
Department of Informatics
Technische Universität München

Master’s Thesis in Informatics

Design and Implementation of a
Lightweight Communication Backend for

HPC/Distributed Applications

Entwurf und Implementierung eines
schlanken Kommunikationsbackends für

verteilte HPC-Anwendungen

Author: Alexander Kurtz
Supervisor: PD Dr. rer. nat. Josef Weidendorfer
Advisor: Dai Yang, M.Sc.
Submission date: May 15, 2018

I con�rm that this master’s thesis is my own work and I have documented all sources and
material used.

Alexander Kurtz, May 15, 2018

Abstract

LAIK is a new library which makes writing Single-Program-Multiple-Data (SPMD)
programs easier by abstracting the necessary inter-process communication. To
achieve this, it requires the programmer to explicitly de�ne the data containers
shared between processes and to provide a mapping between simple integer indices
and the speci�c data elements. Since LAIK then both knows about and manages
all the shared data, it can automatically distribute the data among the available
workers and facilitate the necessary communication to synchronize the individual
processes.

For actually sending and receiving data between the collaborating processes, LAIK
relies on its backend which also provides the necessary management information
used to determine the total amount of processes and the local ID among those.
Originally, LAIK only had a single backend which used the MPI API to talk to various
MPI implementations. Unfortunately, this meant that LAIK’s backend interface
was not well tested and that a working MPI implementation was a prerequisite to
run LAIK applications.

In this work, we extend LAIK with a new backend using native TCP sockets provided
by the operating system. We �rst introduce the design by presenting the main
challenges to overcome and the solutions we found for them. Then we introduce
the resulting implementation and evaluate it in comparison to the existing MPI
backend. For this, we use a small cluster of single board computers (SBDs) with a
custom OpenMPI installation and a fast network interconnect.

We demonstrate that our new TCP backend can provide comparable performance
to the existing MPI backend in most cases, with a few test case even showing signif-
icantly lower total execution times with the new backend in use. Most importantly,
we �nd that the new TCP backend works especially well if given many send/receive
operations per invocation, with a medium or large amount of bytes to transmit
per operation. Conversely, the performance worsens dramatically if the backend is
given only a few (or just one) operation per invocation and/or very small messages
to transmit.

Finally, this work also showcases a way of bringing fault tolerance transparently to
SPMD applications using LAIK by generating unique identi�ers for each exchanged
message. By simply not removing outgoing messages from the output bu�er after
successfully delivering them, we allow failed instances to be restarted (possibly
even on a di�erent host) and to regain their lost state by requesting the necessary
messages once more. We also show that this approach to fault tolerance is possible
while only using a subset of the MPI API to communicate with the core of LAIK,
suggesting that this approach may also be used in existing MPI implementations.

Contents

1 Introduction 5

2 Motivation 7

3 Related Work 9
3.1 The Message Passing Interface (MPI) . 9
3.2 MPI Network Performance . 10
3.3 MPI Fault Tolerance . 11

4 Design 13
4.1 Interfacing with the Existing Code . 13
4.2 Expected Challenges . 14

4.2.1 Memory Exhaustion . 14
4.2.2 Connection Exhaustion . 15
4.2.3 Unfair Connection Acceptance . 16
4.2.4 Message Identi�cation . 17
4.2.5 Implicit Global Serialization . 17
4.2.6 Peer Discovery and Rank Assignment 18
4.2.7 Fault Tolerance . 18

4.3 Basic Design Principles . 19
4.4 Network Protocol . 20

4.4.1 ADD Requests . 21
4.4.2 TRY Requests . 21
4.4.3 GET Requests . 22

4.5 Addressing the Challenges . 24
4.5.1 Memory Exhaustion . 24
4.5.2 Connection Exhaustion . 24
4.5.3 Unfair Connection Acceptance . 25
4.5.4 Message Identi�cation . 25
4.5.5 Implicit Global Serialization . 27
4.5.6 Peer Discovery and Rank Assignment 27
4.5.7 Fault Tolerance . 27

5 Implementation 29
5.1 Challenges . 29
5.2 Architecture . 30
5.3 Demonstration . 30

5.3.1 Regular Mode . 30
5.3.2 Failure Detection . 32
5.3.3 Failure Recovery . 33
5.3.4 Failure Recovery with Address Change 34

6 Evaluation 37
6.1 Test System . 37

1

Contents

6.2 Test Cases . 38
6.3 Time Measurements . 39
6.4 Environments . 41

6.4.1 Environment 1: MPI . 41
6.4.2 Environment 2: TCP . 41
6.4.3 Environment 3: TCP with Master Reduction (TCP-M) 41
6.4.4 Environment 4: TCP with Extra Resources (TCP+) 42

6.5 Test Variables and Metric . 42
6.6 Results . 42

6.6.1 jac1d 125000 . 43
6.6.2 jac2d 11000 . 44
6.6.3 jac3d 375 . 45
6.6.4 jac3d -g 375 . 46
6.6.5 markov 400 4000 . 47
6.6.6 markov2 400 4000 . 48
6.6.7 markov2 -f 400 4000 . 49
6.6.8 propagation2d 40 40 . 50
6.6.9 spmv 5000 . 51
6.6.10 spmv2 150 1500 . 52
6.6.11 vsum 20000000 . 53
6.6.12 vsum2 . 54
6.6.13 vsum3 . 55

6.7 Discussion . 56

7 Future Work 57
7.1 Improvements to LAIK’s Backend API . 57
7.2 Improvements to the TCP Backend . 58

7.2.1 Reducing the Amount of System Calls 58
7.2.2 Automatic Selection of the Reduction Strategy 59
7.2.3 Better Connection Cache Eviction Strategies 59

7.3 Fault Tolerance in MPI Using Unique Message Identi�ers 60

8 Conclusion 61

9 Appendix 63
9.1 Cross-building LAIK on amd64 for arm64 . 63
9.2 Test Case Analysis . 64

9.2.1 jac1d 125000 . 64
9.2.2 jac2d 11000 . 65
9.2.3 jac3d 375 . 66
9.2.4 jac3d -g 375 . 67
9.2.5 markov 400 4000 . 69
9.2.6 markov2 400 4000 . 70
9.2.7 markov2 -f 400 4000 . 71
9.2.8 propagation2d 40 40 . 72
9.2.9 spmv 5000 . 73
9.2.10 spmv2 150 1500 . 74
9.2.11 vsum 20000000 . 75
9.2.12 vsum2 . 77
9.2.13 vsum3 . 81

9.3 Example Con�guration File for the TCP Backend 83

2

Contents

9.4 Files Used in the Test Case Analysis . 84
9.4.1 analysis/analysis.di� . 84
9.4.2 analysis/con�g.txt . 85
9.4.3 analysis/analyze.sh . 85

9.5 Files Used in the Evaluation . 88
9.5.1 evaluation/environments/tcp.sh . 88
9.5.2 evaluation/environments/mpi.sh . 88
9.5.3 evaluation/environments/tcp-master-reduction.sh 88
9.5.4 evaluation/environments/tcp-resources.sh 88
9.5.5 evaluation/sample.sh . 89
9.5.6 evaluation/syncd.py . 90
9.5.7 evaluation/run.sh . 91
9.5.8 evaluation/�lter.sh . 91
9.5.9 evaluation/main.sh . 91

10 References 93

3

1 Introduction

The Lightweight Application-Integrated data distribution for parallel worKers (LAIK) library
is designed both for making Single-Program-Multiple-Data (SPMD) programs easier to write
and for extending these programs with new features, such as communication abstraction,
automatic work distribution, and eventually some level of fault tolerance. With the basic idea
�rst presented in [47] and later re�ned in [48], LAIK is nowadays developed as an open source
project [14] on GitHub.1 Until recently, LAIK could only use MPI [6] to facilitate communication
between the di�erent instances of the SPMD program, but in this work we are presenting a
new communication backend for LAIK, based directly on native TCP sockets [15] provided by
the operating system.

The basic idea behind LAIK is simple: While the programmer of an MPI based application has
to distribute work and initiate the necessary communication himself, a programmer using LAIK
as an abstraction layer does not need to care about these two. Instead the programmer creates
a set of data containers within which the individual data units are addressable using simple
integer indices. Given such a mapping from integer indices to the actual data, LAIK can now
partition the data and distribute it to the available worker processes automatically. Furthermore,
since LAIK actually knows and manages the data distribution, it can shift away work from a
node expected to fail, or keep redundant copies of the data in order to deal with unexpected
failures. [47,48]

In this work however, we mostly ignore the automatic work distribution and possible fault
tolerance of LAIK and instead focus on the feature which makes these two possible in the
�rst place, i.e. communication abstraction. From this point of view, LAIK can be thought of as
primarily being an abstraction library for di�erent data exchange mechanisms supported by
its backends. As mentioned, LAIK only supported a single backend until recently, namely the
MPI backend shown in �gure 1.1. In fact, the functionality provided by LAIK is not unlike that
provided by MPI itself, namely simplifying inter-process communication for the programmer.
In contrast to MPI however, LAIK does this by providing a much higher abstraction level to the
programmer.

Since LAIK provides such a high-level abstraction layer, adding new communication backends
besides MPI seems like the logical next step: We can test whether implementing LAIK’s backend
API (see �gure 1.1) is suitable, bring LAIK to systems where using MPI is not possible, and
see how much the backend matters in terms of performance by comparing multiple backends.
Therefore, as mentioned above, this work will introduce an implementation of LAIK’s commu-
nication abstraction using plain TCP sockets, and then answer the research question of how
the performance of our new TCP backend compares to that of the existing MPI backend in
combination with a widely used MPI implementation.

1For the purpose of this work, whenever we are referring to LAIK, we implicitly mean the version of LAIK contained
in commit d2ee62e1d84cfd2139a0ab9a68d07aec740f90b9 in LAIK’s git repository.

5

https://github.com/envelope-project/laik/commit/d2ee62e1d84cfd2139a0ab9a68d07aec740f90b9

1 Introduction

Application

LAIK Application API

LAIK Core

LAIK Backend API

LAIK MPI Backend

MPI API

MPI Implementation

...

Figure 1.1: Stack overview of LAIK when the MPI backend is used

6

2 Motivation

Adding a new TCP backend to LAIK may seem unnecessary at �rst: Even the �rst version of the
MPI standard [5] explicitly expected implementations on top of “standard Unix inter-processor
communication protocols” which could work in “heterogeneous networks”. Consequently many
existing MPI implementations such as MPICH [30] and OpenMPI [44] support using standard
IP-based networks as their transportation medium. They do not necessarily use TCP to transport
the data (more on that in section 3.2), but nevertheless, they do work across the network. So
then why bother with a new TCP backend for LAIK?

1. The new backend talks directly to the operating system and thus does not require an
intermediary to facilitate inter-process communication. This means that in contrast to
the existing MPI backend, we do not require a working MPI implementation on the target
system, but just an operating system implementing the BSD Sockets API, i.e. anything
that implements the POSIX standard [12].

2. MPI implementations which use the network for transportation may make certain as-
sumptions regarding latency or throughput which some networks may not be able to
satisfy. However, since the machines in these networks typically still need to use at least
some network services and most network services nowadays use TCP sockets, it is very
likely that even in those special-case networks, a working implementation of TCP sockets
is available.

3. Since the new TCP backend can talk to the operating system directly, it is possible that
leaving out the intermediary MPI implementation may actually improve performance.

4. MPI implementations typically react to a failed process by simply terminating the other
processes and propagating the error to the user. While there are certain approaches
to bring fault tolerance directly to MPI implementations (more on that in section 3.3),
LAIK does not currently use or support them. Having full control over the entire stack
might allow LAIK and/or the new TCP backend to implement its own error handling and
possibly recover from failures gracefully.

All these arguments would also apply to a new backend based on UDP sockets [16] or even raw
IP sockets [17]. However, implementing such a backend is signi�cantly harder, as the messages
exchanged between between the di�erent instances of a LAIK application may very well exceed
the size limits on UDP or IP packets. Therefore, such an implementation would at the very least
have to roll its own message reassembly mechanism and most likely also some sort of �ow
control to avoid overloading the network or the receiver. In summary, we would e�ectively be
re-implementing a bad copy of TCP, which is why we decided against these approaches.

7

3 Related Work

3.1 The Message Passing Interface (MPI)

The Message Passing Interface (MPI) is an API speci�cation for libraries implementing message
passing between a cooperating group of processes, possibly on multiple physical machines.
Work on the standard began in 1992 as a shared e�ort by “parallel computing vendors, computer
scientists, and application developers” [6] in order to take the best features from existing message-
passing systems and combine them into a single, formalized description. This eventually resulted
in the release of the MPI 1.0 standardization document in 1994. Since then, the standard has
been continuously improved and extended, with the last release being MPI 3.1 from 2015. [5,6]

It is important to clarify that MPI does not provide an actual library to implement message
passing, nor a runtime environment which distributes and manages the processes. Instead
it gives application programmers an abstract API to exchange data between processes, not
knowing how this data exchange is actually implemented. This allows operators of High
Performance Computing (HPC) systems to provide MPI implementations specially tailored
to their systems, possibly using dedicated communication hardware. At the same time, more
generalized implementations using primitives provided by the operating system are possible,
allowing MPI applications to also run on commodity hardware. [5]

While the current version of the MPI standard [6] de�nes literally hundreds of functions, the
basic concepts are very simple. Assuming MPI is used for facilitating the communication of a
SPMD application, the process typically consists of the following steps:

1. Distribute the application binary to one or more compute nodes and spawn one or more
processes per node. This step is often done by a runtime wrapper program provided by
the speci�c MPI implementation the application was compiled against. We will refer to
the set of all such processes (on all nodes) as the process group from now on.

2. Call the MPI initialization function [31]:
1 int MPI_Init (int* argc, char*** argv)

This function initializes the MPI implementation and returns a status code indicating
success or failure (all MPI functions return such a status code). It will typically use
information provided by the runtime wrapper program used in step 1, either passed in
via environment variables or as command line arguments (in which case these will be
�ltered out from argc and argv after the call).

3. Communication between processes happens using opaque communicator objects. After
the initialization in step 2, the �rst such communicator available as the prede�ned constant
MPI_COMM_WORLD is ready to be used. The application may now inspect the communicator
to determine the size of the process group using this function [32]:

1 int MPI_Comm_size (MPI_Comm comm, int* size)

After calling this function, *size will contain the number of processes in the speci�ed
communicator. Furthermore MPI implementations have to provide applications with a

9

3 Related Work

total ordering of all processes whereby each process gets assigned a unique rank using
this function [29]:

1 int MPI_Comm_rank (MPI_Comm comm, int* rank)

Assuming there are a total of n processes, each process will �nd its unique rank r in
*rank after this function returns, with r ∈ {1..n}.

4. Using the information gathered in step 3, the application may start to exchange data
using these two functions [33,34]:

1 int MPI_Send (const void* buf, int count, MPI_Datatype datatype, int dest, int
tag, MPI_Comm comm)

2 int MPI_Recv (void* buf, int count, MPI_Datatype datatype, int source, int tag,
MPI_Comm comm, MPI_Status* status)

MPI_Send sends the data provided in *buf (using the length and type information provided)
as a message to the processes with rank dest. Conversely, MPI_Recv receives a message
from the process with rank source into the provided bu�er.

5. After using the functions from step 4 for a number of times, the application has to
explicitly signal termination to the MPI implementation using this function [35]:

1 int MPI_Finalize (void)

Like MPI_Init, this function is entirely implementation dependent. It may be a simple
no-op, but it may also be crucial to make sure that locally bu�ered messages are properly
�ushed. Therefore, the application may not terminate before calling this function.

There are a number of additional functions which most applications will typically use, such
as the functions used to duplicate and/or modify the communicator objects [36,37], and the
functions for shared reductions [38,39]. However, the functions here show the fundamental
work�ow of using MPI for data exchange and more importantly introduce the basic terminology
used in MPI as well as throughout this work:

• process: A single instance of a MPI application, running on a speci�c node.
• node: A physical or virtual system running one or more processes.
• process group: The set of all processes on all nodes.
• communicator: An opaque object representing a subset of the the process group, with

MPI_COMM_World representing the whole process group.
• size: The number of processes which are part of a speci�c communicator.
• rank: A number from {0..size− 1}; each process gets a di�erent (and thus unique) rank.
• message: A data bu�er sent from one process to another.

The �rst implementation of the MPI standard was MPICH [30] which was started during the
initial standardization process as reference implementation to provide feedback on the emerging
standard [40]. Another popular general-purpose implementation is OpenMPI [44] which we are
going to use later on during the evaluation. However, as mentioned above, the MPI standard
was explicitly designed to allow HPC operators to provide implementations which could fully
utilize their speci�c hardware, so there are quite a few vendor-speci�c implementations out
there.

3.2 MPI Network Performance

At the end of chapter 2 we shortly discussed the idea of using UDP or even raw IP sockets as
communication primitives, but discarded the idea since we would have to re-implement many

10

3.3 MPI Fault Tolerance

of the features TCP provides us for free. It turns out that [9] had a similar idea, but actually
took it a step further: Since HPC clusters are often directly connected via Ethernet (without
any routers in between), they extended the Linux kernel with a new socket family [18] called
PF_ENET. This socket family provides both an unreliable datagram protocol similar to UDP
as well as a data streaming protocol similar to TCP, but operates directly on layer 2, entirely
bypassing the existing TCP/IP stack of the operating system.

The data streaming protocol of the new PF_ENET socket family, called Ethernet Streaming
Protocol (ESP), is quite interesting: While they re-implemented most of the basic features of
TCP such as sequences numbers, acknowledgments, and retransmissions, they only added 13
bytes to the existing Ethernet header for this, thus signi�cantly reducing the network overhead.
While this approach has severe limitations since the resulting network frames can not be routed,
it provides clear advantages on networks where routing and other features o�ered by the
conventional TCP/IP stack are not needed.

With their new Ethernet based protocol in place, they went ahead and extended OpenMPI [44]
to use it and evaluated the performance of their approach in comparison to the existing TCP/IP
solution provided by OpenMPI. They found that they could signi�cantly reduce the latency and
CPU overhead and in one case even halve the runtime of an example application which mostly
exchanged very small messages between all processes. They do note however that a proper
�ow control algorithm still needs to be added, as larger messages caused a slight performance
degradation.

We think that it is interesting to see the idea that we discarded early on actually imple-
mented. However, their closing remarks con�rm our hesitation, as they acknowledge that
re-implementing TCP is non-trivial and and an incomplete re-implementation may actually
perform worse in some circumstances. Finally, with their results in mind, we expect our TCP
backend to be at a disadvantage when it comes to sending a lot of very small messages.

3.3 MPI Fault Tolerance

Without special measures, a single failed process usually brings down the entire process group
when using MPI for inter-process communication, as shown in the following example which
uses a LAIK application making use of LAIK’s MPI backend:

1 $ LAIK_BACKEND='mpi' mpirun -n 2 ./jac3d 500
2 500 x 500 x 500 cells (mem 2000.0 MB), running 50 iterations with 2 tasks
3 Residuum after 1 iters: 377335777.222662
4 Residuum after 11 iters: 506561.854358
5 Residuum after 21 iters: 99032.165750
6 Residuum after 31 iters: 54811.260127
7 ---
8 Primary job terminated normally, but 1 process returned
9 a non-zero exit code. Per user-direction, the job has been aborted.

10 ---
11 --
12 mpirun noticed that process rank 1 with PID 0 on node shepard exited on signal 9 (

Killed).
13 --
14 $

Listing 3.1: When one process in the MPI process group is manually terminated, mpirun
forcefully terminates the remaining processes

For understanding the concept of fault tolerance in the context of MPI, [8] provides an ex-
cellent overview. They explain that the MPI standard [6] mandates that the default error
handler attached to the initial communicator MPI_COMM_WORLD is MPI_ERRORS_ARE_FATAL which

11

3 Related Work

causes all processes in the process group to abort if any one of them exits before calling
MPI_Finalize(). However that does not mean that the MPI standard does not permit fault
tolerance, it is just not the default. Consequently, [8] de�nes fault tolerance to be a property of
the (MPI implementation, MPI program) tuple which is ful�lled if the tuple can survive
failures of some processes, for various de�nitions of “survive”.

Leaving aside the approaches which require modifying or extending the MPI standard, [8]
presents two ways in which an MPI implementation can gain fault tolerance: It can either
periodically save its state to a reliable storage medium (checkpointing) and use these saved
states to quickly recover when restarted after a failure. Alternatively it can be written in a way
similar to classical client-server applications where a central manager process dispatches chunks
of work to individual worker processes. Since the communication then only happens between
the manager and the worker processes, a failed worker does not a�ect the other workers and
the manager can simply hand the un�nished piece of work to some other worker.

However, both approaches require that the MPI implementation can correctly detect and
report communication failures when being asked to do so (this is normally done by setting
the MPI_ERRORS_RETURN error handler on the MPI_COMM_WORLD communicator immediately after
startup). According to [8], not all MPI implementations can do this, at least not always. For
example, the Intel MPI Library only supports returning error codes instead of aborting the
whole process group if the special environment variable I_MPI_FAULT_CONTINUE is set to 1 [13].

Unfortunately, the approach of having a central manager process and several worker processes
which only ever talk to the manager is unsuitable for many applications, so checkpointing
is the only viable solution for them. [8] di�erentiates between two forms of checkpointing:
User-directed checkpointing means that the programmer is solely responsible for serializing the
program state and writing it to storage, while system-directed checkpointing hands this task
over to the MPI implementation (at least partially). Even though user-directed checkpointing
has some drawbacks1, [8] recommends it over system-directed checkpointing, as the latter is
much harder to implemented correctly because a program’s state is typically scattered in many
locations.

