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would not have been possible. They have never once hesitated to provide me the help that
I needed while writing the thesis and have been very patient to pass on their knowledge
and experience no matter how embarrassing my queries were.

I would also like to take this opportunity to thank Leibniz Supercomputing Center(LRZ)
to grant me the access to the best possible resources in the form of MAC Cluster and the
DGX-1 machine, with the help of which I could test my assumptions and which made the
thesis even more interesting. I would not have been able to accomplish the work without
the very helpful documentation of CUDA, CuBLAS, CuSparse, NVML libraries and the
equally helpful CUDA forum maintained by NVIDIA.

Lastly, a big thanks goes to my Mother and Father for their unwavering belief in me and
the support they have provided, especially during the moments of adversity, which has
helped me to come back stronger every time.

vii



”Redesigning your application to run multithreaded on a multicore machine is a little like learning
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Abstract

With the release of CUDA, a parallel computing platform and application programming
interface (API) model, in 2007 by NVIDIA the learning curve to code on the GPUs have
drastically reduced. Along with the performance benefits the use of GPU promises for a
variety of applications, it has become very enticing for the software developers and re-
searchers to make use of this new hardware/software stack for faster feedback to their
problems.

This thesis is an attempt to solve the computationally expensive Maximum Likelihood
Expectation Maximization (MLEM) algorithm with respect to the image reconstruction
in Positron Emission Tomography (PET). The CuBLAS, CuSparse and NVML libraries,
provided by NVIDIA, have been extensively used to run the algorithm and to harness the
full power of the GPUs.

The most expensive operation in the entire process is the transpose Sparse Matrix Vector
Multiplication(SPMV T) for which the functions provided by the CuSparse libraries were
used and which were later bench-marked against the custom kernels developed during
the thesis. Apart from that the effect of multi GPU, Cuda Aware MPI, pinned memory and
hybrid computing have also been studied with respect to the performance and accuracy of
the results.

Finally, the last section has been dedicated to the discussion of the limitations of present
implementation and how those limitations could be overcome by making the code re-
source aware. It also discusses how the performance of the code could be improved by
using the merge based SPMV to rewrite the most expensive loop operation i.e. SPMV T.
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Part I.

Introduction and Background Theory
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1. PET Image Reconstruction

The Positron Emission Topography(PET) is a nuclear medicine imaging technique used to
measure the physiological function by looking at blood flow, metabolism, neurotransmit-
ters and radio-labelled drugs. In this process the tracer injected into the body of a living
subject typically contains a small amount of radio-nuclides, like carbon-11 and nitrogen-
13, having a short half life. Nowadays these PET scanners are used in different field of
medicines namely Oncology, Neuro-imaging, Infectious diseases etc.[11]

A PET scanner consists of number of fixed detectors usually arranged in a ring around
the subject injected with the tracer. As the tracer undergoes positron emission decay it
emits a positron. As the positron travels into the subject’s body it loses its kinetic energy
and is finally able to interact with a electron in the body which ultimately leads to the
emission of two gamma photons of 511 keV which travel into approximately opposite di-
rections. If these emitted gamma photons are detected by the detectors (in approximately
opposite direction) in a short time window (typically of a few nanoseconds) then the event
is recorded as positive else the detection is discarded. [22, 33]

Figure 1.1.: Configuration of MADPET-II[33]

Now since the emitted gamma photons travel almost 180 degrees to each other, it is pos-
sible to localize their source along the straight line of coincidence which is typically called
the Line of Response(LOR). The more the number of detectors the more the number of de-
tected events which ultimately leads to better quality of the measurements. The coverage
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of the three-dimensional space of interest, i.e. Field of View(FOV), by the LOR affects the
achievable resolution. [11]

A possible configuration of an experimental small animal PET scanner (see Figure 1.11.1)
developed at the Department of Nuclear Medicine, Technische Universität München adds a
second ring of gamma photons detectors which leads to better spatial resolution. The
additional ring quadruples the amount of measured data and increases the computational
demand of post processing step significantly for 3D image reconstruction.
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2. Related Work

There have been several algorithms made available over the years to reconstruct the orig-
inal PET images. All these algorithms could be classified under 2 major categories i.e.
Analytic and Iterative. A comprehensive overview along with the mathematical founda-
tion for both analytic and iterative algorithms has been given in [44].

The most widely used analytic PET image reconstruction algorithm is Filtered Back Pro-
jection (FBP). Since the analytic algorithms are linear they are very helpful in quantitative
data analysis by allowing an easier control over the spatial resolution and noise correla-
tions, they have remain important even today.

The noise introduced during the data collection in PET scanners due to the gamma pho-
tons either not travelling 180 degrees apart or because of they being registered incorrectly
by the detectors leads to the FBP not performing very well with respect to the noise in
the measured data and it ultimately throws up artifacts in the reconstructed images. This
problem could be corrected upto a certain extent by pre-processing the data before image
reconstruction.[11]

The two widely used iterative algorithms are Maximum Likelihood Expectation Maximiza-
tion (MLEM) which was first developed by Shepp and Vardi in 1982[55] and Ordered Subset
Expectation Maximization (OSEM) developed by Hudson and Larkin in 1994 [66].

The MLEM algorithm is a standard statistical estimation method. It works by taking an
initial guess of the image to be reconstructed and in each iteration maximizes the likelihood
function. While the MLEM algorithm provides a consistent and predictable convergence
results, it is much more computationally expensive compared to FBP.

The OSEM algorithm partitions the data into multiple subsets which are mutually ex-
clusive and it uses only one subset of data for each update. This has the benefit that each
pass over the entire data involves a greater number of updates, which leads to significant
acceleration over MLEM.

The different possible splitting of the matrix for parallelization has been discussed in
great detail by Chen and Lee [77] while the performance difference between OSEM and
MLEM has been compared by Lalush and Tsui [88].
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3. MLEM Algorithm and System Matrix

The MLEM algorithm aims to solve the linear system represented by the equation Af=g.
Here A is defined as a 2D system matrix of size MxN and it describes the geometrical and
physical properties of the scanner. The element aij in the matrix represents the probability
of a gamma photon discharge from a voxel j being recorded by a given pair of detectors
i. The reason for the sparsity of the system matrix is because of the fact that the gamma
photons detected by a detector pair could only originate in a relatively small number of
voxels. [33]

The f in the linear equation represents the 3D image that has to be reconstructed and
it is a vector of size N (number of voxels) . Finally the g in the aforementioned equation
represents the measured data and it is a vector of size M(number of detector pairs).

The equation that has to be solved iteratively to get a final representation of the scanned
object is represented by 3.13.1.

f
(q+1)
j =

f qj∑m
l=1 alj

×
m∑
i=1

(aij(
gi∑n

k=1 aikf
q
k

)) (3.1)

The fjq+1 (left hand side) in the equation 3.13.1 represents an element in the updated im-
age calculated while fjq (right hand side) represents the same element from the previous
iterative step.

The iterative step to calculate the next image update can be broken down into multiple
small steps. The first of them is to calculate the norm of the matrix, equation 3.23.2.

normj =
m∑
l=1

alj (3.2)

The norm is calculated per row of the matrix and is the sum of all the elements in a row
of system matrix. The size of the norm vector is N (number of columns) and it has to be
calculated just once.

The next step is to initialize the image to some value to start the iterative step. The initial
value is the fraction of the summation of the g vector and the summation of the norm vector.
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3. MLEM Algorithm and System Matrix

The equation 3.33.3 shows this step it in a mathematical form.

fk =

∑m
i=1 gi∑n

j=1 normj
(3.3)

The next step is called the Forward Projection (FP), equation 3.43.4 , and it involves the
multiplication of the system matrix A with the image vector f q. This step leads to the
generation of a vector fwproj of size M (number of rows).

fwproji =
n∑

k=1

aikf
q
k (3.4)

The next step in the quest is a scaling step, equation 3.53.5. In this step each element in the
measured data vector g is divided by the corresponding element in the vector fwproj. The
vector generated after this step is called correlation and is of size M (number of rows).

correlationi =
gi

fwproji
(3.5)

After calculating the correlation, the forward projection is compared to the actual mea-
surement and a correction factor is derived, equation 3.63.6. This step is called the Backward
Projection (BP) and is equivalent to a transpose sparse matrix vector multiplication and
leads to the generation of the update vector of size N (number of columns).

updatej =
m∑
l=1

aijcorrelationi (3.6)

Finally the result from backward projection is used to scale the image vector from the
previous iteration to give us the newly updated image, equation 3.73.7.

f
(q+1)
j =

f qj
normj

× updatej (3.7)

The entire algorithm has been presented as a pseudo code in 11. The steps in lines 1-17
refers to the operations that have to be performed just once and it includes setting up the
environment, allocation and initialization of the necessary vectors. The steps in lines 18-28
are performed based on the number of iterations required and in these steps the image
is continuously updated. The Image Sum in line 24 is calculated by summing up all the
values in the newly updated image vector f and it helps to check if the image is updating
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properly or not. Subsequently, the lines 32-33 represents the de-allocation of the memory
signalling the completion of the code.

Algorithm 1 MLEM Algorithm

1: function MLEM(mpi, ranges,matrix, lmsino, image, nIterations, chkpt)
2: function FURTHER SPLITTING() . timed
3: function GET CONFIG TO USE()
4: function GET REQUESTED CONFIG()
5: function SANITY CHECK OF PARAMETERS()
6:
7: Memory Allocation and Initialization . timed
8: function CSR FORMAT FOR DEVICES() . timed
9: Allocating and Copying Memory To Device . timed

10: Norm Calculation [equation 3.23.2] . timed
11: Norm Reduction . timed
12:
13: if chkpt then
14: Load checkpoint
15: else
16: Calculate Initial Value and Initialize Image [equation 3.33.3] . timed
17:
18: for iter < Iterations do
19: Calculate Forward Projection [equation 3.63.6] . timed
20: Calculating Correlation [equation 3.53.5] . timed
21: Calculate Backward Projection [equation 3.63.6] . timed
22: Reduce Backward Projection . timed
23: Image Update [equation 3.73.7] . timed
24: Image Sum . timed
25:
26: if (iter+1)/chkpt then
27: Create Checkpoint
28:
29: if num rows on cpu == 0 then
30: Copy image from device to host
31:
32: Free Memory
33: return Time Data

As mentioned earlier, the system matrix A is a 2D matrix that describes the geometrical
and physical properties of the scanner. The rows in the matrix represents all different pair
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3. MLEM Algorithm and System Matrix

of detectors and the columns represent the voxels from which the gamma photons could
come from. The final matrix that is generated is very sparse due to the fact that for any
given voxel, the detector pairs in which the detectors are approximately 180 degrees apart,
are the only viable candidates to receive non zero values.

