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Physically Plausible Wrench Decomposition for
Multi-effector Object Manipulation

Philine Donner, Satoshi Endo and Martin Buss

Abstract—When manipulating an object with multiple effectors
such as in multi-digit grasping or multi-agent collaboration,
forces and torques (i.e. wrench) applied to the object at dif-
ferent contact points generally do not fully contribute to the
resultant object wrench, but partly compensate each other.
The current literature, however, lacks a physically plausible
decomposition of the applied wrench into its manipulation and
internal components. We formulate the wrench decomposition as
a convex optimization problem, minimizing the Euclidean norms
of manipulation forces and torques. Physical plausibility in the
optimization solution is ensured by constraining the internal and
manipulation wrench by the applied wrench. We analyze specific
cases of 3digit grasping and 2D beam manipulation, and show
the applicability of our method to general object manipulation
with multiple effectors. The wrench decomposition method is then
extended to quantification of measures important in evaluating
physical human-human and human-robot interaction tasks. We
validate our approach via comparison to the state of the art
in simulation and via application to a human-human object
transport study.

Index Terms—Physical Human-Robot Interaction, Grasping,
Haptics and Haptic Interfaces, Cooperative manipulators, Force
Decomposition, Internal Force

I. INTRODUCTION

E ITHER for moving an object or stabilizing it against
external force such as gravity, supporting the object from

several contact points is often an effective solution in object
manipulation. When multiple effectors share the load of a
rigid object, a certain object state needs to be attained not
only by the force and torque (i.e. wrench) that specify desired
manipulation, but also by the wrench compensating those from
the other effectors. Decomposition of an applied wrench into
manipulation wrench, which potentially causes motion, and
internal wrench1, which is compensated, is of interest in the
present article.

When multiple robotic effectors jointly control an object
through rigid grasps, internal wrench is often undesired as it
produces stress inside the object [3], [4]. However, a certain
level of internal force may be desirable, for example, when
sufficient friction has to be generated to securely grasp an
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1Note that in mechanics, wrench that exists inside an object and resists

external wrench is termed internal wrench, e.g., [1], [2]. Here, we follow the
common terminology of the manipulation community and use internal wrench
to refer to the compensated external wrench component.

object on a slippery surface [5], [6]. Furthermore, internal
wrench can serve as a source for haptic information exchange
among decentralized systems such as in physical human-
human interaction (pHHI) and human-robot interaction (pHRI)
in which control disagreement [7], [8], [9] and action inten-
tion [10] need to be understood through the wrench perceived
at the interaction. Thus, accurate wrench decomposition is
imperative to analyses of multi-effector object manipulation.

In the robotics case, the common approach is to use a
pseudoinverse of the grasp matrix to compute the manipulation
wrench the effectors need to apply to achieve a desired
object state [5], [3], [11]. The grasp matrix relates applied
wrench to the resultant wrench acting at the center of mass
(CoM) of the object [12]. Internal forces, that lie in the null-
space of the grasp matrix and consequently do not influence
the object acceleration [13], are added to the manipulation
forces according to a task requirement [14], [15]. Kumar and
Waldron interpret the difference of forces projected onto the
connection lines of the interaction points as internal force.
They show that this internal force is zero if the Moore-Penrose
pseudoinverse is used to compute applied forces for three
fingered grasping [16]. Further extensions of the pseudoinverse
wrench decomposition have been successfully used for wrench
synthesis, e.g., the virtual linkage model [17] for humanoid
robots in complex multi-contact situations [18].

However, such pseudoinverse solutions do not differentiate
applied wrench in terms of how it leads to motion or object
stress. Yoshikawa and Nagai [19] were among the first to rec-
ognize the internal force based on the pseudoinverse solutions
does not show how tight an object is grasped. They instead
used heuristics for a physically more plausible definition of
internal forces in a precision grip, such that forces can only
push but not pull. Groten et al. [20] build upon [19] and present
force decomposition for the analysis of pHHI and pHRI tasks,
though their application is limited to two effectors and one
dimensional cases [8].

The lack of a generally applicable wrench decomposition
method has let to task specific definitions, with a focus on
obtaining, e.g., disagreement measures tailored to the task of
interest rather than physically plausible results. In [21], the
one dimensional force decomposition solution of [20] was
extended to the plane to evaluate a shared control strategy of a
mobility assistance robot. Different force decompositions that
allow to analyze human five fingered grasping were proposed
in [22] and [23]. An alternative, but also task specific approach
without physical plausibility considerations was recently pre-
sented in [24], where minimum-jerk trajectories were used as
a human motion model to decompose applied forces during a
simple dyadic object transport task.
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An important step towards physically plausible wrench
decomposition was recently taken by Schmidts et al. in [25],
by introducing force decomposition constraints motivated by
mechanical work. The wrench decomposition solution for two
effectors proposed in [26] satisfies the proposed constraints
of [25]. Erhart and Hirche recently suggested a different
decomposition approach for cooperative object manipulation
that also includes the application of torque in [27] and is based
on kinematic constraint violation of desired accelerations as
presented in [28]. One of the main findings of their works
is the existence of infinite different pseudoinverses of the
grasp matrix that specify desired load shares of the effectors,
although their computation of internal wrench does not nec-
essarily comply with the constraints of [25].

In oder to overcome the case specificities and lack of phys-
ical plausibility in existing approaches, this study contributes
• an extension of the force constraints proposed by [25] to

the application of torque,
• a reformulation of the optimization proposed by [25]

based on physical plausibility considerations yielding a
convex optimization problem,

• derivation of analytic solutions for special cases
• and wrench measures for analysis of pHRI and pHHI

tasks.
The result is a physically plausible wrench decomposition into
manipulation and internal components for rigid object manip-
ulation. Our wrench decomposition method extracts internal
wrench, for the first time, in a form generalizable to realistic
settings such as when quantifying haptic communications in
pHHI and pHRI tasks beyond simplified laboratory settings as,
e.g., in [10], [29]. The proposed decomposition method is then
applied in simulation to validate its results and used to show-
case how the method can elucidate underlying coordination
strategy in a pHHI behavioural study.

The remainder of this article is organized as follows. In
Sec. II, we motivate the need for a physically plausible wrench
decomposition by a comparison to the state of the art (SoA)
pseudoinverse solutions and formally state our problem. In
Sec. III, we formulate physically plausible wrench decompo-
sition as an optimization problem and discuss the solutions
for several special cases. Based on the proposed wrench
decomposition, we introduce measures for the analysis of
pHHI and pHRI tasks in Sec. IV and apply them to simulation
examples in Sec. V and a pHHI experiment in Sec. VI. In
Sec. VII we discuss limitations and possible extensions of our
work. Sec. VIII concludes the article.

II. PROBLEM FORMULATION

In this article, we address the problem of decomposing
the wrench applied by n effectors to a rigid object into its
motion and internal stress-inducing components in a physically
plausible manner.

A. Background

We consider a rigid object as depicted in Fig. 1 with its
object-fixed coordinate system {o} at the CoM. All vectors

...

f1

t1
r1

f2t2
r2

fn
tn

rn

{o}

fo to

Fig. 1. Rigid object with kinematic quantities: The wrenches hi =
[
f>i t>i

]>
with i = 1, . . . , n are applied at effector positions ri in the object fixed
coordinate system {o} and cause a resultant object wrench ho =

[
f>o t>o

]>
at the CoM of the object.

throughout this article are given in this coordinate system, un-
less stated otherwise. Force fi ∈ R3 and torque ti ∈ R3 at the
i-th effector position at ri ∈ R3 are combined to the wrench
vector hi =

[
f>i t>i

]>
. The grasp matrix G ∈ R6×6n [12]

relates the applied wrench h =
[
h>1 . . . h

>
n

]> ∈ R6n to the
resultant object wrench ho =

[
f>o t>o

]> ∈ R6 such that

ho = Gh (1)

with

G =

[
I3×3 03×3 . . . I3×3 03×3

S(r1) I3×3 . . . S(rn) I3×3

]
(2)

where I3×3, 03×3 ∈ R3×3 are identity and zero matrices, and
S(·) ∈ R3×3 is the skew-symmetric matrix carrying out the
cross product operation: S(a) b = a×b [30]. In the following,
we refer to the torque induced by the applied force fi as

tf,i = S(ri) fi (3)

and to the resultant torque induced by each effector as

to,i = tf,i + ti. (4)

B. SoA in wrench decomposition

Wrench decomposition refers to splitting the applied wrench
h into manipulation wrench hM =

[
h>M,1 . . . h

>
M,n

]> ∈ R6n

and internal wrench hI =
[
h>I,1 . . . h

>
I,n

]> ∈ R6n

h = hM + hI. (5)

The compensation wrench lies in the null-space of the grasp
matrix, and consequently it does not produce any resultant
wrench 06×1 = GhI. The manipulation wrench hM is respon-
sible for the resultant object wrench ho

ho = GhM = Gh. (6)

The SoA in wrench decomposition is to use a pseudoinverse
of the grasp matrix G+ to compute the manipulation wrench,
which yields the decomposition

hG+,M = G+Gh and hG+,I = (I6n×6n −G+G)h. (7)

The Moore-Penrose pseudoinverse G+ = G† yields the
minimum norm solution for the manipulation wrench hM, as
used in [14], [17]. The Moore-Penrose pseudoinverse was con-
trasted with a different “nonsqueezing” pseudoinverse G+ =
G+

∆ by Walker et al. in [3], which computes manipulation
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wrenches that yield equal effector contributions to the resultant
wrench ho.

Alternative approaches have been proposed to endow in-
ternal forces fI with a physical meaning. The virtual linkage
model by Williams and Khatib proposes to interpret internal
forces as the forces that lock virtual prismatic actuators that
connect the effectors [17]. Their extension to internal torques
that lock virtual spherical joints is a simplification and, as
stated in their work, does not lead to a physically plausible
decomposition. In [31], on the other hand, internal forces are
characterized as the forces that act inside a determinate truss
that connects the effectors.

C. Force decomposition in 1D for n = 2

As stated in [19], [25], [27], [26] the use of pseudoinverse
methods as described above does not allow for a physi-
cally plausible wrench decomposition. We illustrate the issues
by one dimensional (1D) examples. Consider the beam in
Fig. 2(1a) to which f1 = 2 N is applied at the left side but
not at the right f2 = 0. The resultant force that accelerates
the object is fo = 2 N. No force is compensated and f1

fully contributes to the object acceleration. We thus conclude
fM,1 = 2 N and fM,2 = fI,1 = fI,2 = 0 (see Fig. 2(1b)). The
solution for the manipulation force in (7), however, equally
distributes the resultant wrench ho = Gh across the effectors
through multiplication with the pseudoinverse G+. For our
simple example, (7) yields the same manipulation forces for
the Moore-Penrose and the “non-squeezing” pseudoinverse
where fG+,M,1 = fG+,M,2 = 0.5fo = 1 N. The difference
to the actually applied wrench h is interpreted as the internal
force where fG+,I,1 = −fG+,I,2 = 1 N (see Fig. 2(1c)). Thus,
the decomposition is physically implausible; although no force
is applied at r2, this decomposition method claims that a force
of fG+,I,2 = −1 N at r2 is compensated.

Fig. 2(2,3) show two additional examples of applied forces
that lead to the same resultant force fo = 2 N. From the
examples in Fig. 2, we observe:
• the pseudoinverse solutions decompose applied forces

based on the assumption of fixed equal load shares and
thus yield internal force fI,i 6= 0 whenever fi 6= 0.5fo

• a physically plausible force decomposition should only
yield nonzero internal force, when forces are applied
into opposing directions, e.g., fI,2 = −fI,1 = −1 N
(Fig. 2(3)). Different load shares (Fig. 2(1,2)) that do
not lead to force compensation should yield zero internal
forces fI,i = 0.

Based on the above observations, we propose analogously
to [20] to compute internal forces in 1D for effectors i = 1, 2
by

fI,i =
1

2
sgn(fi)(|f1|+ |f2| − |f1 + f2|). (8)

Note that, for wrench synthesis, the Moore-Penrose pseu-
doinverse G† yields desired wrenches hd = G†hd

o for given
desired resultant wrenches hd

o which result in zero internal
wrenches hI = 0. The main drawback of G† is the fixed load
shares among effectors which do not allow for a physically
plausible analysis of measured wrench h. As shown in [27]

for a simple example, the “nonsqueezing” pseudoinverse G+
∆

can yield desired wrenches hd that are not free of internal
wrenches hI 6= 0. Erhart and Hirche derive a parametrized
pseudoinverse that represents infinite different load shares that
will yield zero internal wrench [27]. Based on the Gauss’ prin-
ciple, they compute applied effector wrenches given desired
effector accelerations and object and effector kinematics and
dynamics. Motivated by the reasoning that internal wrench
occurs whenever desired effector accelerations violate kine-
matic constraints, they propose to compute internal wrench
similarly to the effector wrenches in [27], but by exclusively
considering the effector constraints [4]. However, the internal
wrench computation in [4] yields results that differ from our
proposed physically plausible wrench decomposition2.

D. Problem statement for physically plausible wrench decom-
position

Internal wrench is defined to lie in the null space of the
grasp matrix. Thus, the virtual work by the internal wrench hI

needs to be zero for any virtual displacement of the object [13]
or of the effectors that satisfy the kinematic constraints [27].
We agree with above definitions but add further restrictions
for physical plausibility through the following definition of
internal wrench hI

Definition 1. A physically plausible internal wrench hI lies
in the null space of the grasp matrix 06×1 = GhI and
the components hI,i of the effectors i = 1, . . . , n obey the
constraints ∥∥fI,i

∥∥ ≤ f>i
fI,i∥∥fI,i

∥∥ , (9)

∥∥tfI,i

∥∥ ≤ t>f,i
tfI,i∥∥tfI,i

∥∥ , (10)

∥∥tI,i∥∥ ≤ t>i
tI,i∥∥tI,i∥∥ , (11)

where
∥∥·∥∥ denotes the Euclidean norm.

Fig. 3 illustrates the implications of above definition in 2D
for applied force fi. Let the applied force fi in Fig. 3(a) be
not fully contributing to the resultant object acceleration, but
partly compensated by an opposing force. Here, we illustrate
the opposing force by an ideal linear spring, which can only
generate opposing forces along its axis a. The Euclidean norm
of internal force fI,i is then upper bounded by the projection
of the applied wrench fi onto a in negative direction∥∥fI,i

∥∥ ≤ −f>i a, (12)

with fI,i and its corresponding fM,i enclosing an angle
≥90 deg. Variation of the direction of a changes the direction
of possible compensation, as illustrated in Fig. 3(b).

2Consider the example displayed in Fig. 2(1a) wherein desired effector
accelerations ẍd

1 = 8
3

m/s2 and ẍd
2 = 4

3
m/s2, effector masses m1 = m2 =

1 kg and object mass mo = 1 kg result in applied forces f1 = 2 N and
f2 = 0. However, internal wrench computed according to [4] yields fI,2 =
−fI,1 = − 2

3
N. Thus, the internal force fI,2 exceeds the applied force f2.

See [27], [4] for details.
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f1 f2fo fM,1 fM,2 = 0

fI,1 = 0 fI,2 = 0

fG+,M,1 fG+,M,2

fG+,I,1 fG+,I,2

fo

fi

fM,i

fI,i

(a) (b) (c)

(1)

(2)

(3)

Fig. 2. 1D examples to illustrate the problem of wrench decomposition based on pseudoinverses: (1) Effector 1 (left) takes over the complete load f1 = fo,
(2) effector 1 and 2 equally share the load, (3) effector 2 applies an opposing force that is compensated. (a) Applied forces fi and resultant object force fo,
(b) physically plausible wrench decomposition with manipulation forces fM,i and internal forces fI,i, (c) wrench decomposition based on pseudoinverses
with fixed load share yields manipulation forces fG+,M,1 = fG+,M,2 = 0.5fo and internal forces fG+,I,i = fi − fG+,M,i with i = 1, 2.

fi

fM,i

fM,i for max fI,i

fI,i

fI,i

max fI,i
max fI,i

{o}{o}
ri

ri

ideal linear spring of axis a

ideal torsional spring of axis a

tf,i

tfM,i

tfI,i

tfM,i for max tfI,i

max tfI,i

(a) (b) (c)

(d) (e)

xxxx

yy zz

Fig. 3. Illustration of physically plausible internal force in 2D: (a,b) Linear springs of axis a partly compensate applied force fi in two different directions. (c)
Variation of compensation axis a yields to the circular constraint for physically plausible internal force fI,i. The decompositions for maximum compensation
along the axes in (a) and (b) are inscribed. (d,e) Torsional spring with axis a compensates torque tf,i (right) induced by applied force fi (left). Two different
example decompositions where the torque induced by fi is (d) completely compensated (tf,iz = tfI,iz) and (e) partly compensated, but to the same extent
(|tf,iz | > |tfI,iz |). The restriction that internal torque cannot exceed the torque induced by fi yields a band parallel to ri as additional constraint in 2D
force space, which is equivalent to a circular constraint in 2D torque space. 1D torque arrows along z are shown side by side for better visibility.

All directions of a have in common that for maximum
compensation, i.e. maximum Euclidean internal force norm∥∥fI,i

∥∥, the internal force fI,i and its corresponding manip-
ulation force fM,i enclose a 90 deg angle. Consequently, all
physically plausible force decompositions of fi are bounded
by the dashed circle inscribed in Fig. 3(c). In 3D, the circular
constraint extends to a sphere. As compensation can only
occur in along the opposite direction of a, we can replace a
with the negative normalized internal force a = −fI,i

∥∥fI,i

∥∥−1

in (12) and obtain the constraint (9). The force inequality
in (9) was first introduced by [25]. In Appendix A, we show
that although the proposed circular constraint is required for a
physically plausible wrench decomposition, it does not obey
work constraints as stated in [25].

Fig. 3(d) and (e) show 2D examples for constraint (10)
with respect to force induced torque. Force fi (left) results
in a torque tf,i at the CoM around the negative z-axis (right),
which again does not fully contribute to the resultant object
acceleration, but is fully (d) or partly (e) compensated by an
opposing torque. The opposing torque is illustrated by an ideal
torsional spring with axis a such that the torsional spring can
only generate opposing torque around its axis a. The Euclidean

norm of the internal torque tfI,i is upper bounded by the
projection of the applied force induced torque tf,i onto a in
negative direction ∥∥tfI,i

∥∥ ≤ −t>f,ia. (13)

For the 2D cases in Fig. 3(d) and (e), this results in an
additional constraint: the band constraining the internal force
fI,i such that it cannot induce a higher torque around the
negative z-axis than the applied force fi can induce. In 3D the
constraint forms a cylinder spanned by the vector ri and the
applied force fi in force space. In torque space, the constraint
for force induced torque is a circle in 2D and a sphere in 3D.
As torque compensation can only occur around the opposite
direction of a, we replace a with the normalized internal
torque a = −tfI,i

∥∥tfI,i

∥∥−1
in (13), and obtain constraint (10).

Analogously, constraint (11) for internal torque tI,i can be
derived, which forms a circle in 2D and a sphere in 3D.

Complementary to Definition 1, we can also define physi-
cally plausible manipulation wrench.

Definition 2. A physically plausible manipulation wrench hM

achieves the object wrench ho = GhM and the components
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hM,i of the effectors i = 1, . . . , n obey the constraints∥∥fM,i

∥∥ ≤ f>i
fM,i∥∥fM,i

∥∥ , (14)

∥∥tfM,i

∥∥ ≤ t>f,i
tfM,i∥∥tfM,i

∥∥ , (15)

∥∥tM,i

∥∥ ≤ t>i
tM,i∥∥tM,i

∥∥ , (16)

where
∥∥·∥∥ denotes the Euclidean norm.

Proposition 1. The constraints (9)-(11) are equivalent to
constraints (14)-(16).

Proof. See Appendix B.

Fig. 4 illustrates the implications of the manipulation based
physical plausibility definition in 2D for applied force fi.

Within the null space of the grasp matrix G, Definition 1 and
equivalently Definition 2, further restrict the internal wrench
solutions to obey 3n constraints for physical plausibility.
Still, infinite wrench decomposition solutions exist. As we are
interested in decomposing applied wrench into manipulation
wrench hM, which is necessary to produce the resultant object
wrench ho, and the part of the applied wrench, which was
compensated hI, we formulate our problem as follows.

Problem 1. Decompose a given applied wrench h into ma-
nipulation wrench hM and internal wrench hI for a given
grasp matrix G with h = hM +hI, such that the manipulation
wrenches hM,i applied by effectors i = 1, . . . , n represent a
set of forces and torques of minimum Euclidean norm required
to achieve a resultant object wrench ho = Gh, and such that
the internal wrench hI and the manipulation wrench hM are
physically plausible according to Definition 1 and Definition 2,
respectively.

III. WRENCH DECOMPOSITION AS AN OPTIMIZATION
PROBLEM

We propose that the solution to Problem 1 can be formu-
lated as a convex scalarized multi-objective optimization that
minimizes a manipulation wrench hM dependent cost function
J for a given applied wrench h

minimize

J =

n∑
i=1

(1− w)
∥∥fM,i

∥∥+ sw
∥∥tfM,i

∥∥+ w
∥∥tM,i

∥∥ (17)

subject to
GhM = Gh, (18)

f>M,ifM,i ≤ f>i fM,i, (19)

t>fM,itfM,i ≤ t>f,itfM,i, (20)

t>M,itM,i ≤ t>i tM,i, (21)

i = 1, . . . , n,

where s = {0, 1} includes or excludes the manipulation
torques induced through forces tfM,i (3) in the cost J . The
scalarized multi-objective cost function J yields the Pareto-
optimal points associated with a weighting w ∈ ]0, 1[ between

the objectives of Euclidean norm minimization of manipula-
tion forces and torques [32]. As forces and torques are of
different units, a plausible weighting w must be selected.
The choice of including (s = 1) or excluding (s = 0) the
force induced torque tfM,i in the cost function relates to this
issue. We discuss the effects of weighting w and selection
parameter s in the following subsections in greater detail.

The inequality constraints (19)-(21) ensure a physically
plausible decomposition as stated formally in the following
Theorem.

Theorem 1. A physically plausible wrench decomposition
according to Definition 1 must obey the inequality con-
straints (19)-(21).

Proof. See proof of Proposition 1 in Appendix B with inter-
mediate result (37).

The computation of a physically plausible force decompo-
sition has been written as an optimization problem in [25], but
as a non-convex maximization of internal force J = fTI fI with
fI =

[
f>I,1 . . . f

>
I,n

]>
subject to the inequality constraint (19).

Based on Definition 1, we complete the force constraints
by also considering force induced torque through inequality
constraint (20). Inequality constraint (21) further extends the
constraints to the application of torques. In summary, a total
of 3n inequality constraints must be met for a physically
plausible wrench decomposition according to Problem 1.

For some special cases, maximization of internal wrench
J = hTI hI as proposed in [25] and minimization of manipula-
tion wrench according to (17), both subject to constraints (18)-
(21), yield the same solution. However, as we show by
our examples in the following subsections, maximization of
J = hTI hI does not generally comply with Problem 1.

The complexity of the convex optimization problem defined
in (17)-(21) rises with the number of effectors n. However,
analytic solutions can be found for some special cases as
presented in the following.

A. Special case: a point mass

Proposition 2. The optimization problem (17)-(21) has the
following analytical solutions for a point mass3

fM,i = θf,imax(
f>i fo∥∥fo

∥∥2 , 0)fo, tM,i = θt,imax(
t>i to∥∥to∥∥2 , 0)to,

(22)
with θf,i ∈ [0, 1] and θt,i ∈ [0, 1] such that fo =

∑
fM,i and

to =
∑
tM,i, independent of s, w in (17).

Proof. See Appendix C.

Fig. 5(a) and (b) illustrate the point mass solution for forces
fi applied by three effectors i = 1, 2, 3. The same holds
for torques. The weighting factor θf,i in (22) determines the
extent to which projected forces ffo‖,i pointing into the same
direction as the resultant force fo belong to manipulation force.
Infinite solutions for θf,i can lead to the same cost J , e.g.,

3With the term point mass we refer to the case tf,i = S(ri) fi = 03×1

for i = 1, . . . , n. The solution is independent of the actual mass and moment
of inertia properties.
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fi fM,i fI,i tf,i tfM,i tfI,i

{o}{o}
riri

(a) (b) (c) (d)

xx xx

yy zz

Fig. 4. Illustration of physically plausible manipulation force in 2D: Examples for physically implausible (a,c) and plausible (b,d) force decompositions. (a)
The manipulation force fM,i violates the circular force constraint, i.e. the linear acceleration produced by fM,i is not attainable by the applied force fi; the
Euclidean norm of the manipulation force fM,i exceeds the projection of the applied force fi onto the manipulation force fM,i. (c) The manipulation force
fM,i violates the band shaped force induced torque constraint, i.e. the rotational acceleration of the object {o} produced by manipulation force fM,i (force
induced torque tfM,i) is not attainable by the applied force fi (force induced torque tf,i):

∥∥tfM,i

∥∥ > ∥∥tf,i∥∥.
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fM,2

fM,3

fM,1 = fM,2 = fM,3

fI,3

(a) (b)
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fi

ffo‖,i

fM,i

ffo⊥,i

fI,i

fo

Fig. 5. Point mass example n = 3: (a,b) Minimization of manipu-
lation wrench (17). Projections onto the resultant force ffo‖,i represent
maximum possible contributions to fo and, thus, potential manipulation
force fM,i. Components ffo‖,i that point into the opposite direction of
fo and perpendicular components ffo⊥,i belong to internal force. Thus,
fI,3 = ffo‖,3 + ffo⊥,3 = f3. (c) Maximization of J = f>I fI leads
to manipulation forces that are not parallel to the resultant force fo and
consequently to manipulation forces of greater Euclidean norm than necessary.
(d) Pseudoinverse based decomposition with G+ = G† = G+

∆ for point
masses result in equal manipulation forces for all effectors that violate
the force constraints. Only (a,b) represents a physically plausible wrench
decomposition according to Problem 1.

the resultant force fo = [4 2 0]
> can be formed through

manipulation forces fM,1 = [2 1 0] and fM,2 = [2 1 0]
or through fM,1 = [3 1.5 0] and fM,2 = [1 0.5 0]
(displayed in Fig. 5(b)). A parsimonious selection for θf,i =
θ(x = ffo‖) from an analysis point of view is

θ(x) = 1− Ax −Bx

Ax +Bx
, Ax =

n∑
i=1

∥∥xi∥∥, Bx =
∥∥∑n

i=1 xi
∥∥

(23)
which yields

∥∥fM,i

∥∥ ∝ ∥∥ffo‖,i∥∥ for same direction of ffo‖,i
and fo. Note that θ(x = ffo‖) is equal for all effectors.

Fig. 5(c) displays the solution for a maximization of internal
force J = f>I fI as proposed in [25] also subject to (18)-(21).
The cost function J = f>I fI leads to solutions on the circular
force constraints, with the effect that the summed Euclidean
norms are not only greater for internal force

∑3
i=1

∥∥fI,i

∥∥ =

9.69 N, but also for manipulation force
∑3

i=1

∥∥fM,i

∥∥ =
5.58 N compared to the manipulation wrench based cost (17),∑3

i=1

∥∥fI,i

∥∥ = 7.85 N and
∑3

i=1

∥∥fM,i

∥∥ = 4.47 N. Thus,
the force decomposition components are of greater Euclidean
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0 4 -4 04-4 0 x[cm]

y[cm]

(a) (b) (c)

f1

f2

f3

fo fi fM,i fI,i

Fig. 6. Three fingered grasping example n = 3: (a) Result from [19] violates
the constraints for force induced torque. Manipulation forces fM,1 and fM,2

induce torques of higher Euclidean norm than the applied forces f1 and f2.
(b) Result for cost (17) s = 1, w = 0.001 and s = 0. (c) Result for
cost (17) s = 1, w = 0.5 and w = 0.999. For s = 1, increasing weighting
w shifts the results from sum of

∥∥fM,i

∥∥ minimization to sum of
∥∥tfM,i

∥∥
minimization. Length of force arrows 1 cm=̂1 N.

norm than necessary, which conflicts with Problem 1. It
also indicates that the approach proposed by Schmidts et
al. did not achieve its goal of finding a decomposition free
of “virtual forces” [25]. Hence, this example illustrates a
rationale for minimization of the cost function based on
manipulation wrench (17). Fig. 5(d) shows the pseudoinverse
force decomposition results which are physically implausible
according to Definition 1; the Euclidean norm of the internal
force

∥∥fI,3

∥∥ exceeds the Euclidean norm of the applied force∥∥f3

∥∥.
The wrench decomposition of [26] is equivalent to (22) for

n = 2 and if forces do not produce torque, i.e. tf,i = 0.
In [26], the point mass decomposition is also used when force
does produce torque, i.e. tf,i 6= 0, by inserting to,i = ti + tf,i
for ti in (22). We refer to this decomposition as “point mass
approximation” in the following.

B. Special case: three-fingered grasping

Fig. 6 displays an example presented in [19] for a three-
fingered grasp. Frictional point contact was assumed, such
that each finger only applies force, but no torque. Fig. 6(a)
shows that the force decomposition based on the heuristics
given in [19] violates the force constraints for force induced
torque (20). Fig. 6(b) and (c) show optimization solutions
according to (17)-(21). While for s = 0 the cost does not
include torque and consequently the solution is independent
of weighting w, for s = 1 weighting has an effect. Based on
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Fig. 7. Beam example n = 2 for special case with s, w dependent solution:
Results for cost (17) with (a) s = 0, w = 0.001 and s = 1, w ∈ R+,
(b) s = 0, w = 0.5, (c) s = 0, w = 0.999 and the analytical ”prioritized
torque through torque compensation” (pTtTC) solution. For s = 0, increasing
w shifts the results from torque through force compensation (tI,2 = 0) and
sum of

∥∥fM,i

∥∥ minimization to torque through torque compensation (tfI,1 =
tfI,2 = 0) and sum of

∥∥tM,i

∥∥ minimization. Length of force and torque
arrows 1 m=̂1 N and 1 m=̂1 Nm.

the results of Fig. 6(b) and (c), we recommend to set s = 0.
Intuitively, it makes more sense to minimize the Euclidean
norms of force that need to be applied than accepting forces
of higher Euclidean norms as long as these forces have a
minimum effect on torque production.

C. Special case: a 2D beam

We consider a beam as displayed in Fig. 2 as a 2D
special case for two effectors applying forces in the x/y-plane
and torque around the z-axis hi = [fix fiy 01×3 tiz]

>,
i = 1, 2. For the 2D case, analytic solutions equal for all
s ∈ {0, 1} and w ∈ ]0, 1[ can be found, by dividing
the problem into cases according to the signs and mag-
nitudes of applied forces and torques, e.g., tI,iz = 0 if
sgn(tiz) = sgn(tf,1z) = sgn(tf,2z) for i = 1, 2, where tf,1z
is the torque around the z-axis caused by applied force f1.
Only one special case requires optimization

{h ∈ R12|(sgn(tf,1z) = sgn(tf,2z) = sgn(tkz) 6= sgn(tjz))

∧ (|2tfI,maxz + tkz| > |tjz|) ∀k, j ∈ {1, 2}, k 6= j}, (24)

where tfI,maxz = min(tf,1z, tf,2z). An example for this case
is displayed in Fig. 7. The torque applied by effector 1
(t1) is fully compensated. However, the allocation of tI,1 to
tI,2, tfI,1 and tfI,2 requires optimization. The results for this
optimization differ based on the cost function parameters s and
w. In contrast to the three fingered grasping example, s = 1
yields results independent of weighting w, while for s = 0
weighting w affects the solution (see Fig. 7(b,c)). The solution
for s = 0 and w → 1 can be found analytically with the
advantage such that the wrench decomposition does not require
any optimization and it is suitable for real-time applications.
We refer to this case as ”prioritized torque through torque
compensation” (pTtTC).

Based on our conclusions from the grasping example of the
previous section and the need for a meaningful measure for
analysis, we recommend to use the cost function (17) with
s = 0, w = 0.5. However, in some tasks, the efficient pTtTC
can yield results that are almost equal to the optimization with

-2

1

0

-1

0

1
1

0

-1

2

2

1

0

-1

-2

1

0

-1

-1

0

1 x [m]x [m]
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Fig. 8. 3D example decomposition for n = 3: Forces (left, 1 m=̂1 N) and
torques (right, 1 m=̂1 Nm) with spherical force and torque constraints, (19)
and (21). The force induced torque constraints (20) are cylinders in force
space (left) and spheres in torque space (right).

s = 0, w = 0.5. Details on the analytic 2D beam solutions and
their MATLAB implementation can be found in the Multimedia
Attachment.

D. General rigid objects

The optimization (17)-(21) decomposes applied wrenches of
any number of effectors n located at any position ri with i =
1, . . . , n. For general rigid bodies, the solutions are weighting
dependent for s = 0 and s = 1. The effect of w can be
summarized as follows:
•
∑n

i=1

∥∥fM,i

∥∥ increases with increasing w for s = {0, 1}
•
∑n

i=1

∥∥tM,i

∥∥ decreases with increasing w for s = {0, 1},
stronger decrease for s = 0

•
∑n

i=1

∥∥tfM,i

∥∥ decreases with increasing w for s = 1

Fig. 8 shows a 3D wrench decomposition example for 3
effectors based on cost (17) with s = 0 and w = 0.5.

IV. MEASURES FOR ANALYSIS

In the following, we present applications of the wrench
decomposition for analysis in pHRI and pHHI tasks based
on our derivations in the previous sections.

A. Load share

The load share parameter αf,i (αt,i ) describes the fraction
of force (torque) contributed by effector i to the resultant force
fo (torque to) and can be computed as

αf,i = θf,imax(
f>i fo∥∥fo

∥∥2 , 0), αt,i = θto,imax(
t>o,ito∥∥to∥∥2 , 0),

(25)
where the force load share αf,i is equivalent to the point
mass solution in (22) with θf,i = θ(x = ffo‖) in (23). The
torque load share αt,i also considers torque induced through
forces with θt,i = θ(x = to,to‖) in (23), where to,to‖,i is the
projection of to,i in (4) onto the resultant torque to. Note that∑n

i=1 αf,i =
∑n

i=1 αt,i = 1.
Above load shares were introduced in [26] for n = 2. The

force load share αf,i is related to the weighting introduced
in [33] for precise object positioning and to the assistance
level in shared control for pHRI [34]. For the 1D case and
two effectors, Groten et al. [20] computed the force load



TRANSACTIONS ON ROBOTICS, VOL. ..., NO. ..., ... 8

share as αf,i =
fM,i

fo
. For the general 3D case, we cannot

use the manipulation force fM,i and torque to,M,i at the CoM
to compute load share, but we need to relate applied forces to
the CoM as in (25). This is due to the fact that manipulation
wrench hM still contains parts that can cancel on force or
torque level (see for example Fig. 6 and 7).

B. Energy share

In addition to above load share, the energy transfer among
the effectors and the object can be of interest (see, e.g., [35]
for a 1D analysis). For a lossless system, the change in
object energy is equal to the sum of the agents’ energy flows
Ėo =

∑n
i=1 Ėi. Agent i can cause a change in translational

and rotational energy Ėi = Ėlin,i+Ėrot,i = f>i ṗo+t>o,iωo. The
energy flow transferred between the agents, without influenc-
ing the object energy Eo, can be calculated similarly to internal
forces in the 1D case (8) ĖI = 1

2 (
∑n

i=1 |Ėi| − |
∑n

i=1 Ėi|).
Similar to the load share, we define the parameter energy share
of effector i for the complete energy flow

βi = θĖ,imax(
Ėi

Ėo

, 0), (26)

and for rotational and translational energy flows

βlin,i = θĖlin,imax(
Ėlin,i

Ėlin,o

, 0), βrot,i = θĖrot,imax(
Ėrot,i

Ėrot,o

, 0),

(27)
with θĖ(lin/rot),i = θ(x = Ė(lin/rot)) in (23).

C. Disagreement

Internal wrench can indicate disagreement [7], [8], [36]
and allow to communicate intention through the haptic chan-
nel [10]. However, previous works were limited to 1D cases.
In order to compare internal wrench within a trial or among
different trials, the sum of Euclidean norms of internal force
and torque can serve as a measure of disagreement in transla-
tional and rotational directions

FI =
1

2

n∑
i=1

∥∥fI,i

∥∥ , TI =
1

2

n∑
i=1

∥∥to,I,i∥∥ . (28)

As a combined measure for translation and rotation, we
propose the measure relative cost γ

γ = 1− J(hM)

J(h)
. (29)

The cost function (17) is evaluated twice, once at its mini-
mum J(hM) and another at its maximum J(h). The relative
cost returns values γ ∈ [0, 1], where γ = 1 signifies
maximum disagreement, i.e. ho = 06x1 and h = hI, and
γ = 0 signifies no disagreement in the sense that the complete
applied wrench was needed to produce the resultant wrench
ho, i.e. h = hM. The need for an interpretable measure γ
strengthens our recommendation not to choose extreme values
for w but rather w = 0.5 and s = 0.

V. ANALYSIS OF SIMULATED MANIPULATION TASKS

In real pHHI and pHRI tasks, the internal state of human
agents (i.e. the control disagreement) cannot be precisely and
systematically controlled, and the lack of ground truth impedes
an interpretation of the results. Thus, we first use simulations
to evaluate the proposed method, and assess the quality of
the wrench decomposition solutions, before we apply them
to a real pHHI task in Sec. VI. Based on the relevant use
cases discussed in the introduction, we chose two different
simulation scenarios: shared control of a mobility assistance
robot [21] and an object transport task [24], [26]. For multi-
digit grasping examples see [25]4. The MATLAB/Simulink
implementation of both simulations and their analyses can be
found in the Multimedia Attachment. In the following, we
use agents to refer to effectors to highlight their autonomy in
contrast to centralized controllers for multi-effector grasping.

We compare the proposed wrench decomposition to the
following SoA approaches:
• PM: Point mass approximation [26]
• G†: Moore-Penrose pseudoinverse, e.g. [5]
• G+

∆: “Nonsqueezing” pseudoinverse [3]
• VL: Virtual linkage model [17]
Based on the applied wrench h(t) in simulation, we first

computed the internal wrench hI(t) based on the proposed
and above SoA wrench decompositions. For the particular
simulation scenarios, the proposed wrench decomposition was
independent of optimization parameters s = {0, 1} and w ∈
]0, 1[. From hI(t) the proposed measures for disagreement
FI(t), TI and γ in (28) and (29) were obtained. We furthermore
computed the load shares αf,1 and αt,1 in (25) and the
energy shares βlin,1, βrot,1 and β1 in (26) for agent 15. All
computations were solely based on the observed h(t), i.e. we
assumed not to have any knowledge on a desired trajectory,
controllers or load sharing strategies.

A. Shared control of a mobility assistance robot

Let us consider a walker that can actively support an elderly
human during walking. Inspired by [21], we examined two
scenarios (see Fig. 9):
• the walker (agent 2) generated torque to support the

human (agent 1) during turning
• the walker generated opposing forces to avoid an obstacle
1) Computation of applied wrench h: The agents deter-

mined the necessary object wrench ho to track the desired
trajectories through a combination of equal inverse dynamics
and impedance controllers. We computed the wrench to be
applied at the human interaction point based on the reduced
Moore-Penrose pseudoinverse hG†1 = G†1ho, but then as-
signed all pure torque to the walker: t2 = tG†1, t1 = 0.
For obstacle avoidance, the walker applied an additional force
fobs,2x = −( 1

Cobs
− 1

Cmax
) 1
C2

obs
ṗo when approaching obstacles

4Although the cost function differs and the force induced torque constraint
is missing, we expect qualitatively similar results as in [25] for our proposed
wrench decomposition.

5We set the load and energy shares to NaN where otherwise meaningless,
e.g., αf,1 = NaN when fo ≈ 0.
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Fig. 9. Walker motion during mobility assistance scenarios: A quadratic
nonholonomic walker of length l = 1 m, mass mo = 25 kg, and moment
of inertia Joz = 1

6
mol2o = 4.17 kg m2 subject to viscous friction on

translation fdx = −dṗṗo with dṗ = 1 Ns/m and rotation tdz = −dωωoz

with dω = 100 Nm s. The human (agent 1) interaction with the walker
aggregated in one interaction point at r1 = [−0.5l 0 0] and the walker (agent
2) applying wrench directly at its CoM. (Left) Walker motion during turning,
(right) walker motion during obstacle avoidance. Agent positions at their initial
and final positions in gray.

(Ċobs < 0). Obstacle avoidance was active when the distance
to the obstacle Cobs (inflated by 0.5l of the walker length)
was smaller than Cmax = 2 m.

2) Results collaborative turning: For the collaborative
turning task, the agents agreed on the same trajectory p
(Fig. 10(a)), while the human (agent 1) applied the necessary
forward force f1x (Fig. 10(b)) and the walker (agent 2) the
torque t1z (Fig. 10(c)). Fig. 10(d) and (e) show that only the
point mass approximation and our proposed optimization yield
the correct result of zero disagreement: FI = TI = 0. The
pseudo-inverse based methods assume fixed equal load shares
on force and torque level. In this case, however, agent 1 took
over the complete load share on force level (αf,1 = βlin,1 = 1)
and agent 2 on torque level (αt,1 = βrot,1 = 0 in Fig. 10(f)).

3) Results obstacle avoidance: During the obstacle avoid-
ance scenario, the human (agent 1) intended to move from
pox = 0 to pox = 3 m along the trajectory pdo,1x(t) displayed
in Fig. 11(a). The active obstacle avoidance through counter-
acting forces f2x stops the walker in front of the obstacle:
pox(t) < pobsx(t). Fig. 11(c) and (d) show the disagreement
measures FI and γ. As for the turning scenario, the point mass
approximation and our proposed optimization yield the same
FI. Note that the point mass approximation yields valid solu-
tions for this setup, because the interaction point of the walker
coincides with the CoM. The other decomposition methods
inflate disagreement FI due to their underlying assumptions.
The peak in disagreement FI and γ and the switch from
αf,1 = β1 = 1 to 0 (Fig. 11(e)) at t = 2.1 s occur when the
applied forces of the agents reach equal values: for t < 2.1 s
agent 1 dominates accelerating the walker, for t > 2.1 s agent 2
dominates decelerating the walker.

B. Collaborative object transport

In simulation, two agents transported a beam from a start
to a goal configuration in 2D as displayed in Fig. 12 and
Fig. 13(a). Thus, a phase of pure rotation was followed by
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Fig. 10. Analysis of the simulated assisted turning task: (a) Trajectory, (b)
applied forces fix, fiy and (c) torques tiz in the plane by agents i = 1, 2,
(d) disagreement on force and (e) on torque level based on SoA wrench
decompositions PM, G†, G+

∆ and VL, and our proposed optimization (Opt),
(f) load shares αf,1, αt,1 and energy shares βlin,1, βrot,1. Only the proposed
wrench decomposition (Opt) and the point mass approximation consistently
yield the correct result FI = TI = 0.

a phase of combined rotation and translation, and a phase of
pure translation. We furthermore varied how the agents share
the load and to which extent forces or torques were applied to
induce the required object torque for rotation. Throughout the
simulation, the agents agreed on the same trajectory and used
the same controller parameters. Thus, we expect the analysis
to reveal zero disagreement FI = TI = 0.

1) Computation of applied wrench h: The agents deter-
mined the necessary object wrench ho to track the desired
trajectory through a combination of equal inverse dynamics
and impedance controllers. The applied wrench was com-
puted from the necessary object wrench ho based on the
parametrized pseudoinverse of [27] for two agents

hG+M = G+
Mho =


m∗1(m∗o)

−1
I3×3 m∗1(J∗o )

−1
S(r1)>

03×3 J∗1 (J∗o )
−1

m∗2(m∗o)
−1
I3×3 m∗2(J∗o )

−1
S(r2)>

03×3 J∗2 (J∗o )
−1

ho,

(30)
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Fig. 11. Analysis of the simulated assisted obstacle avoidance task: (a) Actual
pox and planned pd

o,1x trajectory and inflated obstacle border pobsx, (b)
applied forces fix by agents i = 1, 2 (fiy = tiz = 0), (c) disagreement on
force level based on SoA wrench decompositions PM, G†, G+

∆ and VL, and
our proposed optimization (Opt), (d) disagreement γ, (e) load share αf,1 and
energy share β1 = βlin,1. High forces required for deceleration in front of
the obstacle are interpreted as internal forces by the wrench decomposition
methods G†, G+

∆ and VL.
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Fig. 12. Beam motion for the simulated 2D transport task: Beam of length
l = 2 m, mass mo = 1 kg, and moment of inertia Joz = 1

12
mol2o =

1 kg m2, subject to viscous friction on translation fd = −dṗṗo with dṗ =
1 Ns/m and rotation tdz = −dωωoz with dω = 1 Nm s. Phase of pure
rotation (black), followed by phase of combined rotation and translation (blue),
followed by phase of pure translation (red). Agent positions at their initial and
final positions in gray.

with virtual masses m∗i and moment of inertias J∗i with i =
1, 2 as parameters, which have to obey

m∗o =

n=2∑
i

m∗i , (31)

J∗o =

n=2∑
i

J∗i +

n=2∑
i

S(ri) m
∗
iS(ri)

>, (32)

n=2∑
i

rim
∗
i = 03×1. (33)

From the last equality (33) follows m∗1 = m∗2 for a symmetric
beam as in Fig. 2 and Fig. 7. We further set J∗1 = J∗2 =
I3×3kg m2 and vary m∗i between 1 kg and 4 kg as displayed
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Fig. 13. Analysis of the simulated 2D beam transport task: (a) Trajectory
with poy = 0, (b) parameter m∗i of pseudoinverse [27] and 1D load share
αfx,1 [8], (c) applied forces fix, fiy and (d) torques tiz in the plane by
agents i = 1, 2, (e) disagreement on force and (f) on torque level based on
SoA wrench decompositions PM, G†, G+

∆ and VL, and our proposed 2D
beam wrench decomposition (B), (g) load shares αf,1 and αt,1 and energy
share β1. Only the proposed 2D beam wrench decomposition (B) consistently
yields the correct result FI = TI = 0.

in Fig. 13(b)). Variation of the virtual masses m∗i regulates to
which extent torque to,i is induced by ti or fi. For m∗i = 1 kg,
the parametrized pseudoinverse G+

M is equal to the Moore-
Penrose pseudoinverse G†, which yields the minimum norm
solution for h. For increasing m∗i , the required torque to,i
is induced to a higher extent through applied force fi than
applied torque ti.

Due to the restriction on m∗1 = m∗2, the parametrized
pseudoinverse G+

M cannot be used to design a desired load
share but it yields balanced load sharing among the agents.
As presented in [8], we varied the desired load share αd

fx,i

along the redundant x-direction of the beam (see Fig. 13(b)).
This was done by further modifying the x-values fG+M,ix of
the computed wrench hG+M from (30) in the null space of the
grasp matrix Ker(G) = [1 01×5 − 1 01×5]

> according to

h = hG+M + (−fG+M,1x + 2αd
fx,1fG+M,1x)Ker(G). (34)

Thus, for αd
fx,1 = 0.5 we kept h = hG+M and consequently

f1x = f2x. In contrast for, e.g., αd
fx,1 = 1 agent 1 would take

over the complete load in x-direction.
2) Results: In simulation, the two agents applied the

wrench h(t) displayed in Fig. 13(c) and (d) to track the desired
trajectory and achieve the desired load share displayed in
Fig. 13(a) and (b), respectively. Fig. 13(e) and (f) show the
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results for the disagreement FI and TI in (28). Our proposed
wrench decomposition yields the correct result of zero dis-
agreement between the agents6. The point mass approximation
proposed in [26] neglects that forces also induce torque for
the computation of fM,i. As a consequence, opposing forces
that were applied to induce torque are interpreted as internal
force, which results in FI 6= 0 during rotation. Wrench
decomposition according to the Moore-Penrose pseudoinverse
G† only results in zero disagreement when the agents use G†

to compute h1 and h2. This is the case for m∗i = 1 kg during
rotation and αd

fx,i = 0.5 during translation. Similar to the
Moore-Penrose pseudoinverse-based wrench decomposition,
the nonsqueezing pseudoinverse-based wrench decomposition
of [3] only yields zero internal force and torque, when
h = G+

∆ho holds. For the simulation under consideration, this
was only the case during the last second, i.e. pure translation
and equal load sharing αd

fx,i = 0.5. Wrench decomposition
according to the virtual linkage model of [17] assumes that
rotation around the z-axis should be caused by forces instead
of torques and interprets any applied torque along z as internal
torque. Furthermore, according to the virtual linkage model,
internal force only occurs along the x-direction of the beam.
Thus, FI = 0 during pure rotation. However, the virtual
linkage model essentially computes the axial force in the
center of the beam and assigns its absolute value to FI, which
results in FI 6= 0 for load distributions αd

fx,i 6= 0.5.
Fig. 13(g) shows the load and energy shares of (25) and (26)

for agent 1. The load share αd
fx,1 distributes the demanded

object force along the redundant x-direction and is therefore
restricted to 1D. Consequently, αf,1 = αd

fx,1 only during pure
translation. The energy share β1 combines the force and torque
load shares in one measure.

VI. ANALYSIS OF A HUMAN-HUMAN OBJECT TRANSPORT
TASK

In this section, we contrast the internal wrench estimated by
different decomposition methods during a real pHHI task in
order to illustrate how key behavioral measures for pHHI and
pHRI are sensitive to a decomposition method. The results will
demonstrate our proposed method is more resilient to the infla-
tion of the disagreement index than the others as postulated in
the simulation work. Furthermore, we calculate the load share
index to characterize the underlying coordination dynamics of
the working pair. The coordination dynamics of the working
pair was partially controlled by means of a task instruction to
the participants. Causes for a non zero disagreement measure
during pHHI range from walking motion of the participants,
over decision making and to differing intended trajectories.

A. Methods

In this study, 12 pairs of two male participants carried
a steel beam (mass m = 7.7 kg) from a start to a final
platform located between obstacles (see Fig. 14). The study
was designed to examine how humans haptically reach to

6The decompositions proposed in [20] and [27] yield zero disagreement as
well, but are restricted to 1D or require knowledge of desired velocities with
the associated problems outlined in the problem formulation, respectively.

final platform

start
platform obstacles

agent 2

agent 1

Fig. 14. Experimental setup from a top view: The participants held the beam
on the starting platform (green) and moved to the final platform (red) between
the obstacles (white boxes).

0

0.4

0.8

T̄
I
[N

m
]

BpTtTC PM G† G+
∆ VL

decomposition methods

One-Guide

Two-Guide

Free-Guide

Fig. 15. Average internal torque T̄I during the first 600 ms of each
trial and agent 1 (leading partner during One-Guide) entering the final
platform first: SoA wrench decomposition approaches PM, G†, G+

∆ and
VL inflate the disagreement measure. Differing guide to disagreement re-
lations ( T̄I(Free-Guide) > T̄I(Two-Guide) > T̄I(One-Guide) for PM
and G+

∆, T̄I(One-Guide) > T̄I(Two-Guide) > T̄I(Free-Guide) for G†

and T̄I(One-Guide) > T̄I(Free-Guide) > T̄I(Two-Guide) for VL and the
proposed decomposition) confirm the need for a physically plausible wrench
decomposition for interpretable results. The error bar indicates one standard
error.

consensus about how to reach the target configuration. Thus,
the participants were prohibited from making conversations
or intentional communication using their body such as hand
gesture.

The experiment was a within-subject design with three
levels. The independent variable was the Guiding method. In
the One-Guide condition, one of the two partners was assigned
the leader role and was always given an instruction about
how the beam had to be oriented on the final platform. In
the Two-Guide condition, both participants were told about
the orientation of the beam at the final platform. In the Free-
Guide condition, no instructions were given.

The side at which the participants stood on the platform was
counterbalanced and quasi-randomly assigned in each trial.
The experimental conditions were block-randomized and the
participants performed 10 trials per condition, which resulted
in a total of 30 trials per pair. We recorded the applied
wrench h using two JR3 force/torque sensors (JR3, Inc., USA)
mounted between the agents’ handles and the beam. An Oqus
motion capture system (Qualisys, Sweden) recorded position
and orientation of the beam.

B. Results

1) Disagreement: The beam was kept horizontally during
the transportation task. This allowed an application of the
efficient 2D beam wrench decomposition implementation in-
troduced in Sec. III-C, which yielded results close to the opti-
mization based solution with s = 0 and w = 0.5. We observed
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Fig. 16. Force and torque load share pattern based on kernel density
estimation with a step size of 0.01 for beam rotation up to 45 deg. (a)
Dominant-passive case: force and torque load shares were both high (or low).
(b) Specialized case: The load share was selectively high on force or torque,
suggesting subtasks (torque vs. force control) had emerged. The example data
from a single experimental condition (n = 10) are used to display the results.
(c) Percentage of time the joint density of the load share fell in the dominant
quadrant. The error bar indicates one standard error.

an inflation of disagreement/compensation on force and torque
level for the SoA decomposition approaches, which is in line
with our simulation results and the observations for multi-digit
grasping in [25]. The experimental setup caused an especially
high inflation on internal torque, for which we present a
comparison via a repeated-measures ANOVA in the following.
The first factor was the Method of decomposition and the sec-
ond factor was the Guiding instruction. The analysis showing
the main effect of Method, F (4, 44) = 128.39, p < .005,
confirming our method to be the most resilient to inflation of
disagreement/compensation (Fig. 15). While there was a small
effect of Guide (p = .02), a clear interaction effect of Method
and Guide was found, F (8, 88) = 3.1, p < .005. Further
analysis indicated our disagreement measure is consistent with
the amount of guidance information given to the participants
such that the largest disagreement was observed in One-Guide
(0.1548Nm ± 0.0693) cases and the smallest in Two-Guide
cases (0.1486Nm± 0.0623).

2) Load share: Joint density estimation of force and torque
load share revealed the coordination strategies of the interact-
ing pairs by large categories into quadrants (see Fig. 16(a,b)).
For instance, a participant with high force and torque load
share can be classed as a dominant partner whereas one with
low load share would be classed as a passive partner. In con-
trast, high load on one measure but low on the other indicates
a specialization, thus each partner was largely responsible for
force or torque only. Note that the joint density estimation is
always diagonally symmetric between the interacting partners
as their share indexes sum to 1: e.g., αf,1 + αf,2 = 1. In
this way, we calculated the portion of which agent 1 (the
leading partner during One-Guide) is classified into one of
the quadrants.

In order to evaluate how the coordination patterns of the
load share index was affected by our experimental manipula-
tion, we ran one-way Repeated-measures ANOVA on percent-
age of time for which the joint density of the force and torque
load share fell in the dominant quadrant (Fig. 16(c)). The
analysis indicates there is a main effect of Guide on the coor-
dination, F (2, 22) = 9.219, p < .005. The analysis suggests
that the participants formed a dominant-passive coordination
strategy more often for One-Guide (31.39%±9.99) than Two-

Guide (25.20%± 9.49) or Free-Guide (26.45%± 8.23).

VII. DISCUSSION OF LIMITATIONS

A. Uniqueness of the wrench decomposition solution

Wrench decomposition aims at splitting applied wrench into
its motion inducing and compensated components. Without
further restrictions, infinite decomposition solutions can be
found. Pseudo-inverse based approaches find a unique solution
by fixing the load shares among the effectors a priori. While
this procedure allows for efficient wrench synthesis, it cannot
be used to analyze applied wrench, e.g., with respect to
load sharing. In this work, we derived physically motivated
constraints and formulated wrench decomposition as a convex
optimization problem. We showed that the optimization results
are in line with solutions proposed in literature, which however
only produce physically plausible results for special cases, e.g.,
[21], [25], [20], [26]. Our approach is the first to yield phys-
ically plausible results for general manipulation tasks without
assumptions. Only the applied wrenches and the locations of
the effector interaction points have to be known. However,
the proposed scalarized multi-objective optimization does not
yield a unique solution for general manipulation tasks, but
depends on the choice of weighting and selection parameters7.
The multitude of solutions leads us to the conclusion that it is
possible to find physically plausible decompositions, but the
one and only correct wrench decomposition solution does not
exist.

B. Computational cost

The advantage of yielding physically plausible wrench
decompositions comes at the cost of having to solve an
optimization problem. The optimization is convex and thus
can be efficiently solved. We used the MATLAB software
CVX, a package for specifying and solving convex pro-
grams [37], [38]8. The presented analytic solutions for a
point mass in Sec. III-A and the “prioritized torque through
torque compensation” approximation BpTtTC for the beam
transport experiment in Sec. VI yield solutions within less
than a ms, and can thus be directly used for realtime haptic
interaction control. In contrast, computation of B0.5 for the
beam transport experiment in Sec. VI required an average
time of 0.4 s using CVX with MATLAB R2015a and solver
SeDuMi v1.34 [39] on a desktop pc9. For the general 3D
case, the computational cost increased as follows with the
number of effectors: t̄(n = 3) = 0.8 s, t̄(n = 4) = 1.1 s,
t̄(n = 10) = 2.1 s. Note that CVX is a modeling framework
that allows for convenient solving of convex optimization
problems written in natural MATLAB syntax, taking over the
effort, among others, of transformation into solvable form and
the choice of an appropriate solver. Significant speed-up can

7Note that the problem of weighting does exist for other methods as well.
The Moore Penrose pseudoinverse solution ignores this problem by equally
weighting the physically distinct quantities force and torque [26].

8 For the non convex problems, e.g., Fig. 5(c), we used fmincon of the
Optimization Toolbox by MathWorks

9Processor Intel(R) Core(TM) i5-2500K CPU @ 3.30GHz x 4, no hyper
threading, 15.6 GB RAM, ubuntu 14.04 LTS
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be achieved by using more efficient commercial solvers [40],
[41] and by splitting the solver up into an initialization
routine that is performed once and a real-time routine that
efficiently solves instances of the same problem [42]. Also,
for many interaction scenarios wrench decomposition can be
approximated by analytic solutions. Here, we projected the
human-human transport task in Sec.VI into the 2D plane and
applied the analytic pTtTC solution. Also, for the mobility
assistance scenario in Sec.V-A, the point mass approximation
as an analytic solution was found.

C. Wrench analysis and wrench synthesis

In this work we focussed on deriving a physically plausible
wrench decomposition for the analysis of general manipulation
tasks. The proposed wrench decomposition can now be readily
applied to pHRI tasks, e.g., to compare different wrench
synthesis methods. While we applied different SoA wrench
synthesis approaches to control the agents’ applied wrench in
simulation [27], [21], [8], we refrained from analyzing a real
world pHRI task: the added complexity of an uncontrollable
human agent and the need for wrench synthesis would impair
our goal of fully understanding and evaluating the capabilities
of our physically plausible wrench decomposition. Instead, we
examined the proposed wrench decomposition on three levels:
• ”Snap shots”: visually illustrate the method, covering the

range of simple 1D to the general 3D cases
• Simulations: allow for controlled disagreement and thus

interpretable results
• The pHHI study: exemplifies the application of the de-

rived measures to real world interaction tasks
For wrench synthesis, common pseudoinverse approaches

can be straightforwardly applied, if equal load share and
a fixed force induced torque to applied torque relation are
acceptable. The parametrized pseudoinverse proposed in [27]
only partly alleviates above restrictions; i.e. for the beam trans-
port task only the induced torque to applied torque relation was
adjustable, while the load share between the agents remained
fixed. The null space approach of [8] allows to choose a
desired load share along a redundant direction. Nonetheless,
their approach is currently limited to 1D, ignoring rotation,
with the result of not directly relating to our proposed general
load share measures. The derivation of a general wrench
synthesis method that achieves a desired load share or controls
internal wrench for haptic communication is an interesting and
challenging topic that we would like to explore in our future
work. Such wrench synthesis applied to robot control will
allow more accurate tuning of the robot to the user behavior
and intention in pHRI.

VIII. CONCLUSION

The proposed wrench decomposition allows for the first
time to separate applied wrench into internal and manipulation
wrench for general rigid objects manipulated by multiple ef-
fectors, while ensuring physically plausible results. We define
manipulation wrench as the wrench with minimum Euclidean
norm to produce the resultant object wrench. Physical plausi-
bility is achieved by constraining the internal and manipulation
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Fig. 17. Effect of work and force constraints: (a) the decomposition of f1

into fM,1 and fI,1 adheres to the circular force constraint (9), but not to
the work constraint (35) as the projections onto velocity ṗo, fṗo‖,1 and
fMṗo‖,1, show that 0 > f>1 nds > f>M,1nds for n = ṗo/

∥∥ṗo

∥∥. The gray
dotted arrows illustrate that the applied force f1 and not its projection onto
the manipulation force fM,1 is relevant for work computations. Optimization
results for cost (17) and a point mass n = 2 with (b) only work constraint (35),
(c) only force constraint (9), (d) work and force constraints (35) and (9).

wrenches by the applied wrench. The proposed optimization
is convex and has an intuitive analytic solution for a point
mass. The solution for a 2D beam requires optimization only
for one special case, which can be approximated through
an analytic solution. The efficient 2D beam implementation
can potentially be used for real-time control and analysis
for various 2-agent object manipulation tasks. Applications in
example measures such as load and energy share are defined
based on the analytic point mass solution. The extent to
which the applied wrench is not used for manipulation, but,
e.g., for communication or to express disagreement, can be
characterized by the wrench decomposition-based relative cost
and Euclidean internal force and torque norms. Simulated mo-
bility assistance and object transport scenarios showed that our
method was able to correctly evaluate the control disagreement
based on the measured wrench unlike other existing methods.
Finally, we illustrated the potential of the derived wrench
measures to study aspects as decision making, dominance
and specialization during haptic interaction via an exemplary
application to a human-human object transport experiment.
How to extend the presented wrench decomposition to wrench
synthesis that realizes desired load and energy shares or
internal wrench for communication remains an open question,
which we are interested in examining in future work.

APPENDIX
A. Work vs. force constraints

Schmidts et al. derive the force constraint (9) based on the
requirement that a manipulation force fM,i cannot do more
mechanical work than the projection of the corresponding
applied force fi onto the manipulation force (see Lemma 1
in [25]). In the following, we show that for work computations,
the applied force fi instead of its projection onto fM,i needs to
be considered. Work constraints that ensure that a manipula-
tion force cannot do more work than its corresponding applied
force can be formulated as

0
(>)

≤ f>M,inds
(>)

≤ f>i nds, (35)
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0
(>)

≤ t>fM,iqdφ
(>)

≤ t>f,iqdφ, (36)

for an infinitesimal translational displacement dn = nds ∈ R3

with
∥∥n∥∥ = 1 and an infinitesimal rotational displacement

dq = qdφ ∈ SE(3) with
∥∥q∥∥ = 1. However, above work con-

straints are not equivalent to the circular force constraint (9), as
illustrated for an example decomposition in Fig. 17. In order
to ensure the work of fM,i is bounded by the work of fi,
the current direction of translational velocity n = ṗo/

∥∥ṗo

∥∥
and rotational velocity q = ωo/

∥∥ωo

∥∥ of {o} have to be
taken into account. In this work, we refrain from requiring
a manipulation wrench to obey work constraints (35) and
(36). The resultant object wrench ho could also be needed
to withstand an external force such as gravity, which might
come along with zero velocity. Our aim is to use wrench
decomposition to analyze the extent to which the wrench
applied at the individual effectors hi effects the resultant object
wrench ho, and how much of it is compensated, independent
of the current object velocity. An important result of above
considerations is that h, and not hM, needs to be used to
compute energy measures as illustrated in the case of energy
share in Sec. IV.

B. Proof of Proposition 1

Proof. Multiplication of the inequalities (9)-(11) with the
respective Euclidean norms

∥∥xI

∥∥ with xI = {fI,i, tfI,i, tI,i}
on both sides and insertion of

∥∥xI

∥∥2
= x>I xI and xI = x−xM

of (5) yields

x>MxM ≤ x>xM (37)

with pairs (x, xM) = {(fi, fM,i), (tf,i, tfM,i), (ti, tM,i)}. In-
sertion of x>MxM =

∥∥xM

∥∥2
and rearrangements yield the

constraints (14)-(16).

C. Proof of Proposition 2

Proof. For a point mass (tfM,i = 03×1), the optimization
problem (17)-(21) can be solved separately for forces and
torques, with analogous results. The Lagrangian for the mini-
mization of manipulation force is

L =

n∑
i=1

∥∥fM,i

∥∥+ λ>(fo −
n∑

i=1

fM,i)

+

n∑
i=1

µi(f
>
M,ifM,i − f>i fM,i), (38)

with 3 Lagrange multipliers concatenated in λ ∈ R3 and n
Kuhn-Tucker multipliers µ = [µ1 . . . µn]

> ∈ Rn. For µi = 0

∇fM,iL =
fM,i∥∥fM,i

∥∥ − λ. (39)

From (39) and because fo =
∑n

i=1 fM,i we see that every non-
zero manipulation force has to point into the same direction
as the resultant force fo

fM,i∥∥fM,i

∥∥ =
fo∥∥fo∥∥ . (40)

A unique solution exists for the special case f>M,ifM,i =

f>i fM,i for all i = 1, ..., n. In this case, the manipulation
forces fM,i are equal to the projections of the applied forces
fi onto the resultant force fo: fM,i = (f>i fo)fo

∥∥fo

∥∥−2
.

Note that this solution only exists if all fi projections onto
fo point along fo. From (40) it follows that fM,i = 03×1

if sgn(f>i fo) < 0. This is equivalent to force compensation
along fo, with the consequence that a unique solution might
not exist for n > 2. The family of solutions with equal mini-
mum cost J can be described via (22). The solutions (22) are
the global minimum due to the convexity of the optimization
problem.
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