ORIGINAL ARTICLE
Prospective Study
1141 Herbal Traditional Chinese Medicine and suspected liver injury: A prospective study
Melchart D, Hager S, Albrecht S, Dai J, Weidenhammer W, Teschke R

CASE REPORT
1158 Bone metastases as initial presentation of hepatocellular carcinoma
Monteserin L, Mesa A, Fernandez-Garcia MS, Gadanon-Garcia A, Rodriguez M, Varela M
ABOUT COVER

Editorial Board Member of World Journal of Hepatology, Zaigham Abbas, FACG, FCPS, FRCP (Hon), Professor, Gastroenterology, Dr. Ziauddin University Hospital, Karachi, Sindh 75600, Pakistan

AIM AND SCOPE

World Journal of Hepatology (World J Hepatol, WJH, online ISSN 1948-5182, DOI: 10.4254), is a peer-reviewed open access academic journal that aims to guide clinical practice and improve diagnostic and therapeutic skills of clinicians.

WJH covers topics concerning liver biology/pathology, cirrhosis and its complications, liver fibrosis, liver failure, portal hypertension, hepatitis B and C and inflammatory disorders, steatohepatitis and metabolic liver disease, hepatocellular carcinoma, biliary tract disease, autoimmune disease, cholestatic and biliary disease, transplantation, genetics, epidemiology, microbiology, molecular and cell biology, nutrition, geriatric and pediatric hepatology, diagnosis and screening, endoscopy, imaging, and advanced technology. Priority publication will be given to articles concerning diagnosis and treatment of hepatology diseases. The following aspects are covered: Clinical diagnosis, laboratory diagnosis, differential diagnosis, imaging tests, pathological diagnosis, molecular biological diagnosis, immunological diagnosis, genetic diagnosis, functional diagnostics, and physical diagnosis; and comprehensive therapy, drug therapy, surgical therapy, interventional treatment, minimally invasive therapy, and robot-assisted therapy.

We encourage authors to submit their manuscripts to WJH. We will give priority to manuscripts that are supported by major national and international foundations and those that are of great basic and clinical significance.

INDEXING/ABSTRACTING

World Journal of Hepatology is now indexed in Emerging Sources Citation Index (Web of Science), PubMed, PubMed Central, and Scopus.

FLYLEAF

I-IV Editorial Board

EDITORS FOR THIS ISSUE

Responsible Assistant Editor: Xiang Li
Responsible Electronic Editor: Ye-Jing Lu
Proofing Editor-in-Chief: Lian-Sheng Ma

PUBLICATION DATE

October 18, 2017

COPYRIGHT

© 2017 Baishideng Publishing Group Inc. Articles published by this Open Access journal are distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license.

SPECIAL STATEMENT

All articles published in journals owned by the Baishideng Publishing Group (BPG) represent the views and opinions of their authors, and not the views, opinions or policies of the BPG, except where otherwise explicitly indicated.

INSTRUCTIONS TO AUTHORS

http://www.wjgnet.com/bpg/generinfo/204

ONLINE SUBMISSION

http://www.f6publishing.com
Herbal Traditional Chinese Medicine and suspected liver injury: A prospective study

Dieter Melchart, Stefan Hager, Sabine Albrecht, Jingzhang Dai, Wolfgang Weidenhammer, Rolf Teschke

Dieter Melchart, Institute for Complementary and Integrative Medicine, University Hospital Zurich and University of Zurich, CH-8091 Zurich, Switzerland

Dieter Melchart, Wolfgang Weidenhammer, Competence Centre for Complementary Medicine and Naturopathy (CoCoNat), University Hospital Munich rechts der Isar, Technical University of Munich, D-80801 Munich, Germany

Stefan Hager, Sabine Albrecht, Jingzhang Dai, Hospital for Traditional Chinese Medicine, D-93444 Bad Kötzting, Germany

Jingzhang Dai, Beijing University of Chinese Medicine, Beijing 100029, China

Rolf Teschke, Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Teaching Hospital of the Medical Faculty of the Goethe University, D-63450 Hanau, Frankfurt/Main, Germany

Author contributions: Melchart D had full access to all of the study data and takes full responsibility for the integrity of the data; Melchart D, Hager S, Albrecht S, Dai J and Weidenhammer W contributed to study conception and design; Melchart D, Hager S, Albrecht S, Dai J and Weidenhammer W contributed to acquisition of data; Melchart D, Hager S, Albrecht S, Dai J, Weidenhammer W and Teschke R contributed to analysis and interpretation of data; Melchart D, Weidenhammer W and Teschke R contributed to drafting of the manuscript; Melchart D, Hager S, Albrecht S, Dai J, Weidenhammer W and Teschke R contributed to critical revision of the manuscript; Melchart D, Weidenhammer W and Teschke R contributed to statistical analysis.

Institutional review board statement: All scientific activities are authorized and reviewed by an Academic Exchange Agreement between the Beijing University of Chinese Medicine and Technische Universität München.

Informed consent statement: All patients gave their written consent prior to the study inclusion on admission to the hospital.

Conflict-of-interest statement: Albrecht, Hager and Dai belong to the medical personnel of the TCM hospital in Bad Kötzting. Melchart is head of the scientific board of the TCM hospital in Bad Kötzting taking part in voluntary service. None financial disclosure of all authors is declared.

Data sharing statement: No additional data are available.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Correspondence to: Dieter Melchart, MD, Professor, Competence Centre for Complementary Medicine and Naturopathy (CoCoNat), University Hospital Munich rechts der Isar, Technical University of Munich, Kaiserstrasse 9, D-80801 Munich, Germany. dieter.melchart@tum.de

Telephone: +49-89-7266970
Fax: +49-89-72669721

Received: May 15, 2017
Peer-review started: May 27, 2017
First decision: July 11, 2017
Revised: July 26, 2017
Accepted: August 16, 2017
Article in press: August 17, 2017
Published online: October 18, 2017

Abstract

AIM
To analyze liver tests before and following treatment with herbal Traditional Chinese Medicine (TCM) in order to evaluate the frequency of newly detected liver injury.

METHODS
Patients with normal values of alanine aminotransferase...
Traditional Chinese Medicine (TCM) with the focus on liver injury

INTRODUCTION

Traditional Chinese Medicine (TCM) with the focus on liver injury. A prospective study. *World J Hepatol* 2017; 9(29): 1141-1157

WCJH | www.wjgnet.com 1142 October 18, 2017 | Volume 9 | Issue 29 |

RESULTS

This report presents for the first time liver injury data derived from a prospective, hospital-based and large-scale study of 21470 patients who had no liver disease prior to treatment with herbal TCM. Among these, ALT ranged from 1 to 5 times the upper limit normal (ULN) in 844 patients (39.3%) and suggested mild or moderate liver adaptive abnormalities. However, 26 patients (0.12%) experienced higher ALT values of ≥ 5 times ULN (300.0 ± 172.9 U/L, mean ± SD). Causality for TCM herbs was RUCAM-based probable in 8/26 patients, possible in 16/26, and excluded in 2/26 cases. Bupleuri radix and Scutellariae radix were the two TCM herbs most commonly implicated.

CONCLUSION

In 26 (0.12%) of 21470 patients treated with herbal TCM, liver injury with ALT values of ≥ 5 times ULN was found, which normalized shortly following treatment cessation, also substantiating causality.

Key words: Traditional Chinese Medicine; Herbal medicine; Liver injury; Roussel Uclaf Causality Assessment Method; Herb induced liver injury

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Worldwide research on herbal medicine safety is still limited. Adverse effects are range from clinically not relevant to more severe ones including suspected liver injury. We conducted a prospective hospital-based study to report the number of new liver injury in patients with no liver disease prior to treatment with herbal Traditional Chinese Medicine. Liver injury was detected in 26/21470 patients (0.12%) with alanine aminotransferase values of ≥ 5 times upper limit normal. The Roussel Uclaf Causality Assessment Method assessed the causality of suspected cases and showed a causality level of “possible” for the majority of the liver injury cases.

MATERIALS AND METHODS

Study design

TCM study cohort: To assess to what extent herbal medicinal products, and their ALT values were reassessed 1-3 d prior to discharge. To verify or exclude causality for suspected TCM herbs, the Roussel Uclaf Causality Assessment Method (RUCAM) was used.

RESULTS

This report presents for the first time liver injury data derived from a prospective, hospital-based and large-scale study of 21470 patients who had no liver disease prior to treatment with herbal TCM. Among these, ALT ranged from 1 to 5 times the upper limit normal (ULN) in 844 patients (39.3%) and suggested mild or moderate liver adaptive abnormalities. However, 26 patients (0.12%) experienced higher ALT values of ≥ 5 times ULN (300.0 ± 172.9 U/L, mean ± SD). Causality for TCM herbs was RUCAM-based probable in 8/26 patients, possible in 16/26, and excluded in 2/26 cases. Bupleuri radix and Scutellariae radix were the two TCM herbs most commonly implicated.

CONCLUSION

In 26 (0.12%) of 21470 patients treated with herbal TCM, liver injury with ALT values of ≥ 5 times ULN was found, which normalized shortly following treatment cessation, also substantiating causality.

