
©IFIP, 2018. This is the authors version of the work. It is posted here by permission of IFIP for your personal use. Not for redistribution. The definitive
version was published in the Proceedings of the IFIP Networking 2018 conference in Zurich, Switzerland.

AHAB: Data-Driven Virtual Cluster Hunting
Johannes Zerwas∗, Patrick Kalmbach∗, Carlo Fuerst†, Arne Ludwig†, Andreas Blenk∗,

Wolfgang Kellerer∗, Stefan Schmid‡
∗Technical University of Munich, Germany †Technical University of Berlin, Germany ‡University of Vienna, Austria

Abstract—Virtual clusters are an important concept to provide
isolation and predictable performance for multi-tenant applica-
tions in shared data centers. The problem of how to embed
virtual clusters in a resource efficient manner has received
much attention over the last years. However, existing virtual
cluster embedding algorithms typically optimize the embedding
of a single request. We demonstrate that this can lead to
fragmentation and suboptimal data center resource utilization
over time. We propose an alternative in two stages: First, we
describe a novel embedding algorithm, called TETRIS, which, in
an effort to avoid resource fragmentation over time, takes into
account the specific node-to-link resource ratios of the individual
requests. While TETRIS can be suboptimal when embedding only
one request, we find that it performs much better than the state-
of-the-art algorithms over time. Second, we allow the algorithm to
strategically reject individual requests, even if there are sufficient
resources: our proposed algorithm, AHAB, hence selects (“hunts”)
useful requests over time. An important property of AHAB is
that it is data-driven: it uses information about previous requests
and embeddings. We report on extensive simulations, which
demonstrate the optimization potential of TETRIS (+4%) and
AHAB (+13%), compared to existing solutions such as KRAKEN
and OKTOPUS. Furthermore, AHAB illustrates how data-driven
algorithms can replace man-made heuristics.

Index Terms—Network Virtualization, Embedding, Admission
Control

I. INTRODUCTION

Today’s data analysis frameworks and cloud applications
generate large amounts of traffic; hence, their overall perfor-
mance depends on the network. Indeed, it has been shown
that cloud applications suffer from resource interference on the
network, to the extent that the application execution times may
become unpredictable [1]. To overcome this, several systems
have been introduced that provide isolation among different
customers and ensure network conditions as required by data
center applications [2]–[6].

A common resource reservation abstraction provided to the
tenant is the virtual cluster (VC) [2]. A VC connects a number
of virtual machines (VM) to a virtual switch at a guaranteed
bandwidth. The problem of how to embed virtual clusters
has already received much attention [2], [7]–[10]. Proposed
systems typically optimize the embedding of a single request:
Minimizing the physical resource footprint of a single VC is
often stated as the goal of the algorithms [7]–[9]. However,
VC embedding is usually applied in an online environment
where requests arrive over time. Focusing only on a single
VC while neglecting the impact on future embeddings may
fragment the reserved physical resources. This can in turn
harm the resource utilization over time. Instead of looking

only at single VCs, we propose to leverage information
about the embedded request characteristics. Indeed, recent
analysis of data center traces show that request characteristics
can be estimated with sufficient quality to make scheduling
decisions [11]; an invaluable source to optimize data center
resource utilization. By integrating information about VCs into
the embedding decision, this work makes two steps to surpass
the drawbacks of existing VC embedding algorithms.

First, we present a novel embedding algorithm, TETRIS,
which aims to reduce fragmentation over time by accounting
for the ratio of requested node and link resources (which
can differ from request to request), compared to the available
resources in the substrate.

Second, we extend our study to admission control algo-
rithms: we allow algorithms to strategically reject requests
even though the substrate would provide enough resources
to host the current to-be-embedded VC. In particular, this
paper proposes AHAB1 — a data-driven approach to admission
control. The key idea of the data-driven paradigm is to base
the decisions on observations from collected data instead of
relying on manually designed strategies and it has recently
drawn attention in networking research [12].

AHAB exploits knowledge about the characteristics of VCs.
More specifically, it uses distributions of the VC attributes
(VMs, bandwidth) to generate requests and evaluate the impact
of the new VC on the feasibility of future embeddings.
Concretely, AHAB answers the question whether the current
VC will negatively affect the data center utilization in the
future. To do so, AHAB performs several small simulations
and compares their outcomes for two cases: one where the new
VC is accepted and one where it is not. As it relies on a data-
driven concept only, AHAB is independent from embedding
algorithms, i.e., any VC embedding algorithm can be used in
combination with AHAB. Hence, it can easily extend existing
cluster management systems.

Simulations show that TETRIS outperforms state-of-the-
art single-request embedding algorithms, enabling providers
to host more VCs and hence use their infrastructure more
efficiently. Moreover, the evaluation demonstrates that data-
driven admission control can greatly improve the resource
utilization in data centers by integrating knowledge about
the distributions of the requests’ attributes into the admission
decision. Even when facing mismatched distributions, AHAB
provides higher cluster utilizations than existing algorithms.

1The name AHAB refers to Moby Dick’s captain Ahab, hunting sea mon-
sters like KRAKEN or OKTOPUS (the systems upon which AHAB improves).ISBN 978-3-903176-08-9 ©2018 IFIP



II. REVISITING VIRTUAL CLUSTER EMBEDDINGS

This section describes our considered scenario and VC
abstraction. We also revisit the VC embedding problem, and
list two state-of-the-art algorithms to optimize the embedding
of a single VC.

A. Virtual Cluster Abstraction: State-of-the-art

Virtual clusters [2] are the most prominent abstraction for
batch-processing applications. Using VC abstraction, tenants
can specify their networking demands, which introduces pre-
dictable performance guarantees. A VC request consists of the
number of VMs and the bandwidth that should be reserved for
each VM. If the provider embeds the request, it creates the
number of equally-sized VMs and allocates them on the hosts
of the substrate network. Additionally, the provider creates
bandwidth reservations on the physical links such that every
VM can use the requested bandwidth. Hence, the tenant is
provided with the illusion of a dedicated network.

