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THESIS SUMMARY

1 Introduction

This habilitation thesis is a collection of 11 peer-reviewed journal papers [H1, H2, H5,
H6, H7, H8, H9, H10, H12, H13, H14], one book chapter [H11], and two submitted
papers [H3, H4]. In the following, I will give an integrated view of these papers.

Apart from the Introduction there are five sections, representing five research topics, in
this thesis: (i) Aspects of Diophantine Number Theory in Tomography, (ii) Tomographic
Super-Resolution Imaging, (iii) Tomographic Point Tracking: Theory and Applications,
(iv) Tomographic Reconstructions of Polycrystals, and (v) Geometric Methods for
Electron Tomography.

The research topics are motivated by different tomographic applications in materials
science and plasma physics. For each of the topics (i)-(iv) a deeper mathematical theory
had to be developed, in order to devise problem-specific algorithms. The mathematical
areas to which I contributed are listed (along with the papers and applications) in the
following table.

Paper(s) Mathematics Application

[H12] diophantine number theory, algebra tomography
[H9] diophantine number theory, combinatorics tomography
[H5] diophantine number theory, complexity, discrete tomography

discrete optimization

[H4] combinatorics, discrete optimization, super-resolution
complexity

[H3, H6, H7, H14] discrete optimization, complexity, plasma physics
combinatorics

[H1] geometric clustering, materials science
discrete optimization

[H10, H11, H13] Markov processes materials science
[H8] Fourier phase retrieval materials science

[H2] geometric tomography materials science

Table 1: Mathematics and Applications. Overview of the respective content of the papers
contained in this thesis.
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The work presented in this thesis is of an interdisciplinary nature. This reflects in the
choice of international journals in which I published.

• Mainly mathematical content: SIAM Journal on Discrete Mathematics, Journal
of Number Theory, Bulletin of the London Mathematical Society;

• Mainly algorithmic content: Philosophical Magazine, Inverse Problems and
Imaging, Computational Physics Communications;

• Mainly application content: Applied Physics Letters, Ultramicroscopy, Journal of
Applied Crystallography, Journal of the Optical Society of America A.

The interdisciplinary nature is also reflected by the fact that, next to mathematics, my
work has been cited in journals from computer science, materials science, physics, chem-
istry, and nanoscience. According to their authors, several PhD theses in mathematics
were motivated by some of my work (see, e.g., the theses [43, 200] from the University
of Waterloo and the University of Illinois at Urbana-Champaign, respectively, in which
generalizations of the problem introduced in [H12] are studied; see also Sect. 2).

Moreover, several of the developed algorithms in my work have already been used
on real-data by physicists and materials scientists, others need to wait until the
technological facilities have been commissioned. An example for the latter is [H8],
which, in the Conceptual Design Report [159] of the European X-ray free-electron laser
(European XFEL) [70], has been identified as being of potential use in experiments to
be performed with the novel Materials Imaging and Dynamics (MID) instrument [71].

1.1 General Notation

Throughout this thesis, Z, R, N = {1, 2, . . .}, and Z[i] denote the sets of integers, reals,
natural numbers, and Gaussian integers, respectively. Further, we set N0 := N ∪ {0},
and K ∈ {R,Z}. The symbol i will be used to denote the imaginary unit in the complex
numbers. The algebra of quaternions will be denoted by H.

For k ∈ N we set kN0 := {kj : j ∈ N0}, [k] := {1, . . . , k}, and [k]0 := {0, . . . , k}. The
linear span of a vector v is denoted by lin(v). By |X| we denote the cardinality of the
set X or the absolute value of the number X. If ξ ∈ R, then dξe denotes the smallest
integer greater than or equal to ξ.

With P we denote the complexity class that contains all decision problems that can be
solved in polynomial time by a deterministic Turing machine. The class of decision
problems solvable in polynomial time by a theoretical non-deterministic Turing machine
is denoted by NP (for background material on complexity theory, see, e.g., [91]).

The O-symbol has the usual meaning: f(n) = O(g(n)) means that f(n)/g(n) is
bounded as n→∞.
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1.2 Grains, Nanowires, Microparticles

In several of our papers we are utilizing real-word data, which is typically obtained
by synchrotron X-ray diffraction, electron microscopes, or high-speed cameras. The
corresponding real-world objects in these cases are the so-called grains, nanowires,
and microparticles, respectively. In the following we briefly introduce these objects
(illustrative examples are shown in Fig. 1). The interested reader can find more
information in the monographs [5, 196, 245].

Many materials – in particular most metals, ceramics and alloys – are polycrystalline
materials, which means that they are comprised of a set of small crystals. These small
crystals, typically 10− 100 micrometer in diameter, are known as grains. Each grain
is characterized by its center of mass, shape and internal lattice structure (note that
a reconstruction is usually not performed on the atomic level). Since the geometric
features of the grains within the polycrystal determine most of the material’s physical,
chemical and mechanical properties, it is the study of grains that is of central importance
in many areas of materials science (see, e.g. [196]). Fig. 1(a) shows a grain map (i.e., an
image of a polycrystal). The grains are depicted in different colors. We remark that grain
studies, e.g. on crack corrosion [136], responses to stress [123, 163], and grain growth
phenomena [180, 211], require techniques to probe grain complexes deep inside of bulk
materials. Over the past two decades two tomography-based experimental techniques
have emerged, which utilize high-energetic X-rays as produced by third-generation
synchrotrons (as, for instance, the European synchrotron radiation facility, ESRF, in
Grenoble, France). These tomography-based techniques are known as 3-dimensional
X-ray diffraction (3DXRD) [192] and diffraction contrast tomography (DCT) [156].
Some of our work is based on such data. State-of-the-art surveys can be found in [21,
191, 192, 202].

In [H2] we consider nanowires. These small wires that are tens of nanometers in
diameter and micrometers in length, are promising building blocks for future electronic
and optical devices; see [152, 175]. They are typically grown from a substrate and
much research effort is being focused on understanding and controlling their growth
mechanisms [61]. Electron tomography, as in various materials science applications, is
rapidly developing into a powerful 3D imaging tool for studying these effects at the
nanoscale [20, 174]. We report on this in connection with our paper [H2]. An image
depicting an indium arsenide nanowire is shown in Fig. 1(b).

In [H14] we reconstruct the trajectories of several titanium dioxide (TiO2) microparticles
(which are about 3 micrometers in diameter). Titanium dioxide microparticles are
often used as tracer particle in high-temperature flow experiments as TiO2 is a ceramic
material (further favorable properties of this material are discussed, for instance,
in [167]). A high-speed camera image from our experiment in [H14], which depicts a
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(a) (b) (c)

Figure 1: Images of real-world objects from our papers: (a) a grain map of an aluminum
sample (here an EBSD image is shown), (b) an InAs nanowire (here a bright-field
TEM image is shown), (c) TiO2 microparticles near a gliding arc discharge (here an
optical high-speed camera image is shown).

gliding arc discharge and several vertically moving TiO2 microparticles (appearing as
‘streaks’), is shown in Fig. 1(c).

2 Aspects of Diophantine Number Theory in Tomography,
[H5, H9, H12]

2.1 Theory

In the following we discuss the Prouhet-Tarry-Escott (PTE) problem from Diophantine
number theory. The PTE problem can be stated as follows.

Problem 1 (Prouhet, 1851; Tarry, 1912; Escott, 1910).
Given two natural numbers k and n. Find two different multisets X := {ξ1, . . . , ξn} ⊆ Z
and Y := {η1, . . . , ηn} ⊆ Z, such that

ξj1 + ξj2 + . . .+ ξjn = ηj1 + ηj2 + . . .+ ηjn, for j ∈ [k]. (1)

Any pair (X,Y ) that satisfies (1) is called a solution of the PTE problem for (k, n),
and we will denote this by X k= Y. For instance, it holds that

{0, 4, 8, 16, 17} 4= {1, 2, 10, 14, 18}.

The system (1) is a special class of multigrade equations [95, Sect. 1]. In the following
we give a brief overview of the history of the PTE problem. Additional background
information can be found in the monographs [34, 62, 95] and in [35].

8



2.1.1 The PTE Problem: History and Notation

The PTE problem can be traced back to a 1750 letter from Goldbach to Euler [97]. In
this letter Goldbach states the identity

(α+β+δ)2+(α+γ+δ)2+(β+γ+δ)2+δ2 = (α+δ)2+(β+δ)2+(γ+δ)2+(α+β+γ+δ)2,

which holds for any α, β, γ, δ ∈ Z, and hence

{α+ β + δ, α+ γ + δ, β + γ + δ, δ} 2= {α+ δ, β + δ, γ + δ, α+ β + γ + δ}.

Euler notices in his reply [69] that the case δ = 0 is particularly simple (“ziemlich offen-
bar”). However, a later theorem by Frolov [80] implies that an arbitrary constant can be
added to each number of a PTE solution, hence Euler’s special case implies Goldbach’s
result. More generaly, it can be shown that if (X,Y ) is a PTE solution for (k, n) and
f(t) = αt+β is a linear transformation with f(X), f(Y ) ⊆ Z, then (f(X), f(Y )) is also
a PTE solution for (k, n). In this case (X,Y ) and (f(X), f(Y )) are called equivalent
solutions.

The PTE problem is named after Prouhet [197], Escott [68], and Tarry [230]. It was
already known to them that for every k there exist PTE solutions for (k, n) = (k, 2k);
see [242] and [62, Sect. 24]. A straightforward procedure to generate such solutions is as
follows. Express each p ∈ [2k+1− 1]0 as a binary number. If this binary expression of p
contains an even number of 1’s, then assign p to the set X, otherwise to Y. Then, (X,Y )
with X =: {ξ1, . . . , ξ2k} and Y =: {η1, . . . , η2k} is a PTE solution for (k, n) = (k, 2k).
Proofs of this result can be found, for instance, in [178, 242]. For generalizations
see [148, 219].

On the other hand, there are no PTE solutions for (k, n) if n < k + 1. This result,
which is straightforward to prove by means of Newton’s identities [110, Sect. 21.9],
is commonly attributed to Bastien [23]. PTE solutions for (k, n) = (k, k + 1) are
called ideal solutions, and it is an open question whether they exist for any k. While
Wright conjectured in [241] that the answer is affirmative, other authors pointed to the
fact that newer heuristic arguments seem to suggest a negative answer (see, e.g, [34,
Sect. 11]). At present, ideal solutions are only known for k ∈ [11] \ {10}. In fact,
infinitely many non-equivalent solutions are known for every k ∈ [11] \ {8, 10} (see [34,
Sect. 11] and [51]), while for k = 8 only two non-equivalent ideal solutions are known
(see [36]).

In 1935, Wright [241] showed that for every k there exist PTE solutions for (k, n)
with n ≤ 1

2(k2 + k + 2). The current best bound on n, which is due to Melzak [168],
guarantees existence of PTE solutions for (k, n) with n ≤ 1

2(k2 − 3) if k is odd and
n ≤ 1

2(k2−4) if k is even. None of these proofs of bounds on n that depend polynomially
on k are constructive.
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The PTE problem has many connections to other problems, including the “easier”
Waring problem [240, 243], [34, Sect. 12], the Hilbert-Kamke problem [128, 137], and a
conjecture of Erdős and Szekeres [52, 67, 162], [34, Sect. 13]. In addition, there are
connections to Ramanujan identities [166, 184], other types of multigrade equations [49,
220], problems in algebra [161, 176], geometry [76], combinatorics [3, 6, 30], graph
theory [118], and computer science [31, 45, 82].

