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A BaSiC tool for background and shading correction
of optical microscopy images
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Quantitative analysis of bioimaging data is often skewed by both shading in space and
background variation in time. We introduce BaSiC, an image correction method based on low-
rank and sparse decomposition which solves both issues. In comparison to existing shading
correction tools, BaSiC achieves high-accuracy with significantly fewer input images, works
for diverse imaging conditions and is robust against artefacts. Moreover, it can correct
temporal drift in time-lapse microscopy data and thus improve continuous single-cell
quantification. BaSiC requires no manual parameter setting and is available as a Fiji/Image)

plugin.
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ptical imaging is an indispensable tool in biomedical
research. All modern optical imaging (whether whole
slide imaging, high-content screening or high-throughput
time-lapse microscopy) relies on image processing and quanti-
fication methods to analyse and interpret the acquired data.
However, optical microscopy data, and especially fluorescence
imaging, is often severely affected by shading or vignetting!,
typically reflected as an attenuation of the brightness intensity
from the centre of the optical axis to the edges. This not only
degrades the visual quality of an image (for example, by causing
discontinuities in whole slide images (WSIs)), but more critically
compromises the downstream analysis of, for example, tissue
composition or single-cell properties. Besides spatial shading
effects, time-lapse movies often exhibit a temporal baseline drift
due to background bleaching, which further skews the
quantification of the dynamic behaviour of cellular and
molecular properties?.
The physical process of image formation can be approximated
as a linear function® that relates a measured image, I'"**(x) at
location x, to its uncorrupted true correspondence, I'*¢(x), as

1749 (x)=I"" (x) x S(x) + D(x) (1)

where the multiplicative term S(x) represents the change in
effective illumination across an image (known as flat-field); the
additive term D(x), known as dark-field, is dominated by camera
offset and thermal noise, which are present even if no light is
incident on the sensor.

Existing shading correction methods can be generally divided
into two groups: ‘prospective’ approaches that determine S(x) and
D(x) from extra reference images4 (Supplementary Note 1) and
‘retrospective’ approaches, which rely on the actual image data
itself and hence avoid collection of extra reference images
(Supplementary Note 2). A number of multi-image based
approaches have been recently published, for example, Smith
et al.> (Fiji Plugin ‘CIDRE’), Coster et al.% and Singh et al.” (the
default module in CellProfiler). These approaches take advantage
of shared S(x) among an image sequence and are usually more
reliable than single-image based corrections. Yet they require
large numbers of images to reach a stable performance and a
manual fine-tuning of internal parameters, and their robustness
to common bioimage artefacts (such as dust and fluorescence dye
particles) has not been tested. Moreover, none of the existing
methods is able to model and correct temporal drift (e.g. caused
by photobleaching) for time-lapse movies.

We propose BaSiC, a retrospective method for background and
shading correction of image sequences, based on a sparse and
low-rank decomposition. In comparison to existing shading
correction tools, BaSiC requires fewer input images, works for
diverse imaging conditions and is robust against typical image
artefacts. Moreover, it can correct temporal drift for time-lapse
microscopy data, and hence improve single-cell quantification.
BaSiC is available as an easy-to-use Fiji/ImageJ plugin as usually
requires no manual parameter tuning.

Results

BaSiC workflow. Inspired by Smith et al.>, we build our method
on the shading model (equation (1)), which accounts for the
effect of both S(x) and D(x). Such a full model is superior as
compared to a partial model that considers S(x) only”. As shown
in the schematic plot of Fig. 1, BaSiC first constructs a
measurement matrix I (step I), which is then decomposed into
a low-rank matrix I® and a sparse residual matrix IR (step II). The
low-rank matrix has a maximum rank of two as each column is
the sum of a scaled version of S(x) (with a scaling factor B;) and
D(x), which are all initialized with zeros (step III) and optimized
by promoting the sparsity of the residual matrix with a

