Die Nadelholzmistel in Bayern - Analyse von Befallssituation, Ursachen und Auswirkungen anhand von Langzeitmonitoringdaten

The European white mistletoe in Bavaria - Analysis of the state of infection, causes and impacts by long term monitoring data

Die Nadelholzmistel in Bayern - Analyse von Befallssituation, Ursachen und Auswirkungen anhand von Langzeitmonitoringdaten

The European white mistletoe in Bavaria - Analysis of the state of infection, causes and impacts by long term monitoring data

zur Erlangung des akademischen Grades Master of Science (M.Sc.)

Eingereicht von
Behrendt, Kai; Matrikelnummer 03626045; Forst- und Holzwissenschaft

Leiter der Arbeit, 1. Prüfer
Dr. Bernd Stimm, Technische Universität München, Lehrstuhl für Waldbau

Betreuer, 2. Prüfer
Dr. Hans-Joachim Klemmt, Bayerische Landesanstalt für Wald und Forstwirtschaft, Abt. 2 – Boden und Klima

Eingereicht am
21.12.2017
„Wordle“ aus dem gesamten Text – je häufiger ein Wort vorkommt, desto größer und zentraler wird es dargestellt
Vorwort

Im Rahmen meiner Tätigkeit dort konnte ich viele tiefe Einblicke in den Arbeitsablauf einer Ressortforschungseinrichtung, in die Organisation und Durchführung von Forstinventuren und wertvolle Erfahrungen im Umgang mit geographischen Informationssystemen, Datenbanken und Datenverarbeitungssoftware gewinnen.

Ich wünsche viel Freude und interessante neue Erkenntnisse bei der Lektüre der Arbeit!

Kai Behrendt
Inhaltsverzeichnis

1. Einleitung ... 1
 1.1. Ziel der Arbeit .. 3

2. Stand des Wissens .. 4
 2.1. Biologie der Mistel ... 4
 2.1.1. Systematik und Morphologie ... 4
 2.1.2. Befall von Wirtsbäumen .. 5
 2.1.3. Physiologie und Ernährung ... 6
 2.1.4. Ökologie .. 8
 2.2. Verbreitung .. 8
 2.2.1. Verbreitungsgebiet .. 8
 2.2.2. Landschafts- bis Bestandesebene .. 9
 2.2.3. Baumbene ... 10
 2.3. Vektoren ... 11
 2.3.1. Verhalten und Mistelverbreitung ... 11
 2.3.2. Misteldrossel ... 12
 2.3.3. Mönchsgrasmücke ... 13
 2.3.4. Seidenschwanz .. 14
 2.3.5. Andere Arten .. 15
 2.4. Auswirkungen auf Wirtspflanzen ... 15
 2.4.1. Physiologie ... 15
 2.4.2. Photosynthese und Stoffwechsel ... 16
 2.4.3. Stress .. 17
 2.4.4. Wachstum und Zuwachs .. 18
 2.4.5. Mortalität ... 19

3. Material und Methoden .. 20
 3.1. Datengrundlage ... 20
 3.1.1. Level 1 (Waldzustandserhebung) ... 20
 3.1.2. Level 2 (Waldklimastationen) .. 22
 3.1.3. Bundeswaldinventur (BWI) ... 24
 3.2. Level 1 (Waldzustandserhebung) .. 24
 3.2.1. Befallsentwicklung ... 24
 3.2.2. Bestandesstruktur .. 25
 3.2.3. Waldrand ... 26
 3.2.4. Umweltvektor ... 27
 3.2.5. Topographie .. 29
13. Anhang .. 112
13.1. VBA-Programmroutine zur automatischen Berechnung des GAS-Index 112
13.2. Berechnung von Gauss-Krüger-Koordinaten aus Polarkoordinaten 115
13.3. Programmcode zur logistischen Regressionsmodellierung mit R 116
13.4. ArcPy-Skript zur Zufallsselektion einer bestimmten Anzahl von Features 119
13.5. ArcPy-Skript zum CSV-Export gesammelter Daten .. 119
14. Eidesstattliche Erklärung ... 120
15. CD mit digitalen Inhalten zur Arbeit ... 121
1. Einleitung

Durch ihre immergrünen Blätter wird die Mistel seit jeher als Lebenselixier, welches die Kälte und Dunkelheit des Winters übersteht, verstanden (Grundmann et al. 2010). Ihre ungewöhnliche Wuchsform als grüne Pflanze ohne sichtbare Wurzel verlieh ihr im Altertum eine besondere kulturelle Stellung, teilweise galt sie sogar als heilig (Petercord et al. 2017).

Im Mittelalter wurde die Mistel aufgrund ihrer dichiasalnen Wuchsform auch als „Kreuzholz“ bezeichnet. Aus Mistelholz wurden deshalb Rosenkränze und Amulette gefertigt. Bis heute hat die Mistel im christlichen Glauben Bedeutung – so wird in einigen Regionen am Palmsonntag den Palmbuschen ein Mistelzweig beigefügt, um für Fruchtbarkeit zu bitten (Petercord et al. 2017).

In der empirischen Volksmedizin werden Misteleextrakte bei Bluthochdruck, Gelenkerkrankungen und Schwindelgefühl angewendet (Grundmann et al. 2010). In der modernen Medizin spielt die Mistel eine wichtige Rolle in der alternativen Krebsbehandlung im Rahmen der komplementärmedizinischen Ansätze von Rudolf Steiner (Ramm 2006).

In den letzten Jahren wurde im Forstbereich vermehrt die Beobachtung gemacht, dass in ganz Bayern, vor allem in Mittelfranken, Intensität und Ausbreitung des Mistelbefalls zunehmen.

Zahlreiche vorausgehende Studien beschäftigen sich mit Physiologie, Ökologie, Verbreitung und bestandessozialen Effekten der Mistel im Rahmen von Versuchen in speziell für diesen Zweck ausgewählten Versuchsbeständen sowie auf kleineren Skalenebenen. Genaue Auswertungen über die großräumige Ausbreitung des Mistelbefalls, über Ursachen, Auswirkungen und Zusammenhänge auf Landschaftsebene und darüber hinaus wurden allgemein, aber insbesondere auch für Bayern, bisher nicht angestellt.
1.1. Ziel der Arbeit

Ziel der vorliegenden Arbeit ist deshalb, anhand der kombinierten räumlichen und statistischen Auswertung von vorliegenden Langzeitmonitoringdaten aus verschiedenen Monitoringprogrammen wie der Waldzustandserhebung, ICP Forests und der Bundeswaldinventur folgende Fragen zu klären:

1. Wie haben sich Ausbreitung und Intensität des Nadelholzmistelbefalls von Kiefern und Tannen in ganz Bayern sowie in zwei Versuchsbeständen über die vergangenen 10 Jahre entwickelt?
2. Welche Aufnahmeverfahren sind wie gut zur Feststellung und Quantifizierung eines Mistelbefalls geeignet?
3. Hat die Strukturvielfalt von Waldbeständen einen Einfluss auf die Wahrscheinlichkeit eines Mistelbefalls?
4. Ist die Wahrscheinlichkeit eines Mistelbefalls an Waldrändern gegenüber dem übrigen Bestand verändert?
5. Welche Umweltfaktoren beeinflussen auf welche Weise die Wahrscheinlichkeit eines Mistelbefalls?
6. Wie wirkt sich die Topographie auf die Wahrscheinlichkeit eines Mistelbefalls aus?
7. Welchen horizontalen Verteilungsmustern zwischen Bäumen in einem Bestand folgt die Ausbreitung eines Mistelbefalls?
8. Wie wirkt sich ein Mistelbefall auf Wachstum und Zuwachs der betroffenen Bäume aus?
2. Stand des Wissens

2.1. Biologie der Mistel

2.1.1. Systematik und Morphologie

Die Weißbeerige Mistel (*Viscum album L.*) ist ein epiphytischer Sprossparasit. Da sie selbst Photosynthese betreiben kann, gilt sie als Hemiparasit (Grundmann et al. 2010). Hemiparasiten können ihren Energiebedarf durch eigene Assimilation bedienen, während Holoparasiten das Phloem des Wirts als Kohlenstoffquelle nutzen (Escher 2004). Sie ist ein obligater Parasit, d.h. sie ist zur Bildung des ersten Blattpaares vollständig auf einen Wirt angewiesen (Grundmann et al. 2010).

Die Mistel ist ein immergrüner Strauch mit kugeliger Krone von maximal ca. 1-1,5 m Durchmesser, die in den Kronen der Wirtsbäume ausgebildet wird. Sie kann ein Alter von bis zu 30 Jahren erreichen, in seltenen Fällen wurde von bis zu 70 Jahre alten Exemplaren berichtet (Grundmann et al. 2010). Ihre Blätter sind lanzettlich bis spatelig, derb-ledrig, ganzrandig, kahl und sitzend. Die Sprosse können an der Basis im Mittel 5, maximal 8 cm dick werden. Die Jahrestriebe erreichen Maximallängen von 15 cm, im Mittel etwa 7-10 cm (Grundmann et al. 2010).

Die Unterarten unterscheiden sich in LMA (Leaf Mass per Area) – diese ist bei der Kiefernmistel fast doppelt so groß wie bei der Laubholzmistel, die Tannenmistel liegt etwa in der Mitte zwischen beiden – und LAI (Leaf Area Index) – dieser liegt zwischen 2,4 und 5,1 m²/m² und ist bei der Laubholzmistel am größten, bei der Kiefernmistel am geringsten (Pfiz und Küppers 2010).

2.1.2. Befall von Wirtsbäumen
Das Mesokarp der Mistelbeere besteht aus einem klebrigen, viscinhaltigen Schleim. Dieser ist in zwei Schichten unterteilt: Die äußere Schicht ist zellulosehaltig und somit für Vögel als Hauptvektoren (siehe auch 2.3. Vektoren) leicht verdaulich. Die innere Schicht ist pektinhaltig und bleibt unverdaut als Hülle um den Samen herum erhalten. Der Beerenschleim befindet sich zwischen den beiden Mesokarpsschichten und sorgt dafür, dass der Samen an der Beerenhaut hängen bleibt. Er ist entscheidend für die Verbreitungsstrategie der Mistel: Durch ihn bleiben die Samen nach der Deposition durch Vögel (verdaut oder unverdaut, siehe 2.3. Vektoren) am Ast eines Wirtsbäumes kleben, bis sie dort keimen (Grundmann et al. 2010).

Die Konsistenz des Beerenschleims unterscheidet sich zwischen den Unterarten der Mistel: Bei der Laubholzmistel ist er deutlich klebriger und bildet lange Fäden zwischen der inneren Mesokarpsschicht und der Beerenhaut, sodass der Samen daran hängen bleibt (Grundmann et al. 2010). Für die Samen der Nadelholzmistel ist es hingegen von Vorteil, wenn der Samen an den Nadeln entlang bis zum Ast herunterrutschen kann. Ihr Schleim ist deshalb fluider und weniger klebrig (Hartmann 1990).

Ist ein Samen am Zweig angekommen und findet passende Bedingungen (vor allem genug Licht) vor, kommt es zur Keimung (Nierhaus-Wunderwald und Lawrenz 1997). Das grüne Hypokotyl wächst durchschnittlich 5,6 mm weit und biegt sich negativ phototropisch zur Rinde des Wirtsastes hin (Grundmann et al. 2010). Im Laufe des Frühjahrs streckt sich die Hypokotylachse. Bei Kontakt mit einer Unterlage heftet sich der Wurzelpol fest und bildet eine abgeflachte Haftscheibe aus (Hartmann 1990). Während sich die Haftscheibe ausdehnt werden die bereits fest mit dem Periderm des Wirtsastes verbundenen Papillen nach oben und zur Seite gezogen, wodurch das äußere Gewebe des Astes auseinandergerissen wird (Grundmann et al. 2010). Mithilfe sekretorischer Zellen dringt der Keimling aktiv durch das Periderm und das Phloem bis zum Kambium des Wirtsastes vor (Grundmann et al. 2010). Das dort gebildete Haustorium wird im nächsten Jahr vom Holz des Astes umwachsen und wächst selbst in gleichem Maße mit. Das Eindringen in den Wirtsast findet ausschließlich mechanisch statt, bisher konnte nirgends ein chemischer Abbau von Wirtsgewebe nachgewiesen werden.
(Mathiasen et al. 2008). Hat der Keimling so eine Verbindung zum Saftstrom des Wirtsxylems hergestellt, beginnt die eigentliche parasitische Phase (Hartmann 1990).

Die Verbindung der wasserleitenden Systeme von Wirt und Mistel entsteht durch die aktive Vorwölbung der Misteltracheiden in die Gefäße des Wirtsxylems (Grundmann et al. 2010). Auf der Höhe des Wirtskambiums bildet der Mistelsenker ein Sekundärkambium, sodass die Mistel genau mit dem Radialwachstum des Astes synchron weiterwachsen und so eine Trennung der beiden Gewebe verhindern kann. Eine Verbindung zwischen dem Phloem des Wirts und der Mistel entsteht nicht (Grundmann et al. 2010).

In jedem Fall geschieht die Etablierung einer Mistel nicht ohne Gegenreaktion des Wirtsbaumes: Durch Akkumulation von Abwehrstoffen, insbesondere Polyphenolen, um das junge Haustorium der Mistel herum versucht der Baum den Senker bereits im Initialstadium abzutöten (Grundmann et al. 2010). Der Erfolg dieser Gegenwehr hängt ebenfalls maßgeblich von der Vitalität des betroffenen Baums ab – ist dieser geschwächt, kann er ggf. nicht ausreichend Abwehrsubstanzen produzieren (Hartmann 1997; Tubeuf 1923).

2.1.3. Physiologie und Ernährung

Die Blätter der Mistel erreichen ein durchschnittliches Alter von 17 Monaten (Grundmann et al. 2010). 50% der Blätter werden nach 11,9 Monaten (Laubholzmistel), 18,3 Monaten (Kiefernmistel), bzw. 22,3 Monaten (Tannenmistel) abgeworfen (Pfiz und Küppers 2010). Die Blätter der Nadelholzmistel sind also langlebiger als die der Laubholzmistel, was möglicherweise auf die bessere Wasserversorgung im Winter zurückzuführen ist (Pfiz und Küppers 2010). Während die Blätter der Laubholz- und Tannenmistel mit der Zeit kontinuierlich größer werden, behalten die Blätter der Kiefernmistel über ihre gesamte Lebensdauer die Größe, die sie nach voller Entfaltung in der ersten Saison erreichen (Pfiz und Küppers 2010). Das Verhältnis zwischen neu gebildeten Blättern und Blättern aus vorhergehenden Jahren liegt relativ stabil bei 2:1 (Pfiz und Küppers 2010). Der Abwurf der alten Blätter erfolgt meist nach der vollständigen Entfaltung der neuen Blätter im Spätsommer (Grundmann et al. 2010).

