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How are neural circuits organized and tuned to achieve stable

function and produce robust behavior? The organization

process begins early in development and involves a diversity of

mechanisms unique to this period. We summarize recent

progress in theoretical neuroscience that has substantially

contributed to our understanding of development at the single

neuron, synaptic and network level. We go beyond classical

models of topographic map formation, and focus on the

generation of complex spatiotemporal activity patterns, their role

in refinements of particular circuit features, and the emergence of

functional computations. Aided by the development of novel

quantitative methods for data analysis, theory and

computational models have enabled us to test the adequacy of

specific assumptions, explain experimental data and propose

testable hypotheses. With the accumulation of experimental

data, theory and models will likely play an even more important

role in understanding the development of neural circuits.
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Introduction
Neural systems are organized to enable the efficient and

stable processing of information across different brain

regions and to generate robust behaviors. This requires

a balance between flexibility, to learn from and adapt to

new environments, and stability, to ensure reliable exe-

cution of behavior. Generating systems with this dual

property is a non-trivial challenge and requires a pro-

longed period of development when multiple mecha-

nisms are coordinated in a hierarchy of levels and time-

scales to establish a rich repertoire of computations.
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Studying this process is of fundamental importance for

the understanding of normal brain function and the

prevention, detection and treatment of brain disorders,

including intellectual disabilities, autism, bipolar disor-

der, schizophrenia and epilepsy.

The developing brain is not merely an immature version

of the adult brain. Even before sensory experience begins

to sculpt connectivity, a myriad of mechanisms and

structures unique to development characterize the self-

organization into functioning circuits. Technological

advancements in experimental techniques have made

it feasible to record and manipulate a number of circuit

components. In parallel, data analysis techniques, theory

and computational models have enabled us to synthesize

experimental data from multiple systems and to derive

key principles for how neural circuits are built and orga-

nized into functional units, which can adapt to and learn

from different environments, and make decisions based

on sensory and internal drive.

We highlight recent theoretical work on neural circuit

organization during early stages of development before

sensory organs mature. We focus on activity-dependent

mechanisms governing this process, after neuronal differ-

entiation and migration have taken place, and use the

visual system and the immature (undifferentiated) cortex

as examples. By describing theoretical and modeling

approaches for spontaneous activity generation, develop-

mental refinements of connectivity and intrinsic neuronal

properties, and the emergence of computations, we high-

light the success of theoretical models to dissect existing

mechanisms of neural circuit development and their

capacity to propose and test new hypotheses.

Models of topographic map formation in the
visual system
The initial stages of circuit development consist of estab-

lishing precise patterns of connectivity guided by matching

molecular gradients and axonal targeting. One of the best

studied models of organization of neural circuit connectiv-

ity is topographic maps in the visual system, whose orderly

structure has made them an accessible model system for

both theory and experiment. Retinotopic maps between

the retina and higher visual centers, including the superior

colliculus (SC), the lateral geniculate nucleus (LGN) and

the cortex, have been the focus of intense study, elucidat-

ing general principles underlying neural circuit wiring [1-

6,7�,8��]. Most models assume that topographic maps are

formed by the interaction of molecular guidance cues, such
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as Ephs/ephrins (reviewed in [5,9]), and are subsequently

refined by spontaneous neural activity. We highlight three

aspects of recent progress on map formation.

Recent models simulate not only the final map, but the

entire temporal evolution of map formation from a com-

bination of mechanisms, including retinal axons that

initially arborize stochastically in the target region, syn-

aptic connections that are subsequently refined by Heb-

bian activity-dependent plasticity and are continuously

regulated in strength through competition for a common

source [10,11,12��]. Despite the success of these models

in reproducing experimental results, due to the many

interacting mechanisms it may be difficult to infer which

of the resulting features is the product of any of the model

ingredients. Furthermore, they take days to simulate

which challenges their reproducibility.