Parameter Value
Total Size(Bytes) 12,838,607,884

Rows (Pair of detectors) 1,327,104
Columns (Voxels) 784,000

Total Non Zeros(NNZ) 1,603,498,863
Matrix Density(%) 0.1541

Max Value 8.90422e-05

Min Value 5.50416e-24

Max NNZ in a row 6537
Min NNZ in a row 0
Avg NNZ in a row 1208

Most repeating NNZ in row 0
Occurrence of Most repeating NNZ in row 822530

2nd Most repeating NNZ in row 3
Occurrence of 2nd Most repeating NNZ in row 2034

Max NNZ in a column 6404
Min NNZ in a column 0
Avg NNZ in a column 2045

Most repeating NNZ in column 0
Occurrence of Most repeating Mode NNZ in column 215488

2nd Most repeating NNZ in column 231
Occurrence of 2nd Most repeating NNZ in column 260

Table 3.1.: MADPET-II Characteristics

In the scanner MADPET-II, the voxels are divided into a 140 X 140 X 40 grid and the
gamma rays are detected by 1152 detectors arranged in two concentric rings[33]. The table
3.13.1 sheds light on some of the properties of the PET scanner MADPET-II. Even when the
matrix is stored in the sparse format the size of the system matrix is approximately 12.8
gigabytes . It also shows that the configuration of the scanner leads to the creation of the
matrix with greater than 1.3 million rows and almost 800,000 columns. The other important
things to notice are the difference between maximum and minimum values in the matrix
(8.90422e-05 vs 5.50416e-24) which could lead to floating point errors, the difference between
the maximum and average values in the rows (6537 vs 1208) which affects performance in
SPMV and the difference between maximum and average values between the columns
(6404 vs 2045) which affects performance in SPMV T. Figure 3.13.1 shows the distribution of

8



the non zeros in the system matrix A.

Figure 3.1.: Visualization of system matrix for MADPET-II.[33]
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4. Sparse Matrix Format, SPMV and SPMV T

The system matrix A, with its 1327104 rows, 784000 columns and the sparsity of 0.1541%,
if stored in a dense format the matrix would have required approximately 3800 gigabytes
(with values stored as int and float) which would have been very difficult to handle. This
would have put a lot of unnecessary load on the I/O not to mention the memory and
computational resource wastage.

As an example consider the addition of all the values of the matrix. If stored in the dense
format it would have required ≈ 1e12 operations instead of just ≈ 1.6e9 operations if only
the non zeros are stored.

Due to the practical issues already mentioned, it becomes imperative that we consider
”smart” formats for storing these really big matrices. So the format that has been used
to store the system matrix for the PET scanner MADPET-II is a sparse format called Com-
pressed Sparse Row(CSR).


0 0 1 0
2 3 0 0
0 4 5 6
0 0 0 0


Table 4.1.: Full Matrix

CSR Rows (IA) 0 1 3 6 6

CSR Columns (JA) 2 0 1 1 2 3

CSR Value (A) 1 2 3 4 5 6

Table 4.2.: Matrix in CSR format

The table 4.14.1 shows a typical matrix stored in a dense format while the table 4.24.2 shows a
matrix stored in the CSR format.

The CSR format is a row major format i.e left-to-right top-to-bottom. In this format the
matrix is stored in three different one dimensional arrays. The CSR Rows in the table 4.24.2
represents the number of non zeros in each row and it is of the size of number of rows + 1.
[99]

The array CSR Columns stores the column number of each non zero element of the
matrix and hence it is of the size equal to number of non zero elements in the matrix. The
CSR Value array stores all the non zero values of the matrix and hence its size is also same
as the size of CSR Columns i.e equal to number of non zero elements in the matrix.
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4.1. Sparse Matrix Vector Multiplication(SPMV)

To access the values and columns associated with a row, first the number of non zeros
in that row i are calculated by subtracting IA[i] from IA[i +1] i.e. (IA[i+1] - IA[i]). Now
the columns where these non zeros exist and the values can be accessed starting from the
index number IA[i] in the CSR Columns and CSR Value arrays up-to the number of non
zeros in that particular row.

The two types of operation performed with the system matrix are Sparse Matrix Vector
Multiplication(SPMV) and Transpose Sparse Matrix Vector Multiplication(SPMV T) and the
other operations, like the calculation of norm 3.23.2 are derivative of these which will also be
touched upon later.

4.1. Sparse Matrix Vector Multiplication(SPMV)

Sparse Matrix Vector Multiplication or SPMV, is the name given to a set of problems involv-
ing the multiplication of a sparse matrix, CSR here, with a dense vector and hence the
name. The memory and computational requirements are substantially reduced by the use
of SPMV instead of dense matrix vector multiplication but the use has its own performance
pitfalls, especially when using multicore systems.

Source code 4.14.1 shows a concise way to store the CSR matrix.

1 struct CSR_MATRIX{
2 float num_rows;
3 float num_columns;
4 float nnz;
5 std::vector<float> csr_vals;
6 std::vector<int> csr_rows;
7 std::vector<int> csr_cols;
8 CSR_MATRIX(int nRows, int nColumns, int NNZ){
9 num_rows = nRows;

10 num_columns = nColumns;
11 nnz = NNZ;
12 csr_vals.resize(nnz);
13 csr_cols.resize(nnz);
14 csr_rows.resize(nRows + 1);
15 }
16 };

Source Code 4.1.: A possible way to store matrix in Compressed Sparse Row (CSR) format.
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4. Sparse Matrix Format, SPMV and SPMV T

1 CSR_MATRIX csr(nRows, nColumns, NNZ);
2 std::vector vec(csr.num_columns);
3 std::vector <float> spmv(csr.num_rows, 0);
4 for (int i=0; i< csr.num_rows ; ++i)
5 {
6 int nnz_this_row = csr.csr_rows[i+1] - csr.csr_rows[i];
7 for (int j =csr.csr_rows[i] ;
8 j< csr.csr_rows[i] + nnz_this_row; ++j)
9 {

10 int column_num = csr.csr_cols[j];
11 spmv[i] += csr.csr_vals[j]*vec[column_num];
12 }
13 }

Source Code 4.2.: Sparse Matrix Vector Multiplication (SPMV)

The source code 4.24.2 shows how to perform SPMV with a matrix stored in CSR format
as shown in 4.14.1. The vec in 4.24.2 is the vector of size equal to number of columns of the
matrix (csr.num columns) that has to be multiplied with the CSR matrix. For any row i, in
line 6 we calculate the number of non zeros elements in the row and in line 7 we loop over
those number of elements starting from the element number stored at the ith place in the
csr rows array. Finally in line 9 we find out the column number of the value pointed to
by the inner loop and subsequently multiply the value from the CSR values array and the
corresponding value from the vec array and add it into the output result(spmv array) of
row i. The size of the generated output array is equal to the number of rows in the matrix.

4.2. Transpose Sparse Matrix Vector Multiplication(SPMV T)

The next system matrix operation is the multiplication of the transposed sparse matrix
with a vector. SPMV T could also be looked as the matrix stored in column major format
and then performing the SPMV over it. The problem with the second approach is that it
is not always possible to store the matrix in row major and column major format side by
side due to memory limitations. So it becomes very important that SPMV T operation is
also written in a way that the memory accesses are reduced to minimum.

The code 4.34.3 shows a possible way, for the matrix stored in CSR format(4.14.1), that is
transposed and multiplied with a vector of size equal to number of rows of the matrix.
The only change, apart from the changes in size of the input and output arrays in line 2-3,
is that now the vector to be multiplied i.e. vec is accessed based on the row number and the
result is saved in the output array (line 10) corresponding to the column number instead of

12



4.2. Transpose Sparse Matrix Vector Multiplication(SPMV T)

the row number, as was the case in SPMV. The output array generated is of the size equal
to the number of columns of the matrix.

1 CSR_MATRIX csr(nRows, nColumns, NNZ);
2 std::vector vec(csr.num_rows);
3 std::vector <float> spmv_t(csr.num_columns, 0);
4 for (int i=0; i< csr.num_rows ; ++i)
5 {
6 int nnz_this_row = csr.csr_rows[i+1] - csr.csr_rows[i];
7 for (int j =csr.csr_rows[i] ;
8 j< csr.csr_rows[i] + nnz_this_row; ++j)
9 {

10 int column_num = csr.csr_cols[j];
11 spmv_t[column_num] += csr.csr_vals[j]*vec[i];
12 }
13 }

Source Code 4.3.: Transpose Sparse Matrix Vector Multiplication (SPMV T)

13



5. GPU Architecture and Programming

The Graphical Processing Units(GPU) were initially used to generate 2 or 3 dimensional
images and videos that have to be outputted on the display device, be it operating system
or games. The need to design a new processing unit arised because the generation of
the images require a high degree of data parallel computations, where there are lot more
arithmetic operations compared to memory operations, and Central Processing Unit(CPU)
with their very few cores, especially at the start of the century, were not ready to handle the
workload. This requirement finally lead to the development of devices which could handle
highly parallel compute intensive workloads where most of the transistors are devoted to
the data processing instead of data caching and flow control where CPU has the lead.
[1010, 1111]

Figure 5.1.: Central Processing Unit (CPU) vs Graphical Processing Unit (GPU)[1010](NOTE:
Not to scale.)

