibits

a more general setup. In experiment 1, the obstacle is

put right in front of the robot. In contrast to experi-

ment 2, the obstacle is manually approximated without

input from the vision system according to the simula-

tion setup (see Fig. 21). We do not use the vision sys-

tem for two reasons: (1) According to the simulation

setup, the obstacle is not in the camera’s field of view.

(2) This experiment should examine only the procedure

for the method to consider obstacles during disturbance



t = 3.92 s

t = 6.32 s

t = 4.72 s t = 5.52 s

t = 7.12 s t = 7.92 s

Fig. 16 Synthetic simulation example: collision model and footstep adaptation with one obstacle at different time instants.
The robot is stepping in place and a forward disturbance force is given around t = 5 s. Distance units in m.

rejection, without having the uncertainties of a running

vision system. The sequence in Fig. 21 shows the robot

at different time instances after it is pushed from be-

hind. The corresponding modification trajectories for

the feet and inclination errors of the upper body are

depicted in Fig. 18 and Fig. 19. The limitation of the

footstep modification, ∆Lx, can be seen in Fig. 20. The

obstacle lying in front of it limits the right foot’s step

(second picture in Fig. 21). In the next step, the robot

performs a huge step modification to avoid divergence

of the inclination error.

Experiment 2 also includes the vision system. The

setup is presented in Fig. 23. The robot is commanded

to walk forward with 30 cm step lengths. While walk-

ing, the robot’s walking control registers the obstacles

detected online. The A*-based step planner & parame-

ter optimization module calculates in real-time an ideal

step sequence and parameter set that ensure collision-

free movements. The ideal motion is modified based on

the robot’s state. The robot is pushed several times dur-

ing the experiment and recovers from the disturbances.

The overall ideal step sequence and modified footholds

calculated are shown in Fig. 22.

8 Discussion

8.1 Summary

In this paper, we propose strategies for versatile and

robust walking and present their integration into an

overall hierarchical framework. Control of the robot is

divided into modules. Each module takes into account

and improves the result of the previous one. This way,

the whole system becomes robust. The motion planning

problem is furthermore divided into smaller parts that

can be solved efficiently in real-time. We moreover show

how methods for versatile and robust walking not only

can coexist, but can cooperate to achieve versatile and

robust walking. We develop a technique to efficiently

transform our environment model to a representation

by inequalities. These inequalities are included as con-

straints in the optimization of footstep modifications for

disturbance rejection. We present and discuss several

solutions to solve the resulting constrained optimiza-

tion problem in real-time. We analyze and validate our

approach in simulations and experiments.



−0.1

0

0.1

0.2

4 5 6 7 8 9

0

100

200

ϕ
[r

ad
]

F
[N

]

t [s]

4ϕm,x

4ϕm,y

Fext,x

Fig. 14 Synthetic simulation example: disturbance force and
resulting inclination errors.

0

0.1

0.2

4 5 6 7 8 9

4
x
f
i

[m
]

t [s]

−0.1

0

0.1

4 5 6 7 8 9

4
y f

i
[m

]

Ideal Right
Right leg

Left leg

Fig. 15 Synthetic simulation example: foot trajectory adap-
tations for stabilizing the robot. Ideal trajectory would be
without the obstacle.

kinematic limits

AS

obstacle

obstacle enlarged
by foot geometry

collision-free position (x∗
m)

modified position (xm)
stance foot

current swing foot position
(mid point)

xid

.

Fig. 17 Explanation of the 2D plots to visualize the overall
“find safe foothold” algorithm.

0

0.1

0.2

591 594 597 600

4
x
f
i

[m
]

t [s]
right leg left leg

Fig. 18 Experiment 1: modification trajectories of the legs
in x-direction.

−0.1

0

0.1

0.2

0.3

591 594 597 600

ϕ
[r

ad
]

t [s]
∆ϕx ∆ϕy

Fig. 19 Experiment 1: resulting inclination errors of the up-
per body (IMU data).

−0.1

0

0.1

0.2

0.3

596 597 598 599

∆
L
x

[m
]

t [s]

∆Lx

∆L∗
x

Fig. 20 Experiment 1: optimization result before (∆Lx) and
after (∆L∗

x) collision check.

8.2 Limitations and Outlook

Although the hierarchical approach comes with many

benefits, it also entails limitations. As there is no sin-

gle computational instance with all information about

the current setting, the method’s result may not be the

absolute optimum achievable. In our current implemen-

tation, the A*-based step planner and the parameter

optimization evaluate the robot’s next physical step.

That way, step modifications caused by disturbance re-

jection during the current physical step cannot be taken

into account during ideal motion generation. After the



Fig. 21 Experiment 1: snapshots at different time instances
- robot and polytopes.