There is also a connection between the PTE problem and tomography. As communicated
by Gardner [65], a connection between general multigrades and discrete tomography has
first been noted by Ron Graham (unpublished). The first published relation between
the particular PTE problem and tomography seems to be contained in the present
author’s Ph.D. thesis [8, Sect. 6]. There, projections of so-called switching components
(which will be explained further below) are shown to yield PTE solutions for specific
values of (k, n).

Building upon [8, Sect. 6], we establish in [H12] a more direct connection between
tomography and a generalization of the PTE problem. In fact, we introduce the more
general PTEd problem:

Problem 2 ([H12]).
Given natural numbers k, n, and d. Find two different multisets X := {ξ1, . . . , ξn},
Y := {η1, . . . , ηn} ⊆ Zd with ξl = (ξl1, . . . , ξld)T , ηl = (ηl1, . . . , ηld)T for l ∈ [n] such
that

n∑
l=1

ξj1l1 ξ
j2
l2 · . . . · ξ

jd
ld =

n∑
l=1

ηj1l1η
j2
l2 · . . . · η

jd
ld

for all non-negative integers j1, . . . , jd with j1 + j2 + . . .+ jd ≤ k.

Again, we write X k= Y for a solution. There are trivial ways of generating PTEd-
solution from PTE1-solutions. For instance, if {α1, . . . , αn}

k= {β1, . . . , βn} is a PTE1-
solution, then {ξ1, . . . , ξn}

k= {η1, . . . , ηn} with ξl := (αl, . . . , αl)T and ηl := (βl, . . . , βl)T ,
l ∈ [n], is a solution to PTEd. Such and other similarly trivial cases are in the following
excluded from consideration.

Clearly, the PTEd problem can be viewed as a higher-dimensional or multinomial
version of the original PTE problem. Another natural generalization of the PTE
problem is to consider other rings than the integers.

Problem 3 ([H12]).
Let R denote a ring. Given (k, n) ∈ N2. Find two different multisets X := {ξ1, . . . , ξn},
Y := {η1, . . . , ηn} ⊆ R, such that

ξj1 + ξj2 + . . .+ ξjn = ηj1 + ηj2 + . . .+ ηjn, for j ∈ [k]. (2)
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We call this here the R-PTE problem.

Obviously, any solution to the PTEd problem is a solution to the Zd-PTE problem.
Moreover, by considering the function f : Z2 → Z[i], (ξ1, ξ2)T 7→ ξ1 + ξ2i, we clearly
have that any solution X k= Y to the PTE2 problem yields a solution f(X) k= f(Y ) to
the Z[i]-PTE problem. In [H12], and as we will explain below, we provide results and
infinitely many non-equivalent ideal solutions for the PTE2 problem (for k ∈ {1, 2, 3, 5}).

While, according to Caley [44]

“Alpers and Tijdeman [H12] were the first to consider the PTE problem
over a ring other than the integers,”

this line of research has in the meantime been taken up by other researches. In [50],
Choudhry examines the PTE problem over the ring of 2×2 integer matrices. Prugsapitak
studies in her Ph.D. thesis [200] and in [199] the PTE problem for k = 2 over quadratic
number fields. Caley generalizes in his Ph.D. thesis [43] and in [44] several results on
the constant arising from solutions to the PTE problem over quadratic number fields,
and he provides the first ideal solution to the Z[i]-PTE problem for k = 10. All ideal
solutions to the Z[i]-PTE problem for k = 2 are determined by Prugsapitak in [198].
In the case of the Fp-PTE problem for k = 2, where Fp denotes a field of prime order p,
the number of ideal solutions is determined in the 2014 paper [142] of Prugsapitak and
Kongsiriwong.

We will now discuss the results of [H9, H12] in more detail. To this end we need to
introduce some notation. Let d ∈ N with d ≥ 2. We set

Fd(K) := {F : F ⊂ Kd ∧ F is finite},

and Fd := Fd(Z). The elements of Fd are called lattice sets. Let Sd denote the set
of all 1-dimensional linear subspaces of Rd, and let Ld be the subset of Sd of all such
subspaces that are spanned by vectors from Zd. The elements of Ld will be referred to
as lattice lines. Further, for S ∈ Sd let AK(S) = {v+S : v ∈ Kd}. Then, for F ∈ Fd(K)
and S ∈ Sd, the (discrete 1-dimensional) X-ray of F parallel to S is the function

XSF : AK(S)→ N0

defined by
XSF (T ) = |F ∩ T |,

for each T ∈ AK(S). Two sets F1, F2 ∈ Fd(K) are called tomographically equiva-
lent (with respect to S1, . . . , Sm ∈ Sd) if XSjF1 = XSjF2 for j ∈ [m]. We call any
pair (F1, F2) of two different sets F1, F2 ⊆ Kd that are tomographically equivalent
with respect to m different directions an m-switching component (in Kd). Clearly,
we have |F1| = |F2|. We refer to |F1| as the size of the switching component (F1, F2).
Several examples of switching components are shown in Fig. 2.
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(a) (b) (c)

(d) (e)

Figure 2: Small switching components for (a) m = 6, (b) m = 7, (c) m = 8, (d) m = 9, and
(e) m = 10 directions (indicated in red). The switching components are pairs of 6,
10, 12, 18, and 20 black and white points, respectively.

2.1.2 Results from [H12]

A main result of [H12] is the following theorem that relates switching components
to PTE2 solutions.

Theorem 4. Any (m+ 1)-switching component (X,Y ) in Z2 gives a PTE2-solution

X
m= Y.

The proof of this theorem relies on a suitable encoding of points as polynomials. First,
it can be shown [H12, Lem. 7] that each monomial xj1yj2 , with j1 + j2 = m, can be
expressed as a linear combination of the polynomials

(β0x− α0y)m, . . . , (βmx− αmy)m ∈ Z[x, y],

12



with Sj := lin
(
(αj , βj)T

)
, j ∈ [m], denoting the m + 1 directions of the switching

component. Hence, there exist γ0, . . . , γm ∈ R with

xj1yj2 =
m∑
j=0

γj(βjx− αjy)m. (3)

Second, as on any line parallel to lin
(
(αj , βj)T

)
, j ∈ [m]0, there are equally many

points of X and Y , the multisets {(βjξl1−αjξl2) : l ∈ [n]} and {(βjηl1−αjηl2) : l ∈ [n]}
are equal for any j ∈ [m]0. With this, and by plugging the points of X and Y into (3),
we obtain

n∑
l=1

ξj1l1 ξ
j2
l2 −

n∑
l=1

ηj1l1η
j2
l2 =

n∑
l=1

m∑
j=0

γj(βjξl1 − αjξl2)m −
n∑
l=1

m∑
j=0

γj(βjηl1 − αjηl2)m = 0,

which readily implies the claimed result (see proof of [H12, Thm. 8]).

With π(X) denoting the projection of a set X ⊆ Z2 onto the first coordinate, we obtain
directly the following corollary to Thm. 4 (see also [H12, Rem. 10]).

Corollary 5. Every (m+ 1)-switching component (X,Y ) in Z2 gives a PTE1-solution

π(X) m= π(Y ).

Of course, one might ask whether the reverse implication of Thm. 4 holds, i.e., whether
any PTEd-solution can be obtained from a switching component. While this is certainly
true in a weak sense, we remark that stronger notions are currently investigated.

Another obvious question is to ask whether there are PTE2 solutions for every k. The
answer is provided in the next theorem, which is very much in the spirit of the theorem
proved by Prouhet (see [197, 242]).

Theorem 6. For every k ∈ N there exist PTE2 solutions for (k, n) with n = 2k.

The proof of this theorem is elementary as it follows directly from Thm. 4 and
the standard construction of switching components (see, e.g., [155]). Also Frolov’s
theorem [80], stated above, follows rather elementary from Thm. 4, since under any
non-degenerated affine transformation, a switching component remains a switching
component.

Similarly, as for the PTE problem we might ask whether there are ideal solutions
to PTE2. A first answer is given in the following theorem.

Theorem 7. There exist ideal solutions X k= Y to PTE2 if k ∈ {1, 2, 3, 5}. Infinite
solution families are provided in Table 2 (with the conditions on the parameters listed
in Table 3).
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For a proof it suffices (by Thm. 4) to verify that the sets in Table 2 are indeed (k + 1)-
switching components.

k X, Y

1 {(0, 0)T , (α+ γ, β + δ)T },
{(α, β)T , (γ, δ)T )}

2 {(0, 0)T , (α+ β, γ)T , (2β − α, 2γ)T },
{(α, 0)T , (2β, 2γ)T , (β − α, γ)T }

3 {(0, 0)T , (α+ β, γ)T , (α, 2γ + αγ/β)T , (−β, γ + αγ/β)T },
{(α, 0)T , (α+ β, γ + αγ/β)T , (0, 2γ + αγ/β)T , (−β, γ)T }

5 {(0, 0)T , (2α+ β, β)T , (3α+ β, 3α+ 3β)T , (2α, 6α+ 4β)T , (−β, 6α+ 3β)T , (−α− β, 3α+ β)T },
{(2α, 0)T , (3α+ β, 3α+ β)T , (2α+ β, 6α+ 3β)T , (0, 6α+ 4β)T , (−α− β, 3α+ 3β)T , (−β, β)T }

Table 2: Ideal solutions X k= Y to PTE2 for k ∈ {1, 2, 3, 5}. The conditions on the parameters
α, β, γ, δ ∈ Z are given in Table 3.

k Conditions on α, β, γ, δ

1 (α, β)T , (γ, δ)T pairwise linearly independent (p.l.i.)

2 (α, 0)T , (β, γ)T , (β − α, γ)T p.l.i.

3 (α, 0)T , (β, γ)T , (0, αγ/β)T , (−β, γ)T p.l.i.,
α, β, γ > 0, β | αγ

5 (2α, 0)T , (β, β)T , (α, 3α)T , (0, 2β)T , (−α, 3α)T , (−β, β)T p.l.i., α, β > 0

Table 3: The conditions on the parameters α, β, γ, δ ∈ Z from Table 2.

We remarked already that solutions to the Z[i]-PTE problem can be obtained from
PTE2-solutions (via the map f : Z2 → Z[i], (ξ1, ξ2)T 7→ ξ1 + ξ2i). However, there are
also solutions to the Z[i]-PTE problem that do not arise as solutions of the mentioned
form. This can be seen, for instance, by considering

{0, 2i, 2 + i} 2= {i, 1 + i, 1 + i}.

Our next theorem (a combination of [H12, Lem. 5] and [H12, Thm. 6]) shows that the
approach from Thm. 4 cannot yield ideal PTE2-solutions if k ∈ N \ {1, 2, 3, 5}.

Theorem 8. There is nom-switching component (X,Y ) in Z2 withm ∈ N\{1, 2, 3, 4, 6}
and |X| = |Y | = m.

Our proof is geometric. We first show that the two sets of points of such an m-switching
component must be the vertices of a special type of convex lattice polygon (a so-called
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lattice L-gon); see [H12, Lem. 5]. It is known from [84, Thm. 4.5] that there are no
such L-gons for m > 6, and since we separately rule out the case m = 5 (see [H12,
Thm. 6]) we obtain the claimed result.

We remark that the long-standing open question whether for every k there exist ideal
solutions to PTE1 remains open.

2.1.3 Results from [H9]

With a view towards the results presented in the previous section it seems natural to
ask for m-switching components of smallest size.

To make this precise, let K ∈ {Z,R}, and let ψKd(m) denote the minimum number n
for which there exist m different directions S1, . . . , Sm (not all contained in a proper
subspace of Rd) such that two different n-point sets in Kd exist that have the same
X-rays in these directions.

