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Abstract

This thesis provides an alternate online calibration approach for dynamic traffic as-
signment (DTA) model. This approach has been used so far to estimate the OD
demand and can be extended for other supply and demand parameters. The purpose
of online calibration is to dynamically update the model parameters using the ob-
served traffic flow data. The proposed approach gains the advantage against other
developed approaches in terms of its computational performance and application
scale. Online calibration approaches are being mostly restricted due to the prob-
lems of non-linearity and dimensionality. This online calibration approach, named
as PC-SPSA, combines a stochastic approximation algorithm i.e. Simultaneous Per-
turbation Stochastic Approximation (SPSA) with a dimension reduction technique
i.e. Principal component analysis (PCA). A set of prior estimates are used to cal-
culate their variance in form of PC-directions. Then, these PC-directions are used
to evaluate PC-scores of a latest previous estimate. These PC-scores are then cali-
brated based on the observed traffic flows using SPSA. SPSA has been widely used as
an optimization algorithm for model calibration. However, being a random search
algorithm, its performance deteriorates as the problem dimension increases. The
application of PCA on SPSA provides two major advantages. First, it reduces the
number of variables to be estimated significantly. Secondly, it also narrows down the
search area of SPSA from a higher dimensional OD flow vector to lower dimensional
PC scores, improving SPSA’s performance considerably. Case studies of synthetic
non-linear problems with different dimensions and a network of Vitoria, Spain are
used to test the proposed PC-SPSA approach. The empirical results from these case
studies show that PC-SPSA not only performs very well in reducing the error to
a very low value, but it also does it rapidly with very few iterations, making it an
effective online calibration approach.
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Chapter 1

Introduction

1.1 Background and motivation

Automobile industry has seen a major revolution in the last few decades, within
half a century, it entirely changed the prospect of traveling for mankind. By an
estimate from International Organization of Motor Vehicle Manufacturers (OICA,
2015), there is an average of 58 vehicles per 100 persons in Europe and 67 vehicles
per 100 persons in North America while the developing regions like Asia and South
America are also having a vigorous increase, i.e. 141% in Asia while 60% in South
America, within 10 years since 2005. Due to this rapid growth of vehicle mobility,
all major cities of the world are facing the problem of congestion. According to a
study by INRIX (2014), combined congestion costs for Europe and United States
will soar to $293 billion annually by 2030, which will be almost an increase of
50% from 2013. Looking at this trend of vehicles and congestion increase, it is
clear that just increasing the supply in form of infrastructure is neither wise nor
feasible both physically and economically. Instead, effective management of the
existing infrastructure is needed. The diversity in road networks, with complex
traffic patterns make traffic models very critical for developing appropriate traffic
management strategies. Due to a large number of parameters and inputs, these
models tend to be complex. Therefore, calibration and validation of these models is
vital.

A traffic model can be separated into two major aspects, demand and supply.
Demand side includes travel behaviour modelling and origin-destination demand
estimation while supply side includes traffic dynamics i.e. queue formation, dissi-
pation and spill-back based on the network geometry, link capacities etc. Demand
in a model, is mainly represented by origin-destination (OD) matrix with each cell
representing trips from origin to destination zones. In reality, an OD-matrix is un-
measurable and various methods are used for its estimation. The three most tradi-
tional methods include: ’direct OD matrix estimation’ (by doing surveys and apply-
ing sampling theory classical estimators (Cochran, 2007)), ’model estimation’ (trip
based models, activity based models) and ’estimation using observed traffic flow’.
The approach of estimating OD matrices using observed traffic flow data has been
widely adopted, while other approaches can be inefficient due to the issues like bias-
ness, underdeterminacy in surveys etc (Cascetta, 1984). This technique uses prior
estimated demand matrix to calibrate and minimize its difference from a true tar-
geted matrix, that if assigned to the network, reproduce the observed traffic flows

1



CHAPTER 1. INTRODUCTION 2

(Willumsen, 1978). Traditionally, the models are calibrated over a longer period
of time named as ’offline calibration’. While, using aggregated traffic demand, of-
fline calibrated models are not sensitive for shorter time scale variations in traffic
spanning within hours. The concern for managing the short term variation within a
facility is increasing with the growing traffic volumes and faster travel speeds. Short
term variations that can be due to the effects of weather conditions, public events,
holidays etc, increase the risks towards congestions, accidents etc, hence these vari-
ations must be incorporated in traffic models for better traffic management and
control.

With the evolution of technology, real-time data can be readily collected using
different techniques (like loop detectors, bluetooth detection, ANPR plate recogni-
tion systems etc). This real-time data has been used for more efficient and dynamic
traffic control, through systems like DynaSMART (Mahmassani et al., 1995), Dy-
naMIT (Ben-Akiva et al., 2010) etc. These systems are based on dynamic traffic
assignment (DTA) models with dynamic calibration through real-time traffic data.
The approach of adjusting the traffic model parameters with real-time traffic data
is named as ’online calibration’. DTA captures the stochastic nature of traffic be-
haviour effectively, while online calibration improves the model’s sensitivity towards
the time-scale variability of traffic. In shorter time scale, demand parameters can
oscillate the most within a model. Reliable calibration of OD matrices are criti-
cal for these systems, as poor quality matrices will eventually affect the system’s
credibility.

There are two main factors that evaluate an online calibration approach in DTA
systems. First is extent of error minimized for model parameters based on the
observed vs simulated data through calibration, while second is the time utilized for
calibration. As the time span of calibrating a model offline can be from hours to days
due to its complexity and scale. But for DTA models, the time for calibration must
be reduced within minutes to timely predict, manage and control a facility. Hence,
time is considered as a critical constraint for online calibration. The computational
performance in terms of time also depends on the scale of the model as with the
increase in network dimensions, the model gets more complex and the number of
calibration variables also increase, limiting the use of online calibration on larger
networks. Recently, improved techniques have been developed, from reducing the
dimensions of calibration problem to reducing the complication of the calibration
process itself but there is still room for improvement in terms of faster and improved
online calibration to increase its scale of application.

1.2 Problem definition and thesis objective

DTA systems consist of estimation and prediction models, first estimating the state
of a network based on the surveillance data before prediction. The accuracy of pre-
diction depends on the quality of estimation. For online calibration, the estimation
time is also a very important aspect, as much the estimation time prolongs, less will
be the time left for prediction and control.

Problem formulation of online calibration is majorly based on the factors that
affect its computational time. One of the key factor is non-linearity. As, online cali-
bration based on the observed traffic data, needs mapping of the model parameters
into simulated traffic data. The relation between the model parameters and traffic
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data is highly non-linear, based on either a simulator or a complex set of non-linear
equations, increasing the computational time. Another key factor is the dimen-
sionality of the problem, as the network dimensions increases the model gets more
complex, increasing the variables to be calibrated and prolonging the calibration
time.

Online approaches developed so far, try to address the factors mentioned above,
from Extended kalman filter (Antoniou, 2004) addressing the issue of non-linearity
to the efforts of applying Principal component analysis (as PC-GLS (Prakash et al.,
2017) and PC-EKF (Prakash et al., 2018)) to reduce the dimensions of the problem in
order to improve the scale of application. Another approach that can be a potential
solution is Simultaneous Perturbation Stochastic Approximation (SPSA) proposed
for offline calibration (Balakrishna, 2006). SPSA can perform better in terms of
computational time taken as it needs a fixed (twice) number of objective function
evaluation per iteration regardless the dimensions or number of variables involved.
But, being a random search algorithm, when the model dimensions increase and
become more complex the performance of SPSA deteriorate significantly.

The objective of this thesis is to develop an improved online calibration approach
for calibration of DTA models. An approach, which can cater the effect due to in-
crease in dimensionality or complexity of a network. The approach is developed
based on the use of SPSA, which has been already acknowledged as an offline cali-
bration approach. Application of SPSA is enhanced with the addition of a dimension
reduction technique (i.e. Principal Component Analysis) to improve its performance
as well as application’s scalability towards calibrating DTA models.

1.3 Thesis Outline

The organization for remainder of this document is as follows. Chapter 2 presents
a detailed overall literature review about OD demand estimation and calibration.
Chapter 3 provides detailed methodologies of two calibration approaches for OD
demand calibration. Details for two case studies and their corresponding results are
provided in chapter 4, while conclusions and ideas for future research are given in
chapter 5.



Chapter 2

Literature Review

This chapter reviews the literature about OD demand estimation and calibration
using traffic data. Divided into a total of 5 sections, first section describes the back-
ground on the development of OD demand estimation technique, its mathematical
model and major types. Section 2 covers the dynamic OD demand estimation in
more detail, discussing about the main approaches developed for it. Section 3 de-
scribes the Dynamic traffic assignment (DTA) systems, their structure, usage and
the concepts about different types of DTA models. While, the next section starts with
the concept of calibration in traffic models, then describes offline and online calibra-
tion, their literature and comparison. In the end, the chapter concludes with section
5 covering the concept of stochastic approximation, then the comparison of FDSA
and SPSA with their usage so far in OD estimation and calibration techniques.

2.1 OD Demand estimation

Traffic demand in a network is in form of an OD matrix. As a network is divided
into zones, each cell of an OD matrix represents the number of trips from an origin
zone to a destination zone. In accordance with Cascetta (1984), many techniques
are developed to estimate an OD matrix. The first set of techniques can be called
as “direct sample estimation”, where by using sampling theory classical estimators,
OD matrix is estimated from different surveys i.e. household surveys, roadside in-
terview etc (Cochran, 2007). Another technique is defined as “model estimation”.
In this technique, a system of models is used to generate number of trips per mode
for a certain time. There are two major types of these systems, first is called as
”trip based modelling” while the other as ”activity based modelling” ((Ortuzar and
Willumsen, 2011)). The third and most widely used technique is defined as “OD
matrix estimation by traffic flows”. There are two distinctions in this technique.
First is to estimate the OD matrix directly from traffic flows, while second is to
calibrate the prior estimates of OD matrices by estimating the demand model pa-
rameters based on the observed traffic flows (Willumsen, 1978). In a traffic network,
mostly the number of observed links are less than the number of unknown OD pairs
in an OD matrix, making it an under-determined problem. Using the first approach
and relying only on the link flows might lead to a false OD estimation. As a result,
second approach of using the prior information and calibrating the OD matrix has
been widely followed.
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OD Demand Estimation Models

Generally, the approach is to find an estimate of OD matrix using the traffic flow
observations. According to Cascetta (1984), the basic mathematical model can be
given as:

y = Ax (2.1)

Here, y is the flow vector representing the observed data, while x is the OD matrix
of a network with n pair of centroids, m number of links and A is the assignment
matrix of dimension m× n. Equation 2.2 shows a prior OD matrix x̂ from a direct
or model estimation with ξ as a random vector of mean µ and dispersion matrix V .

x̂ = x+ ξ (2.2)

Another error will be because Â matrix is an assignment based on x̂. While, x̂
already have an error ξ, so the equation 2.1 will be:

y = Âx+ ω (2.3)

where ω is a random vector. As the observed flows considered to be ”true” will have
some error due to measurement errors and time variations. This biasness of ŷ is
ignored with respect to ω, and now the model will become as:

ŷ = Âx+ η (2.4)

where η is a random vector with mean equal ω and dispersion matrix W . The aim
is to find a ”true” OD matrix x by combining the information of prior OD matrix
and the observed link flows.