The Figure 5.15.1 shows how the area on a CPU and GPU die is split into different com-
ponents. In the CPU a lot of die area (percentage wise) is used for cache and control logic
whereas in the case of GPU most of the area (percentage wise) is used for compute units.
This is the reason why the CPU manufactures like Intel could add a lot of new instruction
sets (AVX, SSE, MMX etc). The CPU’s could also run at a much better clock frequency and
are far ahead of GPUs in speculative execution, branch prediction, and store forwarding.
[1212]

Even when the GPUs were only used for the graphical applications and there was no
easy way to communicate or program the device for the non graphics developers, it did not
deter few brave souls, who understood the power of the GPUs to try to use them for their
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5.1. Grids, Blocks and Threads

application using the graphics APIs like Direct3D and OpenGL. Due to these limitations the
learning curve was steep and the full potential of the GPUs could not be utilized.

This all changed with the release of Compute Unified Device Architecture (CUDA) for GPUs
by NVIDIA in 2007. For the first time the non graphical developers had an API that en-
abled them to use GPU for general purpose processing. It provided them a software layer
that gives access to the GPU’s virtual instruction set and parallel compute units, for the ex-
ecutions of compute kernels. The CUDA was designed to work with the languages C, C++
and FORTRAN but now it could also be used from other languages like Java and Python
due to the wide availability of wrappers.

The CUDA programming model was designed to allow developers to leverage the mul-
tiple cores in the GPU to develop transparently scalable software without the hassle of
learning the graphical programming as was the case before. CUDA provided three ab-
stractions at its core; hierarchy of thread groups, shared memories, and barrier synchro-
nization. These abstractions allowed the developer to partition the problem into coarse
sub problems that can be solved simultaneously and independently by a group of threads
in a block where the threads could solve it cooperatively by breaking the sub problem into
even finer pieces. [1010]

The chapter tries to give an overview to the architecture of the CUDA capable NVIDIA
GPUs, the programming model along with a few optimization techniques that could ac-
celerate the performance of the SPMV and SPMV T operations.

5.1. Grids, Blocks and Threads

The threads in a CUDA kernel can be arranged in 1D, 2D or 3D and subsequently are
called one, two or three dimensional thread block respectively. This idea is very helpful as
it helps in mapping a vector, matrix or volume domain logically across the threads. But it
should be kept in mind here that the number of threads in a thread block could not exceed
1024 as all the threads are supposed to reside on the same streaming multiprocessor and
are expected to share the limited resources of that streaming multiprocessor. So some of
the possible configurations for the thread block could be (1024,1,1) or (16,8,8).

The blocks are further arranged in 1D, 2D or 3D and subsequently are called one, two
or three dimensional block grid respectively. The grid size can far exceed the number of
available thread blocks that a GPU can process simultaneously as it is dependent on the
size of data being processed.

Since the dimension of the thread block and block grid could be 2D and 3D apart from
linear (which could be handled with data type int also), NVIDIA has introduced a new
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data type called dim3. The possible example for the 1D block is (1024,1,1) for 2D is (32,32,1)
and for 3D is (16,8,8). Now to calculate the global thread index of a thread, CUDA provides
access to three variables called blockIdx, blockDim and threadIdx. With the help of variable
blockIdx the index of a block could be calculated locally in a grid like blockIdx.x for the
first dimension and so on. The variable blockDim tells the size of the grid like blockDim.x
for the first dimension of the block and so on. And finally the variable threadIdx tells the
user about the local thread number in a block. Using these three variables the global index
of the thread could be calculated as shown in 5.15.1 for a 2D grid and 2D block.

1 int i = blockIdx.x * blockDim.x + threadIdx.x;
2 int j = blockIdx.y * blockDim.y + threadIdx.y;

Source Code 5.1.: Calculating local thread id in a 2D thread block in a 2D block grid.

Figure 5.2.: Grid of Thread Blocks[1010]

The figure 5.25.2 gives a visual representation of the nesting of a 2D block in a 2D grid
where the size of block grid is (3,2,1) while the size of thread block is (4,3,1).
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5.2. Register, Local, Constant, Shared, Global, and Texture
memory

CUDA capable devices have a memory hierarchy where each type of memory has its ad-
vantages and disadvantages and selecting the correct memory to save the data could have
significant effect on the performance of the kernels.

• Register: The fastest of all the memories but it is only accessible by the thread and
has the lifetime of the thread.

• Local: This is not a physical type of memory but an abstraction of global memory. It
has the same scope as registers. Since this memory resides off chip, the access to it is
very slow and it is only used in the case when registers are out of space.

• Constant: This memory is accessible by all threads but is read only. It has the lifetime
of an application.

• Shared: This memory has the lifetime of a block and let the threads in a block share
data among themselves. It is also a fast memory only when there are no bank con-
flicts.

• Global: This memory is the largest and the slowest at the same time. It has the
lifetime of an application and is accessible by all the threads in the application.

• Texture: This is another type of read only memory which is accessible by all threads
in the application. This memory is really helpful in applications where there is a lot
of spatial locality.

The figure 5.35.3 shows the different type of memory which reside on the GPU. Apart from
that it also tells that the global, constant and texture memory are the only ones accessible
from the host.

The table 5.15.1 lists the amount of different types of memory available in NVIDIA Tesla
P100 (NVIDIA Pascal Architecture based GPU in DGX-1).
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Memory Type Size
Global 16 GB

Register/SM 256 KB
Register/GPU 14336 KB

Shared/SM 64 KB
Shared/GPU 3584 KB

Constant 65536 Bytes
Texture As large as Global

Table 5.1.: Different memory size in NVIDIA Tesla P100[1313]

Figure 5.3.: Memory Hierarchy on GPU [1414]
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5.3. Host, Device and Global Kernels

These are the function space execution specifiers which tell the compiler which function
has to be executed on the device and which on host apart form whether it is callable from
device or from host.

• device : This execution space identifier declares that the function is to be executed
on the device i.e. GPU and will be callable from the device only.

• host : This execution space identifier declares that the function is to be executed
on the host and is only callable from the host. If the specifier is omitted then the
compiler assumes that the function has to compiled for the host i.e. CPU.

• global : This execution space identifier declares that the function is to be executed
on the device and will be callable from the host and from the device (With CUDA
capable devices having compute capability higher than 3.2). A global function
must have a void return type and cannot be a member of class. Moreover the call to
a global function is asynchronous.

These specifiers could also be used together but all the combinations are not possible.
For example the global / device and global / host specifiers could not be used to-
gether while the device / host can be.[1010]

5.4. Streams and Events

The CUDA stream represent a sequence of operations which are executed in the order
they are issued. The steams are the work queues to express concurrency between different
tasks. The streams are particularly helpful to make use of the GPU fully. For example,
on one stream a kernel execution could be launched while on the other stream memory
transfer from host to device and from device to host could be performed(this will also
depend on the available resources: two copy engines, compute resources).

CUDA events are synchronization markers that are used to synchronize the tasks from
different streams, allow fine grained synchronization within a stream and finally to allow
inter leave synchronization.

5.5. Asynchronous Kernels and Copy Operations

Asynchronous operations are those which does not block the process for the finishing of
the operation. They do not wait for the return value and hence it is the job of the developer
to make sure that the operation has completed before using the result. Now these opera-
tions, although requiring more work, are very helpful in overlapping two different kind
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of work, for example the overlapping of communication and computation in the multi-
threaded applications.

In the context of CUDA programming some of the operations are already asynchronous
like the launch of global kernels by default. The control, in this case, instantly return to
the host and the developer is required to explicitly add the synchronization calls (depend-
ing on the situation because the use of other synchronized operation ,like cudamemcpy for
copying the data between host and device, will wait for all the previous operations on the de-
vice to finish before executing). In the CUDA kernels the asynchronized implementation
of the operations like cudamemcpy (cudamemcpyasync) are also available and the use of them
helps in hiding the latency. But the use of asynchronous operations, especially cudamem-
cpyasync, requires for a bit more extra work, apart from the explicit synchronization, and
that is to allocate the memory on the host as pinned instead of pageable and also to define
the stream in which the asynchronous operation has to be performed.

5.6. Atomic Operations

In the context of concurrent programming, the atomic operations are operations that hap-
pen in complete isolation without being interrupted. The operations are guaranteed to be
performed without the interference from other threads.

CUDA provides a few atomic functions that work on the global and shared memory. The
important thing to note here is that the use of the atomic operation only guarantees that
access to the memory is serialized i.e. one thread at a time will have access to that memory
but it is not guaranteed in which order the threads will have access to the memory. [1010]

The atomics in the Fermi and Kepler architecture from NVIDIA had been implemented
from the software side and they used to work by the lock/update/unlock sequence. But
from Maxwell architecture onwards, the 32-bit atomics were implemented natively with
the use of specialized hardware and the 64-bit atomics were implemented by compare
and swap (CAS) approach. From Pascal architecture onwards the atomics could also be
performed system wide instead of only the gpu the kernel is running on. [1313]

Some examples of atomic operations available in CUDA are atomicAdd(for atomic addi-
tion) and atomicSub(for atomic subtraction).

5.7. Error Checking

The CUDA API have return functions which can be used to check errors during the execu-
tion of the functions. Source code 5.25.2 shows the function that has been used in the thesis to
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figure out the errors in the CUDA kernels. The function accesses the previous CUDA error
and prints out the information like what the error is and in which line it occurs and finally
it exits the code.

1 string prev_file = "";
2 int prev_line = 0;
3 void cuda_check(string file, int line)
4 {
5 cudaError_t e = cudaGetLastError();
6 if (e != cudaSuccess)
7 {
8 cout << endl << file << ", line " << line << ": "
9 << cudaGetErrorString(e) << " (" << e << ")" << endl;

10 if (prev_line>0) cout << "Previous CUDA call:"
11 << endl << prev_file << ", line " << prev_line << endl;
12 exit(1);
13 }
14 prev_file = file;
15 prev_line = line;
16 }

Source Code 5.2.: Error checking function used in the thesis.

Since the launch of the kernels is asynchronous they do not return any error code but that
does not mean we can’t check for errors. CUDA provides two functions called cudaPeekAt-
LastError() and cudaGetLastError() which could be used to get the value of error variable
that CUDA maintains. The difference between these two functions is that the call to cud-
aPeekAtLastError() return the value of the error variable while the use of cudaGetLastError()
get the value of that variable and sets the variable to cudaSuccess.