Der Mistelkeimling ist aufgrund seines hohen Fettgehalts frosttolerant bis zu -15 °C. Mistelblätter sind bis -20 °C frosthart (Grundmann et al. 2010).
Früchte trägt die Mistel erstmalig ab einem Alter von 6 Jahren (Tubef 1923). Die Laubholzmistel hat die schwersten (ca. 82 mg), die Tannenmistel die kleinsten und leichtesten (ca. 36 mg) Samen. Die Kiefern­mistel liegt dazwischen (ca. 53 mg) (Pfiz und Küppers 2010).

Im Gegensatz zu anderen Nährstoffen ist Stickstoff in der Mistel gegenüber dem Wirt nicht angereichert (Escher 2004). Vielfach wird deshalb angenommen, dass die Stickstoffversorgung der hauptsächliche limitierende Faktor des Mistelwachstums ist (Hosseini et al. 2007; Grundmann et al. 2010). Dagegen spricht allerdings, dass die im Wirt dominierende Aminosäure Glutamin von der Mistel in Arginin umgewandelt wird, welches als wichtigste Stickstoffspeicherform in den Blättern

2.1.4. Ökologie

Aufgrund ihrer epiphytischen Lebensweise hoch oben in Baumkronen hat die Mistel kaum Fraßfeinde. Auch wird sie nur von wenigen Pilzen besiedelt (Grundmann et al. 2010).

Ihr Blüherfolg ist negativ mit dem Befallsgrad korreliert – unabhängig von der Baumgröße ist die entscheidende Größe hierfür also die Dichte der Mistelpopulation je Wirtsbaum. Bei einem sehr starken Befall nimmt der Blüherfolg und somit die Reproduktivität jedes einzelnen Busches deutlich ab (Donohue 1995).

2.2. Verbreitung
2.2.1. Verbreitungsgebiet
etablieren, was somit indirekt eine negative Abhängigkeit von der Vitalität potentieller Wirtsbäume bedeutet (Hartmann 1997; Tubeuf 1923).

In Regionen mit kühlen Sommern kann die Mistel dennoch vorkommen, wenn diese durch milde Winter kompensiert werden. Ebenso können harte Winter durch entsprechend wärmere Sommer ausgeglichen werden (Grundmann et al. 2010).

2.2.2. Landschafts- bis Bestandesebene

Die Mistel ist in ihrer Samenverbreitung ausschließlich auf Vögel angewiesen (Tubeuf 1923). Die Verbreitung erfolgt hauptsächlich zur Winterzeit (Grundmann et al. 2010). Durch eine lange Koevolution mit bestimmten Vogelarten werden Mistelsamen gerichtet auf besonders geeignete, eng nach Wirtsart und Zweigdurchmesser definierte Plätze verbreitet (Aukema und Martínez del Rio 2002).

Die meisten Samen landen wieder auf demselben Baum. Der Großteil der übrigen Samen wird auf die unmittelbaren Nachbarbäume des Wirts verteilt (Overton 1996; Aukema und Martínez del Rio 2002).

Verschiedene Wirtsbäume sind i.d.R. in unterschiedlichem Maße von einem Mistelbefall betroffen. Gründe hierfür sind zum einen die Wahl von mistelverbreitenden Vögeln, auf welchen Bäumen sie sich bevorzugt niederlassen und wo sie somit die Mistelsamen deponieren, zum anderen spielt die Etablierungsfähigkeit der Mistelkeimlinge eine entscheidende Rolle: Hierfür ist eine Passung der Charakteristika des potentiellen Wirtsbauens und des Mistelkeimlings in Raum und Zeit erforderlich (Levey et al. 2002). Mistelpopulationen können auf Bestandesebene also als Metapopulationen...
betrachtet werden, in denen potentielle Wirtsbäume einzelne Wuchsorte darstellen (Levey et al. 2002).

Der Mistelbefall führt auf Bestandesebene zu einer langfristigen, hintergründigen, aber in ihren Effekten deutlichen Strukturierung des Bestandes. Über die Wirkung durch Lückenbildung infolge durch Mistelbefall absterbender Bäume hinaus führt der Mistelbefall langfristig zur Ausdifferenzierung einer stärkeren Strukturierung durch Bildung von Infektionskernen und -nestern sowie weniger betroffenen Flecken (Mellado et al. 2017).

2.2.3. Baumebene

Vor allem die Erstinfektion in einem Bestand findet häufig an alten, hohen Bäumen statt, da diese mehr und bessere Ruheplätze für mistelverbreitende Vögel bieten (Kołodziejek und Kołodziejek 2013).

Die Kiefernmistel kommt hauptsächlich an den äußeren Zweigen im Kronenmantel vor, teilweise aber auch im Kroneninneren und selten am Stamm (Kołodziejek und Kołodziejek 2013). Häufig beginnt der Befall in der Oberkrone und breitet sich dann nach unten hin aus (Sangüesa-Barreda et al. 2012).

2.3. Vektoren

2.3.1. Verhalten und Mistelverbreitung

In ihrer Verbreitung ist die Mistel vollständig auf Vögel als Vektoren angewiesen (Tubeuf 1923). Dabei handelt es sich häufig um hoch spezialisierte Beziehungen (Kołodziejek und Kołodziejek 2013; Aukema und Martínez del Río 2002). Unter den Vögeln, die Mistelbeeren als Nahrungsquelle nutzen, gibt es zwei Gruppen: Eine verbreitet die Samen beim Fraß der Beere weiter, die andere vernichtet die Samen (Grundmann et al. 2010).

Die durch lange Koevolution entstandene Beziehung zwischen Misteln und ihren Vektoren ist besonders beachtlich. Hierbei handelt es sich um einen in der Natur sehr seltenen echten Mutualismus: Während die Mistel den Vögeln wertvolle Nahrung zu sonst sehr kargen Jahreszeiten bietet, verbreiten diese die Mistelsamen gerichtet auf besonders geeignete Wuchspflätze, wovon sie...
selbst wiederum durch ein besseres Nahrungsangebot profitieren (Mathiasen et al. 2008; Aukema und Martínez del Rio 2002; Levey et al. 2002).

Bei Betrachtung der Verbreitung von Misteln muss also immer auch die Population und das Verhalten von mistelverbreitenden Vögeln beachtet werden. Entscheidend für Veränderungen ist insbesondere das Zugverhalten: Überwintern mehr Vögel in Mitteleuropa, anstatt über Winter fortzuziehen, ist auch die Mistelverbreitung in besonderem Maße begünstigt (Grundmann et al. 2010; Ramm 2005).

2.3.2. Misteldrossel

Die Misteldrossel (*Turdus viscivorus* L.) ist der wichtigste Vektor der Weißbeerigen Mistel (Grundmann et al. 2010). Unter den Drosselarten ist sie die einzige, die für die Mistel als Vektor von Bedeutung ist. Die Singdrossel verschmäht Mistelbeeren gänzlich, auch die Wacholderdrossel frisst fast nie Mistelbeeren (Tubeuf 1923).

Die Misteldrossel kommt als Brutvogel in der gesamten paläarktischen Region von den britischen Inseln über den Himalaja bis nach China vor, außerdem in Mittel- und Südeuropa vorwiegend in Gebirgen. Ihre nördliche Verbreitungsgrenze als Brutvogel liegt in Lappland bei ca. 68 Grad nördlicher Breite. Im Winter ziehen die Populationen aus den nördlichen Verbreitungsteilgebieten durch die Türkei und Kleinasien bis nach Nordafrika und auf die arabische Halbinsel (Tubeuf 1923).

Die Misteldrossel ist ein Vogel der aufgelockerten Wälder und des Waldrands, sie kann aber auch Parklandschaften mit Einzelbäumen als Habitat nutzen (Guest 2010). Misteldrosseln verteidigen territorial prominente Sitzwarten mit gutem Ausblick und reichlichem Angebot an Mistelbeeren. Sie beobachten ihr Revier dabei von einer erhöhten Position aus und fliegen eindringende Konkurrenten,
darunter auch deutlich größere Vögel wie Eichelhähner (*Garndus glandarius*), direkt an (Guest 2010; Ramm 2005; Tubeuf 1923).

Misteldrosseln sind sehr scheu und meiden die Nähe zu menschlichen Siedlungen (Ramm 2005). Besonders bevorzugen sie freie, mit Nadelwald wechselnde Plätze (Tubeuf 1923). In weiten ungestörten Landschaften gilt die Misteldrossel als Fern- und Offenlandausbreiter, der häufig auch einzelnstehende Bäume anfliegt (Stiebel 2003).

Der Mistelsamen braucht um keimen zu können nicht zwingend eine Darmpassage. Viele Kerne werden von den Vögeln auch direkt beim Fraß oder in Gewöllen wieder ausgeworfen (Tubeuf 1923).

In den letzten Jahren ist zunehmend eine Veränderung des Zugverhaltens der Misteldrossel zu beobachten. Mehr und mehr Vögel überwintern statt nach Süden zu ziehen in tieferen Lagen in Mitteleuropa, wo sie sich hauptsächlich von Mistelbeeren ernähren. Zusätzlich bieten sich ihr durch Parkanlagen, insbesondere in tendenziell wärmeren Stadtgebieten, künstliche Verbreitungsmöglichkeiten mit reichem Nahrungsangebot durch mistelbefallene Parkbäume (Guest 2010).

2.3.3. Mönchsgrasmücke

Im Gegensatz zur Misteldrossel bevorzugt die Mönchsgrasmücke Mistelbeeren im inneren und unteren Kronenbereich, welcher gleichzeitig ihren hauptsächlichen Aufenthaltsort darstellt (Ramm 2005). Beim Fraß entfernt die Mönchsgrasmücke zuerst den Kern der Beere, indem sie den Kopf schwenkend den Zweig entlangläuft, bis die verbindenden Fäden zwischen Kern und Fruchthülle
abreißen. Erst dann verschluckt sie die Beerenhaut samt dem anhaftenden äußeren Mesokarp. Meist erfolgt dies auf demselben Baum, an dem die Mistelbeere aufgenommen wurde (Ramm 2005).

Der Samen wird von der Mönchsgrasmücke also direkt vor Ort zurückgelassen (Nierhaus-Wunderwald und Lawrenz 1997). Im Gegensatz zur Misteldrossel, bei der viele Kerne ihr Ziel verfehlen, frisst die Mönchsgrasmücke zwar absolut weniger Mistelbeeren, platziert jedoch fast alle Kerne an optimal für die Mistel geeigneten Wuchsplätzen (Ramm 2005).

2.3.4. Seidenschwanz

Der Seidenschwanz trifft i.d.R. von Anfang November bis Dezember in Mitteleuropa ein und bleibt bis Ende Februar, selten auch bis Anfang April (Tubeuf 1923). Gerade in harten Wintern ist er somit ein wichtiger Mistelverbreiter (Tubeuf 1923). Ausbreitungswellen der Mistel werden häufig mit seinen Massenwanderungen in Verbindung gebracht (Grundmann et al. 2010).

Höchstwahrscheinlich sind die Massenwanderungen vom Futterangebot in den Heimatregionen der Seidenschwänze abhängig – während dieses jährlich stark variiert, bietet die Mistel jedes Jahr etwa gleich viele Beeren und stellt somit ein geeignetes Ausweichfutter dar (Grundmann et al. 2010). Der Seidenschwanz nimmt diese jedoch erst als Notfutter an, wenn andere Früchte zur Neige gehen, und wenn sie bereits sehr reif und somit auch für ihn als schlechten Nahrungsverwerter gut verdaulich sind (Ramm 2005).

Der Seidenschwanz braucht nur sehr kurze Zeiten zur Verdauung: Die meisten Mistelsamen passieren seinen Darmtrakt in unter zehn Minuten. Im Gegensatz zu Misteldrossel und Mönchsgrasmücke verbreitet der Seidenschwanz die Mistelsamen ausschließlich über seinen Kot (Tubeuf 1923).

In geschlossenen Wäldern sind nur sehr selten Seidenschwänze zu beobachten. Hauptsächlich sind sie Vögel des Offenlandes, die sich in nur durch einzelne Gebüschc und Baumreihen unterbrochenen Landschaften aufhalten. Im Wald sind sie höchstens am Waldrand und in den ersten Baumreihen sowie in sehr lichten Beständen zu finden (Tubeuf 1923).
2.3.5. Andere Arten

2.4. Auswirkungen auf Wirtspflanzen

2.4.1. Physiologie

Ähnliche Effekte wurden nach intensiven Düreperioden beobachtet. Da die Mistel neben dem Nährstoffentzug auch die Wasserversorgung des Baums stört, ist ein kombinierter Effekt beider
Parameter denkbar (Bigler et al. 2006). Der Effekt ist bei intensivem Mistelbefall auch in der Kronenarchitektur durch geringere Zweiglängen zu bemerken (Rigling et al. 2010).

2.4.2. Photosynthese und Stoffwechsel

werden, die dazu führt, dass die gesamte potentielle Oberfläche photosynthetisch aktiver Gewebe des Baums reduziert wird (Durand-Gillmann et al. 2014; Rigling et al. 2010).

2.4.3. Stress

Bei Auftreten einer Stresssituation reagiert der Baum darauf. Bleibt der Stress kontinuierlich vorhanden, passt der Baum sich an (Restitution und Abhärtung) und erreicht danach entweder geringere, identische oder höhere Level von Stressresistenz. Bleibt der Stress über lange Zeit erhalten oder kommt ein weiterer Stressfaktor hinzu, kann der Baum unter eine Resistenzzchwelle fallen, unterhalb derer er irreversible Schädigungen erfährt. Permanente Schäden können einen geringeren Vitalitätslevel und sozialen Status zur Folge haben oder sogar bedeuten, dass keine Erholung mehr möglich ist (Dobbertin 2005).

Durch ihre Langlebigkeit ist die Mistel somit sowohl als wichtiger prädisponierender Faktor durch Nadelverlust und Reduktion der photosynthetischen Kapazität, als auch als mitwirkender Faktor durch

2.4.4. Wachstum und Zuwachs

stattfinden. Oft stellt ein solches Ereignis den Beginn langfristiger Wachstumsdepressionen dar (Bigler et al. 2006).

Neben der Jahrringbreite kann auch der Frühholz/Spätholz-Übergang durch Trockenstress nach vorne verschoben werden (Eilmann et al. 2011).

2.4.5. Mortalität

Ist der kritische Punkt des Befalls überschritten und es kommt zu einer längerfristigen, irreversiblen Schädigung der betroffenen Bäume, so endet der Befall oft mit ihrem Absterben. Als mitwirkender Stressfaktor intensiviert die Mistel schon vorhandene negative Umweltbedingungen und trägt somit zur Mortalität der Wirtsbäume bei (Grundmann et al. 2010).

Je stärker Bäume schon durch Standortfaktoren und andere Pathogene geschädigt sind, desto geringer ist die kritische Schwelle der Befallsintensität, bei deren Überschreiten der Absterbeprozess eines Baums beginnt (Dobbertin 2005; Dobbertin und Rigling 2006). Der Nadel-/Blattverlust als Maß für die Kronenverlichtung infolge von Umweltschäden sagt dies relativ gut voraus (Dobbertin und Rigling 2006).