2

reweighted L1-norm (step IV). In addition, smooth constraints
are imposed on both S(x) and D(x) by regulating their sparsity in
Fourier domain (Supplementary Fig. 1). The optimization is
solved in an iterative fashion using the linearized augmented
Lagrangian method®, which is widely used in sparse matrix
decomposition like Robust PCA (ref. 9) and RASL (ref. 10) (for a
detailed description of the mathematical derivation and matrix
updating see Methods and Supplementary Note 3). An automatic
parameter setting strategy determines the smooth regularization
parameters for S(x) and D(x), adaptive to different image
contents, so that tedious manual parameter tuning is avoided
(Supplementary Note 4). We provide a statistical interpretation of
BaSiC in Supplementary Note 5. With the estimation of S(x) and
D(x), we can correct the intensity profile of each image tile of a
WSI by reversing the image formation process, equation (1),
leading to a homogenous appearance and correct stitching
(Fig. 1d versus a).

BaSiC requires few images for shading correction. We first
evaluate BaSiC using synthetic images, where the ground-truth of
the shading-free image I'"¢, the flat-field S(x) and the dark-field
D(x) are known (Supplementary Note 6). We first compare BaSiC
with CIDRE (ref. 5), the only other method that is able to
simultaneously estimate S and D. BaSiC requires far fewer images
to achieve the same accuracy as CIDRE (for example, 10 versus
100 images to reach an estimation score I'(S°')<0.1 at three
levels of cell density (cell density, Supplementary Fig. 2). We
subsequently evaluate BaSiC using a comprehensive microscope
image collection provided by Smith et al.>, which includes 10 real
microscopy data sets, one photography data set and one synthetic
microscopy data set (refer to Smith et al.® for data set details). We
assess the correction quality by the correction score, I'(I°°™),
which is the mean absolute difference of pixel pairs in
overlapping image regions for each data set after correction,
normalized by the difference of the uncorrected pairs®. A
I'(I°") <1 suggests reduced shading while I"'(I°°"") > 1 implies
increased shading compared to the uncorrected images. Besides
CIDRE, we compare BaSiC also with the methods used in Coster®
and Cellprofiler’ (refer to Methods for technical details), as well
as two prospective methods (Calib-zero and Empty-zero)°. We
find that BaSiC improves image quality with as few as five images
(Fig. 2a). At around 100 images it matches prospective methods
on average, although the performance varies for different data
sets (Supplementary Fig. 3). Among retrospective methods, BaSiC
significantly outperforms existing approaches, when fewer than
500 images are used (Fig. 2a). This is practically relevant since
WSI acquisition typically contains 50-200 tiles and high-content
screening usually works with 96 and 384 well plates, where only
images at the same position of each well share a shading
profile®—hence the number of images available for one
estimation is 96 or 384.

BaSiC is robust to typical image artefacts. Furthermore, we
evaluate the robustness of the four considered retrospective
methods with respect to typical image artefacts. One type of
common artefacts in fluorescence images is bright particles that
strongly fluoresce or scatter light (Fig. 2b). BaSiC is robust to
these artefacts as it incorporates them in the sparse residual
without affecting the low-rank estimation of S(x) and D(x)
(Fig. 2c). By contrast, the estimated flat-fields S%'(x) from CIDRE
and Cellprofiler are sensitive to outliers. While existing methods
suffer from artefacts and inhomogeneities at the image edges,
BaSiC correction leads to a homogenous distribution of mean cell
intensities in a cell culture WSI over the whole slide (Fig. 2d).
Other typical artefacts are stray light and residual excitation light
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Figure 1 | BaSiC is an automatic correction method for both static multi-image microscopy data and dynamic time-lapse data. (a) A mosaic whole slide
image (WSI) of a mouse brain slice showing intensity discontinuities and resulting stitching errors (indicated by black arrows). (b) A time-lapse movie
corrupted by both shading in space and photobleaching in time. (¢) The BaSiC workflow, (see text for detailed explanation). (d) The corrected WSI shows
improved stitching with no discontinuities. (e) BaSiC corrects both spatial shading and background bleaching over time.

due to imperfect filtering, which are difficult to measure experi-
mentally and hence difficult to correct with prospective methods
(Supplementary Fig. 4a). BaSiC incorporates such artefacts in the
estimation of D(x) and can successfully correct their effect
(Supplementary Fig. 4b). A quantitative evaluation of 45 WSIs
using the estimation score suggests that BaSiC achieves an
accurate estimation of shading in all instances, outperforming
existing retrospective methods (Fig. 2e, Supplementary Figs 5-8).

