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Abstract

The original dual Craig-Bampton method for reducing and successively coupling undamped substructured
systems is extended to the case of arbitrary viscous damping.

The reduction is based on the equations of motion in state-space representation and uses complex free
interface normal modes, residual flexibility modes, and state-space rigid body modes. To couple the sub-
structures in state-space representation, a dual coupling procedure based on the interface forces between
adjacent substructures is used, which is novel compared to other methods commonly applying primal cou-
pling procedures in state-space representation.

The very good approximation accuracy for arbitrary viscous damping of the dual Craig-Bampton ap-
proach is demonstrated on a beam structure with localized dampers. The results are compared to a classical
Craig-Bampton approach for damped systems showing the potential of the proposed method.

Keywords: Model order reduction, Component mode synthesis, Dynamic substructuring, Dual
Craig-Bampton method, Nonclassically damped systems, State-space formulation, Complex modes

1. Introduction

The increasing performance of modern computers makes it possible to solve very large linear systems of
millions of degrees of freedom (DOFs) very fast. Since the refinement of finite element models is increasing
faster than the computing capabilities, dynamic substructuring techniques or component mode synthesis
methods still remain an essential tool for analyzing dynamical systems in an efficient manner. Compo-
nentwise analysis and building reduced models of submodels of structures has important advantages over
global methods where the entire structure is handled at once. The dynamic behavior of structures that are
too large to be analyzed as a whole can be evaluated. For finite element models, dynamic substructuring
provides fast solutions when the number of DOFs is so large that solutions can not be found in a reasonable
time for the global structure. Furthermore, building reduced models of submodels of a structure enables
sharing models between design groups and also combining models from different project groups. Thereby,
each group does not have to disclose the detailed model that was used for the design. Only a reduced model
of the component, which was engineered by one group, has to be shared with the other design groups or
companies. Significantly less memory storage has to be used if reduced models including only necessary
information are saved and shared. Moreover, the reduction of the DOFs of substructures is also important
for building reduced-order models for optimization and control. Controllers can typically be designed only
for models up to a small number of DOFs. Most optimization procedures perform many iterations for certain
parameters of a model, which is much faster and more efficient if reduced models can be used. If a single
component of a system is changed or optimized, only that component needs to be reanalyzed/reoptimized
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and the entire assembled system can be analyzed at low additional cost. Thus, dynamic substructuring
offers a very flexible approach to dynamic analysis [1, 2, 3, 4, 5, 6, 7, 8].

Dynamic substructuring techniques reduce the size of large models. The large model is thereby divided
into N substructures; each substructure is analyzed and reduced separately and then assembled into a
low-order reduced model. This low-order reduced model approximates the original large model’s behavior.
During this process, each substructure’s DOFs are commonly divided into internal DOFs (those not shared
with any adjacent substructure) and boundary or interface DOFs (those shared with adjacent substructures
and therefore forming the model’s interface DOFs). Many substructuring methods that work with second-
order equations of motion have been proposed in the past [1, 2, 3, 5, 9, 10, 11]. Only the substructures’
mass and stiffness properties are commonly taken into account for the reduction. In doing so, the undamped
equations of motion are assumed to correctly describe the substructure dynamics and it is assumed that
there is no damping or that damping effects are completely negligible when building the reduction basis.
Most substructuring methods work with the undamped equations of motion and afford great approximation
accuracy if the underlying system is damped only slightly or not at all.

Dynamic substructuring techniques can be classified depending on the underlying modes that are used [4].
The term mode can refer to all kinds of structural shape vectors. The most popular approach is a fixed inter-
face method, the Craig-Bampton method [1], which is based on fixed interface normal modes and interface
constraint modes. The substructures are assembled using interface displacements, which is referred to as
primal assembly. Many other methods, such as those of MacNeal [2], Rubin [3], and Craig-Chang [9], employ
free interface modes, (residual) attachment modes, and rigid body modes and assemble the substructures in
primal fashion as well. In contrast, the dual Craig-Bampton method [5] also employs free interface normal
modes, (residual) attachment modes, and rigid body modes to build the substructures’ reduction bases, but
uses interface forces to assemble the substructures, which is referred to as dual assembly.

None of the aforementioned methods considers any damping effects when performing the reduction or,
for simplification, proportional damping is assumed, which is the usual approach to damping [12]. If the
damping proporties are non-proportional (also called nonclassical) and damping significantly influences the
dynamic behavior of the system under consideration, then the approximation accuracy of these methods can
be very poor since the damping characteristics are represented inaccurately [13]. Hasselman [13] insisted
that the assumption of a proportional damping model is inadequate to treat real systems [12]. There are
many important instances in which these damping assumptions are not valid [14]. For example, structures
with active control systems, with concentrated dampers or with rotational parts fall in this category [15].
Damping prediction, based on modal synthesis techniques utilizing only proportional damping information,
is inappropriate [16]. This was demonstrated by Beliveau and Soucy [16] for the classical Craig-Bampton
approach. Therefore, there is generally no justification to neglect damping properties for the computation
of the reduction basis [13]. The fact that decoupling the damped equations of motion is not possible us-
ing classical modal analysis [17] will be highlighted in Section 2. One procedure to handle and decouple
nonclassically damped systems is to transform the second-order differential equations into twice the num-
ber of first-order differential equations, resulting in state-space representation of the system, which was
published by Frazer, Duncan and Collar [18] and made far clearer by Hurty and Rubinstein [19]. Solv-
ing the corresponding eigenvalue problem allows the damped equations of motion to be decoupled, but
complex eigenmodes and eigenvalues will occur. Hasselman and Kaplan [20] presented a coupling proce-
dure for damped systems, which is an extension of the Craig-Bampton method [1], which employs complex
component modes. Beliveau and Soucy [16] proposed another version, which modifies the Craig-Bampton
method to include damping by replacing the real fixed interface normal modes of the second-order system
by the corresponding complex modes of the first-order system. Craig and Chung [14, 15] and Howsman and
Craig [21] study various first-order formulations leading to complex component modes. Craig and Ni pro-
posed a procedure for the application of complex free interface normal modes [22]. Brechlin and Gaul gave
methodological improvements for the numerical implementation of dynamic substructuring methods [23].
A report of de Kraker [24] gives another description of the Craig-Bampton method for damped systems
using complex normal modes. De Kraker and van Campen also generalized the Rubin method for general
state-space models [25].

The dual Craig-Bampton method [5] is fundamentally different from the other methods in that it assem-
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bles the substructures using interface forces (dual assembly) and enforces only weak interface compatibility.
The reduced matrices associated to the dual Craig-Bampton method have a similar sparsity compared to the
Craig-Bampton reduced matrices, but are less cumbersome (dense) than the reduced matrices obtained by
other methods based on free interface modes [5]. Approximating eigenfrequencies, the dual Craig-Bampton
method is outperforming the classical Craig-Bampton method using the same number of normal modes
per substructure with comparable computational effort and having similar sparsity pattern for the reduced
matrices [8]. The promising dual Craig-Bampton, which produces very good results for the approximation
of undamped systems [5, 6, 8, 26, 27], has not yet been applied to damped systems. Therefore, we want to
extend the dual Craig-Bampton method and demonstrate its potential for the case of nonclassically damped
systems.

In this contribution, the original dual Craig-Bampton method for reducing and coupling undamped
systems will be modified for general viscous damping. The final reduction is now based on the use of complex
free interface normal modes, residual flexibility modes, and state-space rigid body modes. A dual coupling
procedure based on the interface forces between adjacent substructures is used to couple substructures in
state-space representation. This is novel compared to other methods, which commonly apply primal coupling
procedures in state-space representation.

The traditional theory of decoupling by classical modal analysis is concisely surveyed in Section 2.
The inadequacy of classical modal analysis for decoupling damped systems is also demonstrated. The
terminology and notation used throughout this paper is set up. Section 3 recalls state-space representation
and the corresponding decoupling procedure for damped systems. The original formulation of the dual Craig-
Bampton method for undamped systems is shortly summarized in Section 4. In Section 5, the dual Craig-
Bampton method for the undamped case is modified for the case of general viscous damping. A formulation
in terms of first-order differential equations, i.e., state-space formulation, is presented for viscous damped
systems. Floating substructures exhibiting rigid body modes will need special attention. The properties of
the proposed method are subsequently illustrated in detail in Section 6 using a beam system with localized
dampers as an illustrative application example. A comparison to the Craig-Bampton formulation for damped
systems presented in [24] is made to demonstrate improvements of the proposed method. Finally, a brief
summary of findings and conclusions is given in Section 7.