Besides this basic abstraction, extended versions have been
proposed [6], [7], [10], [13]. However, existing algorithms do
not specifically account for the fact that different requests
can have different ratios of node and link resources: virtual
cluster specifications are likely to come with different re-
quirements [14], e.g., some requests have high requirements
for computational resources but do not transfer much data
while others are more network-intensive and require less
computational resources.

B. Scenario Description

Table I summarizes the mathematical names and conven-
tions in notation that are used throughout this study.
Substrate. The considered substrate networks (physical clus-
ter) C hosting VCs employ a tree-like topology, e.g. Fat-
Tree [15], a common data center architecture today. A set
of pods is connected via core switches. Each pod consists of
several racks which are connected to the aggregation switch of
the pod. The racks are constituted by several hosts (or servers)
that are interconnected by the top of rack (ToR) switch. The
capacities of the links of the aggregation levels equal the
accumulated bandwidths of the corresponding child nodes. The
computational size of a physical server is measured in integer-
valued compute units (CU). Similarly, the capacity of the
physical hosts’ links are normalized to denote the bandwidth
in integer-valued bandwidth units (BU).

According to the physical cluster modeling in [2], [9],
we approximate the Fat-Tree by a simple tree. The Fat-Tree
depicted in Fig. 1a consists of two pods, containing two racks
each; there are two hosts per rack. A host has a capacity of
4 CUs and the hosts’ link capacities are 6 BUs. The links on
aggregation and core level have capacities of 12 BUs and 24
BUs respectively.
Virtual Cluster. The VC abstraction should reflect the de-
scribed observations from Sec. II-A. Customers should be able
to specify their computation and communication requirements
separately. Concretely, a VC is the triple R = (N,S,B),
where N is the number of VMs, S is the computational

TABLE I
NOTATION AND ABBREVIATIONS.

Symbol Description

Substrate

C Substrate network with a tree-like topology
CU Compute unit: Abstract unit to measure computation

requirements or capacity
BU Bandwidth unit: Abstract unit to measure bandwidth

requirements or capacity
Ch Available computing capacity on host h [CU]
Bh Available bandwidth on up-link of host h [BU]

FreeCapacity(C) Number of free CUs in the substrate C
TotalCapacity(C) Total number of CUs in the substrate C

Hosts(C) Single hosts of C in groups of 1 sorted by avail. CUs.
Racks(C) Hosts of C grouped by their racks
Pods(C) Hosts of C grouped by their pods
Root(C) Hosts of C in one large group

Virtual Cluster Request

N Number of VMs that a request has
S Size of the VMs of a request [CU]
B Bandwidth requirement per VM of a request [BU]

R = (N,S,B) Virtual cluster request with N VMs of size S inter-
connected with bandwidth B

VMs(R) Virtual machines of request R
host(vm) Host which is assigned to the VM vm or NULL if

no host is assigned

ρ(h,R) = Ch−S
Bh−B

, ratio of available resources on host h
after allocating one VM of request R

4 4 4 4 4 4 4 4

6

12

24

Rack Pod

Host

Aggregation 

Switch
Core Switch

ToR Switch

(a) Fat-Tree with two pods, two racks per pod
and two hosts per rack.

4 4 4

2

VM

Virtual Switch

(b) VC with N = 3, S =
4 and B = 2.

Fig. 1. Examples for Fat-Tree and VC.

requirement (size) of a VM and B is the bandwidth of a virtual
link. All VMs are of the same computational size S, and are
connected to a virtual switch at bandwidth B. For instance,
the VC in Fig. 1b requests 3 VMs with a size of 4 CUs and a
bandwidth of 2 BUs between the VMs and the virtual switch.
Online Cluster Arrival Process. Requests arrive in an online
fashion and the provider must decide if a new request is
embedded or rejected. In order to embed a VC, the provider
has to fulfill all its specifications.

C. Existing VC Embedding Algorithms

In this study, we focus on two prominent VC embedding
algorithms: OKTOPUS and KRAKEN.
OKTOPUS. Ballani et al. [2] proposed a first algorithm
(henceforth called OKTOPUS) to embed VCs in Fat-Tree data-
center topologies. Its heuristic approach aims at minimizing



0

3

Kraken

3

0

3

0

3

0

0

3

0

3

2

2

Tetris

1

1

1

1

1

1

2

2

2

2

Fig. 2. Embedding behavior of KRAKEN and TETRIS. Six hosts (6 CUs, 6
BUs) are connected to a switch. Requested VCs are R1 = (9, 1, 2), R2 =
(9, 2, 1). The upper number in a host represents mapped VMs of R1 and the
lower number those of R2.

the allocation costs, but it does not always achieve optimal
results. OKTOPUS iterates through the levels of the tree and
searches for the first group of hosts (single host, hosts of a
rack, hosts of a pod, all hosts) where the VC is feasible.
KRAKEN. An optimal solution to the single request em-
bedding problem has been presented in [9], as part of the
KRAKEN system. In contrast to OKTOPUS, KRAKEN returns
the embedding with the minimal allocation cost for the given
request and cluster state. To do so, KRAKEN does not return
the first feasible solution, but checks all feasible solutions and
returns the optimal solution for the VC. To maintain linear
complexity w.r.t. the number of physical hosts, it uses the
center of gravity concept, which corresponds to the location
of the abstract virtual switch. It further allows to modify the
size of the VC online.

Both algorithms (as well as algorithms lying between the
two, like Proteus [7]) focus on single VCs and serve as
comparables to the embedding algorithm presented in this
study, which sacrifices quality of single embeddings to obtain
better overall results. To the best of our knowledge, the
challenge of fragmentation over time and the systematic study
of the benefits of admission control has not been considered
in the literature before.

III. TETRIS: ON THE POTENTIAL OF NON-GREEDY VC
EMBEDDING

TETRIS is a VC embedding algorithm that, in an effort
to perform better over time and in the long run, accounts
for the specific resource ratios (and hence potential undesired
resource fragmentations). As we will see, despite its simplicity,
TETRIS already outperforms state-of-the-art VC embedding
algorithms, which do not account for such fragmentation over
time.