Nevertheless, there are some approaches to bringing system-directed checkpointing to main-
stream MPI implementations, such as [10], [11], and [45]. However, all of them require at least
some cooperation from the program using the MPI API which is not surprising given that the
MPI implementation generally does not have enough information about the speci�c program to
capture its state entirely or set a consistent program state on restart after failure. This is where
LAIK’s higher level of abstraction comes into play: Since LAIK applications actually declare all
their state to LAIK, creating and restarting from checkpoints should be much easier.

In this work however, we are not going to use this feature of LAIK, but rather rely on the fact
that LAIK proxies all communication requests. To be more precise, we are going to make use of
the deterministic nature in which LAIK schedules communication through its backend: While a
regular MPI implementation must be able to deal with applications which just request the next
available message using the MPI_Probe() [41] function or the special ANY_SOURCE argument
instead of a concrete rank in MPI_Recv() calls, the MPI calls emitted by LAIK will always have
a concrete sender and receiver and will always be issued in a predicable order.

1[8] lists the facts that the programmer must take care of reliably storing the serialized data and must also make
sure that no state is currently stored in in-�ight messages. These constraints severly restrict the points and
frequency at which checkpoints can be made.

12

4 Design

In this chapter we introduce the design for LAIK’s new TCP backend. We �rst decide how to
best interface with the existing code. Second, we look at the expected challenges the design
has to handle. Then we formulate the basic design principles in the third part and give an
overview of the network protocol in the fourth part. Finally, we explain how the presented
design addresses the formulated challenges.

4.1 Interfacing with the Existing Code

Extending LAIK with a new communication method seemed straightforward at �rst, given
that LAIK has a dedicated backend interface for that purpose: Get an understanding of how
LAIK talks to its communication backend and what it expects it to do, have a look a what the
existing MPI backend does to implement these requirements, and then re-implement them
using standard TCP sockets. However, when we actually looked at code, we discovered some
problems with this approach:

1. As the MPI backend was the only existing backend1, it was not surprising that the backend
interface is clearly in�uenced by the MPI API in several places. The most visible such
in�uence is that LAIK does not simply hand a binary blob to the backend along with
instructions on where to send it, but instead actually has a run-time type-system which
the backend has to use in order to �gure out what the data bu�er attached to send and
receive operations actually contains.

2. Since the MPI backend is fully synchronous, LAIK’s backend interface expects to be able
to re-use or release bu�ers passed to the backend after the backend returns. This implies
that the new TCP backend either has to also work completely synchronously or that it
has to create a memory copy of the data passed to it if it wants to decouple the data hand
over to the backend from the actual sending and receiving.

3. The MPI backend does signi�cantly more than exchanging data between processes: It also
discovers the size of the process group, the rank of the local process and synchronizes
changes in LAIK’s view of the process group with the backend’s internal data structures
and those used by the MPI implementation. This implies that e.g. removing a process
from the process group is something the backend has to be aware of and support.

4. LAIK supports a wider variety of reductions than plain MPI2, but still wants to use the
potentially faster, native MPI reduction functions if possible. Therefore reductions are
expected to be handled entirely by the backend. Consequently, the MPI backend contains
a implementation of a distributed reduction algorithm in addition to wrappers around
the corresponding MPI functions and would inspect the reduction task closely to decide
what alternative to use.

In addition to the problems described above, LAIK’s backend interface was poorly documented,
had no stability promises and no unit tests. Fortunately however, the existing MPI backend only

1There was also a dummy, single-process backend, but this backend essentially just consisted of stub methods.
2For example, LAIK allows reductions where only a subset of the process group takes part or where a custom

reduction function is needed.

13

4 Design

used a small subset of the MPI functions o�ered by the MPI standard. In essence, these were
the used MPI functions:

1. MPI_Init() and MPI_Finalize() to respectively initialize and �nalize the MPI subsystem
and give it access to the programs command line arguments.

2. MPI_Get_processor_name() [42], MPI_Comm_rank(), and MPI_Comm_size() to determine
where a process was running and which rank it occupied in the entire process group.

3. MPI_Comm_split() [37] to update the MPI subsystem of any changes LAIK wanted to
make to the process group such as removing a process.

4. MPI_Reduce() [38] and MPI_Allreduce() [39] to run reduction operations natively inside
the MPI implementation if possible.

5. MPI_Send() and MPI_Receive() to synchronously send and receive data bu�ers from other
processes and to implement the software reduction algorithm mentioned above when the
native MPI reduction functions were incapable of running the requested reduction.

Given that these functions were well documented by the MPI standard, had a strong stability
promise and well de�ned semantics, and where signi�cantly closer to the low-level BSD sockets
API than the high-level LAIK backend API, we decided to re-implement these MPI functions
instead of following our original approach of using LAIK’s backend interface. This approach
allowed us to initially re-use the existing code in the MPI backend, including the non-trivial
software reduction algorithm, even tough we were in fact using TCP sockets for the actual
data transmission. While we did eventually write a new backend for LAIK’s backend API, this
approach still proved invaluable as it allowed us to quickly get a working prototype so we could
discover and eventually solve the problems outlined in this chapter.

4.2 Expected Challenges

In the section 4.1, we listed the subset of MPI functions used by the MPI backend and determined
that we would re-implement them rather than use LAIK’s native backend API to quickly get a
working prototype. Since we wanted to use TCP for actually transmitting the data, it seemed
clear that the most important functions to emulate would be the MPI_Send() and MPI_Receive()

functions as the remaining functionality could then be expressed in terms of these functions. In
theory, this seemed simple: Create a new TCP socket using socket() [19], and then implement
the two MPI functions using the BSD Socket API by making the following system calls:

• MPI_Send(): connect() [20] and send() [21]
• MPI_Receive(): bind() [22], listen() [23], accept() [24], and recv() [25]

In practice however, just doing this simple replacement is not enough because of a few obvious
challenges which we have to solve �rst.

4.2.1 Memory Exhaustion

To illustrate the �rst problem, let’s consider a N : 1 reduction where N processes send their
reduction input to a single, dedicated reduction process as shown in �gure 4.1

We assume that the reduction function is not necessarily commutative (meaning that all but
one reduction order would give an incorrect result) and that the node running the dedicated
reduction process does not have enough memory to hold all reduction inputs in memory at the
same time. Figure 4.2 shows problem: If the inputs arrive out of order, the reduction fails since

14

4.2 Expected Challenges

n
1

n
4

n
2

n
3

n
0

Figure 4.1: N : 1 reduction where nodes ni (i ∈ {1, 2, 3, 4}) send data to node n0

the dedicated reduction process can neither consume the next input (and thus free the memory
occupied by it) nor receive another part of the input (because it has no memory to store it in).

n
1

n
4

n
2

n
3

n
0

Input buffer
(Capacity = 3)

d
2

d
3

d
4

d
1

Figure 4.2: N : 1 reduction where nodes ni send data di (i ∈ {1, 2, 3, 4}) to node n0 and exhaust
its memory

4.2.2 Connection Exhaustion

The problem described in section 4.2.1 boils down to the fact that on N : 1 communications,
the messages might arrive out of order at the recipient and it might not have enough memory
to store all messages so it can process them in order. A possible solution to this problem would
be to not store the messages at the recipient, but to instead block the sender until the recipient
is ready to receive their message as seen in �gure 4.3

With TCP sockets, blocking the sender is easily achievable: The receiver can just accept the
new connection from the sender, determine if it is currently interested in this connection’s data,
reading the data if so and storing the connection for later otherwise. However, this means that
both the sender and the receiver would have to keep open the connection until the data can
actually be transmitted. In the worst case (where the messages arrive exactly in the reverse of
the required order), this means the receiver of a N : 1 communication has to keep open N TCP
sockets concurrently.

Since the maximum number of concurrently open TCP sockets is limited both per application
(as the operating system typically only allows a certain number of open �le descriptors per

15

4 Design

n
1

n
4

n
2

n
3

n
0

Block

Block

Receive

Block

n
1

n
4

n
2

n
3

n
0

Receive

Block

Block

n
1

n
4

n
2

n
3

n
0

Receive

Block

n
1

n
4

n
2

n
3

n
0

Rece
ive

Figure 4.3: N : 1 reduction where nodes ni send data to node n0 and are blocked until needed

process3) and per host (since each new connection requires OS resource to handle), it is possible,
given a su�ciently largeN in theN : 1 communication that the receiver can not accept enough
new connections to actually get to the connection from the �rst sender it wants to receive from.

It might seem possible to avoid this problem by using reverse connections where the receiver
connects to the sender to fetch the requested data instead, thus only needing one concurrently
open TCP socket at a time (the one to the sender holding the data the receiver is currently
interested in). However, this approach breaks on 1 : N communications where a single sender
sends to multiple receivers: The potential receivers would then all connect back to the single
sender, and unless these connections arrive in exactly the right order, it now has the exact same
problems as the receiver in the previous paragraph.

4.2.3 Unfair Connection Acceptance

In section 4.2.1 and 4.2.2 we have shown that the naive approach of simply sending messages
when they are ready potentially overwhelms the receiver: Either the receiver can exhaust the
available memory while trying to bu�er the messages so it can read them in a speci�c order
or it can reach the maximum number of open connections allowed by the operating system
while trying to accept connection after connection until it �nds the next required message. The
logical consequence is that the receiver must always be able to decline incoming messages and
signal the sender that it is currently not ready to receive that particular message.

A simple but feasible solution is therefore that the sender prepends the message with some
metadata (e.g. a sender rank, message length, etc.) which the receiver can use to decide whether
it currently wants to accept and store this message or not. However, this implies that the sender
has to handle the case where the receiver signals that it did not accept the message. The obvious
solution here is to have the sender retry the transmission after a short time, and as long as
the sender opens a new connection for every message, this actually works: The FIFO queue
provided by the operating system for listening sockets guarantees that every new connection
(and thus every message) eventually gets inspected by the receiver. Therefore the �rst required
message will eventually be received, then the second, and so on.

There is just one problem: Creating a new TCP connection for every message is prohibitively
expensive, requiring several system calls on both sides and more importantly a signi�cant
number of network round trips. For this reason, many TCP based network protocols supporting

3For example, on Linux this number defaults to 1024.

16

4.2 Expected Challenges

delivery of individual message can re-use established connections, e.g. HTTP [4], SMTP [46],
and SSH [1]. As we want to be able to send many messages and explicitly also want to support
medium- and high-latency networks, supporting connection-reuse is mandatory.

However, with connection-reuse there is now more than one socket which can potentially hold
a new message, one listening socket and an arbitrary number of established connection sockets.
This means that the receiver has to actively decide which socket to inspect when it wants to
receive the next message. This decision is non-trivial: If the receiver always prefers the listening
socket (and there are enough new connections per second), it might never get to the established
connection socket which holds the message required next. Conversely, if it always prefers
processing new input on an established connection over accepting a new connection from the
listening socket, it might never accept the new connection which brings that long-awaited
next message, at least not if the senders on those connections are fast enough in re-trying (and
failing) to deliver their unwanted messages.

4.2.4 Message Identification

From the challenges described in sections 4.2.1, 4.2.2, and 4.2.3, we can conclude that we will
need the ability to initially decline messages and only receive them at a later time when the we
actually want to process them. Furthermore, it seems clear that we want at least some level of
message bu�ering on both the sender and receiver side as unbu�ered sending and receiving
would imply that the whole application will frequently stall while waiting for network I/O.
From this, we can conclude that we will need some sort of identi�cation mechanism for an
individual message.

Unfortunately, the MPI API provides no way for the application to uniquely identify a single
message. Instead, send and receive calls are implicitly matched by the order in which they are
issued on the sender and receiver side. So, in order for message bu�ering and retransmission
to work, we have to �nd a way to generate unique message identi�ers internally while still
exposing the MPI API externally.

4.2.5 Implicit Global Serialization

A fundamental problem experienced by every programmer attempting to use MPI or a similar
synchronization protocol is making sure that every message send call eventually �nds a matching
receive call on the other side so that communication deadlocks can never happen. A naive
solution for such an algorithm could look like this:

1 for (int sender = 0; sender < group_size; sender++) {
2 if (sender == my_rank) {
3 // It's our turn to send data
4 for (int receiver = 0; receiver < group_size; receiver++) {
5 if (receiver != my_rank) {
6 send_message (receiver, data, ...);
7 }
8 }
9 } else {

10 // It's not our turn to send, instead we should receive data from the current
sender

11 receive_message (sender, data, ...);
12 }
13 }

Listing 4.1: A naive send/receive ordering algorithm which prevents deadlocks but e�ectively
serializes the message exchange among all processes

17

4 Design

While this code avoids loops in the dependencies of the execution order of the various send
and receive calls, we have just introduced a serious performance problem: For all but the
process with rank 0, sending data can only begin once one or more messages from another
process were sent, transmitted over the network, and received locally. The process with the
rank group_size− 1, will even only start sending its �rst message once all other messages in
the entire network were sent and received.

This might not seem like a big problem as long as the latencies and the number of processes
are su�ciently low. However, this is e�ectively a global serialization as process N will only
start sending data after process N − 1 has completed doing so. Therefore the total time ttotal
required for a N : N communcation scheme (in which every process sends a message to every
other process) can be estimated using the following equation whereby tmin is the minimal
delivery time for a single message:

ttotal >= N · tmin (4.1)

This is obviously unacceptable if we want to deliver reasonable performance on high-latency
networks or with a lot of process in the process group. Therefore, we have to �nd an im-
provement to the naive algorithm described above while still retaining its guarantees regarding
deadlock-avoidance.

4.2.6 Peer Discovery and Rank Assignment

A signi�cant service provided by MPI implementations to applications is answering the following
questions, typically on start-up:

1. What is the size of the process group?
2. What is my rank in the process group?
3. How can I contact the process with rank r?

Our backend and thus the MPI compatibility layer we are building also needs to be able to
answer these questions. However, there is a chicken-and-egg problem here: Unless we answer
these questions �rst, we cannot communication with other processes in our process group, but
we have to communicate with the other process in order to determine how many processes
there are and what rank they have chosen.

The obvious solution here is to statically provide the answers to these question to the process
on startup, for example via environment variables. Alternatively we could have a dedicated
management process which all other process contact on startup to answer the questions for-
mulated above. However, both approaches are less than ideal: The static nature of the �rst
prevents later on adding or removing processes or modifying the process group in any other
way. The second implies having a dedicated management process which could be a potential
performance bottleneck at least on startup. Furthermore, it still requires a supplying static piece
of information (how to contact the management process) to all processes on startup.

4.2.7 Fault Tolerance

Message bu�ering in combination with a message identi�cation mechanism suggests an inter-
esting improvement on top of the existing semantics MPI implementations provide: As shown
in section 3.3, for these implementations the abnormal termination of a process in the process

18

4.3 Basic Design Principles

group (for example because of memory exhaustion or power failure), usually means that the
remaining processes in the group can no longer complete the computation, and will therefore
(potentially after some timeout) also terminate with an error. Now, it is of course possible to
restart the single failed process (possibly on some other computation node), but this will not
help much because of two fundamental problems with the MPI API and its implementations:

1. As mentioned in section 4.2.4, the MPI API provides no way for the application to
uniquely identify a single message. Since no such identi�cation is possible anyway,
MPI implementations typically do not retain messages after they have been successfully
delivered to the intended recipient.

2. In contrast to lower level network protocols, MPI implementations typically cannot deal
with duplicated messages correctly, since they have no way to identify such duplicates.
Instead, a sender which for some reason lost its state and therefore re-sends old messages
will typically cause errors on the receiver’s side as the received messages will not be what
it expects according to its own state.

Now, if we have to implement message bu�ering and unique identi�cation anyway, these
problems suddenly seem to be low-hanging fruits, so it would be interesting to see if we can
actually solve them while still only using the MPI API to communicate with LAIK and the actual
application.

4.3 Basic Design Principles

With the problems described in the section 4.2 in mind, we came up with a design following
�ve basic principles:

1. Peer discovery as well as rank determination should work via a simple con�guration �le:
Each process would read this con�guration �le on startup (and refresh it periodically
later on) and extract an ordered list of (hostname, port) address tuples. It would then
try to bind a socket to each of these addresses, stopping at the �rst successful one. This
scheme allows the process to easily determine its own rank among the process group
(by looking at the index of the address it could bind successfully) as well as the total size
of the process group (this is identical to the total amount of address tuples found in the
con�guration �le). Furthermore, the basic semantics provided by the operating system
when binding a socket to a name ensure that no two processes can arrive at the same
conclusion regarding their own rank. Finally, contacting the process with rank r is just a
simple array lookup.

2. Since data transmission should work via TCP sockets and frequently establishing new
connections is expensive (especially for very small messages), connections should be
aggressively reused. This means that after a message has been successfully delivered,
both the sender and the receiver must keep the connection open for some time and be
able to reuse it for later messages.

3. Sending and receiving a message should be done fully bu�ered and mostly asynchronous
to improve performance. This implies that each process needs a bu�er for outgoing
message (called outbox from now on) and a bu�er for incoming messages (called inbox
from now on). In order to avoid memory exhaustion, both these bu�ers must have a
maximum size, upon which adding new messages should either block or fail. Furthermore,
it must of course be possible to retrieve and/or remove a speci�c message (identi�ed by
its message identi�er) from these bu�ers, making room for new message to be stored
there. Finally, it should be possible to send and receive multiple messages in parallel, so
all the data structures involved must be fully thread-safe.

19

4 Design

4. When sending a message, the sender should be able to submit both messages which must
be accepted as well as messages which may be dropped by the receiver if it currently has
no room to bu�er them for later use. However, since the sender has to know whether it
can remove a message from its own bu�er or not, the receiver has to signal the sender if
it currently can not store a message. Furthermore, the receiver must be able to contact
the sender later on to signal that it is now interested in the message it previously refused.

5. All TCP sockets should be created with the O_NONBLOCK [26] and TCP_NO_DELAY [15] options
enabled. The �rst option avoids endlessly blocking in a send()/recv() call, instead we
can use poll() [27] to wait for the socket to be ready or a timeout to occur which allows
us to quickly detect network errors. We can then either retry the data transmission with a
new connection or propagate the error up, eventually aborting the program. The second
option disables bu�ering small data segments before transmitting them over the network
in one big chunk. While this behavior is desirable when doing bulk data transmissions,
we want our messages to arrive with as little latency as possible to avoid the stalling the
receiver.

4.4 Network Protocol

We designed a protocol based upon a classical client-server scheme and three di�erent request
types explained below. The basic idea is that whenever a process wants to initiate communication
with another process, it either creates a new connection or reuses an existing connection to
that process, thus assuming the role of the client. The other process either accepts the new
connection or notices the new input data on an existing connection, thus assuming the role
of the server. Once the connection is ready, the client sends one of three little endian 64-bit
unsigned integers, indicating the request type, as shown in �gure 4.4.

Client Server

Message type (0 = ADD, 1 = GET, 2 = TRY) as little-endian 64-bit unsigned integer

…
(Type-specific communication)

Figure 4.4: Submission of the request type from the client to the server

First, the clients submits the type of the request to the server; either 0 (i.e. an ADD request),
1 (i.e. a GET request), or 2 (i.e. a TRY request). What happens next depends on the concrete
type of the request, but once the request handling is completed, both client and server push the
connection back to a connection pool so it can be reused for later communications, assuming
no errors occurred while processing the request.

20

4.4 Network Protocol

4.4.1 ADD Requests

ADD requests are a form of communication whereby a client can submit a message to the server
and be sure that the server accepts and stores the message, no matter what. Having such a
request type may seem surprising at �rst, since it clearly allows overloading the receiver by
making it exhaust its available memory. However, some scenarios require that a message is
actually delivered once the method accepting the outgoing the message on the sender side
returns, instead of just being bu�ered in the list of outgoing messages. The most obvious
example (and indeed the only place where this message type is used in our implementation) is
synchronization before shutdown: Before terminating, the program has to make sure that no
other process still needs a message stored in its outbox. ADD requests can be used to accomplish
this using a simple “Shutdown OK?”/“Shutdown OK!” protocol between the processes.

Figure 4.5 shows the data transmitted over the network for an ADD request. Every arrow
represents one send()/recv() call (or multiple if the operating system accepts/returns less than
the requested amount of bytes). Furthermore, since we set the TCP_NODELAY option, it is very
likely that each send() also directly translates into a dedicated TCP segment.

Client Server

Message identifier as binary blob

Length of identifier as little-endian 64-bit unsigned integer

Length of message as little-endian 64-bit unsigned integer
Message as binary blob

1 (“Accepted and stored”) as little-endian 64-bit unsigned integer

Figure 4.5: Communication �ow for a ADD request

The client �rst sends the message identi�er and then the actual message, each pre�xed with their
length as little endian 64-bit unsigned integers. Since the server has no choice here whether it
accepts the message or not, it will always respond with a single little endian 64-bit integer with
a value of 1, indicating that it successfully received and stored the message.

4.4.2 TRY Requests

TRY requests work almost like ADD requests, except that here the server can refuse a message
and indicate to the client that it should keep the message in its outbox for later retrieval. An
accepted TRY requests is shown in �gure 4.6.

In contrast to ADD requests which should only be used to send very small control messages to
minimize the risk of overloading the receiver, TRY requests are allowed to carry large message,

21

4 Design

Client Server

Message identifier as binary blob

Length of identifier as little-endian 64-bit unsigned integer

Length of message as little-endian 64-bit unsigned integer
Message as binary blob

1 (“Accepted and stored”) as little-endian 64-bit unsigned integer

Figure 4.6: Communication �ow for an accepted TRY request

potentially too large to �t in the receivers inbox. In such a case, the server will refuse the
request, as shown in �gure 4.7.

It is worth noting that the server bases the decision on whether to accept or refuse a message
solely on the size of the message in relation to the remaining space in the inbox. This directly
implies that messages which are too large to �t in the inbox, can not be delivered via TRY
requests, as they will always be refused. Furthermore, TRY requests are never retried: If a TRY
requests is refused or fails for some other reason, the corresponding message simply remains in
the outbox and no further action is taken.