5.8. Coalesced Memory Access

To be able to completely understand the idea of coalescing we first have to understand
concept of warps in CUDA. So every kernel that is launched on the device is executed by
a Streaming Multiprocessor(SM). There are many of these SM in each device (the number is
56 in Tesla P100 and each has SM has 64 CUDA cores).

So when a kernel is invoked, the developer have to specify the blocks and threads in
each block and each of these blocks have to be mapped to a SM to execute. All the SM
can share the resources available to that SM (like the 64 KB shared memory available to
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each SM in Tesla P100 ). But the SM tries to further divide the block internally so that each
thread share the same code and follow the same execution path with minimal divergence
and stall at the same point in the kernel. The thread group generated because of this further
splitting by the SM is called a warp and the current maximum size of it is 32 threads for
NVIDIA GPUs.

There are definitely some disadvantages of this approach also especially when different
threads take different execution path which leads to the under-utilization of the hardware
resources.

The global memory in the device is accessed via 32,64 or 128 byte memory transactions.
Now if these memory are aligned perfectly with the size of the warp and warps execute a
global memory access instruction, it tries to coalesce into as less memory transactions as
possible because every global memory access instruction induces a penalty on the through-
put of the device. So for example suppose that each thread in a warp (32 threads) has to
access a float value (4 bytes) in the global memory and if the memory access is coalesced
and the memory is contiguous then this transaction will be completed in a single step but
it could go as bad as 32 transactions in the worst case. [1515]

1 __global__ void mat_vec_mul( float* result,
2 const float* vec,
3 const float* csrVal_d,
4 const int* csrRowInd_d,
5 const int* csrColInd_d,
6 const uint32_t rows)
7 {
8 uint32_t i = threadIdx.x + blockIdx.x*blockDim.x;
9

10 if (i<rows){
11 uint32_t col_num;
12 for (uint32_t j=csrRowInd_d[i]; j< csrRowInd_d[i+1] ; ++j){
13 col_num = csrColInd_d[j];
14 result[i] += vec[col_num]*csrVal_d[j];
15 }
16 }
17 }

Source Code 5.3.: Example of a non coalesced global memory access in SPMV kernel.
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The code 5.35.3 shows an example where the coalescing of the global memory access is not
implemented in the SPMV kernel and the code 5.45.4 shows the example when it is imple-
mented. The performance of these two kernels have been compared in the Part II of the
thesis.

5.9. Pinned Memory

The memory is called pinned because after being allocated it could not be swapped out
from the system memory, for example to the swap partition on the hard drive. In other
words once it is given a place in the host memory then it could not be evicted. This type of
allocation leads to improved I/O efficiency but on the other side the allocation of the pinned
memory takes a bit more time compared to the pageable memory. Moreover the allocation
of too much pinned memory actually degrades the performance of the code so it should
be used with care. [1717]

In CUDA the pinned memory on the host could be allocated with the help of two func-
tions namely, cudaHostAlloc() and cudaHostMalloc(). These two functions doesn’t have any
difference when cudaHostAlloc() is used in the default mode.

The final implementation is using the pinned memory because of the inherent compul-
sion to use it when using asynchronous functions in the multi GPU case. The pinned mem-
ory is further allocated with the option cudaHostAllocPortable because then the memory is
considered pinned for all the contexts and not just the current context.

5.10. Bank Conflicts

Shared memory is a type of on-chip memory and hence it has much lower latency and
much higher bandwidth. To achieve even better bandwidth the shared memory avail-
able per block is divided into multiple equally size memory modules called banks (there
are 32 banks in the modern SM which is equal to the warp size). The memory accesses
by the threads to these different banks could be handled at the same time (and thus the
bandwidth increases by the factor equal to number of simultaneous memory requests) but
the bank conflicts occur when more than 1 thread tries to access the same memory bank.
The hardware handles this by splitting the requests into as many conflict free requests as
possible which is ultimately responsible for bandwidth penalty. [1818, 1919]
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1 __global__ void mat_vec_mul_warp ( const uint32_t nnz_to_skip,
2 const int rows ,
3 const int* csrRowInd_d ,
4 const int* csrColInd_d ,
5 const float* csrVal_d ,
6 const float* vector ,
7 float* result)
8 {
9 __shared__ float vals [1024];

10

11 uint32_t thread_id = blockDim.x * blockIdx.x + threadIdx.x;
12

13 // thread index within the warp
14 uint32_t thread_lane = threadIdx.x & (WARP_SIZE-1);
15 // global warp index
16 uint32_t warp_id = thread_id / WARP_SIZE;
17 // total number of active warps
18 uint32_t num_warps = (blockDim.x / WARP_SIZE) * gridDim.x;
19 // one warp per row
20 for ( uint32_t row = warp_id; row < rows ; row += num_warps)
21 {
22 uint32_t row_start = csrRowInd_d [ row ];
23 uint32_t row_end = csrRowInd_d [ row +1];
24 // compute running sum per thread
25 vals [ threadIdx.x ] = 0.0;
26 for ( uint32_t jj = row_start + thread_lane ;
27 jj < row_end ; jj += WARP_SIZE){
28 vals [ threadIdx.x ] += csrVal_d[jj-nnz_to_skip]*
29 vector [ csrColInd_d [ jj -nnz_to_skip]];
30 }
31 // first thread writes the result
32 if ( thread_lane == 0){
33 for (int i =1 ; i<WARP_SIZE ; i++)
34 vals[threadIdx.x] += vals[threadIdx.x + i];
35 atomicAdd(&result[row], vals[threadIdx.x]);
36 }
37

38 __syncthreads();
39 }
40 }

Source Code 5.4.: Example of a coalesced global memory access in SPMV kernel.[1616]
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There are three more terminologies that have been used in the thesis and thus they warrant
a brief introduction and this chapter is about those three terms.

6.1. Heterogeneous Computing

Heterogeneous Computing refers to the systems in which there are more than one kind of
processors working together to solve a task and each one of them is specialized for certain
kind of tasks. An example of that is the use of GPU along with the CPU to solve a problem
as is the case in the present thesis. This approach can be scaled further to create a network
of these heterogeneous systems where there could be one or more co-processors i.e GPU
connected to a single host. The MAC cluster in LRZ is based on this very same idea.

In heterogeneous computing it is not always necessary that the host and the co-processors
are all of the same type and this introduces additional difficulties in workload balancing.

The thesis is an attempt to harness the power of the host and co-processor in the best
possible way to solve the MLEM algorithm as fast as possible especially when there is not
enough memory on the GPU to store the entire matrix at once

6.2. CUDA Aware MPI

MPI stands for Message Passing Interface and it is a communication protocol for communi-
cating data between distributed processes through messages. It is written with scalability
for multi node systems in mind. Now the non cuda aware MPI implementation could be
used easily to communicate data in the multi core heterogeneous systems but it involves
a bit of extra work to achieve that and also leads to performance hit. Due to the above
mentioned reasons it is a good idea to combine the parallel programming approaches of
CUDA and MPI.

To start a multi core distributed code, MPI requires that the user provides the number
of processes the application should scale to. Now to exchange data between the processes
(where some calculation has been performed by the GPU), in the non cuda aware mode the
data from the GPU has to be copied back for the host to send and when the host receives the
data then that has to be again copied into the GPU explicitly. Now this approach requires
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4 commands to achieve instead of just 2, if we use the cuda aware MPI. The example 6.16.1 and
6.26.2 shows this difference.

1 //on MPI rank 0
2 cudaMemcpy(h_send_buf, d_send_buf, size, cudaMemcpyDeviceToHost);
3 MPI_Send(h_send_buf, size, MPI_FLOAT, 1, 0, MPI_COMM_WORLD);
4

5 //on MPI rank 1
6 MPI_Recv(h_recv_buf, size, MPI_FLOAT, 0, 0, MPI_COMM_WORLD,&stat);
7 cudaMemcpy(d_recv_buf, h_recv_buf, size, cudaMemcpyHostToDevice );

Source Code 6.1.: Example of communication between processes when the MPI is not
CUDA aware.

1 //on MPI rank 0
2 MPI_Send(d_send_buf, size, MPI_FLOAT, 1, 0, MPI_COMM_WORLD);
3

4 //on MPI rank 1
5 MPI_Recv(d_recv_buf, size, MPI_FLOAT, 0, 0, MPI_COMM_WORLD,&stat);

Source Code 6.2.: Example of communication between processes when the MPI is CUDA
aware.

The feature works because of the Unified Virtual Addressing(UVA) introduces with CUDA
4.0 (for GPU from Fermi architecture onwards). The UVA allows the memory of host and
all the devices connected to it in a system, to be treated as a single virtual address space. In
the absence of UVA, the MPI would have to be told where the memory lives i.e on host or
on device, which could have been achieved automatically or with an addition argument in
the MPI commands. The figure 6.16.1 shows how the UVA maps all the memory in a system
to a single virtual address space. [2020]

The use of CUDA aware MPI accelerates the communication by pipelining all the opera-
tion in the message transfer and also by the use of acceleration technologies like GPUDirect
implemented incrementally by NVIDIA from Kepler architecture onwards. An example
of the GPUDirect technology, figure 6.26.2, is the GPUDirect P2P, which is used to transfer
the memory from one GPU to another without being staged through the host during intra
node communication. This approach leads to a higher bandwidth and low latency com-
munication between GPUs.
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Figure 6.1.: Mapping of memory in a system with UVA(right) and without UVA(left)[2020]

Figure 6.2.: The communication without the use of GPUDirect P2P (left) and with GPUDi-
rect P2P (right)[2020]

Even in the GPUs with Fermi architecture, which do not have any of the GPUDirect
technologies implemented, the use of CUDA Aware MPI leads to faster communication
due to the fact that is pipelines the communication and reduces some bottlenecks.

6.3. Floating Point Arithmetic

This section will try to give a very brief overview of the what floating point numbers are,
how they are represented into the computers, IEEE-754 standards and finally the differ-
ence between results that are encountered during the course of the thesis and the possible
reasons for those differences.

The floating point numbers are called so because in these numbers the binary/decimal
point can float over the significant digits based on the exponent. For example the 1.2345
with its 5 significant digits can be represented as 1.2345x100 or as 12345x10-4.