A. Key Idea: Sacrificing Footprint for Fragmentation

The main idea is to utilize the different resource dimensions
of single hosts in a more balanced fashion, in order to avoid
fragmentation (and hence poor resource utilization) over time.
OKTOPUS and KRAKEN find embeddings which are dense and
use low amount of bandwidth. The problem of such dense
embeddings is that requests with a resource ratio S/B 6= 1
are collocated which wastes physical resources. Fig. 2 gives
an example. For KRAKEN, R1 is embedded on the right three
hosts. Thus, there are 3 CUs left on the host but no capacity
on the up-link, which renders it unlikely that those free CUs
are used in the future. On the other hand, R2 only uses half

of the link capacity of the left three hosts. Using TETRIS, the
VMs of both VCs are distributed over the hosts more evenly
such that no host has capacity left for only one resource.

The ratio ρ(h,R) = (Ch−S)/(Bh−B) serves as a score to
determine the placement of the VMs, i.e., TETRIS prefers hosts
with ratio. Ch and Bh are the currently available resources
on host h. As Ch is in the nominator, hosts that have much
compute resources available, but only little bandwidth, are
more likely chosen as location for the next VM than hosts
with few compute resources available and much bandwidth.

B. Algorithm Details

Algorithm 1 shows the procedure of TETRIS. After checking
the general feasibility of the request (l.1f), the algorithm
iterates over the levels of the tree topology starting at the host
level (similar to OKTOPUS and KRAKEN).
Trying Hosts. TETRIS iterates over every single host and tries
to place all requested VMs on the same host (ll.4-9). At this
stage, the resource ratio does not matter since hostGroup has
only one element (l.5). If the request fits on a single host, no
bandwidth reservation is needed and TETRIS returns.
Trying Racks/Pods/Cluster. If the request does not fit on
a single host, TETRIS iterates over the racks of the cluster
(sorted by the fraction of available compute capacity). But
instead of collocating as many VMs on a single host as
possible (like OKTOPUS and KRAKEN), TETRIS distributes the
VMs over several hosts depending on the ratio of the residual
resources per host. For each VM of the request, TETRIS
chooses the feasible host with the highest ratio ρ(h,R) as
location from all hosts of the current rack (l.5). Then TETRIS
reserves resources for the VM on the host and the hosts’ link
(l.9). Bandwidth reservations on higher layers (aggregation,
core) cannot be performed because the location of the virtual
switch is not known yet. If any of the VM allocations fails,
TETRIS resets the previously allocated VMs and proceeds with
the hosts of the next rack (ll.6-8) — no host of the current
rack will be used.

When all VMs are placed, TETRIS determines the virtual
switch’s location and performs the final bandwidth reserva-
tions (l.10f). The previous steps (l.4-9) do not guarantee the
feasibility of the bandwidth reservations on the aggregation
and core layer and the reservations may fail, e.g., if the Fat-
Tree is oversubscribed. If this is the case, TETRIS removes the
embeddings of the VMs and starts over using the hosts of the
next rack (l.14f).

The same procedure is applied for the pod and root levels,
if the algorithm has not found any feasible embedding after
having evaluated all racks. If TETRIS does not find any feasible
solution, the VC is rejected. TETRIS’ complexity is linear in
the number of topology host like OKTOPUS and KRAKEN.

IV. AHAB: THE CASE FOR DATA-DRIVEN ADMISSION
CONTROL

We now take the idea of thinking strategically and being
less greedy in how a single request is embedded one step
further and initiate the study of algorithms which can even



Algorithm 1 Virtual Cluster Embedding: TETRIS

Input: Substrate C, VC R = (N,S,B)
Output: Embedding success

1: if FreeCapacity(C) < N · S then
2: return False
3: for hostGroup ∈ {Hosts(C), Racks(C), Pods(C), Root(C)}

do
4: for vm ∈ VMs(R) do
5: host(vm)← argmax ρ(h,R), h ∈ hostGroup: vm

is feasible on h
6: if host(vm)== NULL then
7: Reset host(vm) ∀vm ∈ VMs(R)
8: Continue with next hostGroup
9: Reserve S,B on host(vm)

10: success←reserveBandwidth(R)
11: if success then
12: return True
13: else
14: Reset C and host(vm) ∀vm ∈ VMs(R)
15: Continue with next hostGroup
16: return False

reject individual requests entirely, although there are sufficient
resources available.

A. Key Idea: Admission Control and Leveraging Data

The admission control algorithm AHAB (Algorithm 2) shall
“hunt” for the best VCs to embed. It can be configured with
many single-request embedding algorithms, including TETRIS.
Similar to DeepMind’s AlphaGo [16] and other Monte Carlo
Tree Searches [17], AHAB performs a lookahead search to
make its decision. The idea is to get the impact of the
embedding of a new VC on future arrivals. To do so, AHAB
uses knowledge about the distributions of the VCs’ attributes
N,S,B to generate potential sequences of requests and tries
to allocate these along with the actually arrived VC. The data
collected with these small simulations is then the basis for
the decision. The knowledge can be easily obtained from past
requests and as a first step, we expect perfect knowledge about
the distributions of N,S,B, which is an acceptable assumption
as recent work has shown [11].

B. Algorithm Details

AHAB starts with checking the feasibility of the request. If
the cluster is only lightly loaded, AHAB accepts the request
(l.3f). This step reduces computational efforts as the proba-
bility of acceptance is high in this situation. If current load
is > 50%, AHAB performs the lookahead search. Given the
current substrate state C and the new VC R, AHAB generates
a number of sequences (numSeq) of length numV Cs con-
taining possible future requests and embeds them using the
embedding algorithm A, e.g. KRAKEN (Algorithm 3). One half
contains R while the other half does not (l.5f). Each allocated
VC gives a reward of N · S. AHAB uses the accumulated
reward of the single sequences as a performance indicator and

Algorithm 2 Admission Control: AHAB

Input: Substrate C, VCR = (N,S,B), Embedding algorithm
A, numSeq, numV Cs, Distributions for N,S,B

