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1. INTRODUCTION

Every year, enormous amounts of scientific data are made available to the public (Poline et al.,
2012). This trend is due to an increasing demand for transparency, efficiency, and reproducibility.
Neuroimaging is a salient example of this trend.

In response to the growing concern about the need of publishing relevant software codes (Ince
etal., 2012) in the context of results’ reproducibility, there is an increasing number of open source
initiatives that support code distribution and co-development (Halchenko and Hanke, 2012). The
growing diversity of imaging modalities demand from the practitioner a deep technical knowledge
of data pre- and post-processing. Consequently, there are open and free tools facilitating image
data analysis, e.g., the Python module Nipype!. It offers a homogeneous programming interface
and integrates many of these data processing tools. In this sense, resting-state functional magnetic
resonance imaging (rsfMRI) is receiving considerable attention by the community with tools such
as the Configurable Pipeline for the Analysis of Connectomes (C-PAC)?, and the Data Processing
Assistant for Resting-State fMRI (DPARSF)?.

As a further contribution to this development, this paper presents a new Python
module Pypes—https://github.com/Neurita/pypes. It includes a collection of workflows, reusable
neuroimaging pipelines using Nipype, along with some utilities. This library seeks to simplify
the reusability and reproducibility of multimodal neuroimaging studies, offering pre- and post-
processing utilities inspired by C-PAC. It pre-processes Positron Emission Tomography (PET)
and three MRI-based modalities: structural, rsfMRI, and diffusion-tensor MRI (DTI). It also
shares an easy-to-use pipeline for COBRE?, a public available dataset. Pypes has been motivated
by a need for efficient and reproduceable brain PET/MRI data processing methods. Namely,
hybrid PET/MRI scanners become a relevant source of multimodal imaging data, posing new
computational challenges. For instance, a simultaneous measurement of brain glucose metabolism
and functional connectivity (Aiello et al., 2015; Riedl et al., 2016) opens new perspectives in
neuroscience. Structural, functional, and metabolic imaging protocols have been proposed for
clinical evaluation of dementia and neuro-oncological cases (Werner et al., 2015; Henriksen et al.,
2016). Pypes’ immediate motivation was to process PET/MRI data from an ongoing study with
more than 400 subjects with suspected neurodegenerative disorders.

Uhttp://nipype.readthedocs.io/

Zhttp://fcp-indi.github.io/
Shttp://www.rfmri.org/DPARSF
4http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html.
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The paper is organized as follows. After introducing the
Python neuroimaging ecosystem and specifically Nipype, we
show how to prepare image data for the workflows available
in Pypes. Then, we describe worflow configuration for specific
imaging modalities. Finally, we present the Pypes pre-processing
pipelines and the post-processing utilities. We finish the paper
with conclusions and future developments.

2. THE SOFTWARE ECOSYSTEM

The neuroimaging open software ecosystem was born more than
10 years ago, with brain image processing tools such as Statistical
Parametric Mapping (SPM12) (Ashburner, 2012), the FMRIB
Software Library (FSL) (Jenkinson et al., 2012), AFNI (Analysis
of Functional NeuroImages) (Cox, 2012), and FreeSurfer (Fischl,
2012). These libraries were developed by universities and
government institutions, and published under open-source or
free-software licenses. They have boosted the neuroimaging
research, acting as a seed to a now flourishing software ecosystem
with new actors appearing lately, e.g., Advanced Normalization
Tools (ANTs) (Avants et al., 2014), PET partial volume correction
(PETPVC) (Thomas et al., 2016), and MRtrix (Tournier et al.,
2012).

As a programming language, Python is becoming very
popular. Its supporting community of users and developers is
making a great effort to spread good practices of the development
process. As a result, there is a booming variety of libraries,
guidelines, documentation, development tools, software testing,
and continuous integration. A broad collection of tools is
available, ranging from general numerical libraries®, to specific
applications such as machine learning in Scikit-Learn (Pedregosa
et al,, 2011), or deep neural networks in Tensorflow®.

In the neuroscientific field, a group of projects have joined
in a community of practice called Nipy’. From Nipy, it's
possible to find projects to access different neuroimaging file
formats®, diffusion brain MRI with Dipy (Garyfallidis et al,
2014), statistical learning and fMRI with Nilearn (Abraham et al.,
2014) as well as building processing pipelines with Nipype, and
others (Gramfort et al., 2013).