BaSiC corrects background variation in time-lapse movies.
Finally, we apply BaSiC to improve single-cell quantification of
long-term time-lapse microscopy. We decompose the shading-
free true image I{™¢(x) of the ith frame of a time-lapse microscopy
movie into the sum of a spatially-constant baseline signal, B;, and
the spatlally varying foreground (fluorescence) signal of biological
relevance®. Hence the full model for a time-lapse movie becomes:

755 (x) =B, + Fi(x)) X S(x) + D(x) =

Because of background bleaching and varying experimental
conditions, B; is usually not constant between frames (Fig. 1b).
We correct the intensity profile of each frame using the estimated
S(x), D(x) and B; by reversing equation (2), which removes both
spatial shading effects and the temporal drift (Fig. le versus b).
Continuous monitoring of single-cell differentiation dynamics
is an important research tool for stem cell research!!. Besides
improving image contrast at the plate edge, BaSiC is able to
remove intensity spikes for bright-field images and photo
bleaching of the background medium in the fluorescence
channel (Supplementary Fig. 9, Supplementary Movies 1
and 2). We apply BaSiC on 6 day time-lapse movies of
hematopoietic stem and progenitor cells that differentiate
towards the granulocyte-macrophage (GM) lineage and the
megakaryocyte erythrocyte (MegE) lineage (Fig. 3a, see Hoppe
et al.'? for experimental details). The dynamlc expression of the
transcription factor PU.1 has been quantified in cells over many
generations. The BaSiC-corrected intensity profile illustrates a 2—
5-fold increase of PU.1 intensity for GM cells at the onset of the
lineage marker CD16/32 (Fig. 3b). In contrast, PU.1 levels stay
roughly constant in MegE cells, when the onset of the lineage
marker Gatal is observed (Fig. 3c). Importantly, the uncorrected
intensity profiles exhibit no obvious change in PU.1 behaviour for
the two lineages. When comparing GM versus MegE branches a
significant (P=1.2 x 10~ 3, Wilcoxon rank-sum test, Fig. 3d)

fold-change in PU.1 expression is only observable after BaSiC
correction.

Discussion

BaSiC is an efficient tool for image correction and can be applied
to high-content images, WSIs and high-throughput time-lapse
movies. BaSiC has immediate attraction to researchers who create
stitched images, since correcting uneven illumination improves
stitching and mosaic image quality. Besides, BaSiC can be also
used as a pre-processing step in conjunction with automatic
methods such as cell counting or measuring the morphology of
cells and thus improving down-stream analysis. The crucial
contribution of BaSiC is to improve intensity quantification
in both static and time-lapse imaging data. Unlike local
contrast equalization methods, which could distort the true
intensity variations within an original image or across multiple
images, BaSiC is built on solid physical models of optical
imaging and hence is able to recover biologically relevant
intensities for image quantification. Besides of being accurate,
BaSiC is also fast to compute: in our Fiji implementation,
it usually processes hundreds of images within minutes on a
standard laptop.

From a methodological point of view, there are two key
differences between BaSiC and the state-of-the-art shading
correction tools that also model flat-field S(x) and dark-field
D(x). The first distinctive feature of BaSiC is the reweighted L1-
norm error measure, which allows for a quicker convergence
when dealing with limited amount of images and, more
importantly, results in increased resistance to outliers in data
such as noise or debris. Besides S(x) and D(x), BaSiC can also
estimate a per-image baseline B; which accounts for varying
background in time-lapse movies. This correction of background
bleaching is a unique feature of BaSiC that CIDRE and other
existing methods cannot provide.