Key words: Traditional Chinese Medicine; Herbal medicine; Liver injury; Roussel Uclaf Causality Assessment Method; Herb induced liver injury

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Worldwide research on herbal medicine safety is still limited. Adverse effects are range from clinically not relevant to more severe ones including suspected liver injury. We conducted a prospective hospital-based study to report the number of new liver injury in patients with no liver disease prior to treatment with herbal Traditional Chinese Medicine. Liver injury was detected in 26/21470 patients (0.12%) with alanine aminotransferase values of ≥ 5 times upper limit normal. The Roussel Uclaf Causality Assessment Method assessed the causality of suspected cases and showed a causality level of “possible” for the majority of the liver injury cases.

MATERIALS AND METHODS

Study design

TCM study cohort: To assess to what extent herbal TCM products. Indeed, some herbal TCM products are confronted with problems of misidentified herbs, impurities, pesticides, heavy metals, or adulteration by Western drugs to enhance or provide efficacy.

Other problems were recognized as variables, which confounded establishing valid causality. Among these variables were co-medication with other herbal products or synthetic, potentially hepatotoxic Western drugs, low case data quality, incomplete consideration of alternative causes, and questionable quality of herbal TCM products. Indeed, some herbal TCM products are confronted with problems of misidentified herbs, impurities, pesticides, heavy metals, or adulteration by Western drugs to enhance or provide efficacy.

Other challenges included the fact that not all publications used a sophisticated, robust causality assessment method. Nevertheless, Roussel Uclaf Causality Assessment Method (RUCAM) was successfully applied in many cases of suspected liver injury by TCM herbs, including as examples some more recent reports. Further, there was also uncertainty as to whether the observed liver disease could have been present prior to the initiation of the TCM use rather than caused by the herbal TCM therapy itself. Meeting the objections regarding pre-existing liver disease would have required an analytical approach whereby a study protocol is prospectively applied to patients without any liver disease, in whom therapy with herbal TCM is intended and liver tests can be analyzed under such treatment conditions. In patients with new abnormal liver tests under the therapy, causality for the suspected herbal TCM product can easily be assessed using RUCAM. So far, such a systematic prospective, large-scale investigation has not been published on liver-healthy individuals, at least not in the scientific literature available in the English language.

In this report, we present for the first time liver injury data derived from a prospective, hospital-based and large-scale study of 21470 patients, who had no liver disease prior to treatment by herbal TCM. This study focused on the effect of herbal TCM use on the liver integrity of patients with normal liver test results of alanine aminotransferase (ALT), used as a diagnostic biomarker to exclude liver disease. Since this study followed a strict protocol and was conducted under clinical conditions, the risk of confounding variables appeared low and should provide valid data.
TCM treatment leads to liver injury, we designed a protocol for a prospective study in consecutive patients, who were admitted to the Hospital for TCM in Bad Kötzting, Germany. Hospital admission was commonly arranged by patients’ general practitioners or medical specialists with the intention of a TCM-based therapy. No restrictions on admission exist for patients residing in Germany, as hospital costs are covered by most German statutory sickness funds. Treatment modalities including indications, choice of specific herbal TCM products, daily dosage, and duration of therapy are based on the recommendations of the Beijing University of Chinese Medicine (BUCM), China[32,33].

Included in the TCM study cohort were all inpatients with normal ALT values on admission or the following day, who had received treatment with TCM herbs during their hospital stay, and were discharged between January 1, 1994, and December 31, 2015. Initial ALT results were obtained along with a routine blood sampling analysis. The inclusion criteria of normal serum ALT activities on admission ensured a lack of a preexisting liver disease that could later confound the potential diagnosis of liver injury along with herbal TCM treatment. For reasons of transparency, these patients represent the TCM study cohort. ALT was chosen as a specific diagnostic biomarker to clearly exclude or establish a liver disease[25,34]. Patients with increased ALT values on admission were excluded from the study.

To ensure the good medical care of the patients, six German hospital physicians and eight Chinese physicians who trained at the University of Chinese Medicine in Beijing were in charge of the patients at the 80-bed TCM hospital[35]. Also included in the team was also a pharmacist. On admission, hospital physicians provided a complete physical examination for all patients and recorded their past medical history. They also assessed all normal and elevated laboratory values and documented these together with any adverse or medical event during hospitalization in a standardized adverse event record as part of a hospital-based safety and quality assurance program. During the last three days before discharge, the occurrence of liver injury was tested using serum ALT as the appropriate diagnostic tool.

Treatment with TCM was carried out with TCM herbs, given as decoctions from raw materials[36,37]. Overall TCM treatment may also include acupuncture, Chinese manual therapy, and relaxation therapy, as outlined previously[19,35]. Western therapies were continued or prescribed if necessary. Details of prescriptions, each single Western drug, all specific TCM treatment modalities, and the duration of treatment were documented systematically in the hospital files.

Herbal TCM products were obtained from China[38,39]. Prior to use in patients, all herbal TCM products delivered to the hospital underwent a comprehensive preclinical drug control program under the guidance of the Center for Drug Research of the Ludwig-Maximilian University Munich and other drug control centers in China. For herbal TCM product quality and safety assessment, established methods were used that included HPLC, colored TLC photographs, and botanical authenticity proof[40]. This approach aimed to reduce the risk of possible falsification of the herbal products and to ensure concentrations of heavy metals, aflatoxins, and microbial contamination were within the allowed limits. Some of the herbal products were thus rejected for human use before being prescribed to any patient, mostly due to a lack of pharmaceutical quality criteria or detection of contaminants outside the regulatory requirements. All herbal TCM products were also analyzed for microbial contamination[41].

Liver injury study cohort: The liver injury cohort consists of and is limited to those patients of the TCM study cohort who experienced liver injury in connection with treatment with TCM herbs. Liver injury is defined by an elevated serum ALT activity of at least 5 × upper limit normal (ULN) in patients with normal ALT values on admission[25]. Case data of this liver injury cohort were recruited by further scrutinizing the files and adverse event reports supplied by the hospital physicians. Case identification covers age, sex, diagnosis, past medical history, treatment with herbal TCM drugs and conventional drugs, a course of laboratory data, and any adverse or medical event during hospitalization. The case details were recorded and summarized in individual narratives as part of the patients’ hospital documents.

For patients identified with newly emerging liver injury, the suspected herbal TCM products were analyzed and closely reviewed. The aim was to highlight TCM medications that might be associated with an increased risk of liver injury. As this safety analysis of herbal TCM drugs was an outcome study within a routine quality assurance program, approval by an ethical review board was not requested. All patients on admission provided informed written consent prior to study enrollment.

Causality assessment using RUCAM
In line with a previous report[19] and the recommendations of the Chinese Society of Hepatology (GSH)[42], a causality assessment of herb induced liver injury (HILI) for individual cases and herbal TCM products was achieved using RUCAM[25]. This is the most commonly used liver-specific, and validated tool for liver injury cases, and a standard form was used to extract core elements of RUCAM[25]. This assessment requires the initial evaluation of liver injury criteria and its pattern in each suspected case. The core elements of RUCAM include: The time period from the beginning until the cessation of herb intake in relation to disease onset or from the cessation of herb use to the onset of the liver injury; de-challenge characteristics with a course of ALT values after cessation or continuation of the herb use; risk factors such as alcohol abuse, age and pregnancy; co-medication with synthetic drugs or other...
herbs; search for alternative causes with special care for all hepatitis types; available information on previous herbal hepatotoxicity; and response to unintentional re-exposure. RUCAM was performed for the hepatocellular type of injury, and scoring was independently conducted by three hospital physicians (Stefan Hager, Sabine Albrecht, Dieter Melchart). Final RUCAM scores commonly range from -5 to +14 points and the resulting causality levels are defined as follows: ≤ 0 points, excluded causality; 1-2, unlikely; 3-5, possible; 6-8, probable; and ≥ 9, highly probable. RESULTS

Flowchart

The inclusion criteria of the TCM study cohort were strict, especially the criterion of normal ALT values on admission and before the initiation of the treatment with herbal TCM. During the study period from 1994 to 2015, overall, 21896 patients were admitted to the hospital, but 426 patients of these had increased ALT values and were not eligible for inclusion in the study, which corresponds to 1.91%. Consequently, 21470 patients fulfilled the inclusion criteria of the TCM study cohort and were treated with herbal TCM (Figure 1). Among these patients of the TCM study cohort, ALT values remained in the normal range in 20600 patients (95.94%) under the TCM treatment. However, treatment led in 733 patients (3.41%) to abnormal ALT values (> 1 × ULN < 2 × ULN), in 111 patients (0.51%) to ALT values of ≥ 2 × ULN < 5 × ULN, and 26 patients (0.12%) showed ALT ≥ 5 × ULN, representing the liver injury study group (Figure 1).

TCM study cohort

ALT abnormalities with values in a range from 2 × to 5 × ULN observed in 111 patients in the TCM study cohort are clearly caused by the herbal TCM treatment (Figure 1 and Table 1), with a preference of the ALT range between 2 × and 3 × ULN (Table 1). These small increases are commonly without clinical relevance and likely due to metabolic adaptation caused by events associated with the metabolism of TCM plant chemicals.