4.4.3 GET Requests

The primary means of communication used to submit messages from the sender to the receiver
is the TRY request introduced in section 4.4.2. However, this request may fail for a variety of
reasons: The receiving process may not yet have started, establishing a new connection or
submitting the data may time out, or the message may simply be too large to currently �t into
the receivers inbox. In these cases, the receiver can also assume the role of the client and retrieve
the message from the sender via a GET request, reversing the direction in which messages are
transported.

Figure 4.8 illustrates the communication �ow of a successful GET request: The receiver sends
the identi�er of the message it is interested in to the sender and the sender responds with
a successful status code and the actual message. However, it is of course possible that the
receiving process needs a speci�c message before the sending process has reached the point
where this message is generated and submitted to the backend. In this case, the designated
sender will fail to �nd the requested message in its outbox and tell the receiver so using a failure
status code, as shown in �gure 4.9.

It is worth noting that a GET request may fail for other reasons as well: For example the sender
may have already successfully submitted the message with a TRY request to the receiver and
consequently removed the message from its outbox, before it came around to processing the

22

4.4 Network Protocol

Client Server

Message identifier as binary blob

Length of identifier as little-endian 64-bit unsigned integer

Length of message as little-endian 64-bit unsigned integer
Message as binary blob

0 (“Refused, not stored”) as little-endian 64-bit unsigned integer

Figure 4.7: Communication �ow for a refused TRY request

Client Server

Message identifier as binary blob

Length of identifier as little-endian 64-bit unsigned integer

1 (“Message available and following”) as little-endian 64-bit unsigned integer

Length of message as little-endian 64-bit unsigned integer

Message as binary blob

Figure 4.8: Communication �ow for an accepted GET request

23

4 Design

Client Server

Message identifier as binary blob

Length of identifier as little-endian 64-bit unsigned integer

0 (“Message currently not available”) as little-endian 64-bit unsigned integer

Figure 4.9: Communication �ow for an refused GET request

GET request. It is also possible that the sender has sent multiple GET requests in the mean time
which of course means that all but the �rst will surely fail as the sender removes the message
from the outbox after successful delivery. In summary, a receiver must always check its inbox
before sending a GET request and it must limit the rate at which these requests are sent.

4.5 Addressing the Challenges

In section 4.3 and 4.4, we have presented our basic design principles and our network protocol.
It is now time to take a look back at section 4.2 to see how our design solves the challenges
introduced there and what additional properties we gained from these design decisions.

4.5.1 Memory Exhaustion

The memory exhaustion introduced in section 4.2.1 is clearly solved by having maximum sizes
for the inbox and outbox. Instead of consuming ever more memory upon a �ood of incoming
message, we will now simply refuse messages at some point and retrieve them later by having
the receiver contact the sender, i.e. by optionally reversing the communication direction. If the
outbox exceeds the maximum size, we can simply block in the next call attempting to send a
new message (and thus requiring space in the outbox) until the messages in the outbox have
been delivered so that enough space is available.

4.5.2 Connection Exhaustion

We do reuse TCP connections in order to avoid the high cost associated with establishing a
new TCP connection whenever possible, but avoid the the connection exhaustion described in
section 4.2.2 by limiting the maximum number of connections which may be open at any time,
both for the client and server side (remember that every process acts as both client and server).
Upon reaching the maximum number of connections, we simply close all the connections and
then begin again to create or accept new connections.

While more sophisticated cache-eviction strategies would be possible, we decided not to imple-
ment them, since their e�ciency highly depends on the communication pro�le of the application

24

4.5 Addressing the Challenges

and we can not predict that as a library. It is worth noting that we deal gracefully with the
situation where only one side decides to close a connection by handling such a connection like
any other broken connection, i.e. by closing and removing it from the cache.

4.5.3 Unfair Connection Acceptance

Section 4.2.3 introduces the problem that with connection reuse, the server has to decide between
accepting a new connection on the listening socket and handling input on an established
connection in a manner which guarantees that every connection is eventually processed. We
solved this by using a single FIFO-queue for both the listening and the connection sockets,
always taking (and removing) the �rst ready socket from the queue, running the appropriate
action (accept the new connection or process the input on the existing connection) and then
adding the originally removed socket (and any new connection sockets) to the end of the FIFO
queue. This scheme guarantees that every socket will eventually be the �rst ready socket in the
queue and will thus be chosen to be processed next.

4.5.4 Message Identification

In section 4.2.4 we have determined that a basic requirement for sending and receiving messages
in a bu�ered and possibly out-of-order fashion is having a way to uniquely identify a message
across the network. As explained in the previous section, the MPI API provides no way for the
application to submit such an identi�er, so we have to generate them in the MPI emulation
layer we are designing which is what the following code does:

1 static GBytes* laik_tcp_minimpi_header (uint64_t generation, uint64_t type, uint64_t
sender, uint64_t receiver, uint64_t tag) {

2 laik_tcp_always (flows);
3
4 // We are mutating a global variable here, so let's make sure that there's
5 // only ever one thread reading and writing the flows hash table
6 static Laik_Tcp_Lock lock;
7 LAIK_TCP_LOCK (&lock);
8
9 const uint64_t data[] = {

10 GUINT64_TO_LE (generation),
11 GUINT64_TO_LE (type),
12 GUINT64_TO_LE (sender),
13 GUINT64_TO_LE (receiver),
14 GUINT64_TO_LE (tag),
15 GUINT64_TO_LE (0),
16 };
17
18 GBytes* result = g_bytes_new (&data, sizeof (data));
19
20 uint64_t* serial = g_hash_table_lookup (flows, result);
21
22 if (serial) {
23 ((uint64_t*) g_bytes_get_data (result, NULL))[5] = GUINT64_TO_LE (++*serial);
24 } else {
25 g_hash_table_insert (flows, g_bytes_ref (result), g_new0 (uint64_t, 1));
26 }
27
28 return result;
29 }

Listing 4.2: The full code of the function generating the message identi�ers used throughout
the entire TCP backend (located in the MPI compatibility layer, see �gure 5.1)

25

4 Design

This code is called by all the re-implemented MPI functions which want to send and/or receive
data. For each call, the code generates a unique identi�er based upon the input parameters and
returns it as an opaque, binary blob. The meaning of the parameters is as follows:

• generation identi�es the number of times the application has called MPI_Comm_split()

(or MPI_Comm_dup()) to modify its communicator object. The original communicator
object MPI_COMM_WORLD (i.e. the communicator object referring to the set of all processes
originally created) has a value of 0, communicator objects directly derived from this one
have a value of 1 and so on. Since MPI_Comm_split() (and MPI_Comm_dup()) generate a
new communicator object by splitting the old one into disjunct subsets, this generation
counter uniquely identi�es the communicator object, at least within the process group
de�ned by it.

• type states what kind of communication this identi�er represents, i.e. whether it is data
belonging to a MPI_Send()/MPI_Recv() call, data exchanged during a reduction initiated
by MPI_Reduce() or MPI_Allreduce(), or perhaps the metadata required for computing
the new communicator in an MPI_Comm_split() call. This �eld allows these di�erent
kinds of communications to be independent and not interfere with each other.

• sender and receiver are set to the rank of the sender and receiver within the currently
used communicator object. Since both have to be speci�ed, this implies that sending/re-
ceiving to/from multiple peers will not work, so for example MPI_Recv() calls with the
sender speci�ed as MPI_ANY_SOURCE are not supported.

• The tag parameter directly corresponds to the tag parameter in MPI_Send() and MPI_Recv

() calls; other forms of communication simply set this �eld to zero.

With these parameters, we can uniquely identify a message �ow, i.e. an ordered set of messages
between a speci�c sender and receiver (within a speci�c communicator) and with a speci�c
purpose:

flow = (generation, type, sender, receiver, tag) (4.2)

The function shown above then consults a hash table to look up that speci�c �ow and determine
how often it was already called for it. The result is a serial number which uniquely identi�es a
particular message with its �ow, leading to the �nal identi�er:

identifier = (flow, serial) = (generation, type, sender, receiver, tag, serial) (4.3)

Now, if for example a sender with rank 2 issues a total of 3 MPI_Send() calls on the
MPI_COMM_WORLD communicator with a receiver rank of 5 and a tag value of 7, the identi�ers
created would look like this:

identifier0 = (0, typesend/receive, 2, 5, 7, 0) (4.4)
identifier1 = (0, typesend/receive, 2, 5, 7, 1) (4.5)
identifier2 = (0, typesend/receive, 2, 5, 7, 2) (4.6)

Assuming there is a matching receiver which also issues 3 MPI_Recv() calls with the corre-
sponding parameters, it would generate the same list of identi�ers, thus allowing the sender
and receiver to uniquely identify each message exchanged between them.

26

4.5 Addressing the Challenges

Finally, it is worth nothing that the header generation function above takes a global lock
before modifying the hash table containing the per-�ow serial numbers and that di�erent
communication types are cleanly separated by the type �eld. In combination, this allows the
program to run di�erent kinds of communication in parallel; i.e. the program could for example
issue a MPI_Send(), a MPI_Recv() and a MPI_Reduce() call in separate threads at the same time
and have the right thing happen.

4.5.5 Implicit Global Serialization

With the message identi�er generation algorithm introduced in section 4.5.4, it is possible
to run a batch of MPI_Send() calls in parallel to other code, as long as that other code never
calls MPI_Send(). This works because the identi�er generation function is thread-safe and only
depends on the inputs provided to the individual MPI_Send() calls. This allows the backend
to run the necessary MPI_Send() calls in one asynchronous helper thread, while handling the
MPI_Recv() calls in the main thread. In combination with the message bu�ering in the inbox,
this allows the backend to avoid the global serialization problem described in section 4.2.5, as
no MPI_Send() call ever depends on an unrelated MPI_Recv() call to complete �rst.

4.5.6 Peer Discovery and Rank Assignment

As described in section 4.3, peer discovery and rank determination uses a con�guration �le and
the basic semantics of binding a socket to a name: This solves the problem introduced in section
4.2.6 by delegating it to an outside entity (who- or whatever writes the con�guration �le). We
think that this is more elegant than having a wrapper program and/or a dedicated management
process, since it easily allows running the TCP backend in new environments, because the
con�guration �le is simple enough that it can be constructed by e.g. a trivial shell script which
contains whatever domain-speci�c knowledge is required by the execution environment.

4.5.7 Fault Tolerance

The �nal problem introduced in section 4.2.7 was whether we could use the message identi�ers
we would need anyway for adding fault-tolerance to our backend. This turned out to be very
simple: Since the maximum size of the outbox needed to be con�gurable anyway, we decided
to interpret a size of −1 (or equivalently SIZE_MAX) as in�nite, and handle that as a special case
when removing messages from the outbox, by turning that particular function into a no-op.
This means that the receiver of a message can send in�nitely many GET requests for that
message and they will all succeed, even if the receiving process was restarted in the mean
time. Furthermore, since the con�guration �le (which is also responsible for peer discovery), is
refreshed periodically, it is actually possible to redirect the members of a process group towards
a new address on the �y. This allows a failed process to be restarted on a new node.

27

5 Implementation

With the design introduced in chapter 4, we are now ready to implement a new TCP based
backend for LAIK. This chapter describes the challenges we encountered during the implemen-
tation and then gives a short overview of the architecture of the new TCP backend. Finally we
demonstrate how to use the new backend, including making use of the built-in fault tolerance.

5.1 Challenges

Early on during the implementation, we encountered three major problems with LAIK itself
which we had to solve before we could begin working on the code for the new backend:

1. LAIK did not use any library for basic data structures such as mappings or lists, but
instead implemented these data structures itself. Since these implementations were not
generalized, but speci�c to their particular purpose, we would either have to re-implement
our own versions of these data structures or choose a suitable third-party library to base
our code own. Furthermore, LAIK had no code for error handling or thread management,
and we would almost certainly need both to implement a fault-tolerant communication
backend based on TCP sockets.

2. In fact, LAIK only had one real dependency at the time, namely an MPI installation
for its existing MPI backend. There were some optional leaf components which did
use other libraries such as libpapi and libmosquitto, but LAIK did neither build nor test
these components per default. Consequently LAIK only had a very basic build system
consisting of a few Make�les and a small Python script used to turn some features on or
o�, depending on the environment found on the host system. It seemed clear that adding
a new backend to this build system (including test and installation support) would be
non-trivial, especially if that new backend would use a third-party library not presently
supported by the build system.

3. The fact that LAIK had only a very basic build system, meant that a lot of the code present
in the project was either not compiled at all on a default run, or was not properly tested:
For example, LAIK does support a plugin-mechanism and even contains a few example
plugins, but these were not compiled per default. Furthermore, while there is a dummy
backed (supporting only a single process) to test LAIK’s API for its backends, this code
was e�ectively unreachable if LAIK was compiled with support with MPI. Finally, the
Make�le based build system also failed to de�ne a consistent set of compiler �ags for the
project which meant that only parts of the code compiled when we enabled the -Wall

and -Werror compiler �ags.

In order to tackle these problems, we added a CMake based build system to LAIK which had the
ability to build all the code contained in the repository if requested (and properly error out if
the host system lacked certain dependencies) and use a single set of compiler �ags everywhere.
With that in place, we turned on the -pedantic, -Wall, -Werror, and -Wextra compiler �ags
and began to �x the detected errors. While most errors were minor, we did �nd a few real bugs
which more than justi�ed the e�ort put into this.

29

5 Implementation

We then needed to chose a suitable third-party library providing us with the basic data structures
and functionality needed for writing a non-trivial network application. We looked at Qt and
Boost, but ultimately went for GLib because Qt and Boost are both C++ libraries and LAIK is (at
least for now) still a C-only project.

With the new build system in place and the library chosen, we went ahead and implemented the
design shown in chapter 4. We also extended LAIK core so that the backend for an application
linked against liblaik could be dynamically chosen at runtime using the environment variable
LAIK_BACKEND. We chose the con�guration �le (used for con�guring a few performance options
and for peer discovery) to be a “key�le” [7] which is be refreshed every second, so adjusting the
con�guration during runtime is possible.

5.2 Architecture

Figure 5.1 shows the architecture of the new backend. When comparing this with the architecture
of the existing MPI backend as seen �gure 1.1, we can see that the API spoken between the
LAIK backend and our implementation is actually still (a subset of) the MPI API. This decision
made incremental development much easier, since we could initially re-use the existing code
for LAIK’s MPI backend and had a stable and well-document API to implement.

However, we eventually replaced the code taken from the existing MPI backend with our own
version of a LAIK backend, because the existing code su�ered from a variant of the implicit
global serialization issue described in section 4.2.5. Our own version of the LAIK backend
solves this issue using the approach described in section 4.5.5, but still interfaces with the actual
implementation using the MPI API.

5.3 Demonstration

5.3.1 Regular Mode

We �rst want to demonstrate the basic work�ow of using the TCP backend using the con�gura-
tion �le shown below:

1 [general]
2 # nothing here
3
4 [addresses]
5 rank0 = localhost 2000
6 rank1 = localhost 2001
7 rank2 = localhost 2002
8 rank3 = localhost 2003

Listing 5.1: A simple con�guration �le for the TCP backend without any special settings

We also need a small script which is responsible for setting up the environment and starting
the required number of processes. This script contains the following:

1 #!/bin/sh -eu
2
3 export LAIK_BACKEND='tcp'
4 export LAIK_TCP_CONFIG='config.txt'
5
6 ./jac3d 500 &
7 ./jac3d 500 &
8 ./jac3d 500 &
9 ./jac3d 500 &

30

5.3 Demonstration

Application

LAIK Application API

LAIK Core

LAIK Backend API

LAIK TCP Backend

MPI API

MPI Compatibility Layer

Stateless API for queuing/retrieving messages

Messenger

Client

TCP Socket Wrapper

BSD Socket API

Operating system

ServerMessage buffers

High-level API for sending/receiving integers and binary blobs

connect(2)-like API with Connection Reuse

accept(2)-like API with Connection Reuse
Key-Value-Store-API

for (Identifier, Message)
entries with limited size

Figure 5.1: Stack overview of LAIK when the new TCP backend is used

31

5 Implementation

10
11 wait

Listing 5.2: This script demonstrates how to run an example program using the TCP backend

Running the script gives us this output:
1 $ time ./run.sh
2 500 x 500 x 500 cells (mem 2000.0 MB), running 50 iterations with 4 tasks
3 Residuum after 1 iters: 377335777.221728
4 Residuum after 11 iters: 506561.854361
5 Residuum after 21 iters: 99032.165751
6 Residuum after 31 iters: 54811.260127
7 Residuum after 41 iters: 35891.442200
8
9 real 0m16.160s

10 user 1m0.756s
11 sys 0m1.630s
12 $

Listing 5.3: This output is generated when running the example program with the TCP backend
in use

We can see that the script starts four instances of a program from LAIK’s example suite, that
they properly discover each other using the addresses provided in the con�guration �le, and
�nally that the distributed computation works as expected.

5.3.2 Failure Detection

Next, we want to demonstrate that the TCP backend can correctly detect when a process fails
to respond and abort the other processes after a con�gurable timeout. For this we modify the
con�guration �le from the previous section by limiting the maximum number of send and
receive attempts to 100, with a 0.1 second delay between each attempt, e�ectively giving us a
10 second timeout1:

1 [general]
2 send_attempts = 100
3 send_delay = 0.1
4 receive_attempts = 100
5 receive_delay = 0.1
6
7 [addresses]
8 rank0 = localhost 2000
9 rank1 = localhost 2001

10 rank2 = localhost 2002
11 rank3 = localhost 2003

Listing 5.4: A con�guration �le for the TCP backend with explicit limits on the amount of
send/receive attempts

We also modify our script to abort one of the processes after 10 seconds:
1 #!/bin/sh -eu
2
3 export LAIK_BACKEND='tcp'
4 export LAIK_TCP_CONFIG='config.txt'
5
6 ./jac3d 500 &
7 ./jac3d 500 &
8 ./jac3d 500 &

1These settings are actually the default and only shown here for demonstration purposes. The reasoning behind
having a timeout enabled per default, is that our TCP backend has no central manager, so that a crashed or
unreachable node would otherwise lead to the other processes waiting forever.

32

5.3 Demonstration

9 timeout 10 ./jac3d 500 &
10
11 wait

Listing 5.5: This script runs the example program using the TCP backend, but purposefully
causes one process to fail

Now we can run the script:
1 $ time ./run.sh
2 500 x 500 x 500 cells (mem 2000.0 MB), running 50 iterations with 4 tasks
3 Residuum after 1 iters: 377335777.221728
4 Residuum after 11 iters: 506561.854361
5 Residuum after 21 iters: 99032.165751
6 [LAIK TCP Backend] Aborting, the contents of the error stack follow:
7 => Domain laik_tcp_backend_exec encountered error #0: Reduce operation failed
8 => Domain laik_tcp_backend_reduce encountered error #2: Failed to receive reduction

input from task 3
9 => Domain laik_tcp_backend_push_code encountered error #0: An MPI operation failed,

details below
10 => Domain laik_tcp_minimpi_recv encountered error #1: Failed to receive message from

task 3
11 => Domain laik_tcp_messenger_get encountered error #0: Maximum number of attempts

exceeded while attempting to receive message from rank 3
12
13 [LAIK TCP Backend] Aborting, the contents of the error stack follow:
14 => Domain laik_tcp_backend_exec encountered error #0: Reduce operation failed
15 => Domain laik_tcp_backend_reduce encountered error #2: Failed to receive reduction

input from task 3
16 => Domain laik_tcp_backend_push_code encountered error #0: An MPI operation failed,

details below
17 => Domain laik_tcp_minimpi_recv encountered error #1: Failed to receive message from

task 3
18 => Domain laik_tcp_messenger_get encountered error #0: Maximum number of attempts

exceeded while attempting to receive message from rank 3
19
20 [LAIK TCP Backend] Aborting, the contents of the error stack follow:
21 => Domain laik_tcp_backend_exec encountered error #0: Reduce operation failed
22 => Domain laik_tcp_backend_reduce encountered error #2: Failed to receive reduction

input from task 3
23 => Domain laik_tcp_backend_push_code encountered error #0: An MPI operation failed,

details below
24 => Domain laik_tcp_minimpi_recv encountered error #1: Failed to receive message from

task 3
25 => Domain laik_tcp_messenger_get encountered error #0: Maximum number of attempts

exceeded while attempting to receive message from rank 3
26
27
28 real 0m20.013s
29 user 0m38.262s
30 sys 0m1.401s
31 $

Listing 5.6: The output shows that the TCP backend correctly detects the failure after a timeout
and terminates the remaining processes

As expected, the remaining processes detect that the terminated processed fails to respond
and consequently abort with an error after the timeout expires. It is worth noting that the
total execution time is roughly 20 seconds which corresponds to the 10 seconds after which
the fourth process is terminated, plus the 10 seconds it takes the other processes to reach the
timeout.