With the accumulation of experimental data from normal

and mutant animals, new quantitative analysis methods of

maps have also been proposed, revealing novel aspects of

map development. One new approach is the ‘Lattice

Method,’ offering a quantitative assessment of the topo-

graphic ordering in the one-to-one map between two

structures [13]. This method has shown that triple molec-

ular knockouts, or double molecular knockouts with dis-

rupted activity patterns, show a surprising amount of order,

much higher than expected by chance. The topographic

maps from these different mutants have suggested new

experiments that examine the interplay of correlated activ-

ity and molecular guidance cues. A recent study has further

built on this interaction finding that near equal contribu-

tions from molecular gradients and neural activity drive

topographic mapping stochastically, resulting in the het-

erogeneous maps within and between individual animals

measured experimentally [14]. Future work should exam-

ine the functional implications of this map heterogeneity.

Besides comparing different experimental maps, new

frameworks also support the unbiased and quantitative

testing of computational models on any available data

from the mouse retinocollicular system [15��]. These

enable us to go beyond comparing model output to known

perturbations and towards predicting how these models

would respond to novel manipulations. Such approaches

are especially useful when several different models are

similarly consistent with existing data [16��]. Despite the

success in modeling map formation, the challenge

remains to integrate maps with the emergence of other

functional aspects of development.

Spontaneous activity: transient features and
computational implications
Before the onset of sensory experience, many developing

circuits can spontaneously generate neural activity. Spon-

taneous activity regulates a range of developmental pro-

cesses, including neuronal migration, ion channel
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maturation and the establishment of precise connectivity

[9,17,18]. In the retina, spontaneous activity is generated

in the form of spatiotemporal waves during the first two

weeks of postnatal development (in rodents), before the

retina responds to light ([19], for models see [20,21]).

These waves propagate through the visual pathway to the

SC, the thalamus, and the visual cortex [22,23,24�] (which

are also spontaneously active [25�,26]), and guide the

refinement of connectivity between the retina and its

downstream targets [18,27]. Several transient cellular

properties and structures contribute to the generation

and propagation of spontaneous activity in the cortex.

Developing neurons express a unique configuration of ion

channels and receptors to mediate specific patterns of

spontaneous activity, which may be incompatible with

the information-processing functions of mature neurons

[17]. In the developing mouse cortex, the proportions of

the two main spike-generating conductances (sodium and

potassium) in single neurons change during the first post-

natal week. This biophysical change enables single neurons

to acquire an ability to dynamically adjust their response

range to the size of incoming stimulus fluctuations [28].

This property is termed ‘gain scaling’ and can be charac-

terized by building linear-nonlinear (LN) models from the

responses of single neurons to random noisy stimuli and

examining the variability of the gains of the nonlinearities

to different stimulus distributions (Figure 1a,b) [28]. Gain

scaling in more mature neurons supports a high rate of

information transmission about stimulus fluctuations in the

face of changing stimulus amplitude, and is absent in

immature neurons which respond to large amplitude events

without adaptation (Figure 1c) [29��].

These single neuron changes in gain scaling during devel-

opment can generate very different dynamics at the

network level [29��]. The lack of gain-scaling early in

development (around birth) allows slow activity transients

to propagate through the model networks (Figure 1d).

This enables cortical networks to amplify and propagate

spontaneous waves at birth. The emergence of gain scal-

ing a week later when spontaneous waves disappear,

makes the networks better suited for the efficient repre-

sentation (but not propagation) of information on fast

timescales relevant for sensory stimuli (Figure 1e)

[29��]. The different abilities of the two networks to

transmit slow stimulus fluctuations can be captured in

the mutual information between the slow stimulus and the

average network response (Figure 1f). This example

demonstrates that single neuron properties can influence

developmental network dynamics in a powerful way, thus

making predictions for the developmentally evolving

information processing capabilities of these networks

which can be evaluated in experimental data.

To model cortical spontaneous activity in more biologi-

cally realistic scenarios requires that spontaneous
www.sciencedirect.com
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Figure 1

(a)

(d) (e) (f)

(b) (c)
nongain-scaling

nongain-scaling gain-scaling

gain-scaling

gain-scaling

nongain-scaling

nongain-scaling

gain-scaling44 4

3 3

322

2
11

1

0 0

0

–1 –1

–1

–2 –2

–2

–3 –3

0 1 32 –14 –2 0 1 32 4

lo
g 1

0 
T

(s
/σ

)

35 35110 110σ [pA] σ [pA]