Appendix A summarizes the theory underlying the analysis of defective systems and of the Jordan
normal. Since this theory is not common in the field of structural dynamics, we discuss it specifically with
the objective to set the mathematical framework necessary for the analysis of state-space rigid body modes
in damped systems in Appendix B.

2. Decoupling and inadequacy by classical modal analysis

Consider the equations of motion of a viscously damped linear system with m degrees of freedom (DOFs)

Mü+Cu̇+Ku = f (1)

with mass matrix M , damping matrix C, stiffness matrix K, displacement vector u, and external force
vector f . Associated with the undamped system of Eq. (1), i.e., C = 0, is the eigenvalue problem

(
−ω2

jM +K
)
θj = 0 (2)

with eigenvalue ω2
j and corresponding eigenvector θj for j = 1, . . . ,m. The eigenvectors θj of Eq. (2) are

called normal modes or natural modes and form the columns of the modal matrix Θ:

Θ =
[
θ1 θ2 . . . θm

]
(3)

If the modal matrix Θ is normalized with respect to the mass matrix M , then the normal modes’ orthogo-
nality conditions give

ΘTMΘ = I, ΘTKΘ = Ω2 = diag
(
ω2
1 , ω

2
2 , . . . , ω

2
m

)
. (4)
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Using the modal transformation
u = Θp (5)

with the vector of modal coordinates p, Eq. (1) takes the canonical form of the damped system [17]

p̈+Cmodal ṗ+ Ω2p = ΘTf with Cmodal = ΘTCΘ. (6)

Mass matrix M and stiffness matrix K have been diagonalized by the modal transformation (5) and the
diagonal eigenvalue matrix Ω2 is given in Eq. (4). Matrix Cmodal is referred to as generalized damping
matrix or modal damping matrix [6]. Any modal coupling in a linear system occurs exclusively through
damping [28]. A damped system is called classically damped if it can be decoupled by the modal matrix Θ [6],
i.e., Cmodal is also diagonalized by the modal transformation (5). A necessary and sufficient condition that
the damped system can be decoupled and hence that the damping matrix C can be diagonalized by the
modal matrix Θ is [29]:

CM−1K = KM−1C (7)

Condition (7) is usually not satisfied. Only under special conditions are the equations of motion completely
diagonalized by the classical modal transformation [17], and these conditions appear to have little physical
justification [13]. For instance, the often used but simplifying assumptions of mass proportional damping,
stiffness proportional damping, Rayleigh damping [30], or modal damping fulfill condition (7) and diagonalize
the generalized damping matrix Cmodal. Nevertheless, decoupling of Eq. (1) is not generally possible using
classical modal analysis.

3. State-space representation and decoupling of damped systems

A procedure to handle and decouple systems that are not classically damped, i.e., systems with general
viscous damping, is to transform the m second-order equations of motion (1) into 2m first-order equations [6,
18, 19, 31]. The state-space vector of dimension n = 2m is

z(t) =

[
u(t)
v(t)

]
(8)

with v(t) = u̇(t). Adding the m redundant equations Mv(t) = Mu̇(t) to the equations of motion (1), the
generalized state-space symmetric form

Aż + Bz = F (9)

is obtained with

A =

[
C M
M 0

]
, B =

[
K 0
0 −M

]
, F =

[
f
0

]
. (10)

Associated with Eq. (9), which includes the damping matrix C, is the eigenvalue problem

(σjA + B)θss,j = 0 (11)

with eigenvalue σj and corresponding state-space eigenvector θss,j for j = 1, . . . , n. Since matrices A and
B are real, the n eigenvalues σj must either be real or they must occur in complex conjugate pairs [19]. For
underdamped systems, the eigenvalues σj and corresponding eigenmodes θss,j occur in complex conjugate
pairs [12] and are called underdamped eigenvalues and underdamped eigenmodes, respectively1. Since
real eigenvalues indicate very high damping leading to overdamped modes, most structures have m complex
conjugate pairs of eigenvalues and corresponding eigenvectors [6]. The eigenvectors θss,j are therefore referred
to as complex normal modes.

1Overdamped and underdamped mode refer, respectively, to a mode with damping above and below the critical damping [19].
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Similar to the undamped case in Eq. (3), the state-space eigenvectors θss,j form the complex state-space
modal matrix

Θss =
[
θss,1 θss,2 . . . θss,n

]
. (12)

An extensive investigation of properties and relations between complex normal modes of Eq. (12) and real
normal modes of Eq. (3) is given in [32]. If the complex modal matrix Θss is normalized with respect to the
state-space matrix A, the orthogonality conditions of the complex normal modes give

ΘT
ssAΘss = I, ΘT

ssBΘss = −Σ = −diag (σ1, σ2, . . . , σn) . (13)

Complex modal matrix Θss decouples the damped system if it is written in state-space format as in Eq. (9).
For the orthogonality conditions in Eq. (13), it is assumed that the system Eq. (9) is non-defective. The
special case of defective systems is illustrated in detail in Appendix A and has to be considered in Section 5
to include state-space rigid body motion.

4. Dual Craig-Bampton method

In this section, we briefly summarize the dual Craig-Bampton method for undamped structures [5], which
will subsequently be extended in Section 5 for the damped case. Consider a domain that is divided into
N non-overlapping substructures such that every node belongs to exactly one substructure except for the
nodes on the interface boundaries. The undamped equations of motion of one substructure s are

M (s)ü(s) +K(s)u(s) = f (s) + g(s), s = 1, . . . , N. (14)

Eq. (14) has m(s) DOFs and the superscript (s) is the label of the particular substructure s. g(s) is the
vector of internal forces connecting adjacent substructures at their boundary DOFs.

4.1. Dual assembly

One way to enforce interface compatibility between the different substructures is to consider the interface
connecting forces g(s) as unknowns. These forces must be determined to satisfy the interface compatibility
condition (displacement equality) and the local equations of motion of the substructures:

N∑

s=1

B(s)u(s) = 0 (15)

M (s)ü(s) +K(s)u(s) +B(s)Tλ = f (s), s = 1, . . . , N (16)

B(s) is a signed Boolean matrix expressing the interface compatibility for the substructure DOFs u(s). Vec-

tor B(s)Tλ represents the interconnecting forces between substructures, which corresponds to the negative
interface reaction force vector g(s) in Eq. (14). This means

g(s) = −B(s)Tλ, (17)

where λ is the vector of all Lagrange multipliers acting on the interfaces, which are the additional unknowns.
Using the block-diagonal matrices

Mbd =



M (1) 0

. . .

0 M (N)


 , Kbd =



K(1) 0

. . .

0 K(N)


 , (18)

the corresponding partitioned, concatenated vectors

ubd =



u(1)

...
u(N)


 , fbd =



f (1)

...

f (N)


 (19)
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and Boolean matrix

B =
[
B(1) · · · B(N)

]
, (20)

substructure Eqs. (15) and (16) can be assembled as

[
Mbd 0

0 0

] [
übd

λ̈

]
+

[
Kbd BT

B 0

] [
ubd

λ

]
=

[
fbd

0

]
. (21)

B is referred to as the constraint matrix [6] and Eq. (21) is referred to as dual assembled system. In this
hybrid formulation, the Lagrange multipliers λ enforce the interface compatibility constraints and can be
identified as interface forces [5]. Constraint matrix B is a signed Boolean matrix if the interface degrees
of freedom are matching, i.e., for matching (conforming) mesh-conditions on the interfaces between the
substructures [33]. If adjacent substructures do not have matching mesh-conditions on the interfaces (e.g.,
if substructures do not originate from a partitioning of a global mesh and are meshed independently), the
interface compatibility is usually enforced through nodal collocation or by using weak interface compatibility
formulations [33, 34, 35]. Then, the compatibility condition can still be written as Bubd = 0 but B is no
longer Boolean [6, 33, 36].

4.2. Reduction of dual assembled system

Considering the equations of motion (16) of substructure s without external forces f (s), every substruc-
ture can be seen as being excited by the interface connection forces λ. This indicates that the local dynamic
behavior can be described by superposing local static and local dynamic modes. The displacements u(s) of

each substructure are expressed in terms of local static solutions u
(s)
stat and in terms of eigenmodes associated

with the substructure matrices K(s) and M (s):

u(s) = u
(s)
stat +

m(s)−m(s)
r∑

j=1

θ
(s)
j p

(s)
j with u

(s)
stat = −K(s)+B(s)Tλ+

m(s)
r∑

j=1

r
(s)
j α

(s)
j . (22)

m(s) is the dimension of the local substructure problem. Matrix K(s)+ is equal to the inverse of K(s) if there
are enough boundary conditions to prevent the substructure from floating when its interface with adjacent

substructures is free [5]. If a substructure is floating, then the generalized inverse K(s)+ has to be used and

R(s) =
[
r
(s)
1 r

(s)
2 . . . r

(s)
mr

]
(23)

is the matrix containing the m
(s)
r rigid body modes r

(s)
j as columns, which are assumed to be orthonormalized

with respect to the mass matrixM (s). Vector α(s) contains the amplitudes α
(s)
j of the rigid body modes r

(s)
j .