As any shading correction method, BaSiC has limitations. One
key assumption of BaSiC and all other previously mentioned
multi-image based retrospective methods is that the foreground
of every image to be processed should be uncorrelated with the
foreground of every other image. This assumption can be violated
for time-lapse movies of static and quasi-static objects, for
example, for a single-cell of high-magnification that is always in
the centre of the field of view. In such cases, BaSiC would
consider the consistently higher image intensities in the centre of
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Figure 2 | BaSiC requires significantly fewer images and is robust to image artefacts. (a) Method evaluation on benchmark data sets®. Correction quality
is evaluated by the correction score, I''(I°°""), the mean absolute difference between overlapping regions after correction, normalized by the difference
before correction. A lower correction score suggests better correction results. Each curve represents the average performance on 12 microscope image
collections. For less than 500 images, BaSiC significantly outperforms other retrospective methods (P<0.023, paired Wilcoxon signed rank test with
Bonferrnoi correction for multiple testing). With >100 images, BaSiC outperforms two prospective methods (Calib-zero and Empty-zero). (b) Typical WSI
artefacts: bright particles on the specimen that strongly emit light (‘spike’-like artefact, top) or scatter light (bottom). (¢) BaSiC is more robust to the
‘spike’-like artefacts as compared to CIDRE and Cellprofiler. Note that only BaSiC and CIDRE can estimate dark-field, while other methods simply neglect
dark-field. (d) Surface plots show the averaged cell intensity of different spatial locations before and after shading correction of cell culture WSI. After
BaSiC correction, the s.d. of the mean cell intensity over different regions is reduced to around 20% of the uncorrected s.d. (e) BaSiC significantly
outperforms other methods on 45 WSils of various types of biological specimen, imaged at different channels and diverse experimental settings, containing
noise and artefacts. The estimation score, I'(S®%Y), is the mean absolute difference between the estimated Se5t(x) and the prospectively obtained reference
S(x), normalized by a baseline score. Besides achieving the minimum median score, BaSiC, unlike other methods, does not have a single outlier in all cases

(refer to Supplementary Figs 5-8 for the individual scores for all 45 WSlIs).

the field of view as a local increase in S(x), causing removal of the
true fluorescence variability. Nevertheless in practice, BaSiC has
some tolerance to such correlations, for example, it performs well
in a movie of proliferating and slowly moving embryonic stem
cell colonies (as shown in Supplementary Movie 2), in which
consecutive frames are correlated. Meanwhile, the regularization
parameter /; (see Methods) can be used to tune the resulting
model so that it is more suitable for correlated images. Larger
values of A, lead to a smoother estimation of the low-rank
component, thus rejecting small static objects in the estimated
S(x). Another useful strategy is to take samples with a large time
gap in between to make images less correlated. In any case, we
advise users to visually inspect the estimated shading profiles
before making a correction in such challenging cases: a smooth
S(x) usually indicates a good shading correction, while local
inhomogeneities that come from highly corrected foreground
objects are a hint of non-optimal correction.

Although BaSiC can compensate background variation, no
matter if it is caused by bleaching or by switching microscopy
settings, it does not account for variation in the foreground
sample fluorescence that may also occur due to photobleaching.
In the presented long-term single-cell time-lapse measurements,
the dominant corrupting factor is the background variation
caused by medium bleaching. Hence subtraction of background
bleaching greatly improves the intensity quantification of single
cells (as shown in Fig. 3). In fact, existing photobleaching
correction methods (such as the Bleaching Correction Plugin in
Fiji/Image]) are not suitable for correcting foreground cell
bleaching in our movies: these methods either assume constant
intensity or stable intensity distribution of each frame, which is
certainly not the case for transcription factor expression during
cell differentiation, where the signal varies depending on the cell
type and time. It should also be noted that for fluorescence
images, the estimated baseline can converge to the foreground,
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Figure 3 | Single-cell quantification of time-lapse data is significantly
improved after BaSiC correction. (a) Hematopoietic stem and progenitor
cells can differentiate into two different lineages (GM or MegE). (b,c) PU.1
expression along two exemplary cellular branches, one committing to the GM
lineage signified by CD16/32 onset (b) and the other committing to the MegE
lineage signified by Gatal onset (€). The BaSiC-corrected intensity profiles
(red) show a PU.1 upregulation in the GM lineage prior to CD16/32 onset, but
not in the MegE lineage. The uncorrected profiles (black) suffer from shading,
temporal drift and noise. Bright-field, PU.1, CD16/32 and Gatal image patches
of each cell in the branch after BaSiC correction are shown on top (scale bar,
10 um). (d) The BaSiC-corrected PU.1 intensity fold change (right bars)
between marker onset and start of the movie (averaged over 6 h) suggests
that GM cell branches show a significant (n =99, P=0.0012, Wilcoxon rank-
sum test) PU.1 upregulation in contrast to MegkE cell branches (n=49). This
is not observable in the uncorrected fold changes (left bars).