In the literature, the exponential bound ψZd(m) ≤ 2m−1 has been observed many times.
In [H9] we provide the bound

ψKd(m) = O(md+1+ε), ε > 0,

which, to our knowledge, is the first polynomial bound for the cases Kd = Z2 and
Kd ∈ {Zd,Rd} with d ≥ 3. (A linear bound for the case Kd = R2 follows by considering
the switching component obtained by a two-coloring of the vertices of the regular
2m-gon in R2.)

The polynomial bound for Kd = Z2 implies a polynomial bound for the sizes of solutions
to both the classical PTE1 and the PTE2 problem. Moreover, we establish a lower
bound on ψZ2 , which enables us to prove a strengthened version of a theorem by
Rényi [203] for points in Z2.

Let us take a closer look.

In [165] Matoušek, Přívětivý, and Škovroň show that there is a number m0 and a
constant C > 0 such that for every m ≥ m0 almost all (in the sense of measure) sets
of m directions allow for a unique reconstruction of any F ⊆ R2 with |F | ≤ 2Cm/ log(m).
In other words, for almost all sets of m ≥ m0 directions, the smallest size switching
components are larger than 2Cm/ log(m). Surprisingly, the situation is fundamentally
different for carefully selected sets of directions.

Theorem 9. For every ε > 0 and d ≥ 2 it holds that ψZd(m) = O(md+1+ε).

Let us briefly sketch the proof of our result.
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Similarly to the proofs of the polynomial size bounds on the classical PTE problem
(see [241]) the proof relies on the pigeonhole principle and is hence non-constructive.
For given ε and d, we define suitable functions bε,d, nε,d, ld : N → N of the single
variable m. For large m, we show that the total number of different nε,d(m)-point sets
in [bε,d(m)]d is larger than the total number of data (i.e., different X-rays) they can
generate for some suitable set of m directions S1 := lin(s1), . . . , Sm := lin(sm), with
s1, . . . , sm ∈ [ld(m)]d. In this case, [bε,d(m)]d must contain two nε,d(m)-point sets with
the same X-rays in directions s1, . . . , sm, which proves ψZd(m) = O(nε,d(m)). Not only
for the asymptotics but also for the pigeonhole principle, it is vital in the proof that
there is a suitable balance between the values bε,d(m), nε,d(m), and ld(m). It turns out
that an appropriate choice of functions bε,d, nε,d, and ld is

bε,d(m) := min
{

2j : (j ∈ N) ∧
(
m1+(1+ε)/d ≤ 2j

)}
,

nε,d(m) := bε,d(m)d/2,

ld(m) :=
⌈

d
√

2m
⌉
.

We remark that in addition to the pigeonhole principle, our proof contains a second non-
constructive aspect. In fact, our proof is valid for (almost) every choice of m directions
provided that each of the entries of s1, . . . , sm are non-negative and bounded by ld(m).
The existence of such a set of directions is provided by a theorem of Nymann [179],
which states that the number Rd(ld(m)) of relatively prime d-tuples in [ld(m)]d satisfies

lim
ld(m)→∞

Rd(ld(m))
ld(m)d = 1

ζ(d) ,

where ζ denotes the Riemann zeta function; hence, for large m there exist

Rd(ld(m)) ≥ ld(m)d/ζ(2) > ld(m)d/2 ≥ m,

different directions in [ld(m)]d. This concludes our sketch of the proof of Thm. 9.

Another next natural question is to ask for lower bounds on ψZd(m). Since Zd ⊆ Rd,
we clearly have ψRd ≤ ψZd , with ψRd(m) denoting the minimum number n for which
there exist m different directions S1, . . . , Sm (not all contained in a proper subspace
of Rd) such that two different n-point sets in Rd exist that have the same X-rays in
these directions.

Rényi’s theorem (proved in [203] and generalized to arbitrary dimensions by Hep-
pes [113]), states that any m-point set in Rd is uniquely determined by its X-rays
from m+ 1 different directions. Hence,

Proposition 10 (Rényi, 1952).
For every d ≥ 2 and m ∈ N we have ψZd(m) ≥ ψRd(m) ≥ m.
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The Rényi bound ψRd(m) ≥ m, for d = 2, is tight for all m ≥ 2. It is also known
that the corresponding Rényi bound ψZ2(m) ≥ m is tight for m ∈ {1, 2, 3, 4, 6} (see,
e.g., examples provided in [86] and [H12]). Interestingly, however, the Rényi bound
on ψZ2(m) can be improved (hence showing ψR2 6= ψZ2). In [H9] we prove the following
result.

Theorem 11. If m = 5 or m > 6 then ψZ2(m) ≥ m+ 1.

Stated differently, any m-point set in Z2 with m = 5 or m > 6 is uniquely determined
by its X-rays taken from at least m different directions. The sharpness of this improved
Rényi bound for m = 5 can be seen from Fig. 2(a). It seems that further improvements
on this bound are possible for larger m (see also Sect. 2.1.4).

We remark that the upper bound from Thm. 9 and the two coloring of the vertices of
the regular 2m-gon in R2 yield the following corollary.

Corollary 12. For every ε > 0 and d ≥ 2, it holds that

ψRd(m) =
{
m if d = 2,
O(md+1+ε) if d > 2.

We have now come full circle. The fact that there exist polynomial size switching
components (Thm. 9) implies (with Thm. 4) that there exist also polynomial size
solution to PTE2 for every k.

Corollary 13. For every ε > 0 and k ∈ N there exists a constant C > 0 such that
there are solutions

{ξ1, . . . , ξn}
k= {η1, . . . , ηn}

of PTE2 with n ≤ Ck3+ε.

This result improves on Thm. 6. However, no constructive method for generating such
polynomial size switching components is known.

In the same way as for Cor. 13, we obtain directly from Thm. 9 and Cor. 5 the result
that for every k ∈ N, there exist PTE1-solutions for (k, n) with n = O(k3+ε), ε > 0.
Better bounds (quadratic in k) can be obtained by applying the pigeonhole principle
directly to the PTE1-problem (see the remarkably short proof by Wright [241]). No
constructive method is known that provides polynomial size PTE1-solutions.

2.1.4 Additional Comments On Switching Components

Switching components seem to appear first in the work of Ryser [210]. Later work
on switching components includes [46, 108, 130, 141, 165, 218]. Computational
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investigations related to the explicit construction of switching components can be
found in [41, 226, 227, 228, 247]. We remark that the papers [226, 227, 228] deal
with the so-called finite Radon transform where the projection lines wrap whenever
they encounter any boundary of the image, the paper [247] deals with compositions
of switching components for generalized projections, and in the paper [41] the task of
generating small switching components that fit into a small rectangle is studied. The
first computational study on generating minimal switching components seems to have
been performed by Kiermaier [134].

It is an interesting open question to determine the precise values of ψZd(m), even
for small m. Figure 2 shows examples of small switching components in Z2 for m ∈
{6, . . . , 10} (the computational search by Kiermaier [134] provided different examples
of the same size. Of course, the examples yield upper bounds on the respective values
of ψZ2(m). Lower bounds are provided by Thms. 10 and 11. In Table 4 the values
of ψZ2(m) are shown for m ∈ [10] (the pairs provided for m ≥ 7 show the currently
best lower and upper bound on ψZ2(m)).

m 1 2 3 4 5 6 7 8 9 10

ψZ2(m) 1 2 3 4 6 6 (8, 10) (9, 12) (10, 18) (11, 20)

Table 4: Values of ψZ2(m) for m ∈ [10]. In the cases m ≥ 7, the pair of currently best lower
and upper bounds on ψZ2(m) is shown.

2.1.5 Results from [H5]

In [H5] we consider questions of stability, error correction, and noise compensation in
discrete tomography.

Discrete tomography deals with the reconstruction of finite sets from knowledge about
their interaction with certain query sets. The most prominent example is that of the
reconstruction of a finite subset F of Zd from its X-rays (i.e., line sums) in a small
positive integer number m of directions. Applications of discrete tomography include
particle tracking in plasma physics, quality control in semiconductor industry, image
processing, graph theory, scheduling, statistical data security, game theory, etc. (see,
e.g., [H7, H14, 77, 85, 86, 100, 101, 115, 116, 121, 210, 221]). The reconstruction
task is an ill-posed discrete inverse problem, depicting (suitable variants of) all three
Hadamard criteria [106] for ill-posedness. In fact, for general data there need not exist
a solution, if the data is consistent, the solutions need not be uniquely determined,
and even in the case of uniqueness, the solution may change dramatically with small
changes of the data [8, 13].
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In our paper [H5] we address in particular the following problems. Does discrete
tomography have the power of error correction? Can noise be compensated by taking
more X-ray images, and if so, what is the quantitative effect of taking one more X-ray?

A key argument that we employ in this paper is the fact that there exist no PTE
solutions for (k, n) if n ≤ k.

In the following, let d,m ∈ N with d ≥ 2. We use the same notation as in Sect. 2.1.1.
In particular, we have again Kd ∈ {Rd,Zd}.

Given m different lines S1, . . . , Sm ∈ Sd, the basic questions in discrete tomography
are as follows. What kind of information about a finite (lattice) set F ∈ Kd can be
retrieved from its X-ray images XS1F, . . . ,XSmF? How difficult is the reconstruction
algorithmically? How sensitive is the task to data errors? Here the data are given in
terms of functions

fj : AK(Sj)→ N0, j ∈ [m]

with finite support Tj ⊆ AK(Sj) represented by appropriately chosen data structures;
see [86]. Hence the difference of two data functions with respect to the same line S ∈ Sd
is a function h : AK(S)→ Z; its size will be measured in terms of its `1-norm

‖h‖1 =
∑

T∈AK(S)
|h(T )|.

Our main stability result from [H5] is as follows.

Theorem 14. Let S1, . . . , Sm ∈ Sd be different and F1, F2 ∈ Fd(K) with |F1| = |F2|.
If

m∑
j=1
||XSjF1 −XSjF2||1 < 2(m− 1)

then F1 and F2 are tomographically equivalent.

This stability result is best possible since we have shown in [8] (see also [11, 13])
that there exist arbitrarily large lattice sets F1, F2, even of the same cardinality and
uniquely determined by their respective X-rays, which satisfy

∑m
j=1 ||XSjF1−XSjF2||1 =

2(m − 1), but which are disjoint or, even more generally, “dissimilar” under affine
transformations. (Further stability results for the particular case m = 2 can be found
in [9, 10, 57].)

Theorem 14 is equivalent to

Theorem 15. Let S1, . . . , Sm ∈ Sd be different. Then there are no F1, F2 ∈ Fd(K)
with |F1| = |F2| and 0 <

∑m
j=1 ||XSjF1 −XSjF2||1 < 2(m− 1).
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The proof of this theorem relies on a combination of some combinatorial, geometric,
and algebraic arguments. One key algebraic argument is the restatement of the fact
that there exist no PTE solutions for (k, n) = (m − 2,m − 2). A short proof of this
fact can be given by using the Newton identities (for the identities see, e.g., [172]).

As direct corollaries to Thm. 14, it is possible to derive “noisy versions” of known
uniqueness theorems. The two following examples are given in our paper.

Recall from Sect. 2.1.1 that Rényi’s theorem [203] states that if we know the cardinal-
ity |F | of a finite set F we can guarantee uniqueness from X-rays taken in anym ≥ |F |+1
different directions. Our first corollary shows that we can guarantee uniqueness, even
if the X-rays are not given precisely.
Corollary 16. Let F1, F2 ∈ Fd(K) with |F1| = |F2|, m ∈ N with m ≥ |F1|+ 1, and
let S1, . . . , Sm ∈ Sd be different. If

∑m
j=1 ||XSjF1 −XSjF2||1 < 2|F1|, then F1 = F2.