The flexibility matrix G(s) in inertia-relief format is computed from any generalized inverse K(s)+ by
projecting out the rigid body modes R(s) using the inertia-relief projection matrix P (s) which is defined
as [6, 37]

P (s) = I(s) −M (s)R(s)R(s)T (24)

and therefore
G(s) = P (s)TK(s)+P (s). (25)

The amplitudes p
(s)
j of the local eigenmodes θ

(s)
j in Eq. (22) are grouped in the vector p(s). The local

eigenmodes θ
(s)
j satisfy the generalized eigenproblem

(
−ω(s)2

j M (s) +K(s)
)
θ
(s)
j = 0. (26)
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The eigenmodes θ
(s)
j are also called free interface normal modes and are orthonormalized with respect to

the mass matrix M (s). An approximation of the general solution (22) is obtained by retaining only the

first m
(s)
θ free interface normal modes θ

(s)
j corresponding to the m

(s)
θ lowest eigenvalues ω

(s)2

j . Calling Θ̃
(s)

the matrix containing these eigenmodes, the approximation of the displacements u(s) of the substructure is
written as

u(s) ≈ −G(s)B(s)Tλ+R(s)α(s) + Θ̃
(s)
p(s). (27)

Matrix Θ̃
(s)

of kept eigenmodes satisfies

Θ̃
(s)T

M (s)Θ̃
(s)

= I and Θ̃
(s)T

K(s)Θ̃
(s)

= Ω(s)2 = diag
(
ω
(s)2

1 , ω
(s)2

2 , . . . , ω(s)2

mθ

)
(28)

with Ω(s) being a diagonal matrix containing them
(s)
θ eigenvalues ω

(s)
j corresponding to the kept free interface

normal modes θ
(s)
j . Since a part of the subspace spanned by Θ̃

(s)
is already included in G(s), residual

flexibility matrix G(s)
res can be used instead of flexibility matrix G(s). The residual flexibility matrix G(s)

res is
defined by

G(s)
res =

m(s)−m(s)
r∑

j=m
(s)
θ +1

θ
(s)
j θ

(s)T

j

ω
(s)2

j

= G(s) −
m

(s)
θ∑

j=1

θ
(s)
j θ

(s)T

j

ω
(s)2

j

. (29)

Note that by construction G(s)
res = G(s)T

res , which is computed using the second equality in Eq. (29). For

further properties of G(s)
res see [5, 26]. As a result, the approximation of one substructure is

u(s) ≈ −G(s)
resB

(s)Tλ+R(s)α(s) + Θ̃
(s)
p(s) =

[
R(s) Θ̃

(s) −G(s)
resB

(s)T
]


α(s)

p(s)

λ


 . (30)

Assembling all N substructures in a dual fashion according to Eq. (21) by keeping the interface forces λ as
unknowns, the DOFs of the entire structure can consequently be approximated by

[
ubd

λ

]
≈




R(1) Θ̃
(1)

0 0 −G(1)
resB

(1)T

. . .
. . .

...

0 0 R(N) Θ̃
(N) −G(N)

res B
(N)T

0 0 0 0 I




︸ ︷︷ ︸
TDCB




α(1)

p(1)

...
α(N)

p(N)

λ



. (31)

Matrix TDCB is the dual Craig-Bampton reduction matrix. The approximation of the dual assembled
system’s dynamic equations (21) is

MDCB




α̈(1)

p̈(1)

...

α̈(N)

p̈(N)

λ̈




+KDCB




α(1)

p(1)

...
α(N)

p(N)

λ




= fDCB (32)

with

MDCB = TT
DCB

[
Mbd 0

0 0

]
TDCB, KDCB = TT

DCB

[
Kbd BT

B 0

]
TDCB, fDCB = TT

DCB

[
fbd

0

]
. (33)
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The dual Craig-Bampton reduced system has the final size of mDCB =
∑N
s=1m

(s)
r +

∑N
s=1m

(s)
θ +mλ DOFs

with m
(s)
r rigid body modes of substructure s, with m

(s)
θ kept free interface normal modes of substructure s,

and with the total number mλ of all Lagrange multipliers [5, 8].
The dual Craig-Bampton method [5] for undamped systems is fundamentally different from the other

methods in that it assembles the substructures using interface forces and enforces only weak interface
compatibility. Approximating eigenfrequencies, the dual Craig-Bampton method is outperforming most of
the other methods using the same number of normal modes per substructure with comparable computational
effort and having similar sparsity pattern for the reduced matrices [5, 8, 26, 27]. Non-physical spurious
negative eigenvalues and corresponding eigenvectors of the reduced dual assembled problem are intrinsic
in the reduction process using the dual Craig-Bampton method caused by the weak compatibility on the
interfaces between the substructures [5, 26, 42]. The weakening of the compatibility was shown to avoid
interface locking problems, but has the consequence to introduce contributions of the Lagrange multipliers to
the reduced mass matrix. This does not influence the very good approximation accuracy of the eigenvalues
and eigenvectors [5, 6, 27], but it can cause problems in some applications (e.g., time integration). For
the original formulation of the dual Craig-Bampton method [5], a time integration strategy is investigated
in [43].

5. Dual Craig-Bampton method for general state-space models

Consider again a domain, which is divided into N non-overlapping substructures, as in Section 4. The
equations of motion of one viscously damped linear substructure s with m(s) DOFs are

M (s)ü(s) +C(s)u̇(s) +K(s)u(s) = f (s) + g(s), s = 1, . . . , N, (34)

which will be considered in the following instead of the undamped equations of motion (14). C(s) is the
substructure’s damping matrix. The substructure state-space vector z(s) of dimension n(s) = 2m(s) is

z(s) =

[
u(s)

v(s)

]
(35)

with v(s) = u̇(s). The corresponding generalized equations of motion in state-space form are

A(s)ż(s) + B(s)z(s) = F (s) (36)

with

A(s) =

[
C(s) M (s)

M (s) 0

]
, B(s) =

[
K(s) 0

0 −M (s)

]
, F (s) =

[
f (s) + g(s)

0

]
. (37)

As outlined in Section 4, the dual Craig-Bampton method is based on free interface normal modes, rigid
body modes, and residual flexibility modes. Each substructure’s local behavior is approximated by super-
posing static and dynamic parts. Now we want to approximate the state-space vector z(s) of substructure s

by a superposition of a static response z
(s)
stat and a dynamic part z

(s)
dyn similar to Eq. (22):

z(s) = z
(s)
stat + z

(s)
dyn (38)

Static response z
(s)
stat is associated with the interface excitation and dynamic part z

(s)
dyn is associated with

the substructure matrices’ eigenmodes.
If a substructure is floating, the stiffness matrix K(s) is singular and the second-order system with

corresponding equations of motion (14) has m
(s)
r physical rigid body DOFs. The corresponding physical

rigid body modes R(s) fulfill the condition

K(s)R(s) = 0. (39)
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The eigenvalue problem of the state-space equations of motion (36) is

(
σ
(s)
j A(s) + B(s)

)
θ
(s)
ss,j = 0. (40)

It can be shown that the existence of m
(s)
r physical rigid body modes according to Eq. (39) leads to n

(s)
r

eigenvalues σ
(s)
j of the eigenvalue problem in Eq. (40) equal to zero [38] and m

(s)
r ≤ n

(s)
r ≤ 2m

(s)
r holds for

the n
(s)
r zero eigenvalues of the state-space eigenproblem [25]. For details see Appendix A and Appendix B.

Using the physical rigid body modes r
(s)
j , it is shown in Appendix B that two situations can exist for each

physical rigid body mode r
(s)
j [25, 39]:

• Situation 1: C(s)r
(s)
j = 0

In this case an eigenvalue σ
(s)
j = 0 with multiplicity two leads to one regular eigenvector r

(s)
ss,j,reg and

one generalized eigenvector r
(s)
ss,j,gen. This regular eigenvector r

(s)
ss,j,reg and the generalized eigenvec-

tor r
(s)
ss,j,gen both correspond to the physical rigid body mode r

(s)
j . This is the case for undamped

systems, but it can also be valid for damped systems [25] if the condition C(s)r
(s)
j = 0 is fulfilled. In

the situation considered here, matrix Σ(s) will not be diagonal but has a Jordan normal form having
Jordan blocks on the diagonal [23, 38]. The system is called defective. For details see Appendix A.