Analysis of the TCM study cohort showed that the age was 52.7 ± 14.0 years (mean ± SD), and females accounted for 71.9% (Table 2). All patients in this cohort suffered for about 7.8 years (median) from chronic disorders that led to hospital admission (Table 2). Chronic diseases or health conditions prevailed in the patients of the TCM study cohort (Table 2), whereby the majority experienced psychosomatic diseases as well as chronic pain syndromes. Additional diagnoses were, for example, hypertensomia and sleep disturbance. Herbal TCM decoctions were provided with four to five prescriptions of about 11 TCM herbs (ranging from a minimum of 6 to a maximum of 19 different herbs) per prescription during the hospital stay. The dosage of each herb was 6-15 g/d. The total

<table>
<thead>
<tr>
<th>ALT as multiples of the ULN</th>
<th>Patients (n) with ALT elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total > 1 × ULN < 2 × ULN</td>
<td>733</td>
</tr>
<tr>
<td>≥ 2 × ULN < 3 × ULN</td>
<td>71</td>
</tr>
<tr>
<td>≥ 3 × ULN < 4 × ULN</td>
<td>32</td>
</tr>
<tr>
<td>≥ 4 × ULN < 5 × ULN</td>
<td>8</td>
</tr>
<tr>
<td>Total ≥ 5 × ULN < 5 × ULN</td>
<td>111</td>
</tr>
<tr>
<td>≥ 5 × ULN < 7 × ULN</td>
<td>6</td>
</tr>
<tr>
<td>≥ 6 × ULN < 8 × ULN</td>
<td>2</td>
</tr>
<tr>
<td>≥ 7 × ULN < 9 × ULN</td>
<td>4</td>
</tr>
<tr>
<td>≥ 8 × ULN < 10 × ULN</td>
<td>3</td>
</tr>
<tr>
<td>≥ 9 × ULN < 10 × ULN</td>
<td>2</td>
</tr>
<tr>
<td>≥ 10 × ULN</td>
<td>9</td>
</tr>
<tr>
<td>Total ≥ 5 × ULN</td>
<td>26</td>
</tr>
<tr>
<td>Total number of elevated values of ALT</td>
<td>870</td>
</tr>
</tbody>
</table>

ALT: Alanine aminotransferase; ULN: Upper limit normal.
daily dosage per prescription was mean 88 ± 18 g (range 18-208), provided by two dosages a day.

Liver injury study cohort
The liver injury study cohort consisting of 26 patients with serum ALT ≥ 5 × ULN (Table 1) merits further consideration (Table 2). Compared with the large TCM study cohort, patients in the liver injury study cohort were older (52.7 ± 14.0 years vs 57.6 ± 10.5 years) and contained a higher percentage of women (71.9% vs 84.6%), whereas the duration of the hospital stay was similar in both cohorts (Table 2). There is a long list of indications for herbal TCM treatment in the patients in the liver injury study group, along with individual TCM herbs that were used as medication (Table 3). For these patients with confirmed liver injury, details are given for maximum ALT values, which range from 140 U/L to 1052 U/L (Table 3).

TCM herbs were rarely applied as a mono-preparation, but mostly as mixtures consisting of several herbs adding up to 35 different drugs during the patients’ four-week stay. The daily dosage was 95 ± 30 g and thus slightly higher than in the TCM study cohort (Table 2). Among the many herbal TCM used by the 26 patients in the liver injury cohort, Bupleuri radix and Scuterllariae radix were the two TCM herbs most frequently implicated in liver injury, with variable RUCAM-based causality gradings. Most of the patients received one to six TCM drugs that were associated with potential liver injury as evidenced from the scientific literature, e.g., one patient (case 8) received six potentially hepatotoxic herbal TCM drugs during their hospital stay (Table 4).

Narratives
Narratives are essential for case details including treatment conditions and are presented for reasons of transparency and possible re-evaluation by peers or regulatory agencies. The narratives were documented in the hospital case records and are provided for all 26 patients in the liver injury study cohort (Table 5). In only one patient (case 8), none of the potential hepatotoxic TCM herbs was prescribed. Half of the patients were also under co-medication with synthetic drugs, initiated prior to admission, and only a few of these drugs are known for their hepatotoxic potential. The RUCAM analysis excluded all co-mediated drugs as the cause of liver injury in the cases under consideration (Table 5).

Among the liver injury study cohort, 12/26 (46%) of the patients experienced one or more gastrointestinal symptoms such as abdominal pain, diarrhea (6/12), nausea (4/12), vomiting (3/12), and intestinal colicky cramps (3/12) (Table 2). These symptoms are most likely the result of incipient liver injury due to herbal TCM and may be interpreted as a clinical warning signal. Following the discontinuation of herbal TCM treatment, the symptoms rapidly vanished and ALT values normalized in virtually all patients in the liver injury study cohort.

RUCAM-based causality assessment and grading
For all 26 cases in the liver injury study cohort, causality for the used herbal TCM and co-mediated synthetic drugs used was assessed using RUCAM. RUCAM-based causality for TCM herbs was probable in 8/26 patients, possible in 16/26, and excluded in 2/26 cases. All details are presented to facilitate thorough information and reassessment by other groups or regulators (Table 6).

Assessing causality in the 26 cases is indeed challenging, but RUCAM can handle this condition fairly well. All patients used a mixture of several TCM herbs (Table 5). The exposure conditions of the suspected herbs are identical, especially regarding start of use and discontinuation. Therefore, basic causality gradings should be identical, unless some herbs have a record of known previous liver injury, which gives two extra RUCAM points, as compared to other herbs without such records, which do not allow two extra points. Therefore, differences in causality grading for TCM herbs can be achieved considering the criteria of known hepatotoxicity. In the absence of such criteria, causality must be attributed to all the herbs together that were used, without the possibility of differentiating between the various herbs. Some patients in the liver injury study cohort also used conventional drugs, which were prescribed either before they were included in the study or during hospitalization. RUCAM was also applied to
Table 3 Indication for treatment, maximum value of alanine aminotransferase, suspected Traditional Chinese Medicine herbs and Roussel Uclaf Causality Assessment Method-based causality grading in liver injury cases 1-26

<table>
<thead>
<tr>
<th>Cases</th>
<th>Indication for TCM treatment</th>
<th>Maxi-mum ALT (U/L)</th>
<th>Suspected TCM herbs</th>
<th>RUCAM-based causality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1</td>
<td>Asthma Depression</td>
<td>341</td>
<td>Bupleuri radix Glycyrrhizae radix Scutellariae radix</td>
<td>Possible (score +4)</td>
</tr>
<tr>
<td></td>
<td>Lower back pain syndrome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient 2</td>
<td>Posttraumatic paralysis of both legs</td>
<td>140</td>
<td>Bupleuri radix Glycyrrhizae radix Scutellariae radix</td>
<td>Possible (score +3)</td>
</tr>
<tr>
<td>Patient 3</td>
<td>Chronic bronchitis Emphysema Sleeping disorder</td>
<td>234</td>
<td>Bupleuri radix Ephedrae herba Glycyrrhizae radix Scutellariae radix</td>
<td>Probable (score +7)</td>
</tr>
<tr>
<td>Patient 4</td>
<td>Chronic migraine</td>
<td>168</td>
<td>Bupleuri radix Glycyrrhizae radix</td>
<td>Probable (score +6)</td>
</tr>
<tr>
<td>Patient 5</td>
<td>Post herpes zoster state Hypertension Diabetes mellitus</td>
<td>330</td>
<td>Dictamni radicis cortex Scutellariae radix</td>
<td>Excluded (score -1)</td>
</tr>
<tr>
<td>Patient 6</td>
<td>Chronic migraine Cervico-brachial pain syndrome Low back pain syndrome Diarrhoea</td>
<td>530</td>
<td>Bombyx batryticatus (t) Bupleuri radix Meliae toosendan fructus (semen) Scutellariae radix</td>
<td>Possible (score +3)</td>
</tr>
<tr>
<td>Patient 7</td>
<td>Lumbosacral plexus syndrome Cervicobrachial pain syndrome</td>
<td>132</td>
<td>Bupleuri radix Dictamni radicis cortex Ephedrae herba Scutellariae radix</td>
<td>Possible (score +5)</td>
</tr>
<tr>
<td>Patient 8</td>
<td>Polynoepathy</td>
<td>193</td>
<td>Decoction; none identified suspected herb Bupleuri radix Scutellariae radix</td>
<td>Possible (score +3)</td>
</tr>
<tr>
<td>Patient 9</td>
<td>Polymyalgia rheumatica Fibromyalgia</td>
<td>162</td>
<td>Bupleuri radix Scutellariae radix</td>
<td>Possible (score +4)</td>
</tr>
<tr>
<td>Patient 10</td>
<td>Chronic migraine Tension headache</td>
<td>195</td>
<td>Bombyx batryticatus (t) Bupleuri radix Meliae toosendan fructus Scutellariae radix</td>
<td>Possible (score +3)</td>
</tr>
<tr>
<td>Patient 11</td>
<td>Difficulty of walking</td>
<td>325</td>
<td>Bupleuri radix Glycyrrhizae radix</td>
<td>Excluded (score -1)</td>
</tr>
<tr>
<td>Patient 12</td>
<td>Chronic fatigue Polyneuropathy Low back pain syndrome Depressive episodes Gastrointestinal symptoms</td>
<td>751</td>
<td>Meliae toosendan fructus Scutellariae radix</td>
<td>Possible (score +7)</td>
</tr>
<tr>
<td>Patient 13</td>
<td>Low back pain syndrome</td>
<td>389</td>
<td>Cassiae semen Scutellariae radix</td>
<td>Possible (score +5)</td>
</tr>
<tr>
<td>Patient 14</td>
<td>Chronic osteomyelitis</td>
<td>1052</td>
<td>Meliae toosendan fructus Scutellariae radix Bupleuri radix</td>
<td>Probable (score +7)</td>
</tr>
<tr>
<td>Patient 15</td>
<td>Chronic fatigue</td>
<td>290</td>
<td>Bupleuri radix Meliae toosendan fructus Scutellariae radix</td>
<td>Possible (score +4)</td>
</tr>
<tr>
<td>Patient 16</td>
<td>Chronic cephalgia Lichen sclerosus Cervical spondylisis</td>
<td>715</td>
<td>Bombyx batryticatus (t) Bupleuri radix Scutellariae radix</td>
<td>Possible (score +5)</td>
</tr>
<tr>
<td>Patient 17</td>
<td>Chronic migraine Depression</td>
<td>252</td>
<td>Bombyx batryticatus (t) Bupleuri radix Cassiae semen Scutellariae radix</td>
<td>Possible (score +6)</td>
</tr>
<tr>
<td>Patient 18</td>
<td>Spondylosis cervicalis</td>
<td>233</td>
<td>Bombyx batryticatus (t) Bupleuri radix Scutellariae radix</td>
<td>Possible (score +6)</td>
</tr>
<tr>
<td>Patient 19</td>
<td>Carcinophobia Tinnitus</td>
<td>249</td>
<td>Bombyx batryticatus (t) Bupleuri radix Scutellariae radix</td>
<td>Possible (score +6, 2011)</td>
</tr>
<tr>
<td>Patient 20</td>
<td>Allergic sensitivity syndrome</td>
<td>295</td>
<td>Ephedrae herba Puerariae radix Polygoni multiforma caulis</td>
<td>Possible (score +7, 2014)</td>
</tr>
<tr>
<td>Patient 21</td>
<td>Migraine Lower back pain syndrome Depressive episodes</td>
<td>207</td>
<td>Bupleuri radix Ephedrae herba Glycyrrhizae radix Polygoni cuspidate rhizoma</td>
<td>Possible (score +4)</td>
</tr>
<tr>
<td>Patient 22</td>
<td>Neurasthenia Fibromyalgia</td>
<td>221</td>
<td>Bupleuri radix Glycyrrhizae radix Rhei radix et rhizoma Scutellariae radix</td>
<td>Possible (score +5)</td>
</tr>
</tbody>
</table>
these co-medicated drugs, which may differ regarding their previous hepatotoxicity and their duration of use. However, it is unlikely that drugs may have caused the increases of ALT during the hospitalization since at the time of inclusion in the study, the ALT values were normal.