Insbesondere in der auf starke Trockenjahre folgenden Vegetationsperiode sind auf trockenen Standorten die Mortalitätsraten mistelbefallener Bäume besonders hoch (Rigling et al. 2010). Neben dem Niederschlag in der Vegetationsperiode ist auch die Bodenmächtigkeit, die Bodenart und daraus resultierend die Wasserspeicherkapazität des Bodens entscheidend für die Stärke des Trockenstresses – auf flachgründigen Böden mit geringer Wasserspeicherkapazität finden sich die höchsten Mortalitätsraten (Dobbertin und Rigling 2006).

Neben der direkten Schädigung durch die Mistel als mitwirkenden Faktor muss auch ihre Rolle als prädisponierender Faktor betrachtet werden: So sind durch Mistelbefall geschwächte Bäume eher empfänglich für weitere Pathogene, welche dann letztendlich zur Mortalität führen oder beitragen können (Kołodziejk und Kołodziejk 2013; Bigler et al. 2006).
3. Material und Methoden

3.1. Datengrundlage

3.1.1. Level 1 (Waldzustandserhebung)

Für das gesamte Raster liegt aus dem Projekt „WP-KS-KW“ (Waldproduktivität–Kohlenstoffspeicherung–Klimawandel) je Traktecke eine Reihe an Umweltvektordaten wie z.B. Basensättigung, Niederschlagsmenge und viele weitere vor, welche teilweise aus Daten der Bodenzustanderhebung, welche ebenfalls auf dem Level 1-Raster durchgeführt wurde, und teilweise aus anderen Datenquellen wie Rasterausstichen aus Übersichtskarten oder aus Indexberechnungen stammen.

Um Aussagen abzuleiten, wurden die Datenbank-Tabellen über SQL-Abfragen mit weiteren Informationen (beispielsweise zu Topographie, Baumpositionen und traktweisen Aussagen) verbunden und die Abfragetabellen ausgewertet.

3.1.2. Level 2 (Waldklimastationen)

Da der Zustand der Bäume an Waldklimastationen mit derselben Methode aufgenommen wird wie auf dem Level 1-Raster können aufgrund der Datenverfügbarkeit Aussagen über den Mistelbefall dort ab dem Jahr 2007 getroffen werden.

Die Daten zur Waldzustandserhebung an Waldklimastationen (Level 2-Flächen) mussten zunächst analog zum Vorgehen bei den Level 1-Daten (siehe 3.1.1. Level 1) gesammelt und vorbereitet werden.

3.1.3. Bundeswaldinventur (BWI)

3.2. Level 1 (Waldzustandserhebung)

3.2.1. Befallsentwicklung

Als Eingangsdaten dienten die im Zuge der Waldzustandserhebung seit 2007 erhobenen Daten zum Mistelbefall der Probebäume an den Aufnahmepunkten des Level 1-Rasters (siehe 3.1.1. Level 1). Es wurden sowohl die Traktecken als auch die Kreuztrakte betrachtet (vgl. Abbildung 1).

Aufgrund der zwischen den Inventurpunkten verschiedenen Baumanzahl wurden alle Werte zum Mistelbefall relativ zur Anzahl der je Trakt aufgenommenen Bäume berechnet. Fällt an einem Kreuztrakt-Probepunkt ein Baum aus, so wird die Stichprobe durch den vom Satellitenmittelpunkt aus nächsten bisher nicht enthaltenen Baum wieder auf 6 Bäume ergänzt. Um den Einfluss von sich verändernden Gesamtzahlen von Bäumen durch hinzukommende Probebäume anderer Nichtwirtsbäumarten auf die Ergebnisse auszuschließen, wurden alle Kennzahlen relativ zur Anzahl der Bäume der Wirtsarten der Nadelholzmistel, Waldkiefer (Pinus sylvestris) und Weißtanne (Abies alba), berechnet.

Zunächst wurden aus den baumweise vorliegenden Datensätzen traktweise Aussagen zum Mistelbefall aggregiert. Für jedes Jahr wurde daraus der Anteil von Trakten mit Mistelbäumen an der gesamten Traktanzahl, der mittlere Anteil der Mistelbäume an der Gesamtanzahl aller Kiefern und Tannen je Trakt, ab 2013 (Datenverfügbarkeit) die mittlere Mistelanzahl und ab 2014 die mittlere Mistelstufe bezogen auf die Gesamtanzahl von Kiefern und Tannen je Trakt berechnet und grafisch dargestellt.

In ArcGIS wurden die Trakte mit Kiefern und Tannen sowie die jeweilige Mistelbefallintensität (Anteil der Mistelbäume an der gesamten Kiefern- und Tannenanzahl) in Bayern räumlich dargestellt und eine Animation (siehe 15. CD mit digitalen Inhalten zur Arbeit) sowie eine Bilderserie zur Entwicklung über

3.2.2. Bestandesstruktur

Der GAS-Index besteht aus zwei verknüpften Termen. Der erste Term stellt die „Artenzahlbezogene Strukturkomponente“ dar. Die Verwendung von fixen Größen begrenzt den möglichen Wertebereich nach unten auf 0,01 – dies entspricht dem Grundflächenanteil einer Art am Inventurpunkt von 5%. Der zweite Term quantifiziert die innerartliche horizontale (und wegen allometrischer Grundzusammenhänge indirekt auch die vertikale) Strukturierung des Bestandes an einem Inventurpunkt (Springer 2014).

Für die Berechnung wurden ausschließlich die Bäume an den Traktecken betrachtet. Die Bäume der Kreuztrakte wurden nicht einbezogen, da diese nach einem anderen Schema (Sechsbauanstichprobe statt Winkelzählprobe mit Zählfaktor 4) angelegt sind.

Für das Jahr 2017 lagen für 663 der 676 aufgenommenen Traktecken Daten zum Brusthöhendurchmesser sowie zum Mistelbefall aus der Waldzustandserhebung vor. Für diese wurde jeweils der GAS-Index berechnet.
Der GAS-Index berechnet sich nach folgender Formel (Klemmt 2016):

\[
GAS_e = \sum_{j=1}^{n} \left(\frac{21 - G_{rel}(j)}{20} \right) \times \left(1 + \sum_{t=1}^{x} \left| \frac{G_t - \bar{G}_x}{\bar{G}_x} \right| \right)
\]

mit

\(GAS_e\): Grundflächen- und Artenzahlbezogener Strukturindex an der Traktecke e
\(n\): Anzahl der Baumarten j an der Traktecke e
\(G_{rel}(j)\): relativer Grundflächenanteil einer Art j an der Gesamtgrundfläche der Traktecke e
\(x\): Anzahl der Bäume t einer Art j an der Traktecke e
\(G_t\): Grundfläche eines Baumes t der Art j an der Traktecke e
\(\bar{G}_x\): Mittlere Grundfläche aller Bäume einer Art j an der Traktecke e

Um für die in der Datenbank vorliegenden Baumdaten der WZE automatisch den GAS-Index zu berechnen wurde eine VBA-Programmroutine für Excel entwickelt (siehe Anhang 1).

Um festzustellen, ob ein Mistelbefall regelmäßig an mehreren, bzw. allen Ecken eines Traktes oder nur an einzelnen Ecken vorkommt, wurden außerdem für die Jahre 2014 bis 2017 (erst ab 2014 wurden alle bewaldeten Ecken der BWI-Trakte aufgenommen, davor nur Ecke 1) je Trakt die Anzahl bewaldeter Ecken sowie die Anzahl von Ecken mit Mistelbefall berechnet und der Quotient daraus gebildet. Ist dieser gleich 1, kommt die Mistel an allen Traktecken des Traktes vor, ist er beispielsweise 0,25, kommt nur an einer von vier Traktecken ein Mistelbefall vor.

3.2.3. Waldrand
Tabelle 1 - Randarten (Rart) nach BMELV (2011)

<table>
<thead>
<tr>
<th>Rart</th>
<th>Beschreibung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Waldaußenrand</td>
<td>Abstand zur Grenzlinie des gegenüberliegenden Waldrandes mindestens 50 m</td>
</tr>
<tr>
<td>2</td>
<td>Waldinnenrand</td>
<td>Abstand zur Grenzlinie des gegenüberliegenden Waldrandes zwischen 30 und 50 m</td>
</tr>
<tr>
<td>3</td>
<td>Bestandesgrenze</td>
<td>Bestandesgrenze zwischen unmittelbar aneinandergrenzenden Beständen (bis 30 m Abstand) mit mindestens 20 m geringerer Bestandeshöhe des vorgelagerten Bestandes (das kann auch eine Blöße oder Nichtholzboden sein)</td>
</tr>
<tr>
<td>4</td>
<td>sonstige</td>
<td>sonstige eingemessene Bestandesgrenze</td>
</tr>
</tbody>
</table>

Mit ArcGIS wurde für jeden Baum, der in max. 25 m Entfernung von einem Waldrand steht, die kürzeste Entfernung zur Waldrandlinie berechnet.

In SPSS 21 (IBM Corp. 2012) wurde für alle beteiligten Bäume eine Kreuztabelle zu den Informationen „Waldrand ja/nein“ und „Mistelbefall ja/nein“ erstellt und ein χ²-Unabhängigkeitstest durchgeführt.

Nach Waldrandart getrennt wurden die Anteile der mistelbefallenen und der unbefallenen Bäume in Abhängigkeit vom Waldrandabstand in 5 m weiten Abstandsklassen dargestellt. Für diese Auswertung wurden nur Kiefern und Tannen, für die innerhalb von 25 m ein Waldrand aufgenommen wurde, betrachtet.

3.2.4. Umweltvektor

Im Rahmen des Projektes „Waldproduktivität - Kohlenstoffspeicherung - Klimawandel (WP-KS-KW)“ wurden an der Bayerischen Landesanstalt für Wald und Forstwirtschaft für jeden Inventurpunkt der Bundeswaldinventur diverse Umweltparameter bestimmt.

Aus dem Katalog der verfügbaren Umweltvektordaten wurde eine Reihe sinnvoller Umwelt- und Standortparameter ausgewählt und mit den Eckenmittelwerten der Gesamtzahl von Mistelbüsch en je Baum sowie dem Anteil von Bäumen mit Mistelbefall an der Gesamtbaumzahl je Traktecke
zusammengeführt. Für jeden Parameter wurden die Werte an kiefer- und tannenbestandenen Traktecken mit und ohne Mistelbefall verglichen.

Tabelle 2 - Erklärung der verwendeten Umweltvektor-Codes

<table>
<thead>
<tr>
<th>Code Umweltvektor</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS_perc</td>
<td>Basensättigung [%]</td>
</tr>
<tr>
<td>Ca_aus_vor_kmolha</td>
<td>austauschbares Calcium (effektiv) als Vorrat pro Hektar bis max. 1m Tiefe [kmol/ha]</td>
</tr>
<tr>
<td>K_aus_vor_kmolha</td>
<td>austauschbares Kalium (effektiv) als Vorrat pro Hektar bis max. 1m Tiefe [kmol/ha]</td>
</tr>
<tr>
<td>Mg_aus_vor_kmolha</td>
<td>austauschbares Magnesium (effektiv) als Vorrat pro Hektar bis max. 1m Tiefe [kmol/ha]</td>
</tr>
<tr>
<td>Corg_Gehalt</td>
<td>Organischer Kohlenstoff als Gehalt pro kg Boden bis max. 1m Tiefe [M-%]</td>
</tr>
<tr>
<td>N_Vor_tha</td>
<td>Stickstoffvorrat [t/ha]</td>
</tr>
<tr>
<td>T_5to9</td>
<td>Durchschnittstemperatur [°C] der Monate Mai bis September</td>
</tr>
<tr>
<td>T_678</td>
<td>Durchschnittstemperatur [°C] der Monate Juni bis August</td>
</tr>
<tr>
<td>P_5to9</td>
<td>Niederschlagssumme [mm] der Monate Mai bis September</td>
</tr>
<tr>
<td>P_678</td>
<td>Niederschlagssumme [mm] der Monate Juni bis August</td>
</tr>
<tr>
<td>nFK</td>
<td>nutzbare Feldkapazität [mm] bis max. 1 m</td>
</tr>
<tr>
<td>Tdiff</td>
<td>Transpirationsdifferenz [mm] der Monate Mai bis September</td>
</tr>
<tr>
<td>ETP_5to9_Turc</td>
<td>potentielle Evapotranspiration [mm] nach Turc (1961) für die Monate Mai-September</td>
</tr>
<tr>
<td>KWB_5to9_Turc</td>
<td>klimatische Wasserbilanz [mm]: Niederschlag minus ETP nach Turc (1961), summiert für die Monate Mai bis September</td>
</tr>
<tr>
<td>WB_5to9_Turc</td>
<td>Wasserbilanz [mm]: Niederschlag plus nFK minus ETP nach Turc (1961), summiert für die Monate Mai bis September</td>
</tr>
<tr>
<td>BFI</td>
<td>Bodenfeuchteindex, Grad der reliefabhängigen Feuchteverteilung (SAGAWETNESS-Index nach Beven und Kirkby (1979))</td>
</tr>
</tbody>
</table>

Um eine Beeinflussung des Ergebnisses dieser Analyse durch die vielen Ecken ohne Mistelbefall zu vermeiden und den Fokus auf die Ursachen des vorhandenen Mistelbefalls zu legen wurden nur Traktecken mit Kiefern und Tannen, an denen mindestens ein Mistelbefall registriert worden war, in die Betrachtung einbezogen.

In R (R Core Team 2017) wurde in iterativen Versuchen ein logistisches Regressionsmodell zur Erklärung der Streuung des faktoriellen Parameters „Mistel ja/nein“ anhand von Umweltvektor-Parametern konstruiert (Programmcode siehe Anhang 3).
3.2.5. Topographie

Um einem möglichen Störeffekt durch unterschiedliche geographische Verteilungs schwerpunkte (Tanne eher im montanen bis alpinen, Kiefer eher im planaren bis kollinen Bereich) vorzubeugen, wurden die Berechnungen für beide Baumarten separat durchgeführt.

 Für jede 2017 aufgenommene Traktecke wurden in ArcGIS Meereshöhe, Hangneigung und Hangrichtung bestimmt. Durch die relativ grobe Rasterzellanenzgroße war sichergestellt, dass keine lokalen topographischen Effekte das Ergebnis verfälschen, sondern über eine etwas größere Fläche integriert wurde und so Aussagen nicht nur für den Eckenmittelpunkt, sondern für die ganze Ecke getroffen werden konnten.

Für jeden Parameter wurden die Werte an Traktecken mit und ohne Mistelbefall anhand von eingeschnürten Boxplots (Chambers et al. 1983) verglichen.

Außerdem wurde mit SPSS 21 (IBM Corp. 2012) für die Traktecken mit Mistelbefall die Befallsintensität in Abhängigkeit von der Ausprägung der topographischen Parameter in Streudiagrammen (Scatterplots) dargestellt, eine lineare Regressionsgerade angepasst und die Erklärungsgüte durch diese mithilfe des Bestimmtheitsmaßes R² beschrieben (aufgrund der Skalierung nicht für die Hangrichtung).

3.3. Level 2 (Waldklimastationen)
3.3.1. Aufnahmeverfahren

Kronenprojektionsflächen der Bäume auf den Probeflächen als ESRI Shapefiles vor. Diese wurden zur grafischen Darstellung des Mistelbefalls verwendet.