There are two major categories of these OD Demand estimation models, static
and dynamic models. Static estimation models assume the constant trip desires
throughout the estimation period, estimating a demand table based on daily and
hourly average traffic counts. Literature on static OD demand estimation can be
concluded in a few main approaches, summarized by Zhou (2004). First approach
is based on minimum information/ maximum entropy. Van Zuylen and Willum-
sen (1980) used entropy minimizing principle, while assuming that averaged link
counts are Poisson distributed. An OD estimation problem is created which mini-
mizes a log likelihood function subject to equation 2.1. Maher (1983) and Cascetta
(1984) proposed, bayesian estimator and a generalized least squares (GLS) estima-
tor respectively, while assuming a multivariate normal distribution for traffic counts.
GLS estimator approach is to solve a system of linear stochastic equations of demand
modelling errors and flow measurement errors.
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2.2 Dynamic OD demand estimation

Dynamic estimation models being the second type in OD demand estimation models
incorporate the traffic dynamics and behavioural process more realistically. As an
extension of the OD demand estimation problem from equation 2.1, the new dynamic
formulation of the estimation is represented as:

ystq =
∑
tp

∑
r

A
rtp
stqxrtp (2.5)

where ystq is the flow observed at sensor s in time interval tq and xrtp is the OD

pair r that departed from its origin during time interval tp. While A
rtp
stq is the

assignment parameter having the proportion of demand from xrtp observed at sensor
s in time interval tq. One of the main difference from static estimation models is the
dependence of the parameter on time intervals tp and tq. While, the static estimation
models lack the granularity of time representation in dynamic implementations,
hence fractions of their assignment matrix (A) cannot have the effects of OD flows
related to prior intervals on the link counts of any interval (Ashok, 1996).

2.2.1 Dynamic OD estimation problem

The aim of doing OD estimation is to find the OD demand x̂h that departs at time h
resulting in the simulated link flow ŷh+1 to be as close as the observed link flow yh+1

as possible. In accordance with Djukic (2014), the dynamic OD estimation problem
from equation 2.5 can be redefined as:

x̂h = argmin
x≥0

f(
h+1∑
h

Ahh+1xh, yh+1) (2.6)

Where f is a function defined to measure the deviation between observed and es-
timated flows. As discussed before, the technique of OD estimation from observed
traffic flows, have two basic approaches. One is to directly estimate the OD matrix
from the observed traffic OD flows, but as a system of stochastic equations shown in
equation 2.6, the information is not enough to estimate the dynamic flows. Even as-
suming equation 2.6 as a system of linear equations, the number of observed counts
will remain less than the number of OD flows for estimation. Hence, this is an
under-determined system which can give infinite number of OD matrices resulting
the observed link traffic counts. Here, the second approach become more feasible.
Using a prior estimates of the OD matrix to estimate the new OD matrix out of
infinite number of potential ones. Considering the second approach of using the
previous estimates the new dynamic OD estimation problem can be defined as:

x̂h = argmin
x≥0

[αf1(xh, xp) + (1− α)f2(
h+1∑
h

Ahh+1xh, yh+1)] (2.7)

where xp is the previous estimate used, while α is the weight factor for combining
the two sets. The weights act as deciding factors to define importance of each set,
specifically to describe the reliability of previous estimates (Djukic, 2014).
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In the dynamic OD estimation problem, there are three main components:

• Input data: The input data for the estimation problem as shown in figure
2.1. There are two types of data as inputs. First can be any type of traffic
data i.e. travel times, counts, densities, OD flows etc representing the true
ground information. While second type of data is historical estimates of OD
flows. Equation 2.6 also refers xh and yh+1 are the input data variables.

• Assignment: Type of the assignment presents the relation between OD flows
and observed traffic data. Ahh+1 is the mapping between the estimated traffic
data ŷh+1 and OD flow xh in 2.5. This relation is mostly represented either
analytically (using set of non-linear equations) or by a traffic simulator.

• Objective function: The objective function f in equation 2.6 is the function
defined to minimize the difference between observed and estimated traffic data.
It represents the type of OD estimation approach being used. The type of
objective function also defines its application limitations.

Figure 2.1: Components of OD estimation problem (Ashok, 1996)
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In literature, various approaches have been developed to solve the OD estimation
problem but the prominent ones can be distinguished as in two: Generalized least
squares (GLS) and State space model solving through Kalman filter.

2.2.2 Generalized least squares (GLS)

Generalized least squares (GLS) method is defined as minimizing the sum of least
squares of the residuals. Cascetta et al. (1993) gave an approach of optimizing
the two objective functions f1 and f2 from the dynamic OD estimation problem
(equation 2.7), such that the sum of squares of the residuals for both functions is
minimized.

As the first part minimizes the difference between the estimated OD of an interval
xh and a prior OD matrix xp from a prior interval p. The frequency based GLS
estimator is given as:

f1(xh, xp) = (xh − xp)TV −1(xh − xp) (2.8)

where V is the variance-covariance matrix of the sampling errors vector that is
affecting the prior estimate xp. While the second objective function f2 based on
basic equation 2.4 is given as:

f2(xh, yh+1) = δTW−1δ (2.9)

δ = Axh − y (2.10)

where δ is given as the difference between observed traffic flow y and estimated traffic
flow ŷ. ŷ comes by assignment of OD demand xh through the assignment matrix
A, while W is the dispersion matrix of the assignment and measurement errors as
referred in equation 2.4. Cascetta et al. (1993) proposed two possible approaches to
estimate the OD flows. One is referred as simultaneous estimators, which estimates
a whole OD demand for all intervals n by utilizing available counts of all n intervals
together. The mathematical model is:

(x̂h....x̂h+n) = argmin
[xh.....xh+n]≥0

n∑
1

[
(xh − xp)TV −1(xh − xp) + δTW−1δ

]
(2.11)

While, the second approach is sequential estimator. It estimates OD matrix step by
step for each interval using counts of current and previous intervals in f2 as well as
the previous interval’s OD estimates in f1. As h is the current interval, then xp can
be any of the previous estimates [x̂h−1, x̂h−2,....]. The mathematical model is:

x̂h = argmin
xh≥0

[
(xh − xp)TV −1h (xh − xp) + δThW

−1
h δh

]
(2.12)

where Vh and Wh are considered to be diagonal matrices, implying that they do
not have any covarience between them. As in equation 2.7, weights can be given
to the respective objective function based on the degree of confidence on the data
being used like prior estimates etc. Comparing both approaches of simultaneous
and sequential GLS, sequential have a more computational advantage due to its
step wise estimation as well as it can also use the estimated OD flows of an interval
into next intervals as a prior estimate. Application of a sequential GLS on real time
dynamic OD demand estimation is actually a state space model.
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2.2.3 State Space model

A state space model has two basic equations, measurement equation and transition
equation. Okutani and Stephanedes (1984) made the first effort to create a state
space formulation for dynamic OD estimation problem. A form that can be solved
using kalman filter. Measurement equation is stated as the same in equation 2.4:

yh = Ahxh + vh (2.13)

While, the transition equation is:

xh = F h
h−1xh−1 + wh (2.14)

where vh and wh are normally distribution independent matrices of random errors.
Ah is the assignment matrix and F h

h−1 is a transition factor which relates spatial and
temporal OD relationship between time intervals (h− 1) and h, capturing the effect
of a state vector from interval (h− 1) on the state vector from interval h. Ashok
(1996) redefined the approach where the state vectors are the difference between
OD flow and average prior OD flow. Instead of estimating the actual OD matrix,
it estimates the deviation from prior OD martix. Using the basic approach stated
in equation 2.7 and the state space model equations 2.13 and 2.14, a new model is
derived as:

x̂h = x̂h−1 + kh(yh − Ahx̂h−1)

where kh is called the Kalman gain matrix. kh is actually a time-varying weighting
matrix estimated on the criteria of minimizing the sum of squared errors. The overall
model approach can be defined in the following equations:

x̂0|0 = x̄0

x̂h|h−1 = Fh−1x̂h−1|h−1 (2.15)

x̂h|h = x̂h|h−1 + kh(yh − Ahx̂h|h−1) (2.16)

where x̄0 can be a prior estimate by direct or model estimation providing the base
OD matrix and h = 1, 2, 3, ... are the time intervals. This approach by Ashok and
Ben-Akiva (2000) contains better practical adaptability from its predecessor. As,
the state augmentation is a way of improving the OD flow estimates by exploit-
ing the prior information about OD departure intervals. OD deviations from past
intervals are added to the state vector, and re-estimated periodically as future in-
tervals are being processed. This way of state augmentation can provide a bargain
between computational effective sequential estimator (eq. 2.12) and a more efficient
simultaneous estimator (eq. 2.11).



CHAPTER 2. LITERATURE REVIEW 10

Djukic (2014) provided a comprehensive summary of the efforts made in the
past three decades for solving the dynamic OD estimation problem in figure 2.2.
This summary contains all the information about the three major components of
dynamic OD estimation problem mentioned before, i.e. the types of input observed
data, mapping approach and the objective function utilized.