In fact, this corollary shows the potential power of error correction in the setting
of Rényi’s theorem: A total error smaller than 2|F | can be compensated without
increasing the number of X-rays taken if the cardinality |F | of the original set F is
known. But even without knowing |F | precisely we can correct errors at the expense,
however, of taking more X-rays.
Corollary 17. Let F1, F2 ∈ Fd(K) with |F1| ≤ |F2|, m ∈ N with m ≥ 2|F1|, and let
S1, . . . , Sm ∈ Sd be different. Then

∑m
j=1 ||XSjF1 −XSjF2||1 < 2|F1| implies F1 = F2.

Our next example gives a stable version of a theorem of Gardner and Gritzmann [84]
for the set Cd of convex lattice sets, i.e., of sets F ∈ Fd with F = conv(F ∩ Zd).
Corollary 18. Let F1, F2 ∈ Cd with |F1| = |F2|.

(i) There are sets {S1, S2, S3, S4} ⊆ Ld of four lines such that∑4
j=1 ||XSjF1 −XSjF2||1 < 6 implies F1 = F2.

(ii) For any set {S1, . . . , Sm} ⊆ Ld of m ≥ 7 coplanar lattice lines,∑m
j=1 ||XSjF1 −XSjF2||1 < 2(m− 1) implies F1 = F2.

We then turn to results on some algorithmic tasks related to questions of stability in
discrete tomography. We concentrate on the case of finite lattice sets whose X-rays are
taken in lattice directions. So, let S1, . . . , Sm ∈ Ld.

As algorithmic consequences of Thm. 14, we can give “noisy extensions” of known
complexity results. For instance, it is known that the two problems

ConsistencyFd(S1, . . . , Sm)
Input: For j ∈ [m] data functions fj : AZ(Sj)→ N0 with finite support.
Question: Does there exist a finite lattice set F ∈ Fd such that XSjF = fj

for j ∈ [m]?
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and

UniquenessFd(S1, . . . , Sm)
Input: A set F1 ∈ Fd.
Question: Does there exist a set F2 ∈ Fd with F1 6= F2 such that

XSjF1 = XSjF2 for j ∈ [m]?

can be solved in polynomial time for m ≤ 2 but are NP-complete for m ≥ 3 (see [86]).
Theorem 14 (in combination with several technical lemmas) allows us to extend these
results as follows.

Corollary 19. Let S1, . . . , Sm ∈ Ld be different. The following two problems

X-Ray-CorrectionFd(S1, . . . , Sm)
Input: For every j ∈ [m] a data function fj : AZ(Sj)→ N0 with

finite support.
Question: Does there exist a finite lattice set F ∈ Fd with∑m

j=1 ||XSjF − fj ||1 ≤ m− 1?
and

Similar-SolutionFd(S1, . . . , Sm)Similar-SolutionFd(S1, . . . , Sm)
Input: A finite lattice set F1 ∈ Fd
Question: Does there exist a finite lattice set F2 ∈ Fd with |F1| = |F2| and

F1 6= F2 such that
∑m
j=1 ||XSjF1 −XSjF2||1 ≤ 2m− 3?

are in P for m ≤ 2 but are NP-complete for m ≥ 3.

Note that X-Ray-CorrectionF(S1, . . . , Sm) can also be formulated as the task to
decide for given data functions fj : AZ(Sj)→ N0, j ∈ [m], with finite support, whether
there exist “corrected” data functions gj : AZd(Sj)→ N0, j ∈ [m], with finite support
that are consistent and do not differ from the given functions by more than a total
of m− 1. Corollary 19 shows that this form of measurement correction is just as hard
as checking consistency.

If the data is noisy it seems natural to try to find a finite lattice set that fits the
measurements best. This task is discussed in the following theorem from our paper.

Theorem 20. Let S1, . . . , Sm ∈ Ld be different. The problem

Nearest-SolutionFd(S1, . . . , Sm)
Input: For every j ∈ [m], data functions fj : AZ(Sj)→ N0 with finite support.
Task: Determine a set F ∗ ∈ Fd such that∑m

j=1 ||XSjF
∗ − fj ||1 = minF∈Fd

∑m
j=1 ||XSjF − fj ||1,

is in P for m ≤ 2 but is NP-hard for m ≥ 3.

21



The NP-hardness result for m ≥ 3 follows rather directly from known complexity
results. The proof of the polynomial-time solvability in the case m = 2 is more involved
(ultimately, the problem is reduced to a linear programming problem involving a totally
unimodular matrix).

3 Tomographic Super-Resolution Imaging, [H4]

3.1 Algorithms and Complexity

Different imaging techniques in tomography have different characteristics that strongly
depend on the specific data acquisition setup and the imaged tissue/material. It is a
major issue (and at the heart of current research, see, e.g., [27, 60, 119, 160, 164, 186,
212]) to improve the resolution of an image by combining different imaging techniques.

3.1.1 Results from [H4]

Our results in [H4] are motivated by the task of enhancing the resolution of reconstructed
tomographic images obtained from binary objects representing, for instance, crystalline
structures, nanoparticles or two-phase samples [H2, H7, H14, 215, 233].

We study the task of reconstructing binary m× n-images from row and column sums
and additional constraints, so-called block constraints, on the number of black pixels
to be contained in the k × k-blocks resulting from a subdivision of each pixel in the
m/k × n/k low-resolution image. Figure 3 illustrates the process.

2 2 4 1
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4 2

30
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Figure 3: The double-resolution imaging task DR. (a) Original (unknown) high-resolution
image, (b) the corresponding low-resolution grayscale image, (c) gray levels converted
into block constraints, (d) taken in combination with double-resolution row and
column sum data. The task is to reconstruct from (d) the original binary image
shown in (a).
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Going into some more details, we introduce some notation. We call any set ([a, b]×
[c, d]) ∩ Z2, with a, b, c, d ∈ Z and a ≤ b, c ≤ d, a box. For j1, j2 ∈ N, we set
Bk(j1, j2) := B(j1, j2) := (j1, j2) + [k − 1]20. Defining for any k ∈ N and m,n ∈ kN the
set of (lower-left) corner points C(m,n, k) := ([m]× [n]) ∩ (kN0 + 1)2, we call any box
Bk(j1, j2) with (j1, j2) ∈ C(m,n, k) a block. The blocks form a partition of [m]× [n],
i.e.,

⋃̇
(j1,j2)∈C(m,n,k)Bk(j1, j2) = [m]× [n].

For ε, k ∈ N0 with k ≥ 2 the task of (noisy) super-resolution is the following.

nSR(k, ε)

Instance:m,n ∈ kN,
r1, . . . , rn ∈ N0, (row sum measurements)
c1, . . . , cm ∈ N0, (column sum measurem.)
R ⊆ C(m,n, k), (corner points of reliable

gray value measurem.)
v(j1, j2) ∈ [k2]0, (j1, j2) ∈ C(m,n, k), (gray value measurem.)

Task: Find ξp,q ∈ {0, 1}, (p, q) ∈ [m]× [n], with∑
p∈[m]

ξp,q = rq, q ∈ [n], (row sums)

∑
q∈[n]

ξp,q = cp, p ∈ [m], (column sums)

∑
(p,q)∈Bk(j1,j2)

ξp,q = v(j1, j2), (j1, j2) ∈ R, (block constraints)

∑
(p,q)∈Bk(j1,j2)

ξp,q ∈ v(j1, j2) + [−ε, ε], (j1, j2) ∈ C(m,n, k) \R, (noisy block constraints)

or decide that no such solution exists.

The numbers r1, . . . , rn and c1, . . . , cm are the row and column sum measurements of
the higher-resolution binary m×n image, v(j1, j2) ∈ [k2]0 corresponds to the gray value
of the low-resolution k × k-pixel at (j1, j2) of the low-resolution m/k × n/k grayscale
image, and R is the set of low-resolution pixel locations for which we assume that the
gray values have been determined reliably, i.e., without error. The number ε is an error
bound for the remaining blocks. The task is to find a binary high-resolution image
satisfying the row and column sums such that the number of black pixels in each block
adds up to a gray value for the corresponding k × k-pixel in the lower-resolution image
that lies in the specified interval.

Our special focus in [H4] is on double-resolution imaging, i.e., on the case k = 2.
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For ε > 0, let nDR(ε) =nSR(2, ε). In the reliable situation, i.e., for ε = 0, we simply
speak of double-resolution and set DR=nSR(2, 0).

Our first result in [H4] is the following.

Theorem 21. DR ∈ P.

The proof of this theorem (relying on four lemmas and a corollary) can be briefly
sketched as follows.

The main step in the proof of Thm. 21 is to show that DR decomposes into five prob-
lems DR(ν), ν ∈ [4]0, each of which can be solved independently. This decomposition
property of DR is proved by combinatorial reasoning, introducing the concept of local
switches (which are special interchanges in the sense of [210]) and the notion of reduced
solutions. In fact, we show that if an instance of DR has a solution, then there is also
a reduced solution, and the reduced solution can be found by solving suitable instances
of the problems DR(ν), ν ∈ [4]0.

The problems DR(ν), ν ∈ [4]0, are single-graylevel versions of DR where each non-
empty block is required to contain the same number ν of ones. It is easy to see
that, DR(0) and DR(4) can be solved in polynomial-time. In seperate lemmas we
prove that also DR(1), DR(2), and DR(3) are polynomial-time solvable.

Based on the decomposition of DR into the subproblems, we show the following.

Theorem 22. For every instance of DR it can be decided in polynomial time whether
the instance admits a unique solution.

We then turn to the task nDR(ε) where small “occasional” uncertainties in the gray
levels are allowed.

Theorem 23. nDR(ε) is NP-hard for any ε > 0.

The problem remains NP-hard for larger block sizes.

Corollary 24. nSR(k, ε) is NP-hard for any k ≥ 2 and ε > 0.

In the proof of Thm. 23 (and Cor. 24) we use a transformation from the NP-hard
problem 1-In-3-SAT (see [54]), which asks for a satisfying truth assignment that sets
exactly one literal True in each clause of a given Boolean formula in conjunctive
normal form where all clauses contain three literals (involving three different variables).

We remark that our complexity results can also be interpreted in the context of discrete
tomography. In discrete tomography it is well known that the problem of reconstructing
binary images from X-ray data taken from two directions can be solved in polynomial
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time [81, 210]. Typically, this information does not determine the image uniquely (see,
e.g., [102] and the papers quoted therein). Hence, one would like to take and utilize
additional measurements. If, however, additional constraints are added that enforce
that the solutions satisfy the X-ray data taken from a third direction, then the problem
becomes NP-hard, and it remains NP-hard if X-ray data from even more directions are
given [86] (see also [66] for results on a polyatomic version).

The case of block constraints behaves somewhat differently. Theorem 23 and Cor. 24
show that the problem of reconstructing a binary image from X-ray data taken from
two directions is again NP-hard if several (but not all) block constraints (which need to
be satisfied with equality) are added. However, and possibly less expectedly, if all block
constraints are included, then the problem becomes polynomial-time solvable (Thm. 21).
If, on the other hand, from all block constraints some of the data comes with noise
at most ±1, then the problem becomes again NP-hard (Thm. 23 and Cor. 24). And
yet again, if from all block constraints all of the data is sufficiently noisy, then the
problem is in P (as this is again the problem of reconstructing binary images from
X-ray data taken from two directions). See Fig. 4 for an overview of these complexity
jumps.

no constraints

all constraints
reliable data

P

NP-hard

NP-hard

P

P

P

NP-hard

NP-hard

P

P
several constraints
reliable data

all constraints
all data sufficiently noisy

all constraints
some data with noise
at most ±1

Figure 4: Overview of complexity jumps for the problem of reconstructing a binary image
from row and column sums and additional block constraints.
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4 Tomographic Point Tracking: Theory and Applications,
[H3, H6, H7, H14]

4.1 Theory

We consider the problem of determining the paths P1, . . . ,Pn of n points in space over
a period of t ∈ N moments in time from X-ray images taken from a fixed number m of
directions. We refer to this problem, lying at the heart of dynamic discrete tomography,
as tomographic point tracking. (For an artistic illustration see our DFG calender image
[12].) As it turns out, the problem comprises two different but coupled basic underlying
tasks, the reconstruction of a finite set of points from few of their X-ray images (discrete
tomography) and the identification of the points over time (tracking).