Um festzustellen, ob so dieselben Bäume als Mistelbäume kartiert wurden wie durch die terrestrische Erhebung, wurde ein χ^2-Unabhängigkeitstest der durch die jeweilige Methode als befallen aufgenommenen Bäume durchgeführt.

3.3.2. Befallsentwicklung
Als Ausgangsdaten lagen aus den Daten der Walzustandserhebung an Waldklimastationen die Informationen, ob ein Baum einen Mistelbefall hat (Aufnahme seit 2007), sowie die Anzahl großer, mittlerer und kleiner Misteln je Baum (Aufnahme seit 2013) und die Mistelstufe (Wauer (2017), Aufnahme seit 2014) vor. Für das Jahr 2010 war für die Waldklimastation Altdorf keine Schadtabelle verfügbar, sodass dort eine Lücke in den Daten vorhanden ist.

Verschiedene Parameter zum Mistelbefall wurden grafisch dargestellt. Zur Signifikanzberechnung wurde der Standardfehler als Fehlerbalken in die Grafik eingetragen.

3.3.3. Horizontale Verteilung
Aus Ecke (2017) lagen für die Waldklimastationen Altdorf (ALT) und Dinkelsbühl (DIN) die Kronenprojektionsflächen aller Probebäume als Polygone in ESRI Shapefiles vor.

Um Aussagen über die Klumpung, bzw. Gleichverteilung des gesamten Baumkollektivs sowie von Subkollektiven zu treffen, wurde der „Aggregation Index“ R von Clark&Evans (Clark und Evans 1954) berechnet.

$$R = \frac{\bar{r}_{beobachtet}}{\bar{r}_{erwartet}}$$

mit

$$\bar{r}_{beobachtet} = \frac{\sum_{i=1}^{n} r_i}{n} \text{ und } \bar{r}_{erwartet} = \frac{1}{2 \sqrt{nF}}$$

wobei r_i den Abstand des Baumes i zu seinem nächsten Nachbarn in m, n den Stichprobenumfang (also die Größe der betrachteten Population) und F die Größe der Fläche, die die beprobte Population mit dem Umfang n einnimmt, in m² bezeichnen (Kramer und Akça 2008).

Der so berechnete Index R nimmt Werte zwischen 0 (maximale Klumpung) und 2,1491 (streng hexagonales Verteilungsmuster) an. Bei einer zufälligen Verteilung nimmt R den Wert 1 an (Biber 1997). Werte unter 1 zeigen eine Tendenz zur Klumpung an, über 1 ist eine regelmäßige Verteilung indiziert (Biber 1997; Pretzsch 1996).
Der Index R zeigt also an, wie stark das beobachtete Verteilungsmuster von einer Zufallsverteilung abweicht. Eine Verwendung ist sowohl für die Betrachtung des Gesamtbestandes als auch für einzelne Subkollektive darin einsetzbar (Pretzsch 1996; Overton 1996).

Um eine räumlich korrekte Nachbarschaftsaussage der Kronen zu treffen, wurde anstatt der Verwendung von Stammfußpunkten für jeden Probebaum der Schwerpunkt der Kronenprojektionsfläche in ArcGIS berechnet.

Der Index R wurde je Waldklimastation für die Baumkollektive „Gesamtbestand“, „in mindestens einem der Jahre 2013 bis 2016 Mistelbefall terrestrisch festgestellt“ (kurz „terr“), „Mistelbefall 2016 per Drohne festgestellt“ (kurz „drohne“) sowie das Kollektiv, das sich aus der Summe der beiden vorgenannten Kollektive ergibt (kurz „beide“) und für das Kollektiv, an dem mit beiden Verfahren ein Mistelbefall festgestellt wurde (kurz „overlap“), berechnet (vgl. auch Tabelle 11).

Um dies umzusetzen wurde im ArcGIS Modellbuilder ein Set aus drei ineinander verschachtelten Modellen konstruiert, dass diese Berechnung automatisch durchführt.
Abbildung 3 - Inneres Modell zur Durchführung des multiplen Randomisierungstests zur Signifikanzberechnung des Clark&Evans-Index

Die innerste Modellebene (Abbildung 3) verwendet als Eingabeparameter den Layer, der das zu analysierende Punktkollektiv enthält (layer), die Anzahl an Punkten, die zufällig ausgewählt werden sollen (count), den Geometriotyp (Geometry Type) der geometrischen Form, die zur Ermittlung der Fläche F des Subkollektivs verwendet werden soll (in der vorliegenden Untersuchung immer ein Rechteck) sowie die Nummer des aktuellen Durchlaufs (cycle).

Zunächst wird mit dem ArcPy-Skript „SelectRandomByCount“ (abgewandelt nach Brundage@StackExchange 2015, siehe Anhang 4) ein Subkollektiv der gewünschten Größe aus dem Gesamtbestand selektiert. Danach wird mit „Minimum Bounding Geometry“ ein Rechteck (oder andere Geometrie) erstellt, welches die selektierten Punkte genau umschließt. Aus der Attributtable Episode dieses Rechtecks wird mit „Get Field Value“ die Fläche (Shape_Area) abgelesen und als Eingangsgröße für die Berechnung des Clark&Evans-Index („Average Nearest Neighbor“) verwendet. Dieses Tool gibt als Ausgabeparameter u.a. den Indexwert R („NNRatio“) aus. Sobald die Ausgabe vollständig ist, wird das umschließende Rechteck um Speicher freizugeben wieder gelöscht („Delete“).

Der eingegebene Wert, der die Nummer des Durchlaufs angibt (cycle) wird unverändert wieder ausgegeben (cycle2).
Die äußere Modellebene (Abbildung 5), also diejenige, die der Benutzer aufruft, fragt beim Aufruf die Eingabeparameter des mittleren („To Value“) und inneren Modells (übrige) ab und gibt diese unverändert an das mittlere Modell weiter. Seine Aufgabe ist es, die durch das mittlere Modell ausgegebenen Arrays mit Daten so umzustellen, dass eine CSV-Datei (Comma Separated Values, mit z.B. Microsoft Excel lesbar) ausgegeben wird. Der Benutzer kann außerdem Ordner und Name der auszugebenden Datei auswählen („CSV Output Folder/File“). Dazu wird ein ArcPy-Skript (abgewandelt nach blah238@StackExchange 2012, siehe Anhang 5) verwendet, welches die Arrays zunächst als Zeilen einer Tabelle interpretiert, diese danach transponiert und im CSV-Format im angegebenen Ordner abspeichert („Calculate Values“).

3.3.4. Zuwachs und soziale Stellung

Anhand der über die Jahre kontinuierlichen Baumnummern wurden die Grundflächenzuwachsdaten mit den Informationen über den Mistelbefall (Subkollektive terr, drohne, beide, overlap; siehe Tabelle 11) verbunden.

Die Bäume mit und ohne Mistelbefall wurden auf Unterschiede im Zuwachs verglichen. Hierzu wurden für die beiden Extremkollektive beide0 und overlap1 jeweils der mittlere Grundflächenzuwachs, die mittlere Kraft-Klasse und die mittlere Anzahl der Mistelbüsche pro Jahr berechnet und grafisch dargestellt. Die Berechnung wurde sowohl für alle Probebäume zusammen als auch getrennt für jeweils ausschließlich die Bäume der Kraft-Klassen 1 und 2 durchgeführt. Außerdem wurden je Baumkollektiv die Grundflächenzuwachswerte verglichen.

4. Ergebnisse

4.1. Level 1 (Waldzustandserhebung)

4.1.1. Befallsentwicklung

Bei diesem Phänomen handelt es sich nicht um eine punktuelle starke Vermehrung an einzelnen Orten. Die Betrachtung des Anteils der Trakte mit Mistelbefall (siehe Abbildung 6) zeigt, dass der Mistelbefall an immer mehr Inventurtrakten in Bayern vorkommt. Es findet also eine Ausbreitung der Nadelholzmistel auch auf bisher unbefallene Flächen statt.

Tabelle 3 – Entwicklung der Anzahl von Trakten mit Mistelbefall von 2011 bis 2013

<table>
<thead>
<tr>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>Anzahl Trakte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mistel</td>
<td>Mistel</td>
<td>Mistel</td>
<td>6</td>
</tr>
<tr>
<td>Mistel</td>
<td>nicht aufgenommen</td>
<td>Mistel</td>
<td>2</td>
</tr>
<tr>
<td>Mistel</td>
<td>keine Mistel</td>
<td>Mistel</td>
<td>7</td>
</tr>
</tbody>
</table>

Beide Bilder serien sind auch als Animation unter 15. CD mit digitalen Inhalten zur Arbeit hinterlegt.

Legende
- Keine K/Ta
- 0%
- bis 10%
- bis 25%
- bis 50%
- bis 75%
- bis 100%

Legende
- [] Keine Kü/Ta oder n.a.
- 0%
- bis 10%
- bis 25%
- bis 50%
- bis 75%
- bis 100%
Bei Betrachtung der räumlichen Entwicklung (Abbildung 7 und Abbildung 8) fällt auf, dass zum einen die Zahl von Punkten mit Mistelbefall, zum anderen aber auch die Befallsintensität über die Jahre in ganz Bayern, vor allem aber im Raum Mittelfranken und in den letzten Jahren auch im Bayerischen Wald deutlich zugenommen hat. Vereinzelt finden sich starke Befälle auch an Trakten im Alpenraum.

4.1.2. Bestandesstruktur

4.1.2.1. GAS-Index

Abbildung 9 - Eingeschnürte Boxplots zur Darstellung der Unterschiede des GAS-Index zwischen den Gruppen „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke gleich 0“ (M0) und „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke größer 0“ (M1). Zwei extreme Ausreißer der Gruppe M0 mit einem GAS-Index über 30 wurden aus Lesbarkeitsgründen nicht dargestellt.

Der GAS-Index (Klemmt 2016; Springer 2014) unterscheidet sich zwischen Traktecken mit und ohne Mistelbefall nicht wesentlich. Die Mediane beider Vergleichskollektive sind nicht signifikant unterschiedlich, da sich die Einschnürungen in Abbildung 9 überschneiden.

Auch bei der Verteilung der Mistelbefallsintensität innerhalb befallener Trakte lässt sich keine Abhängigkeit vom GAS-Index nachweisen.
4.1.2.2. Befallene Ecken je Trakt

Tabelle 4 - Anteile der Ecken mit Mistel an der gesamten Zahl bewaldeter Ecken

<table>
<thead>
<tr>
<th>Anteil Ecken mit Mistel je Trakt</th>
<th>2017</th>
<th>Anzahl</th>
<th>Anteil in %</th>
<th>2014-2017</th>
<th>Anzahl</th>
<th>Anteil in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (keine)</td>
<td></td>
<td>220</td>
<td>82,71</td>
<td>626</td>
<td>83,58</td>
<td></td>
</tr>
<tr>
<td>0,1 – 0,25 (1 von 4)</td>
<td>7</td>
<td>0,75</td>
<td>24</td>
<td>0,40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,26 – 0,34 (1 von 3)</td>
<td>2</td>
<td>0,38</td>
<td>4</td>
<td>0,53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,35 – 0,5 (1 von 2,2 von 4)</td>
<td>7</td>
<td>0,38</td>
<td>14</td>
<td>1,87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,51 – 0,67 (2 von 3)</td>
<td>1</td>
<td>0,38</td>
<td>4</td>
<td>0,53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,68 – 0,75 (3 von 4)</td>
<td>5</td>
<td>1,88</td>
<td>10</td>
<td>1,34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,76 – 1 (alle)</td>
<td>24</td>
<td>9,02</td>
<td>68</td>
<td>9,08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Für beide Zeiträume fällt auf, dass neben den Trakten ohne Mistelbefall die größten Anteile auf Trakte entfallen, an denen alle Ecken einen Mistelbefall aufweisen. Trakte, an denen nur einzelne Ecken einen Mistelbefall aufweisen und andere nicht sind im Vergleich wesentlich seltener.

Insgesamt kann also von einem geklumpten Vorkommen der Mistel auf Landschaftsebene ausgegangen werden. Wenn in einem Bestand an einer Stelle Misteln vorkommen, ist es sehr wahrscheinlich, dass auch in der Umgebung Misteln vorkommen.

4.1.3. Waldrand

Tabelle 5 - Kreuztabelle der Anzahl der Kiefern und Tannen mit den kombinierten Merkmalen Mistel ja/nein und Waldrand ja/nein

<table>
<thead>
<tr>
<th></th>
<th>Waldrand</th>
<th></th>
<th></th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nein</td>
<td>Ja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mistel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nein</td>
<td>1809</td>
<td>348</td>
<td>2157</td>
<td></td>
</tr>
<tr>
<td>Ja</td>
<td>299</td>
<td>50</td>
<td>349</td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>2108</td>
<td>398</td>
<td>2506</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 6 - Statistischer Test auf Unabhängigkeit der Faktoren „Waldrandlage“ und „Mistelbefall“

<table>
<thead>
<tr>
<th></th>
<th>Wert</th>
<th>df</th>
<th>Asymptotische Signifikanz (2-seitig)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Quadrat nach Pearson</td>
<td>.734</td>
<td>1</td>
<td>.392</td>
</tr>
<tr>
<td>Kontinuitätskorrektur</td>
<td>.605</td>
<td>1</td>
<td>.437</td>
</tr>
<tr>
<td>Likelihood-Quotient</td>
<td>.751</td>
<td>1</td>
<td>.386</td>
</tr>
<tr>
<td>Exakter Test nach Fisher</td>
<td>.734</td>
<td>1</td>
<td>.392</td>
</tr>
<tr>
<td>Zusammenhang linear-mit-linear</td>
<td>.734</td>
<td>1</td>
<td>.392</td>
</tr>
<tr>
<td>Anzahl der gültigen Fälle</td>
<td>2506</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 10 - Anteile der von Misteln befallenen (M1, orange, n=19) und der unbefallenen (M0, blau, n=52) Kiefern und Tannen an den Klassen des Waldrandabstandes für Waldaußenränder (Rart1, siehe auch Tabelle 1). Die Gesamtzahl aller betrachteten Kiefern und Tannen je Traktecke entspricht 100%.

An Waldaußenrändern zeigt sich ein verstärktes Mistelvorkommen vor allem in 5 bis 10 m Entfernung vom Waldrand – dort kommen über 40% der mistelbefallenen, jedoch nur unter 10% der unbefallenen Bäume vor (Abbildung 10). Für die übrigen Abstandsklassen zeigt sich kein klarer Trend. Auch weiter als 20 m vom Waldrand entfernt gibt es noch deutliche Mistelvorkommen. Die Mistel ist also nicht auf die waldrandnahen Bereiche beschränkt - dort nimmt sie jedoch den größten Anteil ein.