5.3.3 Failure Recovery

In the previous section we have purposefully terminated one of the processes to test that the
remaining processes properly abort after a timeout. Now we want to test whether the fault

33

5 Implementation

tolerance of the TCP backend works. We change the con�guration �le so that sending and
receiving messages are retried inde�nitely and that sent messages are never removed from the
outbox (by setting its maximum size to −1 which is interpreted as “in�nity”):

1 [general]
2 send_attempts = -1
3 receive_attempts = -1
4 outbox_size = -1
5
6 [addresses]
7 rank0 = localhost 2000
8 rank1 = localhost 2001
9 rank2 = localhost 2002

10 rank3 = localhost 2003

Listing 5.7: The con�guration �le for the TCP backend with fault tolerance enabled

Next we modify the script to not only terminate a process after 10 seconds, but to also spawn a
replacement process then:

1 #!/bin/sh -eu
2
3 export LAIK_BACKEND='tcp'
4 export LAIK_TCP_CONFIG='config.txt'
5
6 ./jac3d 500 &
7 ./jac3d 500 &
8 ./jac3d 500 &
9

10 if ! timeout 10 ./jac3d 500; then
11 echo "Process died, restarting"
12 ./jac3d 500
13 fi &
14
15 wait

Listing 5.8: A script running an example program using the TCP backend, but purposefully
failing and restarting one process

This gives us the following output:
1 $ time ./run.sh
2 500 x 500 x 500 cells (mem 2000.0 MB), running 50 iterations with 4 tasks
3 Residuum after 1 iters: 377335777.221728
4 Residuum after 11 iters: 506561.854361
5 Residuum after 21 iters: 99032.165751
6 Process died, restarting
7 Residuum after 31 iters: 54811.260127
8 Residuum after 41 iters: 35891.442200
9

10 real 0m21.374s
11 user 1m6.426s
12 sys 0m2.097s
13 $

Listing 5.9: The output shows that one process was killed and successfully restarted

We can see that the distributed computation takes signi�cantly longer to complete (21 seconds
compared to the 16 seconds from section 5.3.1), but gives the same result, so our approach for
bringing fault-tolerance to LAIK seems to work as expected.

5.3.4 Failure Recovery with Address Change

For the �nal demonstration, we want to showcase the ability of the new TCP backend to replace
a failed process with a new process reachable via a di�erent address. The initial con�guration
�le is identical to the one used in the previous section:

34

5.3 Demonstration

1 [general]
2 send_attempts = -1
3 receive_attempts = -1
4 outbox_size = -1
5
6 [addresses]
7 rank0 = localhost 2000
8 rank1 = localhost 2001
9 rank2 = localhost 2002

10 rank3 = localhost 2003

Listing 5.10: The con�guration �le for the TCP backend with fault tolerance enabled

The script is also mostly identical to the one used in the previous section with two important
di�erences:

1. Before starting the fourth process, we wait for one second to make sure that the �rst
three addresses listed in the con�guration �le are already taken and the fourth process
has to take the fourth address.

2. After terminating the fourth process we change the con�guration �le so that the fourth
address uses a di�erent port (3333 instead of 2003), and only then spawn the replacement
process.

1 #!/bin/sh -eu
2
3 export LAIK_BACKEND='tcp'
4 export LAIK_TCP_CONFIG='config.txt'
5
6 ./jac3d 500 &
7 ./jac3d 500 &
8 ./jac3d 500 &
9

10 # Make sure the first three instance are started up and took rank 0,1, and 2
11 sleep 1
12
13 if ! timeout 10 ./jac3d 500; then
14 echo "Process died, restarting on different port"
15 sed -i 's/rank3 = localhost 2003/rank3 = localhost 3333/' 'config.txt'
16 ./jac3d 500
17 fi &
18
19 wait

Listing 5.11: A script running an example program using the TCP backend, but purposefully
failing a process and then restarting it with a di�erent address

Running this script gives us the following output:
1 $ time ./run.sh
2 500 x 500 x 500 cells (mem 2000.0 MB), running 50 iterations with 4 tasks
3 Residuum after 1 iters: 377335777.221728
4 Residuum after 11 iters: 506561.854361
5 Residuum after 21 iters: 99032.165751
6 Process died, restarting on different port
7 Residuum after 31 iters: 54811.260127
8 Residuum after 41 iters: 35891.442200
9

10 real 0m19.190s
11 user 1m1.699s
12 sys 0m1.890s
13 $

Listing 5.12: The output shows that one process was killed and successfully restarted; the
remaining processes correctly picked up the new address of the started process

Everything still works, even though we now e�ectively moved one of the processes during the
distributed computation. This combines the feature of periodically reloading the con�guration
�le with the optional fault tolerance of the TCP backend.

35

6 Evaluation

With the new backend in place, we now want to evaluate its performance, compared to the
existing MPI backend. For this, we �rst introduce the system on which we performed the
evaluation and the programs used as test cases. Then, we explain how we measured the
execution time of the test cases and describe the runtime environments these test cases were
run in. Next, we detail the test variables and metric, present the results and �nally discuss them
shortly.

6.1 Test System

We wanted a test system with enough nodes so that the communication cost required to
synchronize the processes running on these nodes would be signi�cant without the option for
an MPI implementation to take advantage of a potentially faster non-network communication
channel. The second requirement was that the system needed to be fast enough to process
the domain-speci�c part of the application quickly, so that the computation time would not
dominate the communication overhead. Third, as we wanted to compare the performance
of two competing implementations, the test system had to be otherwise unoccupied to avoid
external factors such as other users or network tra�c to in�uence the measurements.

The HimMUC cluster [3] built on our chair as a research project proved to be ideal for our
purposes: It consists of two partitions, one containing 40 Raspberry Pi 3 units and the other one
containing 40 ODroid C2 boards. Each partition is interconnected via a single Gigabit-Ethernet-
Switch and both partitions are managed by an external virtual machine running the SLURM
workload manager [28]. Using MPI applications (or LAIK applications with the existing MPI
backend) is also possible via a custom OpenMPI 3.0.0 installation con�gured to work correctly
with SLURM [43]. Finally, both partitions were fortunately otherwise unoccupied during the
evaluation, reducing outside in�uence.

We chose to only use the ODroid C2 partition of the HimMUC since its nodes provide faster
processors, more memory and faster network cards compared to the Raspberry Pi partition.
This allowed us to run more complex test cases while making sure that the total execution time
was not completely dominated by the computational e�ort required. The cluster can be seen in
�gure 6.1; each node contained the following hardware [3]:

• SoC: Amlogic S905
• CPU: 4 x ARM Cortex-A53, 1.5 GHz
• GPU: Mali-450
• RAM: 2GB (912 MHz)
• Network: 1 GBit Ethernet

37

6 Evaluation

Figure 6.1: The ODroid C2 partition of the HimMUC [3]

6.2 Test Cases

Since we built a new backend for the LAIK library, we needed applications using this library
for running the evaluation. Unfortunately, as LAIK is still a very young project, there are only
a few such applications available. Furthermore, LAIK does not yet provide a stable API, so
the only applications which we could rely on to work correctly with the new TCP backend
were the example applications contained in the LAIK project, as those were also used in LAIK’s
integration tests (which the new TCP backend passed reliably).

Unfortunately, the HimMUC cluster did not provide a recent version of all the necessary
dependencies to build LAIK. Furthermore, while the management VM was an amd64 machine,
the compute nodes were arm64 machines. We therefore decided to cross-build LAIK and the
examples used for testing locally. This turned out to be relatively easy thanks to the new CMake
based build system described in section 5.1. The details are available in section 9.1; however, it is
worth noting that we took care to create a Release (i.e. fully optimized) build for the evaluation.

When formulating the exact list of test cases, we had two requirements: We �rst wanted to
use the entire set of example applications provided by LAIK (as far as possible, unfortunately
the examples not used in the integration tests all failed to run correctly on the HimMUC).
Second, we wanted each test case to not complete almost immediately but still terminate within
a reasonable time (we targeted roughly 5 seconds per run). In the end, we came up with the
following 13 command lines as our test cases:

• jac1d 125000

• jac2d 11000

• jac3d 375

• jac3d -g 375

• markov 400 4000

• markov2 400 4000

• markov2 -f 400 4000

• propagation2d 40 40

38

6.3 Time Measurements

• spmv 5000

• spmv2 150 1500

• vsum 20000000

• vsum2

• vsum3

6.3 Time Measurements

As mentioned in section 6.1, the HimMUC test system uses the SLURM workload manager
to distribute jobs scheduled on the management VM to the compute nodes. Fortunately, the
management VM and the compute nodes share a common NFS based �le system, so allocating a
few nodes from the cluster and then running the LAIK examples cross-built for arm64 on them
is simple:

1 $ file lib/*
2 lib/liblaik.so: symbolic link to ../laik/src/liblaik.so
3 lib/libmpi.so.20: broken symbolic link to /opt/openmpi/lib/libmpi.so
4 $ salloc --partition=odr --nodes=20 --ntasks-per-node=2
5 salloc: Granted job allocation 18656
6 salloc: Waiting for resource configuration
7 salloc: Nodes odr[01-20] are ready for job
8 $ LD_LIBRARY_PATH=~/lib LAIK_BACKEND=mpi srun laik/examples/jac3d 100
9 100 x 100 x 100 cells (mem 16.0 MB), running 50 iterations with 40 tasks

10 Residuum after 1 iters: 3088288.333333
11 Residuum after 11 iters: 11612.580828
12 Residuum after 21 iters: 3544.954272
13 Residuum after 31 iters: 1925.258713
14 Residuum after 41 iters: 1238.432564
15 $

Listing 6.1: An example of running a program from the LAIK example suite on the HimMUC

Now, if we want to compare the new TCP backend to the existing MPI backend, the obvious way
is to measure the total execution time for an srun invocation on the management VM shown
above. However, for this to work, we have to �rst determine how much overhead SLURM itself
causes. For this, we start 5 nodes · 1 processes/node = 5 processes running a simple no-op
command:

1 $ salloc --partition=odr --nodes=5 --ntasks-per-node=1
2 salloc: Granted job allocation 18652
3 salloc: Waiting for resource configuration
4 salloc: Nodes odr[01-05] are ready for job
5 $ for i in 1 2 3 4 5; do time srun true; done
6
7 real 0m0.294s
8 user 0m0.020s
9 sys 0m0.004s

10
11 real 0m0.265s
12 user 0m0.012s
13 sys 0m0.012s
14
15 real 0m0.267s
16 user 0m0.024s
17 sys 0m0.000s
18
19 real 0m0.262s
20 user 0m0.020s
21 sys 0m0.004s
22
23 real 0m0.270s
24 user 0m0.020s
25 sys 0m0.004s

39

6 Evaluation

26 $

Listing 6.2: A simple no-op command is run a number of times on the HimMUC while the
network is not under any load

The results look promising: Assuming that the true command takes almost no time, the overhead
caused by SLURM seems to be relatively small and constant, around 0.2 to 0.3 seconds per srun

invocation. This overhead should not matter much if we make sure that the real test cases used
later on take signi�cantly more time to complete.

Unfortunately, the situation changes dramatically if the network is put under heavy load:
To demonstrate this, we �rst start an iperf server on the management VM and then spawn
30 nodes · 4 processes/node = 120 processes running the corresponding iperf client
command. Then, we again start 5 nodes · 1 processes/node = 5 processes running the true

command:
1 $./iperf.amd64 --server --time=300 1>/dev/null 2>/dev/null &
2 [1] 4345
3 $ srun --partition=odr --nodes=30 --ntasks-per-node=4 ./iperf.arm64 --client

10.42.1.253 --dualtest --time=300 1>/dev/null 2>/dev/null &
4 [2] 4398
5 $ salloc --partition=odr --nodes=5 --ntasks-per-node=1
6 salloc: Granted job allocation 18654
7 $ for i in 1 2 3 4 5; do time srun true; done
8
9 real 0m1.874s

10 user 0m0.020s
11 sys 0m0.004s
12
13 real 0m1.836s
14 user 0m0.024s
15 sys 0m0.004s
16
17 real 0m7.229s
18 user 0m0.020s
19 sys 0m0.004s
20
21 real 0m1.802s
22 user 0m0.016s
23 sys 0m0.012s
24
25 real 0m2.242s
26 user 0m0.020s
27 sys 0m0.008s
28 $

Listing 6.3: A simple no-op command is run a number of times on the HimMUC while the
network is under heavy load

The result clearly indicate that measuring the invocation time of the srun command on the
management VM will make getting usable results di�cult at best: Not only has the overhead
increased drastically (to typically about 1.8 to 2.3 seconds), it has also become a lot more
unstable, with one invocation taking as much as 7.2 seconds. We were able to reproduce these
“jumps” in the overhead reliably under heavy network load. Furthermore we even sporadically
encountered timeouts in the communication between the SLURM instances on the management
VM and the compute nodes, causing the scheduled job to fail entirely.

As measuring the total execution time of the srun command on the management VM was not
feasible, we built our own timing and synchronization solution consisting of a small “client”
wrapper script (see section 9.5.7) which the compute nodes would run in place of the real test
cases and a “server” script (see section 9.5.6) the management VM would run to synchronize
and time the test runs.

40

6.4 Environments

The basic idea was that before and after executing the real test case, the clients would connect
to the server and block until the server closed the connection which it would do by simply
terminating once the expected number of connections (one for each processes spawned on the
compute nodes) had been accepted. Since the server would print a timestamp just before exiting
this served both as a means to prevent some processes from starting (much) earlier than others
as well as a way to record the start/stop time.

6.4 Environments

With the startup synchronization and time measurement issues addressed, we now needed to
decide on the runtime environments to benchmark. We chose the following:

6.4.1 Environment 1: MPI

LAIK’s existing MPI backend would be benchmarked by the custom OpenMPI 3.0.0 imple-
mentation installed on the HimMUC, without any special runtime parameters or environment
variables (see section 9.5.2 for details).

6.4.2 Environment 2: TCP

LAIK’s new TCP backend would be tested with its default parameters (see section 9.3 for details),
with the sole exception of the maximum limit of message receive attempts which was increased
from its default value of 100 to 1000. In combination with the default value for the receive retry
delay of 0.1 seconds, this simply increased the total message receive timeout from 10 to 100
seconds, so that even long-running test-cases would not encounter this timeout. The precise
detail are available in section 9.5.1

6.4.3 Environment 3: TCP with Master Reduction (TCP-M)

Per default, the TCP backend computes reductions by having the input processes (those providing
input to the reduction) send their data to all the output processes (those interested in the result
of the reduction). This environment is identical to the TCP environment described in section
6.4.2, except that reductions are computed using a dedicated master processes (see 9.5.3 for
details) which receives the input from all input processes, computes the result, and sends it
back out the all the other output processes (the master processes is chosen so that it always is
an output processes).

This modi�cation reduces the amount of messages required for a reduction with N input
processes and M output processes from N ∗M to N +M , i.e. from O(n2) to O(n). However,
it also blocks all the output processes until the dedicated master processes has received all the
inputs, computed the reduction result, and sent this result back to all the output processes.
With this environment, we therefore hope to determine which of the two reduction strategies is
better, depending on the test case and the number of processes involved.

41

6 Evaluation

6.4.4 Environment 4: TCP with Extra Resources (TCP+)

The default limits for the resources used by the TCP limit are quite conservative: Its bu�ers
for incoming and outgoing messages (called the inbox and outbox) are limited to 16 MiB, both
the client and server side may not keep more than 16 connections open concurrently, and the
socket backlog used for listening sockets is set to just 64 connections (see 9.3 for a full list of
the default values). This environment is identical to the TCP environment described in section
6.4.2, except that the bu�ers may now grow to 256 MiB, the connection limit has been bumped
to 400, and the socket backlog is now also 400 connections (see section 9.5.4 for details).

These new limits are still well below the limits imposed by the hardware or the operating system,
even on systems such as the ODroid C2 boards used here. However, they are big enough to
potentially cause problems in some situations (such as having other resource-hungry programs
running in parallel), so they can not be made the default. In summary, this environment should
give us an idea of the performance the TCP backend is able to achieve under ideal conditions.

6.5 Test Variables and Metric

In addition to the 13 test cases described in section 6.2 and the 4 environments described in
section 6.4, we also varied the number of ODroid C2 nodes used (from 5 to 35) and the number
of processes per node (from 1 to 4), giving us a total of 13 ·4 ·31 ·4 = 6448 data points to collect.
Each data point would represent the time spent on the distributed computation, measured using
the approach described in section 6.3. Furthermore, for each data point we collected n = 10
samples and calculated the average x and the sample standard deviation σ:

x =
1

n

n∑
i=1

xi (6.1)

σ =

√√√√ 1

n− 1

n∑
i=1

(xi − x)2 (6.2)

Unfortunately, the results gathered in this way sporadically contained unexpectedly high
averages and huge sample standard deviations. We suspect that the underlying problem which
caused the jumps in execution time encountered in section 6.3 is either a fundamental network
issue, a�ecting all communications on the cluster, or at least also a�ects our own time stamping
mechanism. Regardless, in order to get usable results, we decided to �lter the data points after
the initial test run and regenerate all the data points with a sample standard deviation exceeding
max{1, 0.10 · x} seconds using the script shown in section 9.5.8.

6.6 Results

This section presents the results of evaluation. For every test case, we �rst give a short introduc-
tion into what the program requires the backend to do using the analysis of the test cases we
have conducted in section 9.2. We then present the resulting graphs and shortly discuss them.

42

6.6 Results

6.6.1 jac1d 125000

Looking at section 9.2.1, we see that this test case mostly issues send/receive operations to the
backend and only a few reductions. All send/receive operations concern messages with a size of
8 bytes, and the backend typically gets two such operations per invocation. Overall, we expect
the TCP backend to not perform very well here because of the very small messages. However,
the total number of messages is only 900, so the performance hit compared to the MPI backend
should not be too bad.

Figure 6.2: Evaluation of jac1d 125000 using 5-35 nodes with 1-4 processes per node

5 10 15 20 25 30 35

4

6

8

10

12

Number of nodes (1 process per node)

Ex
ec

ut
io

n
tim

e
/s

ec
on

ds

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

4

6

8

Number of nodes (2 processes per node)

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

3

4

5

6

7

8

Number of nodes (3 processes per node)

Ex
ec

ut
io

n
tim

e
/s

ec
on

ds

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

4

6

8

Number of nodes (4 processes per node)

MPI TCP TCP-M TCP+

Despite the small message sizes, the TCP backend almost always outperforms the MPI backend
here. Furthermore, while the MPI backend actually begins to take more time to complete the
computation once more than 20 nodes are used, the TCP backend scales much better, with only
the graphs representing 3 and 4 processes per node showing a similar e�ect. However, this only
applies to the default con�guration, the TCP-M and TCP+ variants are both able to bene�t from
more nodes almost everywhere, although the bene�t per additional node decreases.

43

6 Evaluation

6.6.2 jac2d 11000

In contrast to the previous test case, the analysis in section 9.2.2 suggests that this test case
is much better suited for the TCP backend: The backend is frequently called with multiple
send/receive operations, and those overwhelmingly consists of messages in the order of several
kilobytes. As previously, there were only a few reductions. We therefore expect that the TCP
backend can perform about as well as the MPI backend here, if not better.

Figure 6.3: Evaluation of jac2d 11000 using 5-35 nodes with 1-4 processes per node

5 10 15 20 25 30 35

5

10

15

20

Number of nodes (1 process per node)

Ex
ec

ut
io

n
tim

e
/s

ec
on

ds

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

2

4

6

8

10

12

Number of nodes (2 processes per node)

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

2

4

6

8

10

Number of nodes (3 processes per node)

Ex
ec

ut
io

n
tim

e
/s

ec
on

ds

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

2

4

6

8

10

Number of nodes (4 processes per node)

MPI TCP TCP-M TCP+

We see a similar result as in the previous section here, the TCP backend is better almost
everywhere, except when many nodes and three or more processes per node are used. The
TCP-M and TCP+ variants however still beat the MPI backend even in these cases. We suspect
that the default con�guration (which sends/receives O(n2) messages per reduction) reaches
the connection limit with enough processes involved, and that either using a O(n) reduction
algorithm or a higher limit avoid the issue.

44

6.6 Results

6.6.3 jac3d 375

This test case is very similar to the previous one, except that is even better suited for the TCP
backend: Section 9.2.3 shows that the program submits even more send/receive operations per
invocation to the backend, and those operations consist of messages of frequently up to several
hundred kilobytes. Again, there are almost no reductions.

Figure 6.4: Evaluation of jac3d 375 using 5-35 nodes with 1-4 processes per node

5 10 15 20 25 30 35

5

10

15

20

25

Number of nodes (1 process per node)

Ex
ec

ut
io

n
tim

e
/s

ec
on

ds

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

5

10

15

20

Number of nodes (2 processes per node)

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

5

10

15

Number of nodes (3 processes per node)

Ex
ec

ut
io

n
tim

e
/s

ec
on

ds

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

5

10

15

Number of nodes (4 processes per node)

MPI TCP TCP-M TCP+

In essences, the behavior of the TCP backend is identical to the previous two test case here,
but the MPI backend behaves strangely: There are clear and repeated jumps in the graph and
overall the MPI backend takes signi�cantly more time to complete the computation, regardless
of the speci�c test parameters. We think that this test case triggers a particularly bad variant of
the problem described in section 4.2.5, as the MPI backend contains a variant of the code shown
there.

45

6 Evaluation

6.6.4 jac3d -g 375

The only di�erence here compared to the previous test case is the extra -g parameter used in
the command line. This seems to make the program issue less varied backend invocations as
shown in section 9.2.4, but overall the analysis from the previous test case is still valid: Multiple
send/receive operations per backend invocation, large message sizes and only a few reductions.

Figure 6.5: Evaluation of jac3d -g 375 using 5-35 nodes with 1-4 processes per node

5 10 15 20 25 30 35

10

20

30

Number of nodes (1 process per node)

Ex
ec

ut
io

n
tim

e
/s

ec
on

ds

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

5

10

15

20

Number of nodes (2 processes per node)

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

5

10

15

Number of nodes (3 processes per node)

Ex
ec

ut
io

n
tim

e
/s

ec
on

ds

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

5

10

15

20

Number of nodes (4 processes per node)

MPI TCP TCP-M TCP+

In contrast to the previous test case, there are now clear steps in the graphs, but the overall
assessment still holds: The TCP backend is much faster than the MPI backend, and both the
TCP-M and TCP+ variant are faster than the TCP backend running in its default con�guration
when many processes are involved.

46

6.6 Results

6.6.5 markov 400 4000

The analysis in section 9.2.5 shows that this test case almost always calls the backend with 9
send/receive operations, each consisting of messages with a size of 320 bytes. There are no
reductions submitted to the backend. Overall, we expect that this test case should perform well
using the TCP backend, as there are many messages to be sent in parallel, and the messages do
not have a negligible size.