Scaled stimulus s /σ Current σ  [pA]  Scaled stimulus s /σ
40 60 80 100

O
ut

pu
t e

nt
ro

py
 [b

its
]

la
ye

r 
nu

m
be

r

1
2
3
4
5
6
7
8
9

10

20 64 108

10
9
8
7
6
5
4
3
2
1

20 4 6  108
0

2

2

4

64

6

8

8 10
time [s] time [s] layer number

In
fo

rm
at

io
n 

[b
its

]

Current Opinion in Neurobiology

(a,b) Nonlinear input–output relations in LN models of nongain-scaling (a) and gain-scaling (b) Hodgkin–Huxley (HH) neurons. The gain-scaling

ability is determined by the common gain of nonlinearities obtained from neuronal responses to white noise stimuli with a range of variances s2

[29��]. A HH neuron with a small ratio of maximal conductances for sodium and potassium, gNa/gK = 0.6 shows more variable gains (a), while a

neuron with gNa/gK > 1 shows nearly perfect gain-scaling (b). Real cortical neurons recorded around birth show lack of gain scaling (have variable

gains), while more mature cortical neurons after the first postnatal week show nearly perfect gain scaling [28]. (c) The output entropy as a function

of the stimulus standard deviation, s, measures the information about fast fluctuations. (d,e) Peristimulus time histograms (PSTHs) from each layer

in feedforward networks of nongain-scaling (d) versus gain-scaling (e) neurons showing the propagation of a slow-varying input (magenta, top) in

the presence of background fast fluctuations (black, top). PSTHs were normalized to mean 0 (horizontal line) and variance 1 (vertical scalebar = 2).

(f) Mutual information about the slow-varying input transmitted by the two networks in (d) and (e).

Figure adapted from [29��].
transients are endogenously generated by the networks

themselves, rather than provided as input to the networks

(as in Figure 1d,e). To determine the source of these

transients, Baltz and colleagues proposed three different

models dependent on intrinsic bursts, intrinsic spikes or

accumulation of random synaptic input [30]. Although all

models could initiate and propagate spontaneous events,

networks where neurons produced intrinsic bursts were

most consistent with in vitro recordings of spontaneous

network activity [30]. Barnett and colleagues elaborated

on this model to capture spontaneous wave propagation

observed in coronal slices of mouse cortex. Here, intrin-

sically bursting neurons were distributed along a gradient

in a network with long-range recurrent synaptic connec-

tivity and local gap junctions. The gradient of intrinsic

bursting ability was sufficient to capture the direction of
www.sciencedirect.com 
wave propagation from ventral piriform regions to dorsal

neocortical regions [31�]. Interestingly, the models also

predicted that wave activity persists near the site of

initiation even after a wave has passed, which was later

confirmed experimentally [31�].

Other transient network features are also prominent in

development and have profound implications for the

emergence of circuit organization and function. One

notable example is the depolarizing action of GABA in

immature circuits (reviewed in [32]) which several models

have utilized for the propagation of spontaneous activity

[30,31�,33] in networks with immature neurons that have

high excitability thresholds and weak and unreliable

connectivity. While GABA also depolarizes immature

cortical neurons in vivo, its action at the network level
Current Opinion in Neurobiology 2017, 46:39–47
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appears to be inhibitory, calling for new models of

GABAergic network control [34]. The subplate is a sec-

ond example of a transient developmental structure with

relatively mature properties, which serves as a scaffold to

establish strong and precise connectivity between the

thalamus and cortex, and then disappears [35,36]. As a

third example, we mention the transient excitatory feed-

back connectivity between the thalamic reticular nucleus

(TRN), thalamus and visual cortex, which appears nec-

essary for the generation of feedforward connectivity

along the developing visual pathway [37��]. The TRN

and the subplate have so far not been modeled, except for

a circuit subplate model with a single neuron at each relay

stage (thalamus, subplate and cortex) [38], leaving open

the question of how these transient structures orchestrate

the development of large neural circuits with multiple

convergent and divergent connections.

Network models incorporating these transient features

could shed light on how developing circuits become

spontaneously active even when cellular properties are

immature and connectivity continuously refines. Thus,

models offer the advantage of studying the action of any

mechanism independently from the rest, as has been

done with ion channel distributions and intrinsic excit-

ability gradients.