• Situation 2: C(s)r
(s)
j 6= 0

The system is non-defective for the physical rigid body mode r
(s)
j and there is only one regular

eigenvector r
(s)
ss,j,reg and no generalized eigenvector r

(s)
ss,j,gen corresponding to σ

(s)
j = 0. This eigenvalue

σ
(s)
j = 0 is a single non-repeated root. Only one regular eigenvector r

(s)
ss,j,reg corresponds to the physical

rigid body mode r
(s)
j . In this situation, the corresponding part of matrix Σ(s) will be a scalar term

that is the single eigenvalue σ
(s)
j = 0. Σ(s) will thus be diagonal.

5.1. Dynamic part of the solution

The solution of the eigenproblem (40) gives n(s) = 2m(s) eigenvalues σ
(s)
j , j = 1, . . . , n(s) including zero

eigenvalues and n(s) corresponding eigenvectors θ
(s)
ss,j . By analogy with the substructure state-space vector

in Eq. (35), state-space eigenvectors θ
(s)
ss,j have the form

θ
(s)
ss,j =

[
θ
(s)
ss,j,u

θ
(s)
ss,j,v

]
=

[
θ
(s)
ss,j,u

σ
(s)
j θ

(s)
ss,j,u

]
. (41)

Some of these eigenvectors can be used to span a subspace to approximate the substructure’s state-space
vector z(s). If the substructure has rigid body DOFs and generalized state-space rigid body modes R(s)

ss,gen

occur, the Jordan form has to be used since the eigenmodes of Eq. (40) corresponding to eigenvalues

σ
(s)
j = 0 will not diagonalize the system. If only regular state-space rigid body modes R(s)

ss,reg show up,

the substructure matrices A(s) and B(s) can be transformed to diagonal form. The n(s) − n(s)r state-space

eigenmodes θ
(s)
ss,j corresponding to eigenvalues σ

(s)
j 6= 0 are written as columns of the matrix Θ(s)

ss . The

modes contained in Θ(s)
ss are orthonormalized with respect to matrix A(s), so that they satisfy the following

orthogonality equations for complex modes:

Θ(s)T

ss A(s)Θ(s)
ss = I, Θ(s)T

ss B(s)Θ(s)
ss = −Σ(s) = −diag

(
σ
(s)
1 , σ

(s)
2 , . . . , σ

(s)
n−nr

)
(42)

The first n
(s)
θ normal modes θ

(s)
ss,j corresponding to the n

(s)
θ lowest nonzero eigenvalues σ

(s)
j are retained as

part of the reduction basis of the substructure to approximate the dynamic part z
(s)
dyn of the state-space

9



vector z(s) in Eq. (38). Matrix Θ̃
(s)

ss contains those first n
(s)
θ normal modes θ

(s)
ss,j as columns. Thus the

approximation of the dynamic part z
(s)
dyn is

z
(s)
dyn ≈

n
(s)
θ∑

j=1

θ
(s)
ss,jp

(s)
j =

[
θ
(s)
ss,1 θ

(s)
ss,2 . . . θ(s)ss,nθ

]
p(s) = Θ̃

(s)

ss p
(s). (43)

5.2. Static part of the solution

The substructure’s static solution z
(s)
stat is obtained in a way similar to that of the undamped case: rigid

body modes and residual attachment modes are superposed. To this end, the static substructure equation

B(s)z
(s)
stat = F (s) =

[
g(s)

0

]
(44)

is considered, which follows from Eq. (36) by setting ż(s) = 0 for the time derivative of state-space vector z(s)

and assuming only forces g(s) due to adjacent substructures. If the substructure has no rigid body DOFs,
then the inverse of B(s) exists and the static solution is

z
(s)
stat = B(s)−1

F (s) =

[
K(s)−1

0

0 −M (s)−1

][
g(s)

0

]
= −

[
K(s)−1

0

0 −M (s)−1

][
B(s)Tλ

0

]
. (45)

In Eq. (45), the vector of interface forces g(s) is replaced by the relation g(s) = −B(s)Tλ of Eq. (17).
The interface connection forces λ have to be determined to satisfy the interface compatibility condition
between the substructures. Like the interface compatibility condition in Eq. (15), this condition is written
in state-space format as

N∑

s=1

B(s)
ss z

(s) =

N∑

s=1

([
B(s)

ss,u B(s)
ss,v

] [
u(s)

v(s)

])
= 0 (46)

with the state-space substructure constraint matrix B(s)
ss of each substructure s. In Eq. (46), matrix B(s)

ss

is split into two parts: one part B(s)
ss,u corresponding to the displacements u(s) and into a second part B(s)

ss,v

corresponding to the velocities v(s) of state-space vector z(s). Comparing the constraint equations (16)
and (46), it is concluded that

B(s)
ss,u = B(s) and B(s)

ss,v = 0. (47)

The static solution z
(s)
stat of Eq. (45) is therefore written as

z
(s)
stat = −B(s)−1

B(s)T

ss λ (48)

if B(s) is invertible. If a substructure has n
(s)
r rigid body modes r

(s)
ss,j , j = 1, . . . , n

(s)
r , those rigid body modes

have to be added to the static solution of Eq. (48). Matrix R(s)
ss contains all of the substructure’s regular

state-space rigid body modes Rss,reg and generalized state-space rigid body modes Rss,gen. In this case,

matrix B(s) is singular and the generalized inverse B(s)+ has to be used instead of B(s)−1

. The state-space

elastic flexibility matrix G(s)
ss in inertia-relief format is computed from any generalized inverse B(s)+ by

projecting out the rigid body modes R(s)
ss using the inertia-relief projection matrix P (s)

ss , which is defined
as [25, 39]

P (s)
ss = I(s) −A(s)R(s)

ss A(s)−1

nr R(s)T

ss with A(s)
nr = R(s)T

ss A(s)R(s)
ss . (49)

Note that A(s)
nr is not necessarily diagonal [39]. Like the elastic flexibility matrix G(s) in Eq. (25), the

state-space elastic flexibility matrix G(s)
ss in inertia-relief format is

G(s)
ss = P (s)T

ss B(s)+P (s)
ss . (50)

If a substructure has rigid body DOFs, the static solution z
(s)
stat is

z
(s)
stat = −G(s)

ss B
(s)T

ss λ+R(s)
ss α

(s). (51)
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5.3. Substructure approximation and dual assembly

Using the expressions for z
(s)
stat in Eq. (51) and for z

(s)
dyn in Eq. (43), an approximation of the state-space

vector z(s) in Eq. (38) is given by

z(s) ≈ −G(s)
ss B

(s)T

ss λ+R(s)
ss α

(s) + Θ̃
(s)

ss p
(s). (52)

Since a part of the subspace spanned by Θ̃
(s)

ss is already included in G(s)
ss , the state-space residual flexibility

matrix G(s)
ss,res can be used instead of the state-space flexibility matrix G(s)

ss . The state-space residual

flexibility matrix G(s)
ss,res is defined by

G(s)
ss,res = G(s)

ss −
n
(s)
θ∑

j=1

θ
(s)
ss,jθ

(s)T

ss,j

σ
(s)
j

. (53)

As a result, the approximation of one substructure’s state-space vector z(s) is

z(s) ≈ −G(s)
ss,resB

(s)T

ss λ+R(s)
ss α

(s) + Θ̃
(s)

ss p
(s) =

[
R(s)

ss Θ̃
(s)

ss −G(s)
ss,resB

(s)T

ss

]


α(s)

p(s)

λ


 . (54)

Using the approximation of Eq. (54) for the state-space vectors z(s) of all N substructures, the global
partitioned, concatenated state-space vector

zbd =



z(1)

...
z(N)


 (55)

and all Lagrange multipliers λ are approximated by

[
zbd
λ

]
≈




R(1)
ss Θ̃

(1)

ss 0 0 −G(1)
ss,resB

(1)T

ss

. . .
. . .

...

0 0 R(N)
ss Θ̃

(N)

ss −G(N)
ss,resB

(N)T

ss

0 0 0 0 I




︸ ︷︷ ︸
T ss,DCB




α(1)

p(1)

...
α(N)

p(N)

λ



. (56)

Matrix T ss,DCB is the dual Craig-Bampton reduction matrix in state-space format. The approximation of
the dual assembled system’s dynamic equations in state-space format is

ADCB




α̇(1)

ṗ(1)

...

α̇(N)

ṗ(N)

λ̇




+ BDCB




α(1)

p(1)

...
α(N)

p(N)

λ




= FDCB (57)

with

ADCB = TT
ss,DCB

[
Abd 0

0 0

]
T ss,DCB, BDCB = TT

ss,DCB

[
Bbd BT

ss

Bss 0

]
T ss,DCB, FDCB = TT

ss,DCB

[
Fbd

0

]
.