Figure 6.6: Evaluation of markov 400 4000 using 5-35 nodes with 1-4 processes per node

5 10 15 20 25 30 35

4

5

6

7

Number of nodes (1 process per node)

Ex
ec

ut
io

n
tim

e
/s

ec
on

ds

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

5

6

7

8

Number of nodes (2 processes per node)

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

6

8

10

Number of nodes (3 processes per node)

Ex
ec

ut
io

n
tim

e
/s

ec
on

ds

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35
5

10

15

Number of nodes (4 processes per node)

MPI TCP TCP-M TCP+

The results are interesting: For 1 and 2 processes per node, the TCP backend outperforms the
MPI backend in all variants, for 3 processes per node all environments except TCP+ are roughly
equivalent, and for 4 processes per node, the MPI backend is faster than the TCP backend in its
default con�guration, but slower than TCP+. We therefore think that the underlying problem
of the TCP backend here is the relatively low default connection limit which means that with
many processes it is possibly that connections get evicted from the connection cache before
they can be reused.

47

6 Evaluation

6.6.6 markov2 400 4000

This test just uses reductions according to the analysis in section 9.2.6. Most of the time, the
backend gets 10 reductions per invocation, with each reduction usually concerning 320 bytes.
In total, this usage pro�le should not favor the TCP backend, as it cannot run reductions in
parallel, in contrast to send/receive operations.

Figure 6.7: Evaluation of markov2 400 4000 using 5-35 nodes with 1-4 processes per node

5 10 15 20 25 30 35

4

5

6

Number of nodes (1 process per node)

Ex
ec

ut
io

n
tim

e
/s

ec
on

ds

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35
4

5

6

7

Number of nodes (2 processes per node)

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

5

6

7

8

Number of nodes (3 processes per node)

Ex
ec

ut
io

n
tim

e
/s

ec
on

ds

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

6

7

8

9

10

Number of nodes (4 processes per node)

MPI TCP TCP-M TCP+

In short, the result mirror those from the previous test case: The TCP backend performs better
than MPI with a lower process group size, but loses that advantage once enough nodes or
processes per node are used. The TCP-M and TCP+ variants still seem to be slightly better
than MPI everywhere, but not by much. However, given the application analysis described
above, this is not surprising: Small reductions appear to be the Achilles heel of the TCP backend,
probably because they are not run in parallel.

48

6.6 Results

6.6.7 markov2 -f 400 4000

The analysis in section 9.2.7 shows that this test case behaves identically to the previous test case
which is not surprising given that we only added the -f �ag to the command line. Therefore,
we expect the TCP backend to perform about as well as in the previous section.

Figure 6.8: Evaluation of markov2 -f 400 4000 using 5-35 nodes with 1-4 processes per node

5 10 15 20 25 30 35

4

5

6

Number of nodes (1 process per node)

Ex
ec

ut
io

n
tim

e
/s

ec
on

ds

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35
4

5

6

7

Number of nodes (2 processes per node)

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

5

6

7

8

9

Number of nodes (3 processes per node)

Ex
ec

ut
io

n
tim

e
/s

ec
on

ds

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

6

7

8

9

10

Number of nodes (4 processes per node)

MPI TCP TCP-M TCP+

The result from last markov test case unsurprisingly mirror the results from the previous two:
TCP in the default con�guration is better than MPI, but not by much and only if the number of
processes is not too high, and TCP+ delivers equal or better performance everywhere.

49

6 Evaluation

6.6.8 propagation2d 40 40

Looking at the analysis in section 9.2.8, we can see that this test case exclusively issues reduce
operations to the backend, typically 42 or 83 per backend invocation. However, the size of the
data to reduce is usually just 8 bytes, and the TCP backend does not support running reductions
in parallel. In summary, we expect the TCP backend to perform very badly here, since the
overhead caused by our protocol (see section 4.4) is signi�cant here, and the backend needs to
exchange more than 27000 messages to run the requested reductions.

Figure 6.9: Evaluation of propagation2d 40 40 using 5-35 nodes with 1-4 processes per node

5 10 15 20 25 30 35

0

10

20

30

40

50

Number of nodes (1 process per node)

Ex
ec

ut
io

n
tim

e
/s

ec
on

ds

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

0

10

20

30

Number of nodes (2 processes per node)

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

0

10

20

Number of nodes (3 processes per node)

Ex
ec

ut
io

n
tim

e
/s

ec
on

ds

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

0

10

20

30

40

Number of nodes (4 processes per node)

MPI TCP TCP-M TCP+

Finally, some interesting results! First, the TCP backend consistently performs worse than the
MPI backend; in fact it takes at least three times as long everywhere. Second, in the previous
test cases the TCP-M variant was always better than the default con�guration which is not
surprising given the reduction in exchanged messages from O(n2) to O(n). However, in this
case the quadratic algorithm (TCP) consistently beats the linear algorithm (TCP-M), and by no
small amount. Looking back at the analysis above, this seems to suggest that for the speci�c
case of many small reductions, the quadratic algorithm may actually be better.

50

6.6 Results

6.6.9 spmv 5000

The analysis in section 9.2.9 shows one thing above all else: This test case barely utilizes
the backend. It is worth noting that we noticed this when selecting the test cases and tried
mitigating this problem by adjusting the command line arguments to cause the program to
run longer and issue more work to the backend. However, we almost always encountered
out-of-memory (OOM) errors when using di�erent parameters. If the results are signi�cant
here, we expect the TCP backend to not perform very well, since the little work the backend
gets almost always consists of one send/receive or reduce operation per backend invocation,
meaning no parallelization is possible.

Figure 6.10: Evaluation of spmv 5000 using 5-35 nodes with 1-4 processes per node

5 10 15 20 25 30 35

0

0.5

1

1.5

Number of nodes (1 process per node)

Ex
ec

ut
io

n
tim

e
/s

ec
on

ds

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

0

1

2

Number of nodes (2 processes per node)

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

0

1

2

3

4

Number of nodes (3 processes per node)

Ex
ec

ut
io

n
tim

e
/s

ec
on

ds

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

1

2

3

4

Number of nodes (4 processes per node)

MPI TCP TCP-M TCP+

This test case appears to be another example of the TCP backend performing worse than the
MPI backend, at least once enough processes are involved, but we expected as much given
the analysis described above. However, the lower total execution time compared to the other
test cases in combination with the relatively high sample standard deviation means that we
probably should not give this result too much weight.

51

6 Evaluation

6.6.10 spmv2 150 1500

This test is is interesting: The analysis in section 9.2.10 shows that the program typically
submits 9 send/receive operations to the backend which should allow for good parallelization.
Furthermore, the message sizes are non-negligible, ranging from several hundred to several
thousand bytes. However, on nearly half the backend invocations, the program submits no
send/receive operations at all, but only a single reduction consisting of just 8 bytes. So, half of
the time this program is well suited for the TCP backend, and the other half it is not. Therefore,
it seems there is no clear prediction possible here regarding the performance to expect.

Figure 6.11: Evaluation of spmv2 150 1500 using 5-35 nodes with 1-4 processes per node

5 10 15 20 25 30 35
0

2

4

6

8

10

12

Number of nodes (1 process per node)

Ex
ec

ut
io

n
tim

e
/s

ec
on

ds

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35
0

5

10

15

Number of nodes (2 processes per node)

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

0

10

20

30

40

Number of nodes (3 processes per node)

Ex
ec

ut
io

n
tim

e
/s

ec
on

ds

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

0

20

40

60

80

100

Number of nodes (4 processes per node)

MPI TCP TCP-M TCP+

This is another result which is very interesting: First, the TCP backend appears to be both
signi�cantly better and signi�cantly worse, depending the number of processes per node.
However, we think that this is simply caused by the fact that more processes per node also
means more processes in total. Second, the linear reduction algorithm (TCP-M) also performs
surprisingly badly here, compared to default TCP environment. The TCP+ variant (which also
uses the quadratic reduction algorithm) even outperforms it everywhere and is the closest to
the clearly superior MPI backend. In total, we can conclude that there are clearly usage pro�les
where the quadratic reduction algorithm is better, and that having a higher limit on concurrently
open connections is obviously also bene�cial.

52

6.6 Results

6.6.11 vsum 20000000

The test case presented here is another example of a program which only calls into the backend
very infrequently: The analysis in section 9.2.11 shows a total of just 40 invocations to send/re-
ceive or reduce data. Among these, the bulk of the work given to the backend are send/receive
operations with message sizes ranging from several hundred kilobytes to well over a megabyte.
However, there are also 10 invocations containing a single reduction over just 32 bytes. In
total, we expect that the TCP backend can perform well here, given the characteristics of the
send/receive operations.

Figure 6.12: Evaluation of vsum 20000000 using 5-35 nodes with 1-4 processes per node

5 10 15 20 25 30 35

4

6

8

10

12

14

Number of nodes (1 process per node)

Ex
ec

ut
io

n
tim

e
/s

ec
on

ds

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

5

10

15

Number of nodes (2 processes per node)

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

5

10

15

Number of nodes (3 processes per node)

Ex
ec

ut
io

n
tim

e
/s

ec
on

ds

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

5

10

15

Number of nodes (4 processes per node)

MPI TCP TCP-M TCP+

This test case clearly seems to favor the TCP backend: The MPI backend is slower by a factor of
at least two, except for very small process group sizes. Furthermore, all TCP variants perform
almost identically here, suggesting that a a higher connection limit in no way guarantees better
performance.

53

6 Evaluation

6.6.12 vsum2

This test case is similar to the previous one: Section 9.2.12 shows mostly multiple send/receive
operations per backend invocation, with message sizes ranging from several kilobytes to almost
half a megabyte. There are again some reductions over just 32 bytes of data, but overall the
performance of the TCP backend should still be reasonable here.

Figure 6.13: Evaluation of vsum2 using 5-35 nodes with 1-4 processes per node

5 10 15 20 25 30 35

0.5

1

1.5

Number of nodes (1 process per node)

Ex
ec

ut
io

n
tim

e
/s

ec
on

ds

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35
0

0.5

1

1.5

Number of nodes (2 processes per node)

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35
0

0.5

1

1.5

Number of nodes (3 processes per node)

Ex
ec

ut
io

n
tim

e
/s

ec
on

ds

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35
0

0.5

1

1.5

2

Number of nodes (4 processes per node)

MPI TCP TCP-M TCP+

It should be noted that the vsum2 program does not take any command line arguments, so
we could not increase the total execution time to roughly match that seen in the other test
cases. The results are still clear however: The TCP backend is much faster compared to the MPI
backend, but not by as much as seen in the previous test case. Furthermore, the advantage of
the TCP backend actually seems to be getting smaller with both the number of nodes and the
number of processes per node, suggesting that larger tests might actually return results with
the MPI backend on top.

54

6.6 Results

6.6.13 vsum3

The analysis in section 9.2.13 show that the last case is similar to the previous two: Mostly
send/receive operations with each backend invocation containing multiple such operations. The
only di�erence is that now the message sizes range from several kilobytes to almost a megabyte,
but in the end this should not a�ect the results much, the TCP backend should still perform
well here.

Figure 6.14: Evaluation of vsum3 using 5-35 nodes with 1-4 processes per node

5 10 15 20 25 30 35

0.5

1

1.5

Number of nodes (1 process per node)

Ex
ec

ut
io

n
tim

e
/s

ec
on

ds

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

0.5

1

1.5

Number of nodes (2 processes per node)

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

0.5

1

1.5

2

Number of nodes (3 processes per node)

Ex
ec

ut
io

n
tim

e
/s

ec
on

ds

MPI TCP TCP-M TCP+

5 10 15 20 25 30 35

0

1

2

3

Number of nodes (4 processes per node)

MPI TCP TCP-M TCP+

Just like the previous test case, the vsum3 program takes no arguments which is why the total
execution time is lower than desired. The results are otherwise very similar to the previous test
case: TCP is much faster, but its advantage shrinks with bigger process group sizes. However,
in contrast to the previous test case, the TCP+ variant does not appear to be su�ering from this
problem, as its distance to the MPI backend is more or less consistent everywhere.

55

6 Evaluation

6.7 Discussion

The results presented in section 6.6 show a few interesting results which we want to summarize
here shortly:

1. The new TCP backend appears to be faster than the existing MPI backend in most of
the cases. This is surprising given that the MPI backend indirectly uses the code from
OpenMPI (see section 6.1) which is certainly better optimized compared to our relatively
simple, new TCP backend. The only good explanation we can o�er for this, is that as
described in section 4.5.5 our LAIK backend submits send operations messages in parallel
to the corresponding receiving operations to the MPI compatibility layer (see �gure 5.1),
thus avoiding the problem described in section 4.2.5. In contrast the MPI backend is
a�ected by this problem, as it contains code similar to the code shown in the referenced
section.

2. The few cases were the TCP backend was signi�cantly slower than the MPI backend all
made heavy use of reductions (which the TCP backend does not run in parallel) over very
small data bu�ers. In these cases, the overhead of the network protocol described in 4.4
and of the underlying TCP/IP stack becomes signi�cant. Looking back at section 3.2, it
might be a good idea to handle small reductions specially, e.g. by using UDP for these.

3. We expected that the TCP-M environment described in section 6.4.3 would always perform
better than the default TCP environment, given that it reduces the number of messages
required for a reduction from O(n2) to O(n). However, at least for very small reduction
sizes, this assumption does not appear to hold.

In total, we are very pleased with the results: Despite the fact that the new TCP backend
was implemented without special attention to optimizing the performance besides the points
described in chapter 4, it still can compete with the existing MPI backend in most test cases,
often times even outperforming it. Furthermore, the results have also shown us clearly that
the backend LAIK uses makes a signi�cant di�erence in total execution time, regardless of the
test case. From this, we conclude that optimizing the backends is an important component in
bringing LAIK on par with existing inter-process communication solution such as plain MPI.

56

7 Future Work

In this chapter we want to introduce some ideas for future work resulting from the knowledge
gained when designing, implementing and evaluating the TCP backend. We will �rst discuss
possible improvements to LAIK’s backend API and then explain how the performance of the
new TCP backend could be further improved. Finally, we will motivate why our approach to
message identi�cation could be an interesting way of adding fault tolerance transparently to
MPI applications running in co-scheduling environments.

7.1 Improvements to LAIK’s Backend API

In section 4.1 we have explained why we initially did not use LAIK’s backend API to interface
with LAIK, but rather chose to re-implement a subset of the MPI API. Unfortunately, the points
listed there are still largely valid today. While it is not surprising that an API design with only
one real implementation turns out to be less than ideal, we think that now that there is a second,
independent implementation, it is time to revisit that API design. In our opinion, the current
API is too complicated and does too much, which makes it both di�cult to use and di�cult to
implement.

We therefore suggest to redesign the API around a basic, synchronous send/receive design:
Essentially the API should just contain the following functions:

1 int laik_backend_init (void);
2 int laik_backend_finish (void);
3 int laik_backend_get_size (void);
4 int laik_backend_get_rank (void);
5 int laik_backend_send (int receiver, void* buffer, size_t length);
6 int laik_backend_receive (int sender, void* buffer, size_t length);

The �rst two functions would start/stop the backend, the next two determine the size of the
process group and the local rank, and the last two functions can be used to synchronously send
and receive binary blobs to/from a speci�c process (the backend may implement some bu�ering
to make the actual transmissions asynchronous). This design di�ers in a few crucial points from
the currently existing API:

1. LAIK would no longer inform the backend when it wants to make changes to the process
group. Instead, it would determine the initial size and rank once on startup, and then
always use those when talking to the backend. If LAIK wants to modify the process
group for some reason it can still do so, but it has to translate the new values for size and
rank back to the old (global) values expected by the backend. This modi�cation would
allow both making LAIK more �exible with regard to the modi�cations it can make to the
process group as well as relieve the backend of the burden of supporting these changes.

2. There are no reduction functions present anymore. While this may seem like a glaring
omission at �rst, LAIK does already contain a distributed software reduction algorithm
in the MPI backend which could be extracted and generalized to use the send/receive
primitives shown above. As LAIK supports a much wider variety of reductions compared
to e.g. MPI already, chances are that this software reduction algorithm would be used most

57

7 Future Work

of the time anyway. However, it is of course still possible to add an optional extension
to the backend API for reductions directly supported by the backend. But given the fact
that the types of reductions supported natively by a backend will vary widely (think for
example of shared-memory based backends vs. network based backends), it does not
make sense to have reduction support in the core backend API.

3. The send/receive functions accept/return simple binary blobs instead of run-time typed
data bu�ers. We think that this is appropriate, given that there are probably not many
HPC clusters with nodes of di�erent architectures. However, if LAIK still wants to support
such setups (which we do not think it should), it can easily marshal the data itself before
handing it o� to the backend if necessary. This should also not be much of a performance
issue, given that di�erent architectures typically imply di�erent physical machines, which
means message passing works by using some kind of interconnect that is likely much
slower than the memory access required for data marshalling.

4. The int return values of the functions could be used by the backend to return detailed
error codes as negative values (a technique common in the Linux kernel and related
projects), something which is currently not possible at all: As of now, the only choice
a backend has if it encounters an error is to terminate the whole program forcefully,
which is less than ideal given that LAIK is a library. With proper error reporting, LAIK
could either attempt to remedy the error itself (for example by retrying an operation) or
properly report the problem to the main application.

The simpli�ed API in combination with proper error reporting could also be used to extend
LAIK with the ability to not only support shrinking the process group, but also extending it.
While the former would be implemented by simply not calling the backend with the ranks of
the removed processes anymore, the latter could be achieved using the following approach:

1. LAIK would regularly call laik_backend_get_size() to determine if the backend has
noticed a new process which has joined the process group since the last check. If so, it
would update its internal data structures and start distributing work to the new process.

2. LAIK would then start calling the laik_backend_send() and laik_backend_receive()

functions with new receiver/sender ranks derived from the new process group size.

We realize that the new API design introduced above is heavily in�uenced by the TCP backend
we have introduced in this work, just as the existing API design was heavily in�uenced by the
existing MPI backend. However, given that we both implemented the current LAIK backend
API and the subset of the MPI API used by LAIK’s MPI backend, we are quite certain that a
simpler, and less abstract backend interface would a long way in making LAIK easier to extend
in the future.

7.2 Improvements to the TCP Backend

7.2.1 Reducing the Amount of System Calls

Section 4.4 explained the basic network protocol. The implementation follows the messages
shown there closely, so each arrow in the diagrams corresponds to an individual send or recv

system call. Since the TCP sockets used have the TCP_NODELAY option enabled as explained in
section 4.3, this likely means that every such arrow actually corresponds to an individual TCP
segment transported over the network. This is a performance problem: Both making a system
call as well as sending data over the network should be done as infrequently as possible, as they
are both expensive operations, especially if they are executed hundreds or thousands of times
(section 9.2 shows that these numbers are realistic even in small use cases).

58

7.2 Improvements to the TCP Backend

The obvious solution to this problem is to incrementally construct the messages to be sent in a
bu�er and then submit that bu�er to the send function once the message is complete. However,
this approach means that an additional copy of the message is created when sending which
is not ideal. A better idea would be to use the TCP_CORK [15] socket option o�ered by recent
versions of the Linux kernel to prevent the message from being sent out before it has been
submitted to the operating system completely. Unfortunately, this approach still leaves the
problem of using multiple system call per message unsolved.

We think that the ideal solution should use the scatter/gather I/O o�ered by the sendmsg() [21]
and recvmsg() [25] system calls: The socket abstraction class shown in �gure 5.1 should gain
the ability to queue submitted bu�ers and only submit them to operating system once the calling
code signals that the current message is complete. Implementing a corresponding solution for
receiving a message unfortunately seems more complicated, since the socket abstraction class
does not know enough about the network protocol to properly split up incoming messages.
Furthermore, great care has to be taken to ensure that bu�ers submitted to the socket abstraction
class are released once they are no longer needed, but not before.

7.2.2 Automatic Selection of the Reduction Strategy

In section 6.4.3 we have introduced an option of the new TCP backend which lowers the amount
of messages generated by the reduction algorithm from O(n2) to O(n) (where n is the size of
the process group). Chapter 6 has shown that this modi�cation is bene�cial in almost all cases,
except when frequently reducing very small bu�ers (see section 6.6.8).

We think that this shows a fundamental problem: Reducing using a dedicated master process
lowers the amount of messages required, but introduces an additional round trip. Depending on
the speci�c application and network in use this may lead to a net gain or loss in performance.
It would be interesting to investigate the precise parameters where net gains turn into net
losses and to use that knowledge to dynamically switch from the centralized to the distributed
reduction algorithm, depending on the current reduction task and the observed environment.

7.2.3 Be�er Connection Cache Eviction Strategies

In order to solve the problem described in section 4.2.2, we had to limit the total number of
connections being kept open concurrently (see section 4.5.2). This implies that we need some
sort of eviction strategy to decide which connections to keep and which to drop once we reach
the limit. Our implementation uses the simplest possible approach here and just drops all
connections once the limit has been reached. While this approach has the advantage that
di�erent communication patters in di�erent stages of the program execution can be handled
well, it is clearly not ideal.

A possible improvement would be to investigate whether existing cache eviction algorithms
(such as those used by CPU caches) could be applied here. However, we expect that the decision
which of those algorithms to actually use is not trivial: Di�erent applications may have wildly
di�erent communication patterns and an eviction algorithm that works well for one application
may not do so for others. Overall, we suspect that solving this problem will require pro�ling
the application dynamically during runtime (as mentioned in section 7.2.2), and then select an
eviction algorithm suited for the speci�c communication pattern observed.

59

7 Future Work

7.3 Fault Tolerance in MPI Using Unique Message Identifiers

Section 3.3 shows that bringing fault tolerance to MPI implementations or even the standard
itself is an active research area. In this work, we have shown an approach for fault tolerance
which is based on generating unique message identi�ers (see section 4.5.4) and then adding the
option to retain sent messages (see section 4.5.7) so they can be requested a second time later
on (see section 4.4.3). However, we did this while still only using the MPI API to communicate
between the backend used by LAIK and our actual implementation, as shown in �gure 5.1.