Linking neural activity to the refinement of
connectivity
How can developmental activity patterns, whether spon-

taneous or sensory-evoked, guide synaptic connectivity

refinements? Quantitative analysis of the spatiotemporal

structure of activity can provide insights into the nature of

the operating rules of synaptic plasticity. During early

development, patterns of spontaneous activity are

‘sluggish’ and characterized by long lasting events (bursts,

spindle bursts, and calcium-dependent plateau-poten-

tials) that have correlation timescales on the order of

hundreds of milliseconds [22,25�,39,40]. Therefore, it is

natural to assume that the plasticity rules that translate

these patterns into circuit refinements should operate

over long timescales [41–43].

Theoretical studies of phenomenological plasticity rules

have illuminated which aspects of the spatiotemporal struc-

ture of activity guide the developmental evolution of con-

nectivity. Activity patterns are typically interpreted into

functional synaptic changes and circuit organization

through Hebbian rules that use features of presynaptic

and postsynaptic activity to increase or decrease synaptic

strength. One of the best-studied forms of Hebbian plas-

ticity in theoretical models is Spike-Timing-Dependent

Plasticity (STDP), where potentiation and depression are

induced by the precise timing and temporal order of pre-

synaptic and postsynaptic spikes [44]. Because classical

STDP integrates input correlations on the order of tens

of milliseconds — much faster than firing patterns in
Current Opinion in Neurobiology 2017, 46:39–47 
development — more appropriate rules for developmental

refinements have been analyzed. These include STDP

rules which integrate more spikes or incorporate long

temporal averages of the membrane potential (e.g. triplet

STDP, voltage STDP) [45–47] and burst-based rules (e.g.

BTDP) which evoke synaptic potentiation and depression

based on the overlap (but not order) of bursts of spikes

[41,42]. These plasticity rules have been studied in feedfor-

ward model networks where an array of input units projects

to a single postsynaptic neuron, successfully explaining the

emergence of various developmental receptive field fea-

tures, including eye-specific segregation [41], ON–OFF

segregation [42], and direction selectivity [47,48].

A recent study connected mechanistic connectivity

refinements from known plasticity rules to normative

models for the emergence of receptive field structures

[49�]. By developing the concept of nonlinear Hebbian
learning, the theory simultaneously satisfies the require-

ments for the final receptive field structure and the

mechanisms for its development [49�]. This type of

learning arises from the combination of plasticity with

a neuron’s input-output function and can be implemen-

ted by sparse coding and independent component analy-

sis [50,51]. The entire space of possible stimuli can be

represented by coupling neurons into recurrent networks,

leading to the development of diverse receptive fields.

In these studies synaptic refinements are derived based

on low-order correlations measured in spontaneous activ-

ity and early sensory-evoked responses. However, devel-

opmental activity patterns contain much more structure

on several temporal and spatial scales, and activity itself

refines during brain maturation [24�,25�,52�]. At the same

time, these activity-dependent refinements interact non-

trivially with molecular mechanisms as discussed earlier

[10,12��,14]. A future challenge is to determine how more

complex activity patterns could shape network connec-

tivity and sensory representations in models which are

still analytically tractable.

Simultaneous to our renewed appreciation for the com-

plexity of spontaneous and sensory-evoked activity, we

need to re-examine the ultimate purpose of these activity

patterns. Existing research has focused on understanding

the emergence of simple receptive fields, typically gener-

ated through feedforward plastic interactions. With the

reinvention of the concept of ‘receptive field’ [53], we

might also need to adjust the end goal of theoretical models

driven by developmental activity patterns. Furthermore,

foundational theoretical work is also needed to study

complex receptive fields in primary visual cortex [54], or

the coexistence of multiple feature-selectivities [55], as

well as response features of neurons in higher visual areas

that build on low-order representations [56,57]. Such com-

plex scenarios may be linked to the nonlinear interactions

among neurons in plastic, recurrent networks [58].
www.sciencedirect.com
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The emergence of systems-level organization
Understanding the implications of realistic developmen-

tal activity patterns requires appropriate models of plas-

ticity in recurrent networks of spiking neurons. To cap-

ture experimentally measured features of network

connectivity, Clopath and colleagues proposed a biologi-

cally motivated plasticity rule for spiking neurons, voltage

STDP [46], because classical pair-based STDP failed to

generate the prevalence of bi-directional connections in

recurrent networks due to its asymmetric nature in evok-

ing potentiation versus depression. Introducing nonlinear

high-order interactions of presynaptic and postsynaptic

activity can give rise to the firing rate dependence of

STDP [59], and enable the formation of synfire chains or

self-connected assemblies depending on the inputs [46].