4.1.1 Results from [H3]

In [H3], we study the tomographic tracking problem from a mathematical and algorith-
mic point of view with a special focus on the interplay between discrete tomography
and tracking. Therefore we distinguish the cases that for none, some or all of the t
moments τ1, . . . , τt in time, a solution of the discrete tomography task at time τ1, . . . , τt
is explicitly available. We refer to the first case as the positionally determined case
while, in the more general situation, we speak of the (partially) or (totally) tomographic
case of point tracking.

By modeling the problem as t−1 uncoupled minimum weight perfect bipartite matching
problems, we show for the positionally determined case that the tracking problem can
be solved in polynomial time if the problem exhibits a certain Markov-type property
(which, effectively, allows only dependencies between any two consecutive time steps).

The partially tomographic case even for t = 2, however, is NP-hard. We show this by
using a reduction from ConsistencyFd(S1, S2, S3); see Sect. 2.1.5. Complementing
this result, we consider the tomographic tracking problem for two directions where the
so-called displacement field is assumed to be given (the displacement field uniquely
determines the points’s next position). Again, this problem turns out to be NP-hard
already for t = 2 and rather general classes of displacement fields.

We then turn to the rolling horizon approach that we will describe in Sect. 4.1.3.
First, we give an example that shows that this approach does not always yield the
correct solution. Then, we study the issue of of how to incorporate additional prior
knowledge of the point history into the models. We show, under rather general
assumptions, that already in the positionally determined case the tracking problems
becomes NP-hard for t > 2. In particular, by making use of a result of [224] on a
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variant of 3D-Matching [129], we show that even if the points are known to move
along straight lines, this prior knowledge cannot efficiently be exploited algorithmically
(unless P = NP).

We proceed by introducing three algorithms that can be viewed as rather general
paradigms of heuristics that involve prior knowledge about the movement of the points
and which can be used in the tomographic case.

We then discuss combinatorial models (see also the next subsection and Sect. 3). In
these models the positions of the points in the next time step are assumed to be
known approximatively in the sense that the candidate positions are confined to certain
windows, which are finite subsets of positions. Again, under rather general conditions,
we show NP-hardness of the respective tomographic tracking tasks. However, we also
identify polynomial-time solvable special cases of practical relevance.

4.1.2 Results from [H6]

In [H6] we study several classes of the above mentioned combinatorial models. In
particular, we study the computational complexity of the discrete inverse problem
of reconstructing binary matrices from their row and column sums under additional
constraints on the number and pattern of entries in specified minors. We focus on
special types of windows, called blocks of size k, which are sets I1 × I2 with I1 and I2,
respectively, denoting set of k consecutive row and column indices of the binary matrix
(see also Sect. 3).

We study the effect of three different parameters: k corresponds to the size of the block, ν
is the number of 1’s in the nonzero minors, and a specifies the allowed positions of 1’s
in the blocks, referred to as the pattern of the block. The choice for these parameters
will specify the given problem Rec(k, ν, a), which we will formally introduce further
below. Hence k, ν, and a are given beforehand (i.e., they are not part of the input).

We show in [H6] that there are various unexpected complexity jumps back and forth
from polynomial-time solvability to NP-hardness. Omitting technical details some of
these jumps can be summarized as follows; see Table 5.

For k = 1 the problems are in P regardless on how the other parameters are set;
see Thm. 25(i). For k ≥ 2 it depends on ν and a whether the problems are in P or NP-
hard; see Thms. 25(ii),(iii) and 26. For k ≥ 2, some values of ν render the problems
tractable while others make them NP-hard; see Thms. 25(ii) and 26(ii) even if the
patterns are not restricted at all. Adding a pattern constraint may turn an otherwise NP-
hard problem into a polynomial time solvable problem; see Thms. 26(ii) and 25(iii).
The reverse complexity jump, however, can also be observed; see Thms. 25(ii) and 26(i).

We are now going a bit more into detail (for notation, see also Sect. 3). We introduce
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P NP-hard

varying k Rec(1, 2, 0) Rec(k, 2, 0)
Rec(1, 1, 1) Rec(k, 1, 1)

varying ν Rec(k, 1, 0), Rec(k, 2, 0)

varying a Rec(k, 2, 2) Rec(k, 2, 0)
Rec(k, 1, 0) Rec(k, 1, 1)

Table 5: Computational complexity of Rec(1, ν, a) and Rec(k, ν, a) for k ≥ 2 under change
of a single parameter.

three patterns that we study in detail since they exhibit already the general complexity
jump behavior we are particular interested in.

The first pattern P (k, 0) is unconstrained, i.e., does not pose any additional restrictions
on the positions of 1’s. The second pattern P (k, 1) forces all elements in the k×k block
to be 0 except possibly for the two entries in the lower-left and upper-right corner. The
third pattern P (k, 2) excludes all patterns that admit more than one 1 in each row of
the k × k block. Here are the formal definitions.

For k ∈ N let 2[k−1]20 denote the power set of [k − 1]20. Then we set

P (k, 0) := 2[k−1]20 ,

P (k, 1) := {{(0, 0)}, {(k − 1, k − 1)}},

P (k, 2) := {M ∈ 2[k−1]20 : |M ∩ ([k − 1]0 × {j}) | ≤ 1 for all j ∈ [k]0.}

Further, for (j1, j2) ∈ C(m,n, 2) and x = (ξj1,j2)j1∈[m],j2∈[n] we set

patk(x, j1, j2) := {(p, q) ∈ Bk(j1, j2) : ξp,q 6= 0} − (j1, j2).

For k, ν ∈ N and a ∈ {0, 1, 2} we define now the following problem Rec(k, ν, a).
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Rec(k, ν, a)

Instance: m,n ∈ kN,
r1, . . . , rn ∈ N0, (row sum measurements)
c1, . . . , cm ∈ N0, (column sum measurements)
v(j1, j2) ∈ {0, ν}, (j1, j2) ∈ C(m,n, k), (block measurements)

Task: Find ξp,q ∈ {0, 1}, (p, q) ∈ [m]× [n], with∑
p∈[m]

ξp,q = rq, q ∈ [n], (row sums)

∑
q∈[n]

ξp,q = cp, p ∈ [m], (column sums)

∑
(p,q)∈Bk(j1,j2)

ξp,q ≤ v(j1, j2), (j1, j2) ∈ C(m,n, k), (block constraints)

patk(x, j1, j2) ∈ P (k, a), (j1, j2) ∈ C(m,n, k), (pattern constraints),

or decide that no such solution exists.

In other words, we ask for 0/1-solutions that satisfy given row and column sums, block
constraints of the form

∑
(p,q)∈Bk(j1,j2) ξj1,j2 ≤ v(j1, j2) with given v(j1, j2) ∈ {0, ν},

and pattern constraints that restrict the potential locations of the 1’s in each block.

Our main results show that the computational complexity of Rec(k, ν, a) may change
drastically when k, ν, or a is varied.

Theorem 25.
(i) Rec(1, ν, a) ∈ P for any ν ∈ N and a ∈ {0, 1, 2}.

(ii) Rec(k, 1, 0) ∈ P for any k ≥ 2.

(iii) Rec(k, ν, 2) ∈ P for any k ≥ 2 and ν ≥ k.

Theorem 26.
(i) Rec(k, 1, 1) ∈ NP-hard for any k ≥ 2.

(ii) Rec(k, 2, 0) ∈ NP-hard for any k ≥ 2.

The most notable changes are summarized in Table 5. Some of these changes may at first
glance seem somewhat counterintuitive. For instance, restricting the solution space via
pattern constraints turns the NP-hard problem Rec(k, 2, 0) (k ≥ 2), into the polynomial
time solvable problem Rec(k, 2, 2). Conversely, additional pattern constraints convert
the tractable problem Rec(k, 1, 0) into the NP-hard problem Rec(k, 1, 1) (k ≥ 2).
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The general ideas behind the proofs of Thms. 25 and 26 can be briefly sketched as
follows.

Theorem 25(i) follows directly from known results on the reconstruction from row
and column sums where some of the solution values have prescribed values. On the
other hand, the proof of Thm. 25(ii) proceeds in two steps. First, a lower-resolution
reconstruction from row and column sums is performed, which, in a second step, is
extend to full resolution. The proof of Thm. 25(iii) is more involved than the other
two proofs. Here, the reconstruction problem is again reduced to the task of solving a
linear programming problem involving a totally unimodular coefficient matrix. Our
proof of the total unimodularity property requires careful counting arguments, which
are given in a separate lemma (and which might be of independent interest).

For the intractability results we remark that in the proof of Thm. 26(i) we reduce from
the NP-hard problem 3 -color tomography (see [66]). The proof of Thm. 26(ii)
is more involved as we modify the construction used to establish the NP-hardness
of nDR(ε), ε > 0.

4.1.3 Results from [H7]

In [H7] we consider the task of tomographic point tracking with a special focus on
particle tracking velocimetry (PTV), which is a diagnostic technique that plays an
important role in studying flows (see, e.g., [4, 133]) including combustion (see, e.g., [204,
244]). It has also been used to study plasma (see, e.g., [107, 143]). In PTV the motion of
particles is followed in a sequence of images for the purpose of measuring their velocities.
In complex plasmas the particles themselves are the subject of interest [96, 182] whereas
in fluids the particle velocities are nearly the same as the local flow velocities which can
hence be studied by PTV. Particle tracking velocimetry is particularly advantageous if
the density of particles is intrinsically low or has to be limited.

Previous tomographic particle tracking methods are based on themultiplicative algebraic
reconstruction technique (MART) [117] and its variants [189, 238]. These are methods
for reconstructing the distribution of multiple-pixel sized particles modeled as graylevel
images (for a recent approach of reconstructing single-pixel sized particles modeled
as graylevel images, see [58]). The graylevel can take any value and is a continuous
quantity. The subsequent binarization is usually performed by comparison of the
graylevel to a threshold. This procedure is not guaranteed to yield solutions that
are consistent with the data. We develop an algorithm that returns binary solutions
that are consistent with the data as this is explicitly included as a constraint in the
imaging model. Information from previously reconstructed frames is incorporated in
the reconstruction procedure that is formulated as a discrete optimization problem. It
seems that no such methods have previously been developed for PTV.
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In [H7] we remark that, in general, PTV may track particle paths that do not exist
but which are consistent with the data. Fig. 5 gives an illustration for the case where
tomographic data has been obtained from two directions.

t0 t1 t2 t3

t0 t1 t2 t3

Figure 5: An example illustrating that PTV may track particle paths that do not exist but
which are consistent with the data. The upper row shows the movement of two
particles in 2D, the second row shows alternative movement, also consistent with
the data.

Hence, in our approach we want to be able to incorporate prior knowledge about the
possible movement of the particles.