DISCUSSION

This report provides liver injury data derived from a prospective, hospital-based and large-scale study of 21470 patients, who had no liver disease prior to treatment with TCM herbs for the first time. Clinically relevant liver injury with ALT ≥ 5 × ULN developed in 26 patients (0.12%) (Figure 1 and Tables 1-5). These data suggest that TCM herbs carry a risk of liver injury in line with other reports[9,27,28,43] and concomitantly dismiss contrarian claims that TCM herbs lack hepatotoxic potency[16]. However, the surprisingly low frequency of liver injury caused by herbal TCM in this study (Figure 1) is at variance with several reports implying that liver injury cases due to these herbs occur at a high frequency[2,9,11,17,19,27,28,43]. The rarity of liver injury cases found in the present investigation may be explained by the strict study protocol: (1) prospective rather than retrospective study approach; (2) valid exclusion of pre-existing liver disease prior to the start of the therapy with TCM herbs; (3) hospital-based treatment with specifically trained TCM physicians from Germany and China; (4) use of good quality TCM herbal products specifically ascertained by appropriate analyses; (5) therapy with a median of 19.5 d, avoiding prolonged treatment; (6) selective inclusion in the study only of those patients meeting the liver injury criteria ALT ≥ 5 × ULN; and (7) causality assessment using RUCAM and ascertaining ALT dechallenge following...

For ALT until 2002, the normal range was ≤ 24 U/L for males and females, thereafter ≤ 35 U/L for females and ≤ 50 U/L males. Causality levels are as follows: ≤ 0 points, excluded causality; 1-2, unlikely; 3-5, possible; 6-8, probable; and ≥ 9, highly probable. TCM: Traditional Chinese Medicine; RUCAM: Roussel Uclaf Causality Assessment Method.

Table 4 Frequency of herbal Traditional Chinese Medicine use in patients with liver injury with Traditional Chinese Medicine herbs suspected to cause and case number correlation to Roussel Uclaf Causality Assessment Method based causality grading

<table>
<thead>
<tr>
<th>Potentially hepatotoxic TCM herbs</th>
<th>Total herbs (n)</th>
<th>RUCAM-based causality grading: Probable Cases</th>
<th>RUCAM-based causality grading: Possible Cases</th>
<th>RUCAM-based causality grading: Excluded Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bombyx batryticatus (t)</td>
<td>7</td>
<td>17, 18, 19, 24</td>
<td>6, 10, 16</td>
<td>21, 23, 25, 26</td>
</tr>
<tr>
<td>Bupleuri radix</td>
<td>19</td>
<td>3, 4, 17, 18, 24</td>
<td>1, 2, 7, 9, 15, 16, 17, 20</td>
<td>5</td>
</tr>
<tr>
<td>Cassiae semen</td>
<td>2</td>
<td>17</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Dictamni radixis cortex</td>
<td>2</td>
<td>7</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Ephedrae herba</td>
<td>4</td>
<td>3, 19</td>
<td>7, 20</td>
<td></td>
</tr>
<tr>
<td>Glycyrrhizae radix</td>
<td>9</td>
<td>3, 4</td>
<td>1, 2, 20, 21, 22, 26</td>
<td>11</td>
</tr>
<tr>
<td>Meliae toosendan</td>
<td>5</td>
<td>12, 14</td>
<td>10, 15, 26</td>
<td></td>
</tr>
<tr>
<td>Polygoni cuspidate rhizoma</td>
<td>1</td>
<td></td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Polygoni multiflori caulis</td>
<td>2</td>
<td>19, 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polygoni multiflori radix</td>
<td>1</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psoraleae fructus (semen)</td>
<td>1</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puerariae radix</td>
<td>1</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhei radix et rhizoma</td>
<td>1</td>
<td></td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Scutellariae radix</td>
<td>20</td>
<td>3, 14, 17, 18, 19, 24</td>
<td>1, 2, 6, 7, 9, 10, 15, 16, 20, 21, 22, 25, 26</td>
<td>5</td>
</tr>
</tbody>
</table>

TCM: Traditional Chinese Medicine; RUCAM: Roussel Uclaf Causality Assessment Method.
Table 5 Narratives of the cases 1-26 of the liver injury study cohort