Figure 2.2: Summarize literature review about the efforts for dynamic OD
estimation-(Djukic, 2014)
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2.3 Dynamic Traffic assignment systems

Dynamic traffic assignment (DTA) systems are an important part of the modern
traffic management systems. Also referred as traffic estimation and predication
systems, figure 2.3 provide the generic structure of a DTA system with two major
processes, state estimate and predication-based information generation. The key
components of a DTA framework are the demand and supply simulator. Traffic
demand represented by OD matrices, oscillates the most in shorter scale of time,
hence their estimation and prediction is crucial for a DTA systems. Supply simulator
is usually a detailed high level simulator like DynaMIT (Ben-Akiva et al., 2010) and
DYNASMART (Mahmassani et al., 1995), representing the traffic dynamics and
supply parameters (Antoniou, 2004). Different types of DTA models used in DTA
systems are discussed below.

Figure 2.3: Structure of a DTA System-(Antoniou, 2004)

Dynamic traffic assignment models

The complexity of DTA systems require, detailed simulation based DTA models.
DTA models replicate the complex interaction of demand and supply model param-
eters to simulate traffic scenarios, as shown in figure 2.1. Demand models include
the estimation/prediction of OD matrices and modelling travel behaviours. While,
the supply models include the traffic dynamics due to lane changing, acceleration,
merging/weaving, incidents etc. (Ben-Akiva et al., 2002).

Balakrishna (2006) have summarized the efforts for the evolution of DTA models.
Starting with the technique classified as ”quasi-dynamic” assignment, with the aim
of introducing dynamic considerations by repeating the static method application
to sub-intervals of a period. Time of an event is divided into intervals and solved by
static user equilibrium to get a dynamic scenario. But the reliance on static assign-
ment had limitations which led the research to other techniques. Further research
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Figure 2.4: Generic interactions in a DTA model-(TRB, 2011)

can be categorized into two major classes of DTA, Analytical and simulation based
dynamic traffic assignment. In analytical DTA approaches, assignment problem is
based on a set of equations with constraints, to approximate the DTA problem for
a specific objective like user equilibrium (Wardrop, 1952). These equations evaluate
the observed counts by creating a list of contributions by each OD pair at the loca-
tions. The solutions are mostly based on traditional optimization algorithm solving
for the unknown variables. Peeta and Ziliaskopoulos (2001) can provide more detail
review on the analytical based modelling concepts.

The simulation based DTA models are classified based on the level of detail
achieved for individual drivers and driving behaviour. Major three classes are Mi-
croscopic, Marcoscopic and Mesoscopic models. Microscopic models include vehic-
ular interactions i.e. car following, lane changing, merging and yielding. Individual
drivers with their behavior and decisions are simulated in a high level of detail,
capturing the traffic dynamics. While, Marcoscopic models consider demand as a
homogeneous flow and use physical concept like fluid dynamics to propagate through
the network without capturing the stochasticity of driver interactions and behav-
ior patterns. The run time of macroscopic models is a lot faster than microscopic,
coming on an expense of the lack of individual driver behaviour modelling. Meso-
scopic models blend the microscopic approach of modelling behaviour patterns with
macroscopic models approach of traffic dynamics. They are significantly faster than
microscopic models and yet capture the behavioural patterns, making them most
feasible ones for real-time estimation of traffic conditions (Balakrishna, 2006).
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2.4 Calibration

Calibrating a model, is a process of adjusting the model parameters so that the model
can be a close representation of the real traffic system (Olstam and Tapani, 2011). As
discussed before, DTA models are complex, involving a large number of parameters
from both supply and demand models. Calibration of DTA models is an important
aspect, considering the level of variability or stochasticity involved in traffic systems.
The concept of demand calibration is the same as of OD demand estimation with a
prior estimate, discussed in previous sections. Based on the application, calibration
of a DTA model can be classified into two main approaches: offline calibration and
online calibration.

The objectives of offline and online calibration are identical i.e. to estimate the
DTA model parameters, which give similar outputs as the observed traffic data. Both
combine all the available data for estimation, as figure 2.2 shows the inputs, outputs
and the interaction of both calibration processes. The main difference between them
is the time-based representation by the model’s output after calibration. Offline
calibration establishing a historical database, enables the model to simulate average
traffic conditions observed over multiple days. This helps in the planning aspects like
developing and evaluating traffic management strategies, but fails to replicate the
short term time varying conditions within a day. To achieve this level of performance,
the offline parameters must be fine tuned in real-time. The abundance of historical
data from offline calibration can be integrated within a real-time online process as
the offline calibrated parameters. With the approach of online calibration, DTA
models are sensitive enough to capture the shorter time variations in traffic due to
an incident, weather conditions etc (Antoniou et al., 2009).

Figure 2.5: Offline and Online Interaction-(Balakrishna, 2006)
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Calibration of a DTA model as a generic optimization problem is formulated as:

Minimize
β,x

z(y, y′, x, xp, β, βp) (2.17)

Where,
y′ = f(x, β,G)

where β and x are OD flows and model parameters with βp and xp as their prior
values. y is the observed traffic measurements with y′ their simulated counterparts.
y′ is based on x, β and G parameters, with G representing the road network and
f() denotes the DTA model. While, the optimization is based on the goodness of fit
z, capturing the error between simulated and observed values (Balakrishna, 2006).

2.4.1 Offline Calibration

As described before, offline calibration addresses the problem of calibrating a set of
initial DTA model parameters using time-dependent traffic data aggregated upon
multiple days. In accordance with Antoniou et al. (2009), the offline calibration
problem is developed as a special case of equation 2.17 as:

(β∗, x∗) = argmin
β,x

z =
n∑
h=1

[z1(yh, y
′
h) + z2(xh, x

p
h)] + z3(βh, β

p
h) (2.18)

subject to:
y′ = f(x1, ..., xh; β1....βh;G1...Gh) (2.19)

lxh ≤ xh ≤ µxh (2.20)

lβh ≤ βh ≤ µβh (2.21)

Where β∗ and x∗ are the calibrated model and demand parameters and z1(), z2(),
z3() are the function evaluating the difference depending on the goodness of fit
measures, as equation 2.8 gives the estimation relation based on prior estimate xp
by generalized least squares. While, the above constraints apply on all intervals
h ∈ {1, ..., n}. Due to the scale and complexity of the offline calibration problem,
focus has been more on solving a sequence of smaller sub-problems. Using a part of
available data, each sub-problem estimates a subset of DTA parameters assuming
all other to be exogenous. One of the prominent solution applied for offline cali-
bration is given by Balakrishna (2006), using Simultaneous Perturbation Stochastic
Approximation (SPSA) (Spall, 1998a). As, SPSA approximates the gradient by
perturbing all calibration parameters simultaneously, it requires only a fixed num-
ber of function evaluations (twice) regardless of the problem dimensions making it
very computational effective against large scale problems. Details on SPSA and its
effectiveness is covered in section 2.4.3 and chapter 3. Antoniou et al. (2009) gives
in detail the literature review about the solution approaches for offline calibration
problem. Major efforts towards the demand side parameters are by Balakrishna
et al. (2005), who sequentially estimated the OD flows and route choice parame-
ters using multiple days count, while efforts of Ashok and Ben-Akiva (2000) and
Hazelton (2000) entirely focused on estimating OD flows.



CHAPTER 2. LITERATURE REVIEW 15

2.4.2 Online Calibration

Online calibration is a real-time process concerning about a given day’s system per-
formance. Prior estimates, which could be the offline calibrated parameters are
fine tuned, to calibrate the models for shorter time variations due to an incident
or weather variation etc. Online calibration is to estimate the demand and supply
parameters at a time interval h using observed data from time intervals {1, ..., h}
and prior estimated parameters. While the idea of calibration is same as, referred
in equation 2.17, but online calibration is done sequentially using the information
available at the given interval. The online calibration problem formulation is very
much similar to that of a state space model described in section 2.2.3 proposed by
Ashok and Ben-Akiva (2000). Similar to equation 2.14, which gives a transition
equation using a typical autoregressive process to relate the current interval state
to the states from previous interval. Equation 2.22 and 2.23 give the direct mea-
surement of the current state vectors xh and βh from xph and βph, which are the prior
values with lh and qh as random error vectors.

xph = xh + lh (2.22)

βph = βh + qh (2.23)

While, the indirect measurement equation is given in equation 2.24 similar to equa-
tion 2.13, with n to be the no. of intervals required for the longest trip inside the
network.

yh = f(xh−n, ..., xh−1, xh; βh−n, ..., βh−1, βh;Gh−n, ..., Gh−1, Gh; ) + vh (2.24)

Most of the methodologies researched for solving the online OD calibration problem
have been based on the kalman filtering technique (Kalman, 1960). Initially, Ashok
and Ben-Akiva (2000) made an effort to define the OD estimation problem as a state
space model and estimated the deviations from a prior OD matrix using Kalman
filtering algorithm. Then, extension of Kalman Filter to non-linear systems with
Extended Kalman Filters (EKF) is proposed (Chui and Chen, 1999), implying the
non-linear relationship of measurement equation towards linearization. While, in
simulation based systems, EKF required a large number of function evaluations
for linearization using numerical derivatives, making it computationally expensive.
Then an improved EKF in form of Limiting Extended Kalman Filter (LimEKF) is
proposed, with a more effective computational performance. LimEKF, instead of
computing Kalman gain matrix in real-time, replaces it with a constant gain matrix
called limiting Kalman gain matrix (Chui and Chen, 1999). While, this constant
gain matrix can be computed and updated offline or a method of moving average
could be applied on previous estimates of gain matrices. Antoniou et al. (2005)
defined an online calibration problem for speed-density relationship to test the three
solution approaches i.e. EKF, Iterated EKF and Unscented Kalman Filter (UKF)
and later Antoniou et al. (2007a) applied them to jointly estimate demand and
supply parameters of dynamic traffic assignment systems. Zhou and Mahmassani
(2007) also developed a similar Kalman Filter based procedure with its transition
equation as polynomial trend filter capturing historical demand deviations.
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In recent years, efforts have been towards increasing the application scalability of
online calibration. As larger networks have larger OD matrix dimensions and sim-
ulation or mapping periods, the computational run-time is extensively increased.
Djukic et al. (2012) used the concept of principal component analysis (PCA) on OD
matrix to reduce its dimensions. Using, principal components instead of original
OD matrix in the dynamic OD estimation using Extended Kalman Filter. While,
Prakash et al. (2017) proposed the usage of PCA with generalized least square prob-
lem to significantly improve the online calibration’s scale. Afterwards Prakash et al.
(2018) proposed a generic framework for the usage of a dimensional reduction tech-
nique with any set of parameter of either supply or demand using wide range of field
measurements. Prakash et al. (2018) used a case study of Singapore highway net-
work to evaluate the performance of PCA towards estimation and prediction using a
constrained EKF approach. These recent efforts of incorporating the application of
PCA are very important in terms of increasing the application scalability of online
calibration. The application of PCA on OD demand estimation is discussed in detail
in section 3.2.