Nipype allows to interact and combine tools from different
software packages, some already mentioned before, facilitating
faster data processing by running the workflows in parallel
on many cores/machines. Nipype makes your analyses easily
reproducible allowing to share your processing workflows with
the community, it also captures the pipelines provenance
information in a formal and rigorous way, and allows to restart
the pipelines if something has gone wrong. It already presents
examples of processing workflows for many imaging modalities.
However, it is still a challenge for a non-expert programmer to
prepare the data, programme the data selection, configure the
workflow, and run it. Built on top of Nipype, Pypes provides
workflows for multimodal brain MRI and PET/MRI. We verified

Shttp://www.scipy.org/
Chttps://www.tensorflow.org
7http://nipy.org/
8http://nipy.org/nibabel.

the correct working of these pipelines over our clinical dataset
of more than 400 subjects and the COBRE database. Pypes
uses Nipype as interface to all the command line and Matlab
neuroimaging tools. It presents a software structure with a
clear way to concatenate and attach new workflows, offering a
simple way to express the input data folder structure, and easily
configure each node. The output of the workflows are structured
in the same way as the input folder structure, and the output file
name conventions are homogeneous and clear. The users would
have to structure their data following recommendations and use
the provided examples of Python functions to build their own
pipeline.

3. DATA PREPARATION AND PIPELINE
CONFIGURATION

Pypes expects neuroimage files to be in the NifTI format.
Currently, a good tool to convert from DICOM to NifIT is
dem2niix®.

One practical feature that Pypes adds to Nipype is the
management of file input and output. The file input selection
system is clearer and more flexible than that of NiPype using
the parametric file paths provided by the hansel package!®. The
output will have the same folder structure as the input and the
naming convention is uniform across the pipelines.

The main nodes in the pipelines are configurable through
a configuration file. We recommend using the YAML
(https://en.wikipedia.org/wiki/YAML) format for this file.
To change the default value of a node parameter one has to add
to the configuration file an entry for the value you want. For
example, let’s say we have a spm.Normalizel2 node named
anat_warp in one of the workflows. We want to set the value
of the parameter bias_regularization to 0.1. We have
to add an entry to the configuration file as:

anat_warp.bias_regularization: 0.1

Pypes includes in its source code an example of configuration file
with the main node settings and explanations.

4. PRE-PROCESSING METHODS

Each image modality has certain kinds of artifacts and
noise, such that specific correction procedures are needed.

Multimodal  information requires data fusion. Here,
we explain the main features of each pre-processing
pipeline.

4.1. Anatomical MRI

First, we needed to process structural T1-weighted MRI images.
We prepared a pipeline that first performs a bias-field correction
using ANTS N4BiasFieldCorrection (Tustison et al, 2010).
Then it segments the brain tissues and registers the image
to a standard template space (MNI) with the SPM12 New
Segment tool. Finally, it creates a brain mask based on the

“https://github.com/rordenlab/dcm2niix
10https://github.com/alexsavio/hansel.
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tissue segmentations. In addition, we needed to warp an atlas,
or any other image in the SPMI2 standard space, to the
subject’s native space for further analyses. In Figurel, we
present an image output of this pipeline. It is implemented in
pypes.anat.preproc.spm_anat_preprocessing.

4.2. Positron Emission Tomography
The computational analysis in the reference clinical study
requires pre-processing of FDG-PET images that had been

acquired simultaneously with MRI data (Savio et al., 2017).
Pypes offers two main pipelines for PET data, one with and the
other without involving T1-weighted MRI. Both pipelines use
SPM12 Normalize to warp PET images to the MNI space. The
latter option requires a group-template pipeline, where a group
template is created from all subjects, and then all PET images are
normalized to this group template.

The PET/MR pipeline also applies PVC and normalizes
structural MRI data to the PET space. It is implemented

FIGURE 1 | Slices of one example of the anatomical pipeline on one sample image. (A) The raw MPRAGE image, (B) the bias-field corrected MPRAGE, (C)
the bias-field corrected MPRAGE in MNI space, (D) the Hammers atlas in anatomical space, (E) a brain mask, and (F) the result from the cortical thickness pipeline,
(G-1) gray matter, white matter and cerebro-spinal fluid (tissue segmentations), and (J-L) tissue segmentations in MNI space.
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in pypes.pet.mrpet.spm_mrpet_preprocessing. In
Figure 2, we present an image output of this pipeline.

4.2.1. Partial Volume Correction (PVC)

One of the main issues with PET is signal degradation
caused by partial volume effects (PVE). PVC methods improve
the quantitative accuracy of PET data by compensating for
the noise owing to a limited scanner resolution (Erlandsson
et al, 2012), specially in the atrophied brains. Generally,
brain anatomical information from MRI is used here. The
recently published PETPVC (Thomas et al., 2016) library!'!
provides eight core methods of PVC in an open source
tool.