Since we only used the MPI API to generate the message identi�ers, it seems possible to bring a
similar solution to existing MPI implementations without modifying the MPI standard at all.
While our implementation has some obvious limitations (such as the fact that messages are
retained in memory only), we think that the fundamental idea of having unique message identi-
�ers and retransmission requests is solid and could be used to add fault tolerance transparently
to existing MPI applications.

However, it is worth noting that this approach has two fundamental limitations. Since it
relies on the fact that both the sender and the receiver can compute the message identi�er
independently and come to the same result, it will obviously not work for applications using
MPI in a nondeterministic way (i.e. where the exact identity of the next message to receive is
not �xed). Furthermore, without additional measures, restarting a failed process means that
this process has to redo its entire part of the computation, likely causing the other processes to
block on message reception until the replacement process has caught up with the rest of the
process group. This implies that restarting a single failed process is no faster than restarting
the entire process group when it comes to the total execution time. It is however much faster,
when we only look at the total amount of CPU time used for the computation, so this approach
might still be very interesting in co-scheduling environments.

60

8 Conclusion

We have designed, implemented, and evaluated a new backend for LAIK based on native
TCP sockets. Using the results from the evaluation (as presented in chapter 6) we can now
answer the research question from chapter 1, namely how the performance of our new TCP
backend compares to that of the existing MPI backend in combination with a widely used MPI
implementation: The new TCP backend delivers comparable performance in most test cases,
with many test cases even showing signi�cant performance improvements.

However, delivering competitive performance is not the only result from this work: The problems
described in section 4.2 can serve as a blueprint for other LAIK backends to be designed in
the future, at least if they are also based around send/receive primitives. In fact, the problem
described in section 4.2.5 also a�ects the MPI backend and �xing it could potentially deliver
dramatic performance increases here.

Besides performance considerations we also designed and implemented a working fault tolerance
mechanism based on unique message identi�ers. Sections 5.3.2, 5.3.3, and 5.3.4 show how
this approach can help deal with failed processes transparently, i.e. without requiring any
modi�cation to the program or even the core components of LAIK. However, we want to stress
that adding fault tolerance was not a priority when we started working on the new TCP backend,
but rather came as a natural extension once we had the message identi�ers from section 4.5.4
and the network protocol described in section 4.4 �gured out.

Actually, we think that the code to generate the message identi�ers (shown in full in section
4.5.4) is our most important result. This code lives inside our MPI compatibility layer (see �gure
5.1), and consequently only has access to information any MPI implementation contains. It still
is amazingly simple, as it essentially boils down to attaching serial numbers to messages within
a common message �ow by using a hash table. However, despite its simplicity it still allows
making LAIK applications fault tolerant today which is a nice �nal result.

61

9 Appendix

9.1 Cross-building LAIK on amd64 for arm64

The following steps are based on [2] and describe how to cross-build LAIK on a Debian based
amd64 system so that the resulting binaries can run on an arm64 system:

1. Enable Debian’s multiarch support for arm64:
1 $ dpkg --add-architecture arm64
2 $ apt update
3 [...]
4 $

2. Install the necessary packages:

• crossbuild-essential-arm64

• libglib2.0-dev:arm64

• libgomp1:arm64

• libmosquitto-dev:arm64

• libopenmpi-dev:arm64

• libpapi-dev:arm64

• libprotobuf-c-dev:arm64

• qemu-user

• qemu-user-binfmt

3. In LAIK’s source tree, create a build directory, con�gure CMake, build and test:
1 $ mkdir cross-build
2 $ cd cross-build
3 $ PKG_CONFIG_PATH=/usr/lib/aarch64-linux-gnu/pkgconfig cmake -D CMAKE_C_COMPILER=

aarch64-linux-gnu-gcc -D CMAKE_CXX_COMPILER=aarch64-linux-gnu-g++ -D
CMAKE_BUILD_TYPE=Release -D skip-missing=off ..

4 [...]
5 $ make
6 [...]
7 $ ctest
8 [...]
9 $

63

9 Appendix

9.2 Test Case Analysis

In order to get an overview of what each test case required the backend to do, we patched LAIK
as shown in section 9.4.1 and then ran the script shown in section 9.4.3 (using the con�guration
�le shown in section 9.4.2). This script started each test cases with 10 processes and then
collected the generated data which is presented in the following sections.

9.2.1 jac1d 125000

Running the test case with the command line jac1d 125000 using 10 processes caused the
following things to happen in the backend, summarized across all processes:

• The backend was called a total of 560 times to send, receive, and/or reduce data, see �gure
9.1, 9.2, and 9.3 for details about the kind of work submitted to the backend.

• The backend was called a total of 0 times because LAIK’s view of the process group had
changed, i.e. because one or more process were removed.

• The backend sent 900 chunks of data, see �gure 9.4 for details about their sizes.

• The backend received 900 chunks of data, see �gure 9.5 for details about their sizes.

• The backend reduced 60 chunks of data, see �gure 9.6 for details about their sizes.

Figure 9.1: jac1d 125000: Number of times the backend was called with n send operations

0 50 100 150 200 250 300 350 400

0
1
2

60
100

400

n

Figure 9.2: jac1d 125000: Number of times the backend was called with n receive operations

0 50 100 150 200 250 300 350 400

0
1
2

60
100

400

n

Figure 9.3: jac1d 125000: Number of times the backend was called with n reduce operations

0 50 100 150 200 250 300 350 400 450 500 550

0
1

500
60n

Figure 9.4: jac1d 125000: Number of times the backend sent n bytes

0 100 200 300 400 500 600 700 800 900

8 900n

64

9.2 Test Case Analysis

Figure 9.5: jac1d 125000: Number of times the backend received n bytes

0 100 200 300 400 500 600 700 800 900

8 900n

Figure 9.6: jac1d 125000: Number of times the backend reduced n bytes

0 5 10 15 20 25 30 35 40 45 50 55 60 65

8 60n

9.2.2 jac2d 11000

Running the test case with the command line jac2d 11000 using 10 processes caused the
following things to happen in the backend, summarized across all processes:

• The backend was called a total of 550 times to send, receive, and/or reduce data, see �gure
9.7, 9.8, and 9.9 for details about the kind of work submitted to the backend.

• The backend was called a total of 0 times because LAIK’s view of the process group had
changed, i.e. because one or more process were removed.

• The backend sent 1900 chunks of data, see �gure 9.10 for details about their sizes.

• The backend received 1900 chunks of data, see �gure 9.11 for details about their sizes.

• The backend reduced 50 chunks of data, see �gure 9.12 for details about their sizes.

Figure 9.7: jac2d 11000: Number of times the backend was called with n send operations

0 20 40 60 80 100 120 140 160 180 200 220

0
2
4
7

50
200
200

100

n

Figure 9.8: jac2d 11000: Number of times the backend was called with n receive operations

0 20 40 60 80 100 120 140 160 180 200 220

0
2
4
7

50
200
200

100

n

Figure 9.9: jac2d 11000: Number of times the backend was called with n reduce operations

0 50 100 150 200 250 300 350 400 450 500 550

0
1

500
50n

65

9 Appendix

Figure 9.10: jac2d 11000: Number of times the backend sent n bytes

0 50 100 150 200 250 300 350 400 450 500 550 600 650

8
17600
22000
22008
35200

400
100

400
400

600

n

Figure 9.11: jac2d 11000: Number of times the backend received n bytes

0 50 100 150 200 250 300 350 400 450 500 550 600 650

8
17600
22000
22008
35200

400
100

400
400

600

n

Figure 9.12: jac2d 11000: Number of times the backend reduced n bytes

0 5 10 15 20 25 30 35 40 45 50 55

8 50n

9.2.3 jac3d 375

Running the test case with the command line jac3d 375 using 10 processes caused the
following things to happen in the backend, summarized across all processes:

• The backend was called a total of 550 times to send, receive, and/or reduce data, see �gure
9.13, 9.14, and 9.15 for details about the kind of work submitted to the backend.

• The backend was called a total of 0 times because LAIK’s view of the process group had
changed, i.e. because one or more process were removed.

• The backend sent 3300 chunks of data, see �gure 9.16 for details about their sizes.

• The backend received 3300 chunks of data, see �gure 9.17 for details about their sizes.

• The backend reduced 50 chunks of data, see �gure 9.18 for details about their sizes.

Figure 9.13: jac3d 375: Number of times the backend was called with n send operations

0 20 40 60 80 100 120 140 160 180 200 220

0
5
7
9

50
200
200

100

n

Figure 9.14: jac3d 375: Number of times the backend was called with n receive operations

0 20 40 60 80 100 120 140 160 180 200 220

0
5
7
9

50
200
200

100

n

66

9.2 Test Case Analysis

Figure 9.15: jac3d 375: Number of times the backend was called with n reduce operations

0 50 100 150 200 250 300 350 400 450 500 550

0
1

500
50n

Figure 9.16: jac3d 375: Number of times the backend sent n bytes

0 50 100 150 200 250 300 350 400

504
512

1000
1008
1200
1800

94248
94752
95744
96256

187000
188000
188496
189504
224400
225000
225600
336600
338400

200
200
200
200
200

400
100
100
100
100
100
100
100
100

200
300

200
200
200

n

Figure 9.17: jac3d 375: Number of times the backend received n bytes

0 50 100 150 200 250 300 350 400

504
512

1000
1008
1200
1800

94248
94752
95744
96256

187000
188000
188496
189504
224400
225000
225600
336600
338400

200
200
200
200
200

400
100
100
100
100
100
100
100
100

200
300

200
200
200

n

Figure 9.18: jac3d 375: Number of times the backend reduced n bytes

0 5 10 15 20 25 30 35 40 45 50 55

8 50n

9.2.4 jac3d -g 375

Running the test case with the command line jac3d -g 375 using 10 processes caused the
following things to happen in the backend, summarized across all processes:

67

9 Appendix

• The backend was called a total of 450 times to send, receive, and/or reduce data, see �gure
9.19, 9.20, and 9.21 for details about the kind of work submitted to the backend.

• The backend was called a total of 0 times because LAIK’s view of the process group had
changed, i.e. because one or more process were removed.

• The backend sent 2800 chunks of data, see �gure 9.22 for details about their sizes.

• The backend received 2800 chunks of data, see �gure 9.23 for details about their sizes.

• The backend reduced 50 chunks of data, see �gure 9.24 for details about their sizes.

Figure 9.19: jac3d -g 375: Number of times the backend was called with n send operations

0 50 100 150 200 250 300 350 400

0
7

50
400n

Figure 9.20: jac3d -g 375: Number of times the backend was called with n receive operations

0 50 100 150 200 250 300 350 400

0
7

50
400n

Figure 9.21: jac3d -g 375: Number of times the backend was called with n reduce operations

0 50 100 150 200 250 300 350 400

0
1

400
50n

Figure 9.22: jac3d -g 375: Number of times the backend sent n bytes

0 50 100 150 200 250 300 350 400 450 500 550 600 650

8
1496
1504

279752
281248
282752

400
600
600

300
600

300

n

Figure 9.23: jac3d -g 375: Number of times the backend received n bytes

0 50 100 150 200 250 300 350 400 450 500 550 600 650

8
1496
1504

279752
281248
282752

400
600
600

300
600

300

n

Figure 9.24: jac3d -g 375: Number of times the backend reduced n bytes

0 5 10 15 20 25 30 35 40 45 50 55

8 50n

68

9.2 Test Case Analysis

9.2.5 markov 400 4000

Running the test case with the command line markov 400 4000 using 10 processes caused
the following things to happen in the backend, summarized across all processes:

• The backend was called a total of 330 times to send, receive, and/or reduce data, see �gure
9.25, 9.26, and 9.27 for details about the kind of work submitted to the backend.

• The backend was called a total of 0 times because LAIK’s view of the process group had
changed, i.e. because one or more process were removed.

• The backend sent 2727 chunks of data, see �gure 9.28 for details about their sizes.

• The backend received 2727 chunks of data, see �gure 9.29 for details about their sizes.

• The backend reduced 0 chunks of data, see �gure 9.30 for details about their sizes.

Figure 9.25: markov 400 4000: Number of times the backend was called with n send operations

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

0
1
9

3
27

300

n

Figure 9.26: markov 400 4000: Number of times the backend was called with n receive operations

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

0
9

27
303n

Figure 9.27: markov 400 4000: Number of times the backend was called with n reduce operations

0 50 100 150 200 250 300 350

0 330n

Figure 9.28: markov 400 4000: Number of times the backend sent n bytes

0 200 400 600 800 1,0001,2001,4001,6001,8002,0002,2002,4002,6002,8003,000

320 2,727n

Figure 9.29: markov 400 4000: Number of times the backend received n bytes

0 200 400 600 800 1,0001,2001,4001,6001,8002,0002,2002,4002,6002,8003,000

320 2,727n

Figure 9.30: markov 400 4000: Number of times the backend reduced n bytes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

n

69

9 Appendix

9.2.6 markov2 400 4000

Running the test case with the command line markov2 400 4000 using 10 processes
caused the following things to happen in the backend, summarized across all processes:

• The backend was called a total of 100 times to send, receive, and/or reduce data, see �gure
9.31, 9.32, and 9.33 for details about the kind of work submitted to the backend.

• The backend was called a total of 0 times because LAIK’s view of the process group had
changed, i.e. because one or more process were removed.

• The backend sent 0 chunks of data, see �gure 9.34 for details about their sizes.

• The backend received 0 chunks of data, see �gure 9.35 for details about their sizes.

• The backend reduced 910 chunks of data, see �gure 9.36 for details about their sizes.

Figure 9.31: markov2 400 4000: Number of times the backend was called with n send operations

0 10 20 30 40 50 60 70 80 90 100 110

0 100n

Figure 9.32: markov2 400 4000: Number of times the backend was called with n receive opera-
tions

0 10 20 30 40 50 60 70 80 90 100 110

0 100n

Figure 9.33: markov2 400 4000: Number of times the backend was called with n reduce opera-
tions

0 10 20 30 40 50 60 70 80 90

1
10

10
90n

Figure 9.34: markov2 400 4000: Number of times the backend sent n bytes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

n

Figure 9.35: markov2 400 4000: Number of times the backend received n bytes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

n

Figure 9.36: markov2 400 4000: Number of times the backend reduced n bytes

0 100 200 300 400 500 600 700 800 900

320
3200

900
10n

70

9.2 Test Case Analysis

9.2.7 markov2 -f 400 4000

Running the test case with the command line markov2 -f 400 4000 using 10 processes
caused the following things to happen in the backend, summarized across all processes:

• The backend was called a total of 100 times to send, receive, and/or reduce data, see �gure
9.37, 9.38, and 9.39 for details about the kind of work submitted to the backend.

• The backend was called a total of 0 times because LAIK’s view of the process group had
changed, i.e. because one or more process were removed.

• The backend sent 0 chunks of data, see �gure 9.40 for details about their sizes.

• The backend received 0 chunks of data, see �gure 9.41 for details about their sizes.

• The backend reduced 910 chunks of data, see �gure 9.42 for details about their sizes.

Figure 9.37: markov2 -f 400 4000: Number of times the backend was called withn send operations

0 10 20 30 40 50 60 70 80 90 100 110

0 100n

Figure 9.38: markov2 -f 400 4000: Number of times the backend was called with n receive
operations

0 10 20 30 40 50 60 70 80 90 100 110

0 100n

Figure 9.39: markov2 -f 400 4000: Number of times the backend was called with n reduce
operations

0 10 20 30 40 50 60 70 80 90

1
10

10
90n

Figure 9.40: markov2 -f 400 4000: Number of times the backend sent n bytes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

n

Figure 9.41: markov2 -f 400 4000: Number of times the backend received n bytes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

n

Figure 9.42: markov2 -f 400 4000: Number of times the backend reduced n bytes

0 100 200 300 400 500 600 700 800 900

320
3200

900
10n

71

9 Appendix

9.2.8 propagation2d 40 40

Running the test case with the command line propagation2d 40 40 using 10 processes
caused the following things to happen in the backend, summarized across all processes:

• The backend was called a total of 420 times to send, receive, and/or reduce data, see �gure
9.43, 9.44, and 9.45 for details about the kind of work submitted to the backend.

• The backend was called a total of 0 times because LAIK’s view of the process group had
changed, i.e. because one or more process were removed.

• The backend sent 0 chunks of data, see �gure 9.46 for details about their sizes.

• The backend received 0 chunks of data, see �gure 9.47 for details about their sizes.

• The backend reduced 27316 chunks of data, see �gure 9.48 for details about their sizes.

Figure 9.43: propagation2d 40 40: Number of times the backend was called with n send opera-
tions

0 50 100 150 200 250 300 350 400 450

0 420n

Figure 9.44: propagation2d 40 40: Number of times the backend was called with n receive
operations

0 50 100 150 200 250 300 350 400 450

0 420n

Figure 9.45: propagation2d 40 40: Number of times the backend was called with n reduce
operations

0 20 40 60 80 100 120 140 160 180 200 220 240 260

1
42
83

10
164

246

n

Figure 9.46: propagation2d 40 40: Number of times the backend sent n bytes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

n

Figure 9.47: propagation2d 40 40: Number of times the backend received n bytes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

n

72

9.2 Test Case Analysis

Figure 9.48: propagation2d 40 40: Number of times the backend reduced n bytes

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

·104

8
312
320

26,906
246
164

n

9.2.9 spmv 5000

Running the test case with the command line spmv 5000 using 10 processes caused the
following things to happen in the backend, summarized across all processes:

• The backend was called a total of 20 times to send, receive, and/or reduce data, see �gure
9.49, 9.50, and 9.51 for details about the kind of work submitted to the backend.

• The backend was called a total of 0 times because LAIK’s view of the process group had
changed, i.e. because one or more process were removed.

• The backend sent 9 chunks of data, see �gure 9.52 for details about their sizes.

• The backend received 9 chunks of data, see �gure 9.53 for details about their sizes.

• The backend reduced 10 chunks of data, see �gure 9.54 for details about their sizes.

Figure 9.49: spmv 5000: Number of times the backend was called with n send operations

0 1 2 3 4 5 6 7 8 9 10 11 12

0
1

11
9n

Figure 9.50: spmv 5000: Number of times the backend was called with n receive operations

0 2 4 6 8 10 12 14 16 18 20

0
9

19
1n

Figure 9.51: spmv 5000: Number of times the backend was called with n reduce operations

0 1 2 3 4 5 6 7 8 9 10 11

0
1

10
10n

Figure 9.52: spmv 5000: Number of times the backend sent n bytes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

2056
2168
2312
2480
2704
2984
3392
4016
5240

1
1
1
1
1
1
1
1
1

n

73

9 Appendix

Figure 9.53: spmv 5000: Number of times the backend received n bytes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

2056
2168
2312
2480
2704
2984
3392
4016
5240

1
1
1
1
1
1
1
1
1

n

Figure 9.54: spmv 5000: Number of times the backend reduced n bytes

0 1 2 3 4 5 6 7 8 9 10 11

40000 10n

9.2.10 spmv2 150 1500

Running the test case with the command line spmv2 150 1500 using 10 processes caused
the following things to happen in the backend, summarized across all processes:

• The backend was called a total of 3020 times to send, receive, and/or reduce data, see
�gure 9.55, 9.56, and 9.57 for details about the kind of work submitted to the backend.

• The backend was called a total of 0 times because LAIK’s view of the process group had
changed, i.e. because one or more process were removed.

• The backend sent 13437 chunks of data, see �gure 9.58 for details about their sizes.

• The backend received 13437 chunks of data, see �gure 9.59 for details about their sizes.

• The backend reduced 1500 chunks of data, see �gure 9.60 for details about their sizes.

Figure 9.55: spmv2 150 1500: Number of times the backend was called with n send operations

0 200 400 600 800 1,000 1,200 1,400 1,600

0
1
9

1,511
18

1,491

n

Figure 9.56: spmv2 150 1500: Number of times the backend was called with n receive operations

0 200 400 600 800 1,000 1,200 1,400 1,600

0
1
9

1,519
9

1,492

n

Figure 9.57: spmv2 150 1500: Number of times the backend was called with n reduce operations

0 200 400 600 800 1,000 1,200 1,400 1,600

0
1

1,520
1,500n

74

9.2 Test Case Analysis

Figure 9.58: spmv2 150 1500: Number of times the backend sent n bytes

0 100 200 300 400 500 600 700 800 900 1,0001,1001,2001,3001,400

616
656
688
744
816
896

1016
1200
1576
3792

12000

1,343
1,343
1,343
1,343
1,343
1,343
1,343
1,343
1,343
1,341

9

n

Figure 9.59: spmv2 150 1500: Number of times the backend received n bytes

0 100 200 300 400 500 600 700 800 900 1,0001,1001,2001,3001,400

616
656
688
744
816
896

1016
1200
1576
3792

12000

1,343
1,343
1,343
1,343
1,343
1,343
1,343
1,343
1,343
1,341

9

n

Figure 9.60: spmv2 150 1500: Number of times the backend reduced n bytes

0 200 400 600 800 1,000 1,200 1,400 1,600

8 1,500n

9.2.11 vsum 20000000

Running the test case with the command line vsum 20000000 using 10 processes caused
the following things to happen in the backend, summarized across all processes:

• The backend was called a total of 40 times to send, receive, and/or reduce data, see �gure
9.61, 9.62, and 9.63 for details about the kind of work submitted to the backend.

• The backend was called a total of 10 times because LAIK’s view of the process group had
changed, i.e. because one or more process were removed.

• The backend sent 42 chunks of data, see �gure 9.64 for details about their sizes.

• The backend received 42 chunks of data, see �gure 9.65 for details about their sizes.