2.5 Stochastic Approximation

Stochastic approximation (SA) methods are iterative type of optimization algo-
rithms. These type of optimization algorithms minimize a specified error for a given
problem when its objective function has no known analytical form, but can be only
be estimated based on noisy observations. The approach is to iteratively find an
order of parameter estimates which converge the objective function towards zero.
Stochastic approximation has been another important aspect in literature of OD
calibration. OD estimation was first converted into a generic optimization problem
by Cascetta et al. (1993). Then, the dynamic OD estimation problem is formulated
as a state space by Okutani and Stephanedes (1984) and Ashok (1996), which is
also a direct optimization formulation.

Figure 2.6: FDSA vs SPSA-(Spall, 1998a)

The first major application of stochas-
tic approximation was to linearize the
non-linear relationship of measurement
equation in the application of Extended
Kalman Filter (Chui and Chen, 1999).
EKF required a large number of function
evaluations for linearization using numeri-
cal derivatives, making it computationally
expensive. While, Antoniou et al. (2007b)
provided another approach of approxima-
tion of measurement equation by simul-
taneous perturbation to reduce the com-
putational efforts. Instead of taking the
numerical derivatives with a large num-
ber of function evaluations, simultaneous
approximation needs only two evaluations
of objective function per iteration. This idea is similar to the comparsion of Fi-
nite Difference Stochastic Approximation (FDSA) versus Simultaneous Perturba-
tion Stochastic Approximation (SPSA), given by Spall (1998a) in figure 2.6. Both,
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FDSA and SPSA are gradient free stochastic algorithms for the problems which does
not allow the approximation of its true gradient.

FDSA is the classical gradient free stochastic approximation algorithm (Kiefer
and Wolfowitz, 1952). Equation 2.25 describes the gradient approximation for
FDSA, as:

g′k(θk) =



y(θk + ckξ1)− y(θk − ckξ1)
2ck
.
.
.

y(θk + ckξp)− y(θk − ckξp)
2ck

 (2.25)

where, ξi is a vector of dimension p with 1 in the ith place and 0 elsewhere. While,
p equal to the θk vector dimensions. Gradients are evaluated with two evaluations
of the objective function y for each i from [1, 2, ..., p] within each iteration. So, the
gradients are evaluated with perturbing one element from the θ vector at a time
(Spall, 2003). Equation 2.26 defines the gradient approximation for SPSA.

g′k(θk) =
y(θk + ck∆k)− y(θk − ck∆k)

2ck∆k


∆1

∆2

.

.
∆h

 (2.26)

where, instead of ξi, ∆k is used. ∆k is a random vector based on ±1 bernoulli
distribution. The remaining notations are described in section 3.1. With the usage
of ∆k are the elements of the vector θ are perturbed simultaneously and the gradient
is evaluated with only two evaluations of the objective function y.

The number of iterations for SPSA are always more than FDSA. But as, SPSA
needs two evaluations of objective functions for each iteration, the number of gra-
dient evaluations for FDSA increases p-folds than SPSA. Hence, SPSA needs very
less computational effort than FDSA, making its run-time alot more faster.

SPSA is first proposed by Balakrishna (2006) and Balakrishna et al. (2007)
as a solution approach for offline calibration of DTA models, due to its advan-
tage of fixed number of function evaluations (two) irrespective of the dimensions
of the problem. Later, Antoniou et al. (2007b) utilized this approach to reduces
the computational efforts in Extended Kalman Filter. Recently, Lu et al. (2015)
and Antoniou et al. (2015) made the efforts to improve its application efficiency
for DTA model calibration by introducing the idea of Weighted Simultaneous Per-
turbation Stochastic Approximation (W-SPSA). W-SPSA tries to incorporate the
effect of non-homogeneous structural correlation with the parameters of the traffic
simulation model by the determination of a weight matrix approximating the actual
correlation patterns between the model parameters.



Chapter 3

Methodology

This chapter is divided in three major sections. First section describes about the
application of an optimization algorithm, Simultaneous perturbation stochastic ap-
proximation (SPSA), for OD demand calibration. The section starts with the de-
scription of major steps involved in SPSA. Then, comes the modifications proposed
in generic SPSA to use it for OD Demand calibration. Afterwards, its complete
algorithm is explained with the corresponding flow chart. Next section covers the de-
velopment of PC-SPSA. It is an application of principal component analysis (PCA)
with SPSA. PCA being a dimension reduction technique, improves the computational
performance of SPSA. The section starts with the description about PCA and its im-
plementation on OD demand. Then, the steps of converting SPSA to PC-SPSA are
discussed, while the section ends with the description of the complete algorithm of
PC-SPSA and its corresponding flowchart. Third and the last section concludes with
a comparison between SPSA and PC-SPSA through analyzing the major differences
in both algorithms.

3.1 Simultaneous Perturbation Stochastic Approx-

imation (SPSA)

SPSA proposed by Spall (1998a), comes from the family of stochastic approximation
(SA) methods, which are iterative optimization algorithms. SPSA provides a major
advantage over other SA algorithms because it needs only two evaluations for the
given objective function to calculate its gradient for minimization (for detail see
section 2.4.3). There are some basic parameters that define SPSA’s performance,
these parameters are defined manually with the guidelines given by Spall (1998b),
the parameters are:

• θ The decision variable

• c, γ To specify ck (where k is the iteration number)

• a,A, α To specify ak

• ck, ak Gain sequence

• ∆ Random vector based on bernoulli distribution symmetrically dis-
tributed over zero with discrete value of either -1 or 1, with size equal θ.

18
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The performance of SPSA for a specified problem is based on the definition of gain
sequence ck and ak and their reduction pattern. ck defines the magnitude of pertur-
bation in the decision variable θ. While, ak defines the magnitude of minimization
for θ in each iteration. ck and ak are being specified as:

ck =
c

(k)γ
ak =

a

(k + A)α

So that:

ak > 0, ck > 0, ak → 0, ck → 0,
∞∑
k=0

ak =∞,
∞∑
k=0

a2k/c
2
k <∞

Where parameters c and a are defining the magnitude of gain sequence ck and ak
and γ, α and A define the pattern of reduction in ak and ck with the increase in
number of iterations as shown in figures 3.1 and 3.2.

Figure 3.1: Reduction pattern of ak (Source: own)

The comparison of figure 3.1 (a) and (b) shows the difference in the reduction
pattern of ak due to change in A. The value of A defines the starting number of
iterations in which the minimization will be alot more than the upcoming iterations.
As figure 3.1(a) shows that the value of ak is reduced significantly in the first 20
iterations as A is 20, while in figure 3.1(b), the value of A is 100 and the reduction
pattern smoothened out in the first 100 iterations. It can be proclaimed that A
defines the point of inflection in the reduction pattern of ak.

Figure 3.1 (c) and (d) shows the comparison of ak patterns due to change in
parameter α. This comparison shows that with the larger value of α the range of
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reduction increases from its starting point, as the relation of α and ak is exponential.
The values of a are also changed in all the graphs with the aim of showing the change
in pattern due to A and α with similar starting points.

Figure 3.2: Reduction pattern of ck (Source: own)

Figure 3.2 shows the comparison of the reduction patterns in ck due to two
different values of γ. The comparison is similar to that of α on ak as γ has the
similar relation with ck. Larger values of γ tend to increase the range as well as the
amount of reduction with the increasing number of iterations.

3.1.1 Major steps with SPSA

SPSA being an iterative process, contains four major steps within an iteration.
These steps are:
1. Perturbation:

First step is to perturb the decision variable by adding and subtracting the gain
sequence ck times a random vector resulting in two variables θ+ and θ−. The random
vector ∆ randomly increases half of the vector variables by ck and reduces the other
half to create θ+. While for θ−, the sign is changed for ck, so the vector variables
that were increased before are reduced while increasing the other half.

θ± = θ ± ck∆ (3.1)

2. Objective function evaluation:
In this step, the objective function is evaluated twice based on the resulting θ+

and θ− from perturbation. In case of OD estimation, due to incomparable relation
of OD flows are traffic counts, this objective function f() can be specified based
on a goodness of fit, used to specify the difference between the observed and the
simulated traffic data.

y± = f(θ±) (3.2)

where, y± is the goodness of fit value.
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3. Gradient Approximation:
Next step is to approximate the gradient by taking the difference between the

two evaluated outputs from the objective function y+ and y− and dividing it by the
perturbation magnitude ck ×∆.

g′ =
y+ − y−

2ck


∆1

∆2

.

.
∆h

 (3.3)

4. Minimization:
After the gradient is approximated, it is used with the gain sequence ak to

minimize the decision variable. θk is the minimized decision variable estimated at
iteration k.

θk+1 = θk − akg′k(θk) (3.4)

3.1.2 Algorithm

Implementation of SPSA on a OD matrix calibration problem is done with a few
modifications from a basic SPSA algorithm. The stepwise summary for SPSA is
described below with figure 3.3 showing the flow chart being followed in its imple-
mentation.

1. Initially, θk is set to be the h-dimensional starting OD matrix from the previous
estimate. The iteration counter i.e. k is set zero and the SPSA parameters c,
γ, A, α (except a) are defined, with respect to the problem characteristics and
guidance mentioned in Spall (1998b).

2. Setting the no. of gradient replications for obtaining an average gradient
estimate at each iteration for θk.

3. Incrementing the iteration counter by one and calculation of the gain sequence
ck. ak is also estimated at this step in each iteration, except for the first
iteration.

4. Generation of the h-dimensional random vector ∆h by Monte Carlo. ∆h is
generated by a probability distribution similar to ±1 Bernoulli distribution
with equal probability.

5. Perturbation of θk by equation 3.1 with specific constraints (including lower
and upper bound constraints) to result in θ+ and θ−. Then, evaluation of
objective function with θ+ and θ− to obtain y+ and y−.

6. Gradient approximation in form of a h-dimensional vector g′ based on the
difference between y+ and y− and step size ck.