Our approach is a rolling horizon approach for tomographic point tracking. For m
projection directions (typically orthogonal to the detector plane), m (projecting) lines
pass through every particle. The intersections of these projecting lines for every
projection direction are called candidate points. The set of candidate points is the
so-called candidate grid; it contains the set of all particle positions and typically,
in 2D, many additional points that are all other intersections of these projecting lines.
(Generically, the situation is different in 3D since there any two affine lines in general
position are disjoint. There are no such additional points in these cases, and therefore
the positionally determined case of tomographic point tracking becomes relevant in 3D;
see Sect. 4.1.1.)

We consider the reconstruction problem at time t. To each point g(t)
j of the candidate

grid G(t) containing l(t) points we associate a variable ξ(t)
j . Presence or absence of

a particle at g(t)
j is indicated by the value ξ∗j (t) = 1 and ξ∗j (t) = 0, respectively. The

requirement that any solution x∗(t) := (ξ∗1(t), . . . , ξ∗l(t)
(t))T ∈ {0, 1}l(t) obtained by a
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reconstruction algorithm should be consistent with the projection data can be described
by a 0-1-system of linear inequalities:

A(t)x(t) ≥ b(t), x(t) ∈ {0, 1}l(t), (4)

where b(t) := (1, . . . , 1)T represents the data; k(t) denotes the total number of measure-
ments, and A(t) ∈ {0, 1}k(t)×l(t) collects the individual variables’ contributions to the
signal as specified by the acquisition geometry. (The ‘≥’ is used in (4) to account for
the fact that for projections we cannot distinguish whether one or multiple particles
have been detected. In situations where this can be distinguished the ‘≥’ can be
replaced by ‘=,’ and the same framework as we will described can be applied.)

For the tracking problem, we need to solve (4) for subsequent time steps and need to
be able to match the particles from x∗(t−1) to the particles from the x∗(t) solution.

Let w(t) = (ω(t−1,t)
1 , . . . , ω

(t−1,t)
l(t) )T ∈ Rl(t) denote a vector specifying weights associated

to each candidate grid point (possible choices are discussed below). We introduce the
following discrete optimization problem for the tracking step from t− 1→ t:

min w(t)Tx(t),

subject to A(t)x(t) ≥ b(t),

x(t) ∈ {0, 1}l(t).

This is a rolling horizon approach, and it can be also viewed as a dynamic discrete
tomography problem.

One possible choice for w(t) is

ω
(t−1,t)
j1

:= min
j2 : ξ∗j2

(t−1)=1
{dist(g(t)

j1
, g

(t−1)
j2

)},

with dist(g(t)
j1
, g

(t−1)
j2

) denoting the distance (possibly but not necessarily Euclidean)
between the two candidate grid points g(t)

j1
and g(t−1)

j2
. Note that ξ∗j1

(t−1) = 1 indicates
that a particle is located at candidate grid point g(t−1)

j1
. The algorithm thus prefers

to fill candidate points that are (in some sense depending on dist) close to particles
from the previous time step. If the initial distribution of particles is unknown, we can
set w(0) := 0 thereby giving no preference to any position.

The Euclidean distance function is a suitable choice for slowly moving particles. How-
ever, we can also incorporate momentum information (in fact, we do this in [H14]). If
the particles, for instance, are known to move with a certain velocity, then a possible
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choice would be

dist(g(t)
j1
, g

(t−1)
j2

) :=


σ1, for ρ1 > ||g(t)

j1
− g(t−1)

j2
||2,

σ2, for ρ1 ≤ ||g(t)
j1
− g(t−1)

j2
||2 ≤ ρ2,

σ3, for ρ2 < ||g(t)
j1
− g(t−1)

j2
||2,

where ρ1, ρ2, σ1, σ2, σ3 are prescribed non-negative numbers with σ2 < min{σ1, σ3}. A
particle at g(t−1)

j1
thus most likely moves a distance between ρ1 and ρ2; no displacement

direction is preferred in this example. (For a further discussion, see [H7].)

To test our approach we performed several numerical experiments. We also show that
uniqueness of the solution can be detected in our algorithmic framework.

4.2 Applications

4.2.1 Plasma Physics: Results from [H14]

In [H14] we apply our rolling horizon approach from [H7] to real data (studying 3D
slip velocities of a gliding arc discharge measured by a team of coauthors from plasma
physics). Our particular application deals with the determination of the slip velocity of
a gliding arc discharge. We will explain this briefly in the following lines.

An arc discharge is an electrical breakdown of a gas that produces an ongoing electrical
discharge. The electrical current (in our case through air) produces a plasma, which
is often referred to as plasma column. In a gliding arc discharge experiment, the
string-like plasma column of the arc discharge is extended by a gas flow. In this way,
non-thermal plasmas at atmospheric pressure can be generated. Applications can be
found, for instance, in pollution control, combustion enhancement, sterilization, and
surface treatment [28, 63, 72, 79]. For further details, see, e.g., [246]. The slip velocity,
which is in our case the relative velocity between the plasma column and the gas flow,
determines the convection cooling efficiency, the drag force, the electric field strength,
and the radius of the conducting zone of the plasma column. Accurate measurements
of the slip velocity and the length of the plasma column are essential to provide a
better understanding of the gliding arc discharge. In previous studies, measurements
of the slip velocity and the length of the plasma column were performed in 2D, i.e., by
analyzing a single 2D camera image [187, 206] (for a discussion, see also [140]).

In our paper [H14], two high-speed cameras were synchronized to record images of the
gliding arc in orthogonal imaging planes (two such images are shown in Fig. 6(a)). Em-
ploying our rolling horizon approach, we reconstructed the instantaneous 3D velocities
of seven TiO2 tracer particles illuminated by the plasma column. As the tracers are
tiny (about 3 µm in diameter), they follow the motion of the gas flow and are therefore
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suitable indicators for the local gas flow velocity. The plasma column and its velocity
were also reconstructed in 3D (employing the so-called snake model from [42]). In
particular, we determine here for the first time 3D slip velocities and 3D plasma column
lengths for a gliding arc discharge. Reconstruction results are shown in Fig. 6(b).

(a) (b)

Figure 6: Data and Reconstruction. (a) An image pair (real data) of the gliding arc discharge
simultaneously recorded by the two high-speed cameras. In this image, two typical
seeding particles illuminated by the bright plasma column are highlighted by a red
square and circle located on the right hand-side part of the plasma column. (b) 3D
plasma column and particle reconstruction. Trajectories of seven seeding particles
are marked (P1 to P7). The colors indicate the time evolution from 0 to 4 ms.

Comparing with 2D results we conclude that previous studies might have underestimated
the slip velocity by up to 80% and likewise the length of the plasma column by 25%.
This, for instance, is cited by the authors of [104] to substantiate their findings that

“the role of ‘dragging’ force from the electrode spots may be over-emphasized
by some authors, e.g., [140], and the discharge elongation is caused mostly by
nonuniform gas velocity distribution and presence of gas velocity components
along the discharge channel. Thus, slip velocity can be also caused by other
reasons [...].”
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5 Tomographic Reconstructions of Polycrystals, [H1, H8,
H10, H11, H13]

5.1 Theory, Algorithms, and Applications

The inverse problem of recovering polycrystal grain and orientation maps from X-ray
diffraction data arises as an imaging problem in materials science (see, e.g, [7, 192]).
Many materials, such as metals, ceramics and alloys, are composed of crystalline
elements. These elements, called grains, might all share the same crystal lattice
structure, but they typically differ in size, shape and orientation of the lattice. For
deformed materials even the orientation might differ slightly within the grain. An
image of the material at the grain level should therefore provide for each location x two
quantities f(x) and o(x): the quantity f(x) is the label of the grain that occupies x,
while o(x) is its orientation at x. Thus recovering an image at the grain level is
equivalent to recovering the grain map f and the orientation map o, which both act as
functions on the image domain.

5.1.1 Geometric Clustering, [H1]

In [H1] we consider the problem of reconstructing grain maps of undeformed materials
from very few data that can be obtained from tomographic X-ray diffraction experiments
(or which might be available as prior knowledge).

We introduce the concept of generalized balanced power diagrams (GBPDs), where
each grain is represented by (measured approximations of) its center-of-mass (CMS),
its volume and, if available, by its second-order moments. Such parameters may be
obtained, for instance, from 3D X-ray diffraction experiments [192]. The exact global
optimum of our model results from the solution of a suitable linear program. Our
approach is, to our knowledge, the first method in this field that yields tessellations
that are guaranteed to comply with measured grain volume information up to any
required accuracy (within the present level of noise in the measurements). Based on
verified real-world measurements, we show that from the few parameters per grain
(3, respectively 6 in 2D and 4, respectively 10 in 3D) we obtain representations that
coincide in 94−96% of the pixels of the real grain map. We conclude that our approach
seems to capture the physical principles governing the forming of such polycrystals in
the underlying process quite well. Subsequent studies by Šedivý et al. [216, 217] and
Spettl et al. [223] confirm our findings.

In the following we discuss our approach in some more detail.
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For a positive definite matrix A we denote by || · ||A the ellipsoidal norm, defined by

||x||A :=
√
xTAx. (5)

Discussions of the use of ellipsoidal norms for modeling polycrystal structures can be
found in [16, 29, 145].

Our aim is to reconstruct what we call generalized balanced power diagrams (GBPDs).
These diagrams generalize power diagrams (also known as Laguerre or Dirichlet tessel-
lations), which in turn generalize Voronoi diagrams; see also [18] and [19, Sect. 6.2].

Any GBPD is specified by a set of distinct sites S := {s1, . . . , sl} ⊆ Rd, additive
weights (σ1, . . . , σl)T ∈ Rl, and positive definite matrices A1, . . . , Al ∈ Rd×d. The j-th
generalized balanced power cell Pj is then defined by

Pj := {x ∈ Rd : ||x− sj ||2Aj
− σj ≤ ||x− sk||2Ak

− σk, ∀k 6= j}.

The generalized balanced power diagram P is the l-tuple P := (P1, . . . , Pl). We remark
that power diagrams are obtained if the A1, . . . , Al are identity matrices, and if, in
addition, σ1 = · · · = σl = 0, then we obtain Voronoi diagrams.

Somewhat surprising at first glance, GBPDs are closely related to optimal clusterings;
see [39]. For this we introduce a particular clustering method that is based on solving
a weight-balanced least-squares assignment problem.

This assignment problem is specified by a set of points X := {x1, . . . , xm} ⊆ Rd,
sites S := {s1, . . . , sl} ⊆ Rd, weights ω1, . . . , ωm ∈ ]0,∞[, positive definite matri-
ces A1, . . . , Al ∈ Rd×d, and cluster size bounds κ− := (κ−1 , . . . , κ

−
l ), κ+ := (κ+

1 , . . . , κ
+
l )

with 0 < κ−j ≤ κ
+
j and

l∑
j=1

κ−j ≤
m∑
j=1

ωj ≤
k∑
j=1

κ+
j .

The (fractional) weight-balanced least-squares assignment problem is the following linear
optimization problem:

(LP) min
l∑

j=1

m∑
k=1

γj,kξj,k

subject to
l∑

j=1
ξj,k = 1 (k ∈ [m]),

κ−j ≤
m∑
k=1

ξj,kωk ≤ κ+
j (j ∈ [l]),

ξj,k ≥ 0 (j ∈ [l]; k ∈ [m]),

(6)
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with γj,k := ωk||xk − sj ||2Aj
for all j, k. The ξj,k are the variables; they specify the

fraction of point xk that is assigned to site sj . Any optimal solution C := (C1, . . . , Cl)
of (6) where Cj := (ξj,1, . . . , ξj,m) is called a (fractional) weight-balanced least-squares
assignment for X with sites {s1, . . . , sl}.