The representation 1.2345x100 is also called the normalized scientific notation. In the nor-
malized scientific notation a floating number is represented as d0.d1d2d3...dn-1 x βe. In this
representation d0.d1d2d3...dn-1 are called the n significant digits, β the base and e the ex-
ponent. In this representation it is also required that the absolute value of d0.d1d2d3...dn-1
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should be greater than 1 and less than 10 (for the representation in base 10). [2121]

The modern day computers are made up of billions of transistors and those transistors
have only 2 states i.e 0 and 1. This is the reason why the floating point numbers in the com-
puters are represented in base 2. Although it is possible to simulate the decimal numbers
with binary circuits as well but it leads to less efficient implementation.

The need to have a floating point standard like IEEE-754 arised because in the earlier
days of computer era the vendors were implementing floating point arithmetic in their
own way. For example IBM was using some guard digits to perform the floating point
arithmetic exactly and then rounding of the result. This lead to the situation where pro-
grams were not giving same result on different machines which in some applications could
have cascading effects. The IEEE-754 standard released in the year 1985 was an attempt to
solve this reliability and portability problem by laying down the rules for representation of
floating point numbers, their interchangeability, rounding errors, exception handling and
operations. [2222]

The floating point number in the IEEE-754 is represented by 32 bits in base 2. The 32
bits are divided into 3 parts. The first 23 bits are allocated for the significant digits, the
next 8 are saved for the exponent and the last one for the sign of the number. With this
representation the values in the range≈ -1.4e-38 to≈ 3.4e38 could be stored as floating point
numbers. [2323]

Out of the four basic arithmetic operations, addition, subtraction, multiplication and
division, the use of addition and subtraction in the case where one number is very large
and another one require special attention. The reason for that is that the while adding
or subtraction floating point numbers, IEEE-754 require that the exponents are matched
and then the fraction part is added up. Now this operation has the unintended effect of
the dropping out of the smaller of the two completely (in the worst case) because of the
limited number of available bits to save the fraction part.

For example, the summation of 1.0e0 and 1.0e-8 in 32 bits would give an output of 1.0e0

which is not correct if looked from the perspective of exact arithmetic. The table 3.13.1 shows
that the values in the system matrix are also quite far apart and hence these kind of errors
could also crept there and they did. The interesting thing to note here is that even the result
from the CPU and the GPU, when both use IEEE-754 standards, were slightly different,
7108.830078 vs 7109.272461 when taking the sum of all the non zero values in the matrix.

28



6.3. Floating Point Arithmetic

1 #ifndef __STDC_IEC_559__
2 #error "Requires IEEE 754 floating point!"
3 #endif
4

5 #include <iostream>
6 #include <cblas.h>
7 #include <cublas_v2.h>
8 #include <cuda_runtime.h>
9

10 int main(int argc, char *argv[]){
11 size_t array_size = 1e8 + 1;
12 float *array = (float*) malloc(array_size*sizeof(float));
13 array[0] = 1;
14

15 float seq_sum = 0.0;
16 for (int i=0; i<array_size ; ++i) seq_sum += array[i];
17

18 float cpu_blas_sum = 0;
19 cpu_blas_sum = cblas_sasum(array_size, array, 1);
20

21 cublasHandle_t cublasHandle;
22 cublasCreate(&cublasHandle);
23 float* array_d;
24 cudaMalloc((void**)&array_d , array_size*sizeof(float));
25 cudaMemcpy(array_d , array , array_size*sizeof(float),
26 cudaMemcpyHostToDevice);
27

28 float gpu_blas_sum = 0.0;
29 cublasSasum(cublasHandle, array_size, array_d, 1,
30 &gpu_blas_sum);
31

32 delete [] array;
33 cublasDestroy(cublasHandle);
34 cudaFree(array_d);
35

36 std::cout << "seq_sum:" << seq_sum << std::endl;
37 std::cout << "cpu_blas_sum:" << cpu_blas_sum << std::endl;
38 std::cout << "gpu_blas_sum:" << gpu_blas_sum << std::endl;
39 return 0;}

Source Code 6.3.: Code to study the effect of summing up an array using different meth-
ods.
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1 seq_sum: 1
2 cpu_blas_sum: 1.75
3 gpu_blas_sum: 1.99968

Source Code 6.4.: Result of the source code 6.36.3

In the code 6.36.3, a float array of size 1 + 10e8 is created and the first address is filled with
value 1e0 and rest all of them with 1e-8 and then the array is summed up in 3 ways. In the
first case the array is summed up sequentially, in the second case the BLAS library is used
and lastly the array is summed up on the GPU using CUBLAS library by NVIDIA and the
results are presented in 6.46.4. The correct result is 2 and as evident from 6.36.3 the GPU gives
the closest result.

The possible reason for the discrepancy in the results is because when adding sequen-
tially, the first value is big enough that all the other values becomes insignificant during
addition due to the use of floats. The reason for better result when using the BLAS library
on the CPU and CUBLAS on the GPU is that the summation now happens with reduction
and hence some of the smaller values are added up and they become large enough to be-
come significant with respect to the larger value before being added into it. But still the
GPU result is more accurate possibly because of the fact that the array is divided into even
smaller pieces for reduction to make better use of large number of cuda cores.
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Experiments and Results
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7. Benchmarking MAC Cluster

The purpose of doing this test was two-fold. One, to gauge the performance of Fermi
Architecture based GPUs (M2090) in Mac cluster vs Pascal Architecture based GPUs available
in DGX-1. Secondly, the default MPI implementation available in Mac Cluster is from Intel
and so it was also interesting to see how other implementations perform on it. So, the
other MPI implementation used is OpenMPI.

For this test all the 4 nodes (2 sockets per node) available in the cluster were used. Only
1 task per socket was launched and the processes were bound to the core. For each MPI
implementation the application was launched 50 times and in each run 10 iterations were
performed.

The figure 7.1a7.1a and 7.1b7.1b shows that the GPUs are solving the SPMV and SPMV T op-
eration at almost the same speed across processes. The slight variation in performance
could be explained by the fact that the matrix is divided between the processes equally
with respect to non zero values. Now in the figure 3.13.1 it could be seen that the non zeros
are more in initial rows and they subsequently decrease in later rows. So this leads to the
case where the initial ranks have more non zeros per row and later ranks have more rows
for same number of non zeros.

The ”U” shape created by the later ranks in figure 7.1a7.1a could be probably because when
the non zeros per row falls, it leads to less computation per thread and the device has to
launch more thread blocks which brings with it some overhead.

The ≈ 28ms it takes to perform the Forward Projection on the Mac Cluster is 7 times
slower than the time it takes to perform the same operation on DGX-1 (Chapter 1010). The
things gets even more interesting, 64.6 ms vs 7.3 ms, in the case of Backward Projection.
Here the speedup is almost 8.9 times and this effect could be explained by the presence of
hardware support for atomics in the Pascal Architecture based GPUs which was absent in Fermi
based GPUs (Backward projection uses lot more atomics compared to Forward Projection).

The figures 7.1c7.1c and 7.1d7.1d presents the time it takes to perform the reduction operation at
different stages in the application. After the norm calculation, the MPI Allreduce operation
is performed for the first time and here the OpenMPI takes a lot more time compared to
the Intel MPI but once that is over and when again the reduction operations are performed
during the iterations, the OpenMPI edges slightly ahead of the Intel MPI.
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(a) Time to perform Forward Projection
(SPMV).

(b) Time to perform Backward Projec-
tion (SPMV T).

(c) Time taken to reduce the norm cal-
culated.

(d) Time taken to perform reduction in
the loop.

Figure 7.1.: Mac cluster benchmarking results.
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8. Effect of Cuda Aware MPI, Pinned
Memory and Custom Kernels

The final MLEM implementation was not achieved in a single attempt. There were few it-
erations where different path to achieve a objective was implemented, studied and finally
the best possible was chosen. This chapter show the effect of some of those implementa-
tions on the performance on different kernels.

The table 8.18.1 shows the difference between different implementations. For example in
the version 1,2 and 3 the only difference is whether the reduction is implemented with
or without CUDA AWARE MPI and if not then whether the memory for it was pinned or
not. The differences between version 5 and 6 are that the version 6 is not CUDA AWARE
and it uses pinned memory for the reduction, it is also the only one which allocated pinned
memory for the CSR arrays and finally the last difference is between the block size used for
the SPMV and SPMV T kernels. The block size in the case of the version 5 is 1024 and in
the case of version 6 it is 64.

Change\Versions V 1 V 2 V 3 V 4 V 5 (1024) V 6 (64)
Cuda Aware NO NO YES YES YES NO

Pinned Mem for Reduction NO YES N/A N/A N/A YES
Pinned Mem for CSR NO NO NO NO NO YES

CuSparse SPMV YES YES YES NO NO NO
CuSparse SPMV T YES YES YES NO NO NO

Coalesced Mem Access SPMV T NO NO NO NO YES YES
Non Coalesced Mem Access SPMV T NO NO NO YES NO NO

Coalesced Mem Access SPMV NO NO NO NO YES YES
Non Coalesced Mem Access SPMV NO NO NO YES NO NO

Table 8.1.: Differences between implementations.

The test was performed on the DGX-1 with 8 MPI processes. Each MPI processes was
allocated a GPU and the MPI processes were bound to core. The data for each version was
collected by running it 20 times and each time 10 iterations were performed.

The figure 8.1a8.1a tells that it takes a considerably less time to load the data and convert it
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(a) Loading and converting the data
into CSR format.

(b) Allocation of memory on the device
and copying the data into it.

(c) Performance of SPMV kernel in dif-
ferent implementations.

(d) Performance of SPMV T kernel in
different implementations.

Figure 8.1.: Performance difference between implementations.
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8. Effect of Cuda Aware MPI, Pinned Memory and Custom Kernels

into the CSR format, if pinned memory is used for it. The possible reasons for the wide
variations between the timing for the same version are the I/O limitations because all the
processes will try to read the data at the same time and so some will read it faster than
the others. The other reason for the variation could be from how the experiment was
performed. For performing the experiment the MPI processes were bound to the core but
they were free to be allocated on any core of the dual socket DGX-1.

The figure 8.1b8.1b shows that the time to send the data to the GPU is much faster if the
pinned memory is used and the variation between the timing is also very less in that case.