In bis zu 25 m Entfernung zu Waldinnenrändern (Rart 2) wurde in ganz Bayern 2017 nur ein einziger Baum mit Mistelbefall aufgenommen – eine statistische Auswertung war deshalb nicht möglich.
Abbildung 11 - Anteil der von Misteln befallenen (M1, orange, n=4)) und der unbefallenen (M0, blau, n=70)) Kiefern und Tannen an den Klassen des Waldrandabstandes für Bestandesgrenzen mit starkem Bestandeshöhenunterschied (Rart3, siehe auch Tabelle 1). Die Gesamtzahl aller betrachteten Kiefern und Tannen je Traktecke entspricht 100%.

Auch an Bestandesgrenzen fällt ein erhöhter Anteil von Mistelbäumen gegenüber unbefallenen Bäumen in 5 bis 10 m Entfernung zur Grenze auf (Abbildung 11). Bei der Interpretation ist jedoch Vorsicht geboten, da nur 4 Mistelbäume im Umkreis von 25 m einer Bestandesgrenze aufgenommen wurde.

Abbildung 12 - Anteil der von Misteln befallenen (M1, orange, n=20)) und der unbefallenen (M0, blau, n=234)) Kiefern und Tannen an den Klassen des Waldrandabstandes für sonstige eingemessene Bestandesgrenzen (Rart4, siehe auch Tabelle 1). Die Gesamtzahl aller betrachteten Kiefern und Tannen je Traktecke entspricht 100%.

4.1.4. Umweltvektor

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Parameter 1</th>
<th>Parameter 2</th>
<th>Parameter 3</th>
<th>Parameter 4</th>
<th>Residuelle Abweichung</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P_5to9*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>P_5to9</td>
<td>+ T_5to9*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>P_5to9*</td>
<td>* T_5to9*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>T_5to9*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>T_5to9*</td>
<td>+ BS_perc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>T_5to9*</td>
<td>+ Ca_aus_vor_kmolha</td>
<td></td>
<td></td>
<td>304,87</td>
<td>310,87</td>
</tr>
<tr>
<td>7</td>
<td>T_5to9*</td>
<td>* Ca_aus_vor_kmolha</td>
<td></td>
<td></td>
<td>303,86</td>
<td>311,86</td>
</tr>
<tr>
<td>8</td>
<td>T_5to9*</td>
<td>+ K_aus_vor_kmolha</td>
<td></td>
<td></td>
<td>304,82</td>
<td>310,82</td>
</tr>
<tr>
<td>9</td>
<td>T_5to9*</td>
<td>* K_aus_vor_kmolha</td>
<td></td>
<td></td>
<td>301,87</td>
<td>309,87</td>
</tr>
<tr>
<td>10</td>
<td>T_5to9*</td>
<td>+ Mg_aus_vor_kmolha</td>
<td></td>
<td></td>
<td>304,67</td>
<td>310,67</td>
</tr>
<tr>
<td>11</td>
<td>T_5to9*</td>
<td>* Mg_aus_vor_kmolha</td>
<td></td>
<td></td>
<td>301,39</td>
<td>309,39</td>
</tr>
<tr>
<td>12</td>
<td>T_5to9*</td>
<td>* Mg_aus_vor_kmolha</td>
<td>+ Corg_Gehalt</td>
<td></td>
<td>300,46</td>
<td>310,46</td>
</tr>
<tr>
<td>13</td>
<td>T_5to9*</td>
<td>* Mg_aus_vor_kmolha</td>
<td>* Corg_Gehalt</td>
<td></td>
<td>296,50</td>
<td>312,50</td>
</tr>
<tr>
<td>14</td>
<td>T_5to9*</td>
<td>* Mg_aus_vor_kmolha</td>
<td>+ N_Vor_tha</td>
<td></td>
<td>300,91</td>
<td>310,91</td>
</tr>
<tr>
<td>15</td>
<td>T_5to9*</td>
<td>* Mg_aus_vor_kmolha</td>
<td>* N_Vor_tha</td>
<td></td>
<td>292,86</td>
<td>308,86</td>
</tr>
<tr>
<td>16</td>
<td>T_5to9*</td>
<td>* Mg_aus_vor_kmolha</td>
<td>+ P_5to9</td>
<td></td>
<td>300,84</td>
<td>310,84</td>
</tr>
<tr>
<td>17</td>
<td>T_5to9*</td>
<td>* Mg_aus_vor_kmolha</td>
<td>* P_5to9</td>
<td></td>
<td>294,24</td>
<td>310,24</td>
</tr>
<tr>
<td>18</td>
<td>T_5to9*</td>
<td>* P_5to9</td>
<td></td>
<td></td>
<td>302,85</td>
<td>310,85</td>
</tr>
<tr>
<td>19</td>
<td>T_5to9*</td>
<td>+ P_5to9</td>
<td></td>
<td></td>
<td>304,49</td>
<td>310,49</td>
</tr>
<tr>
<td>20</td>
<td>T_5to9*</td>
<td>* Mg_aus_vor_kmolha</td>
<td>+ nFK</td>
<td></td>
<td>299,14</td>
<td>309,14</td>
</tr>
<tr>
<td>21</td>
<td>T_5to9*</td>
<td>* Mg_aus_vor_kmolha</td>
<td>* nFK</td>
<td></td>
<td>295,45</td>
<td>311,45</td>
</tr>
<tr>
<td>22</td>
<td>T_5to9*</td>
<td>* Mg_aus_vor_kmolha</td>
<td>+ Tdiff*</td>
<td></td>
<td>298,04</td>
<td>308,04</td>
</tr>
<tr>
<td>23</td>
<td>T_5to9*</td>
<td>* Mg_aus_vor_kmolha</td>
<td>* Tdiff</td>
<td></td>
<td>283,45</td>
<td>299,45</td>
</tr>
<tr>
<td>24</td>
<td>T_5to9*</td>
<td>* Mg_aus_vor_kmolha</td>
<td>+ Tdiff</td>
<td>+ KWB_5to9_Turc*</td>
<td>296,01</td>
<td>308,01</td>
</tr>
<tr>
<td>25</td>
<td>T_5to9*</td>
<td>* Mg_aus_vor_kmolha</td>
<td>+ Tdiff</td>
<td>+ WB_5to9_Turc*</td>
<td>293,99</td>
<td>305,99</td>
</tr>
<tr>
<td>26</td>
<td>T_5to9*</td>
<td>* Mg_aus_vor_kmolha</td>
<td>* Tdiff</td>
<td>+ WB_5to9_Turc</td>
<td>288,97</td>
<td>306,97</td>
</tr>
</tbody>
</table>
Das am besten geeignete Modell zur Erklärung des faktoriellen Parameters „Mistel ja/nein“ anhand der Kombination verschiedener Umweltvektorparameter ist das Modell Nr. 23, welches die Temperatur von Mai bis September (T_5to9), den Magnesiumvorrat (Mg_aus_vor_kmolha) und die Transpirationsdifferenz (Tdiff), inklusive der Betrachtung aller Wechselwirkungen, als erklärende Parameter heranzieht. Alle drei Parameter sind auf einem Niveau von 90% signifikant. Dennoch ist der gesamte Anteil der durch das Modell erklärten Streuung gering, es verbleibt ein sehr großer Teil residueller Abweichungen.

Im Folgenden werden für ausgewählte Parameter einzeln die Unterschiede zwischen mistelbefallenen und nicht befallenen Traktecken dargestellt.

Die Umweltvektorparameter BS_perc, nFK und BFI zeigten weder bei der Modellierung noch bei der einzelnen Auswertung mit Boxplots signifikante Einflüsse. Auf sie wird deshalb nicht weiter eingegangen.

4.1.4.1. Nährrelemente und Boden

Abbildung 13 - Eingeschnürte Boxplots zur Darstellung der Unterschiede der Umweltvektoren Ca_aus_vor_kmolha (Calciumvorrat), K_aus_vor_kmolha (Kaliumvorrat) und Mg_aus_vor_kmolha (Magnesiumvorrat) (Erklärung siehe Tabelle 2) zwischen den Gruppen „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke gleich 0“ (M0) und „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke größer 0“ (M1)

Die Vorratswerte für Calcium liegen bei Traktecken mit Mistelbefall niedriger: Obwohl erstes und drittes Quartil etwa identisch sind, liegt der Median des Ca-Vorrats bei ihnen deutlich tiefer. Auf 95% signifikant ist der Unterschied der Mediane beider Gruppen jedoch nicht, da sich die Einschnürungen soeben überschneiden (Abbildung 13 links).

Der Kaliumvorrat unterscheidet sich ebenfalls nicht signifikant zwischen den Traktecken mit und ohne Mistelbefall. Lediglich seine Varianz scheint bei den Traktecken mit Mistelbefall etwas größer zu sein (Abbildung 13 Mitte).

![Abbildung 14 - Eingeschnürte Boxplots zur Darstellung der Unterschiede der Umweltvektoren Corg (organischer Kohlenstoffgehalt) und N_Vor_tha (Stickstoffvorrat) (Erklärung siehe Tabelle 2) zwischen den Gruppen „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke gleich 0“ (M0) und „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke größer 0“ (M1)

![Abbildung 15 - Eingeschnürte Boxplots zur Darstellung der Unterschiede der Umweltvektoren Corg (organischer Kohlenstoffgehalt) und N_Vor_tha (Stickstoffvorrat) (Erklärung siehe Tabelle 2) zwischen den Gruppen „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke gleich 0“ (M0) und „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke größer 0“ (M1)

Der Corg-Gehalt im Boden ist zwischen den Traktecken sehr asymmetrisch verteilt. Während der Großteil der Ecken zwischen 0 und 2 Masseprozent organischen Kohlenstoffgehalt im Boden aufweist, kommen viele Ausreißer mit bis über 10% vor (Abbildung 14 links). Der Median des Corg-Gehalts liegt bei Traktecken mit Mistelbefall deutlich niedriger als bei denjenigen ohne Mistelbefall. Die Mediane unterscheiden sich jedoch nicht auf einem 95%-Signifikanzniveau, da sich die Einschnürungen soeben überschneiden.
Bei Betrachtung der Ausreißer fällt auf, dass nur wenige Traktecken mit Mistelbefall überhaupt über 2 Massenprozent C_{org} liegen, der höchste Wert liegt unter 6. Unter den Traktecken ohne Mistelbefall findet sich eine weit höhere Anzahl von Werten über 2 und auch zahlreiche über 6 Massenprozent C_{org}. Der Stickstoffvorrat unterscheidet sich zwischen Traktecken mit und ohne Mistelbefall deutlich. Da sich die Einschnürungen soeben überschneiden, sind die Mediane auf einem Niveau von 95% nicht signifikant unterschiedlich, dennoch kann ausgesagt werden, dass die Stickstoffvorräte an Trakten mit Mistelbefall tendenziell niedriger liegen (Abbildung 14 rechts).

Zwischen Kohlenstoff- und Stickstoffvorrat und der Intensität des Mistelbefalls konnte kein klarer Zusammenhang beobachtet werden. Lediglich an Traktecken mit sehr hohen C_{org}-Gehalten (an moorig bis moorig) konnten nur sehr geringe Befallsintensitäten festgestellt werden.

4.1.4.2. Temperatur und Niederschlag

Es besteht ein deutlicher Unterschied in der Mitteltemperatur zwischen den Traktecken mit und ohne Mistelbefall. Da sich sowohl bei der Mai-bis-September-Mitteltemperatur als auch bei der Juni-bis-August-Mitteltemperatur die Einschnürungen der Boxplots nicht überlappen, ist davon auszugehen, dass die Mediane der Gruppen auf einem Signifikanzniveau von 95% verschieden sind (Abbildung 15). Beide Umweltvektoren führen bei der logistischen Regressionsmodellierung zu ähnlich guten Aussagen, die Temperatur ist für die Modellierung des Mistelbefalls sogar der wichtigste und aussagekräftigste Umweltvektor.

Bäume mit Mistelbefall kommen insgesamt also an in der Hauptvegetationszeit deutlich wärmere Standorten vor als Bäume ohne Mistelbefall. Der Unterschied zeichnet für beide Zeitspannen etwa gleich stark.
Abbildung 17 - Eingeschnürte Boxplots zur Darstellung der Unterschiede der Umweltvektoren P_{Sta9} (Niederschlagsmittel Mai bis September) und P_{678} (Niederschlagsmittel Juni bis August) (Erklärung siehe Tabelle 2) zwischen den Gruppen „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke gleich 0“ (M0) und „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke größer 0“ (M1)

Wie bei der Mitteltemperatur besteht auch bei der Niederschlagssumme ein deutlicher Unterschied zwischen den Traktecken mit und ohne Mistelbefall. Da sowohl bei der Mai-bis-September-Niederschlagssumme als auch bei der Juni-bis-August-Niederschlagssumme die Einschnürungen der Boxplots sich nicht überlappen, ist davon auszugehen, dass die Mediane der Gruppen auf einem Signifikanzniveau von 95% verschieden sind (Abbildung 17). Dennoch kann der Niederschlagssumme in der logistischen Regressionsmodellierung kein so starker Effekt auf den Mistelbefall nachgewiesen werden wie der Temperatur.

Bäume mit Mistelbefall kommen an in der Hauptvegetationszeit deutlich niederschlagsärmeren Standorten vor als Bäume ohne Mistelbefall. Vereinzelt sind auch bei höheren Niederschlägen Mistelvorkommen zu beobachten. Der Unterschied zeichnet für die Zeitspanne von Mai bis September etwas stärker als für die Zeitspanne von Juni bis August.
Abbildung 18 - Streudiagramme zur Darstellung des Zusammenhangs zwischen mittlerer Mistelanzahl aller Kiefern und Tannen je Traktecke (MEAN_Mi_gesamt), bzw. des Anteils der von Misteln befallenen Bäume an der Gesamtzahl der Kiefern und Tannen der Traktecke (Mistelbaeume_pro_Baumzahl) und den Umweltvektoren P_{5to9} (Niederschlagsmittel Mai bis September) und P_{678} (Niederschlagsmittel Juni bis August) (Erklärung siehe Tabelle 2)

Analog zur Mitteltemperatur zeigt auch die Niederschlagssumme sowohl von Mai bis September als auch von Juni bis August einen deutlichen Sprung – unterhalb von etwa 400 mm, bzw. unterhalb von 250 mm, sind plötzlich wesentlich stärkere mittlere Mistelanzahlen abzulesen. Auch der Großteil der Punkte mit geringem Mistelbefall befindet sich unterhalb dieser Grenze (Abbildung 18). Die lineare Regressionsgerade kann den Zusammenhang ansatzweise erklären, eine negativ quadratische Funktion (Hyperbel) wäre zur Vorhersage wahrscheinlich noch besser geeignet. Der Anteil der Mistelbäume pro Trakt zeichnet wesentlich schlechter.
4.1.4.4. Indizes

Abbildung 19 - Eingeschnürte Boxplots zur Darstellung der Unterschiede des Umweltvektors Tdiff (Transpirationsdifferenz) (Erklärung siehe Tabelle 2) zwischen den Gruppen „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke gleich 0“ (M0) und „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke größer 0“ (M1)

Die Transpirationsdifferenz der Monate Mai bis September liegt an Traktecken mit Mistelbefall wesentlich höher als an Traktecken ohne Mistelbefall. Der Median der Traktecken mit Mistelbefall liegt deutlich über dem dritten Quartil derjenigen ohne, ein 95-prozentig signifikanter Unterschied der Mediane beider Gruppen ist aufgrund sich nicht überschneidender Einschnürungen anzunehmen (Abbildung 19). Zwar weisen die Traktecken ohne Mistelbefall vereinzelt noch höhere Transpirationsdifferenzen auf, hierbei handelt es sich jedoch um Ausreißer. Auch in der logistischen Regressionsmodellierung fließt die Transpirationsdifferenz als wichtige Kenngröße des potentiellen Trockenstresses, den ein Baum ertragen muss, ein und hat signifikanter Einfluss auf die Erklärung des Mistelbefalls.