In the particular case of unit weights (ω1, . . . , ωm) = (1, . . . , 1) we have a totally
unimodular constraint matrix, which implies that 0/1-solutions can be found as basic
feasible solutions in polynomial time (for definitions see, e.g., [213, Sect. 19.1] and
[185, Def. 2.4]). We remark that voxelized maps can be obtained with this approach if
the xk represent voxels. In fact, ξj,k = 1 in a solution of (6) means that xk belongs to
the jth grain. These voxelized maps represent generalized balanced power diagrams
(the additive weights σ1, . . . , σl can be obtained as solutions of the dual linear program).

In the model introduced above, we optimize the objective function in (6), with fixed
sites s1, . . . , sl (representing the measured CMS of the grains), and fixed values for the
second-order moments, which (by (5)) define the metric for each grain. These second-
order moments, or approximations thereof, can be obtained in favorable diffraction
experiments (note that diffraction images record projections of the grains; by backpro-
jecting the projections acquired from the same grain, an estimate of the corresponding
second-order moments can be obtained). However, in our paper we utilize a principal
component analysis [125] based on the original image in the following way: suppose
for a set of points {g1, . . . , gl} ⊆ Rd of a grain we are given the principal components
u1, . . . , ud and corresponding eigenvalues λ1, . . . , λd of the d× d covariance matrix of
G = (g1, . . . , gl). The norm || · ||A, where

A = UΛ−1UT (7)

with U = (u1, . . . , ud) orthogonal and Λ = diag(λ1, . . . , λd) is an ellipsoidal norm
for which {x ∈ Rd : ||x||A = 1} defines an ellipsoid with semi-axes ui of lengths√
λi, i = 1, . . . , d. The Euclidean norm is obtained in the special case where A equals

the identity matrix. However, our algorithm can easily been extended using global
techniques from [38] or local variants of [33].

It is worth noting that our approach generates by design (generalized balanced) power
cells whose volumes (resp. areas) lie in the prescribed range. The centers of the cells,
however, are not automatically guaranteed to coincide with s1, . . . , sl.

We demonstrate in [H1] the favorable performance of our approach on several exper-
imental data sets. A particular example is shown in Fig. 7, which depicts in black
color the grain boundaries of a 2D aluminum sample imaged by electron backscatter
diffraction (EBSD) [214]. The cell boundaries of the GBPDs obtained by our approach
are shown in red and blue, respectively (for the blue solution second-order information
was included). The original 339 × 339 pixel grain map contains 206 grains. Hence,
for the blue solutions we employ 6 · 206 = 1, 236 parameters (which is a reduction of
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about two orders of magnitude compared to the total number of pixels of this image).
The blue solution represents a rather close fit. In fact, 93.8% of the image pixels are
resolved correctly (for comparison, the approach from [158] resolves here only 62.0% of
the image pixels correctly).
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Figure 7: Tessellations of a real (EBSD) grain map, which contains many non-equiaxed grains.
Real grain boundaries are shown in black, (a) the power diagram reconstruction is
given in red, (b) the generalized balanced power diagram reconstruction is shown in
blue.

We remark that GBPDs, as introduced in our paper, have also been found useful in the
area of stochastic geometry. In the course of updating the 3rd edition of the book [48],
Stoyan contacted us and proposed that we compare our algorithm to that from [231].
The following is a quote from [47].

“Two teams, one formed by Andreas Alpers, Fabian Klemm and Peter
Gritzmann, and the other by Kirubel Teferra, helped the authors of this
book to carry out the following experiment: Using as data Figure 9.7 on
page 353 [here Fig. 8; cells depicted in black color], which shows a Johnson-
Mehl tessellation, the two teams reconstructed the tessellations with their
programs independently. The better result was obtained by Alpers, Klemm
and Gritzmann shown in Figure 9.A [here Fig. 8; cells depicted in blue
color].

The power of the algorithm of Alpers et al. (2015) is impressive: Though
the tessellation in Figure 9.7 [here Fig. 8;] results from a process in which
growth in the sites starts subsequently, the representation belongs to a
model in which all sites start at the same instant!”

There is a large literature on crystal growth models such as the Poisson–Voronoi,
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Figure 8: A tessellation obtained by a marked point process (black) and our reconstruction
(blue). Taken from [47].

Johnson–Mehl and Laguerre random tessellations (see, e.g., [146, 234] and the literature
cited therein). These models are typically considered as random tessellation models.
For tessellations generated by stationary marked Poisson processes, see, e.g., [146, 147].
As our concept of GBPDs generalizes the concept of Laguerre tessellations, it seems
interesting to study GBPDs also in the context of random tessellation models (see also
the remark at the end of Sect. 5.1.2).

A rather different application is given in [40], where GBPDs are employed for the design
of electoral districts where municipalities of a state have to be grouped into districts of
nearly equal population while obeying certain politically motivated requirements.

5.1.2 Stochastic Algorithms, [H10, H11, H13]

In [H10] we focus on the task of reconstructing the grain map, assuming that the
orientation map is known. In addition, we assume that o(x) = o(y) holds for every x
and y inside the same grain. Such grains are called undeformed. In [H11] we extend
the approach to the case of moderately deformed grains, where we reconstruct f and o,
allowing “small” differences between o(x) and o(y) if x and y are inside the same grain.
In [H13] we develop an alternative method for the task of reconstructing moderately
deformed grains. This alternative is an iterative method, similar to the Algebraic
Reconstruction Technique (ART) [98] used in tomography (a fundamental difference is
that here we reconstruct the function o, which does not map into the reals but into
the group of unit quaternions, see, e.g., [17, Sect. 12]). The stochastic concept of
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Gibbs priors [94] (see also [37, 239]) is incorporated in all our approaches serving as
a regularizing term in the objective function. (Background information on stochastic
regularizations of inverse problems can be found in the monographs [25, 103, 126, 229].)

We remark that prior to our work [H10], there existed no dedicated method for
reconstructing grain or orientation maps from tomographic data. A major challenge
is that, by diffraction, only very limited X-ray data (typically available for only 3-
10 directions) can be acquired for each grain. Tomographic reconstructions using
standard methods, as performed by Poulsen and Fu [193], yield noticeable gaps between
neighboring grains of undeformed materials (see Fig. 9(b)). We show that such problems
can be overcome by our dedicated methods. Moreover, our methods are the first that
are capable of reconstructing grain and orientation maps of moderately deformed
materials. Others have followed up on this line of research, see, for instance, [22, 24,
112, 150, 151, 194, 202, 225, 236]. More on the moderately deformed case can be found
in [209] and the recent thesis [208] by Rodek.

Our methods developed in [H10, H11, H13] are stochastic, based on a modeling of
grain maps (and orientation maps, respectively) as Markov random fields [37, 239]. A
Markov random field is a finite set of random variables (the pixel variables in grain
images of undeformed materials), where the conditional distribution of each variable
depends only on the neighbor variables and the joint probability distribution (which,
by the Hammersley-Clifford theorem [99, 109], will be a Gibbs distribution, to be
defined further below) is completely characterized by the local conditional distributions.
Originally motivated by questions from statistical physics (see the Ising model of
ferromagentism [122] or its generalization, the Potts model [190]), Markov random field
theory developed into a branch of probability theory that provides tools for analyzing
spatial-temporal dependencies of physical phenomena (see, e.g., [92, 135, 239]). We
apply this theory to model grain structures. The usefulness of Markov random fields for
modeling grain structures has been reconfirmed in recent studies by Kumar et al. [144]
and Acar and Sundararaghavan [1].

A stochastic model of images is characterized by a distribution function (also called prior
distribution). For a Markov random field model this is a so-called Gibbs distribution
(also known as Boltzmann distribution)

π(f) = 1
Z
e−H(f)/β.

Here f is a (discretized) image, H(f) is called the energy function and is represented
as a weighted sum of clique potentials (for a precise definition, see [37, Sect. 7]; here it
suffices to note that H(f) has the form H(f) =

∑k
j=1 Vj(f), for some natural number k

and positive functions Vj depending on f only through the variables that lie in a
specified neighborhood of a prescribed variable), β is a scaling factor, and Z is the
normalizing constant, which ensures that π integrates to 1 over the support of π.
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Estimating the parameters of a prior distribution is itself an inverse problem, which has
been studied by many authors (see, e.g., [64, 105], [239, Sect. 17-19], and the literature
cited therein). We estimate the parameters of the Gibbs distribution based on an
estimator proposed by Derin and Elliot [59], which estimates the parameters from
histogram data that has been acquired from typical sample collection of images (to
avoid inverse crimes [53], the sample collection consists, in our case, of EBSD images of
grains maps similar to the ones imaged in the experimental setup). Further discussions,
in particular, for images that contain, as in grain images, piecewise homogeneous
regions can be found in [149, 153]. For alternative estimators, see [2, 26, 32, 64].

We remark that the observed data in our application consists of a collection of diffraction
images, which are recorded on a detector. The imaging model has been described
in [192]. For the present purpose it suffices to note that we can assume that the
observed data of the unknown grain map f is represented by a real-valued vector Pf
whose components represent the recorded pixel intensities.

Allowing noise in the data, we define a likelihood function π(P |f) that expresses our
knowledge of how we expect our data P to look given that the true grain image is f.
In our papers we consider

πα(P |f) = 1
Z ′α

e−α||Pf−P ||1 ,

with α and Z ′α denoting a real-valued parameter and the normalizing constant, respec-
tively. We remark that our model allows also for other choices of likelihood functions.
In our paper we experiment with different values of α (large values of α express high
data fidelity).

Following the Bayesian paradigm, our aim is to estimate the posterior distribution

πα(f |P ) = 1
Z ′′α

πα(P |f)π(f),

which represents the probability that f is the true grain image given that P has
been observed (Z ′′α denotes the normalizing constant). In our case, we are primarily
interested in obtaining a maximum posterior estimate, i.e., we aim at recovering

f∗ ∈ arg max
f∈X

πα(f |P )

with X denoting the space of all (discretized) grain images. It should be noted, however,
that, in principle, the Bayesian approach can also be used to recover other parameters
of the distribution.

A problem with πα(f |P ) is that, due to the large image space, it is typically not
possible to compute the normalizing constant Z ′′α. Yet it is possible to sample from
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πα(f |P ) by Markov Chain Monte Carlo (MCMC) methods. The basic idea behind
MCMC methods is to construct a Markov chain whose stationary distribution is the
desired sampling distribution πα(f |P ). The MCMC method that we employ is the
Metropolis algorithm, which, developed by Metropolis and Ulam [170], Metropolis
et al. [169], and Hastings [111], lies at the heart of at most MCMC methods. The
Metropolis algorithm simulates the Markov chain, and if the Markov chain is simulated
long enough by the Metropolis algorithm, then it will simulate draws from the posterior
distribution. Theoretical convergence results can be found, in [222], [232], and [239,
Sect. 10]. Estimating the finite-time behavior of a Markov chain, however, is generally
a difficult task. Practical aspects are discussed in [55].

From the modeling point of view, the moderately deformed case differs only slightly
form the undeformed case as now also the orientation map o needs to be recovered.
This fits also into the previously described stochastic framework (now π is a function
of f and o). The Gibbs prior that we use in the moderately deformed case is described
in [H11, H13].

We remark that the use of Monte Carlo methods for the solution of inverse problems
was already initiated in the 1960s by Keilis-Borok and Yanovskaya [132] and Press [195]
(for a historical account, see [207]). Often, however, MCMC methods are found to
be computationally too expensive to be of practical use for large data applications.
That our algorithms are capable of handling real data results from the fact that we
implemented several algorithmic ideas, sometimes borrowed from other fields, that
speed up the computations. For instance, we represent the grain orientations by
quaternions (more specifically, by unit quaternions, i.e., by elements q ∈ H that satisfy
||q||2 = 1). This allows us to take full advantage of the quaternion algebra, in which,
for instance, compositions of orientations can be easily computed (via multiplication
in H). Another algorithmic idea, borrowed from discrete tomography [235], is that
we represent (in certain steps of the Metropolis algorithm) the grain maps as binary
images. The compact notation allows us to store several frequently used parameters (for
instance, the so-called transition probabilities in the Metropolis algorithm) in several
look-up tables, which can be kept in memory.