<table>
<thead>
<tr>
<th>Case</th>
<th>Patients</th>
<th>Narratives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>Patient with asthma (ICD-9 493.9), chronic low back pain (ICD-9 724.2), and reactive depression (ICD-9 300.4) treated with TCM decoctions with 8 drugs: Angelicae sinensis radix, Asari herba, Astragali radix, Atractylodis macrocephalae rhizoma, 51 yr male Bupleuri radix, Glycyrrhizae radix, Paeoniae rubrae radix, Portia (pars), Scutellariae radix. Total daily dose: 80 g. Co-medication theophylline, fluocortolone. No alcohol abuse. Adverse events: nausea after drinking the decoction. ALT 293 U/L. First control after 5 d: ALT 341 U/L. Second control 14 d after discharge: ALT 17 U/L. No hepatitis serology. RUCAM-based causality for Bupleuri radix, Glycyrrhizae radix and Scutellariae radix: Possible (score +4)</td>
<td></td>
</tr>
<tr>
<td>Case 2</td>
<td>Patient suffered from unclear paralytic symptoms in both legs after trauma (ICD-9 344). Herbal TCM treatment with 9 drugs: Angelicae sinensis radix, Asari herba, Astragali radix, Atractylodis macrocephalae rhizoma, Bupleuri radix, Glycyrrhizae radix, Paeoniae rubrae radix, Portia (Stické), Scutellariae radix for 22 d. Total daily dose: 60 g. Co-medication: digoxin, carvedilol, nitrofurantoin, and sulfadiazine. No alcohol abuse. No adverse event symptoms. At discharge: ALT 140 U/L. First control 3 d later: ALT 100 U/L. Second control 3 wk later: ALT 22 U/L. No hepatitis serology. RUCAM-based causality for Bupleuri radix, Glycyrrhizae radix, and Scutellariae radix: Possible (score +3)</td>
<td></td>
</tr>
<tr>
<td>Case 3</td>
<td>Patient with chronic bronchitis (ICD-9 491), emphysema (ICD-9 492), and sleeping disorder (ICD-9 780.50) was treated with herbal TCM decoctions (10 drugs) for 26 d: Angelicae sinensis radix, Asari herba, Astragali radix, Atractylodis macrocephalae rhizoma, 68 yr female Bupleuri radix, Ephedrae herba, Glycyrrhizae radix, Paeoniae rubrae radix, Portia (Stické), Scutellariae radix. Total daily dose: 80 g. No co-medication. No alcohol abuse. No adverse event symptoms. ALT at discharge: 234 U/L. First control at 4 wk after discharge: ALT 7 U/L. No hepatitis serology. RUCAM-based causality for Bupleuri radix, Ephedrae herba, Glycyrrhizae radix, and Scutellariae radix: Probable (score +7)</td>
<td></td>
</tr>
<tr>
<td>Case 4</td>
<td>Patient with migraine (ICD-9 346.0) was treated for 28 d with the following herbal TCM decoctions (15 drugs): Angelicae dahuricae radix, Angelicae sinensis radix, Armeniacae amuren semem, Asari herba, Bupleuri radix, Codonopsis pilosulae radix, E. No alcohol abuse. Adverse event symptoms: fever 38.6 °C, erythema, and transient sceral jaundice. At discharge ALT of 330 U/L at control < 24 U/L. No hepatitis serology. RUCAM-based causality for Bupleuri radix, Dictamnis radix, and Scutellariae radix: Excluded (score -1)</td>
<td></td>
</tr>
<tr>
<td>Case 5</td>
<td>Patient was treated with herbal TCM decoctions: Bupleuri radix, Chebeulae fructus, Dictamnis radix cortex, Gentianae macrophyllae rhizoma, Margaritifera usta concha (t), Moutan radix cortex, Myristicae semen, Paeoniae rubrae radix, Rehmanniae radix, Scutellariae radix, Sophorieae fructus. Total daily dose: 110 g. Co-medication with potentially hepatotoxic drugs: zolpidem, anti-factor 10 Xa-activity. No alcohol abuse. Adverse event symptoms: Fever 38.6 °C, erythema, and transient sceral jaundice. At discharge ALT of 330 U/L at control < 24 U/L. No hepatitis serology. RUCAM-based causality for Bupleuri radix, Dictamnis radix, and Scutellariae radix: Excluded (score -1)</td>
<td></td>
</tr>
<tr>
<td>Case 7</td>
<td>Patient with lumbosacral plexus syndrome (ICD-9 953.5) and cervico-brachial syndrome (ICD-9 723.3) was treated for 24 drugs for 26 d with decoctions: Angelicae sinensis radix, Asteris radix, Bupleuri radix, Cinamomum ramulos, Citri reticulatae pericarpium, Codonopsis pilosulae radix, Coicis semen, Euryales semen, Euvadiae fructus, Ligustici rhizome, Lycoperi herba, Moutan radix, Cortex rhizome, Myristicae semen, Pinelliae praeparatae rhizome, Poria (parts), Psoraleae fructus (Semen), Punicae granati pericarpium, Rehmanniae praeparatae rhizome, Rhodiolae rhizome, Scutellariae radix, Uncariae cum uncis ramulus, Vitus fructus. Total Daily Dose: 150 G. Co-Medication With Potentially Hepatotoxic Drugs: Ibuprofen 800 And Piroxicam 10. Alcohol Consumption 1 Drink Beer Daily. After Treatment For 5 D, Improvement Of Diarrhea, And After 22 D Migraine Attack Treated With Ibuprofen. Directly After Intake Of Ibuprofen, She Noticed Symptoms With Stomach Pain, Nausea, Vomiting, ALT At Discharge 330 U/L, At Control 47 D Later: 14 U/L. Hepatitis Serology Post Increased ALT: Anti-HAV-IgG Positive; Anti-HAV-IgM Negative; Anti-Hbs-Ag Negative; Anti-HBs Negative; Anti-HbC (IgM/IgG) Negative</td>
<td></td>
</tr>
</tbody>
</table>
Melchart D et al. Herbal TCM and liver injury

Case 10
female
35 yr (2002)
Patient suffered from migraine (ICD-9 346.0) and tension headache (ICD-9 307) since 20 yr. Treatment with 20 drugs: Albizieae cortex, Amomi cardamome semen, Angelicae dahuricae radix, Angelicae sinensis radix, Arctiopos siccocephae rhizoma, Bombyx batryticatus (t), Bupleuri radix, Codonopsis pilosulae radix, Dolichoris album semen, Evodiae fructus, Ligustici rhizoma, Moutan radicis cortex, Petalocarpi fructus, Paeoniae rubrae radix, Phellodendri cortex, Rehmanniae fructus, Schisandrae rubrae radix, Siegesbeckiae herba, Trichosanthis fructus. Total daily dose: 95 g. Herbal TCM treatment for 28 d. Co-medication with potentially hepatotoxic drugs: Aspirin. Occasional alcohol use. Adverse event symptoms: abdominal pain and diarrhoea. ALT at discharge 195 U/L at first control 10 d after ALT 56 U/L. No hepatitits serology.

RUCAM-based causality for Bupleuri radix, Melissa toosendan fructus, and Scutellariae radix: Possible (score +5)

Case 11
female
74 yr (2003)

RUCAM-based causality for Glycryrriza rhizoma: Excluded (score -1)

Case 12
female
62 yr (2004)
Patient with chronic fatigue (ICD-10 L53), depressive episodes (ICD-10 F32.9), and gastrointestinal symptoms (ICD-10 K59.9) including abdominal pain and flatulence. Treatment with herbal TCM decoctions (18 drugs) for 26 d: Alhizieae cortex, Amomi cardamome semen, Angelicae sinensis radix, Asphrygos macrocephalae rhizoma, Bupleuri radix, Cinnamomum aiscalomea, Curcuma longae rhizoma, Gentianae macrophylla rhizoma, Loranthus rhizoma, Meliae toosendan fructus, Notoginseng radix, Phragmitis rhizoma, Platycodi radix, Poria (parts), Schisandrae fructus. Total daily dose 96 g. Co-medication with clorazepate. No alcohol abuse. ALT at discharge 751 U/L. Seventeen days after cessation of herbal TCM products: ALT 148 U/L. No more subsequent ALT results available. Adverse event symptoms: Directly after discharge from the TCM-hospital, the patient was admitted at another hospital with a department of internal medicine due to deterioration of gastrointestinal symptoms. Serology: EBV-IgG 590 U/L, EBV-IgM negative.

RUCAM-based causality for Melissa toosendan fructus: probable (score +7)

Case 13
female
57 yr (2004)
Patient with arthralgia (ICD-10 M25.5), lower back pain syndrome (ICD-10 M54.4), and sleeping disorder (ICD-10 G47.9) was treated with herbal TCM decoctions (14 drugs) for 25 d: Achyranthis bidentatae radix, Alhizieae cortex, Angelicae sinensis radix, Astragali radix, Cassieae semen, Cinnamomum ramulus, Curcuma longae rhizoma, Gentiana macrophylla rhizoma, Loranthus ramulus, Notoginseng radix, Notopetinisia rhizoma, Periploca radix, Psoraleae fructus (semen), Spatholobi caulis. Total daily dose: 110 g. Co-medication: L-thyroxine, aminophylline. No alcohol abuse. Adverse event symptoms: abdominal pain, loss of appetite, and vomiting. ALT at discharge 389 U/L; at first control 4 d later: ALT 191 U/L, and at second control 15 d later: ALT 22 U/L. Hepatitis serology post increased ALT: anti-HAV (IgG + IgM) positive; anti-HAV IgM negative; HBS-Antigen negative; anti-HBs positive; anti-HBc negative; HCV ab: negative.

RUCAM-based causality for Cassieae semen: possible (score +5)

Case 14
female
52 yr (2006)
Patient with chronic osteomyelitis (ICD-10 M68.0) left leg and a six-year history after open fracture. PMH of hepatitis A 1968. Treatment with herbal TCM decoctions (12 drugs) for 24 d: Achyranthis bidentatae radix, Amomi cardamome semen, Chaoenomeles fructus, Citri grandis exocarpium, Coicis semen, Corydalis rhizoma, Mangolie officinalis cortex, Meliae toosendan fructus, Paeoniae rubrae radix, Poria (parts), Scutellariae radix, Zingiberis rhizoma. Total daily dose: 155 g. Co-medication with potential hepatotoxicity: use of not overdosed paracetamol (once) and ibuprofen (when needed, but presently no intake). No alcohol abuse. At day 20 after admission, patient showed adverse event symptoms like abdominal pain of the colic type with intestinal cramps, nausea, and mshier diarrhea. No ascites, no splenomegaly, no hyperbilirubinemia. ALT at discharge 1052 U/L. Three days later: 692 U/L and 33 d later: 33 U/L. Normal hepatitis serology with exclusion of hepatitis A, B, and C.

RUCAM-based causality for Meliae toosendan fructus: Probable (score +7)

Case 15
female
43 yr (2007)

RUCAM-based causality for Bupleuri radix, Melissa toosendan fructus, and Scutellariae radix: Possible (score +4)

Case 16
female
58 yr (2007)
Patient with lichen sclerosus (ICD-10 L90.0) and cervical spondylosis (ICD-10 M47.0) was treated with herbal TCM decoctions (11 drugs) for 25 d: Amomi cardamome semen, Astrapiae radix, Bacopasae caulis in taeniam, Buppyox batryticatus (t), Bupleuri radix, Coicis semen, Kochiae fructus, Phellodendri cortex, Rehmanniae fructus, Salviae miltiorrhizae radix, Scutellariae radix. Total daily dose: 40 g. No co-medication. No alcohol abuse. Adverse event symptoms: abdominal pain. ALT values at discharge normal. Continued use of not overdosed paracetamol (once) and ibuprofen (when needed, but presently no intake). No alcohol abuse. At day 20 after admission, patient showed adverse event symptoms like abdominal pain of the colic type with intestinal cramps, nausea, and mshier diarrhea. No ascites, no splenomegaly, no hyperbilirubinemia. ALT at discharge 1052 U/L. Three days later: 692 U/L and 33 d later: 33 U/L. Normal hepatitis serology with exclusion of hepatitis A, B, and C.