The forward projection time in different implementations, figure 8.1c8.1c, shows that the
custom SPMV implementation using coalesced memory access and the Cusparse imple-
mentation provided by NVIDIA are very close in terms of performance but the same can’t
be said about the non coalesced version implemented in the case of version 4. Moreover,
there is not much variation between timing in the implementations, apart from non coa-
lesced memory access version, and the reason for that is due to the non zeros in the rows
that are allocated to each MPI process.

The backward projection time for different implementations is shown in figure 8.1d8.1d. It
shows the custom kernel written using coalesced memory access is faster than the SPMV T
implementation provided by NVIDIA. The possible reason for this behaviour could be that
the kernels provided by NVIDIA are guaranteed to provide bit wise same result and there
is no efficient way to achieve that yet in SPMV T. Here again the performance hit because
of not using coalesced memory could be seen in version 4.

The figure 8.28.2 shows the time it takes to perform reduction operation reduces when
pinned memory is used but it increases when the CUDA AWARE MPI is used. The possi-
ble reason could be because of the fact that the MPI was not built considering the under-
lying communication network which might degrade the performance. But still it warrants
further scrutiny. The reason for the variation between processes stems from the SPMV T
calculation difference from earlier in the iteration loop, figure 8.1d8.1d, and hence they should
be viewed together. The process which finishes the Backward Propagation faster has to
wait longer at the reduction step.

The figures 8.3a8.3a and 8.3b8.3b provides a closer look at the performance difference when
the block size for the kernels is changed from (1024,1,1) in implementation 5 to (64,1,1) in
implementation 6. It could be seen that unexpectedly there is a performance hit going from
version 5 to version 6. It was expected that the performance will improve with this change
as the kernel allocates a warp to a row and so when the row is big it stalls the entire block
and going for a smaller block was supposed to alleviate this and improve performance.
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All the performance tests in later chapters have been done with block size of (1024,1,1).

Figure 8.2.: Reduction operation performance in different implementations.
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8. Effect of Cuda Aware MPI, Pinned Memory and Custom Kernels

(a) Closer look at the Forward Projec-
tion.

(b) Closer look at the Backward Projec-
tion.

Figure 8.3.: Performance difference when the block size for the kernels is changed.
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9. Effect of Splitting Work between CPU and
GPU

This test was performed to see the effect of how the problem scales when more and more
part is solved on the GPU. For this test the DGX-1 machine was used and the application
was launched with only 1 MPI process. The application was bound to the core and the
mapping was done per core. For solving the part on the CPU this application uses 2 Openmp
threads, which are on the same core. The tests were performed 50 times with 10 iterations
for each distribution of work between host and device.

(a) Time to calculate initial value and
then initializing image vector.

(b) Total time for Allocation and Initial-
ization Operations.

Figure 9.1.: Time to perform Allocation and Initialization Operations.

The figure 9.1a9.1a shows the difference between the time it takes for initializing the image
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9. Effect of Splitting Work between CPU and GPU

vector of size 784,000 floats on the CPU and on the GPU. Before initialization of the image,
the initial value is calculated by performing 2 BLAS operation on the GPU. The drastic
drop when only using GPU is because now there is no need for a Image vector on the host.
It is also important to note here the image initialization on the host is also accelerated by
OpenMP.

In the figure 9.1b9.1b the effect of the increasing workload allocation to the device with
respect to the total allocating and initializing vectors time could be seen. The Norm Calcu-
lation, SPMV T operation where the vector is a unit vector, time reduces as we increase the
percentage allocation on the device which is exactly what is expected.

(a) Time to calculate correlation. (b) Time to reduce Backward Proj.

Figure 9.2.: Effect of increasing device workload on Correlation calculation and
MPI Allreduce time.

After partitioning the system matrix, the application has to determine which part has to
be solved on the host and which on the device and this splitting is performed in Further
Partition. Again the constant partition time is what is expected from the application.

As more and more part is allocated to the device, more of the initial data has to be
converted into the CSR vectors, more data has to be copied on the GPU and hence the
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(a) Time to perform a iteration. (b) Total application runtime.

Figure 9.3.: Total time to complete a iteration and total runtime of application with 100
iterations.

overall time for allocation and initialization should increase. The same effect could also be
seen in the figure 9.1b9.1b.

The correlation operation is a scaling step, equation 3.53.5, and from the figure 9.2a9.2a it could
be deduced that the GPU is much more capable in accomplishing it compared to a CPU
with 2 OpenMP threads.

In the reduction step, the data is copied from device to host, the result from the host is
added, then the MPI Allreduce operation is performed and finally the result is copied back
into the device. Now when all the workload is on the device, the addition of result from
the host need not to be performed and hence it should make this operation faster. The
exact same effect could be seen in the figure 9.2b9.2b.

In the figure 9.3a9.3a, it could be seen that the total iteration time reduces proportionately
from 10 to 90 percent but when only using device it drops few folds. This shows the edge
the GPU hold over the CPU in this computation.
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9. Effect of Splitting Work between CPU and GPU

The figure 9.3b9.3b sheds light on how the use of even 1 GPU could reduce the computation
time by many folds. It is also interesting to note that when all the computation is happen-
ing on the GPU, the allocation and initialization time is comparable to the time it takes
to perform 100 iterations. This effect could also be seen in the profiling results shown in
chapter 1313.
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10. Performance vs Number of GPU

The purpose of this test is to determine the scaling of the implementation when the number
of MPI processes are increased from 1-8 with each connected to a GPU. This test was per-
formed on DGX-1. The processes were bound to core and they were mapped by L3cache.
The tests were performed 50 times for each increase in MPI processes with 10 iterations.
So the results presented in figure 10.110.1 are calculated over 50 data points and the results
presented in 10.210.2 are calculated over 500 data points.

(a) Time to Allocate and Initialize CSR
and measured data

(b) Total time for Allocation and Initial-
ization Operations.

Figure 10.1.: Time to perform Allocation and Initialization Operations.

The possible reason why the perfect scaling is not achieved in the allocation and copying
the data on the devices,figure 10.1a10.1a, is because of the way the test was performed. Since
we mapped the processes to the L3cache which means that we only use one of the CPU
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and since each CPU has only two PCIe-3 x16 slots, which means that the total double data
transfer rate is 64 Gigabytes per second (GBps). Moreover, each PCIe-3 slot is directly
connected to 2 GPUs and so each CPU has direct connection to only 4 GPUs and for the
rest of the GPUs the data transfer takes over NVlink. But we see the speedup as we increase
the number of MPI processes because not each MPI process asks the PCIe-3 slot to transfer
the data at the same time and due to this staggering the data is loaded faster.

The figure 10.1b10.1b shows how the total time reduces as the number of MPI processes (with
a GPU each) are increased from 1-8. The limitation on I/O, i.e RAM and storage, could be
argued as the reason why the reading and conversion to CSR vectors of the system matrix
(marked as blue) does not scale perfectly with the increase in number of MPI processes.

The figure 10.2a10.2a and figure 10.2b10.2b shows the effect on Forward Projection(SPMV) and Back-
ward Projection (SPMV T) calculation time with increasing number of GPUs. These two
operation scales more than perfectly with the increasing number of GPUs and the reason
is the increase in total available atomic functional units. It could also be argued that this in-
crease might be coming from the increasing total memory bandwidth but that is unlikely.
It is so because the total amount of data that has to be read and written in each kernel is
12838.6 + 5.3 + 3 = 12846.9 MegaBytes and the forward and backward projection kernels for
1 GPU finishes in approximately 32.3 ms and 63.1 ms and in 4.0 ms and 7.3 ms for 8 GPUs
respectively. This gives a effective bandwidth of 397.7 GBps and 203.6 GBps in case of 1
GPU which increases to 401.5 GBps and 220.0 GBps for 8 GPUs for forward and backward
projection respectively while the theoretical maximum is 732 GBps.

The effect of increasing number of atomic functional units is more pronounced in the case
of backward projection because there are lot more total atomic operation in the backward
projection, 1,327,104 vs 1,603,498,863 to be precise.

The figure 10.2c10.2c presents the typical behaviour of MPI Allreduce operation with the in-
creasing number of MPI processes, i.e. increasing operation time with increasing MPI
processes.

Finally, the figure 10.2d10.2d shows the decrease in total runtime for a iteration with increas-
ing GPUs. Even though the forward and backward projection scaled more than perfectly
with increasing GPU, that effect is adversely affected by the MPI Allreduce time in the
overall iteration time.

The figure 10.310.3 shows the total runtime of the implementation with 100 iterations and
overall it scales very well but not perfectly with increasing GPUs. This figure also tells
that the GPUs could be used to reduce the problem runtime proportionately but for that
to happen, there should be lot more computation.
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(a) Time to perform Forward Projection
(SPMV)

(b) Time to perform Backward Projec-
tion (SPMV T)

(c) Time to perform MPI Allreduce af-
ter Backward Projection

(d) Total time taken to complete a single
iteration.

Figure 10.2.: Time to perform operations in the iterations.
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Figure 10.3.: Total runtime from start to end for 100 iterations.
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11. Performance on CPU vs OpenMP Threads

This test was performed to see the effect of how the implementation scales on the host
when more and more OpenMP threads are provided. For this test, a node was allocated
on the Mac Cluster and the application was launched with only 1 MPI process. The appli-
cation was bound to the hwthread and the mapping was done per L3cache. The tests were
performed 50 times with 10 iterations for each subsequent increase in OpenMP threads
available to the host.

The figure 11.1a11.1a and 11.1b11.1b show the effect of increasing openmp threads for the compu-
tation of Forward Projection (SPMV) and Backward Projection (SPMV T) respectively. In both
the figures it could be seen that the increasing openmp threads have clear positive effect on
the time it takes to complete the computation upto 8 threads, although not proportionally.
The reason for not seeing the proportional increase is because all the threads are mapped
by the L3cache and hence are using the same host resources like Last Level Cache (LLC).