An Punkten mit Mistelbefall müssen Bäume auch ohne Betrachtung des zusätzlichen Wasserverlustes durch die Transpiration der Mistel schon wesentlich höhere Transpirationsdifferenzen und somit einen angespannteren Wasserhaushalt ertragen.

Einen Zusammenhang zwischen Transpirationsdifferenz und Befallsintensität konnte nicht festgestellt werden.
Abbildung 20 - Eingeschränkte Boxplots zur Darstellung der Unterschiede des Umweltvektors ETp_5to9_Turc (potentielle Evapotranspiration) (Erklärung siehe Tabelle 2) zwischen den Gruppen „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke gleich 0“ (M0) und „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke größer 0“ (M1)

Die potentielle Evapotranspiration nach Turc (1961) von Mai bis September liegt an Traktecken mit Mistelbefall sehr deutlich sichtbar wesentlich höher als an Traktecken ohne Mistelbefall. Die Mediane unterscheiden sich auf einem Niveau von 95% signifikant (Abbildung 20).

Traktecken mit Mistelbefall weisen also schon alleine aufgrund von Standortparametern eine deutlich höhere potentielle Evapotranspiration auf.

Abbildung 21 - Streudiagramme zur Darstellung des Zusammenhangs zwischen mittlerer Mistelanzahl aller Kiefern und Tannen je Traktecke (MEAN_Mi_gesamt), bzw. des Anteils der von Misteln befallenen Bäume an der Gesamtzahl der Kiefern und Tannen der Traktecke (Mistelbaeume_pro_Baumzahl) und dem Umweltvektor ETp_5to9_Turc (potentielle Evapotranspiration) (Erklärung siehe Tabelle 2)

Die Werte der Evapotranspiration liegen an allen Traktecken mit Mistelbefall relativ hoch. Ein positiver Zusammenhang zwischen Befallsintensität und Evapotranspiration lässt sich ablesen, die Regressionsgeraden zeigen eine relativ starke Steigung und annehmbare Bestimmtheitsmaße (Abbildung 21).
Abbildung 22 - Eingeschnürte Boxplots zur Darstellung der Unterschiede der Umweltvektoren KWB_Sto9_Turc (klimatische Wasserbilanz) und WB_Sto9_Turc (Wasserbilanz) (Erklärung siehe Tabelle 2) zwischen den Gruppen „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke gleich 0“ (M0) und „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke größer 0“ (M1)

Abbildung 23 - Streudiagramme zur Darstellung des Zusammenhangs zwischen mittlerer Mistelanzahl aller Kiefern und Tannen je Traktecke (\textit{MEAN\textunderscore Mi\textunderscore gesamt}), bzw. des Anteils der von Misteln befallenen Bäume an der Gesamtzahl der Kiefern und Tannen der Traktecke (\textit{Mistelbaeume\textunderscore pro\textunderscore Baumzahl}) und den Umweltvektoren \textit{KWB\textunderscore Sto9\textunderscore Turc} (klimatische Wasserbilanz) und \textit{WB\textunderscore Sto9\textunderscore Turc} (Wasserbilanz)

So kann gezeigt werden, dass besonders starker Mistelbefall bevorzugt an Standorten vorkommt, an denen Wassermangel vorherrscht und Bäume mit hoher Wahrscheinlichkeit unter Trockenstress leiden, auch ohne den zusätzlichen Wasserverlust durch die Mistel zu betrachten.

Die wichtigsten Größen zur Erklärung des Mistelbefalls sind somit in klimatischen Parametern zu suchen: Vor allem hohe Sommertemperaturen in Verbindung mit angespanntem Wasserhaushalt sind förderlich für einen Mistelbefall. Außerdem hat die Versorgung mit Basenkationen, insbesondere Magnesium, einen Einfluss.
4.1.5. Topographie

Traktecken mit Mistelbefall liegen auf deutlich geringeren Meereshöhen. Dieser Effekt tritt sowohl bei Kiefern als auch bei Tannen auf. Da sich die Einschnürungen nicht überschneiden, sind die Mediane sehr wahrscheinlich auf einem Niveau von 95% signifikant unterschiedlich (Abbildung 24).

Ähnliche Effekte können auch bei der Tannenlistel beobachtet werden: während 75% der Traktecken mit Tannenlistelbefall unterhalb von 800 m ü. NN liegen, liegt selbst der Median der Höhe der Traktecken ohne Tannenlistelbefall auf ca. 850 m. Die Mediane beider Gruppen sind hochsignifikant unterschiedlich (Abbildung 24 rechts).
Mit einem Mistelbefall muss also eher im unteren Teil der Höhenverbreitung der jeweiligen Wirtsbaumart gerechnet werden – die Kiefernmistel kommt nach den Ergebnissen dieser Untersuchung mit großer Wahrscheinlichkeit nur unter 450 m ü. NN, die Tannenmistel nur unter 800 m ü. NN vor.

Abbildung 25 - Streudiagramme zur Darstellung des Zusammenhangs zwischen mittlerer Mistelanzahl aller Kiefern, bzw. Tannen je Traktecke (MEAN_Mi_gesamt) sowie des Anteils der von Misteln befallenen Bäume an der Gesamtzahl der Kiefern, bzw. Tannen der Traktecke (Mistelbaeume_pro_Ki/Ta_Anzahl) und der Höhe über NN in m (Hoehe)

Zwischen Meereshöhe und mittlerer Mistelanzahl ist ein deutlicher Zusammenhang zu beobachten: Nur auf niedrigen Höhen über NN kommen durchschnittlich sehr viele Misteln pro Baum vor, oberhalb von 450 m (Kiefer), bzw. 700 m (Tanne) ist kaum noch ein stärkerer Befall auszumachen (Abbildung 25). Die Regressionsgerade erklärt die Streuung relativ gut. Die Anzahl der befallenen Kiefern, bzw. Tannen je Trakt zeigt keinen klaren Trend.

Es kann also davon ausgegangen werden, dass nicht nur eine Höhenbegrenzung des Mistelbepalls vorliegt, sondern besonders starke Befälle in den tiefsten Lagen vorkommen, während bei Annäherung an die obere Grenze der Verbreitung der jeweiligen Mistel-Unterarten die Befallsintensität deutlich abnimmt.
Abbildung 26 - Eingeschnittene Boxplots zur Darstellung der Unterschiede der Hangneigung (Slope) in Grad zwischen den Gruppen „durchschnittliche Mistelzahl aller Kiefern, bzw. Tannen der Traktecke gleich 0“ (M0) und „durchschnittliche Mistelzahl aller Kiefern, bzw. Tannen der Traktecke größer 0“ (M1)

Traktecken mit Mistelbefall liegen tendenziell an weniger steilen Hängen, ein signifikanter Unterschied der Mediane ist aufgrund überlappend der Einschnürungen jedoch nicht anzunehmen (Abbildung 26). Bei der Tannenmistel ist diese Tendenz deutlich stärker ausgeprägt als bei der Kiefernmistel. Fast 75% der Traktecken mit Tannenmistelbefall liegen an Hängen unter 15°, während unbefallene Traktecken mit Tannenbestand bis in wesentlich stärkere Hangneigungen vorkommen.

Auch bei der Kiefernmistel ist jedoch ein leichter Trend zu erkennen: Der Median der Hangneigung liegt deutlich niedriger als an Traktecken ohne Mistelbefall. An extrem steilen Hängen oberhalb von 15° (Kiefer), bzw. 25° (Tanne) kommt die Nadelholzmistel überhaupt nicht vor.

Zwischen Hangneigung und Befallsintensität ist nur ein schwacher Zusammenhang zu beobachten. Tendenzziell kommen höhere relative Mistelanzahlen an weniger steilen Hängen vor, je steiler der Hang, desto geringer Befallsintensität. Der Anteil der befallenen Kiefern und Tannen zeigt keinen klaren Zusammenhang, er ist statistisch kaum nachweisbar.
Abbildung 27 - Eingeschränkte Boxplots zur Darstellung der Unterschiede der Hangrichtung (Exposition; Aspect) in Grad zwischen den Gruppen „durchschnittliche Mistelzahl aller Kiefern, bzw. Tannen der Traktecke gleich 0“ (M0) und „durchschnittliche Mistelzahl aller Kiefern, bzw. Tannen der Traktecke größer 0“ (M1)

Die Darstellung als Boxplot findet in der Anwendung mit Hangrichtungen ihre Grenzen, da es sich nicht um eine Skala im eigentlichen Sinne handelt, sondern in der Grundgesamtheit logischerweise alle Expositionen gleichermaßen vorhanden sein sollten. Die Boxplots für die unbefallenen Traktecken zeigen dies: Der Median liegt relativ genau bei 180°, die Box geht in etwa von 90 bis 270° - diese sind also annähernd normalverteilt.

Bei den Boxplots der Traktecken mit Mistelbefall zeigt sich eine Abweichung: während Box und Whisker bei der Kiefernmistel etwa gleich groß sind, ist der Median von 180° (Süden) nach etwa 200° (Südsüdwest) verschoben. Die Tannenmistel kommt an nord- bis nordostexponierten Traktecken gar nicht vor – bei keinem der Punkte liegt die Exposition zwischen 350° und 50°. Die Unterschiede sind für beide Arten nicht signifikant, es zeigt sich jedoch eine deutliche Tendenz (Abbildung 27).
Abbildung 28 - Streudiagramme zur Darstellung des Zusammenhangs zwischen mittlerer Mistelanzahl aller Kiefern, bzw. Tannen je Traktecke (MEAN_Mi_gesamt), sowie des Anteils der von Misteln befallenen Bäume an der Gesamtzahl der Kiefern, bzw. Tannen der Traktecke (Mistelbaeume_pro_Ki/Ta_Anzahl) und der Hangrichtung (Aspect) in Grad

4.2. Level 2 (Waldklimastationen)

4.2.1. Aufnahmeverfahren

<table>
<thead>
<tr>
<th>Periode seit</th>
<th>Beide</th>
<th>ALT</th>
<th>DIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>122</td>
<td>56</td>
<td>66</td>
</tr>
<tr>
<td>2008</td>
<td>122</td>
<td>56</td>
<td>66</td>
</tr>
<tr>
<td>2009</td>
<td>121</td>
<td>55</td>
<td>66</td>
</tr>
<tr>
<td>2010</td>
<td>121</td>
<td>55</td>
<td>66</td>
</tr>
<tr>
<td>2011</td>
<td>118</td>
<td>55</td>
<td>63</td>
</tr>
<tr>
<td>2012</td>
<td>118</td>
<td>55</td>
<td>63</td>
</tr>
<tr>
<td>2013</td>
<td>115</td>
<td>54</td>
<td>61</td>
</tr>
<tr>
<td>2014</td>
<td>98</td>
<td>45</td>
<td>53</td>
</tr>
<tr>
<td>2015</td>
<td>84</td>
<td>39</td>
<td>45</td>
</tr>
<tr>
<td>2016</td>
<td>64</td>
<td>31</td>
<td>33</td>
</tr>
</tbody>
</table>

Erst bei der Betrachtung einer Aufnahmeperiode ab vier aufeinanderfolgenden Jahren (2016 bis 2013) bleibt die kumulierte Anzahl festgestellter Mistelbäume in etwa konstant.
Abbildung 29). Es muss deshalb davon ausgegangen werden, dass bei der terrestrischen Aufnahme Misteln häufig nicht erkannt und ein Befall bei einzelnen Aufnahmen nicht zuverlässig diagnostiziert werden kann.
Da für alle Tests $p=0,000$ gilt, ist die Nullhypothese der Unabhängigkeit abzulehnen. Terrestrische Aufnahme und Drohnenaufnahme liefern also abhängige Ergebnisse über den Mistelbefall.

Dennoch zeigt Tabelle 9, dass an 42 Bäumen durch die Drohnenbefliegung Misteln erkannt wurden, welche in der terrestrischen Erhebung nicht als Mistelbäume aufgenommen worden waren. Genauso wurden bei der terrestrischen Erhebung 30 Bäume mit Mistelbefall aufgenommen, die durch die Drohnenbefliegung nicht als solche erkannt wurden. Nur 33 Bäume wurden von beiden Verfahren gleichzeitig als Mistelbäume erkannt. Trotz statistisch nachgewiesener Abhängigkeit beider Aufnahmen muss somit die Frage nach der tatsächlichen Aussagegüte beider Verfahren für sich gestellt werden. In dieser Studie wird deshalb jede Auswertung separat für die nach diesen Verfahren als Mistelbäume identifizierten Baumkollektive durchgeführt:

Tabelle 9 - Kreuztabelle terr * drohne (Erklärung der Abkürzungen siehe Tabelle 11)

<table>
<thead>
<tr>
<th></th>
<th>drohne</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>terr</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>Gesamt</td>
<td>179</td>
<td>75</td>
</tr>
</tbody>
</table>

Tabelle 10 - χ^2-Unabhängigkeitstest zwischen den Variablen terr und drohne (Erklärung der Abkürzungen siehe Tabelle 11)

<table>
<thead>
<tr>
<th></th>
<th>Wert</th>
<th>df</th>
<th>Asymptotische Signifikanz (2-seitig)</th>
<th>Exakte Signifikanz (2-seitig)</th>
<th>Exakte Signifikanz (1-seitig)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Quadrat nach Pearson</td>
<td>21,028(^a)</td>
<td>1</td>
<td>,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kontinuitätskorrektur(^b)</td>
<td>19,593</td>
<td>1</td>
<td>,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood-Quotient</td>
<td>19,837</td>
<td>1</td>
<td>,000</td>
<td>,000</td>
<td>,000</td>
</tr>
<tr>
<td>Exakter Test nach Fisher</td>
<td>20,945</td>
<td>1</td>
<td>,000</td>
<td>,000</td>
<td></td>
</tr>
<tr>
<td>Zusammenhang linear-mit-linear</td>
<td>254</td>
<td>1</td>
<td>,000</td>
<td>,000</td>
<td></td>
</tr>
</tbody>
</table>

a. 0 Zellen (0,0%) haben eine erwartete Häufigkeit kleiner 5. Die minimale erwartete Häufigkeit ist 18,60.

b. Wird nur für eine 2x2-Tabelle berechnet
Tabelle 11 - Erklärung der bei der Auswertung verwendeten Baumkollektive

<table>
<thead>
<tr>
<th>Beschriftung</th>
<th>Bedeutung</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>drohne</td>
<td>Bei Drohnenbefliegung 2016 (Ecke 2017) kein Mistelbefall festgestellt</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>Bei Drohnenbfliegung 2016 (Ecke 2017) mindestens eine Mistel festgestellt</td>
<td>64</td>
</tr>
<tr>
<td>terr</td>
<td>Bei terrestrischer Erhebung in keinem der Jahre 2013 bis 2016 ein Mistelbefall festgestellt</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Bei terrestrischer Erhebung in mindestens einem der Jahre 2013 bis 2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mindestens eine Mistel festgestellt</td>
<td></td>
</tr>
<tr>
<td>beide</td>
<td>Sowohl drohne als auch terr = 0</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>Entweder drohne oder terr = 1</td>
<td>95</td>
</tr>
<tr>
<td>overlap</td>
<td>Sowohl drohne als auch terr = 1</td>
<td>50</td>
</tr>
</tbody>
</table>

Auch die räumliche Darstellung zeigt auf, wie stark sich die Wahl des Aufnahmeverfahrens auf die erkannten Mistelbäume auswirkt:
Abbildung 30 - Räumliche Darstellung der mistelbefallenen (1) sowie unbefallenen (0) Kiefern an den Waldklimastationen Altdorf (ALT) und Dinkelsbühl (DIN). Zur Erläuterung der Abkürzungen der Vergleichskollektive siehe Tabelle 11.
4.2.2. Befallsentwicklung

Abbildung 31 - Entwicklung der Anzahl der von Misteln befallenen Bäume (aus terrestrischer Erhebung) für die Level 2-Flächen Waldklimastation Altdorf (ALT) und Dinkelsbühl (DIN). Für ALT waren 2010 keine Daten verfügbar.