RUCAM-based causality for Melissa toosendan fructus, and Scutellariae radix: Probable (score +7)

Case 17
female
48 yr (2010)
Patient with migraine (ICD-10 G34.0) and depression (ICD-10 F32.0) was treated with 11 herbal TCM components as decoctions for 20 d: Angelicae dahuricae radix, Babumsae caulis in taeniam, Buppyox batryticatus (t), Bupleuri radix, Cassieae semen, Curcumae longae rhizoma, Dipsaci radix, Gentianae macrophyllae rhizoma, Scutellariae radix, Siegesbeckiae herba, Trichosanthis fructus. Total daily dose: 60 g. No co-medication. No alcohol abuse. Adverse event symptoms: abdominal pain. Safety control: ALT 279 U/L. Cessation of the herb use. Five days after cessation and at discharge: ALT 252 U/L. First control 14 d after hospital discharge: ALT 12 U/L. Hepatitis serology post increased ALT: Hepatitis A, B, C excluded. Anti-EBV-VCA-IgG > 100; EBV-VCA-IgM < 0.9; HBsAb 474 Units; Hbc ab negative; HBc ab not reactive; EBV-EBNA1-Ab (IgG) > 100 Units; Anti-HAV (IgM) negative; Anti-HBc (IgM) negative.

RUCAM-based causality for Bupleuri radix, and Scutellariae radix: Possible (score +5)
RUCAM-based causality for Bombyx battyticatus (t), Bupleuri radix, Cassiae semen and Scutellariae radix: Probable (score +6)

Case 18 female 52 yr (2010)
Patient with depression (ICD-10 F32.1), migrane (ICD-10 G43.0), spondylodiscus cervical (ICD-10 M74.8), and cephalgia (ICD-10 R51) treated with 16 drugs: Achyranthis bidentatae radix, Angelicae dahuricae radix, Bambusae caulis in taeniam, Bombyx battyticatus (t), Bupleuri radix, Citri reticulatae pericarpium, Coicis semen, Curcumae longae rhizoma, Magnoliae officinalis cortex, Paeoniae rubrae radix, Polygalae radix, Poria (Stöcke), Scutellariae radix, Tribuli fructus, Vitisicus fructus, Zingiberis rhizoma. Total daily dose: 9kg. Duration of treatment for 7 d because of adverse event symptoms of dizziness and deterioration of headache. Co-medication: L-thyruxine. Safety check 14 d after admission: ALT 76 U/L. At first control 20 d after admission: ALT 253 U/L. At discharge: ALT 198 U/L. Control 30 d after discharge: ALT 35 U/L. Serology post increased ALT: Anti-HAV (IgG, IgM) negative; anti-HAV (IgM) negative; HBS-antigen negative, Anti-HBs < 10 IU/L; Anti-HBe (IgG + IgM) positive; Anti-HCV negative

RUCAM-based causality for Bombyx battyticatus (t), Bupleuri radix, and Scutellariae radix: Probable (score +6)

Case 19 female 60 yr (2011)
In 2011, patient with carcinophobia (ICD-10 F45.2), allergic sensitivity (ICD-10 I78.4) and tinnitus (ICD-10 H10.3) was treated with 28 drugs for 19 d with: Achyranthis bidentatae radix, Angelicae sinensis radix, Armeniaca amurae semen, Atragrari radix, Atractylodis macrocephala rhiza, Aaurantii immaturas fructus, Bambusae caulis in taeniam, Bombyx battyticatus (t), Bupleuri radix, Chrysanthemi flos, Cinnamomi ramulus, Curcumae longae rhizoma, Curcumae radix, Euphrasiae herba, Edebroeiulinea radix, Ligustri lucidi fructus, Liquidambaris fructus, Luffae fructus retinervus, Lycii fructus, Mentheae herba, Mori ramulis, Paeoniae albae radix, Paeoniae rubrae radix, Persicae semen, Peucedani radix, Polyonii multiflori caulis, Schisandrae fructus, Scutellariae radix. Daily drug dose 119 g. No co-medication. No alcohol. No adverse event symptoms. ALT at discharge 249 U/L; at first control after 3 d 123 U/L; at second control after 69 d 30 U/L. No hepatitis serology

RUCAM-based causality for Bombyx battyticatus (t), Bupleuri radix, Edebroeiulinea herba, Polyonii multiflori caulis, and Scutellariae radix: Probable (score +6)

Case 20 female 53 yr (2012)
Patient with depressive episode (ICD-10 F33.1), migrane (ICD-10 G43.1), and low back-pain (ICD-10 M54.1) was treated for 22 d with the following 12 components: Achyranthis bidentatae radix, Angelicae dahuricae radix, Bupleuri radix, Cuscutae semen, Lychstacunching rhiza, Liquidambars fructus, Lycii fructus, Rehmanniae radix, Scutellariae radix, Trachisopolyei caulis, Tribuli fructus, Uncarias cum umbilicorum. Total daily dose: 88 g. Additional wind-heat-mixtue: Polyonii cuspidatae rhiza, Glycyrrhizae radix 3 d. Wind-cold-mixtue: Ehedra herba and Polyonii cuspidatae rhiza. Total daily dose no co-medication. No alcohol. No adverse effect symptoms. ALT at discharge 207 U/L; 22 d later at first control 30 U/L. No hepatitis serology

RUCAM-based causality for Paeoniae radix, Glycyrrhizae radix, Polyonii cuspidatae rhiza, and Scutellariae radix: Possible (score +4)

Case 21 female 53 yr (2013)
Patient with neurasthenia (ICD-10 F48.0) and fibromyalgia (ICD-10 M79.7) received herbal TCM decoction for 18 d with the following 24 herbs: Achyranthis bidentatae radix, Atragrari radix, Atractylodis macrocephala rhiza, Aurantrii immaturas fructus, Bambusae caulis in taeniam, Bupleuri radix, Carthami flos, Citri reticulatae pericarpium, Citri sarcodactylis fructus, Curcumae longae rhizoma, Dipsaci radix, Glycyrrhizae radix, Inulae flos, Lycii fructus, Ophiopogonis radix, Paeoniae albae radix, Paeoniae rubrae radix, Persicae semen, Pinelliae praeparae rhiza, Pseudostellariae radix, Rehmanniae radix, Rhei radix, Rhizoma, Scutellariae radix,Siegesbeckiae herba. Total daily dose: 78 g. No potentially hepatotoxic co-medication (only L-thyruxine). No alcohol. No adverse event symptoms. ALT at discharge 221 U/L and 41 U/L at control 14 d later. No hepatitis serology

RUCAM-based causality for Bupleuri radix, Glycyrrhizae radix, Rhei radix et rhizoma, and Scutellariae radix: Possible (score +5)

Case 22 female 52 yr (2014)
Patient with somatoform pain disorder (ICD-10 F45.0), drug induced tension headache (ICD-10 G45.2), and polyarthritis (ICD-10 M05.2) who was treated with herbal TCM decoctions for 22 d. The following 35 herbs were applied: Achyranthis bidentatae radix, Anemarrhenae rhiza, Atractylodis pubescens radix, Atragrari radix, Atractylodis rhizoma, Bambusae caulis in taeniam, Chaenomelis fructus, Cinnamomi cortex, Coptidis rhizoma, Curcumae longae rhizoma, Curcumae radix, Lycii fructus, Liquidambaris fructus, Luffae fructus, Magnoliæ officinalis cortex, Mori ramuli, Norogotiphyi gynnea rhiza seu radix, Paeoniae rubrae radix, Pinelliae praeparae rhiza, Polygalae radix, Scutellariae radix, Siegesbeckiae herba, Sinominenii caulis, Sparangii tuber (rhizoma), Trachelo-spermi caulis, Tribuli fructus, Trichosanthis fructus, Uncarias cum umbilicorum. Total daily dose was 78 g. Co-medication with the potentially hepatotoxic drug: omega-3-acidethylester. No alcohol-abuse. Adverse event symptoms: diarrhea, abdominal pain, and flatulence. Hepatitis B serology negative; HBS-Ag negative, Anti-HCV negative. At discharge: ALT 363 U/L and 15 U/L at control 90 d later

RUCAM-based causality for Glycyrrhizae radix and Scutellariae radix: Possible (score +3)

Case 23 female 46 yr (2014)
Patient with alopecia cranialis totalis (ICD-10 L63.0) and Hashimoto-thyroiditis (ICD-10 E06.3) was treated for 28 d with the following 15 TCM herbs: Achyranthis bidentatae radix, Angelicae sinensis radix, Atragrari radix, Bambusae caulis in taeniam, Bupleuri radix, Citri reticulatae pericarpium, Cuscutae semen, Ledebouriellae radix, Lycii fructus, Periploca radicis, Paeoniae rubrae radix, Persicae semen, Peucedani radix, Paeoniae albae radix, Paeoniae rubrae radix, Paeoniae rubrae radix, Paeoniae rubrae radix, Paeoniae rubrae radix, Polygalae radix, Scutellariae radix, Siegesbeckiae herba, Sinominenii caulis, Sparangii tuber (rhizoma), Trachelo-spermi caulis, Tribuli fructus, Trichosanthis fructus, Uncarias cum umbilicorum. Total daily dose was 78 g. Co-medication with the potentially hepatotoxic drug: omega-3-acidethylester. No alcohol-abuse. Adverse event symptoms: diarrhea, abdominal pain, and flatulence. Hepatitis B serology negative; HBS-Ag negative, Anti-HCV negative. At discharge: ALT 363 U/L and 15 U/L at control 90 d later