Output: Decision: Accept=True, Reject=False
1: if A cannot find a feasible solution then
2: return False
3: if FreeCapacity(C)> 0.5 TotalCapacity(C) then
4: return True
5: avgAccept = RunSequences(C, R, A, numSeq,
numV Cs, true)

6: avgReject = RunSequences(C, R, A, numSeq,
numV Cs, false)

7: return avgReject < avgAccept

Algorithm 3 RunSequences
Input: Substrate C, VCR = (N,S,B), Embedding algorithm

A, numSeq, numV Cs, embedV C
Output: Average reward per sequence

1: rewards = {}
2: for i = 1 to numSeq do
3: C′ ← Copy C
4: if embedV C then
5: A.embed(C′, R)
6: rewards[i] = 0
7: for j = 1 to numV Cs do
8: R′ ← Generate new VC
9: if A.embed(C′, R′) == True then

10: rewards[i] += SR′ ·NR′

11: return Average(rewards)

determines the mean values for the sequences with and without
R (Algorithm 3 - ll.9-11). The comparison of these two values
gives the decision of acceptance (Algorithm 2 - l.7).

The complexity of AHAB depends on the complexity of the
embedding algorithm and the total number of VC allocations
(= numV Cs · numSequences) in one call, which are a
tunable parameters.

V. EVALUATION

In order to analyze TETRIS and AHAB in different settings,
we evaluate the results obtained using event-based simulations.
Besides elaborating the differences in performance (Sec. V-B
& V-C), we also look at the attributes of VCs that are accepted
and try to understand why AHAB outperforms the other algo-
rithms (Sec. V-D & V-E). Furthermore, we evaluate the impact
of sequence length and number of sequences (Sec. V-F).
This section closes with investigating the robustness of AHAB
against errors in the distributions used to generate requests and
varying host capacities (Sec. V-G & V-H).

A. Setup

Substrate. The physical cluster C is a three-layer Fat-Tree with
construction number k = 12 resulting in 432 hosts in total.
A host has a compute capacity of 8 CUs and 8 BUs on the
connecting link which leads to a total of 3 456 CUs available
in the cluster. The links between the ToR switches and the



aggregation switches and the links between the aggregation
switches and the core are not oversubscribed.
Virtual Cluster Requests. The VCs arrive according to a
Poisson process with an arrival rate λ and have exponentially
distributed durations, such that they induce system load levels
of 78.5% (λ = 4), 234% (λ = 12) and 390% (λ = 20). Based
on the analyses of traces from Microsoft [11] and Google [18],
the number of requested VMs N is exponentially distributed
with mean 20 in the interval [3, 60]. B and S both follow a
discrete distribution with P (1) = 0.45, P (2) = 0.3, P (4) =
0.2, P (8) = 0.05. All outcomes are sampled independently.
We run every setup 30 with 1000 arriving VCs. To avoid
artifacts related to the initially empty data center, we start
evaluating our metrics after 100 requests.
Metrics. Various works [7], [10], [13] have used the accep-
tance ratio of an embedding algorithm in order to measure
its performance. This metric, however, is biased towards algo-
rithms that accept a large number of small requests instead of
few bigger ones. Therefore, the first objective of this analysis
is the maximization of the used CUs in the substrate. One
sample is the average of this fraction over a whole run.

As second objective the minimization of the footprint
F (V C) of the embedded VCs is evaluated. The footprint of a
VC is the amount of bandwidth of that VC that is reserved on
the physical links (see Fuerst et al. [9]). For instance, the VC
in Fig. 1 occupies one host per VM. The optimal embedding
fills up one rack and uses one host of another rack. Bandwidth
reservations are made on 5 physical links and F (V C) = 10.
Baseline Algorithms. The evaluation compares TETRIS with
OKTOPUS and KRAKEN, all without admission control. Be-
sides setups without admission control, the benchmark of
AHAB also takes an observation-based strawman algorithm
(STRAWMAN) into consideration, which simply rejects all VCs
with B > 4 and uses KRAKEN to embed the VCs. This
approach is based on the observations from TETRIS.

B. Is it worth playing TETRIS?

Fig. 3 compares the embedding algorithms for different
arrival rates with admission control (AHAB with OKTOPUS,
KRAKEN, TETRIS and STRAWMAN) and without admission
control (OKTOPUS, TETRIS, KRAKEN). It shows the mean
values over 30 runs with 95% confidence intervals. Unless
otherwise stated, AHAB runs 20 sequences of 15 VCs.

Fig. 3a shows the cluster utilization w.r.t. CUs, the main
objective of TETRIS and AHAB. For λ = 4, the cluster is not
overloaded and all algorithms achieve similar values around
0.6. However, higher system loads, e.g., for λ = 12, allow
to be more selective and make differences in the algorithms’
performances visible. Considering TETRIS first, we observe
that it outperforms OKTOPUS and KRAKEN for λ ≥ 12 and
achieves a mean CU usage of 0.83.

Yet, Fig. 3b suggests that this improvement does come at
a certain cost. It shows the mean footprint of a single VC,
i.e., the average number of physical link resources that are
reserved for one VC. Generally, the mean values decrease with
increasing arrival rates. For small arrival rates, the footprints

obtained by OKTOPUS, KRAKEN and TETRIS are in a similar
range (≈ 75 BUs), but for arrival rates around 12 the values for
TETRIS are larger. This emphasizes the approach of TETRIS
to sacrifice the footprint of the VCs to improve the utilization
of the substrate. However, we observe that the gap between
the average footprints of TETRIS and OKTOPUS and KRAKEN
decreases further as the arrival rate increases towards 20.

The reason for this is highlighted by Fig. 3c, which shows
the average number of concurrently embedded VCs. For all
algorithms, this number significantly rises from 50 to ≈ 90
when the system transitions into overload and then only
slightly increases further for OKTOPUS and KRAKEN. For
TETRIS, it continues to grow with the arrival rate to values
around 110 even though, the fraction of used CUs does not
increase that much for arrival rates around 20. This implies
that the average number of CUs per embedded VC decreases,
i.e., TETRIS allocates more aggressively only small requests
for high arrival rates while OKTOPUS and KRAKEN behave
more moderately. A more detailed analysis follows later.