0

1

2

3

4

W
al

ki
ng

D
ir

ec
ti

on

x
[m

]

Fig. 22 Experiment 2: Ideal step sequence is represented as
black boxes. Modified and executed steps are represented as
filled boxes. Relevant obstacles in orange.

1 2

3

5

4

6

Fig. 23 Experiment 2: snapshots at different time instants.



disturbance decays, the modifications fade out and re-

turn back to the ideal walking pattern. Nonetheless,

large and constant disturbances inevitably cause the

real robot to diverge from the ideal planned motion.

Even though the foothold positions remain collision-

free, complex kinematic motions in a complex environ-

ment can always lead to possible collisions that can no

longer be excluded before the step is executed. However,

Reactive Collision Avoidance showed good performance

for avoiding collisions reactively (compared to Hilde-

brandt et al (2014)) during step execution. This limita-

tion of our implementation is connected with the overall

question ”What is more important for humanoid loco-

motion: Avoiding collisions or remaining stable?”. In

our framework, we decided to limit footstep modifica-

tion for disturbance rejection by applying environmen-

tal constraints to avoid collisions. This decision is based

on the assumption that disturbance rejection can take

place during more than one step, whereas a collision

will lead to a system failure. The limitations presented

are a motivation to focus on two aspects in our future

work: (1) establishing an extended feedback from the

reactively working submodules to those planning the

robot’s ideal movement so that modified foothold posi-

tions can be taken into account during ideal planning

and (2) investigating extended error handling, such as

falling strategies. Whereas the first aspect (1) is mainly

a question of technical implementation, the second di-

rection of development involves hardware design modi-

fication and different control strategies. But the latter

will be necessary if the biped is exposed to disturbances

in real-world environments that are too severe to reject.

9 Appendix

The DAAD and the Deutsche Forschungsgemeinschaft

(DFG project BU 2736/1-1) support this project. Spe-

cial thanks go to our fantastic student Lisa Jeschek for

her help in developing and implementing these ideas.

References

A Liegeois (1977) Automatic Supervisory Control of

the Configuration and Behavior of Multibody Mech-

anisms. In: IEEE Transactions on Systems, 12, pp

868–871

Arbulu M, Kheddar A, Yoshida E (2010) An approach

of generic solution for humanoid stepping over mo-

tion. In: IEEE-RAS International Conference on Hu-

manoid Robots, IEEE, pp 474–479

Buschmann T (2010) Simulation and Control of Biped

Walking Robots. PhD thesis

Buschmann T, Lohmeier S, Ulbrich H (2010) Entwurf

und Regelung des Humanoiden Laufroboters Lola. at

- Automatisierungstechnik 58(11):613–621

Buschmann T, Favot V, Lohmeier S, Schwienbacher M,

Ulbrich H (2011) Experiments in fast biped walking.

In: IEEE International Conference on Mechatronics,

pp 863–868

Chestnutt J, Takaoka Y (2010) Safe adjustment regions

for legged locomotion paths. In: IEEE International

Conference on Humanoid Robotics, pp 224–229

Chestnutt J, Michel P, Nishiwaki K, Kuffner J, Kagami

S (2006) An intelligent joystick for biped control. In:

IEEE International Conference on Robotics and Au-

tomation, IEEE, pp 860–865

Chestnutt J, Takaoka Y, Suga K, Nishiwaki K, Kuffner

J, Kagami S (2009) Biped Navigation in Rough En-

vironments Using On-board Sensing. In: IEEE/RSJ

International Conference on Intelligent Robots and

Systems

Deits R, Tedrake R (2014) Footstep planning on uneven

terrain with mixed-integer convex optimization. In:

IEEE-RAS International Conference on Humanoid

Robots

Deits R, Tedrake R (2015) Computing Large Convex

Regions of Obstacle-Free Space Through Semidefi-

nite Programming. In: Akin HL, Amato NM, Isler V,

van der Stappen AF (eds) Algorithmic Foundations

of Robotics XI, Springer International Publishing, pp

109–124

Englsberger J, Ott C (2012) Integration of vertical

COM motion and angular momentum in an extended

Capture Point tracking controller for bipedal walk-

ing. In: IEEE-RAS International Conference on Hu-

manoid Robots, pp 183–189

Fallon MF, Marion P, Deits R, Whelan T, An-

tone M, Mcdonald J, Tedrake R (2015) Continuous

Humanoid Locomotion over Uneven Terrain using

Stereo Fusion. In: IEEE/RAS International Confer-

ence on Humanoid Robots

Fujimoto Y, Obata S, Kawamura A (1998) Robust

biped walking with active interaction control between

foot and ground. In: IEEE International Conference

on Robotics and Automation, vol 3, pp 2030–2035

Greene H (1983) The decomposition of polygons into

convex parts. Computational Geometry 1

Guan Y, Yokoi K, Tanie K (2006) Stepping Over Ob-

stacles with Humanoid Robots. IEEE Transactions

on Robotics 22(5):958–973

Gutmann JS, Fukuchi M, Fujita M (2008) 3D Per-

ception and Environment Map Generation for Hu-

manoid Robot Navigation. The International Journal

of Robotics Research 27(10):1117–1134



Hildebrandt AC, Wittmann R, Wahrmann D, Ewald A,

Buschmann T (2014) Real-time 3D collision avoid-

ance for biped robots. In: IEEE/RSJ International

Conference on Intelligent Robots and Systems, pp

4184–4190

Hildebrandt AC, Wahrmann D, Wittmann R, Rixen D,

Buschmann T (2015) Real-Time Pattern Generation

Among Obstacles for Biped Robots. In: IEEE/RSJ

International Conference on Intelligent Robots and

Systems, pp 2780–2786

Hildebrandt AC, Demmeler M, Wittmann R,

Wahrmann D, Sygulla F, Rixen D, Buschmann

T (2016) Real-Time Predictive Kinematic Eval-

uation and Optimization for Biped Robots. In:

IEEE/RSJ International Conference on Intelligent

Robots and Systems

Hirai K, Hirose M, Haikawa Y, Takenaka T (1998) The

development of Honda humanoid robot. In: IEEE In-

ternational Conference on Robotics and Automation,

vol 2, pp 1321–1326

Hodgins J, Raibert M (1991) Adjusting step length

for rough terrain locomotion. IEEE Transactions on

Robotics and Automation 7(3):289–298

Karkowski P, Bennewitz M (2016) Real-Time Footstep

Planning Using a Geometric Approach. In: IEEE In-

ternational Conference on Robotics and Automation

Kuindersma S, Permenter F, Tedrake R (2014) An effi-

ciently solvable quadratic program for stabilizing dy-

namic locomotion. In: IEEE International Conference

on Robotics and Automation, pp 2589–2594

Kuindersma S, Deits R, Andr MF, Dai H, Permenter

F, Pat K, Russ M (2015) Optimization-based Lo-

comotion Planning, Estimation and Control Design

for the Atlas Humanoid Robot. Autonomous Robots

40(3):1–27

Liu H, Liu W, Latecki LJ (2010) Convex shape decom-

position. Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recog-

nition pp 97–104

Loffler K, Gienger M, Pfeiffer F (2002) Model based

control of a biped robot. In: 7th International Work-

shop on Advanced Motion Control, pp 443–448

Lohmeier S (2009) System design and control of an-

thropomorphic walking robot LOLA. IEEE/ASME

Transactions on Mechatronics 14(6):658–666

Lohmeier S, Loffler K, Gienger M, Ulbrich H, Pfeiffer F

(2004) Computer system and control of biped ”John-

nie”. In: IEEE International Conference on Robotics

and Automation, IEEE, pp 4222–4227

Maier D, Lutz C, Bennewitz M (2013) Integrated

perception, mapping, and footstep planning for

humanoid navigation among 3D obstacles. In:

IEEE/RSJ International Conference on Intelligent

Robots and Systems, IEEE, pp 2658–2664

Michel P, Chestnutt J (2007) GPU-accelerated real-

time 3D tracking for humanoid locomotion and stair

climbing. In: IEEE/RSJ International Conference on

Intelligent Robots and Systems, IEEE, pp 463–469

Naveau M, Kudruss M, Stasse O, Kirches C, Mombaur

K, Souères P (2017) A ReactiveWalking Pattern Gen-

erator Based on Nonlinear Model Predictive Control.

IEEE Robotics and Automation Letters 2(1):10–17

Nishiwaki K, Kagami S (2009a) Frequent walking pat-

tern generation that uses estimated actual posture for

robust walking control. In: IEEE/RAS International

Conference on Humanoid Robots, pp 535–541

Nishiwaki K, Kagami S (2009b) Online Walking Con-

trol System for Humanoids with Short Cycle Pattern

Generation. The International Journal of Robotics

Research 28(6):729–742

Nocedal J, Wright SJ (2004) Numerical Optimization

pp 1–651

Okada K, Kagami S, Inaba M, Inoue H (2001) Plane

segment finder: algorithm, implementation and ap-

plications. In: IEEE International Conference on

Robotics and Automation

Perrin N, Stasse O, Baudouin L, Lamiraux F, Yoshida

E (2012) Fast Humanoid Robot Collision-Free Foot-

step Planning Using Swept Volume Approximations.