This firing rate dependence was described originally in a

classical model of nonlinear Hebbian plasticity, the Bien-

enstock-Cooper-Munro rule of synaptic plasticity [60]

and has since been elaborated in more biologically real-

istic models that include higher-order spike interactions

[47] and voltage [46].

Voltage STDP was successfully applied to a developmen-

tal scenario for the emergence of functional specificity in

recurrent connections among similarly tuned neurons in

mouse primary visual cortex [61��]. The functional spec-

ificity of recurrent connections only emerges after eye-

opening, building on feature preference of individual

neurons which is already present at eye-opening [61��].
To capture the additional aspect of feature preference

before eye-opening, the same plasticity rule was imple-

mented at feedforward synapses preceding any recurrent

plasticity. The presence of gap junctions among specific

cortical neurons was used to establish initial selectivity

biases that were eventually amplified by recurrent plas-

ticity and redistribution of recurrent synaptic connections

[61��]. Therefore, the action of a single phenomenological

plasticity rule successfully captured the experimentally

observed sequence of developmental events from feed-

forward feature preference acquisition, to the emergence

of recurrent connection specificity among similarly tuned

neurons.

Sadeh and colleagues studied a comparable process in

large recurrent networks of spiking neurons with bal-

anced excitation and inhibition, where the dominant

input to a neuron is not feedforward but comes from

the local recurrent network into which the neuron is

embedded [62�]. This recurrent input sharpened the

initially weak orientation selectivity of single neurons,

while plasticity at both recurrent excitatory and inhibitory

synapses produced adult connection specificity [62�].
Additionally, the neurons also sparsified their responses

as observed experimentally around eye-opening [52�,63].
One caveat of these models [61��,62�] is that they do not

explicitly represent orientation selectivity: the emer-

gence of this feature selectivity is realized by the selective
www.sciencedirect.com 
potentiation of feedforward inputs from a group of corre-

lated neurons which represent a given orientation.

Related models, however, can give rise to biphasic, ori-

ented receptive fields localized in space under certain

conditions [64�].

More broadly, preferentially strong connectivity among

groups of neurons in recurrent network models with

balanced excitation and inhibition can emerge without

reference to the feature preference (or sensory tuning) of

these neurons [64�,65�,66]. These preferentially con-

nected groups are called Hebbian assemblies; the attractor

dynamics they can give rise to [64�,67] could be the

substrate of different neural computations, including

predictive coding through the spontaneous retrieval of

evoked response patterns (Figure 2) [64�,65�,66] and

decreased variability during sensory stimulation [65�].
Interestingly, in some of these models recurrent attractor

dynamics and biphasic, oriented receptive fields localized

in space emerge only when the networks are trained with

natural image stimuli, but not with white noise [64�].

Innovative theoretical analysis has also derived the con-

ditions for the spontaneous, devoid of feedforward pat-

terning of inputs, emergence of different types of assem-

blies through pair-based STDP at recurrent synapses [68].

This could be a good model for the development of

network connectivity by spontaneous activity generated

intrinsically in the network. Changing the shape of the

plasticity rule and the biophysical properties of synaptic

transmission can result in the emergence of either self-

connected assemblies or synfire chains [68]. Curiously,

the same structures emerge upon training in models with

feedforward and recurrent plasticity under voltage STDP,

where the determining feature of the output structure is

the nature of the inputs (random inputs versus temporal

sequences) [46].