(58)
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The block-diagonal matrices Abd and Bbd, the state-space constraint matrix Bss and the external force
vector Fbd in Eq. (58) are thereby defined as

Abd =



A(1) 0

. . .

0 A(N)


 , Bbd =



B(1) 0

. . .

0 B(N)


 , Bss =

[
B(1)

ss · · · B(N)
ss

]
, Fbd =



F (1)

...

F (N)


 .

(59)

The dual Craig-Bampton reduced system in Eq. (57) has the final size of nDCB =
∑N
s=1 n

(s)
r +

∑N
s=1 n

(s)
θ +nλ

states with n
(s)
r state-space rigid body modes of substructure s, with n

(s)
θ kept free interface normal modes

of substructure s, and with the total number nλ of all Lagrange multipliers.
Note that the dual Craig-Bampton approach for damped systems can lead to eigenvalues with positive

real parts and corresponding spurious modes just as the original formulation of the dual Craig-Bampton
method [5] for the undamped case does (see Section 4.2). This does not influence the very good approx-
imation accuracy of the eigenvalues and eigenvectors of systems with general viscous damping, which is
demonstrated in the following section.

6. Application example

The bending vibration (no axial deformation) of a beam structure is considered for the numerical eval-
uation of the proposed substructure reduction method. This example has already been used in [25]. As
illustrated in Figure 1, the beam structure is 1.8 m long, consists of 18 Euler-Bernoulli beam elements,
and is clamped at the left end and divided into substructure 1 (10 beam elements, length 1.0 m) and sub-
structure 2 (8 beam elements, length 0.8 m). A localized viscous damper is attached to each of the two
substructures. In this example, the assembled beam structure’s damping matrix C does not satisfy the

c

Substructure 1
10 beam elements
m(1) = 20 DOFs
n(1) = 2m(1) = 40 states in state-space format

c

18 beam elements, m = 36 DOFs, n = 2m = 72 states in state-space format

c c

1.0 m 0.8 m

Substructure 1 Substructure 2

Substructure 2
8 beam elements
m(2) = 18 DOFs
n(2) = 2m(2) = 36 states in state-space format

Figure 1: Clamped beam consisting of 18 finite elements with two localized dampers divided into 2 substructures [25].
The clamped beam structure is modeled by 18 Euler-Bernoulli beam elements (cross-section 9.0× 10−4 m2, moment of in-
ertia 7.0× 10−8 m4, Young’s modulus 2.1× 1011 N m−2, density 7.8× 103 kg m−3) and has m = 36 DOFs. The length of
substructure 1 is 1.0 m, the length of substructure 2 is 0.8 m and the damper constant c is 1.0× 104 N s m−1.

condition of Eq. (7). Decoupling is therefore not possible using classical modal analysis. Moreover, rigid

body movement is possible for substructure 2. Substructure 2 has m
(2)
r = 2 physical rigid body modes

(translational rigid body movement r
(2)
trans and rotatory rigid body movement r

(2)
rot). In this example, this

12



leads to one single zero eigenvalue (translation mode) and one zero eigenvalue with multiplicity two (rota-
tion mode) for substructure 2 in state-space form. This is due to the fact that the translational rigid body

movement r
(2)
trans is damped by the localized damper c (i.e., a damping force will act if substructure 2 moves

in the translation mode), but the rotational rigid body movement r
(2)
rot is not damped (i.e., no damping force

will be caused if substructure 2 moves in the rotation mode). The physical translational rigid body r
(2)
trans

mode will activate the damper and thus C(2)r
(2)
trans 6= 0. Therefore, according to the theory (C(2)r

(2)
trans 6= 0,

for details see Appendix B), the physical translational rigid body r
(2)
trans is not defective and has a multiplic-

ity one for the state-space eigenvalue problem. Thus, only one regular state-space translational rigid body

mode r
(2)
ss,trans,reg is associated to the physical translational rigid body mode r

(2)
trans. The second physical

rigid body r
(2)
rot represents a rotation around the damper and therefore C(2)r

(2)
rot = 0, i.e., the physical rigid

body r
(2)
rot does not activate the damper. According to the theory (C(2)r

(2)
rot = 0), both a regular state-space

rotational rigid body mode r
(2)
ss,rot,reg and a generalized state-space rotational rigid body mode r

(2)
ss,rot,gen are

associated to the physical rotational rigid body mode r
(2)
rot. Hence, one regular state-space rigid body mode

corresponds to the physical translational movement r
(2)
trans, and both a regular state-space rigid body mode

and a generalized state-space rigid body mode correspond to the physical rotational movement r
(2)
rot.

From a mechanical point of view, the mathematical relations of Section 5 and Appendix B concerning
state-space rigid body modes can be interpreted as follows: If a damping force acts when a substructure

moves in a physical rigid body mode r
(s)
j (situation C(s)r

(s)
j 6= 0), only a regular state-space rigid body

mode r
(s)
ss,j,reg is associated to the physical rigid body mode r

(s)
j . On the other hand, if no damping force

acts when the substructure moves in a physical rigid body mode r
(s)
j (situation C(s)r

(s)
j = 0), one regular

state-space rigid body mode r
(s)
ss,j,reg and one generalized state-space rigid body mode r

(s)
ss,j,gen is associated

to the physical rigid body mode r
(s)
j .

6.1. Eigenvalues of unreduced system

Figure 2 depicts all 72 eigenvalues in the complex plane for the coupled unreduced system. Eigenvalues
of the coupled unreduced (full) system will be called σfull. It can be seen that the system has a lot of
complex conjugate eigenvalue pairs. In total, there are 68 complex eigenvalues with imaginary parts, i.e., 34
underdamped complex conjugate eigenvalue pairs. The complex conjugate eigenvalue pairs have imaginary
parts |=(σfull)| > 650 rad s−1 leading to underdamped modes. In contrast, there are exactly four eigenvalues
without imaginary part [25]. These four real eigenvalues indicate very high damping leading to overdamped
modes [6].

6.2. Approximation of eigenvalues

The beam structure’s lowest eigenvalues are approximated by the proposed dual Craig-Bampton formu-
lation for damped systems. Eigenvalues of the reduced system will be called σred. Therefore, the eigenvalue
problem

(σred,jADCB + BDCB)ψred,j = 0 (60)

with the dual Craig-Bampton reduced matrices ADCB and BDCB of Eq. (58) is solved for the eigenvalues.
For comparison, they will also be approximated by a classical Craig-Bampton method for damped systems.
The classical Craig-Bampton method uses complex component fixed interface normal modes and constraint
modes. The Craig-Bampton formulation for damped systems from [24] is used for the comparison.

For the time being, we keep the complex free interface normal modes θ
(1)
ss,j corresponding to the n

(1)
θ =

20 eigenvalues with lowest absolute magnitude for substructure 1 (two of the n
(1)
θ = 20 eigenvalues are

overdamped eigenvalues and the other 18 eigenvalues are 9 complex conjugate pairs) and the complex free

interface normal modes θ
(2)
ss,j corresponding to the n

(2)
θ = 19 eigenvalues with lowest absolute magnitude for

substructure 2 (one of the n
(2)
θ = 19 eigenvalues is an overdamped eigenvalue and the other 18 eigenvalues

13
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Figure 2: All eigenvalues σfull of the coupled unreduced system of Figure 1 in the complex plane.

are 9 complex conjugate pairs). Substructure 1 is clamped, but substructure 2 has n
(2)
r = 3 state-space

rigid body modes. The substructures are coupled by nλ = 2 Lagrange multipliers corresponding to the
two interface states. After coupling, the reduced system has nDCB = 44 states according to Eq. (57).
The eigenvalues σred of the dual Craig-Bampton reduced system are computed as written in Eq. (60).
Figure 3 shows the approximated eigenvalues σred with an absolute value of the imaginary part |=(σred)| ≤
80 000 rad s−1. Eigenvalues σred with |=(σred)| ≤ 50 000 rad s−1 approximate the true eigenvalues σfull of the
full system very accurately. Admittedly, it is difficult to identify in Figure 3 which true eigenvalues σfull
are approximated by which eigenvalues σred if |=(σred)| > 50 000 rad s−1. The approximation accuracy in
the low frequency range (i.e., for eigenvalues σred with small imaginary parts) is nevertheless very good
and Figure 4 gives a zoom plot of Figure 3 to visualize this. To investigate the approximation accuracy
quantitatively, the relative errors of approximated eigenvalues are considered in Section 6.3.