7. Repetition of step 4 till step 6 until the required number of gradients are ap-
proximated (specified in step 2) and then calculation of an averaged gradient.
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8. Calculation of the SPSA parameter a which specifies the magnitude of step
size ak for minimization based on the evaluated gradient g′ so that:

ak =
t× ck
g′

0 < t < 1 (3.5a)

a = ak(k + A)α (3.5b)

where t is a parameter to specify the value of ak with respect to ck. This step
is done only in the first iteration to specify the starting step size of ak against
the value of parameter g′ and ck.

9. Minimization of θk with specific constraints (including lower and upper bound
constraints) by the step size ak upon the evaluated gradient g′ by equation
3.4.

10. Termination of the algorithm, depending on the specified criteria i.e. either
some specified number of iterations based on a time constraint or stabilized
convergence values of θ and its function evaluation y upon several iterations.

3.1.3 Modifications from generic SPSA:

SPSA, being a stochastic random search algorithm is used to find approximations
for any stochastic large scale problem. To improve its application on OD estimation
problem, a few modifications have been proposed. These modifications listed below
are either in form of constraints or feedback upon the major steps in the algorithm,
each with its application procedure and description.

• Non-negative: Constraints on the decision variable θk to stay non-negative
during perturbation and minimization. As, the OD matrix cell values cannot
be negative, so instead of converting the value as a negative one, its previous
state is retained.

• Relative segmented change: Another constraint during both perturbation
and minimization is that the change is applied relatively based on defined
intervals. To describe this constraint mathematically, ck and ak will become
as:

ak =
ak × i× n

µ
ck =

ck × i× n
µ

where i is defined interval size, µ the mean of non-zero values of the vector θ
and n is the interval number for which the gain sequence is calculated. n can
be [1, 2, ..., j], with j × µ the maximum value that can occur in vector θ.

This method of relative change is important because the OD-estimation prob-
lem is under-determined and the variables to be estimated are far more than
the observed data. This means that there can be many solutions fulfilling
the required results and reliance on the previous estimate is very important
in terms of finding a solution having similar demand patterns as the previous
one.

• Gradient feedback: Also defined above in step 8 of algorithm. The parame-
ter a is defined based on the mean evaluated gradient so that ak = t× ck with
0 < t < 1.
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Figure 3.3: SPSA algorithm flow chart
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3.2 Principal Component Analysis with SPSA (PC

- SPSA)

SPSA being proven to be very effective in stochastic large scale problems, still have
limitations against its usage for OD demand estimation. These limitations are due
to the factor that OD estimation by counts must rely on previously estimated OD
demand. SPSA on the other hand, cannot incorporate any factors from the previous
estimate except, its starting variable state to be the preivous estimate. This aspect
limits the performance of SPSA for this problem. This section is to define another
approach which incorporates a dimension reduction technique (PCA) with SPSA.
PCA provides SPSA, the search directions from the variance of previous estimates
and reducing the number of estimation variables by limiting its search area within
the variance of previous estimates.

3.2.1 Principal component analysis (PCA)

PCA (Jolliffe, 2002) is a technique used to describe the variation in a multivariate
dataset in form of a set of uncorrelated variables by extracting those components
from data set that can describe most of the variance, reducing a high dimensional
data into its lower dimensional PC components. For the application of PCA, a data
set is needed have each row or column to be multiple measurements of a single entity.

PCA is actually an eigenvalue decomposition of the covariance matrix XTX,
resulting in two matrices V and

∑
. The columns of V are the eigen vectors or

PC vectors representing the direction of variance. While,
∑

is a digonal matrix
containing the eigen values or PC score corresponding to their respective eigen or
PC vectors. The first PC component represents the largest sample variance while
the second PC is representing the second largest sample variance subject to being
orthogonal to the first one, while continuing till a few of the first PCs represent most
of the data variance.

3.2.2 PCA on OD demand

In accordance with Djukic et al. (2012) and Prakash et al. (2017), the application
of PCA can significantly reduce the dimensions of OD estimation problem, by cap-
turing the systematic variations of OD flows in lower dimensions. To apply PCA,
a data set of multiple estimates for OD flows are required, which can be the previ-
ous estimates from daily calibration using an offline or online calibration approach.
These estimates are used to create a data matrix X with dimensions of {nk × nx}.
Each row of data matrix nk represent the number of data points, while each column
nx is the corresponding estimated OD matrix of that point in form of a vector. To
evaluate the PCs, single value decomposition is performed on a data matrix resulting
in to three matrices U ,

∑
and V with the following relation:

X = U
∑

V T (3.6)

where
∑

is a rectangular-diagonal matrix with dimensions of nk × nx containing
positive PC scores, while U and V are left and right singular vectors of dimensions
{nk × nk} and {nx × nx} respectively. It must be noted that the V matrix containing
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PC vectors, only capture the structural relationships between the OD matrix cells
(Prakash et al., 2017). As first few of the PCs can capture most of the variance,
columns of matrices V and

∑
can be reduced from nx to nd. The new V matrix

will be:
V = [v1 v2 v3 ... vnd

]

Where v1, v2 till vnd
are the PC vectors and a new {nd × 1} PC score vector can be

generated for an OD flow vector x as:

z = V Tx (3.7)

while, this OD flow x can be reconstructed again as:

x = V z (3.8)

The above equations 3.7 and 3.8 are representing the main idea of applying PCA on
OD flows, with V containing the variance patterns of previous estimates, dimensions
of an OD matrix x can be reduced in form of a new vector z containing its PC scores.

3.2.3 SPSA to PC-SPSA

With the application of PCA, the number of estimation variables are reduced from
number of cells in an OD matrix to a few PC scores corresponding to their PC-
vectors which contain most of the variance over previous estimates. To transform
the approach from SPSA to PC-SPSA, following changes are used:

• Addition of a data matrix consisting of previous estimates and creation of PC
directions vector V from this data matrix.

• The decision variable θ is changed to be PC scores vector z instead of the OD
matrix for the steps of perturbation and minimization.

• Instead of using the approach of relative segmented change in perturbation
and minimization, both steps are applying the change in terms of percentage
increase or decrease through multiplication. The definition of gain sequences
ck and ak must be different, as they are percentage change in the decision
variable, as shown by the following relations:

Perturbation: θ± = θ ± θ × ck∆ . (3.9)

Minimization: θ± = θ − θ × akg′ . (3.10)

• Conversion of PC scores to OD matrix after perturbation and minimization
to evaluate the objective function through a DTA model or simulator.

3.2.4 Algorithm

After the amendments to incorporate PCA in SPSA, the new stepwise summary for
PC-SPSA is described below. Figure 3.4 provides the flow chart for the steps being
followed in the algorithm.
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1. Initialization with iteration counter k set as zero and definition of SPSA pa-
rameters c, γ, A, α (except a) with respect to the problem characteristics and
guidance given by Spall (1998b).

2. Estimation of PC directions V from the data set of previous estimates. Then,
evaluating the z score from the latest estimated previous OD matrix and set-
ting it as θ (a d-dimensional vector).

3. Setting the no. of gradient replications for obtaining an average gradient
estimate at each iteration for θk.

4. Incrementing the iteration counter by one and calculation of the gain sequence
ck. ak is also estimated at this step in each iteration, except for the first
iteration.

5. Generation of the d-dimensional random vector ∆d by Monte Carlo. ∆d is
generated by a probability distribution similar to ±1 Bernoulli distribution
with equal probability.

6. Perturbation of θk by equation 3.9 with specific constraints (like non-negativity)
to result in θ+ and θ−.

7. Conversion of θ+ and θ− in to their respective OD matrices and then, evalua-
tion of objective function by these OD matrices to obtain y+ and y− values.

8. Gradient approximation in form a d-dimensional vector g′ based on the differ-
ence between y+ and y− and step size ck.

9. Repetition of step 5 till step 8 until the required number of gradients are ap-
proximated (specified in step 2) and then calculation of an averaged gradient.

10. Calculation of the SPSA parameter a which specifies the magnitude of step
size ak for minimization based on the evaluated gradient g′ so that:

ak = t× ck 0 < t < 1 (3.11a)

a = ak(k + A)α (3.11b)

where t is a parameter to specify the value of ak with respect to ck. This step
is done only in the first iteration to specify the starting step size of ak against
the value of parameter g′ and ck.

11. Minimization of θk with specific constraints (including lower and upper bound
constraints) by the step size ak upon the evaluated average gradient g′ by
equation 3.4.

12. Termination of the algorithm, depending on the specified criteria i.e. either
some specified number of iterations based on a time constraint or stabilized
convergence of θ and its function evaluation y upon several iterations.
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3.3 Conclusion

SPSA and PC-SPSA both use the same basic methodology of perturbing a vector to
evaluate its gradient and then minimizing the vector upon it. The major differences
between both algorithms are in the steps of perturbation and minimization where
SPSA directly changes vector’s cell values randomly, either positively or negatively.
While, PC-SPSA perturbs and minimizes the PC scores evaluated based on PC
directions. These directions are calculated through previous estimates.

OD demand calibration is an underdetermined non-linear problem, so the cali-
bration must rely on previous estimates. A generic SPSA can change the variance
pattern significantly making itself very hard to converge towards a solution. The
modifications used in SPSA’s algorithm, can somewhat retain the variance patterns
of the decision variable from its starting state. But in PC-SPSA, with the incorpo-
ration of PC vectors or directions capturing the variance of previous estimates, the
reliance on previous estimates is very strong. These PC vectors provide SPSA the
search directions, with perturbing only the PC scores.

So in summary, application of principal component analysis (PCA) with SPSA
can provide two advantages over traditional SPSA. First, it can store the variance
from historical OD demand over time in form of PC vectors or directions, which
provide SPSA a search direction instead of a random search while the second ad-
vantage is that it reduces the dimensions of an OD matrix considerably, reducing
the number of variables for calibration. Both advantages can make the calibration
alot more rapid, as the number of iterations will decrease significantly.



Chapter 4

Case Studies

This chapter consists of three sections. First section starts with the description of
major parameters involved in developing the case studies. Section 2 discusses a
case study based on a synthetic non-linear function, including a description of the
synthetic function and a comparison for the performance of SPSA and PC-SPSA
for three different scenarios. Later, results are shown to analysis the robustness of
PC-SPSA against different dimensions and demand patterns. Section 3 describes
another case study based on the network of Vitoria, Spain. This section starts with
the explanation of the major characteristics involved in the case study and the de-
mand scenarios created to test both, SPSA and PC-SPSA. Later results are shown
for the created demand scenarios with corresponding arguments.