Now the reason for the very slow decrease in time taken to solve the Forward Projection
and even increase in time taken to solve the Backward Projection after 8 Openmp threads is
due to the fact that now the hyper-threading of the host kicks in. After 8 Openmp threads,
the subsequent threads are allocated on the same core which has already one thread run-
ning on it and due to this a lot of context switching takes place during the execution which
ultimately degrades the performance. The effect is more pronounced in the case of Back-
ward Projection because it uses a private array per thread to compute the SPMV T com-
pared to none for computing SPMV in Forward Projection, which degrades the cache per-
formance. The codes 11.111.1 and 11.211.2 are the host implementation of Forward and Backward
projection respectively to show the use of private array per thread.

The figure 11.1c11.1c shows how the increase of openmp thread affects the performance of
a iteration in total. In the figure it could be seen that the performance increase only till 8
openmp threads because after that the degradation in backward projection overwhelm the
slight increase in performance for forward projection.

The table 11.111.1 shows the bandwidth achieved, per process and per thread, as the num-
ber of OMP threads are increased from 1 to 16 when launching the application with 1 MPI
process only. It shows that in the case of Forward projection the bandwidth increases as
we increase the OMP threads but falls with respect to per thread. In the case of Back-
ward projection the bandwidth rises when the threads are increased from 1 top 8 but falls

47



11. Performance on CPU vs OpenMP Threads

(a) Time to perform Forward Projection
(SPMV).

(b) Time to perform Backward Projec-
tion (SPMV T).

(c) Total time taken to complete a single
iteration.

Figure 11.1.: Time to perform operations in a iteration.
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Operation(BW) \OMP Threads
1 8 16

Process Thread Process Thread Process Thread
Forward Projection (GBps) 4.59 4.59 26.7 3.34 30.47 1.90

Backward Projection (GBps) 3.88 3.88 12.25 1.53 7.87 0.49

Table 11.1.: CPU bandwidth per MPI process and per thread as a factor of increasing OMP
thread when launching application with 1 MPI process.

when increase from 8 to 16. In this case also the bandwidth per thread keeps falling as we
increase the OMP threads.

1 #pragma omp parallel for schedule(dynamic)
2 for (size_t row=further_split_for_cpu.start ;
3 row< further_split_for_cpu.end ; ++row){
4 float res = 0.0;
5

6 std::for_each(matrix.beginRow2(row), matrix.endRow2(row),
7 [&](const RowElement<float>& e){
8 res += e.value()*image_mask[e.column()];});
9 correlation[row] = res;

10 }

Source Code 11.1.: Forward projection on host.

1 #pragma omp parallel{
2 Vector<float> pri_update(update.size(), 0.0);
3 #pragma omp for schedule(dynamic)
4 for (uint32_t row=further_split_for_cpu.start;
5 row<further_split_for_cpu.end; ++row){
6 std::for_each(matrix.beginRow2(row), matrix.endRow2(row),
7 [&](const RowElement<float>& e){
8 pri_update[e.column()]+=e.value()*correlation[row];});
9 }

10 #pragma omp critical
11 for (size_t i = 0; i < update.size(); ++i)
12 update[i] += pri_update[i];
13 }

Source Code 11.2.: Backward projection on host.
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12. Compilation for Specific Architecture

When compiling the project, the compiler nvcc could also be asked to compile the project
for a specific architecture. This enable architecture specific optimization.

Since this test was performed on the DGX-1 and the Pascal GPUs have the compute
capability of 6.0, the architecture specific optimization was enabled using the option –gpu-
architecture=sm 60. The test was performed 20 times each with and without compiling
the implementation for specific architecture. Each time the implementation was asked to
perform 10 iterations.

(a) Forward Projection time. (b) Backward Projection time.

Figure 12.1.: Performance difference with and without architecture specific compilation.

The figures 12.1a12.1a and 12.1b12.1b shows the effect of compiling the code with and without the
architecture specific optimization for SPMV and SPMV T respectively. In the forward pro-
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jection the performance improves slightly when the code is compiled for the architecture
but in the case of backward projection the difference is almost non existent.
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13. Profiling using NVVP

This test was performed to gauge the performance of different kernels using the NVIDIA
Visual Profiler (NVVP). The test was performed with 1 MPI process. The test was performed
on a virtual server with 16 virtual core and 1 Tesla P100 GPU. For profiling, the application
was run for 100 iterations.

The figure 13.113.1 shows the timeline generated for the implementation for 100 iterations.
The interesting thing to note here that it takes only approximately 31.5 seconds from start
to end and out of that almost 16 seconds are taken up by initialization steps. It can also be
seen that since the memory was pinned, it takes around 1 second to free it.

The table 13.113.1 shows the occupancy for the kernels and the data transfer rate for the
memory movement operations between host and device.

Kernel Performance
CudaMemCpy (HtoD) Transfer Rate 11.3 - 11.6 GBps
CudaMemCpy (DtoH) Transfer Rate 10.4 - 10.7 GBps

SPMV T kernel time 64.5 ms
SPMV T kernel Occupancy 79.1 %

SPMV kernel time 31.6 ms
SPMV kernel Occupancy 98.9 %

Correlation Calculation kernel time 33 µs
Correlation Calculation kernel Occupancy 67.1%

Image update Kernel time 30 µs
Image update Kernel Occupancy 82.3 %

Cublas Sum time 11.5 µs
Cublas Sum Occupancy 82.3 %

Cuda MemSet time 864 ns
Cuda MemSet Throughput 6144 GBps

Table 13.1.: Performance of kernels during the iterations.

52



Fi
gu

re
13

.1
.:

A
pp

lic
at

io
n

pr
ofi

lin
g

us
in

g
N

V
V

P
fo

r
10

0
it

er
at

io
ns

.

53



Part III.

Future Work and Conclusion
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14. Future Work

14.1. Resource Aware Computing

The Figure 14.114.1 gives a visualization of present implementation of the MLEM algorithm
done in the thesis. The implementation is able to run in parallel across multiple nodes
with the use of MPI library. Each MPI process could also make use of the none or many non
overlapping CUDA capable GPUs (the GPUs accessible by one MPI process should not be
accessible by any other). Also when the entire work allocated to a MPI process could not
be offloaded to the GPUs then the remaining work is solved on the host by making use of
OpenMP to accelerate it.

Figure 14.1.: Capability of the present implementation.

Figure 14.2a14.2a shows the present implementation of the splitting of work between the
MPI processes. In the present case the system matrix is divided equally amongst each
MPI process which has a huge drawback when even one of the MPI process does not have
enough resources to solve it fast enough so that other processes does not have to wait.
This implementation also could not make full use of the resources available in machines
like DGX-1 because each MPI process could only handle upto 3 GPUs and launching more
than 1 process will lead to overlapping of the GPUs amongst the MPI processes which in
the worst case would lead to the implementation crashing.
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14. Future Work

(a) Not resource aware splitting of work

(b) Resource aware splitting of work

Figure 14.2.: Splitting of system matrix NNZs when the implementation is resource aware
and when it is not.

All the above mentioned drawbacks could be ameliorated by using flowchart for split-
ting the work shown in figure 14.2b14.2b. In the resource aware case, the MPI processes make
sub communicators based on their host-names and the MPI processes in each sub com-
municator splits the available resources amongst themselves. Now after deciding on the
resources, each MPI process takes the chunk of the the system matrix that it can solve with
the results being ready at almost the same time as all other processes. This implementation
leads to much better load balancing, faster execution and optimal resource utilization.

For example, when the resource aware implementation is used on the completely idle
DGX-1 machine, it would split the system matrix in the ratio of 3/8 : 3/8 : 2/8 or 2/8 : 2/8 :
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14.2. Merge Based CsrMV

2/8 : 1/8 : 1/8 depending whether the implementation is launched with 3 MPI processes or
5 MPI processes.

14.2. Merge Based CsrMV

The merge based CsrMV has been developed by Merrill and Garland in 2016 at NVIDIA[2424].
This SPMV does not require any type of preprocessing or formatting while trying to solve
the issue of unequal workload in the case of multi threaded systems. The other techniques
that could also solve the unequal workload problem usually entails either some prepro-
cessing time or they need some extra storage which might not be always available.

The CsrMV implementation used in the thesis does the multiplication on a per row basis
and this has the disadvantage that the solve time is determined by the largest number
of non zero elements in a row. For example, in the system matrix for MADPET-II, the
maximum number of non zero elements in a row are almost 5 times the number of average
non zero elements in a row which leads to 5 times more operations for that row versus the
average.



0 1 0 2 0 0
3 0 0 0 0 0
0 0 0 0 0 0
0 0 4 0 0 0
0 0 0 5 6 0
7 0 8 0 0 9


Table 14.1.: Full Matrix

Table 14.2.: Example showing visualization
of merge based CsrMV.

Table 14.114.1 shows a dense matrix and the table 14.214.2 shows the arrangement of the CsrRow
on the x-axis and the index of the arrays CsrCol and CsrVal on the y-axis which leads to
the generation of a grid which a merged path computation will transverse from top-left
to bottom-right in |CsrRow| + |CsrCol| steps. While moving along the path marked by the
dark black line in 14.214.2, when the merge path moves vertically it consumes the elements from
CsrRow and when moving horizontally it consumes the elements from CsrCol/CsrVal.
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14. Future Work

For launching this algorithm on p threads, first the grid is divided into p parts diagonally
of equal width and then each thread determines it own path in the part allocated to it. The
starting vertex for each thread (marked by red dots) could be determined by the constrained
binary search along the first diagonal in the thread’s swath. More specifically, for any
diagonal k: the vertex (i,j) fulfills the condition that CsrRowi > all items before CsrColj and i+
j = k. By using this approach the total work to be performed is of the order of O(|CsrRow|
+ |CsrCol|).
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15. Conclusion

In this work, the Maximum Likelihood Estimation Maximization (MLEM) algorithm for the
Positron Emission Topography (PET) has been implemented making use of the GPUs which
has been built upon the previous implementation of MLEM for multicore architectures.
The implementation tries to offload the maximum amount of computation work on the
GPUs. The remaining work is solved by the host to minimize the data transfer between
the host and device which ultimately leads to better performance. The work on the host
is further accelerated by the use of multiple threads using OpenMP. Moreover, the imple-
mentation also gives user the option to specify some of the parameters for selecting the
GPUs through the configuration file.