Eigenvalues obtained from a Craig-Bampton approximation are depicted in Figure 3 and 4 in addition
to those approximated using the proposed dual Craig-Bampton method. The Craig-Bampton approxima-
tion keeps complex fixed interface normal modes corresponding to the 20 eigenvalues with lowest absolute
magnitude for substructure 1, complex fixed interface normal modes corresponding to the 20 eigenvalues
with lowest absolute magnitude for substructure 2, and four constraint modes for each substructure since
the two substructures share four states. After coupling, the reduced system has nCB = 44 states, which
is equal to the number of nDCB = 44 states of the dual Craig-Bampton reduced system. In Figure 3, it
can be seen that the dual Craig-Bampton method gives a considerably better approximation of the true
eigenvalues than the Craig-Bampton method does with the same number of states of the reduced system.
Figure 4 gives a zoom plot of Figure 3 in the frequency band |=(σred)| ≤ 12 500 rad s−1, i.e., in the frequency
band corresponding to eigenvalues with small imaginary parts. Both methods approximate the eigenvalues
in the low frequency range accurately. Nevertheless, the dual Craig-Bampton method gives an even better
approximation than the Craig-Bampton method. The approximated eigenvalues obtained using the dual
Craig-Bampton method coincide with the true eigenvalues much better than the eigenvalues obtained using
the Craig-Bampton method.
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Figure 3: Eigenvalues σfull of the coupled unreduced system and eigenvalues σred of the reduced system in the complex plane.
The eigenvalues are approximated on the one hand with a classical Craig-Bampton (CB) method for damped systems [24] and
on the other hand with the proposed dual Craig-Bampton (DCB) method for damped systems. The number nCB = nDCB = 44
of states of the reduced systems are equal.
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Figure 4: Zoom plot of Figure 3 in the eigenvalue band −500 rad s−1 ≤ <(σred) ≤ 0 rad s−1 and |=(σred)| ≤ 12 500 rad s−1.
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6.3. Relative errors of approximated eigenvalues

To highlight the very good approximation accuracy of the suggested dual Craig-Bampton approach, the
relative errors εrel,< of the eigenvalues’ real parts and relative errors εrel,= of the eigenvalues’ imaginary
parts are now considered. The relative errors εrel,<,j of the real parts and the relative errors εrel,=,j of the
imaginary parts of the j-th eigenvalue are computed according to

εrel,<,j =
|<(σred,j)−<(σfull,j)|

<(σfull,j)
and εrel,=,j =

|=(σred,j)−=(σfull,j)|
=(σfull,j)

. (61)

In Eq. (61), σfull,j is the j-th eigenvalue of the full (unreduced and coupled) system and σred,j is the j-th
eigenvalue of the reduced system. Figure 5 shows the relative errors εrel,< of the eigenvalues’ real parts
(Figure 5a) and the relative errors εrel,= of the eigenvalues’ imaginary parts (Figure 5b) for the considered
system. The number of states of the reduced systems, nCB = nDCB = 44, is the same for the Craig-
Bampton and the dual Craig-Bampton reduction. When the relative error εrel,= of the imaginary part of an
eigenvalue σred is missing, it means that the imaginary part =(σred) of the eigenvalue is zero. On the other
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(a) Relative error εrel,<,j of the real part of eigen-
value σred,j .
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(b) Relative error εrel,=,j of the imaginary part of eigen-
value σred,j .

Figure 5: Relative error of real and imaginary parts of eigenvalue σred. The lowest 20 eigenvalues are approximated using
the Craig-Bampton method (CB) and the dual Craig-Bampton method (DCB). The number of states of the reduced systems,
nCB = nDCB = 44, is the same. When the relative error εrel,= of the imaginary part of an eigenvalue σred is missing, it means
that the imaginary part =(σred) of the eigenvalue is zero.

hand, the real eigenvalues (eigenvalues 1, 2, 13, and 14) with no imaginary parts are approximated very well.
Generally speaking, the imaginary parts are approximated slightly better than the corresponding real parts.
But if real eigenvalues occur (i.e., with no imaginary part), these real eigenvalues are also approximated
accurately. This is a very important property since real eigenvalues indicate very high damping leading to
overdamped modes [6], which contribute significantly to the dynamical behavior of damped systems.

Comparing both methods, the accuracy of the dual Craig-Bampton approximation is around two orders
of magnitude better than that of the Craig-Bampton approximation in the low eigenvalue range. Both
methods lead to a reduced system with the same number of states. This example indicates that the proposed
dual Craig-Bampton approach exhibits very good approximation accuracy compared to the classical Craig-
Bampton approach.

In addition, we want to examine the approximation accuracy of the proposed method for eigenvectors.
Therefore, eigenvector ψred,j corresponding to j-th eigenvalue σred,j of the dual Craig-Bampton reduced
system in Eq. (60) is compared to the eigenvector ψfull,j of the unreduced (full) system. We consider the
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modal assurance criterion

MACj =

∣∣∣ψH
full,j ψred,j

∣∣∣
2

ψH
full,j ψfull,j ψ

H
red,j ψred,j

(62)

between the j-th eigenvector ψfull,j of the full system and the j-th eigenvector ψred,j of the reduced sys-

tem [40, 41]. Thereby, (•)H represents the Hermitian transpose (also called conjugate transpose), but not
simply the transpose (•)T. The modal assurance criterion is a scalar value and can take values between 0,
which is an indication that the vectors are not consistent, and 1, which is an indication that the modal
vectors are consistent [41]. Table 1 shows the modal assurance criterion MACj for the eigenvectors corre-

j MACj j MACj

1 0.9995 11 0.9775
2 0.9980 12 0.9775
3 0.9985 13 0.9897
4 0.9985 14 1.0000
5 0.9947 15 0.9956
6 0.9947 16 0.9956
7 0.9962 17 0.9567
8 0.9962 18 0.9567
9 0.9809 19 0.9971
10 0.9809 20 0.9971

Table 1: Modal assurance criterion MACj between j-th eigenvector of the full system and j-th eigenvector of the dual Craig-
Bampton reduced system with nDCB = 44 states.

sponding to the 20 lowest eigenvalues of the dual Craig-Bampton reduced system with nDCB = 44 states (for
relative errors of the eigenvalues see Figure 5). The MACj values are very close to 1 indicating consistent
correspondence between the eigenvectors of the full and the reduced system. Especially, the eigenvectors
corresponding to the real eigenvalues (eigenvalues 1, 2, 13, and 14) are approximated very well. This demon-
strates that the proposed dual Craig-Bampton approach exhibits also very good approximation accuracy for
eigenvectors of damped systems.

6.4. Keeping different numbers of normal modes per substructure

6.4.1. Dual Craig-Bampton approach

Similar graphs depicting the relative errors εrel,< and εrel,= as in Figure 5 are obtained using different
numbers of normal modes per substructure for the two methods. For the dual Craig-Bampton approximation

in Figure 5, we kept n
(1)
θ = 20 complex free interface normal modes for substructure 1 and n

(2)
θ = 19 complex

free interface normal modes for substructure 2. The n
(2)
r = 3 state-space rigid body modes of substructure

2 are retained in the reduction basis in any case. Figure 6 shows the relative errors when the numbers of

kept complex normal modes n
(1)
θ and n

(2)
θ are varied for the dual Craig-Bampton approximation. The real

eigenvalues (eigenvalues 1, 2, 13, and 14) with no imaginary parts are again approximated very well. This

is also valid if only n
(1)
θ = 8 and n

(2)
θ = 7 complex free interface normal modes are kept, which results in a

reduced system of size nDCB = 20.
On the other hand, the corresponding imaginary part is approximated more accurately than the real

part if the eigenvalues are complex. Generally speaking, the imaginary parts are approximated better than
the corresponding real parts, which was also observed by de Kraker and van Campen for the Rubin method
in [25].
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(a) Relative error εrel,<,j of the real part of eigenvalue j.
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(b) Relative error εrel,=,j of the imaginary part of eigen-
value j.

Figure 6: Relative error of real and imaginary parts of eigenvalue σred. The lowest 16 eigenvalues are approximated using the

dual Craig-Bampton method (DCB). The number n
(1)
θ of kept complex free interface normal modes for substructure 1 and

the number n
(2)
θ of kept complex free interface normal modes for substructure 2 is varied. The n

(2)
r = 3 rigid body modes

of substructure 2 are retained in the reduction basis in any case. When the relative error εrel,= of the imaginary part of an
eigenvalue σ is missing, it means that the imaginary part =(σ) of the eigenvalue is zero.

6.4.2. Comparison of Craig-Bampton and dual Craig-Bampton approach for similar accuracy

Finally, we want to illustrate the performance of the proposed dual Craig-Bampton approach compared
to the classical Craig-Bampton formulation. Therefore, we aim at approximating the eigenvalues using the
minimal number of normal modes per substructure necessary to reach a certain maximum relative error for
the real and imaginary parts of eigenvalues according to Eq. (61).