4.1 Introduction

Definition of an appropriate testbed is very important to test a calibration algorithm.
For the evaluation of the both approaches SPSA and PC-SPSA, two major case
studies are defined including different demand scenarios. Both approaches need to
have evaluation of an objective function. Figure 4.1 provides the basic structure for
evaluation of this objective function. With the inputs of an OD matrix and observed
traffic flows, this function is responsible to map the OD matrix in to traffic flows and
then evaluate the difference between the observed and simulated traffic flows based
on an evaluation criteria. Case studies have been developed based on the approach
of converting OD matrix in to traffic flows.

Figure 4.1: Basic structure of an objective function evaluation

29
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In literature, mapping of OD matrix into counts has been a critical aspect. As
the relation is very complex and non-linear, the conversion comes by the interaction
of a set of complex supply and demand models using a simulator (details in section
2.3.1). Simulating through a DTA model requires time, specially with larger network
dimensions.Hence, two types of case studies have been developed. One case study
is a simulator based DTA model, using a simulator for the mapping of OD flows
into counts. While, the other case study uses a synthetic non-linear function for the
conversion.

For the definition of different demand scenarios, an OD demand is assumed as
a ground truth and its simulated traffic flows as the observed traffic flows. Then,
different target OD matrices are created with the purpose of testing the performance
of SPSA and PC-SPSA to calibrate and converge them, towards the true demand.

4.1.1 Evaluation criteria

Evaluation criteria is the goodness of fit measure specified to evaluate the difference
between the simulated and observed traffic data. As OD estimation problem is
nonlinear, the simulated counts cannot be directly related back to OD flows. Hence,
the minimization is done based on this specified goodness of fit criteria. In this
thesis, for the evaluation of the objective function shown in figure 4.1, Normalized
Root Mean Square (RMSN) error is used as the goodness of fit criteria. RMSN have
been chosen previously in many research’s (for example, in Ashok and Ben-Akiva
(2000), Prakash et al. (2018) etc.). Equation 4.1 gives the mathematical relation for
the calculation of RMSNs between simulated and observed values.

RMSN =

√
n
∑n

i=1(ŷi − yi)2∑n
i=1 yi

(4.1)

where y are the observed traffic flows and ŷ are their simulated counterparts. n
presents the total number of values and i is from the set [1, 2, ..., n].

4.1.2 Estimation of PC directions

For the application of PC-SPSA, a data matrix of 25 previous estimates is used.
Each of the previous estimate is generated using equation 4.2.

xp = x× (1− qpR∆) (4.2)

where, R is normally distributed random vector with mean 0 and values between
0 and 1. ∆ is a ±1Bernoulli distribution random vector to randomize reduction or
increase for each value of xp. While, qp is a randomization coefficient to specify the
scale of randomization.

After the generation of the data matrix, PC-directions are calculated by principal
component analysis (detail in section 3.2.2). Then, these PC-directions are reduced
till, the remaining PC-components contain 95% variance of the data matrix. This
reduction is done based on the values of

∑
vector. Figure 4.2 provide a graph for the

cumulative percentage variance explained over the increasing number of principal
components (PC). This graph is from the data matrix for the two case study of
Vitoria. It shows that the first 80 PCs explain more than 95% of variance from the
data matrix.
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Figure 4.2: RMSN values from SPSA and PC-SPSA for the synthetic function

4.2 Synthetic function

A synthetic function is developed as a case study to skip the use of a simulator to
map OD matrix into counts. This case study have been used to test the algorithm
during their development because their evaluation time is very less than a simulator
based problem. This synthetic problem is using two randomly generated weight
matrixs W and Ws as the assignment matrices to map the OD matrix x into counts
y. The dimensions of weight matrices are [x× y]. The reason for using two weight
matrices is to have a non-linear function, replicating the non-linear OD estimation
problem. Equation 4.3 shows the mathematical relation of this synthetic non-linear
function, with both x and y as vectors.

y = Wx+Wsx
2 (4.3)

4.2.1 Demand scenarios

To evaluate the performance of both approaches different demand scenarios have
been created with the basic formula shown in equation 4.4

xh = xh−1 × r + xh−1 × q∆ (4.4)

where h is the current interval and xh is the new target vector, required to achieve
after calibration. r is the reduction coefficient, while q is a randomization coefficient
and ∆ is a random vector similar to the one used in the steps of perturbation and
minimization (Chapter 3). d is be used to specify dimensions of x in form of number
of zones, so that the dimensions of x as a vector will be [d2 × 1].

At first, three demand scenarios are created with different values of r and q, while
the dimensions d are set at 60. These scenarios are used to evaluate the performance
comparison of PC-SPSA with SPSA. Later, results are generated with PC-SPSA for
a range of each coefficient of r, q and d separately.
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4.2.2 Results

Results of synthetic function case study are divided into two groups. First group of
results compare the performance of SPSA and PC-SPSA for a problem of reasonable
dimensions, having three different demand scenarios. While, the second group of
results evaluate the robustness of PC-SPSA for different problems defined by a range
of dimensions d, reductions r and randomizations q to create the target vector xh
based on the equation 4.1.

Comparison of SPSA and PC-SPSA

To compare the performance of SPSA and PC-SPSA for the defined synthetic func-
tion, dimensions d for x are set to be 60, so x will be a vector of [3600 × 1]. The
number of sensor counts y are chosen to be 720. The dimensions d of x are based
on a comparison to the second case study for the network of Vitoria, which is a
reasonable real-life network of a moderate size having the dimensions of 57 zones or
[3249× 1] OD vector (details in section 4.3.1).

With d set to 60, three scenarios are created from the equation 4.1 with different
values of r and q. These three scenarios are:

Scenario 1: xh = 0.70xh−1 + 0.15xh−1∆

Scenario 2: xh = 0.80xh−1 + 0.20xh−1∆

Scenario 3: xh = 0.70xh−1 + 0.25xh−1∆
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Figure 4.3: RMSN values from SPSA and PC-SPSA for the synthetic function

Figure 4.3 shows the results of calibration done by SPSA and PC-SPSA for all
three scenarios. The performance of PC-SPSA in all three scenarios is far better
than SPSA. PC-SPSA reduces the RMSN error to a minimal value(i.e. under 3%)
within 10 iteration. While, SPSA takes more than 90 iterations to reduce this
RMSN error around 5%. These results depict that through the application of PCA,
SPSA is able to calibrate OD demand x very rapidly in comparison with the generic
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SPSA. Figure 4.4 provides further results of calibrated counts from both approaches
against the observed counts for third scenario. As the final RMSN value from the
calibration of PC-SPSA is half than the values from SPSA, figure 4.4 shows that the
data points from the graph of PC-SPSA are more closer to the 45◦ plot line than
the data points of SPSA.
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Figure 4.4: Comparison of calibrated and observed counts for scenario 3

Figure 4.5: Comparison of calibrated OD matrices of SPSA and PC-SPSA with
inital and targeted OD matrices for scenario 3

Figure 4.5, graphically shows the reason for the improved performance of PC-
SPSA against SPSA. It shows the comparison of the calibrated OD demands x̂
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against the initial and targeted OD demands for both approaches. As figure 4.5(c)
shows that the application of SPSA changes the variance patterns of calibrated
OD matrix drastically from their initial values, scattering all the data points of
this graph. The reason for having such changes is that SPSA is a random search
algorithm and it is perturbing the OD matrix values directly without any search
directions, changing its variance in each iteration. While, figure 4.5(d) shows that
due to the application of PCA, the variance patterns of the calibrated OD matrix
is kept within the variance from the previous estimates. In other words, PC direc-
tions evaluated from the previous estimates provide SPSA the directions to search,
limiting the changes due to its perturbation within the variance patterns from prior
estimates. Figure 4.5(a) and (b) depict the OD demand values calibrated by SPSA
and PC-SPSA with reference to the targeted OD demand. Both graphs show sim-
ilar patterns as in the graphs referred with the initial OD demand. Figure 4.5(a)
confirms that calibration by SPSA tends to converge towards a false solution.
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Robustness of PC-SPSA

The above results from the comparison of SPSA and PC-SPSA make it evident
that PC-SPSA performs far better than SPSA and its rate of convergence is also
very high. But the performance of PC-SPSA must be tested against three major
factors that might limit its performance. These three major factor are the one used
for creating different scenarios i.e. the coefficients of dimension d, reduction r and
randomization q. Table 4.1 shows the initial and calibrated RMSN values with the
application of PC-SPSA for different dimensions d, randomizations q and a constant
70% reduction. These calibrated RSMN values are only after the first 10 iterations.

Randomization
Dimensions

0% 5% 10% 15% 20% 25% 30%

Initial 1.022 1.021 0.975 0.917 0.910 0.773 0.718
20

Calibrated 0.026 0.115 0.072 0.072 0.085 0.098 0.122

Initial 1.011 1.008 0.974 0.988 0.838 0.655 0.713
30

Calibrated 0.022 0.041 0.070 0.064 0.066 0.063 0.069

Initial 1.008 1.011 0.972 0.933 0.847 0.721 0.731
40

Calibrated 0.056 0.070 0.024 0.049 0.068 0.049 0.060

Initial 1.007 0.999 0.963 0.902 0.858 0.858 0.662
50

Calibrated 0.041 0.048 0.101 0.100 0.038 0.054 0.047

Initial 1.006 0.998 0.960 0.930 0.891 0.827 0.769
60

Calibrated 0.011 0.018 0.061 0.031 0.040 0.037 0.043

Initial 1.006 0.999 0.976 0.938 0.901 0.788 0.741
70

Calibrated 0.050 0.020 0.022 0.023 0.049 0.030 0.035

Initial 1.006 0.994 0.966 0.933 0.886 0.771 0.746
80

Calibrated 0.055 0.051 0.025 0.043 0.023 0.026 0.031

Initial 1.005 1.000 0.976 0.916 0.851 0.788 0.709
90

Calibrated 0.023 0.050 0.015 0.056 0.021 0.026 0.025

Table 4.1: PC-SPSA calibrated RMSN values for different dimensions and
randomization coefficients (after 10 iterations)