when the foreground fraction of an image is > 50%. This does not
affect the practical usage of BaSiC, when a high-cell density is
reached only at the end of a movie. Typically then, the bleaching
effect is already weak (bleaching usually decays exponentially),
and hence the correction for those frames can be skipped. By
contrast, for bright-field images, BaSiC is robust to different levels
of cell density in background correction.

With the limitations addressed above in mind, we believe that
BaSiC will help to standardize the processing and quantification
of bioimage data due to its broad applicability, robust
performance, elegant mathematical formulation and easy-to-use
interface.

Methods
Shading model and optimization. A measured image sequence, I™® = [["**(x),
o I7*(x), can be related to its uncorrupted true correspondence, Jtrue —

Iie(x),..., (), with a multiplicative flat-field S(x) and an additive dark-field
D(x):

I;neas (X):I,m‘e (x)xS(x) + D(x) ®)

The BaSiC correction begins by sorting the image sequence I™® into I*°™t by
intensities at each pixel x, converting each sorted image I{°"*(x) into a column
vector I (from now on, we denote the same parameter in image space with (x)
and as vector without (x)). Hence, we construct the measurement matrix as

1= [Islcm.7 . I;on} .
Each column vector of the measurement matrix I is decomposed into
I;=B;xS+D+R;, (4)

where B, is a location independent scalar and R; is the residual. The sum of the first
two terms forms a rank 2 matrix, IB=B ©® S @& D (® and @ denote column-wise
multiplication and addition, respectively), as all columns share the same S and D.
The residual matrix, I¥, is assumed to be sparse, that is, the residual IX(x) generally
occupies only a small fraction of image pixels. Assuming sparsity of IX, we have

the following constraint optimization problem:

ming s p |IR|0

5)
subjecttoI=I® + I* I’=B © § @ D, (

where | |o denotes the L0-norm, that is, the number of non-zero elements in IX.

A direct optimization of equation (5) is impossible since it has no unique
mathematical solution (suppose D* is one solution, then D* —z xS,z € Z is
another solution). Besides, the minimization of an LO-norm is NP-hard!3. Hence,
we adapt the objective function by imposing regularization on S and D, and replace
the LO-norm by a reweighted L1-norm minimization:

minB,s.D{\wO 8]+ 2| F(S(0))], + 2al F (DR ()], + zdlD“(x>|1}
subjectto I=I* +I* I°®=B © S & D (6)
D=D? + D®, D? € [0, min(I)],

where the dark-field D is decomposed into the sum of its mean D” and the residual
DR, W is the weighting matrix which balances the penalty of large coefficients and
small coefficients and hence better approximates the L0-norm'?. The detailed
setting of W, the mathematical derivation of equations (4-6) and the numerical
solution of equation (6) are included in Supplementary Note 3. We have developed
a strategy to automatically determine the regularization parameters, A, and A,
adaptive to different image content, so that tedious manual parameter tuning is
avoided (Supplementary Note 4). We also provide a statistical interpretation of
BaSiC in Supplementary Note 5. With the estimated S(x) and D(x), we can invert
the image formation process and obtain corrected image:

I (x)=(I"(x) — D(x))/S(x). 7)
After sorting intensities, the estimated B; alongside S(x) and D(x) is no longer
the baseline of the original images. Hence, we introduce a two-step strategy to
estimate B;: the first step is to compute S(x) and D(x) only, using the matrix with
sorted intensities; in the second step, we estimate B; using the unsorted matrix,
I=[I, .., ID*] and the estimated S(x) and D(x) from step 1 as model inputs.
Hence the optimization problem becomes:

ming [W o I¥|,

8
subjectto I=I® + I} 1*=B © §* @ D* ®)

where $* and D* are the solutions of equation (6) using sorted images. In
comparison to equation (6), solving equation (8) numerically is much faster, due to
a reduced degree of freedom. This is practically beneficial as it can reduce the
computational complexity in the background correction of long-term time-lapse
movies of many frames (details are provided in Supplementary Note 3). With the
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estimation of S(x), D(x) and B;, the correction of a time-lapse movie will be:
I (x)= (Ii’“e"‘s (x) = D(x)) /S(x) = Bi + Buorm, 9)

where B,orm is an arbitrarily chosen background. In practices, we set

Bporm = mean,(B;) for bright-field movies to ensure that the BaSiC-corrected movie
is in the same intensity range as the raw movie. As for fluorescence movies, we can
use Bjorm =0 to remove the background signal.

Microscopy data sets. 45 WSIs of four types of specimens used often in biological
investigations were collected using a Nikon Ti microscope: four fluorescence WSIs
of mouse brain sections, three fluorescence WSIs of mouse kidney sections
(Molecular Probes FluoCells Prepared Slide #3), four fluorescence WSIs of tissue
culture cells (Molecular Probes FluoCells Prepared Slide #2), and four bright-field
WSIs of H&E stained tissue section, each in three different channels. Images were
acquired with a x 10/0.45 NA Plan Apochromat objective using a Lumencor
SpectraX light source for excitation and emission filters for DAPI, Fluorescein and
Cy3. The microscope was controlled by pManager!®. Each WSI contains
50-200 image tiles and is stitched using Grid-wise stitching Plugin in Fiji'® before
and after intensity collection. For each data set, we also acquire reference images
for the flat-field S(x) using a concentrated fluorescent dye solution (Supplementary
Note 1), and the dark-field D(x) with no light entering the camera. For brain and
cell specimens at Cy3 channel, we observed an additive light in the image
background, which can be due to residual excitation light or stray light but not
captured in the dark-field calibration. Details of all WSIs and the corresponding
corrections are included in Supplementary Figs 5-8.

Besides the above WSIs, the microscopy data sets used in this study also include:
(i) 6,000 synthetic images with three different levels of cell density (Supplementary
Note 6); (ii) The image collection used in CIDRE (ref. 5) including 10 real
microscopy data sets, one photography data set and one synthetic microscopy data
set; (iii) One long-term (~6 days) time-lapse movie (one bright-field and three
fluorescence channels) of hematopoietic stem and progenitor cells (Hoppe et al.!?),
which contain ~7,000 bright-field frames (acquired every 2min) and ~ 320
fluorescence frames for each fluorescence channel (acquired every 30 min).

Baseline shading correction methods. We compare BaSiC to three state-of-the-
art retrospective methods and three prospective methods for shading correction.
Each method is summarized below:

CIDRE (ref. 5) is recently published state-of-the-art illumination correction
method?®, as it achieves the best performance among 13 shading correction
methods. CIDRE can estimate both S(x) and D(x) and hence does not require any
reference images. Yet the simultaneous estimation of two unknown parameters is
not stable when the available images are limited or when images are corrupted with
‘spike’-like noise.

The background correction module in the software package CellProfiler’
approximates S(x) using the mean image intensity computed at every location and
subsequently smoothed by a median filter of a user defined kernel size (we use a
kernel size of 20% of the image size). D(x) is neglected in CellProfiler.

Coster et al.® proposed a shading correction method for high-throughput
microscopy®. It first subtracts D(x), required to be obtained via a prospective
method, from all images and approximates S(x) using the median image intensity
computed at every location after subtraction. In our implementation, we further
smooth S(x) with a median filter (kernel size is 20% of the image size, which is
found to be optimal). Strictly speaking, Coster is not a complete retrospective
method, as the calibration of D(x) is needed for correction.

Calib-zero® is a prospective method which approximates the flat-field S(x) as
the average of images of a plastic fluorescent reference slide!’. The dark-field D(x)
is modelled by averaging images with the shutter closed or the light source turned
off or otherwise blocked. The major drawback of this method is that the reference
slides often have a different thickness as compared to real histology slides, which
makes the approximation of S(x) inaccurate (Supplementary Note 1).