We chose to approximate the lowest 14 eigenvalues, i.e., the minimum number including all overdamped
eigenvalues, and set the threshold for the maximum relative error arbitrarily to 5%. By trial and error, we
find that to reach

max (εrel,<,j) < 5% and max (εrel,=,j) < 5% for j = 1, . . . , 14, (63)

we need to keep 22 complex fixed interface normal modes for substructure 1 and 20 complex fixed interface
normal modes for substructure 2 for the Craig-Bampton approach, resulting in a reduced system with nCB =
46 states. To reach the maximum relative errors in Eq. (63) with the proposed dual Craig-Bampton approach,

we have to keep n
(1)
θ = 10 complex free interface normal modes for substructure 1 and n

(2)
θ = 9 complex free

interface normal modes for substructure 2. Then, the dual Craig-Bampton reduced system has only nDCB =
24 states. Figure 7 shows the relative errors of real and imaginary parts for both approximations. For this
example, the relative errors of the real parts of eigenvalues 11 and 12 are the critical errors for both methods.
The real eigenvalues (eigenvalues 1, 2, 13, and 14) with no imaginary parts are approximated very well by
both methods.

Comparing both methods, the size nDCB = 24 of the reduced system using the dual Craig-Bampton
approximation is significantly smaller than the size nCB = 46 of the reduced system using the Craig-
Bampton approximation if the error tolerances in Eq. (63) have to be reached. This example demonstrates
that the proposed dual Craig-Bampton approach needs to compute less normal modes than the classical
Craig-Bampton approach to reach the same accuracy. Less computational effort is necessary and less memory
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(a) Relative error εrel,<,j of the real part of eigen-
value σred,j .
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(b) Relative error εrel,=,j of the imaginary part of eigen-
value σred,j .

Figure 7: Relative error of real and imaginary parts of eigenvalue σred. The lowest 14 eigenvalues are approximated using
the Craig-Bampton method (CB) and the dual Craig-Bampton method (DCB). The number of kept normal modes are chosen
such that the maximum relative error of real and imaginary parts of the lowest 14 eigenvalues for the approximation with
both methods is 5%. This results in a reduced system with nCB = 46 states for the Craig-Bampton and in a reduced system
with nDCB = 24 states for the dual Craig-Bampton method. When the relative error εrel,= of the imaginary part of an
eigenvalue σred is missing, it means that the imaginary part =(σred) of the eigenvalue is zero.

storage is demanded by the dual Craig-Bampton method making this approach more efficient.

7. Conclusions

In this paper, we extended the dual Craig-Bampton method to the case of systems with general viscous
damping. In its original form for the undamped case, the reduction matrix is built based on real static modes
(rigid body modes and residual flexibility attachment modes) and a number of kept real dynamic modes
(free interface normal modes). The extended formulation for incorporating viscous damping is based on a
state-space formulation consisting of first-order differential equations. The rigid body mode concept had to
be adapted to the possibility of generalized rigid body modes corresponding to multiple zero eigenvalues.
Those rigid body modes, complex free interface normal modes, and generalized residual flexibility modes
are used to build the reduction basis.

The very good approximation accuracy of eigenvalues and eigenvectors of this dual Craig-Bampton ap-
proach for general viscous damping was demonstrated on a beam structure with localized dampers. Resulting
in a reduced system with the same number of states, the dual Craig-Bampton approach outperforms the
classical Craig-Bampton approach. The approximation accuracy of the eigenvalues is around two orders of
magnitude greater showing the potential of this extension of the dual Craig-Bampton method. If a certain
error tolerance has to be reached, the dual Craig-Bampton approach needs to keep a significantly smaller
number of normal modes than the Craig-Bampton approximation. This results in a smaller reduced sys-
tem, less computational effort and less memory storage when using the dual Craig-Bampton approximation.
Varying the number of kept modes gave rise to monotonically improving approximation accuracy when the
number of kept modes is increased. Real eigenvalues without imaginary parts corresponding to overdamped
modes are always very well approximated. If the eigenvalues are complex (i.e., they occur in complex con-
jugate pairs), then the corresponding imaginary parts are usually approximated more accurately than the
real parts.

In the future, we want to apply the method to bigger problems. The example used in this paper is
very illustrative, allows for comparison to results in the literature and demonstrates all critical points for
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the application of the suggested methodology, but it is too small for a meaningful comparison in terms of
computational time. For this purpose, it is necessary to consider additional numerical examples to further
examine the performance of the proposed methods. Nevertheless, it was demonstrated that the proposed
method reaches a certain approximation accuracy with much less computational effort than the classical
Craig-Bampton approach since significantly less modes have to be computed.

Finally, it is mentioned that the dual Craig-Bampton approach for damped systems can lead to eigenval-
ues with positive real parts and corresponding spurious modes just as the original formulation of the dual
Craig-Bampton method for the undamped case does [5]. This does not influence the very good approxima-
tion accuracy of the eigenvalues and eigenvectors of systems with general viscous damping, but it can cause
problems in some applications (e.g., time integration, computation of frequency response functions). For the
original formulation of the dual Craig-Bampton method, a time integration strategy is investigated in [43]
and could also be used for the approach suggested in this contribution. Further research has to be conducted
on the spurious eigensolutions obtained by the dual Craig-Bampton approach for damped systems and their
effect on subsequent steps after the reduction.

Appendix A. Defective systems and Jordan normal form

Appendix A.1. Standard eigenvalue problem
Consider a square matrix D of dimension n× n and the corresponding standard eigenvalue problem

σjθj = Dθj ⇔ (σjI −D)θj = 0 (A.1)

with eigenvalue σj and corresponding eigenvector θj for j = 1, . . . , n. The corresponding characteristic
polynomial is

det (σjI −D) = 0. (A.2)

The algebraic multiplicity of eigenvalue σj is its multiplicity as a root of the characteristic polynomial
Eq. (A.2). The geometric multiplicity of σj is the number of linearly independent eigenvectors associated
with σj . An eigenvalue σj with algebraic multiplicity 2 or higher is called a repeated eigenvalue [44]. In
contrast, an eigenvalue with algebraic multiplicity 1 is called to be simple [45]. If the algebraic multiplicity of
σj exceeds its geometric multiplicity, then σj is said to be a defective eigenvalue. A matrix with a defective
eigenvalue is referred to as a defective matrix [45]. A defective matrix does not have a linearly independent
set of n eigenvectors. Nondefective matrices are also said to be diagonalizable [45]. If matrix D is defective,
there exists no eigenvector matrix

Θ =
[
θ1 θ2 . . . θn

]
(A.3)

such that
ΘΣ = DΘ (A.4)

where Σ = diag (σ1, σ2, . . . , σn) is the diagonal eigenvalue matrix. Nevertheless, it is possible to find a
linearly independent set of generalized eigenvectors that transform D into Jordan normal form

ΘJ = DΘ (A.5)

with Jordan matrix J [6]. For example, if D is a matrix of dimension 7×7 and has a repeated eigenvalue σ1 of
multiplicity 2 and a repeated eigenvalue σ2 of multiplicity 3 both with geometric multiplicity of 1 (eigenvalues
σ3 and σ4 have multiplicity 1), the Jordan matrix J will have the form

J =

σ1 1 0 0 0 0 0

0 σ1 0 0 0 0 0

0 0 σ2 1 0 0 0

0 0 0 σ2 1 0 0

0 0 0 0 σ2 0 0

0 0 0 0 0 σ3 0

0 0 0 0 0 0 σ4







. (A.6)
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Appendix A.2. Generalized eigenvalue problem

The concept of Appendix A.1 can also be applied to the generalized eigenvalue problem2

−σjAθss,j = Bθss,j ⇔ (σjA + B)θss,j = 0 (A.7)

with matrices A and B of dimension n×n, eigenvalue σj and corresponding eigenvector θss,j for j = 1, . . . , n.
If the eigenvalue problem (A.7) is defective, there exists no eigenvector matrix

Θss =
[
θss,1 θss,2 . . . θss,n

]
(A.8)

such that
AΘssΣ + BΘss = 0 (A.9)

where Σ = diag (σ1, σ2, . . . , σn) is the diagonal eigenvalue matrix. It is possible to find a linearly inde-
pendent set of generalized eigenvectors that transform A and B into almost-diagonal Jordan normal form

AΘssJ + BΘss = 0 (A.10)

with Jordan matrix J , which will have Jordan blocks on the diagonal as for instance in Eq. (A.6). Consider
now the part of Eq. (A.10) corresponding to a repeated eigenvalue σ1 = 0 of algebraic multiplicity 2 and
geometric multiplicity 1:

A
[
θss,1,reg θss,1,gen

] [0 1
0 0

]
+ B

[
θss,1,reg θss,1,gen

]
=
[
0 0

]
(A.11)

Vector θss,1,reg denotes the regular eigenvector corresponding to eigenvalue σ1 = 0 that is obtained by
solving the eigenvalue problem (A.7). The generalized eigenvector corresponding to eigenvalue σ1 = 0 is
labeled θss,1,gen. Eq. (A.11) gives two equations:

Bθss,1,reg = 0 (A.12)

Aθss,1,reg + Bθss,1,gen = 0 (A.13)

Eq. (A.12) reproduces the eigenvalue problem (A.7) with σ1 = 0 to obtain the regular eigenvector θss,1,reg.
Eq. (A.13) is used to determine the generalized eigenvector θss,1,gen. Both vectors θss,1,reg and θss,1,gen can
be used to define state-space rigid body modes, which occur if the second-order mechanical system of Eq. (1)
with physical rigid body modes is transformed into state-space form.