The above results demonstrate the performance of PC-SPSA against different
dimensional and randomization scenarios. It is clearly evident that within the first
10 iterations it converges rapidly within 10% error. To further test and depict the
robustness of PC-SPSA against each of these three coefficients separately, results
are evaluated by fixing two coefficients and setting a range of the third coefficient.
The group of results for each coefficient is shown below separately.
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Dimensions

Dimensionality is one of the major factor that limits the application of online cal-
ibration approaches on larger networks. PC-SPSA with the application of PCA
reduces the dimensions of the OD demand variables into a few PC scores. Figures
4.6, 4.7 and 4.8 provide the graphs for the calibration of x for the synthetic function
case study. These graphs show the results for a range of dimensions of x i.e. from
20 till 90 zones, with different but fixed coefficients of reduction and randomization.
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Figure 4.6: RMSN comparison for PC-SPSA against different dimensions of x with
70% reduction and 25% randomization
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Figure 4.8: RMSN comparison for PC-SPSA against different dimensions of x with
30% increase and 30% randomization

Figures 4.6, 4.7 and 4.8 show the comparison of the performance of PC-SPSA
for calibration upon different dimensions of OD demand x. It can be seen that
there is no obvious change in the rate of convergance for PC-SPSA due to the
increase of dimensions for all three scenarios. The reason is that, PC-SPSA is
not perturbing and minimizing the cell values of OD matrix directly. Instead, it
perturbs and minimize the PC-scores values. The number of PC-scores does not
increase significantly with the increase in dimensions, instead they increase with the
increase in the variance of previous estimates as shown in section 4.1.2. While, for
the results of this case study, the variance between the previous estimates is kept
constant i.e. 30% randomization coefficient qp for equation 4.2. Hence, the number
of PC-score of each scenarios are similar regardless the dimensions of the problem.
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Randomization

Another major factor that can effect the performance of PC-SPSA is the amount of
change in the variance pattern of the target OD demand from the latest previous
estimates used to calculate the PC-scores. To test the robustness of PC-SPSA for
different randomization coefficients q, three scenarios are used fixing different values
of dimensions d and reduction r while plotting the calibration result for a range
of q coefficients. Figures 4.9, 4.10 and 4.11 provide the results for each indicated
scenario.
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Figure 4.11: RMSN comparison for PC-SPSA against different randomization in x
with dimensions as 90 and 20% increase

The above three figures 4.9, 4.10 and 4.11 provide the results for calibration of
PC-SPSA against different randomization coefficients. These results have shown
consistency due to the factor that the amount of randomization for a target OD ma-
trix against the latest previous estimate does not significantly effect the performance
of PC-SPSA, until the variance pattern of the target OD matrix is within or closer
to the variance captured in all the previous estimates through PC directions. For
PC-SPSA to be robust against this coefficient, the quality or relevance of previous
estimates is very important. As the randomization coefficient qp for generating the
previous estimates is set to 30% and the range of randomization coefficients q is
from 0 to 30%. Hence the results show consistency for the values of q. A future
research can be done for assessing the robustness of PC-SPSA for variance pattern
of a target matrix different than that of the previous estimates.
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Reductions

Another important factor is the over all change of target demand from the previous
estimates. These changes might be a reduced demand due to change in weather
conditions (i.e. snow) or an increased demand due to a holiday or a festival. The
robustness of PC-SPSA is tested for a range of reduction coefficients r with two
scenarios having fixed values of dimensions d and randomization q. Figures 4.12
and 4.13 show the plotted results for the two developed scenarios.
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Figure 4.12: RMSN comparison for PC-SPSA against different reductions in x
with dimensions as 90 and 20% randomization
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Figure 4.13: RMSN comparison for PC-SPSA against different reductions in x
with dimensions as 90 and 30% randomization

The results of PC-SPSA against different scale of changes r in the target demand
shown in figures 4.12 and 4.13 depict that the rate of convergence for PC-SPSA is
similar overall. This consistency is because of the properties of SPSA. As, SPSA
perturbs and minimizes the variable to be estimated, the amount of change in the
targeted variable from a starting variable only increase the number of iterations for
convergence, while the rate of convergence is the same.
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4.3 Simulator based case study

The first case study setup presented the results of SPSA and PC-SPSA using a
synthetic non-linear function for mapping OD flows into traffic counts. While, for
DTA systems, this mapping is done by simulating the OD flows through a DTA
model. This conversion comes by the interaction of a set of complex supply and
demand models, which make the OD estimation a complex non-linear problem.

This case study is using a DTA simulator Aimsun (TSS (2014)), to map the OD
matrix into traffic flows. The main agenda considered while choosing a traffic sim-
ulator is the numerical stability of its results i.e. small perturbation in OD demand
should result in small variations in simulated results, consistently (Antoniou et al.
(2016)). Secondly, being a mesoscopic model, Aimsun give the benefit of modelling
detailed driving behaviour patterns with a far better efficiency of time against mi-
croscopic models (as described in section 2.3). This Aimsun based platform with
its network and demand is inherited from the research case study of Antoniou et al.
(2016).

4.3.1 Vitoria Network

The network used in the simulator based case study is from Vitoria, a city located
in Spain. Figure 4.14 shows the geometry of the network consisting a total of 5,799
links, which are about 600 km in length and have 2884 nodes. The network is divided
in to 57 zones each having a centroid connected to its specific links for production
and attraction of vehicles, in and out of the network.

Figure 4.14: Vitoria network with loop detector locations

This size of the network used, can be considered a reasonable real-life network
with its congestion levels and route choices, as in an urban area. The demand is rep-
resents an afternoon peak hour. Having a total of five intervals of 15-min each, four
intervals consist of the actual one-hour demand with fifth as a pre-warmup period.
To detect the traffic flow data, a total of 389 detectors are installed with locations
shown in figure 4.14 providing traffic counts, density, speeds and occupancies.
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4.3.2 Demand scenarios

The type of traffic demand changes occurring are very important for the performance
of a calibration algorithm. Two demand scenarios are created to depict two different
regular demand fluctuations. These scenarios depict different changes in daily traffic
demand. As mentioned in the first case study, the targeted demand is created by
defining two major factors. First factor is for a reduction or increase. While, the
second factor is to randomize using a random vector. Considering different values
of both factors, two demand scenarios are created as:

• Scenario 1: This scenario represents a sudden low demand, reduced 70% from
the prior estimate. As in equation 4.5, the target demand is 70% reduced and then
randomly perturbed with a factor of 15% using ±1 Bernoulli distribution. So, an
OD pair cell can have a value between 55% to 85% of the prior demand estimate.

xh = xh−1 ∗ [0.7 + 0.15×∆] (4.5)

where xh is the new targeted demand of interval h, xh−1 is the prior estimate of
the previous interval (h − 1) and ∆ is the ±1 Bernoulli distribution based random
vector of dimensions equal to xh−1.

• Scenario 2: This scenario represents a target demand of medium reduction
but more randomization, reduced only 80% from its prior estimate. As in equation
4.6, the target demand is 80% reduced and then randomly perturbed with a factor of
20% using ±1 Bernoulli distribution. So, an OD pair cell can have a value between
60% to 100% of the prior demand estimate. The purpose of setting this scenario is
to test the performance of both algorithms with an increased randomization.

xh = xh−1 ∗ [0.8 + 0.20×∆] (4.6)

Both the regular demand scenarios are defined with a reduction and not a single
scenario is created with a increase in traffic demand from its prior estimate. The
reason for this assumption is the effect of congestion in to the network. If, a scenario
is created with an increase in demand, perturbation of the OD matrices might take
it higher than the targeting demand which might take the network in to a state of
congestion. This state will then act as a point of no return, so the factor of proper
congestion mitigation is important which will be described in section 4.6.2.

4.3.3 Traffic Assignment

The network model of vitoria through AIMSUN, provides the basic demand-supply
models interaction with some major assumptions. One of the major assumption
is about keeping the route choice parameters constant. Apart from the OD De-
mand, route choice parameter also come under demand models. It is the type of
traffic assignment approach used for deriving traffic counts from OD matrix. These
parameters are also very critical, as it dictates the level of stochasticity, driver per-
ception and congestion mitigation in the model. The traffic assignment is done with
dynamic user equilibrium (DUE) with the method of successive averaging MSA. At
first, assignment paths are being generated by the aforementioned approach, then
the parameters of assignment are fixed for 100% vehicles to follow these paths. This
assumption is done to make the model simple.
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The major reason for using DUE assignment is congestion. Congestion mitiga-
tion is a very important aspect. As the fundamental diagrams of traffic dynamics
are followed under uncongested conditions. When a roadway is near or at capacity,
the fundamental diagrams are not followed. The simulators are built on the basics
of these fundamental diagrams, due to congestion the results of the simulator might
not stay reliable. DUE assignment evaluates the assignment paths with multiple
iterations to find the best paths for all vehicles with the minimal travel time incor-
porating the level of existing volume/capacity ratios, thus reducing the chances of
congestion to its minimal.

4.3.4 Iterations

After the definition of assignment paths using DUE assignment approach. The sim-
ulation is run through the stochastic scenario with assignment paths to be fixed from
DUE assignment. Stochastic scenario incorporates the stochastic nature of drivers
behaviour, randomized vehicle input into the network etc. The stochastic patterns
are based on a specific random seed. While, each stochastic scenario run provide dif-
ferent results due to a different random seed. A minimum number of simulation runs
are needed to make the results statistically significant. Aimsun (2013) provides the
guidelines of the number of replications to be 10. The reason specified behind using
10 number of replications is that, every 10 number of generated random seeds are
normally distributed, so the mean of 10 replication outputs, provide the appropriate
results.