Empty-zero® is another prospective method that approximates the flat-field S(x)
as the average of images of empty images taken at various locations'®. The
calibration of the dark-field D(x) is same as in Calib-zero. This method is
appropriate for bright-field images or fluorescence images when the medium
fluoresces® but will be not applicable for images without a medium. Both the
correction of Calib-zero and Empty-zero are obtained from Smith et al.> alongside
the data.

Concentrated dye solution approximates the flat-field S using images of a thin
layer of concentrated dye4. The calibration of the dark-field D(x) is same as in the
above two prospective approaches. This method is usually more accurate than
Calib-zero as it has a similar thickness to real specimens (Supplementary Note 1).
In our study, we use the concentrated dye solution as the ground-truth to evaluate
our correction of WSI.

Evaluation protocol. For synthetic data, where the ground-truth S(x), D(x), and
the true shading-free images, I'™(x), are available, we quantify the error of the
estimated flat-field, $%!(x), the estimated dark-field, D®(x), and the corrected
image, I°°™(x) with a score, I, defined as the mean absolute deviation between the
estimation/correction and the ground-truth, normalized by a baseline difference

6

(the baseline for S(x), D(x), and I°°""(x) is a uniform flat-field, zero dark-field and
uncorrected image I™*(x), respectively):

o SIS =S| S0 )~ D)

TS =" n—swr "= s pwr
o S () — ()|
F(I ) - EX‘Imeas(x) _Itrue(x)l

The score I is in the interval [0, c0), where 0 indicates perfect estimation/
correction, 1 indicates the same amount of error as the uncorrected images, and
>1 indicates greater disagreement.

For real microscopy images where the ground truth is not available, a thorough
evaluation of a shading correction method is not trivial. There are generally two
different approaches in the literature to measure the shading correction quality.
The first approach uses the prospectively obtained S as a reference and quantifies
the error to a retrospectively estimated S(x) (for example in Coster et al.%). One key
challenge of such a validation is how to acquire a reliable reference S(x). Generally,
identical microscope settings, similar specimen thickness, and averaging of
multiple reference images (or taking the median to be robust to outliers) improve
the accuracy of the reference. In our study, we examine the reliability of our
prospectively obtained reference S(x) by inspecting the smoothness of the shading-
corrected WSI using S(x). Taking the reference S(x) as the ground-truth, we can
quantitatively measure the performance of a retrospective method using the
estimation score, I'(S*!). The second type of evaluation is based on a correction
score’. In real images where the ground-truth, shading-free images are unavailable,
the correction score, I (I°™), is based on the absolute difference between pairs of
overlapping, corrected images I3°"(x) and I;°"(x) that are precisely aligned,
normalized by the benchmark error of the uncorrected image pairs, I"**(x) and
I;9%(x), as

o SIET) — ()
)= S s () — 1o )|

This approach avoids the collection of reference images, yet a perfect correction for
real images is impossible, as the disagreement between overlapping images includes
many other sources besides uneven illumination, such as noise, alignment error,
and photobleaching (the second image, I;'***(x), of the image pair usually has a
lower signal than the first one, I***(x), due to the bleaching of fluorescence dyes
even without shading). In CIDRE (ref. 5), an extra intensity normalization process
is involved, which normalizes the median and the s.d. of image pair before and
after correction, that is, <" (x), I} (x), I;****(x) to the reference I7**(x). However,
we do not include any extra normalization process in our study, as an

intensity normalization between the uncorrected pairs will affect the assessment of
shading correction. Nevertheless, the scores we obtained without normalization
(Fig. 2a, Supplementary Fig. 3) are very similar to those reported in CIDRE (ref. 5).

(10)

Data and software availability. BaSiC is available as a Fiji/ImageJ Plugin from
the Fiji/Image] update site http://sites.imagej.net/BaSiC/ and from our software
website https://www.helmholtz-muenchen.de/icb/research/groups/quantitative-
single-cell-dynamics/software/basic/index.html, where we also provide five
different microscopy data sets used in the manuscript to demonstrate the usage of
BaSiC. See also Supplementary Note 7 for installation, usage details and practical
tips.
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