STRAWMAN pushes the performance of KRAKEN up and
achieves cluster utilization values slightly worse than those of
TETRIS (Fig. 3a). The VC footprints are smaller since requests
with large bandwidth requirements are rejected; otherwise the
minimal footprint for a VC is obtained. STRAWMAN trades
off resource efficient embeddings with cluster utilization.

C. How useful is knowledge?

Adding admission control significantly improves the perfor-
mance in terms of mean fractions of used CUs (Fig. 3a), when
the system is overloaded (λ ≥ 12). OKTOPUS and KRAKEN
in combination with AHAB perform similar and the utiliza-
tion exceeds 90%. A detailed explanation why both outreach
TETRIS follows in Sec. V-F. Considering the average footprint
of a single VC, AHAB(OKTOPUS) and AHAB(KRAKEN) show
the best results with an average < 50 BUs for λ ≥ 12.
The other algorithms obtain mean values > 55 BUs. For
λ = 4, the STRAWMAN dominates. AHAB(TETRIS) again
results in increased footprints compared to AHAB(OKTOPUS)
and AHAB(KRAKEN), e.g., for λ = 12, the mean value is ≈ 62
BUs. Fig. 3c suggests that AHAB also accepts more smaller
requests as the number of concurrent VCs continues to rise
with the arrival rate; however, it increases less than TETRIS
without admission control.

To summarize, TETRIS improves the utilization of the
substrate but is outperformed by solutions that incorporate
admission control based on knowledge of the request gen-
eration process, i.e., the distributions of the VC attributes
N,S,B. TETRIS is a credible alternative in case no knowledge
is available or inaccessible.

D. Why is AHAB better?

In order to shed light on the reason behind AHAB’s good
performance, we look at the acceptance patterns of the al-
gorithms. Fig. 4 visualizes the acceptance ratio of different
request sizes for KRAKEN, TETRIS and AHAB(KRAKEN). The
values are obtained from all requests of all runs.



4 12 20
Arrival Rate

0.4

0.5

0.6

0.7

0.8

0.9

1.0

U
se

d
C

U
s

/T
ot

al
C

U
s

Oktopus
Kraken
Tetris

Strawman
AHAB(Oktopus)

AHAB(Kraken)
AHAB(Tetris)

(a) CU utilization

4 12 20
Arrival Rate

40

50

60

70

80

A
vg

.F
(V

C
)

Oktopus
Kraken
Tetris

Strawman
AHAB(Oktopus)

AHAB(Kraken)
AHAB(Tetris)

(b) VC footprint

4 12 20
Arrival Rate

60

80

100

120

N
um

.c
on

cu
rr

en
tV

C
s

Oktopus
Kraken
Tetris

Strawman
AHAB(Oktopus)

AHAB(Kraken)
AHAB(Tetris)

(c) Num. concurrent VCs

Fig. 3. Performance comparison between embedding algorithms without admission control, with strawman admission control (only KRAKEN) and with
AHABagainst the different requests’ arrival rates. The subfigures show results for the fraction of used CUs, the average weighted footprint of a VC and the
number of concurrently allocated VCs. The figures show the mean values with the 95% confidence intervals.

KRAKEN The color of a pixel corresponds to the acceptance
ratio derived from the requests with that size. For instance,
the upper left pixel of the block B = 1 in Fig. 4a means that
KRAKEN accepts 80% of the requests with VM size S = 1,
bandwidth requirement B = 1 and 3 ≤ N < 9. Somehow
intuitive, higher acceptance ratios show up for smaller requests
and the values decrease for larger requests. Especially for B =
8 or S = 8, KRAKEN is not able to embed many requests,
as these occupy a whole host link or host. Still, KRAKEN
allocates some of these requests. A higher number of requested
VMs also decreases the acceptance ratio. For small VM sizes
(S ≤ 2), this effect is moderated by the requested bandwidth:
For B ≤ 2, the acceptance ratio is ≥ 0.4 for all bins of Num.
VMs. For B = 4, the acceptance drops for requests with more
than 33 VMs and for B = 8, the acceptance already drops to
0.2 for requests with 10 VMs.

TETRIS Fig. 4b shows the same representation for TETRIS. It
supports the observations from Sec. V-B. Generally, TETRIS
obtains higher acceptances ratios for VCs with small VM sizes
and lower number of VMs. For instance, the acceptance ratio
is ≥ 0.6 for requests with B = 1 and S = 1 regardless of N ,
while KRAKEN achieves these ratios only for requests with
less than 27 VMs. But KRAKEN allocates more requests that
occupy whole hosts or host links (S = 8 and B = 8). In
particular for B = 8, the acceptance ratio of TETRIS and is
less or equal to that of KRAKEN for almost all cases. This
observation is the basis of the strawman admission control
algorithm that was introduced before. Additionally for S = 8,
TETRIS allocates only ≤ 40% of the requests.

AHAB The behavior of TETRIS might not be optimal, as
TETRIS does not perform best among the algorithms. Indeed,
AHAB(KRAKEN) selects different VCs as Fig. 4c illustrates.
For small bandwidths (B = 1), AHAB admits and embeds at
least as many requests as KRAKEN without admission control.
For B > 1, we observe that it embeds less requests with small
VMs (S = 1). In this case, the acceptance ratio drops below
20% for requests with more than 15 VMs. But for VCs with
larger VMs, AHAB obtains an acceptance ratio that is 5− 10

percentage points higher compared to KRAKEN in many cases.
In conclusion, TETRIS and AHAB increase the utilization of

the substrate network but employ different acceptance patterns
to do so.

E. Which requests are valuable?

To understand why AHAB’s acceptance pattern performs
better than that of TETRIS, we look at the acceptance ratio
from a different point of view: the value of a VC to the cluster
utilization. Fig. 5 shows the acceptance ratio grouped by the
resource ratio ρ̃ = S

B of a request and compares the values
for KRAKEN and TETRIS without admission control and
AHAB(KRAKEN). The previous observation is only weakly
affected by the number of VMs in a request, which allows to
reduce the dimensionality of the representation.