RUCAM-based causality for Paeoniae radix, Polyonii multiflori radix, and Scutellariae radix: Possible (score +4)

Case 24 female 51 yr (2014)
Patient with depression (ICD-10 F33.1) and migrane (ICD-10 G43.0) took for 17 d the herbal TCM decoction with the following 18 herbs: Achyranthis bidentatae radix, Angelicae sinensis radix, Bombyx battyticatus (t), Bupleuri radix, Curcumae longae rhizoma, Curcumae radix, Kochiae fructus, Ligustri lucidi fructus, Lycii fructus, Mori radices corporis, Mori ramuli, Paeoniae rubrae radix, Polyonii multiflori caulis, Salviae milionrhizae radix, Scutellariae radix, Spargani tuber (rhizoma), Spatholobi caulis, Tribuli fructus. Total daily dose was 60 g. Co-medication: cimicifuga, zolpidem. No alcohol. Lack of adverse event symptoms. At discharge and control: ALT 210 U/L and 191 U/L. At a subsequent control 19 d later, ALT 36 U/L. RUCAM-based causality for Bombyx battyticatus (t), Bupleuri radix, Polyonii multiflori radix, and Scutellariae radix: Probable (score +6)
All patients showed normal ALT values at admission and experienced liver injury under therapy with herbal TCM. Indication for TCM treatment was based on diagnoses according to ICD classification. Liver injury is defined as ALT > 5 × ULN. TCM herbs with known hepatotoxicity from literature represented in bold [2, 6, 17]. Causality for all bold TCM herbs was assessed using the updated RUCAM [25]. Causality levels are as follows: ≤ 0 points, excluded causality; 1-2, unlikely; 3-5, possible; 6-8, probable; and ≥ 9, highly probable [25]. ALT normal ≤ 24 U/L until 2001 for males, thereafter ≤ 35 U/L for females and ≤ 50 U/L for males. ab: Antibodies; ag: Antigen; ALT: Alanine aminotransferase; CMV: Cytomegalovirus; EBV: Epstein Barr virus; HAV: Hepatitis A virus; HBc: Hepatitis B core; HBs: Hepatitis B surface; HBV: Hepatitis B virus; HCV: Hepatitis C virus; HEV: Hepatitis E virus; ICD: International Statistical Classification of Diseases and Related Health Problems; PME: Past medical history; RUCAM: Roussel Uclaf Causality Assessment Method; TCM: Traditional Chinese Medicine.

discontinuation of the herbal TCM therapy. Such excellent investigational conditions rarely exist under normal field conditions, where patients are evaluated in retrospective studies, and often provide cases of limited data quality [2, 6, 17], mostly with the lack of a robust causality assessment such as RUCAM [25]. Despite these encouraging data under hospital conditions, herbal TCM treatment outside a hospital setting may be associated with higher liver injury risks, requiring a cautionary statement. Consequently and to err on the side of caution, patients who opt for special therapy with herbal TCM should be informed about the low risk of liver injury and its clinical symptoms.

Supportive evidence of causality for TCM herbs in the injury cases was provided by the rapid decline of ALT to nearly normal values shortly following cessation of herbal use in 24/26 patients (Table 5), while two patients escaped final ALT analysis (Table 5). Causality is further supported by the lack of pre-existing liver diseases in the patients in the liver injury study cohort, ruling out that alternative liver diseases could compete with the newly emerging liver injury caused by TCM herbs. Finally, the causality of liver injury for various TCM herbs was established using the updated RUCAM (Table 6), as published in 2016 [25]. Causality was excluded in two patients, whereas most cases achieved a possible or even a probable causality level. Using both, RUCAM-based causality assessment and positive tests of unintentional re-exposures, valid causality was provided for numerous TCM herbs by other published analyses of liver injury [9, 27, 28, 43].

It appears that patients with acute liver injury due to TCM herbs commonly have a good prognosis and no transition to chronic liver injury, at least under the treatment conditions of a hospital, and is possibly attributed to the exclusion of prolonged treatment as described in the present study (Table 2). This favorable outcome is in line with a previous RUCAM-based study, which does not report on severe courses [25], but is in contrast to a retrospective study [9, 28] and another analysis [28]. Both publications reported severe clinical courses with the risk of acute liver failure, requirement of liver transplant, and of death [9, 28]. In more detail, acute liver failure was reported in 7.8%, a requirement for liver transplant in 0.6%, and a fatality rate in 3.2%, but associated RUCAM-based causality gradings were not published in the study [9]. This was done in another report of 54 patients with an RUCAM-based causality grading of probable for herbal TCM: One patient had used a herbal TCM product for 60 d and required a liver transplantation, while another died after using TCM herb for 30 d [28]. The difference in outcome between the present study and previous publications [9, 28] cannot validly be explained and is certainly open for discussion, especially regarding the duration of herbal TCM exposure, which was 19.5 d in this study (Table 2).

Of note, in addition to the 21470 patients, who were included in the TCM study cohort due to their normal ALT values, 472 patients corresponding to 2.3% had been admitted to the hospital for TCM treatment with increased ALT values on admission and were therefore not included in the TCM study cohort. If included, these patients may have alternative diagnoses as confounders, as initially increased ALT values may reflect already existing liver disease. Similar to the hospital conditions, alternative causes as confounding variables have been described in suspected cases of
Table 6 Causality assessment for cases 1-26 of the liver injury study cohort, using the updated Roussel Uclaf Causality Assessment Method[25]

<table>
<thead>
<tr>
<th>RUCAM items with attribution of scores (SC)</th>
<th>CASES 1-26</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Time to onset from the beginning of the herb</td>
<td>SC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26</td>
</tr>
<tr>
<td>5-90 d +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +1 +2 +2 +2</td>
<td></td>
</tr>
<tr>
<td>< 5 or > 90 d +1</td>
<td></td>
</tr>
<tr>
<td>Alternative: Time to onset from cessation of the herb</td>
<td></td>
</tr>
<tr>
<td>≤ 15 d +1</td>
<td></td>
</tr>
<tr>
<td>2 Course of ALT after cessation of the herb</td>
<td></td>
</tr>
<tr>
<td>Decrease ≥ 50% within 8 d +3 +3 +3 +3 +1 +3</td>
<td></td>
</tr>
<tr>
<td>Decrease ≥ 50% within 30 d +2</td>
<td></td>
</tr>
<tr>
<td>No information of continued drug use</td>
<td></td>
</tr>
<tr>
<td>Decrease ≥ 50% after the 30th day 0 0</td>
<td></td>
</tr>
<tr>
<td>Decrease < 50% after the 30th day or recurrent increase -2</td>
<td></td>
</tr>
<tr>
<td>3 Risk factors</td>
<td></td>
</tr>
<tr>
<td>Alcohol use (current drinks/d: > 2 for woman, > 3 for men) +1</td>
<td></td>
</tr>
<tr>
<td>Alcohol use (current drinks/d: ≤ 2 for woman, ≤ 3 for men) 0</td>
<td></td>
</tr>
<tr>
<td>Age ≥ 55 yr +1</td>
<td></td>
</tr>
<tr>
<td>Age < 55 yr 0</td>
<td></td>
</tr>
<tr>
<td>4 Concomitant drug(s)/herb(s)</td>
<td></td>
</tr>
<tr>
<td>None or no information 0</td>
<td></td>
</tr>
<tr>
<td>Concomitant drug/herb with incompatible time to onset 0</td>
<td></td>
</tr>
<tr>
<td>Concomitant drug/herb with compatible or suggestive time to onset -1 -1 -1 -1</td>
<td></td>
</tr>
<tr>
<td>Concomitant drug/herb known as hepatotoxin and with compatible or suggestive time to onset -2</td>
<td></td>
</tr>
<tr>
<td>Concomitant drug with evidence for its role in this case (positive rechallenge or validated test) -3</td>
<td></td>
</tr>
<tr>
<td>5 Search for alternative causes Group 1 (7 causes)</td>
<td></td>
</tr>
<tr>
<td>HAV: Anti-HAV-IgM Ø Ø N Ø N Ø Ø Ø Ø N Ø N Ø Ø N Ø/ Ø Ø Ø Ø Ø Ø Ø</td>
<td></td>
</tr>
<tr>
<td>HBV: Anti-HBc-IgM, HBV-DNA Ø Ø N Ø N Ø Ø Ø Ø N Ø N Ø Ø N Ø/ Ø Ø Ø Ø Ø Ø Ø</td>
<td></td>
</tr>
<tr>
<td>HCV: Anti-HCV, HCV-RNA Ø Ø N Ø N Ø Ø Ø Ø N Ø N Ø Ø N Ø/ Ø Ø Ø Ø Ø Ø Ø</td>
<td></td>
</tr>
<tr>
<td>HEV: Anti-HEV-IgM, anti-HEV-IgG, HEV-RNA Ø Ø N Ø N Ø Ø Ø Ø N Ø N Ø Ø N Ø/ Ø Ø Ø Ø Ø Ø Ø</td>
<td></td>
</tr>
<tr>
<td>Hepatobiliary sonography/colour Doppler sonography of liver vessels/endosonography/CT/MRC Ø Ø N Ø N Ø Ø Ø Ø N Ø N Ø Ø N Ø/ Ø Ø Ø Ø Ø Ø Ø</td>
<td></td>
</tr>
<tr>
<td>Alcoholism N N N N N N N N N N N N N N N N N N N/ N N N N N N N</td>
<td></td>
</tr>
<tr>
<td>Acute recent hypotension history (particularly if underlying heart disease) Group 11 (5 causes)</td>
<td></td>
</tr>
<tr>
<td>Complications of underlying disease(s) such as sepsis, metastatic malignancy, autoimmune hepatitis, chronic hepatitis B or C, primary biliary cholangitis or sclerosing cholangitis, genetic liver diseases Ø Ø N Ø N Ø Ø Ø Ø N Ø N Ø Ø N Ø/ Ø Ø Ø Ø Ø Ø Ø</td>
<td></td>
</tr>
</tbody>
</table>

Melchart D et al. Herbal TCM and liver injury
DILI\cite{44,45} and HILI\cite{46} including those caused by TCM herbs\cite{9,46}, and dietary supplements\cite{46-50}.