• The backend reduced 10 chunks of data, see �gure 9.66 for details about their sizes.

Figure 9.61: vsum 20000000: Number of times the backend was called with n send operations

0 2 4 6 8 10 12 14 16 18 20 22

0
1
2
3
9

21
6

9
3

1

n

75

9 Appendix

Figure 9.62: vsum 20000000: Number of times the backend was called with n receive operations

0 2 4 6 8 10 12 14 16

0
1
2
3

13
15

9
3

n

Figure 9.63: vsum 20000000: Number of times the backend was called with n reduce operations

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0
1

30
10n

Figure 9.64: vsum 20000000: Number of times the backend sent n bytes

0 1 2 3 4 5 6 7 8 9 10 11 12

443064
508984
886120

1137080
1253280
2596440
2736896
4064536
5192880
5473784
5865600
6470416
7554176
7635608
7789320
8356624
8364392
8445824
8680976
9242744
9421152

10798384
10807120
12303992
13403560
15040888
16000000
16081432
17777776

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

2
1
1
1
1

11
1

3

n

76

9.2 Test Case Analysis

Figure 9.65: vsum 20000000: Number of times the backend received n bytes

0 1 2 3 4 5 6 7 8 9 10 11 12

443064
508984
886120

1137080
1253280
2596440
2736896
4064536
5192880
5473784
5865600
6470416
7554176
7635608
7789320
8356624
8364392
8445824
8680976
9242744
9421152

10798384
10807120
12303992
13403560
15040888
16000000
16081432
17777776

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

2
1
1
1
1

11
1

3

n

Figure 9.66: vsum 20000000: Number of times the backend reduced n bytes

0 1 2 3 4 5 6 7 8 9 10 11

32 10n

9.2.12 vsum2

Running the test case with the command line vsum2 using 10 processes caused the following
things to happen in the backend, summarized across all processes:

• The backend was called a total of 40 times to send, receive, and/or reduce data, see �gure
9.67, 9.68, and 9.69 for details about the kind of work submitted to the backend.

• The backend was called a total of 0 times because LAIK’s view of the process group had
changed, i.e. because one or more process were removed.

• The backend sent 88 chunks of data, see �gure 9.70 for details about their sizes.

• The backend received 88 chunks of data, see �gure 9.71 for details about their sizes.

• The backend reduced 10 chunks of data, see �gure 9.72 for details about their sizes.

77

9 Appendix

Figure 9.67: vsum2: Number of times the backend was called with n send operations

0 2 4 6 8 10 12 14 16 18 20

0
1
2
3
4
5
7

18

19
1

3
8

3
4

1
1

n

Figure 9.68: vsum2: Number of times the backend was called with n receive operations

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0
2
3
4
5

12
11

6
7

4

n

Figure 9.69: vsum2: Number of times the backend was called with n reduce operations

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0
1

30
10n

78

9.2 Test Case Analysis

Figure 9.70: vsum2: Number of times the backend sent n bytes

0 2 4 6 8 10 12 14 16 18 20 22 24

11080
12728
18224
22152
22296
25456
26616
33224
33912
44304
44584
49800
56848
62672
67048
67136

101616
106720
120928
128200
129824
136840
140360
155176
156024
166560
170752
175632
179920
182912
188856
196768
197432
203232
207968
211144
213832
216864
220216
227216
227576
233440
234920
243480
259640
263816
270176
273696
276104
288416
290288
298384
307600
332864
377704
381776
400000
422296
431720
433368
444440
444448

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

2
23

1
1
1

3
2

n

79

9 Appendix

Figure 9.71: vsum2: Number of times the backend received n bytes

0 2 4 6 8 10 12 14 16 18 20 22 24

11080
12728
18224
22152
22296
25456
26616
33224
33912
44304
44584
49800
56848
62672
67048
67136

101616
106720
120928
128200
129824
136840
140360
155176
156024
166560
170752
175632
179920
182912
188856
196768
197432
203232
207968
211144
213832
216864
220216
227216
227576
233440
234920
243480
259640
263816
270176
273696
276104
288416
290288
298384
307600
332864
377704
381776
400000
422296
431720
433368
444440
444448

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

2
23

1
1
1

3
2

n

Figure 9.72: vsum2: Number of times the backend reduced n bytes

0 1 2 3 4 5 6 7 8 9 10 11

32 10n

80

9.2 Test Case Analysis

9.2.13 vsum3

Running the test case with the command line vsum3 using 10 processes caused the following
things to happen in the backend, summarized across all processes:

• The backend was called a total of 40 times to send, receive, and/or reduce data, see �gure
9.73, 9.74, and 9.75 for details about the kind of work submitted to the backend.

• The backend was called a total of 10 times because LAIK’s view of the process group had
changed, i.e. because one or more process were removed.

• The backend sent 42 chunks of data, see �gure 9.76 for details about their sizes.

• The backend received 42 chunks of data, see �gure 9.77 for details about their sizes.

• The backend reduced 10 chunks of data, see �gure 9.78 for details about their sizes.

Figure 9.73: vsum3: Number of times the backend was called with n send operations

0 2 4 6 8 10 12 14 16 18 20 22

0
1
2
3
9

21
6

9
3

1

n

Figure 9.74: vsum3: Number of times the backend was called with n receive operations

0 2 4 6 8 10 12 14 16

0
1
2
3

13
15

9
3

n

Figure 9.75: vsum3: Number of times the backend was called with n reduce operations

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0
1

30
10n

81

9 Appendix

Figure 9.76: vsum3: Number of times the backend sent n bytes

0 1 2 3 4 5 6 7 8 9 10 11 12

22152
25456
44304
56848
62672

129824
136840
203232
259640
273696
293280
323512
377704
381776
389464
417832
418224
422296
434048
462136
471056
539920
540360
615192
670176
752048
800000
804072
888888

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

2
1
1
1
1

11
1

3

n

Figure 9.77: vsum3: Number of times the backend received n bytes

0 1 2 3 4 5 6 7 8 9 10 11 12

22152
25456
44304
56848
62672

129824
136840
203232
259640
273696
293280
323512
377704
381776
389464
417832
418224
422296
434048
462136
471056
539920
540360
615192
670176
752048
800000
804072
888888

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

2
1
1
1
1

11
1

3

n

Figure 9.78: vsum3: Number of times the backend reduced n bytes

0 1 2 3 4 5 6 7 8 9 10 11

32 10n

82

9.3 Example Con�guration File for the TCP Backend

9.3 Example Configuration File for the TCP Backend

The following is the example con�guration �le for the TCP Backend. All commented-out values
represent the default values, along with a short description.

1 [general]
2
3 # Whether the backend should do the sends in parallel to the receive operations
4 # backend_async_send = true
5
6 # Whether to attempt to use native MPI reductions if possible
7 # backend_native_reduce = false
8
9 # Whether reductions should be done on all output tasks instead of just one

10 # backend_peer_reduce = true
11
12 # How many connections to keep open concurrently
13 # client_connections = 16
14
15 # How many threads the client can use to send/receive messages
16 # client_threads = 4
17
18 # How many connections to keep open concurrently
19 # server_connections = 16
20
21 # How many threads the server can use to send/receive messages
22 # server_threads = 4
23
24 # How many connections the kernel is allowed to buffer for us
25 # socket_backlog = 64
26
27 # How long a socket may be unavailable for I/O before it is considered broken
28 # socket_timeout = 10.0
29
30 # How big our inbox may grow in bytes
31 # inbox_size = 16777216
32
33 # How big our outbox may grow in bytes
34 # outbox_size = 16777216
35
36 # How often a synchronous message send should be attempted giving up
37 # send_attempts = 100
38
39 # How long to wait after a failed synchronous message send before retrying
40 # send_delay = 0.1
41
42 # How often a message receive should be attempted before giving up
43 # receive_attempts = 100
44
45 # How long to wait for a message receive before sending an active request
46 # receive_timeout = 0.0
47
48 # How long to wait after the first active request before sending another
49 # receive_delay = 0.1
50
51 # Whether to to use asynchronous sends in the MPI_Comm_split operation
52 # minimpi_async_split = true;
53
54 [addresses]
55 # Where task 0 shall be located (TCP socket)
56 # 0 = localhost 4444
57
58 # Where task 1 shall be located (abstract UNIX socket)
59 # 1 = foo

83

9 Appendix

9.4 Files Used in the Test Case Analysis

These �les were used during the test case analysis in section 9.2.

9.4.1 analysis/analysis.di�

1 From 70563a8a5fb7d348cd842922cd25b7115ec8ef07 Mon Sep 17 00:00:00 2001
2 From: Alexander Kurtz <alexander@kurtz.be>
3 Date: Mon, 30 Apr 2018 14:16:48 +0200
4 Subject: [PATCH] src/backends/tcp: Use the statistics module for application
5 profiling.
6
7 ---
8 src/CMakeLists.txt | 2 +-
9 src/backends/tcp/backend.c | 17 +++++++++++++++++

10 2 files changed, 18 insertions(+), 1 deletion(-)
11
12 diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt
13 index 76c919f..23cc726 100644
14 --- a/src/CMakeLists.txt
15 +++ b/src/CMakeLists.txt
16 @@ -120,7 +120,7 @@ if (tcp-backend)
17 PRIVATE "GLIB_VERSION_MIN_REQUIRED=GLIB_VERSION_2_44"
18 PRIVATE "USE_TCP"
19 # PRIVATE "LAIK_TCP_DEBUG"
20 - # PRIVATE "LAIK_TCP_STATS"
21 + PRIVATE "LAIK_TCP_STATS"
22)
23
24 target_link_libraries ("laik"
25 diff --git a/src/backends/tcp/backend.c b/src/backends/tcp/backend.c
26 index bf5c8ca..a7ff16b 100644
27 --- a/src/backends/tcp/backend.c
28 +++ b/src/backends/tcp/backend.c
29 @@ -27,6 +27,7 @@
30 #include "debug.h" // for laik_tcp_always
31 #include "errors.h" // for laik_tcp_errors_push, laik_tcp_errors_pre...
32 #include "mpi.h" // for MPI_Comm, MPI_Datatype, MPI_COMM_WORLD
33 +#include "stats.h"
34
35 /* Internal structs */
36
37 @@ -119,6 +120,9 @@ static void laik_tcp_backend_receive
38 g_autofree void* buffer = g_malloc (bytes);
39 Laik_Index start = slice.from;
40
41 + laik_tcp_stats_count ("laik_tcp_backend_receive_total");
42 + laik_tcp_stats_count ("laik_tcp_backend_receive@%zu", bytes);
43 +
44 // Make sure we aren't talking to ourselves
45 laik_tcp_always (group->myid != sender);
46
47 @@ -195,6 +199,9 @@ static void laik_tcp_backend_send
48 g_autofree void* buffer = g_malloc (bytes);
49 Laik_Index start = slice.from;
50
51 + laik_tcp_stats_count ("laik_tcp_backend_send_total");
52 + laik_tcp_stats_count ("laik_tcp_backend_send@%zu", bytes);
53 +
54 // Make sure we aren't talking to ourselves
55 laik_tcp_always (group->myid != receiver);
56
57 @@ -348,6 +355,9 @@ static void laik_tcp_backend_reduce
58 const size_t elements = op->slc.to.i[0] - op->slc.from.i[0];
59 const size_t bytes = elements * data->elemsize;
60
61 + laik_tcp_stats_count ("laik_tcp_backend_reduce_total");
62 + laik_tcp_stats_count ("laik_tcp_backend_reduce@%zu", bytes);
63 +

84

9.4 Files Used in the Test Case Analysis

64 laik_tcp_always (group->myid >= 0);
65
66 char* input_buffer = NULL;
67 @@ -600,6 +610,11 @@ static void laik_tcp_backend_exec
68
69 const Laik_Group* group = data->activePartitioning->group;
70
71 + laik_tcp_stats_count ("laik_tcp_backend_exec_total");
72 + laik_tcp_stats_count ("laik_tcp_backend_exec_reductions@%d", transition->redCount)

;
73 + laik_tcp_stats_count ("laik_tcp_backend_exec_receives@%d", transition->recvCount);
74 + laik_tcp_stats_count ("laik_tcp_backend_exec_sends@%d", transition->sendCount);
75 +
76 // Handle the reduce operations
77 for (int i = 0; i < transition->redCount; i++) {
78 const struct redTOp* op = transition->red + i;
79 @@ -729,6 +744,8 @@ static void laik_tcp_backend_finalize () {
80 static void laik_tcp_backend_update_group (Laik_Group* group) {
81 laik_tcp_always (group);
82
83 + laik_tcp_stats_count ("laik_tcp_backend_update_group_total");
84 +
85 g_autoptr (Laik_Tcp_Errors) errors = laik_tcp_errors_new ();
86
87 // We are transitioning from an old (parent) group to a new (child) group,
88 --
89 2.17.0

9.4.2 analysis/config.txt

1 [general]
2 # nothing here
3
4 [addresses]
5 0 = localhost 2000
6 1 = localhost 2001
7 2 = localhost 2002
8 3 = localhost 2003
9 4 = localhost 2004

10 5 = localhost 2005
11 6 = localhost 2006
12 7 = localhost 2007
13 8 = localhost 2008
14 9 = localhost 2009

9.4.3 analysis/analyze.sh

1 #!/bin/bash -eu
2
3 run(){
4 local index=''
5
6 for index in seq 0 9 ; do
7 LAIK_BACKEND='tcp' LAIK_TCP_CONFIG='config.txt' "${@}" &
8 done
9

10 wait
11 }
12
13 gather(){
14 local index=''
15
16 for index in seq 0 9 ; do
17 cat -- "laik-tcp-stats-for-rank-${index}.txt"
18 done | sort --field-separator='@' --numeric-sort --key='2'
19 }
20
21 summarize(){
22 local oldkey=''
23 local newkey=''

85

9 Appendix

24 local sum='0'
25
26 while read newkey value; do
27 # All values are integers, so drop the fractional part
28 value="${value%%.*}"
29
30 if ["${oldkey}" = "${newkey}"]; then
31 sum="$((sum + value))"
32 else
33 if ["${oldkey}"]; then
34 echo "${oldkey} ${sum}"
35 fi
36
37 oldkey="${newkey}"
38 sum="${value}"
39 fi
40 done
41
42 echo "${oldkey} ${sum}"
43 }
44
45 store(){
46 local key=''
47 local value=''
48 local prefix=''
49 local suffix=''
50 local path=''
51
52 while read key value; do
53 case "${key}" in
54 *@*)
55 prefix="${key%@*}"
56 suffix="${key##*@}"
57 echo "${suffix} ${value}" >> "${1}/${prefix}"
58 ;;
59 *)
60 echo "${value}" > "${1}/${key}"
61 ;;
62 esac
63 done
64 }
65
66 job(){
67 run "./${@}"
68
69 mkdir --parents -- "results/${*}"
70
71 echo '0' > "results/${*}/laik_tcp_backend_exec_total"
72 echo '0' > "results/${*}/laik_tcp_backend_send_total"
73 echo '0' > "results/${*}/laik_tcp_backend_receive_total"
74 echo '0' > "results/${*}/laik_tcp_backend_reduce_total"
75 echo '0' > "results/${*}/laik_tcp_backend_update_group_total"
76
77 echo 'count frequency' > "results/${*}/laik_tcp_backend_exec_receives"
78 echo 'count frequency' > "results/${*}/laik_tcp_backend_exec_reductions"
79 echo 'count frequency' > "results/${*}/laik_tcp_backend_exec_sends"
80
81 echo 'count frequency' > "results/${*}/laik_tcp_backend_receive"
82 echo 'count frequency' > "results/${*}/laik_tcp_backend_reduce"
83 echo 'count frequency' > "results/${*}/laik_tcp_backend_send"
84
85 gather | summarize | store "results/${*}"
86 }
87
88 # Run the jobs
89 job jac1d 125000
90 job jac2d 11000
91 job jac3d 375
92 job jac3d -g 375 # Requested by Weidendorfer
93 job markov2 400 4000
94 job markov2 -f 400 4000 # Requested by Weidendorfer
95 job markov 400 4000

86

9.4 Files Used in the Test Case Analysis

96 # job propagation1d # Throws assertion failures
97 job propagation2d 40 40
98 job spmv 5000 # 10000 is the biggest allowed, but throws OOM errors
99 job spmv2 150 1500

100 job vsum2 # Takes no parameters
101 job vsum3 # Takes no parameters
102 job vsum 20000000

87

9 Appendix

9.5 Files Used in the Evaluation

These �les were used during the evaluation in chapter 6.

9.5.1 evaluation/environments/tcp.sh

1 # Set the environment variables
2 export LAIK_BACKEND='tcp'
3 export LAIK_TCP_CONFIG="${root}/config.txt"
4
5 # Write the configuration file
6 cat > "${LAIK_TCP_CONFIG}" <<EOF
7 [general]
8 receive_attempts=1000
9

10 [addresses]
11 cat -- "${tmp}/addresses"
12 EOF
13
14 # Make sure the configuration file is on disk to avoid NFS delays
15 sync

9.5.2 evaluation/environments/mpi.sh

1 # Set the environment variable
2 export LAIK_BACKEND='mpi'

9.5.3 evaluation/environments/tcp-master-reduction.sh

1 # Set the environment variables
2 export LAIK_BACKEND='tcp'
3 export LAIK_TCP_CONFIG="${root}/config.txt"
4
5 # Write the configuration file
6 cat > "${LAIK_TCP_CONFIG}" <<EOF
7 [general]
8 receive_attempts=1000
9 backend_peer_reduce=false

10
11 [addresses]
12 cat -- "${tmp}/addresses"
13 EOF
14
15 # Make sure the configuration file is on disk to avoid NFS delays
16 sync

9.5.4 evaluation/environments/tcp-resources.sh

1 # Set the environment variables
2 export LAIK_BACKEND='tcp'
3 export LAIK_TCP_CONFIG="${root}/config.txt"
4
5 # Write the configuration file
6 cat > "${LAIK_TCP_CONFIG}" <<EOF
7 [general]
8 receive_attempts=1000
9 client_connections=400

10 server_connections=400
11 socket_backlog=400
12 outbox_size=268435456
13 inbox_size=268435456
14
15 [addresses]
16 cat -- "${tmp}/addresses"
17 EOF

88

9.5 Files Used in the Evaluation

18
19 # Make sure the configuration file is on disk to avoid NFS delays
20 sync

9.5.5 evaluation/sample.sh

1 #!/bin/bash -eu
2
3 # Usage: calc <arithmetic expression>
4 # Passes its first argument to GNU bc and returns the result
5 calc(){
6 bc --mathlib <<EOF
7 ${1}
8 EOF
9 }

10
11 # Usage cleanup <exit code>
12 # Sends SIGTERM to all children, waits for them and then exits
13 cleanup(){
14 # Stop trapping EXIT so calling exit doesn't invoke us another time
15 trap '' EXIT
16
17 # Remove the temporary directory
18 rm --force --recursive -- "${tmp}"
19
20 # Send SIGTERM to all our children
21 pkill --parent="$$" || true
22
23 # Wait for all children to terminate
24 wait
25
26 # Exit with the requested exit code
27 exit "${1}"
28 }
29
30 # Usage die <message>
31 # Prints a message to stderr and exits
32 die(){
33 printf '%s\n' "${1}" >&2
34 exit 1
35 }
36
37 # Set defaults for the test parameters
38 ENVIRONMENT="${ENVIRONMENT-tcp}"
39 RESULT="${RESULT-/dev/stdout}"
40 SAMPLES="${SAMPLES-5}"
41
42 # Make sure we are running under salloc
43 if ! ["${SLURM_NTASKS+x}"]; then
44 die "SLURM_NTASKS not defined, did you run this script under salloc with --ntasks-

per-node?"
45 fi
46
47 # Determine the directory this script is in
48 root=" dirname -- "${0}" "
49
50 # Get a temporary directory
51 tmp=" mktemp --directory "
52
53 # Make sure we are never leaving any child processes around and clean up our tmp
54 trap 'cleanup $?' EXIT
55 trap 'cleanup 129' HUP
56 trap 'cleanup 130' INT
57 trap 'cleanup 143' TERM
58
59 # Generate the address list
60 srun sh -c 'echo "${SLURM_NODEID}-${SLURM_LOCALID}= hostname --ip-address $((2000 +

SLURM_LOCALID))"' > "${tmp}/addresses"
61
62 # Run the environment-specific setup step
63 . "${root}/environments/${ENVIRONMENT}.sh"

89

9 Appendix

64
65 # Take ${SAMPLES} measurements
66 times=""
67 for sample in seq "${SAMPLES}" ; do
68 # Start the synchronization servers
69 "${root}/syncd.py" '10.42.1.253' '3000' "${SLURM_NTASKS}" > "${tmp}/start" &

start_pid="${!}"
70 "${root}/syncd.py" '10.42.1.253' '4000' "${SLURM_NTASKS}" > "${tmp}/stop" &

stop_pid="${!}"
71
72 # Run the main job
73 srun --kill-on-bad-exit -- " realpath -- "${root}/run.sh" " "${@}"
74
75 # Wait for the synchronization servers
76 wait "${start_pid}"
77 wait "${stop_pid}"
78
79 # Add the new time to the list
80 start=" cat -- "${tmp}/start" "
81 stop=" cat -- "${tmp}/stop" "
82 time=" calc "${stop} - ${start}" "
83 times="${times} ${time}"
84
85 # Report the progress
86 printf "[%s] Sample %02d/%02d is %f seconds\n" "${0##*/}" "${sample}" "${SAMPLES}"

"${time}"
87 done
88
89 # Calculate the average
90 average='0'
91 for time in ${times}; do
92 average=" calc "${average} + ${time}" "
93 done
94 average=" calc "${average} / ${SAMPLES}" "
95
96 # Calculate the standard deviation
97 deviation='0'
98 for time in ${times}; do
99 deviation=" calc "${deviation} + (${time} - ${average})^2" "