IEEE Transactions on Robotics 28(2):427–439

Pratt J, Carff J, Drakunov S, Goswami A (2006) Cap-

ture Point: A Step toward Humanoid Push Recov-

ery. In: IEEE/RAS International Conference on Hu-

manoid Robots, pp 200–207

Rebula J, Canas F, Pratt J, Goswami A (2007) Learn-

ing Capture Points for humanoid push recovery. In:

IEEE/RAS International Conference on Humanoid

Robots, pp 65–72

Sabe K, Fukuchi M, Gutmann JS, Ohashi T, Kawamoto

K, Yoshigahara T (2004) Obstacle avoidance and

path planning for humanoid robots using stereo vi-

sion. In: IEEE International Conference on Robotics

and Automation, IEEE, pp 592–597

Sarmiento A, Murrieta-Cid R, Hutchinson S (2005) A

sample-based convex cover for rapidly finding an ob-

ject in a 3-D environment. In: IEEE International

Conference on Robotics and Automation, vol 2005,

pp 3486–3491

Schwienbacher M (2012) Vertical Angular Momentum

Minimization for Biped Robots with Kinematically

Redundant Joints. International Congress of Theo-

retical and Applied Mechanics pp 8–9

Schwienbacher M, Buschmann T, Lohmeier S, Favot

V, Ulbrich H (2011) Self-collision avoidance and

angular momentum compensation for a biped hu-

manoid robot. In: IEEE International Conference on



Robotics and Automation, pp 581–586

Sherikov A, Dimitrov D, Wieber Pb (2014) Whole

body motion controller with long-term balance con-

straints. In: IEEE/RAS International Conference on

Humanoid Robots, pp 444–450

Stasse O, Verrelst B, Vanderborght B, Yokoi K (2009)

Strategies for Humanoid Robots to Dynamically

Walk Over Large Obstacles. IEEE Transactions on

Robotics 25(4):960–967

Stumpf A, Kohlbrecher S, Conner DC, von Stryk O

(2014) Supervised footstep planning for humanoid

robots in rough terrain tasks using a black box walk-

ing controller. In: IEEE/RAS International Confer-

ence on Humanoid Robots, pp 287–294

Tajima R, Honda D, Suga K (2009) Fast running ex-

periments involving a humanoid robot. In: IEEE In-

ternational Conference on Robotics and Automation,

pp 1571–1576

Takenaka T, Matsumoto T, Yoshiike T, Hasegawa T,

Shirokura S, Kaneko H, Orita A (2009) Real time

motion generation and control for biped robot -4th

report: Integrated balance control. In: IEEE/RSJ

International Conference on Intelligent Robots and

Systems, pp 1601–1608

Urata J, Nishiwaki K, Nakanishi Y, Okada K, Kagami

S, Inaba M (2011) Online decision of foot placement

using singular LQ preview regulation. In: IEEE-RAS

International Conference on Humanoid Robots, pp

13–18

Wahrmann D, Hildebrandt AC, Wittmann R, Sygulla

F, Rixen D, Buschmann T (2016) Fast Object Ap-

proximation for Real-Time 3D Obstacle Avoidance

with Biped Robots. IEEE International Conference

on Advanced Intelligent Mechatronics

Wahrmann D, Hildebrandt AC, Wittmann R, Sygulla

F, Seiwald P, Rixen D, Buschmann T (2017) Vision-

Based 3D Modeling of Unknown Dynamic Envi-

ronments for Real-Time Humanoid Navigation (in

submission). International Journal of Humanoid

Robotics

Whitney D (1969) Resolved Motion Rate Control of

Manipulators and Human Prostheses. IEEE Trans-

actions on Man Machine Systems 10(2):47–53

Wieber PB (2006) Trajectory Free Linear Model Pre-

dictive Control for Stable Walking in the Presence

of Strong Perturbations. In: IEEE-RAS International

Conference on Humanoid Robots, pp 137–142

Wittmann R, Hildebrandt AC, Ewald A, Buschmann T

(2014) An Estimation Model for Footstep Modifica-

tions of Biped Robots. In: IEEE/RSJ International

Conference on Intelligent Robots and Systems, pp

2572–2578

Wittmann R, Hildebrandt AC, Wahrmann D,

Buschmann T, Rixen D (2015a) State Estimation

for Biped Robots Using Multibody Dynamics. In:

IEEE/RSJ International Conference on Intelligent

Robots and Systems, pp 2166–2172

Wittmann R, Hildebrandt AC, Wahrmann D, Rixen D,

Buschmann T (2015b) Real-Time Nonlinear Model

Predictive Footstep Optimization for Biped Robots.

In: IEEE-RAS International Conference on Hu-

manoid Robots, pp 711–717

Wittmann R, Hildebrandt AC, Wahrmann D, Sygulla

F, Rixen D, Buschmann T (2016) Model-Based Pre-

dictive Bipedal Walking Stabilization. In: IEEE-RAS

International Conference on Humanoid Robots

Yisheng Guan, Yokoi K, Tanie K (2005) Feasibility:

Can Humanoid Robots Overcome Given Obstacles?

In: IEEE International Conference on Robotics and

Automation, IEEE, vol 1, pp 1054–1059