The first part of the thesis gives a short introduction to the PET scanners, their config-
uration and why they are used. It also gives a mathematical foundation to the equations
solved in the MLEM algorithm, all of which has also been presented as a pseudo code.
After that the Compressed Sparse Row (CSR) format to store the matrix has been explained
along with the sample codes to show how the Sparse Matrix Vector Multiplication (SPMV)
and Transpose Sparse Matrix Vector Multiplication (SPMV T) computations are performed
using this format. The architecture of the GPUs has been discussed briefly along with
CUDA as a programming language, which has been used to write the kernels for NVIDIA
GPUs in the thesis. Most of the discussion about CUDA has centered around the technolo-
gies necessary to produce this work. It also discusses the optimization strategies from the
host as well as device side to gain extra performance.

The next part has focused mainly on the performance and scaling of the implementation
under different scenarios namely with respect to increasing number of OpenMP threads
on the host, increasing number of GPUs and in the case when GPU memory alone is not
enough. Apart from that, some of the tests also focuses on the performance improvements
with the use of Pinned Memory, CUDA Aware MPI, compilation of code for specific GPU
architecture and using custom kernels. Many conclusions can be drawn from the these
tests, which can be summarized as follows:

• Although different MPI implementations are built upon the same standards, there
are still some noticeable performance differences between them.

• The pinned memory could be used to speed up all sort of data transfer i.e. between
host and device, between different MPI processes apart from I/O operations. But the
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15. Conclusion

pinned memory should be used carefully as it takes more time to be allocated and
deallocated and could even degrade the performance in low memory systems.

• The implementation of the library functions should be understood before using them,
especially CuSparse from NVIDIA, since they are not always the best as has been the
case with the SPMV T using CSR format shown in the thesis.

• For accelerating the performance of the host code, the OpenMP threads should not
be increased blindly as they not always lead to better performance.

• Compiling the code for a specific architecture not always leads to better performance
in every kernels but since it does not degrades the performance, the codes should be
compiled architecture specific whenever possible.

During the course of working on the implementation and later during the tests, there
have been times when unexpected behaviour has been observed. An educated guess could
be made to explain some of these behaviours but not for all of them. Further tests are
needed to explain these behaviours. They are as follows:

• On the K20 machine in the LRR chair, if the code is launched with only ./implementa-
tion it does not detect the GPU which is not the case when launched like mpirun -n 1
./implementation.

• The reason for OpenMPI being slower in the first allreduce operation in the imple-
mentation compared to Intel MPI while being faster after that on the Mac Cluster is
still not well understood.

• The reason for the slight difference in results between CPU and GPU is probably due
to different floating point arithmetic implementations but it still require further tests
to be sure.

• The unexpected performance hit when using Cuda Aware MPI warrants further
scrutiny.

• A single MPI process could only handle upto 3 GPUs which is possibly due to I/O
limitations but more research is need to be completely sure.

In hindsight, it could be said that the implementation is performing as intended under
different scenarios. The implementation is able to adapt to the hardware it is being run
on and perform satisfactorily. The two major performance bottlenecks could be solved by
changing the splitting of system matrix from equally among MPI processes now to be more
resource aware and by changing the implementation of SPMV T to merge based SPMV T
which promises better performance and higher GPU occupancy.

60



Appendix

61



A. Computational Resources

A.1. DGX-1

Figure A.1.: Schematic of DGX-1 showing different components [2525]

The DGX-1 is a integrated system specifically designed for deep learning. It has 2 Intel
20 core Xeon processors connected with each other through QuickPath Interconnect, 8 Tesla
P100 GPUs (Pascal Architecture) connected with each other through NVLink (NVIDIA’s
high speed GPU interconnect) and four 100Gb Infiniband network interface cards (NIC).
The system provides 170TFlops of GPU performance on half precision floating point in
addition to 3 TFlops of CPU performance on floating point. The figure A.1A.1 gives a visual
representation of all the components in the machine and how they are connected.
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A.1. DGX-1

Specification Value
OS Ubuntu 16.04LTS

Host RAM 512 GB 2133 MHz DDR4
Model Intel Xeon Broadwell E5-2698V4
Core 20

Threads 40
Base Frequency 2.20GHz

Turbo Frequency 3.60 GHz
Cache 50 MB

Bus Speed 9.6 GT/s QPI

Table A.1.: Each CPU Specifications

Specification Value
Model Tesla P100

Architecture Pascal
Compute Capability 6.0

Cuda Cores 3584
Streaming Multiprocessors 56

Cores/SM 64
Single Precision Perf. 9300 GFlops

Base Frequency 1189 MHz
Turbo Frequency 1328 GHz

Memory Size 16 GB HBM2
Max Memory Clock 715 MHz
Memory Bus Width 4096 bit

Atomics Hardware and CAS

Table A.2.: Each GPU Specifications

63



A. Computational Resources

A.2. Mac Cluster

Mac cluster is made up of 4 nodes where each node is dual socket Intel SandyBridge-EP
Xeon E5-2670 with 2 NVIDIA M2090 GPUs and FDR Infiniband. The table A.3A.3 and A.4A.4 list
the specification of CPU and GPU in more detail.

Specification Value
Host RAM/node 128 GB

Model Intel SandyBridge-EP Xeon E5-2670
Core 8

Threads 16
Base Frequency 2.60GHz

Turbo Frequency 3.30 GHz
Cache 20 MB

Bus Speed 8.0 GT/s QPI

Table A.3.: Each CPU Specifications

Specification Value
Model Tesla M2090

Architecture Fermi
Compute Capability 2.0

Cuda Cores 512
Streaming Multiprocessors 16

Cores/SM 32
Single Precision Perf. 1331 GFlops

Base Frequency 1300 MHz
Memory Size 6 GB GDDR5

Max Memory Clock 1850 MHz
Memory Bus Width 384 bit

Atomics lock/update/unlock

Table A.4.: Each GPU Specifications
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B. Compiling and Using CUDA Aware
OpenMPI on Mac Cluster

To compile the CUDA Aware OpenMPI on Mac Cluster follow these steps.

• First of all allocate one of the node from nvd partition and then ssh into it. The rea-
son for this is that the files required for NUMA support are available on the compute
nodes and not on the login node. Also don’t forget to unload any other MPI imple-
mentation.

• Download the OpenMPI 1.10.7 by executing wget http://www.open-mpi.de/software/omp
i/v1.10/downloads/openmpi-1.10.7.tar.gz

• Extract the file by tar -xvzf openmpi-1.10.7.tar.gz

• Go into the folder by cd openmpi-1.10.7

• Configure the OpenMPI by executing ./configure –prefix=$HOME/.openmpi –with-cuda
=/lrz/sys/parallel/cuda/7.5/cuda/include CFLAGS=-D LP64 –with-wrapper-cflags=”-D
LP64 -ta:tesla”

The compiler flags CFLAGS=-D LP64 –with-wrapper-cflags=”-D LP64 -ta:tesla”
are required with NVIDIA driver version 7.5 for things to work correctly.

• Next execute make

• Next execute make install

• Next close the ssh connection and go bask to the login node

• Put these 2 commands in bashrc

export PATH=$PATH:$HOME/.openmpi/bin

export LD LIBRARY PATH=$LD LIBRARY PATH:$HOME/.openmpi/lib

To compile the code with the newly installed OpenMPI, unload any other MPI imple-
mentation and add

LFlags += -L$(HOME)/.openmpi/lib
IFlags += -I$(HOME)/.openmpi/include

Now launch the code normally.
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C. Compiling NVML library on Mac Cluster

The NVML library has been used to check the available and total memory of the GPUs
apart from checking the device temperature, core utilization and memory utilization. This
library is installed with the CUDA Toolkit by default from version 8 onwards but that
is not the case with the toolkit available in the Mac Cluster (Version 7.5). So to install it
manually perform the following operations

• wget http://developer.download.nvidia.com/compute/cuda/7.5/Prod/gdk/gdk
linux amd64 352 79 release.run

• chmod +x gdk linux amd64 * release.run

• ./gdk linux amd64 * release.run

• Link the library with the project in the Makefile.
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D. Notes on MLEM Implementation

• Programming Language: C++

• Compilers

– mpicxx : For compiling .cpp and .c files. Intel MPI library version 5.1.3 for Mac
Cluster and OpenMPI version 1.10.7 for DGX-1.

– nvcc : For compiling .cu files. CUDA version 7.5.17 on Mac Cluster and CUDA
Version 9.1.85 on DGX-1.

• Compilation Flags

– -O3 : For level 3 optimization

– -std=c++11 : For using C++ 11 standard.

• Flags used with nvcc

– -lcublas : For performing blas operations on NVIDIA GPUs.

– -lcusparse : For performing sparse operations on NVIDIA GPUs.

– -lmpi : To be able to compile code with MPI.

– -lnvidia-ml : To be able to use NVML library.

– -lboost system -lboost filesystem : To be able to use components of the BOOST
library

– -Xcompiler -fopenmp : To compile files using OpenMP.

– -lgomp : To be able to link the files using OpenMP.

– –gpu-architecture=Value : To compile the code for specific architecture. The
Value is sm 20 for Mac Cluster and sm 60 for DGX-1.

• Configuration File : The parameters in the configuration files are as follows

– max devices to use : Allows the user to set the maximum number of GPUs each
process could use. Allowed range is [0,3]. Default value is 3.

– max nnz per device : Allows the user to define how many non zeros be of-
floaded on each GPU. Allowed range is [0 , non zeros per rank]. Default value
is non zeros per rank.

– max temp allowed : Maximum GPU temperature to be selected. Allowed range
is [0,100]. Default value is 100.
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D. Notes on MLEM Implementation

– min free mem req : Minimum memory percentage of GPU to be free for its
selection. Allowed range is [0,100]. Default value is 100.

– max mem uti allowed : Maximum memory percentage utilization of GPU for
its selection. Allowed range is [0,100]. Default value is 100.

– max gpu uti allowed : Max compute power percentage utilization of GPU for
its selection. Allowed range is [0,100]. Default value is 100.

NOTE: Any of the parameter in the configuration file could be set to default by provid-
ing values out of range (negative included). If implementation does not find any configu-
ration file it will use the Default values.
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