Small ratios mean that the allocation increases the target
metric (used CUs) only little while occupying many network
resources. Regardless the difference in absolute values, we
note that KRAKEN and TETRIS have higher acceptance for
VCs with ρ̃ ≤ 1 and reject VCs with ρ̃ > 1 more likely. This
is somehow counterintuitive as the benefit is low, while the
probability for high allocation costs is high and further reflects
that no explicit admission control is performed. In contrast to
this, AHAB(KRAKEN) picks VCs with ρ̃ > 1 as indicated
by the acceptance ratios. For ρ̃ < 1, the average acceptance
ratio is 0.23, while it is 0.45 for VCs with ρ̃ > 1. Thus,
AHAB(KRAKEN) admits more valuable requests and thereby
compensates the drawbacks of OKTOPUS and KRAKEN in
comparison to TETRIS.

F. Optimization Opportunities: Can we save data?

The parameters that AHAB has used up to now
(numV Cs = 15, numSeq = 20), obtain the best results.
However, it is generally desirable to minimize the computa-
tional overhead of AHAB. Therefore, we analyze the impact of
the number of requests per sequence (numV Cs) on AHAB’s
performance and also evaluate how sensitive the results are
against the number of sequences (numSeq) that AHAB runs.



1 2 4 8
VM Size

3
9

15
21
27
33
39
45
51
57
63

N
um

.V
M

s
B = 1

1 2 4 8
VM Size

B = 2

1 2 4 8
VM Size

B = 4

1 2 4 8
VM Size

B = 8

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ep
ta

nc
e

R
at

io

(a) KRAKEN

1 2 4 8
VM Size

3
9

15
21
27
33
39
45
51
57
63

N
um

.V
M

s

B = 1

1 2 4 8
VM Size

B = 2

1 2 4 8
VM Size

B = 4

1 2 4 8
VM Size

B = 8

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ep
ta

nc
e

R
at

io

(b) TETRIS

1 2 4 8
VM Size

3
9

15
21
27
33
39
45
51
57
63

N
um

.V
M

s

B = 1

1 2 4 8
VM Size

B = 2

1 2 4 8
VM Size

B = 4

1 2 4 8
VM Size

B = 8

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ep
ta

nc
e

R
at

io

(c) AHAB(KRAKEN)

Fig. 4. Comparison of acceptance ratio separated by VC specification. Each pixel of the heatmaps shows the value for the corresponding group of VCs.
Subfigures allow to compare KRAKEN, TETRIS and AHAB(KRAKEN) and illustrate the differences in selection behavior. Arrival rate is 20. Note that Num.
VMs is grouped into bins of size 6.

0.125 0.25 0.5 1.0 2.0 4.0 8.0
S / B

0.0

0.2

0.4

0.6

A
cc

ep
ta

nc
e

R
at

io
pe

rg
ro

up
w

ith
S/

B Kraken Tetris AHAB(Kraken)

Fig. 5. Acceptance ratio per group of VCs with same resource ratio.
Comparison between KRAKEN, TETRIS and AHAB(KRAKEN). Arrival rate
is 20.

Furthermore, we assess if the embedding algorithm affects the
performance of AHAB.

Fig. 6a visualizes how the fraction of used CUs changes
with the number of requests per sequence. It shows the per-
formance of AHAB admission control for all three embedding
algorithms (OKTOPUS, KRAKEN and TETRIS). The number of
sequences is fixed to 20. First, we observe that the utilization
is positively affected by AHAB’s sequence length. It grows
from 0.8 for numV Cs = 1 to 0.93 for numV Cs = 20 and
KRAKEN. The benefit of adding more requests vanishes as
the sequences become longer. Additionally, the differences be-
tween the three embedding algorithms do not vary significantly
for numV Cs > 5. However, for small sequence lengths, the
inherent performance of the embedding algorithm dominates:
TETRIS is better than OKTOPUS and KRAKEN. The difference
diminishes with increasing numV Cs and the break even is
around 5 requests per sequence where AHAB produces the
same utilization for all three embedding algorithms. For longer
sequences the allocation with OKTOPUS or KRAKEN leads to
higher substrate utilization. The implicit selection that TETRIS
performs, limits the improvement, but the use of admission
control still raises the fraction of used CUs by 0.08.

Fig. 6b shows in a similar way how the number of sequences

1 5 10 15 20
Num. Requests / Sequence

0.6

0.7

0.8

0.9

1.0

U
se

d
C

U
s

/T
ot

al
C

U
s

Oktopus
Kraken

Tetris

(a) Num. requests / sequence
(numSequences = 20)

1 5 10 20 30
Num. Sequences

0.6

0.7

0.8

0.9

1.0

U
se

d
C

U
s

/T
ot

al
C

U
s

Oktopus
Kraken

Tetris

(b) Num. sequences (numV Cs = 15)

Fig. 6. Fraction of used CUs obtained by AHAB against the two parameters
of AHAB. Comparison of results for OKTOPUS, KRAKEN and TETRIS. The
sequence length positively affects the metric. 20 sequences containing 15
requests are enough for a high substrate utilizations (> 90%).

affects the performance of AHAB. The sequence length is fixed
to numV Cs = 15. Except for the steps from 1 to 5 and from
5 to 10 sequences, we observe only very little change with
increasing number of sequences. Thus, 10− 20 sequences are
sufficient to obtain good results with AHAB. More sequences
do not increase the quality of the decisions. This conclusion
is not affected by the embedding algorithm.

In summary, looking more steps into the future improves
the performance of AHAB at the cost of computation time.
However, very long sequences do not further increase the
substrate utilization, which allows to find good trade-offs.
TETRIS performs an implicit selection of requests and its
interference with AHAB leads to worse results compared to
KRAKEN and OKTOPUS. The performance is not sensitive to
the number of sequences which suffices to be in the range of
several 10’s.