The development of functional recurrent circuitry in

models often relies on the interplay between Hebbian

and homeostatic forms of plasticity. Classical Hebbian-

style plasticity rules alone induce a positive feedback

instability, harvesting and reinforcing co-activity of cells

in the circuit, induced by either shared input or recurrent

connectivity. To combat this problem and bring circuit

function to a normal operating regime, the above models

implement a myriad of homeostatic mechanisms based on

experimental observations [69]: (1) normalization of syn-

aptic weights, (2) metaplasticity where the amplitude and

sign of Hebbian synaptic change is modulated ((1) and (2)

reviewed in [70��]) (3) plasticity at inhibitory synapses

[64�,65�,66] and (4) shifts in intrinsic excitability [71�,72],
or a combination of these mechanisms [73,74�]. Such

homeostatic mechanisms can be either added to simple

Hebbian rules or be implicit in more complex rules, such

as triplet STDP with a sliding threshold [47] or voltage

STDP [46]. A key insight from these models has been
Current Opinion in Neurobiology 2017, 46:39–47
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Figure 2
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(a) Excitatory connectivity matrix of an unstructured recurrent network of excitatory and inhibitory spiking neurons [62�,67]. Darker shades of blue

indicate stronger connections. (b) Spike rasters of the evoked response in the network by driving three different subsets of excitatory neurons with

stronger external input compared to the other neurons, as indicated by the elevated firing rates. (c) Activity in the network in response to weak

uniform external input to all excitatory neurons. (d) Excitatory connectivity matrix of a structured recurrent network of excitatory and inhibitory

spiking neurons. Neurons are more strongly connected within a cluster, which could be imprinted through plasticity mechanisms in simulated

networks [64�,65�,66]. (e) Spike rasters of the evoked response as in b. (f) In response to weak uniform external input to all excitatory neurons, the

network spontaneously activates subsets of neurons with stronger connectivity [65�,66]. These could be interpreted as attractors of the network

dynamics, giving rise to spontaneous retrieval of evoked activity patterns, which in turn reinforce and maintain the imprinted structure through

STDP. This behavior is absent in the unstructured network (c).
that experimental forms of homeostatic plasticity are too

slow to stabilize Hebbian plasticity; stability in the mod-

els requires faster forms of homeostatic plasticity that

have yet to be identified experimentally [70��,75].

Taken together, these studies highlight the importance of

theory and models to understand how functional connec-

tivity in recurrent networks emerges from Hebbian and

homeostatic plasticity giving rise to stable dynamics and

computations. A future challenge would be to interpret

these findings in the context of specific biophysical mech-

anisms that might implement them (e.g. [76]), and to

relate them to the map formation models discussed earlier

[77�]. Moreover, it would be worthwhile to examine the

emergence of functional organization under realistic

developmental patterns of activity, which as discussed

earlier are sluggish and might utilize different plasticity

rules than those that rely on precise spike timing [78].

Conclusion
Theoretical and computational approaches have contrib-

uted in powerful ways to our understanding of how neuro-

nal circuits develop to establish precise connectivity and

tuned single neuron responses, and to give rise to adult

computations. Retinotopic map formation represents per-

haps the most successful example of models of
Current Opinion in Neurobiology 2017, 46:39–47 
development (apart from orientation maps): starting from

phenomenological models, theorists have proposed com-

prehensive models which can explain large data sets and

make interesting predictions. However, this represents

only one aspect of neural development. Going forward,

we should use this example to build modeling frameworks

which capture the diversity of mechanisms unique to this

period, their timescales and spatial scales of operation and

their coordinated action to generate adult computations.

In addition to the detailed analysis of spontaneous and

sensory-evoked activity in developing circuits in vitro, we

still need to understand the generation and function of

this activity in the intact animal. With the recent spur of in
vivo recordings [23,24�,25�,52�], theoretical neuroscience

can contribute to the quantitative analysis of longitudinal

recordings of single neuron and network activity in novel

ways. This analysis can provide us with necessary

assumptions and constraints for new models of how this

activity is generated, how it changes over development,

and how it sculpts developing networks.

Analyzing this activity can also help us infer the appropriate

developmental plasticity rules from the potentially differ-

ent correlational structure in the juvenile and the adult

[41,42,79]. This will enable us to link theoretical
www.sciencedirect.com
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descriptions of plasticity at the level of neuron pairs (tri-

plets, etc.) to network connectivity refinements, explaining

the emergence of functional units such as synfire chains,

assemblies and memory attractors [64�,65�,68]. The obser-

vation that the same network structures emerge either

intrinsically through the properties of the plasticity rule

[68], or externally through the nature of the input patterns

[46], suggests that these issues should be examined exper-

imentally under specific developmental scenarios where

the derived model structures are observed.