100 done
101 deviation=" calc "sqrt (${deviation} / (${SAMPLES} - 1))" "
102
103 # Store the result
104 printf '%f %f\n' "${average}" "${deviation}" > "${RESULT}"

9.5.6 evaluation/syncd.py

1 #!/usr/bin/env python3
2
3 import socket
4 import sys
5 import time
6
7 # Get the parameters
8 host = sys.argv[1]
9 port = int (sys.argv[2])

10 count = int (sys.argv[3])
11
12 # Create a server socket
13 server = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
14 server.setsockopt (socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
15 server.bind ((host, port))
16 server.listen (512)
17
18 # Accept the requested number of connections and store them in a list so they
19 # don't get garbage-collected and thus closed prematurely
20 connections = []
21 for index in range (count):
22 connection, address = server.accept ()
23 connections.append (connection)
24

90

9.5 Files Used in the Evaluation

25 # Print the monotonic time
26 print (time.monotonic ())
27
28 # Exit, thus closing all the connections

9.5.7 evaluation/run.sh

1 #!/bin/bash -eu
2
3 # If LAIK_TCP_CONFIG is set, put it in the cache
4 if ["${LAIK_TCP_CONFIG+x}"]; then
5 cat -- "${LAIK_TCP_CONFIG}" > /dev/null
6 fi
7
8 # Put the binary and all its dependencies in the cache
9 LD_TRACE_LOADED_OBJECTS='1' "${1}" > /dev/null

10
11 # Wait until the start server has accepted and closed our connection
12 while ! cat < '/dev/tcp/10.42.1.253/3000' > '/dev/null'; do true; done
13
14 # Run the task
15 LD_LIBRARY_PATH="${HOME}/lib" "${@}" 0<'/dev/null' 1>'/dev/null'
16
17 # Wait until the stop server has accepted and closed our connection
18 while ! cat < '/dev/tcp/10.42.1.253/4000' > '/dev/null'; do true; done

9.5.8 evaluation/filter.sh

1 #!/bin/bash -eu
2
3 # Determine the directory this script is in
4 root=" dirname -- "${0}" "
5
6 for result in "${root}"/results/*/*/*/*/*; do
7 read avg dev < "${result}"
8
9 if [" echo "${dev} > 1.0" | bc -l " = '1'] && [" echo "${dev} > 0.10 * ${avg}" |

bc -l " = '1']; then
10 rm --verbose -- "${result}"
11 fi
12 done

9.5.9 evaluation/main.sh

1 #!/bin/bash -eu
2
3 job(){
4 for partition in 'odr'; do
5 for processes in 1 2 3 4; do
6 for ENVIRONMENT in 'mpi' 'tcp' 'tcp-master-reduction' 'tcp-resources' 'tcp-

serial'; do
7 local prefix="${root}/results/${partition}/${processes}/${ENVIRONMENT}/

${*}"
8 mkdir --parents -- "${prefix}"
9

10 local series="${prefix}.txt"
11 echo "nodes time error" > "${series}"
12
13 for nodes in seq 5 35 ; do
14 RESULT="${prefix}/${nodes}.txt"
15
16 if [-e "${RESULT}"]; then
17 printf '[%s] Reusing %s\n' "${0##*/}" "${RESULT}"
18 else
19 printf '[%s] Creating %s\n' "${0##*/}" "${RESULT}"
20 salloc \
21 --partition="${partition}" \
22 --nodes="${nodes}" \
23 --ntasks-per-node="${processes}" \

91

9 Appendix

24 --time='120' \
25 --kill-command='TERM' \
26 "${root}/sample.sh" \
27 "${HOME}/laik/examples/${@}"
28 fi
29
30 echo "${nodes} cat -- "${RESULT}" " >> "${series}"
31 done
32 done
33 done
34 done
35 }
36
37 # Determine the directory this script is in
38 root=" dirname -- "${0}" "
39
40 # Export the parameters
41 export ENVIRONMENT='invalid'
42 export RESULT='invalid'
43 export SAMPLES='10'
44
45 # Run the jobs
46 job jac1d 125000
47 job jac2d 11000
48 job jac3d 375
49 job jac3d -g 375 # Requested by Weidendorfer
50 job markov2 400 4000
51 job markov2 -f 400 4000 # Requested by Weidendorfer
52 job markov 400 4000
53 # job propagation1d # Throws assertion failures
54 job propagation2d 40 40
55 job spmv 5000 # 10000 is the biggest allowed, but throws OOM errors
56 job spmv2 150 1500
57 job vsum2 # Takes no parameters
58 job vsum3 # Takes no parameters
59 job vsum 20000000

92

10 References

[1] Greg Brockman. 2013. Speed Up SSH by Reusing Connections. Retrieved May 12, 2018 from
https://puppet.com/blog/speed-up-ssh-by-reusing-connections

[2] Debian Project. 2016. CrossToolchains. Retrieved May 12, 2018 from https://wiki.debian.
org/CrossToolchains

[3] Alexis Engelke. 2018. HimMUC Cluster. Retrieved May 12, 2018 from https://www.lrr.in.
tum.de/en/projekte/forschungsprojekte/himmuc/

[4] R. Fielding and J. Reschke. 2014. Hypertext Transfer Protocol (HTTP/1.1): Message Syntax
and Routing. Internet Requests for Comments; RFC Editor. Retrieved May 12, 2018 from
https://www.rfc-editor.org/rfc/rfc7230.txt

[5] Message Passing Interface Forum. 1994. MPI: A Message-Passing Interface Standard - Version
1.0. Retrieved May 12, 2018 from https://www.mpi-forum.org/docs/mpi-1.0/mpi-10.ps.Z

[6] Message Passing Interface Forum. 2015. MPI: A Message-Passing Interface Standard - Version
3.1. Retrieved May 12, 2018 from https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

[7] GNOME Project. 2018. Key-value �le parser: GLib Reference Manual. Retrieved May 12,
2018 from https://developer.gnome.org/glib/stable/glib-Key-value-�le-parser.html

[8] William Gropp and Ewing Lusk. 2004. Fault Tolerance in Message Passing Interface Programs.
International Journal of High Performance Computing Applications 18, 3 (August 2004), 363–372.
Retrieved May 12, 2018 from https://www.mcs.anl.gov/~lusk/papers/fault-tolerance.pdf

[9] Torsten Hoe�er, Mirko Reinhardt, Torsten Mehlan, Frank Mietke, and Wolfgang Rehm. 2006.
Low Overhead Ethernet Communication for Open MPI on Linux Clusters. CSR-06, 06 (July
2006). Retrieved May 12, 2018 from https://htor.inf.ethz.ch/publications/index.php?pub=31

[10] Joshua Hursey, Je�rey M. Squyres, Timothy Mattox, and Andrew Lumsdaine. 2007. The
Design and Implementation of Checkpoint/Restart Process Fault Tolerance for Open MPI. 2007
IEEE International Parallel and Distributed Processing Symposium (2007), 1–8. Retrieved May 12,
2018 from https://ieeexplore.ieee.org/abstract/document/4228333/

[11] Joshua Hursey, Je�rey Squyres, and Andrew Lumsdaine. 2006. A checkpoint and restart
service speci�cation for Open MPI. (July 2006). Retrieved May 12, 2018 from http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.64.7661&rep=rep1&type=pdf

[12] IEEE. 2017. IEEE Std 1003.1-2017 (Revision of IEEE Std 1003.1-2008): IEEE Standard for
Information Technology–Portable Operating System Interface (POSIX(R)) Base Speci�cations. IEEE.
Retrieved May 12, 2018 from https://standards.ieee.org/�ndstds/standard/1003.1-2017.html

[13] Intel. 2018. Fault Tolerance Support. Retrieved May 12, 2018 from https://software.intel.
com/en-us/mpi-developer-reference-linux-fault-tolerance-support

[14] LAIK Project. 2018. LAIK Github Project Page. Retrieved May 12, 2018 from https:
//github.com/envelope-project/laik

[15] Linux man-pages Project. 2017. tcp - TCP protocol. Retrieved May 12, 2018 from http:

93

https://puppet.com/blog/speed-up-ssh-by-reusing-connections
https://wiki.debian.org/CrossToolchains
https://wiki.debian.org/CrossToolchains
https://www.lrr.in.tum.de/en/projekte/forschungsprojekte/himmuc/
https://www.lrr.in.tum.de/en/projekte/forschungsprojekte/himmuc/
https://www.rfc-editor.org/rfc/rfc7230.txt
https://www.mpi-forum.org/docs/mpi-1.0/mpi-10.ps.Z
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://developer.gnome.org/glib/stable/glib-Key-value-file-parser.html
https://www.mcs.anl.gov/~lusk/papers/fault-tolerance.pdf
https://htor.inf.ethz.ch/publications/index.php?pub=31
https://ieeexplore.ieee.org/abstract/document/4228333/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.64.7661&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.64.7661&rep=rep1&type=pdf
https://standards.ieee.org/findstds/standard/1003.1-2017.html
https://software.intel.com/en-us/mpi-developer-reference-linux-fault-tolerance-support
https://software.intel.com/en-us/mpi-developer-reference-linux-fault-tolerance-support
https://github.com/envelope-project/laik
https://github.com/envelope-project/laik
http://man7.org/linux/man-pages/man7/tcp.7.html
http://man7.org/linux/man-pages/man7/tcp.7.html

10 References

//man7.org/linux/man-pages/man7/tcp.7.html

[16] Linux man-pages Project. 2017. udp - User Datagram Protocol for IPv4. Retrieved May 12,
2018 from http://man7.org/linux/man-pages/man7/udp.7.html

[17] Linux man-pages Project. 2017. raw - Linux IPv4 raw sockets. Retrieved May 12, 2018 from
http://man7.org/linux/man-pages/man7/raw7.7.html

[18] Linux man-pages Project. 2017. socket - Linux socket interface. Retrieved May 12, 2018
from http://man7.org/linux/man-pages/man7/socket.7.html

[19] Linux man-pages Project. 2017. socket - create an endpoint for communication. Retrieved
May 12, 2018 from http://man7.org/linux/man-pages/man2/socket.2.html

[20] Linux man-pages Project. 2017. connect - initiate a connection on a socket. Retrieved May
12, 2018 from http://man7.org/linux/man-pages/man2/connect.2.html

[21] Linux man-pages Project. 2017. send, sendto, sendmsg - send a message on a socket.
Retrieved May 12, 2018 from http://man7.org/linux/man-pages/man2/send.2.html

[22] Linux man-pages Project. 2017. bind - bind a name to a socket. Retrieved May 12, 2018
from http://man7.org/linux/man-pages/man2/bind.2.html

[23] Linux man-pages Project. 2017. listen - listen for connections on a socket. Retrieved May
12, 2018 from http://man7.org/linux/man-pages/man2/listen.2.html

[24] Linux man-pages Project. 2017. accept, accept4 - accept a connection on a socket. Retrieved
May 12, 2018 from http://man7.org/linux/man-pages/man2/accept.2.html

[25] Linux man-pages Project. 2017. recv, recvfrom, recvmsg - receive a message from a socket.
Retrieved May 12, 2018 from http://man7.org/linux/man-pages/man2/recv.2.html

[26] Linux man-pages Project. 2017. open, openat, creat - open and possibly create a �le.
Retrieved May 12, 2018 from http://man7.org/linux/man-pages/man2/open.2.html

[27] Linux man-pages Project. 2017. poll, ppoll - wait for some event on a �le descriptor.
Retrieved May 12, 2018 from http://man7.org/linux/man-pages/man2/poll.2.html

[28] SchedMD LLC. 2017. Slurm Workload Manager. Retrieved May 12, 2018 from https:
//slurm.schedmd.com

[29] MPICH Project. 2018. MPI_Comm_rank. Retrieved May 12, 2018 from https://www.mpich.
org/static/docs/v3.1/www3/MPI_Comm_rank.html

[30] MPICH Project. 2018. MPICH | High-Performance Portable MPI. Retrieved May 12, 2018
from https://www.mpich.org

[31] MPICH Project. 2018. MPI_Init. Retrieved May 12, 2018 from https://www.mpich.org/
static/docs/v3.1/www3/MPI_Init.html

[32] MPICH Project. 2018. MPI_Comm_size. Retrieved May 12, 2018 from https://www.mpich.
org/static/docs/v3.1/www3/MPI_Comm_size.html

[33] MPICH Project. 2018. MPI_Send. Retrieved May 12, 2018 from https://www.mpich.org/
static/docs/v3.1/www3/MPI_Send.html

[34] MPICH Project. 2018. MPI_Recv. Retrieved May 12, 2018 from https://www.mpich.org/
static/docs/v3.1/www3/MPI_Recv.html

[35] MPICH Project. 2018. MPI_Finalize. Retrieved May 12, 2018 from https://www.mpich.org/

94

http://man7.org/linux/man-pages/man7/tcp.7.html
http://man7.org/linux/man-pages/man7/tcp.7.html
http://man7.org/linux/man-pages/man7/udp.7.html
http://man7.org/linux/man-pages/man7/raw7.7.html
http://man7.org/linux/man-pages/man7/socket.7.html
http://man7.org/linux/man-pages/man2/socket.2.html
http://man7.org/linux/man-pages/man2/connect.2.html
http://man7.org/linux/man-pages/man2/send.2.html
http://man7.org/linux/man-pages/man2/bind.2.html
http://man7.org/linux/man-pages/man2/listen.2.html
http://man7.org/linux/man-pages/man2/accept.2.html
http://man7.org/linux/man-pages/man2/recv.2.html
http://man7.org/linux/man-pages/man2/open.2.html
http://man7.org/linux/man-pages/man2/poll.2.html
https://slurm.schedmd.com
https://slurm.schedmd.com
https://www.mpich.org/static/docs/v3.1/www3/MPI_Comm_rank.html
https://www.mpich.org/static/docs/v3.1/www3/MPI_Comm_rank.html
https://www.mpich.org
https://www.mpich.org/static/docs/v3.1/www3/MPI_Init.html
https://www.mpich.org/static/docs/v3.1/www3/MPI_Init.html
https://www.mpich.org/static/docs/v3.1/www3/MPI_Comm_size.html
https://www.mpich.org/static/docs/v3.1/www3/MPI_Comm_size.html
https://www.mpich.org/static/docs/v3.1/www3/MPI_Send.html
https://www.mpich.org/static/docs/v3.1/www3/MPI_Send.html
https://www.mpich.org/static/docs/v3.1/www3/MPI_Recv.html
https://www.mpich.org/static/docs/v3.1/www3/MPI_Recv.html
https://www.mpich.org/static/docs/v3.1/www3/MPI_Finalize.html
https://www.mpich.org/static/docs/v3.1/www3/MPI_Finalize.html

static/docs/v3.1/www3/MPI_Finalize.html

[36] MPICH Project. 2018. MPI_Comm_dup. Retrieved May 12, 2018 from https://www.mpich.
org/static/docs/v3.1/www3/MPI_Comm_dup.html

[37] MPICH Project. 2018. MPI_Comm_split. Retrieved May 12, 2018 from https://www.mpich.
org/static/docs/v3.1/www3/MPI_Comm_split.html

[38] MPICH Project. 2018. MPI_Reduce. Retrieved May 12, 2018 from https://www.mpich.org/
static/docs/v3.1/www3/MPI_Reduce.html

[39] MPICH Project. 2018. MPI_Allreduce. Retrieved May 12, 2018 from https://www.mpich.
org/static/docs/v3.1/www3/MPI_Allreduce.html

[40] MPICH Project. 2018. MPICH Overview. Retrieved May 12, 2018 from https://www.mpich.
org/about/overview

[41] MPICH Project. 2018. MPI_Probe. Retrieved May 12, 2018 from https://www.mpich.org/
static/docs/v3.1/www3/MPI_Probe.html

[42] MPICH Project. 2018. MPI_Get_processor_name. Retrieved May 12, 2018 from https:
//www.mpich.org/static/docs/v3.1/www3/MPI_Get_processor_name.html

[43] Open MPI Project. 2016. FAQ: Running jobs under SLURM. Retrieved May 12, 2018 from
https://www.open-mpi.org/faq/?category=slurm

[44] Open MPI Project. 2018. Open MPI: Open Source High Performance Computing. Retrieved
May 12, 2018 from https://www.open-mpi.org

[45] OpenMPI Project. 2016. FAQ: Fault tolerance for parallel MPI jobs. Retrieved May 12, 2018
from http://www.open-mpi.de/faq/?category=ft

[46] Post�x Project. 2018. Post�x Connection Cache. Retrieved May 12, 2018 from http:
//www.post�x.org/CONNECTION_CACHE_README.html

[47] Josef Weidendorfer, Dai Yang, and Carsten Trinitis. 2017. LAIK: A Library for Fault
Tolerant Distribution of Global Data for Parallel Applications. Retrieved May 12, 2018 from
https://mediatum.ub.tum.de/doc/1375185/1375185.pdf

[48] Dai Yang, Josef Weidendorfer, Carsten Trinitis, Tilman Küstner, and Sibylle Ziegler. 2017.
Enabling Application-Integrated Proactive Fault Tolerance. In Parallel Computing is Everywhere,
Proceedings of the International Conference on Parallel Computing, ParCo 2017, 12-15 September
2017, Bologna, Italy, 475–484. Retrieved May 12, 2018 from https://www.lrr.in.tum.de/�leadmin/
w00bph/www/Mitarbeiter/yang/laik_parco.pdf

95

https://www.mpich.org/static/docs/v3.1/www3/MPI_Finalize.html
https://www.mpich.org/static/docs/v3.1/www3/MPI_Finalize.html
https://www.mpich.org/static/docs/v3.1/www3/MPI_Comm_dup.html
https://www.mpich.org/static/docs/v3.1/www3/MPI_Comm_dup.html
https://www.mpich.org/static/docs/v3.1/www3/MPI_Comm_split.html
https://www.mpich.org/static/docs/v3.1/www3/MPI_Comm_split.html
https://www.mpich.org/static/docs/v3.1/www3/MPI_Reduce.html
https://www.mpich.org/static/docs/v3.1/www3/MPI_Reduce.html
https://www.mpich.org/static/docs/v3.1/www3/MPI_Allreduce.html
https://www.mpich.org/static/docs/v3.1/www3/MPI_Allreduce.html
https://www.mpich.org/about/overview
https://www.mpich.org/about/overview
https://www.mpich.org/static/docs/v3.1/www3/MPI_Probe.html
https://www.mpich.org/static/docs/v3.1/www3/MPI_Probe.html
https://www.mpich.org/static/docs/v3.1/www3/MPI_Get_processor_name.html
https://www.mpich.org/static/docs/v3.1/www3/MPI_Get_processor_name.html
https://www.open-mpi.org/faq/?category=slurm
https://www.open-mpi.org
http://www.open-mpi.de/faq/?category=ft
http://www.postfix.org/CONNECTION_CACHE_README.html
http://www.postfix.org/CONNECTION_CACHE_README.html
https://mediatum.ub.tum.de/doc/1375185/1375185.pdf
https://www.lrr.in.tum.de/fileadmin/w00bph/www/Mitarbeiter/yang/laik_parco.pdf
https://www.lrr.in.tum.de/fileadmin/w00bph/www/Mitarbeiter/yang/laik_parco.pdf

	Introduction
	Motivation
	Related Work
	The Message Passing Interface (MPI)
	MPI Network Performance
	MPI Fault Tolerance

	Design
	Interfacing with the Existing Code
	Expected Challenges
	Memory Exhaustion
	Connection Exhaustion
	Unfair Connection Acceptance
	Message Identification
	Implicit Global Serialization
	Peer Discovery and Rank Assignment
	Fault Tolerance

	Basic Design Principles
	Network Protocol
	ADD Requests
	TRY Requests
	GET Requests

	Addressing the Challenges
	Memory Exhaustion
	Connection Exhaustion
	Unfair Connection Acceptance
	Message Identification
	Implicit Global Serialization
	Peer Discovery and Rank Assignment
	Fault Tolerance

	Implementation
	Challenges
	Architecture
	Demonstration
	Regular Mode
	Failure Detection
	Failure Recovery
	Failure Recovery with Address Change

	Evaluation
	Test System
	Test Cases
	Time Measurements
	Environments
	Environment 1: MPI
	Environment 2: TCP
	Environment 3: TCP with Master Reduction (TCP-M)
	Environment 4: TCP with Extra Resources (TCP+)

	Test Variables and Metric
	Results
	jac1d 125000
	jac2d 11000
	jac3d 375
	jac3d -g 375
	markov 400 4000
	markov2 400 4000
	markov2 -f 400 4000
	propagation2d 40 40
	spmv 5000
	spmv2 150 1500
	vsum 20000000
	vsum2
	vsum3

	Discussion

	Future Work
	Improvements to LAIK's Backend API
	Improvements to the TCP Backend
	Reducing the Amount of System Calls
	Automatic Selection of the Reduction Strategy
	Better Connection Cache Eviction Strategies

	Fault Tolerance in MPI Using Unique Message Identifiers

	Conclusion
	Appendix
	Cross-building LAIK on amd64 for arm64
	Test Case Analysis
	jac1d 125000
	jac2d 11000
	jac3d 375
	jac3d -g 375
	markov 400 4000
	markov2 400 4000
	markov2 -f 400 4000
	propagation2d 40 40
	spmv 5000
	spmv2 150 1500
	vsum 20000000
	vsum2
	vsum3

	Example Configuration File for the TCP Backend
	Files Used in the Test Case Analysis
	analysis/analysis.diff
	analysis/config.txt
	analysis/analyze.sh

	Files Used in the Evaluation
	evaluation/environments/tcp.sh
	evaluation/environments/mpi.sh
	evaluation/environments/tcp-master-reduction.sh
	evaluation/environments/tcp-resources.sh
	evaluation/sample.sh
	evaluation/syncd.py
	evaluation/run.sh
	evaluation/filter.sh
	evaluation/main.sh

	References