G. What is the estimation error AHAB can cope with?

Sec. IV we assumed perfect knowledge about the generation
process of VCs. This section relaxes the preceding assumption
and evaluates how AHAB behaves, when it uses different distri-
butions for generating the requests. The modified distributions
have the same support as the original ones, but have a uniform
shape.



perfect uniform
Distribution

0.80

0.85

0.90

0.95

1.00
U

se
d

C
U

s
/T

ot
al

C
U

s

Kraken Oktopus

(a) CU utilization

perfect uniform
Distribution

90

100

N
um

.c
on

cu
rr

en
tV

C
s

Kraken Oktopus

(b) Num. concurrent VCs

Fig. 7. Comparison of AHAB’s performance between different distributions
for request generation through 95% confidence intervals. In both figures, the
left group shows the results for the distributions as described in Sec. V-A.
The right group uses uniform distributions with the same boundaries.

Fig. 7 compares how the substrate utilization and the
number of concurrent VCs are affected by this change. The
left group shows the results for perfect distribution estimation
while the right ones contain the results obtained with the uni-
form distributions. AHAB runs 20 sequences with 15 requests
each. Considering the fraction of used CUs, we observe that
using a uniform distribution has no impact on AHAB.

However, Fig. 7b emphasizes that less VCs are embedded
concurrently. This implies that larger requests are admitted
by AHAB. An explanation for this is that using a uniform
distribution instead of a geometric one results in a higher
mean values of N,S,B. The mean number of VMs per request
increases from 20 to 31.5 and the means for the bandwidth
and VM size rise from 2.25 to 3.75. The higher mean value
leads to an overestimation of the rewards obtained from future
requests, when AHAB calculates the score for a sequence.
As a consequence, it is less likely that the mean score of
the sequences with accepted request is larger than the mean
score of the sequences without the request. This is especially
the case, when the arriving request is small and leads to
more rejected small requests and a slightly higher number of
accepted larger requests.

Fig. 8 underlines this. It shows the difference in acceptance
ratio of the runs with perfect distribution estimation by AHAB
and the runs with the uniform distribution used for request
generation. In particular for B = 1, we observe that there are
several groups of small requests with higher acceptance ratio
when AHAB has access to perfectly fitted distributions (light,
positive values). Furthermore, several dark bins (negative
values) indicate higher acceptance of larger requests, when
uniform distributions are used, e.g., B = 2 and S = 4.

In conclusion, AHAB’s performance seems to be robust
against small deviations in the request generation process. But
the acceptance pattern changes. Larger deviations are unlikely
given today’s estimation methodologies but would require a
more extensive analysis of AHAB’s behavior.

H. How should we design the cluster?

Finally, this section evaluates how the results are affected by
the host capacities. Fig. 9 illustrates the CU utilization of the
different algorithms for varying computation (Ĉ) and network
(B̂) capacities of the hosts. The arrival rate is λ = 12 for all
setups with Ĉ = 8 and λ = 20 for all setups with Ĉ = 16

1 2 4 8
VM Size

3
9

15
21
27
33
39
45
51
57
63

N
um

.V
M

s

B = 1

1 2 4 8
VM Size

B = 2

1 2 4 8
VM Size

B = 4

1 2 4 8
VM Size

B = 8

−0.15
−0.10
−0.05
0.00
0.05
0.10
0.15

D
iff

.A
cc

ep
ta

nc
e

R
at

io

Fig. 8. Difference of acceptance ratio between AHAB(KRAKEN) with
perfectly matched distributions and with mismatched/uniform distributions for
request generation. Values are grouped by VC specification. Positive values
show higher acceptance with matched distributions.

to keep the offered load similar. In both cases, the system
is overloaded and > 15% of the requests are rejected. The
leftmost group of confidence intervals shows the results for
Ĉ = 8, B̂ = 8 which are already evaluated in Sec. V-B. We
recall the significant dominance of AHAB(KRAKEN). When
the capacity of the hosts’ up-link is doubled (Ĉ = 8, B̂ =
16), a first observation is that the utilization increases for
all algorithms. However, OKTOPUS, KRAKEN and TETRIS
close the gap to AHAB. The performance difference is only
≤ 0.05 compared to ≈ 0.1 in the previous case. Moreover,
OKTOPUS, KRAKEN and TETRIS perform now similar as
AHAB(KRAKEN) with B̂ = 8 but at the cost of doubling
the physical link capacity. This observation implies that the
high utilization of the host link limits the embedding of
VCs and leads to fragmented computation resources. With the
increased up-link capacity, the resource ratio of a host is now
Ĉ
B̂

= 0.5 < 1, which is similar to the ratio of the requests that
are preferably picked by KRAKEN and TETRIS (see Sec. V-D).
Furthermore, a single VM can no longer block an entire host’s
link. This increases the probability of multiple allocated VMs
at one host and reduces the fragmentation of computational
resources. A second point is that TETRIS performs worse
than OKTOPUS and KRAKEN. Thus, with sufficient network
resources available, the benefit of mapping communication
intensive with computation intensive requests vanishes.

Doubling Ĉ while keeping B̂ = 8, leads in total to lower
utilization for all algorithms. In particular, the gap between
OKTOPUS and KRAKEN grows as OKTOPUS embeds less
efficiently and wastes more resources on the hosts’ up-links.

The results for the case Ĉ = 16, B̂ = 16 show that
again the bandwidth is the limiting factor and one main
reason why AHAB performs better than the algorithms without
admission control. For this case, the utilization obtained with
TETRIS and AHAB is almost the same and also OKTOPUS
and KRAKEN close the gap to AHAB. Thus, the advantage
of AHAB diminishes when the maximum size of the VMs
decreases in comparison to the available CUs on a host and
the trade-off between performance gain and computational
overhead has to be done more carefully. However, further



(8, 8) (8, 16) (16, 8) (16, 16)

Host Capacity (Ĉ, B̂)

0.4

0.5

0.6

0.7

0.8

0.9

1.0
U

se
d

C
U

s
/T

ot
al

C
U

s

Oktopus
Kraken

Tetris
AHAB(Kraken)

Fig. 9. Performance comparison between embedding algorithms using 95%
confidence intervals of CU utilization against host capacities. Note, that the
arrival rate for Ĉ = 8 is 12, while it is 20 for Ĉ = 16.

evaluations are necessary to analyze this more in detail.