It is likely that in the real world, some patients seeking therapy with TCM herbs have a pre-existing, initially not recognized liver disease\cite{9}. Uncertainty exists as to whether pre-existing liver disease is a risk factor for liver injury by TCM herbs, in analogy to some chronic liver diseases such as non-alcoholic fatty liver disease or alcoholic liver disease, which are risk factors of drug-induced liver injury (DILI) by some special drugs\cite{51,52}. Our study clearly differentiated liver injury with ALT values of $\geq 5 \times$ ULN from ALT abnormalities with ALT values of $< 5 \times$ ULN (Table 1). Those are considered as an adaptive phenomenon due to the metabolism of the chemicals provided from the herbs to the liver. These adaptive abnormalities are clinically not relevant. The present data do not allow the general clinical recommendations to analyze ALT before therapy with TCM herbs is considered, as liver injury is unpredictable. ALT assessment may be helpful in legal situations to prevent later patient claims.

The rarity of hepatotoxic reactions together with normal dosages of herbal TCM used in this study imply idiosyncrasy as a cause rather than an intrinsic mechanism, which is dose-dependent and can be elucidated by experimental studies. However, pathogenetic steps leading to the dose-independent idiosyncratic liver injury are largely unknown due to lack of appropriate animal models\cite{17}. In analogy with other herbs, TCM herbs including those incriminated as...
causes of liver injury in the present study (Tables 3 and 5) contain dozens of known chemicals as ingredients but their specific hepatotoxic potency is difficult to assess and remains largely unknown[28]. Another problem of most TCM therapy regimens is the multiplicity of herbs included as ingredients in herbal mixtures[10,28], such as up to 35 in the present study (Table 5). Multiple plant chemicals of many herbs may lead to an increased risk of liver injury, which were described at least for DILI if several drugs were co-administered[53], and for herb-herb interactions or herb-drug interactions, if concomitantly used with Western drugs[54]. Used as co-medication to Western antipsychotic drugs such as quetiapine, clozapine, and olanzapine, in the case of Bupleuri radix it is known that this is associated with nearly 60% of the risk of adverse outcomes[9-11]. Other potential risk factors for liver injury by TCM herbs may include higher dosages and lipophilicity of chemicals and known conditions from DILI cases[55]. Publications on the quality problems of some herbal TCM products[20-24] called for providing excellent quality for our patients as high priority, which is a strength of this study and avoids discussions around product quality as causative for the observed liver injury.

In the present study, Bupleuri radix and Scutellariae radix are the two TCM herbs most implicated in liver injury (Tables 3-5). However, both herbs turned out to be the most frequently prescribed drugs in the TCM hospital in Bad Kötzting in general[57]. Even though liver injury from Polygonum multiflorum has increasingly been reported in recent years[9-11], but convincing evidence for causality is limited in the present analysis (Tables 3-5). Previous regulatory discussions focused on herbal products containing unsaturated pyrrolizidine alkaloids (PAs), and in 2012, EMA stated that herbal medicinal products containing herbal preparations with toxic, unsaturated PAs (even in very low amounts) should not be used orally[58]. Used in high amounts for a prolonged period, PAs can cause HSOS (hepatic sinusoidal obstruction syndrome)[19]. TCM herbs also include Jue Ming Zi (Cassia), but only its leaves and fruits contain PAs and may cause HSOS[19,58]. Cassiae semen lacks PAs that has been used by two patients, who as expected had no signs of HSOS (Table 5).

The use of herbal TCM is widely considered less risky as compared with synthetic drugs, although data on direct comparisons are not available in support of this view. Populations using herbal TCM, drugs, either alone, or combined experience more DILI than HILI, possibly due to a higher use of drugs[27]. Valid data of incidence and prevalence of HILI caused by TCM herbs are lacking[59], and respective data cannot be derived from the present study with a low frequency of liver injury of 0.12% among all 21470 patients treated with herbal TCM. Valid data were published for drugs, showing that idiosyncratic DILI is a rare event, in a population-based French study with an annual estimated incidence of 13.9 ± 2.4 cases per 100000 inhabitants[57]. A good overview of suspicious TCM herbs is provided in several reports[12,13-15,34], which were also used for comparison in our own survey (Table 5). Nevertheless, the list of suspected TCM herbs remains tentative (Tables 3-5).

Limitations of our study: The focus of our investigation was on ALT levels > 5 × ULN, considering thereby real HILI cases. Cases with ALT elevations between 2 and 5 × ULN are per definition not real but milder HILI due to treatment with TCM herbs, not requiring additional causality proof using RUCAM. As all patients with real HILI had a good outcome with ALT normalization during the relatively short follow-up periods, this favorable outcome can be expected also for patients with milder HILI. A single normal pre-treatment ALT value likely excludes pre-existing liver disease, though little uncertainty remains, which would decrease rather than increase the overall frequency of HILI by TCM. By study protocol, patients with increased ALT values were explicitly not included, although it would have been of interest how TCM treatment influences increased pre-treatment ALT values.

In this report, we present liver injury data for the first time derived from a prospective, hospital-based and large-scale study of 21470 patients, who received treatment with TCM herbs and had no liver disease before. ALT was used as a diagnostic biomarker to exclude liver disease prior to therapy initiation and to assess liver integrity during and after the therapy. This study of 21470 patients revealed that herbal TCM products cause rare liver injury in 26 patients corresponding to 0.12%. Liver injury rapidly improved in most patients following cessation of the therapy, also substantiating causality for the suspected TCM herbs. Under the present study conditions, a transition of acute liver injury to a chronic course was not observed. As these encouraging results are based on strict protocol in a hospital setting, it remains to be established whether these data can be transferred to normal field conditions. Indeed, in the real word confounding variables prevail, such as pre-existing chronic liver diseases, complex therapy conditions of co-medication with Western drugs, and possible problems of herbal TCM product quality regarding misidentification of herbs, impurities of heavy metals, pesticides and other toxins, and adulteration by Western drugs to enhance efficacy. To be on the side of caution and for risk minimizing physicians are well advised to inform patients about the low risk and symptoms of liver injury associated with the use of TCM herbs, if patients decide on this special therapy option.

COMMENTS

Background

Herbal Traditional Chinese Medicines (TCMs) are worldwide in common use, which is well documented in the literature. They are highly appreciated, as
they are of natural origin, and mainly based the belief of their efficiency and lack of adverse events, and their preference as valuable alternatives over a conventional treatment with synthetic drugs. However, some criticism emerged regarding the issue of efficiency, and adverse reactions ranging from clinically not relevant events to more severe ones including suspected liver injury.

Research frontiers

In a prospective, hospital-based study, patients with normal values of alanine aminotransferase (ALT) as a diagnostic marker for ruling out pre-existing liver disease were enrolled and reassessed on discharge by routine laboratory within a safety program carried out at the First German Hospital of TCM from 1994 to 2015. Liver injury was detected in 26/21470 patients (0.12%) with normal liver tests prior to treatment initiation. In most of the liver injury cases, the Roussel Uclaf Causality Assessment Method (RUCAM)-based causality for herbal TCM was graded as ‘possible’.

Innovations and breakthroughs

In this report, the authors present for the first time liver injury data derived from a prospective, hospital based and large-scale study of 21470 patients, who received treatment with TCM herbs and had no liver disease before.

Applications

The findings in this study may help to bring more objectification into discussion about TCM herbs and their risks of liver injury. As long as the therapeutic efficacy of TCM herbs is poorly documented in the scientific literature, even low risk of liver injury by TCM herbs has to be communicated to all potential consumers and to the academic public.

Terminology

Liver injury was defined ALT ≥ 5 × ULN = upper limit of normal as clinically relevant.

Peer-review

This is an interesting and well-written study.

ACKNOWLEDGMENTS

We thank the staff members at the TCM hospital in Bad Kötzing and all colleagues from the Beijing University of Chinese Medicine for their support and critical comments.

REFERENCES

Melchart D et al. Herbal TCM and liver injury

DOI: 10.1016/j.ep.2012.01.058

47 Chen M, Borlak J, Tong W. High lipophilicity and high daily dose of oral medications are associated with significant risk for drug-induced liver injury. *Hepatology* 2013; 58: 388-396 [PMID: 23258593 DOI: 10.1002/hep.26208]

48 Melchart D, Hager S, Dai J, Weidenhammer W. Quality Control and Complication Screening Programme of Chinese Medicinal Drugs at the First German Hospital of Traditional Chinese Medicine - A Retrospective Analysis. *Forsch Komplementmed* 2016; 23 Suppl 2: