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Introduction 

Response quantification for aerospace and automobile 

systems is not always deterministic due to inherent 

randomness in system parameters. Nowadays, fiber 

reinforced composite (FRC) has become an ideal material to 

the aerospace and automobile industries owing to its high 

strength to weight ratio. However, such material shows a 

wide range of the variability in structural response due to the 

inherent randomness in elastic moduli, damping, fiber 

orientation, etc. Therefore, uncertainty quantification of the 

FRC has been a major challenge in the aerospace and 

automobile industries in achieving reliable structural design. 

In the recent years, spectrum-based general polynomial 

chaos (gPC) expansion method has received significant 

attention in the industries over the classical sampling-based 

Monte Carlo (MC) simulation method due to faster rate of 

convergence and computational efficiency [1]. The 

application of the gPC expansion method to analyze the FRC 

plate under static and dynamic excitations has already been 

reported [2, 3]. In these works, randomness due to the elastic 

moduli has been considered. A good agreement of the 

response has been reported in the distributions obtained 

using the gPC expansion method as compared to the MC 

simulation method [1]. A successful representation of the 

uncertainty in the system response has been reported using 

the gPC expansion method, which depends on identification 

of probability density function (PDF) for the input 

parameters in the stochastic finite element method (SFEM). 

Rosić et al. [4] presented a non-sampling-based Bayesian 

updation technique on prior information of the random 

parameters in combination with the gPC expansion. They 

applied this method in Darcy-like flow through porous 

media. Mehrez et al. [5] have reported the characterization of 

stochastic properties of the elastic moduli of the 

heterogeneous composite fabrics from limited experimental 

data using gPC expansion method. They considered 

coefficients of the gPC expansion as random and their 

distributions have been obtained using the Bayesian 

inference method from the limited experimental data. 

Application of the Bayesian inference method for the 

uncertain input parameters of the FRC plate using the gPC 

expansion method requires further investigation. 

The purpose of the present work is to infer the posterior 

density function of the random input parameters i.e. elastic 

moduli of the FRC plate, through the Bayesian inference 

method and apply the posterior distribution to the gPC 

expansion method to study the uncertainty in the frequency 

responses of the FRC plate under free vibration. The 

identification of the random space of the uncertain input 

parameters is a crucial aspect before application of the gPC 

expansion method. The present work shows the application 

of successful identification of the posterior density function 

of the elastic moduli using Pearson model. The major 

objectives of the present study are: (1) to identify random 

space of uncertain input parameters; (2) to identify the 

posterior density function of frequency responses of the FRC 

plate; and (3) to investigate the effect of application of the 

Bayesian inference on the distribution of the frequency 

responses of the FRC plate. 

 

Bayesian Inference 

The Bayesian inference method is used here to postulate the 

data for elastic moduli of the FRC from prior uncertain 

knowledge. It is assumed that the elastic moduli follow a 

log-normal (LN) distribution [2]. Independence Jeffreys’ 

prior is used for the Bayesian inference, considering the 

mean () and standard deviation () as unknowns [6]. The 

independence Jeffreys’ prior follows the Fisher information 

matrix, where µ and logσ2 are independent and uniformly 

distributed. By combining the likelihood function and the 

prior density function, the joint posterior density function is 

represented as 
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Stochastic Finite Element Method for FRC 

Orthotropic FRC plate is mathematically modelled by finite 

element (FE) method considering first order shear 

deformation theory (FSDT). Commercial FE package Ansys 

is used to model the FRC plate using 8-node plate element 

SHELL281 having six degrees of freedom per node. This FE 

model is used to deterministically solve the problem in the 

subsequent SFEM steps. The elastic moduli of the FRC plate 

are considered as uncertain parameters and represented by a 

truncated gPC expansion as [1], 
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where Ei are the deterministic coefficients, and )( eei   is 

orthogonal basis function in the gPC expansion method. One 

dimensional 3rd order gPC expansion is used to generate the 

random elastic parameters, i.e. E11, E12, G12, and G23. The 

selection of orthogonal polynomial basis function depends 

upon the probability space in which the random parameters 

belong. The prior distribution of the elastic moduli is 
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assumed to be distributed log-normally. For log-normal 

random parameters, Hermit polynomial is used as an 

orthogonal basis function. The random frequency responses 

of the FRC plate are also approximated by a truncated 

multidimensional gPC expansion as, 
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where )( ffi   is the multidimensional polynomial basis 

function, and Fi are the deterministic unknown coefficients. 

The deterministic unknown coefficients of response are 

calculated by stochastic collocation methods [1]. For 3rd 

order gPC expansion with two-dimensional random vectors 

i.e.  
21

, fff    requires determining 10 numbers of de-

terministic coefficients. A set of deterministic solution of the 

system is generated from the N sets of the random elastic 

parameters. Eq. 3 is then solved to determine the determinis-

tic coefficients for the N numbers of collocation points. 

 

Identification of the Uncertain Parameters 

The PDF identification of the elastic parameters is a key 

issue for successful representation of synthetic PDF of sys-

tem response employing the gPC expansion method. The 

most common and widely accepted method for PDF identifi-

cation is the Pearson model [7]. The method involves calcu-

lation of terms 
1  (squared skewness) and 

2  (traditional 

kurtosis) from the digitally generated samples of uncertain 

parameters and plot on the Pearson diagram, where 
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and µk is the kth central moment about the parameter mean of 

the uncertain parameter is given by, 
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where   is the standard deviation of the generated sample 

space, 
ip  are the generated samples, and )(PE  is the ex-

pected value of the samples. Pearson family [7] contains 

many popular standard PDFs i.e. Normal, Log-normal, Beta, 

Gamma, etc. as well as some non-standard type PDFs also. 

The Pearson model is able to identify PDF of random pa-

rameters with high accuracy from the precisely calculated 

terms 
1  and 

2 . 

 

Numerical Case Study 

A study on glass fiber-epoxy, FRC plate with free-free 

boundary condition is presented here to ascertain the 

applicability of the Bayesian inference in investigating the 

uncertainty of the system response. A 12-layer symmetric 

cross-ply laminate glass fiber epoxy composite is used for 

the investigation. Dimensions of the plate are 250 mm × 

125 mm × 2 mm. As stated previously, prior uncertain 

elastic parameters are distributed log-normally; and mean 

value and standard deviation of the parameters are as given 

in Table 1. The 3rd order gPC expansion method with Hermit 

polynomial function is employed to represent the prior 

density function of the input parameters. The reconstructed 

prior is shown in Fig. 1 in comparison with the theoretical 

log-normal PDF. It is found that the 3rd order gPC expansion 

is able to represent the distribution with high accuracy. The 

parameters of the posterior density function of the elastic 

moduli are estimated using the Bayesian inference with 

reference to Eq. 1 and posterior density function has been 

represented by the gPC expansion method (Fig. 1). 

 

Table 1: Material parameters 

Parameters Values 

Elastic moduli [GPa] 

)12,451.47(~11 LNE  

)3,739.9(~22 LNE  

)1,047.4(~12 LNG  

)7.0,0235.2(~23 LNG  

Poisson’s ratio 0.24 

Density [kg/m3] 2174.24 

 

The class of posterior PDF is needed to be identified before 

representation of the posterior distribution of the system 

response by the gPC expansion method. The Pearson model 

is used here to identify the sample space of the posterior data 

of the elastic moduli. Thus, corresponding values of the 

Pearson parameters 
1  and 

2  are calculated from the pos-

terior PDF according to Eq. 4 and Eq. 5. The posterior dis-

tribution parameters and Pearson parameters of elastic mod-

uli are presented in Table 2. The Pearson parameters of the 

elastic moduli are represented in Fig. 2 in terms of 
1  and 

2 . It is found that the uncertain parameters are near to the 

coordinate )3,0(),( 21   of the Gaussian distribution. In 

Fig. 2, line VII represents the log-normal type of distribution 

and the coordinate points ),( 21   of the elastic moduli are 

in the close vicinity of line VII [7]. In such scenario, all the 

posterior PDFs of the uncertain elastic parameters are treated 

as log-normally distributed. Thereby, Hermit polynomial is 

used as an orthogonal basis function for the third order gPC 

expansion to represent the posterior density function of the 

system response. As observed from Fig. 1, the synthetic 

posterior PDFs of all the elastic moduli are comparable with 

the theoretical log-normal PDF. 

To construct distribution function of eigen frequency of the 

FRC plate under free vibration, two-dimensional 3rd order 

gPC expansion is employed here. Roots of the one higher 

order orthogonal Hermit polynomial, i.e. ±2.334 and 

±0.7420 are used as collocation points along with the typical 

collocation point 0. A set of 52 = 25 collocation points is 

generated to estimate the unknown coefficients (Eq. 3) of the 

first four eigen frequency distributions. The typical colloca-

tion points in an increasing order are: (0,0), (0,0.7420), 

(0.7420,0), etc. After solving the values of unknown deter-

ministic coefficients a set of 1000 random first four eigen 

frequencies are generated by considering values of polyno-

DAGA 2018 München

1461



mial, )(1 ff
 , )(2 ff

 , …, )(10 ff
 , where 

)1,0(),(
21

N fff   are normally distributed. 

 

  

  
Figure 1: Synthetic prior and posterior PDF of elastic 

moduli E11, E22, G12, and G23 [GPa] from 3rd order gPC 

expansion (dashed line) compared to theoretical log-normal 

PDF (bold line) 

 

Table 2: Parameters of posterior PDF of elastic moduli 

Parameters  [GPa]  [GPa] 1  
2  

11E  46.085 2.860 0.035 3.035 

22E  9.344 0.849 0.076 3.119 

12G  3.936 0.234 0.046 3.114 

23G  1.925 0.219 0.103 3.203 

 

The first four deterministic coefficients of the prior and 

posterior gPC expansion methods for first four eigen fre-

quencies are presented in Table 3. Mean and standard devia-

tion of the prior and posterior distributions are presented in 

Table 4. It is evident from Table 4 that dispersion of the 

distribution of the eigen frequencies is increasing with the 

increase in eigen frequency mode for both prior and posteri-

or distributions. However, the range of dispersion in the 

posterior eigen frequency distribution is reduced considera-

bly in comparison with the prior distributions. Introduction 

of the Bayesian inference method within the gPC expansion 

method greatly reduces the range of dispersion of the distri-

bution for the posterior frequency responses of the FRC 

plate. Considering mean value of the elastic moduli as de-

terministic, the first four eigen frequencies of the FRC plate 

with free-free boundary conditions are: 91.287, 108.98, 

215.54, and 300.32 Hz. It is evident from Table 4 that the 

posterior mean values of the first four eigen frequencies are 

close to the deterministic values in comparison with the 

mean values of the prior eigen frequency distributions. It is 

observed that the gPC coefficients (Table 3) converge rapid-

ly for the posterior eigen frequencies over the prior eigen 

frequencies. The rapid convergence of the gPC coefficients 

is attributed to the lower range of variation in the standard 

deviation (Table 4) for the posterior eigen frequency distri-

bution. Nevertheless, the values of the standard deviations 

are in increasing order with the frequency mode for both 

prior and posterior eigen frequency distributions. The PDFs 

of the prior and posterior eigen frequencies are presented in 

Fig. 3 and Fig. 4 in comparison with the kernel density PDF. 

It represents accuracy of the gPC expansion method as com-

pared to the simulated eigen frequency distribution with 

reference to the kernel density PDF. Identification for class 

of the posterior frequency distributions is carried out from 

the Pearson model. Pearson parameters, 
1  and 

2  are cal-

culated from the digitally simulated data using the gPC ex-

pansion and presented in Table 4. 

 
Figure 2: The Pearson diagram comparing the type of 

posterior PDF for uncertain elastic moduli ( - E11, * - E22, 

+ - G12, and o - G23) 

 

It is seen from the Pearson diagram shown in Fig. 5 that the 

Pearson coordinate points 
1  and 

2  for the posterior 

frequency responses are quite close to the coordinate, 

)3,0(),( 11   of the normal distribution. Thus, the 

posterior distribution of the frequency responses are 

identified with the generalized normal distribution with 

prescribed mean and standard deviation. 

 

Table 3: The coefficients of gPC of prior and posterior 

distribution for first 4-eigen frequencies for FRC plate 

 Mode 
gPC coefficients 

F0 F1 F2 F3 

Prior 

1 90.209 11.486 0.000 0.632 

2 107.445 14.763 0.000 0.868 

3 212.865 27.662 0.000 1.551 

4 296.100 40.701 0.000 2.392 

Posterior 

1 89.963 2.703 0.000 0.040 

2 107.395 3.668 0.000 0.066 

3 212.406 6.616 0.000 0.104 

4 295.962 10.145 0.000 0.108 

 

Conclusions 

The stochastic-based gPC expansion method in accordance 

with the Bayesian inference is presented in this work to 
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investigate the posterior distribution of the uncertain elastic 

parameters and classify distribution of the posterior frequen-

cy response of the FRC plate under free vibration. The anal-

ysis presents a basic idea in successfully identifying classes 

of the uncertain parameters, suitably applying the Bayesian 

inference. 

 

Table 4: Distribution parameters and Pearson coefficients 

for first four prior and posterior eigen frequencies 

 Mode   1  
2  

Prior 

1 89.935 11.413 0.117 3.197 

2 107.322 14.786 0.171 3.264 

3 231.370 27.832 0.137 3.302 

4 297.447 41.454 0.168 3.222 

Posterior 

1 90.067 2.754 0.009 3.035 

2 107.580 3.815 0.007 2.978 

3 212.372 6.511 0.012 3.039 

4 296.270 9.705 0.002 2.956 

 

  

  
Figure 3: Prior gPC distribution of first four eigen 

frequencies [Hz] (bold line) compared to kernel density 

PDF (dashed line) 

 

  

  
Figure 4: Posterior gPC distribution of first four eigen 

frequency [Hz] (bold line) compared to kernel density PDF 

(dashed line) 

 

 
Figure 5: The Pearson diagram comparing the type of 

posterior distribution for first four eigen frequencies ( - 1st 

eigen freq., * - 2nd eigen freq., + - 3rd eigen freq. and ο - 4th 

eigen freq.) 

 

It is concluded that dispersion of the posterior distribution of 

the eigen frequency response is less in comparison with the 

prior eigen frequency responses. Thus, Bayesian inferred 

responses present a low level of uncertainty, which lead to 

reliable design of the FRC plate for various applications. 
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