4.3. Functional MRI

The referred clinical study investigates functional connectivity,
so we implemented a configurable rsfMRI data processing
pipeline. For this, we need anatomical localization for
nuisance corrections based on tissue signal, so this
pipeline is connected to the MPRAGE processing pipeline
(Section 4.1). The first part of this pipeline, implemented
in pypes.fmri.clean.fmri_cleanup_wf, trims the
first 6 s from the data, carries out slice-time correction based
on SPMI2 SliceTiming, correction for motion with Nipy’s
SpaceTimeRealigner (Roche, 2011), co-registration of the tissues
from anatomical space to fMRI space, correction for nuisances
extracted from time-course SNR (TSNR) estimation, artifact
detection from Nipype’s rapidART, motion correction, signal

https://github.com/UCL/PETPVC.

component regression from different tissues (CSF, WM, and/or
GM), and optionally, global signal regression. The trends
detected from these filters are regressed out from the fMRI data.
Each of these corrections are optional and configurable. After
the nuisance correction step, a bandpass time filter is applied
to extract resting-state frequencies and the data is spatially
smoothed. In the second step of this pipeline, implemented
in pypes.fmri.warp.spm_warp_fmri_wf, the
main outputs of the first are warped to MNI using SPM12
Normalize.

4.4. Diffusion-Tensor MRI (DTI)

DTI may be useful to support or extend findings of
metabolic and functional connectivity. We  provide
a pipeline that performs DTI correction and pre-
processing, tensor-fitting, and tractography. This pipeline is
implemented in pypes.dmri.dti.attach_spm_fsl
_dti_preprocessing. First is uses FSL Eddy (Andersson
and Sotiropoulos, 2016) for Eddy currents and motion
correction. Then Non-local Means (Coupe et al., 2008) is
used from Dipy for image de-noising with a Rician filter. This
pipeline also estimates motion statistics with Nipype’s RapidArt
for post-hoc quality check, co-registers the anatomical image
to diffusion space, and rotates the b-vectors based on motion
estimation from Eddy. Optionally, it will warp an atlas to
diffusion space (for further tractography).

An extra pipeline implemented in pypes.dmri.camino.
camino_tractography uses Camino (Friman et al., 2006)
to calculate Fractional Anisotropy (FA) and perform ROI-
to-ROI deterministic tractography using Track (Basser et al,

FIGURE 2 | Slices of partial results from one sample processed by the PET/MR pipeline. (A) The raw FDG-PET, (B) the MPRAGE, (C) the partial volume
corrected PET, (D) a brain mask, (E) the Hammers’ atlas, and (F) the PVC PET in MNI space.
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FIGURE 3 | Slices of one example from the DTI processing pipeline: (A) the raw DTI (b-value = 0) image, (B) the Eddy-currents corrected and nl-means
denoized image, (C) the FA image, and (D) the atlas in DTl space. (E) Shows the structural connectivity matrix calculated with Camino.
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1994). The tractography pipeline exports two connectivity
matrices: one with the number of tracts and the other with
average tract FA values, for each pair of ROIs. Figure 3
illustrates the DTI pipeline, including the connectivity
matrix.

5. POST-PROCESSING METHODS

Pypes offers extra utilities and shorter post-hoc pipelines. It
provides an Independent Component Analysis (ICA) interface
to use Nilearn’s CanICA and DictLearning against individual
or group of fMRI data. These pipelines are implemented in
pypes.postproc.decompose. For the analysis of ICA
results and resting state networks, we implemented different
similarity =~ measures in pypes.ica.spatial_maps,
including Goodness of fit (Zhou et al, 2010), Pearson’s
correlation, and many others. A cortical thickness pipeline
based on ANTs (Tustison et al, 2014) is implemented in
pypes.anat.cortex.

We created plotting utilities to visualize and publish the pre-
and post-processing results. In pypes.ica.plotting, we
implemented a series of methods to plot ICA spatial maps and
loading coefficients from Nilearn and GIFT!2.

6. CONCLUSION AND FUTURE WORK

We have published Pypes, a tool that allows an easy
configuration of workflows for neuroimage analysis using

2http://mialab.mrn.org/software/gift/.

resources from state of the art open source libraries,
while including new handy facilities for input/output data
configuration and plotting. Pypes gives support to the
growing community of researchers having access to hybrid
PET/MRI scanners which require complex proprocessing
and analysis of multimodal imaging data. For more
details on how to use Pypes, check the documentation on
http://neuro-pypes.readthedocs.io/.

Some aspects of PET/MRI processing are still to be considered
in Pypes. A synchronized acquisition allows the use of MRI
information for attenuation correction (AC) of PET images,
though there is no consensus on the best algorithm (Cabello
etal., 2016; Mehranian et al., 2016; Ladefoged et al., 2017). Future
works will include the proposed AC algorithms in the PET/MRI
pipelines of Pypes. Also other non-linear registration tools and
DTI tractography methods should be added. Easy connection
to machine learning libraries such as Nilearn and scikit-learn
would allow further automatization of analyses and creation of
predictive models for e.g., disease detection.
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