Abbildung 32 - Entwicklung des relativen Anteils der von Misteln befallenen Bäume (aus terrestrischer Erhebung) an der gesamten Baumzahl des Bestandes für die Level 2-Flächen Waldklimastation Altdorf (ALT) und Dinkelsbühl (DIN) und in der Summe (Gesamt) sowie Entwicklung der Anzahl von Bäumen im Gesamtbestand (n ALT; n DIN). Für ALT waren 2010 keine Daten verfügbar.

Abbildung 33 - Durchschnittliche Anzahl terrestrisch erhobener Mistelbüsche pro befallenem Baum (Aufnahme ab 2013)

Abbildung 34 - Durchschnittliche Mistelstufe befallener Bäume

Die Mistelanzahl und -stufe können aufgrund der Datenverfügbarkeit erst über einen kurzen Zeitraum dargestellt werden. Ein Trend ist aus der grafischen Darstellung nicht erkennbar (Abbildung 33 und Abbildung 34). Mit einem Durchschnitt von 1 bis 1,8 Misteln pro befallenem Baum (Bäume ohne Mistel nicht mitgezählt!) ist die Befallsintensität jedoch noch als sehr gering einzustufen.
4.2.3. Horizontale Verteilung

Tabelle 12 - Ergebnisse für die Berechnung des Clark&Evans-Index für verschiedene Subkollektive von Probebäumen der Waldklimastationen Altdorf (ALT) und Dinkelsbühl (DIN) (Erklärung der Abkürzungen siehe Tabelle 11) sowie Baumzahl und Fläche des jeweiligen Subkollektiv. Außerdem sind beobachteter und erwarteter mittlerer Abstand und der daraus berechnete Clark&Evans-Index je Kollektiv angegeben. p gibt die Wahrscheinlichkeit an, dass es sich bei der Berechnung um ein zufälliges Ergebnis handelt.

<table>
<thead>
<tr>
<th>Subkollektiv</th>
<th>Bäume</th>
<th>$F[m^2]$</th>
<th>$\bar{r}_{\text{beobachtet}}[m]$</th>
<th>$\bar{r}_{\text{erwartet}}[m]$</th>
<th>R</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT alle</td>
<td>131</td>
<td>2847,700065</td>
<td>3,6893</td>
<td>2,3312</td>
<td>1,582586</td>
<td>0,00</td>
</tr>
<tr>
<td>ALT terr1</td>
<td>39</td>
<td>2574,121022</td>
<td>5,5852</td>
<td>4,0621</td>
<td>1,374954</td>
<td>0,00</td>
</tr>
<tr>
<td>ALT drohne1</td>
<td>40</td>
<td>2629,862129</td>
<td>5,6416</td>
<td>4,0542</td>
<td>1,391531</td>
<td>0,00</td>
</tr>
<tr>
<td>ALT beide1</td>
<td>52</td>
<td>2836,741193</td>
<td>5,0594</td>
<td>3,6930</td>
<td>1,36999</td>
<td>0,00</td>
</tr>
<tr>
<td>ALT overlap1</td>
<td>27</td>
<td>2319,149163</td>
<td>5,8521</td>
<td>4,6340</td>
<td>1,262868</td>
<td>0,01</td>
</tr>
<tr>
<td>DIN alle</td>
<td>97</td>
<td>3145,939222</td>
<td>4,6249</td>
<td>2,8475</td>
<td>1,624217</td>
<td>0,00</td>
</tr>
<tr>
<td>DIN terr1</td>
<td>56</td>
<td>3144,783301</td>
<td>5,0654</td>
<td>3,6994</td>
<td>1,369246</td>
<td>0,00</td>
</tr>
<tr>
<td>DIN drohne1</td>
<td>38</td>
<td>3131,45269</td>
<td>5,9421</td>
<td>4,5389</td>
<td>1,309149</td>
<td>0,00</td>
</tr>
<tr>
<td>DIN beide1</td>
<td>61</td>
<td>3065,620696</td>
<td>5,0927</td>
<td>3,5900</td>
<td>1,418573</td>
<td>0,00</td>
</tr>
<tr>
<td>DIN overlap1</td>
<td>33</td>
<td>2928,277560</td>
<td>6,3222</td>
<td>4,7100</td>
<td>1,342298</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Es sind alle Berechnungen statistisch eindeutig, da regelmäßig p < 0,05 gilt.

Auf den ersten Blick fällt auf, dass in beiden Versuchsbeständen der Index des Gesamtbestandes deutlich größer ist als derjenige der Subkollektive mit Mistelbefall, die Bäume der mistelbefallenen Subkollektive also geklumpter stehen als der Bestand in Gänze (Tabelle 12).

Die Unterschiede des Clark&Evans-Index R (Verhältnis von beobachtetem zu erwartetem mittlerem Abstand zum nächsten Nachbarbaum) zwischen den verschiedenen Aufnahmeverfahren (drohne, terr, beide, overlap; siehe Tabelle 11) sind deutlich geringer. Unabhängig vom Aufnahmeverfahren lässt sich also ein Unterschied zwischen Gesamtbestand und allen Subkollektiven feststellen.

Ob dieser Unterschied aus dem Mistelbefall der stärker geklumpten Subkollektive resultiert, oder ob es sich um einen zufälligen Effekt bei der Auswahl eines Subkollektivs aus dem Gesamtbestand handelt, wurde anhand des multiplen Randomisierungstests festgestellt.

| Subkollektiv | n | F [m^2] | $\mu(R_{random})$ | $\sigma(R_{random})$ | R_{Mistel} | $|\mu(R_{random}) - R_{Mistel}| = z$ | $\Phi_{0.1}(z)$ | $p(\Phi_{0.1}(z))$ |
|--------------|-----|-------------|-----------------|-----------------|-------------|---------------------------------|----------------|------------------|
| ALT terr1 | 39 | 2574,12 | 1,30348787 | 0,073251 | 1,374954 | 0,071466127 | 0,975633 | 0,2479 |
| ALT drohne1 | 40 | 2629,86 | 1,32704872 | 0,0583524 | 1,391531 | 0,064482277 | 1,105049 | 0,2166 |
| ALT beide1 | 52 | 2836,74 | 1,32715469 | 0,05818015 | 1,36999 | 0,042835311 | 0,736253 | 0,3042 |
| ALT overlap1 | 27 | 2319,15 | 1,31502327 | 0,09657756 | 1,262868 | 0,052155267 | 0,540035 | 0,3448 |
| DIN terr1 | 56 | 3065,62 | 1,42383397 | 0,04677653 | 1,369246 | 0,054587974 | 1,166995 | 0,2019 |
| DIN drohne1 | 38 | 3131,45 | 1,36486067 | 0,06920191 | 1,309149 | 0,055711668 | 0,805060 | 0,2885 |
| DIN beide1 | 61 | 3144,78 | 1,44523375 | 0,04265739 | 1,418573 | 0,02666075 | 0,624997 | 0,3282 |
| DIN overlap1 | 33 | 2928,27 | 1,35257734 | 0,07976313 | 1,342298 | 0,010279338 | 0,128873 | 0,3956 |

Durch die große Anzahl an Durchläufen kann von einer Normalverteilung der zufällig ermittelten Werte für R ausgegangen werden, die die Grundgesamtheit der möglichen Subkollektive ausreichend repräsentiert.

In allen Fällen muss die Nullhypothese angenommen werden. Auf einem Signifikanzniveau von 95% unterscheidet sich keines der Subkollektive mit Mistelbefall hinsichtlich seiner horizontalen Bestandesstruktur (Klumpung) signifikant von jedem beliebigen zufälligen Subkollektiv gleicher Größe. Es muss deshalb davon ausgegangen werden, dass der Mistelbefall in den untersuchten Beständen keinen Einfluss auf die Klumpung oder Gleichverteilung der entsprechenden Baumkollektive hat, dass Mistelbäume also nicht in besonderer Weise geklumpt im Bestand vorkommen. Bei den Unterschieden zwischen Gesamtbestand und Subkollektiven handelt es sich mit hoher Wahrscheinlichkeit somit nur um zufällige Effekte (zur räumlichen Darstellung siehe auch Abbildung 30).

Auch bei visueller Auswertung fallen direkt keine besonderen Unterschiede im räumlichen Muster zwischen den verschiedenen Subkollektiven und dem Gesamtbestand auf. Die nach verschiedenen Aufnahmemethoden gebildeten Subkollektive sind zwar unterschiedlich, keines zeigt jedoch eine auffällige Tendenz zu einer horizontal geklumpten Struktur.
4.2.4. Zuwachs und soziale Stellung

Abbildung 35 - Entwicklung der Mittelwerte von jährlichem mittlerem Grundflächenzuwachs, mittlerer Kraft-Klasse und Anzahl der terrestrisch erfassten Mistelbüsche über die Zeit zwischen den Extremkollektiven „beide0“ und „overlap1“ (Erläuterung der Abkürzungen siehe Tabelle 11)

Die Zuwachskurven der beiden Extremkollektive „weder terrestrisch noch per Drohne Misteln festgestellt“ (beide0) und „Misteln terrestrisch und per Drohne festgestellt“ (overlap1) verlaufen relativ parallel, wobei die Kurve der Mistelbäume stets oberhalb derjenigen der Bäume ohne Misteln verläuft (Abbildung 35).

Die durchschnittliche Anzahl der Mistelbüsche (aufgenommen ab 2013) variiert über den kurzen Aufnahmezeitraum stark.

Die Mistelbäume weisen stets eine höhere soziale Stellung (geringere Zahlenwerte der Kraft-Klasse) auf als die unbefallenen Bäume, die Entwicklung über die Zeit ist nahezu konstant.
Abbildung 36 - Boxplots zur Darstellung der mittleren Kraft-Klasse (KKI) (Kraft 1884) über die Baumkollektive (Erklärung siehe Tabelle 11) nach Mistelbefall

Der Vergleich der durchschnittlichen Kraft-Klasse zwischen den Baumkollektiven zeigt, dass Bäume mit Mistelbefall sozial besser gestellt sind, d.h. kleinere Zahlenwerte der Kraft-Klasse aufweisen.

Abbildung 37 - Eingeschränkte Boxplots zur Darstellung der Unterschiede der Kronenprojektionsfläche zwischen den Baumkollektiven (Erklärung siehe Tabelle 11) nach Mistelbefall

Abbildung 38 - Eingeschnürte Boxplots zur Darstellung der Unterschiede der Kronenprojektionsfläche zwischen den Baumkollektiven (Erklärung siehe Tabelle 11) nach Mistelbefall für die zwei Extremgruppen

Tabelle 14 - Nichtparametrischer Spearman-Korrelationstest der Faktoren „Grundflächenzuwachs über die gesamte Periode 2001 bis 2016“ (G_Zuwachs), „Kraft-Klasse“ (KKl) und „Kronenprojektionsfläche“ (KPF)

<table>
<thead>
<tr>
<th></th>
<th>KPF</th>
<th>KKL</th>
<th>G_Zuwachs</th>
</tr>
</thead>
<tbody>
<tr>
<td>KPF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korrelationskoeffizient</td>
<td>1,000</td>
<td>-.671*</td>
<td>.720*</td>
</tr>
<tr>
<td>Sig. (2-seitig)</td>
<td>.</td>
<td>,000</td>
<td>,000</td>
</tr>
<tr>
<td>N</td>
<td>202</td>
<td>202</td>
<td>202</td>
</tr>
<tr>
<td>KKl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korrelationskoeffizient</td>
<td>-.671*</td>
<td>1,000</td>
<td>-.55*</td>
</tr>
<tr>
<td>Sig. (2-seitig)</td>
<td>,000</td>
<td>.</td>
<td>,000</td>
</tr>
<tr>
<td>N</td>
<td>202</td>
<td>202</td>
<td>202</td>
</tr>
<tr>
<td>G_Zuwachs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korrelationskoeffizient</td>
<td>.720*</td>
<td>-.556*</td>
<td>1,000</td>
</tr>
<tr>
<td>Sig. (2-seitig)</td>
<td>,000</td>
<td>,000</td>
<td>.</td>
</tr>
<tr>
<td>N</td>
<td>202</td>
<td>202</td>
<td>202</td>
</tr>
</tbody>
</table>

*: Die Korrelation ist auf dem 0,01 Niveau signifikant (zweiseitig).
Die Korrelationsanalyse ergibt einen Spearman-Korrelationskoeffizienten von -0,556 zwischen Grundflächenzuwachs und Kraft-Klasse, also einen deutlich negativ korrelierten Zusammenhang (je kleiner die Kraft-Klasse, desto bessere soziale Stellung). Zwischen Grundflächenzuwachs und Kronenprojektionsfläche besteht ein relativ starker positiver Zusammenhang (Spearman-Korrelationskoeffizient 0,72) (Tabelle 14). Somit kann der erhöhte Zuwachs nicht ausreichend durch den Mistelbefall erklärt werden, sondern es muss vielmehr davon ausgegangen werden, dass sozial besser gestellte Bäume mit größeren Kronen eher von Misteln befallen werden (siehe 5.2.4. Zuwachs und soziale Stellung) und die höheren Zuwächse aus der besseren sozialen Stellung und größeren potentiellen Photosynthesefläche resultieren.

Somit lässt sich also bei der Betrachtung aller Bäume zusammen aufgrund dieser Störvariable kein Kausalzusammenhang zwischen Mistelbefall und Zuwachs ableiten.

Deshalb wurden die Daten zur Zuwachsentwicklung zusätzlich getrennt jeweils nur für die Bäume der Kraft-Klasse 1 sowie nur für die Bäume der Kraft-Klasse 2 ausgewertet.