VI. CONCLUSIONS

Virtual clusters are one of the most prominent abstractions
that guarantee network performance and isolation in batch-
processing and cloud computing. Their efficient embedding on
the physical topology is crucial for the economical operation
of such systems. This work presented TETRIS, a new VC
embedding algorithm that sacrifices the embedding efficiency
of a single request in order to maximize the reward in the long
run. TETRIS tries to balance the utilization of resources along
different dimensions by mapping together computation and
communication intensive requests. The evaluations show that
this approach beats algorithms such as OKTOPUS or KRAKEN.

As a second step to increase the performance of cluster
embedding over time, this work proposed AHAB, a data-driven
approach to admission control for VC embedding. AHAB is
based on the idea of looking into the future and evaluating
the benefit of the current embedding using knowledge about
the distributions of the requests’ attributes. AHAB shows
better performance than algorithms without or with only very
simple admission control. This improvement comes at the
cost of higher computational complexity which however, can
be controlled by AHAB’s parametrization. Furthermore, the
evaluation shows that the performance difference is impacted
by the size of the substrate network.

In future research, it is interesting to look into the pos-
sibility provided by machine learning to reduce the online
computational effort of AHAB by learning from experience
as in [19], [20]. Additionally, within the prediction sequences
that AHAB runs, no admission control is applied. The use of
more sophisticated policies, as provided by deep learning, can
enhance the decision quality of AHAB. Furthermore, we be-
lieve that cluster planning that integrates algorithm behaviors,
application specifications and demands is another interesting
angle for future investigation.

ACKNOWLEDGMENT

This work is part of a project that has received funding from
the European Research Council (ERC) under the European
Unions Horizon 2020 research and innovation program (grant
agreement No 647158 - FlexNets).

REFERENCES

[1] J. C. Mogul and L. Popa, “What we talk about when we talk about
cloud network performance,” ACM SIGCOMM CCR, vol. 42, no. 5, pp.
44–48, 2012.

[2] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards pre-
dictable datacenter networks,” in Proc. ACM SIGCOMM 2011, Toronto,
Ontario, Canada, 2011, pp. 242–253.

[3] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu,
and Y. Zhang, “SecondNet: A Data Center Network Virtualization
Architecture with Bandwidth Guarantees,” in Proc. CoNEXT 2010,
Philadelphia, USA, 2010, pp. 15:1–15:12.

[4] K. C. Webb, A. Roy, K. Yocum, and A. C. Snoeren, “Blender: Upgrading
tenant-based data center networking,” in 2014 ACM/IEEE ANCS, Los
Angeles, CA, USA, 2014, pp. 65–75.

[5] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. Guedes, “Gate-
keeper: Supporting bandwidth guarantees for multi-tenant datacenter
networks,” in Proc. 3rd Conference on I/O Virtualization, Portland, OR,
USA, 2011, pp. 1–8.

[6] D. Li, J. Zhu, J. Wu, J. Guan, and Y. Zhang, “Guaranteeing Hetero-
geneous Bandwidth Demand in Multitenant Data Center Networks,”
IEEE/ACM Trans. Netw., vol. 23, no. 5, pp. 1648–1660, 2015.

[7] D. Xie, N. Ding, Y. C. Hu, and R. Kompella, “The Only Constant
is Change: Incorporating Time-varying Network Reservations in Data
Centers,” in Proc. ACM SIGCOMM 2012, vol. 42, Helsinki, Finland,
2012, pp. 199–210.

[8] M. Rost, C. Fuerst, and S. Schmid, “Beyond the stars: Revisiting virtual
cluster embeddings,” ACM SIGCOMM CCR, vol. 45, no. 3, pp. 12–18,
2015.

[9] C. Fuerst, S. Schmid, L. Suresh, and P. Costa, “Kraken: Online and
Elastic Resource Reservations for Cloud Datacenters,” IEEE/ACM Trans.
Netw., vol. PP, no. 99, pp. 1–14, 2017.

[10] R. Yu, G. Xue, X. Zhang, and D. Li, “Survivable and bandwidth-
guaranteed embedding of virtual clusters in cloud data centers,” in Proc.
IEEE INFOCOM 2017, Atlanta, GA, USA, 2017, pp. 1–9.

[11] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and
R. Bianchini, “Resource Central: Understanding and Predicting Work-
loads for Improved Resource Management in Large Cloud Platforms,”
in Proc. SOSP '17, Shanghai, China, 2017, pp. 153–167.

[12] J. Jiang, V. Sekar, I. Stoica, and H. Zhang, “Unleashing the potential of
data-driven networking,” in Proc. COMSNET 2017, Bengaluru, India,
2017, pp. 1–8.

[13] L. Yu and H. Shen, “Bandwidth Guarantee under Demand Uncertainty
in Multi-tenant Clouds,” in Proc. IEEE ICDCS 2014, Madrid, Spain,
2014, pp. 258–267.

[14] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica, “Mesos: A Platform for Fine-Grained
Resource Sharing in the Data Center.” in Proc. 8th NSDI, vol. 11,
Boston, MA, USA, 2011, pp. 295–308.

[15] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proc. ACM SIGCOMM 2008, vol. 38,
Seattle, WA, USA, 2008, pp. 63–74.

[16] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of Go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[17] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A
Survey of Monte Carlo Tree Search Methods,” vol. 4, no. 1, pp. 1–49,
2012.

[18] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Towards understanding heterogeneous clouds at scale: Google trace
analysis,” Intel Sci. Technol. Cent. Cloud Comput. Tech Rep, vol. 84,
2012.

[19] A. Blenk, P. Kalmbach, P. van der Smagt, and W. Kellerer, “Boost
online virtual network embedding: Using neural networks for admission
control,” in Proc. 12th CNSM, Montreal, Canada, 2016, pp. 10–18.

[20] A. Blenk, P. Kalmbach, W. Kellerer, and S. Schmid, “O’zapft is: Tap
Your Network Algorithm’s Big Data!” in Proc. ACM Big-DAMA, Los
Angeles, CA, USA, 2017, pp. 19–24.