While it seems natural that models should explore novel

hypotheses and make predictions to direct future experi-

ments, we also point out another important role. Existing

models should be tested on paradigms and data different

from those on which the models were initially based. This

has the value of testing the generality and utility of

models and avoids overfitting. Theory and models hold

the potential to uncover common underlying principles

(or differences) in the development of different circuits,

for instance sensory and motor [80�]. In some cases, the

same solution might emerge for different problems, but

often different solutions might be beneficial to satisfy

different computational requirements.

With the accumulation of experimental data, theory and

models need to play a larger role in understanding the

development of neural circuits with its diversity of inter-

acting instructive signals guiding self-organization. We

have proposed that the new focus should be on the

developmental emergence of single cell properties, the

generation of spatio-temporal population activity patterns

and the plasticity they induce, to understand the func-

tionally relevant computations they might reflect. As many

developmental processes are carefully orchestrated, theo-

retical and modeling approaches are necessary to tease

apart the relative importance and role of each process.

Conflict of interest statement
Nothing declared.

Acknowledgements
This work was supported by funding from the Max Planck Society. JG holds
a Career Award at the Scientific Interface from the Burroughs Wellcome
Fund. The authors thank Matthias Kaschube, Tatjana Tchumatchenko and
Stephen Eglen for comments on the manuscript.

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

� of special interest
�� of outstanding interest

1. Koulakov AA, Tsigankov DN: A stochastic model for
retinocollicular map development. BMC Neurosci 2004, 5:30.

2. Eglen SJ, Gjorgjieva J: Self-organization in the developing
nervous system: theoretical models. HFSP J 2009, 3:176-185.

3. van Ooyen A: Using theoretical models to analyse neural
development. Nat Rev Neurosci 2011, 12:311-326.
www.sciencedirect.com 
4. Goodhill GJ: Contributions of theoretical modeling to the
understanding of neural map development. Neuron 2007,
56:301-311.

5. Cang J, Feldheim DA: Developmental mechanisms of
topographic map formation and alignment. Annu Rev Neurosci
2013, 36:51-77.

6. Goodhill GJ: Can molecular gradients wire the brain? Trends
Neurosci 2016, 39:202-211.

7.
�

Reingruber J, Holcman D: Computational and mathematical
methods for morphogenetic gradient analysis, boundary
formation and axon targeting. Semin Cell Dev Biol 2014, 35:189-
202.

This review discusses models and algorithms of the interplay between
morphogenetic gradients and patterned activity aimed towards bridging
the gap between molecular interactions and large-scale, system-level
organization.

8.
��

Thompson A, Gribizis A, Chen C, Crair MC: Activity-dependent
development of visual receptive fields. Curr Opin Neurobiol
2017, 42:136-143.

A detailed review discussing aspects of receptive field development and
plasticity in the lateral geniculate nucleus, primary visual cortex and
superior colliculus instructed by spontaneous and visually driven activity.

9. Huberman AD, Feller MB, Chapman B: Mechanisms underlying
development of visual maps and receptive fields. Annu Rev
Neurosci 2008, 31:479-509.

10. Grimbert F, Cang J: New model of retinocollicular mapping
predicts the mechanisms of axonal competition and explains
the role of reverse molecular signaling during development. J
Neurosci 2012, 32:9755-9768.

11. Godfrey KB, Eglen SJ, Swindale NV: A multi-component model
of the developing retinocollicular pathway incorporating
axonal and synaptic growth. PLoS Comput Biol 2009, 5:
e1000600.

12.
��

Godfrey KB, Swindale NV: Modeling development in retinal
afferents: retinotopy, segregation and EphrinA/EphA mutants.
PLoS ONE 2014, 9:e104670.

This work extends the model from [11]. Besides being able to generate
morphologically realistic axonal growth patterns observed experimentally
during map formation, this extended model also includes the emergence
of several receptive field properties, for example, the segregation of
retinal axons based on their origin eye (left or right) and their stimulus
polarity preference (ON or OFF).

13. Willshaw DJ, Sterratt DC, Teriadikis A: Analysis of local and
global topographic order in mouse retinocollicular maps. J
Neurosci 2014, 34:1791-1805.

14. Owens MT, Feldheim DA, Stryker MP, Triplett JW: Stochastic
interactions between neural activity and molecular cues in the
formation of topographic maps. Neuron 2015, 87:1261-1273.