4.3.5 Estimation of PC directions

For the application of PC-SPSA, a data matrix of 25 previous estimates is used.
Each of the previous estimate is generated using equation 4.2, with qp set to 30%.
Then, PC-directions are calculated using principal component analysis on the data
matrix. Afterwards, these PC-directions are reduced to 80, which contained 95%
variance of the data matrix as shown in figure 4.2. So, with the application of PCA,
the number of estimating variables are reduced from 3249 variables (i.e. [57 × 57]
OD matrix) to just 80 PC-scores.
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4.3.6 Results

The results of this case study is based on two demand scenarios defined before.
For each scenario, a comparison of the RMSN values is given for both SPSA and
PC-SPSA. Then, the comparison of the calibrated OD matrix and their simulated
traffic counts is provided with the corresponding true demand and its observed or
true counts, on a 45◦ plot. Results of each scenario are shown and discussed below:

Scenario 1

This scenario contains a target demand, set by 70% reduction and 15% randomiza-
tion from the latest previous estimate. The demand contains four 15-min intervals
and the calibration is done for each interval separately. Three types of results are
provided in figures 4.15, 4.16 and 4.17, each discussed below:
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Figure 4.15: Comparison of RMSN values for SPSA and PC-SPSA

Figure 4.15 shows the RMSN values by the calibration of SPSA and PC-SPSA
over a run of 80 iterations. The performance of PC-SPSA is far better than SPSA
and it reduces the RMSN error value less than 15% for all four demand intervals
within first 10 iterations. While, SPSA is able to reduce the RMSN error value
around 20% for three intervals while for interval number 2 the error remains more
than 30%. This results validate the performance of PC-SPSA in synthetic function
case study, where PC-SPSA has shown similar convergence. For SPSA, results for
the synthetic case study are better than this case study because the first case study
is based on just a non-linear function, while this case study incorporate the complex
non-linearity of a moderate size DTA model network. Figure 4.16 gives further
results for the calibrated counts from both approaches against the observed counts.
This graph being created for the counts of second demand interval, depicts that as
the RMSN value from the calibration of PC-SPSA is far reduced than that of SPSA,
the data points representing calibrating counts from PC-SPSA are also more closer
to the 45◦ plot line than the counts by SPSA.



CHAPTER 4. CASE STUDIES 45

0 100 200 300 400

Observed Counts

0

50

100

150

200

250

300

350

400

C
a
li
b
ra

te
d
 C

o
u
n
ts

SPSA

0 100 200 300 400

Observed Counts

0

50

100

150

200

250

300

350

400

C
a
li
b
ra

te
d
 C

o
u
n
ts

PC-SPSA

Figure 4.16: Comparison of calibrated and observed counts of SPSA and PC-SPSA
for scenario 1

Figure 4.17: Comparison of calibrated OD matrices of SPSA and PC-SPSA with
inital and targeted OD matrices for scenario 1

Figure 4.17 provides the comparison of the calibrated OD matrix for the second
demand interval from both SPSA and PC-SPSA. These results show similar patterns
from the synthetic case study, as the calibrated OD matrix from SPSA has very
scattered plot of data points shown in figure 4.17(a) and (c) .While, for the calibrated
OD matrix of PC-SPSA the plots shown in figure 4.17(b) and (d) are much closer
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to the 45◦ plot line, as its patterns is changed within the search area provided by
PC-directions.

Scenario 2

This scenario contains a target demand with more randomization and less reduction
from the previous one. As the coefficients are set by to have 80% reduction and 20%
randomization from the latest previous estimate. The number of iterations done for
this scenario are 50 and only the graphs for the values of RMSN and comparison of
the calibrated OD matrices are provided for this case study.
Assessing the performance of SPSA and PC-SPSA from the figure 4.18, it can be
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Figure 4.18: Comparison of RMSN values for SPSA and PC-SPSA

seen that the convergence patterns for both approaches are similar to the previous
scenario. As this scenario included only a 20% reduction for creating the target
OD matrix, the starting RMSN values are less than the starting RMSN values
of the previous estimate. While, due to the increased randomization the pattern
of convergence for both approaches seems to be more irregular comparing to the
previous scenario.

Figure 4.19 shows the results for the comparison of calibrated OD matrices from
both approaches with the initial and target OD matrix. These results are also a
replication of the results shown in the previous scenario, except for the comparison
of the calibrated OD matrix of PC-SPSA with the target matrix shown in figure
4.19(b). Due to the increase in randomization for setting the target OD matrix, the
calibrated OD matrix of PC-SPSA seems to show some scatteredness along the 45◦

plot line.
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Figure 4.19: Comparison of calibrated OD matrices of SPSA and PC-SPSA with
inital and targeted OD matrices for scenario 2
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Chapter 5

Conclusion

5.1 Summary

An online calibration approach for dynamic traffic assignment has been proposed,
named as PC-SPSA. This approach addresses the issues of non-linearity and dimen-
sionality in a more effective manner than generic SPSA and has the potential to
improve the scale of application for online calibration on larger networks due to its
computational performance.

The purpose of an online calibration approach is to dynamically update the model
parameters using the observed traffic data, so that the model outputs are closer to
the observed ones. This calibration needs to be time efficient, as the estimated
parameters are used as an input in DTA systems for further prediction and control.
Hence, the scope of utilization for an online calibration approach is limited by its
computational time. For an online calibration approach, dimensions of a model and
its complexity, limit its application on the model. As the dimensions increase the
number of estimating parameters are also increased, while as it gets more complex
the time required for simulating the model during calibration increases. These two
parameters play the major role in defining the performance of an online calibration
approach.

Many of the classical methods of calibration have been mostly based on the state
space model. For most of these developed approaches the calibration problem is
formulated by direct and indirect measurement equations, with direct measurement
equation relying the calibration on prior estimates and the indirect measurement
equations relying on the surveillance data. From most of the previously developed
approaches, it can be concluded that calibration from an online calibration approach
must rely on the previous estimate, to make it time efficient. Recent efforts have been
focusing on incorporating the previous estimates as well as reducing the dimension of
the online calibration problem with the application of Principal Component Analysis
(PCA), resulting into some fruitful conclusions.

The approach developed in this thesis has used the similar concept of applying
Principal Component Analysis (PCA) for reducing the dimensions of the problem.
But instead of using a state space model, the solution is developed using PCA
with a stochastic approximation algorithm, Simultaneous Perturbation Stochastic
Approximation (SPSA), named as PC-SPSA. SPSA is a random search algorithm
with an advantage of having a fixed number of objective function evaluations (two)
for approximating its gradient. To develop the approach, PCA is applied on a

48
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set of previous estimates of OD demand matrices. Which evaluates the structural
spatial relationship within the OD matrix over all the previous estimates in the
form of PC-directions. Then, an OD matrix is calibrated by converting it into the
PC-scores using these directions. PCA can capture most of the structural variance
from the previous estimates into a few principal components, hence the number of
PC-scores against the dimensions of an OD matrix are reduced significantly. These
PC-scores are then used as the estimation variables for SPSA. Due to the properties
of SPSA, PC-SPSA also uses only two evaluations of the objective function within
each iteration and as the number of estimation variables are reduced significantly
this approach converges very rapidly.

Two case studies have been developed to test the performance of PC-SPSA in
comparison of SPSA. Results from both case studies have been very promising for
PC-SPSA. Especially, the second case study which is based on a moderately sized
network of Vitoria, provides the validation that PC-SPSA converges the solution
within very few iterations. Further analysis is also done to evaluate the factors
that can potentially effect the performance of PC-SPSA. But within all the results
provided, PC-SPSA have proven itself to be a robust online calibration algorithm,
especially against the factor of dimensionality.

The effectiveness of PC-SPSA hides under few aspects that arise due to the
combination of PCA with SPSA. These aspects can be concluded as:

• The application of PCA significantly reduces the dimension of estimation vari-
ables (e.g. in second case study the dimension are reduced by a factor of 40
even keeping 95% cumulative variance)

• As the dimension reduction is dependent on the cumulative variance, so the
scale of reduction is dependent on the amount of variance present in the pre-
vious estimate. In other words, the scale of reduction can reduce with the
increase of number of previous estimate or if they variate a lot from each
other.

• The reduction in the performance of PC-SPSA is not directly proportional to
the increase in dimension, either it relates with the amount of variation present
in previous estimates. But mostly for a traffic network with the increase in
dimensions the variance can increase significantly.

• As, PC-scores are used to calibrate the OD matrix, the search area of SPSA is
limited within the variance patterns captured in from the previous estimates.
The means that the performance of PC-SPSA depends on the quality of pre-
vious estimates. The more the variance pattern of a targeted demand variable
is away from the patterns of the prior estimates, the harder it is for PC-SPSA
to converge towards a better solution. This implicates that the performs of
PC-SPSA can be reduced due to an implusive change in the targeted demand.

In consideration with the above mentioned aspects, it can be concluded that
PC-SPSA have the potential to be an effective online calibration algorithm. The
performance of PC-SPSA depends on the relevance of previous estimates with the
targeted estimate and the scale of variance present within previous estimates. While
the case study of Vitoria has shown promising results, PC-SPSA can be utilized as
an online calibration algorithm and with appropriate computational infrastructure
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and utilization of the concept like parallel computing, the time of taken for each
iteration can be further reduced significantly.

5.2 Future works

5.2.1 PC-SPSA

Further potential research areas under PC-SPSA can be summarized as:

• First potential research can be to implement PC-SPSA for demand scenarios
with changes due to special events (i.e. football match, carnival etc.). These
demand scenarios can have an impulsive demand changes for demand being
attracted to a few number of zones changing its structural patterns. Research
can be done to test and evaluate PC-SPSA’s performance and find the poten-
tial factors that might be limiting its performance.

• Another potential research can be to find the methods to incorporate the
historical estimates for the specific events causing impulsive demand changes
to evaluate the PC-directions which can perform better against these impulsive
change. Or proposed a methodology of providing a database of different PC-
directions based on a different regular and impulsive historical estimates and
utilize them alternatively to find the most calibrated solution.

• Comparison of PC-SPSA with the alternative online calibration approaches
that have been proposed to evaluate and compare their performance under
different scenarios.

• Research on improving the methodology followed for PC-SPSA e.g. apply-
ing the relative segmented perturbation and minimization in PC-SPSA which
might improve its converging performance.

• Extension of PC-SPSA into the entire spectrum of model variables, including
the supply side parameter, where PCA can be more suitable to extract the
relationship between the model variables, thus allowing for the development of
more detailed traffic simulation models with better computational efficiency

5.2.2 SPSA

An area of modification can be researched for the application of SPSA for OD
demand calibration. This modification can be that once the decision variable and
its function evaluation stabilizes but the required criteria of goodness of fit is not
achieved. The gain sequence of ck and ak can be kicked to larger values and a number
of outputs can be obtained. Then, the previous algorithm can be restarted with the
lowest output from this swarm search. This method can help the search when its
stuck on a local minimum, with the swarm search skipping the local minimum and
move it to a global optimum. But, the consequence of this approach can be that it
can change the patterns in the OD matrix drastically, changing it from what should
have been achieved based in the historical estimates.
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