Figure 9 and 10 show to exemplary results obtained by our algorithms.

Figure 9 shows the error in the reconstruction for a 128× 128-pixel phantom compris-
ing 44 undeformed grains (the original phantom was obtained by the EBSD method).
The left-hand side image shows the error (red and blue pixels) obtained by our stochas-
tic approach in [H10]; the right-hand side image shows the error obtained by a previous
method introduced by Poulsen and Fu [193].

Figure 10 shows the results of the two algorithms from [H11] and [H13] applied to
a 64×64-pixel phantom, which comprises 26 moderately deformed grains. The algorithm
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(a) (b)

Figure 9: (Adapted from [H10]) Error in the reconstruction of grain maps by two different
methods: (a) Our Gibbs priors approach [H10]. (b) Approach from [193]. Erro-
neously assigned pixels in are indicated in red, wrong assignments in other parts
— due to errors in the initial map — are indicated in blue. Gray pixels indicate
correct assignments.

from [H13] recovers the test phantom exactly after a few seconds of computation time.

We remark that our Markov random field approach can be viewed as a stochastic
approach for modeling grain maps using only a few parameters. The geometric
clustering approach presented in Section 5.1.1 yields a different representations, which
again involves only a few parameters. For future work it might seem interesting to
work out the detailed connections.

5.1.3 Fourier Phase Retrieval, [H8]

Reconstructing a function from the modulus (i.e., absolute magnitudes) of its Fourier
transform (FT) constitutes the well-known Fourier phase retrieval problem: the phase
of the complex valued FT has to be retrieved before it can be inverted. This nonlinear
inverse problem arises in optics, astronomy, crystallography (for coherent X-rays), and
numerous other areas of physics and engineering [56, 124, 173], and is known as binary
phase retrieval problem [154] if the function is 0/1-valued.

Motivated by the prospect that the newly developed technology of X-ray free-electron
lasers (XFELs) [15, Section 2] will provide X-rays of unprecedented brilliance and
coherence, we identify in [H8] a relevant mathematical model for tomographic (slice-by-
slice based) grain imaging based on the physical principles of coherent X-ray diffraction.
It turns out, that this problem can be viewed as the following generalization of the
binary phase retrieval problem, which, to our knowledge it has not been considered
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(a) (b)

Figure 10: Reconstruction of a moderately deformed orientation map from noiseless data
(note that the data might not uniquely determine the solution). (a) Orientation
map reconstructed by the approach from [H11]. (b) Orientation map reconstructed
by the approach from [H13]. In this case, the approach from [H13] recovers the
test phantom exactly. Different colors indicate different orientations.

in the literature before: the reconstruction of multiple 0/1-valued functions with non-
overlapping bounded supports from moduli of superpositions of several displaced copies
of their individual FTs. In other words, the two-dimensional version of the problem is
the following (generalizations to higher dimensions are straightforward):

Problem 27 ([H8]).

For given J,K ∈ N and (displacement) vectors tjk ∈ R2, (j, k) ∈ [J ]× [K], the aim is
to reconstruct the functions fj : R2 → {0, 1} , j ∈ [J ], with non-overlapping bounded
supports from the knowledge of∣∣∣∣∣∣

J∑
j=1

K∑
k=1

f̂j(· − tjk)

∣∣∣∣∣∣ , (j, k) ∈ [J ]× [K]

where f̂1, . . . , f̂J denote the FTs of f1, . . . , fJ , respectively.

We call this variant the binary superposed phase retrieval problem. For J = K = 1, we
obtain as special case the binary phase retrieval problem for a single object. However,
we do not place any restrictions on the displacement vectors other than that they should
be known, and thus the problem usually does not reduce to the binary phase retrieval
problem. Figure 11 shows the modulus of K = 14 superposed FTs of J = 2 binary
functions (representing two grains; for detailed information, see [H8]). Note that in
grain imaging, each of the f1, . . . , fJ represents the grain map of a single (undeformed)
grain.
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Figure 11: Modulus of 14 superposed FTs of two binary functions (the origin of the axes is
located in the center of the image; lighter colors represent larger absolute values).

Binary superposed phase retrieval poses major algorithmic challenges. Standard phase
retrieval algorithms (see, e.g., [120]) aim at reconstructing a single function from its FT
modulus. Thus only a superposed function would be returned as output from such
an algorithm that is applied to superposed FT modulus data. We aim, however, at
reconstructing the individual binary functions – and this is the major algorithmic
challenge.

In [H8] we develop the first two algorithms for Probl. 27. Our first algorithm, Algo-
rithm I , follows the general paradigm of Metropolis-based Monte Carlo methods [169].
Algorithm II , on the other hand, represents an adaptation of the Hybrid-Input-Output
(HIO) algorithm [75], which is frequently used for standard phase retrieval problems.
While Algorithm I aims at reconstructing the individual functions simultaneously,
Algorithm II proceeds sequentially.

We are not going into the details of Algorithm I here as they are given in [H8]. We
remark, however, that Algorithm I can be seen as an adaptation of the Gibbs-prior
approach that we developed in [H10, H11, H13, 14] for the task of reconstructing
grain maps from tomographic diffraction data acquired by incoherent X-rays. The
main difference from the algorithms presented in those papers is that here we use a
different forward operator (the non-linear operator maps the binary functions to the
modulus of their superposed FTs). Our Algorithm I is more time efficient than other
comparable Monte Carlo methods, because we make use of the fact that the functions
to be reconstructed are binary (in fact, this allows us to introduce a fast updating step
for the computation of the Fourier transform, which is performed in each iteration of
the algorithm).

The idea behind our Algorithm II is briefly described as follows. Standard phase
retrieval methods reconstruct single functions from single FTs. In certain cases we can
reconstruct the f1, . . . , fJ independently. For example, if for each j′ ∈ [J ] there is an
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index k′ ∈ [K] such that, for all u in a neighborhood of tj′k′ , we have∣∣∣∣∣∣
J∑
j=1

K∑
k=1

f̂j(u− tjk)

∣∣∣∣∣∣ ≈
∣∣∣f̂j′(u− tj′k′)∣∣∣ (8)

then, in principle, fj′ can be recovered from the data using a phase retrieval method.
This single reconstruction (cycling through all j ∈ [J ]) is performed by our Algo-
rithm II (of course, (8) is a valid approximation only in special scattering situations in
which superposition effects from different FTs are small). As a subroutine the already
mentioned HIO algorithm is used, which is basically an iterative method following the
Gerchberg-Saxton scheme [93] for reconstructing a single function from its FT modulus.

The two algorithms introduced in our paper are, to our knowledge, the first algorithms
for binary superposed phase retrieval.

6 Geometric Methods for Electron Tomography, [H2]

6.1 Algorithms and Applications in Materials Science

The term electron tomography (ET) refers generally to any tomographic technique that
employs the transmission electron microscope (TEM) for data collection (typically,
by tilting the object in multiple directions); see [78, 139]. Mathematically speaking,
the main task is here again to invert the Radon or X-ray transform (see also [201]).
However, particularly in materials science application [171] the image quality obtained
by standard inversion methods (such as filtered backprojection; see, e.g., [177, Sect. 5.1]
and [127, Sect. 3.6]) is seriously affected by the problems of missing wedge artefacts and
non-linear projection intensities due to diffraction effects. The former refers to the fact
that data cannot be acquired over the full 180◦ tilt range; the latter implies that for
some orientations, crystalline structures can show strong contrast changes. Nevertheless,
standard methods are still widely used due to an apparent lack of alternatives [73, 183].

However, alternatives exist in the mathematical literature. Geometric tomography [83],
for instance, is concerned in part with the tomographic reconstruction of homogeneous
(i.e., geometric) objects. Similarly, discrete tomography [115, 116] usually deals with
objects for which atomicity is a constraint or objects that exhibit a small number
of attenuation coefficients. In many applications, certain prior knowledge about
the shape of the structure of interest is available. For example, when reconstructing
nanorods, nanowires or certain types of nanoparticles, one can typically assume that the
structures are convex. In particular, in our experimental application of reconstructing
an InAs nanowire from high-angle annular dark-field scanning transmission electron
microscopy (HAADF STEM) data [H2, 188], it is known that the object is comprised
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of cross-sections that are mostly close to regular hexagons; see [61, 237] (for differently
shaped polygonal cross-sections, see, e.g., [131, 157, 205]).

6.1.1 Results from [H2]

In [H2] we demonstrate the use of geometric prior knowledge to overcome the problems
of missing wedge and non-linear intensities due to diffraction effects by introducing four
algorithms. One of the algorithms (2n-GON) appears in [H2] for the first time and uses
the strongest geometric prior knowledge available in our setup, namely that the slices
contain nearly regular hexagons. Two algorithms, GKXR and MPW, are introduced
for the first time in the ET context and another algorithm (DART) is applied for the
first time to the reconstruction of a nanowire. As a fifth method, we discuss in [H2]
the BART algorithm [114], which was introduced in the 1970s and performs very well
on homogeneous objects. BART has been implemented in the open-source software
SNARK09 [138], and in [H2] we provide commands and parameters that yield high
quality reconstructions in our context.

Without going into details, we would like to comment briefly on two of our methods,
which can be called object-based since the routines aim at determining a small number of
parameters that completely describe the object (in our case, the vertices of polytopes).
The Handbook of Mathematical Methods in Imaging [181, p. 1013] refers to the two
methods as “other reconstruction schemes.”

The Gardner-Kiderlen X-ray (GKXR) algorithm [88] is an algorithm from the field
of geometric tomography. It arose from theoretical work [90] in which it was shown
that there are certain sets of four directions in 2D such that the exact X-rays of a 2D
convex object in these directions determine it uniquely among all 2D convex shapes.
Our work [H2] represents the first implementation of this algorithm (a main step of the
algorithm involves solving a heavily non-linear optimization problem). More details
can be found in [88].

The modified Prince-Willsky (MPW) algorithm [87], reconstructs a convex object K
from its support function hK , which takes a direction (unit vector u) as input and
returns a number that corresponds to the extent of K in direction u. (More precisely,
hK(u) := maxx∈K uTx, with uTx denoting the inner product of u and x.) The convex
object K is completely determined by its support function values in all directions
(see [83, Sect. 0.6]). Under mild restrictions (the sequence of employed directions u
needs to be “evenly spread”), the output of the algorithm converges almost surely as
the number of projections, affected by Gaussian noise of fixed variance, approaches
infinity [89]. Our implementation of MPW employs the Xpress R© solver [74] for solving
quadratic programs.

47



Along with simulations, we perform in [H2] reconstructions from real-world data. The
data (see Fig. 12) is obtained via high-angle annular dark-field scanning transmission
electron microscopy (HAADF STEM) from the nanowire shown in Fig. 1(b).

(a) (b)

Figure 12: Nanowire data: (a,b) 2-dimensional HAADF STEM images taken from the tilt
series of the 3-dimensional wire at two different angles.

Reconstructions of the nanowire using the different algorithms are shown in Fig. 13.

Figure 13: Reconstruction of the nanowire using different algorithms. Top-to-bottom and
frontal views are shown in the first and second row, respectively. GKXR requires
only X-ray data from 4 directions; U-FBP, MPW, and 2n-GON reconstruct from
projections.
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