15.
��

Hjorth JJJ, Sterratt DC, Cutts CS, Willshaw DJ, Eglen SJ:
Quantitative assessment of computational models for
retinotopic map formation. Dev Neurobiol 2014, 75:641-666.

The authors provide a simulation framework to assess existing models of
map formation (focusing on retinocollicular maps) in a quantitative and
unbiased manner and compare them against experimental data. The
authors also provide the simulation software.

16.
��

Tikidji-Hamburyan RA, El-Ghazawi RA, Triplett JW: Novel models
of visual topographic map alignment in the superior colliculus.
PLoS Comput Biol 2016, 12:e1005315.

Proposes two alternative models for how the topographic maps between
the retina and the SC on one hand, and V1 and the SC on another, align in
the SC. The first is a ‘correlation model’ which assumes that the SC is
strongly driven by the retina only, and the alignment with V1 happens
through correlation-based firing mechanisms. The second is an
‘integration model’ which assumes that V1 inputs also drive SC firing
during alignment. While both models reproduce in vivo data, the authors
make novel predictions that would distinguish between them.

17. Moody WJ, Bosma MM: Ion channel development,
spontaneous activity and activity dependent development in
nerve and muscle cells. Physiol Rev 2005, 85:883-941.

18. Kirkby LA, Sack GS, Firl A, Feller MB: A role for correlated
spontaneous activity in the assembly of neural circuits. Neuron
2013, 80:1129-1144.
Current Opinion in Neurobiology 2017, 46:39–47

http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0005
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0005
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0010
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0010
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0015
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0015
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0020
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0020
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0020
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0025
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0025
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0025
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0030
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0030
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0035
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0035
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0035
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0035
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0040
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0040
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0040
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0045
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0045
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0045
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0050
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0050
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0050
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0050
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0055
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0055
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0055
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0055
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0060
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0060
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0060
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0065
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0065
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0065
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0070
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0070
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0070
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0075
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0075
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0075
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0080
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0080
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0080
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0085
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0085
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0085
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0090
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0090
http://refhub.elsevier.com/S0959-4388(17)30001-6/sbref0090


46 Computational neuroscience
19. Blankenship AG, Feller MB: Mechanisms underlying
spontaneous patterned activity in developing neural circuits.
Nat Rev Neurosci 2010, 11:18-29.

20. Lansdell B, Ford K, Kutz JN: A reaction–diffusion model of
cholinergic retinal waves. PLoS Comput Biol 2014, 10:
e1003953.

21. Gjorgjieva J, Eglen SJ: Modeling developmental patterns of
spontaneous activity. Curr Opin Neurobiol 2011, 21:679-684.

22. Colonnese MT, Khazipov R: ‘Slow activity transients’ in infant
rat visual cortex: a spreading synchronous oscillation
patterned by retinal waves. J Neurosci 2010, 30:4325-4337.

23. Siegel F, Heimel AJ, Peters J, Lohmann C: Peripheral and central
inputs shape network dynamics in the developing visual
cortex in vivo. Curr Biol 2012, 22:253-258.

24.
�

Ackman JB, Burbridge TJ, Crair MC: Retinal waves coordinate
patterned activity throughout the developing visual system.
Nature 2012, 490:219-225.

This tour-de-force in vivo imaging of spontaneous activity in the mouse
developing visual system shows that spontaneous waves of retinal
activity propagate throughout the entire visual system before eye-open-
ing. Retinal waves propagate in the superior colliculus, lateral geniculate
nucleus and primary visual cortex. In contrast, secondary visual areas are
only modulated by retinal wave activity. Therefore, the study postulates
the role of this activity for driving connectivity refinements along the entire
visual pathway.

25.
�

Shen J, Colonnese MT: Development of activity in mouse visual
cortex. J Neurosci 2016, 36:12259-12275.

This experimental study gives a comprehensive timeline of spontaneous
activity and evoked responses in developing mouse visual cortex. By the
time of eye-opening spontaneous activity is indistinguishable from
mature activity. Multiple aspects of evoked responses are also studied.

26. Moreno-Juan V, Filipchuk A, Antón-Bola nos N, Mezzera C,
Gezelius H, Andrés B, Rodrı́guez-Malmierca L, Susı́n R, Schaad O,
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