Appendix B. State-space rigid body modes

Matrix R of dimension m×mr

R =
[
r1 r2 . . . rmr

]
(B.1)

contains all mr physical rigid body modes rj of the linear system of Eq. (1)

Mü+Cu̇+Ku = f , (1)

which fulfill
Krj = 0 for j = 1, . . . ,mr ⇔ KR = 0. (B.2)

Each physical rigid body mode rj can also be seen as eigenvector of eigenproblem Eq. (2)

(
−ω2

jM +K
)
θj = 0 (2)

2The standard eigenvalue problem Eq. (A.1) is obtained with D = −A−1B if matrix A is invertible.
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corresponding to eigenvalue ω2
j = 0. For each physical rigid body mode rj (or in other words: eigenvector

θj corresponding to eigenvalue ω2
j = 0), there will be one or two eigenvalues σj = 0 if the corresponding

state-space eigenproblem
(σjA + B)θss,j = 0 (B.3)

is solved. For σj = 0, instead of Eq. (B.3), one can write

Bθss,j = 0 ⇔
[
K 0
0 −M

] [
θss,j,u
θss,j,v

]
=

[
Kθss,j,u
−Mθss,j,v

]
=

[
0
0

]
. (B.4)

Thereby, θss,j is partitioned in displacement part θss,j,u and velocity part θss,j,v. For positive definite mass
matrixM , the velocity part θss,j,v in Eq. (B.4) must be zero. The first row of Eq. (B.4) reproduces Eq. (B.2).
This leads to the corresponding regular state-space rigid body mode

rss,j,reg =

[
rj
0

]
(B.5)

There will be mr such regular state-space rigid body modes rss,j,reg and each of them has its physical
corresponding part rj . Matrix Rss,reg contains all mr regular state-space rigid body modes rss,j,reg as
columns:

Rss,reg =
[
rss,1,reg rss,2,reg . . . rss,mr,reg

]
=

[
R
0

]
(B.6)

Matrix R contains the physical rigid body modes as columns as given by Eq. (B.1). As given by Eq. (B.5),
each physical rigid body mode rj has one corresponding regular state-space rigid body mode rss,j,reg. This
relation is independent of the damping properties of the underlying system.

Appendix B.1. Undamped case

Consider the undamped equations of motion, i.e., Eq. (1) with C = 0. The corresponding state-space
eigenvalue problem is given by Eq. (B.3). For this case, each eigenvalue σj = 0 occurs as a root of multiplic-
ity two [25, 38]. Thus, the eigenvalue problem is defective [6]. It possesses one set of nr regular state-space
rigid body modes rss,j,reg given by Eq. (B.6). For each regular state-space rigid body mode rss,j,reg corre-
sponding to σj = 0, there is also a generalized state-space rigid body mode rss,j,gen, defined by Eq. (A.10):

A
[
rss,j,reg rss,j,gen

] [0 1
0 0

]
+ B

[
rss,j,reg rss,j,gen

]
=
[
0 0

]
(B.7)

This gives two row partitions:

Brss,j,reg = 0 (B.8)

Arss,j,reg + Brss,j,gen = 0 (B.9)

Eq. (B.8) reproduces Eq. (B.4), which has already been used to determine the regular state-space rigid body
mode rss,j,reg. Eq. (B.9) is now used to determine the generalized state-space rigid body mode rss,j,gen.
With damping matrix C = 0, matrix A writes

A =

[
0 M
M 0

]
. (B.10)

Partitioning in displacement and velocity parts, Eq. (B.9) is

[
0 M
M 0

] [
rss,j,reg,u
rss,j,reg,v

]
+

[
K 0
0 −M

] [
rss,j,gen,u
rss,j,gen,v

]
=

[
0
0

]
, (B.11)
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which gives together with Eq. (B.5) the two row partitions:

Mrss,j,reg,v +Krss,j,gen,u = 0 ⇒ Krss,j,gen,u = 0 (B.12)

Mrss,j,reg,u −Mrss,j,gen,v = 0 ⇒ Mrj −Mrss,j,gen,v = 0 (B.13)

If M is nonsingular, Eq. (B.13) requires that

rss,j,gen,v = rj . (B.14)

Eq. (B.12) states either that rss,j,gen,u = rj , i.e., the displacement part rss,j,gen,u of rss,j,gen is equal to the
physical rigid body mode or that rss,j,gen,u = 0 [6]. Since the regular state-space rigid body mode rss,j,reg
already contains the physical rigid body mode rj as displacement part rss,j,reg,u, it is sufficient to set
rss,j,gen,u = 0 [6]. The generalized state-space rigid body mode rss,j,gen finally writes

rss,j,gen =

[
rss,j,gen,u
rss,j,gen,v

]
=

[
0
rj

]
. (B.15)

Thus, the complete set of 2mr state-space rigid body modes for an undamped system is [6]

Rss =
[
Rss,reg Rss,gen

]
=

[
R 0
0 R

]
. (B.16)

As given by Eq. (B.5), each physical rigid body mode rj has one corresponding regular state-space rigid body
mode rss,j,reg independent of the damping properties of the underlying system. As given by Eq. (B.15), each
physical rigid body mode rj of an undamped system has additionally one corresponding generalized state-
space rigid body mode rss,j,gen. To sum up, as given by Eq. (B.16), each physical rigid body mode rj of an
undamped system has one corresponding regular state-space rigid body mode rss,j,reg and one corresponding
generalized state-space rigid body mode rss,j,gen.

Appendix B.2. Damped case

With damping matrix C 6= 0, matrix A writes

A =

[
C M
M 0

]
(B.17)

and Eq. (B.11) changes to

[
C M
M 0

] [
rss,j,reg,u
rss,j,reg,v

]
+

[
K 0
0 −M

] [
rss,j,gen,u
rss,j,gen,v

]
=

[
0
0

]
, (B.18)

which gives now together with Eq. (B.5) the following two row partitions:

Crss,j,reg,u +Mrss,j,reg,v +Krss,j,gen,u = 0 ⇒ Crj +Krss,j,gen,u = 0 (B.19)

Mrss,j,reg,u −Mrss,j,gen,v = 0 ⇒ Mrj −Mrss,j,gen,v = 0 (B.20)

Eq. (B.20) reproduces Eq. (B.13), which requires that rss,j,gen,v = rj (as for the undamped case). Eq. (B.12)
has now changed to Eq. (B.19). Keep in mind that K is singular and consider Eq. (B.19):

• If Crj = 0, solving Eq. (B.19) is equal to the solution of the undamped case. A solution for rss,j,gen,u
exists and the generalized state-space rigid body mode rss,j,gen is given by Eq. (B.15).

• If Crj 6= 0, Eq. (B.19) does not have a solution since K is singular. The assumption that σj = 0 has
multiplicity two, leading to a regular and a generalized state-space rigid body mode, is not valid [6].
Only a regular state-space rigid body mode rss,j,reg exists and no corresponding generalized state-space
rigid body rss,j,gen mode occurs.
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Therefore, the result of Crj is used as indicator for the occurrence of generalized state-space rigid body
modes rss,j,gen for damped systems. As described before, each physical rigid body mode rj has one corre-
sponding regular state-space rigid body mode rss,j,reg. Each physical rigid body mode rj of an undamped
system has also one corresponding generalized state-space rigid body mode rss,j,gen. Each physical rigid body
mode rj of a damped system can have one corresponding generalized state-space rigid body mode rss,j,gen,
but does not have to have one. The existence of the generalized state-space rigid body mode rss,j,gen depends
on the structure of the damping matrix C. The criterion Crj is used to detect if a physical rigid body
mode rj of a damped system does have one corresponding generalized state-space rigid body mode rss,j,gen
or does not.
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