Werden nur die vorherrschenden Bäume der Kraft-Klasse 1 betrachtet (Abbildung 39), sind die Zuwachsunterschiede zwischen Bäumen mit und ohne Mistelbefall wesentlich geringer als bei der Auswertung über alle Kraft-Klassen gleichzeitig.

Um die Stärke der Zuwachsreaktion quantifizieren zu können, wurde die Steigung des Grundflächenzuwachses gegenüber dem Vorjahr berechnet. Daraus ist jedoch kein klares Muster erkennbar: Teilweise reagieren Bäume mit Mistelbefall sowohl bei Steigerung als auch bei Verringerung des Zuwachses stärker, teilweise schwächer als unbefallene Bäume.

Die deskriptive Statistik der Grundflächenzuwachs werte der Kollektive im Vergleich wurde in nach Baumkollektiven gruppierten eingeschnürten Boxplots für die Kraft-Klassen 1 und 2 separat dargestellt (Abbildung 41).
Abbildung 41 - Eingeschnürte Boxplots zur Darstellung des mittleren jährlichen Grundflächenzuwachses in cm² in der Periode von 2001 bis 2016, gruppiert nach bzgl. Mistelbefall verschiedenen Baumkollektiven (Erklärung siehe Tabelle 11), getrennt für die Kraft-Klassen 1 (oben) und 2 (unten).

Abbildung 42 - Eingeschnürte Boxplots zur Darstellung des mittleren jährlichen Grundflächenzuwachses in cm² in der Periode von 2001 bis 2016, gruppiert nach bzgl. Mistelbefall verschiedenen Baumkollektiven für die beiden Extremkollektive (Erklärung siehe Tabelle 11), getrennt für die Kraft-Klassen 1 und 2

Es ist trotz separater Darstellung nach Kraft-Klassen durchgehend ein deutlicher (und da sich die Einschnürungen teilweise nicht überschneiden zwischen einigen Kollektiven signifikanter) Unterschied

5. Diskussion
5.1. Level 1 (Waldzustandserhebung)
5.1.1. Befallsentwicklung

Für die Zukunft ist geplant, die im Jahr 2017 vorgenommene Verdichtung auf 8x8 Kilometer in den Wuchsgebieten 4, 5 und 6 (Mittelfranken) sowie 15 (Alpen) und an allen Trakten mit Tannen und Eichen des 8x8 km-Rasters beizubehalten. In Bezug auf die Analyse der Entwicklung des Mistelbefalls ist diese Entwicklung sehr positiv. In Zukunft können somit voraussichtlich räumlich wesentlich feiner aufgelöste Analysen zum Mistelbefall durchgeführt werden als dies mit den aktuell vorliegenden Daten möglich ist.

Die Verbreitung der Mistel ist ausschließlich auf Vögel als Vektoren angewiesen (Tubeuf 1923). Dabei handelt es sich um hoch spezialisierte Beziehungen zwischen der Mistel und bestimmten Vogelarten (Kołodziejek und Kołodziejek 2013). Durch eine lange Koevolution entstand eine mutualistische Beziehung zwischen diesen Vogelarten, für die die Mistelbeeren eine attraktive und wertvolle Nahrungsquelle darstellen, und der Mistel, die durch die unbeschadete Passage der Samen durch den Verdauungstrakt der Vögel, durch Anhaftungen am Gefieder oder durch gezielte Deposition der Samen beim Fraß der Beere verbreitet wird (Mathiasen et al. 2008; Levey et al. 2002; Tubeuf 1923). So kommt es zu einer gerichteten Verbreitung der Mistel gezielt auf gut geeignete Wuchsorte, da die verbreitenden Vögel im Laufe der Koevolution Standorte und Bäume mit guten Wuchsbedingungen als bevorzugte Habitate angenommen haben, weil dort wiederum ein besseres Nahrungsangebot an Mistelbeeren für sie herrscht (Aukema und Martínez del Río 2002; Kołodziejek und Kołodziejek 2013). Die bayernweit unterschiedlich verteilten Mistelvorkommen können somit zum einen natürlich durch das Vorkommen geeigneter Wirtsbäume, zu einem großen Teil jedoch auch durch das Verhalten der mistelverbreitenden Vögel erklärt werden.

Die starke Veränderung des Mistelbefalls in den letzten Jahren kann zum einen direkt auf klimatische Parameter zurückgeführt werden. So führt das vermehrte Vorkommen von warmen und trockenen Sommern zu einer verringerten Vitalität und Verteidigungskraft von potentiellen Wirtsbäumen als Folge von Trockenstress, was einen Mistelbefall begünstigt (Grundmann et al. 2010; Hartmann 1990).

Die milderen Winter der letzten Jahre verschafften der immergrünen Mistel v.a. gegenüber
Laubbäumen einen Konkurrenzvorteil, da sie bei den guten Bedingungen weiter Photosynthese betreiben kann, während diese kahl sind (Grundmann et al. 2010). Die Nadelholzmistel hat diesen Vorteil nicht, da ihre Wirtsbäume ebenfalls immergrün sind. Neben direkten klimatischen Einflüssen auf die Wirtsbäume muss eine weitere Erklärung für den sich ausbreitenden Mistelbefall jedoch auch in veränderten Lebensgewohnheiten von mistelverbreitenden Vögeln gesucht werden (Grundmann et al. 2010).

Neben den in Mitteleuropa wichtigsten Mistelvektoren, der Misteldrossel und der Mönchsgrasmücke, trägt auch der Seidenschwanz maßgeblich zur Verbreitung der Mistel bei (Tubeuf 1923). In geringer Anzahl sind jedes Jahr Seidenschwänze in den meisten Teilen Bayerns anzutreffen (Tubeuf 1923). Gelegentlich kommt es jedoch zu Massenwanderungen von vielen Tausend Seidenschwänzen über Deutschland (Ramm 2005).

Beim Untersuchungen zur Veränderungen in der Verbreitung der Mistel müssen also neben den standörtlichen Bedingungen, die auf die Wirtsbäume wirken, immer auch die Einflüsse veränderter Lebens- und Verhaltensweisen der Vögel als Mistelvectoren betrachtet werden.
Die Datengrundlage hierzu ist jedoch im Vergleich zu den Baumdaten wesentlich schlechter. Während durch seit Jahren durchgeführte Langzeitmonitoringprogramme wie ICP Forests und die Bundeswaldinventur sehr genaue und fein aufgelöste Daten über die Situation der Waldbäume und ihrer Standorte vorliegen, sind quantitative Aussagen über Populationen von Misteldrossel, Mönchsgrasmücke, Seidenschwanz und weiteren ökologisch für die Mistelverbreitung bedeutsamen Arten (siehe 2.3.5. Andere Arten) bisher kaum verfügbar. Vereinzelt finden sich kleinräumige quantitative Aussagen über das Zugverhalten der Arten für bestimmte Regionen, für die vorliegende Untersuchung konnte jedoch trotz intensiver Recherche keine für eine quantitative Betrachtung räumlich und zeitlich ausreichend aufgelöste Datengrundlage zu Vogelabundanzen gefunden werden.

5.1.2. Bestandesstruktur
Der GAS-Index wurde mit dem Ziel verwendet, die Bestandesstruktur anhand einer handlichen, einfach auszuwertenden und kontinuierlich skalierten Größe zu quantifizieren. Anstatt die ordinalskalierten Parameter der Waldzustandsmerbung und Bundeswaldinventur zur Bestandesstruktur zu verwenden, welche auf gutachterlicher Ansprache basieren, kann mit dem GAS-Index stichhaltig und reproduzierbar eine Aussage über die strukturelle Diversität von Waldbeständen an Inventurpunkten getroffen werden. An seine Grenzen kommt der Index lediglich an Inventurpunkten mit sehr lockeren Beständen. An Trakt 192, Ecke 1 stehen im Inventurkreis beispielsweise eine Mehlbeere mit 10 cm BHD und eine Fichte mit 41,4 cm BHD, ansonsten kein weiterer Baum. Dort ergibt sich ein GAS-Index von 75,77, was den extremsten Ausreißer aller Traktecken darstellt. Für sehr lockere Bestände eignet sich der Index also nur sehr eingeschränkt, bei der Verwendung über das gesamte Inventurnetz und statistischer Auswertung vermag er jedoch gute Aussagen zu treffen.

Dass kein Zusammenhang mit dem Mistelbefall festgestellt werden konnte, könnte darauf zurückzuführen sein, dass die Bestandeshöhe und die soziale Differenzierung nur sehr indirekt als allometrische Zusammenhänge mit der Grundfläche in den Index einfließen. Wie jedoch in dieser

unmittelbaren Umgebung, wenn es sich um gleichaltrige Reinbestände mit einem hohen Anteil an potentiellen Wirtsbäumen handelt.

5.1.3. Waldrand
Zunächst muss betont werden, dass die Datengrundlage für die Auswertungen zum Waldrand vergleichsweise gering ist. Trotz Auswertung von sehr vielen Traktecken in ganz Bayern sind insgesamt nur sehr wenige Bäume an Traktecken mit Waldrändern in weniger als 25 m Entfernung von Misteln befallen. Bei der Interpretation der Auswertungen muss also bedacht werden, dass mitunter eine hohe statistische Unsicherheit besteht.

Bei Betrachtung der Merkmale „Mistel ja/nein“ und „Waldrandlage ja/nein“ ergibt sich eine unabhängige Verteilung der Merkmale. Ein Mistelbefall ist in Waldrandnähe nach dieser Studie also nicht wahrscheinlicher als in größerer Entfernung von Waldrändern.

Durch das Design der Stichprobe als regelmäßiges Raster über ganz Bayern konnten insgesamt nur wenige Ecken mit Waldrändern, insbesondere Waldaußenrändern, erfasst werden. Um detaillierte Aussagen über den Zusammenhang zwischen Mistelbefall und Waldrandlage treffen zu können wäre eine Untersuchung in einem Testgebiet in größeren zusammenhängenden Aufnahmen wahrscheinlich aussagekräftiger als die Betrachtung einzelner kleiner Ausschnitte bei zufällig mitten in Waldgebieten oder eben an deren Rand gelegenen Inventurpunkten.

Wieso gerade Bäume in 5 bis 10 m Entfernung von Waldußenrändern und Bestandesgrenzen mit starkem Höhenunterschied besonders oft von Misteln befallen sind lässt sich mit Erkenntnissen aus vorausgegangenen Studien nicht erklären. Möglicherweise handelt es sich in diesem Abstand teilweise um die erste Baumreihe mit voller Höhe, während die vorgelagerte niedrigere Vegetation die
mistleverbreitenden Vögel nicht so stark anzieht. Zudem müssen Messungsnauigkeiten einbezogen werden, da bei gutachterlicher Betrachtung der Daten (Vergleich der erhobenen Waldrandlinien mit hochaufgelösten Orthophotos) teilweise erhebliche Abweichungen um einige Meter zu beobachten sind.

5.1.4. Umweltvektor
Zunächst muss ein kurzer Blick auf die Datenqualität und somit die Verlässlichkeit der Ergebnisse geworfen werden. Der Stichprobenumfang ist mit 676 im Jahr 2017 aufgenommenen Ecken mit 11954 angesprochenen Bäumen, davon 333 Punkte (Umweltvektordaten für 333 davon verfügbar) mit insgesamt 2506 Kiefern und Tannen, als sehr umfangreich und die Grundgesamtheit gut abbildend einzuordnen. Lediglich systematische Fehler, die in der Verteilung der Probepunkte begründet liegen, könnten das Ergebnis ggf. verzerren.

Dennoch kann auch hier aufgrund der flächendeckenden Auswertung über das gesamte Inventurnetz davon ausgegangen werden, dass die Aussagen ausreichend präzise und genau sind, um daraus verallgemeinernde Schlüsse ziehen zu können.

5.1.4.1. Nährrelemente und Boden

Betrachtet man hingegen die (absoluten) Vorräte der wichtigen Nährstoffe Calcium, Magnesium und Kalium einzeln, so fällt auf, dass zwischen Traktecken mit und ohne Mistelbefall deutliche Unterschiede bestehen. Der Calcium- und Magnesiumvorrat, der als guter Indikator den Fortschritt der Versauerung des Bodens und somit die Verfügbarkeit der Basenionen insgesamt anzeigt, liegt an Traktecken mit Mistelbefall deutlich niedriger. Mit geringer werdender Magnesiumausstattung ist auch ein Anstieg des Mistelbefalls zu beobachten. Somit könnte der Magnesiumvorrat direkten oder zumindest indirekten Einfluss auf die Vitalität der Bäume haben – sind auf sauren Böden Nährstoffe schlechter verfügbar, so kommt es möglicherweise zu einer Vitalitätsminderung, welche für das erfolgreiche Eindringen der Mistel in das Xylem der Wirtsbäume nötig oder wenigstens förderlich ist (Hartmann 1997). Außerdem könnte ein Mangel an Magnesium als wichtiges Zentralatom des Chlorophyllmoleküls limitierende Effekte auf die Photosynthesekapazität nach sich ziehen, wodurch der Baum eine Vitalitätsminderung erfähre.

Es muss hier jedoch auch der Einfluss des Verbreitungsgebietes der Wirtsbaumarten beachtet werden. Die Waldkiefer ist in Bayern am stärksten in Mittelfranken auf eher kalkarmen, sauren Böden verbreitet. Standorte mit höherem Calciumvorrat sind währenddessen besonders im Alpenraum vorherrschend, wo die Waldkiefer nur geringe Vorkommen hat.

Der Gehalt an organischem Kohlenstoff, der an Traktecken mit Mistelbefall in der vorliegenden Studie deutlich geringer ist, lässt sich über zwei Wirkungsmechanismen indirekt als Ursache erklären: Organischer Kohlenstoff im Boden liegt i.d.R. in Form von Humus vor. Dieser trägt nennenswert zur Wasserspeicherfähigkeit des Bodens bei. Ist der Anteil verringert, kann weniger Wasser pflanzenverfügbar gespeichert werden und der Baum bekommt eher Trockenstress, welcher ihn wiederum für einen Mistelbefall prädisponiert. Außerdem dient der Humus als wichtiger Kationenaustauscher, der die Nährstoffverfügbarkeit verbessert. Bei geringerem C\textsubscript{org} Gehalt ist also ein wichtiger Teil der Kationenaustauschkapazität verringert.

In der vorliegenden Studie wurde an Traktecken mit Mistelbefall ein signifikant niedrigerer Stickstoffvorrat festgestellt. Wie zuvor könnte auch hier davon ausgegangen werden, dass die geringere Vitalität des Baumes und die dadurch stärkere Disposition für einen Mistelbefall den Effekt der Stickstoffversorgung der Mistel selbst überwiegen.

5.1.4.2. Temperatur und Niederschlag

Zwar muss auch hier von einem Effekt des Verbreitungsgebietes der Wirtsbaumarten ausgegangen werden – aufgrund ihrer ökologischen Eigenschaften und geschichtlicher Entwicklungen kommt gerade die Waldkiefer an potentiell deutlich wärmeren und niederschlagsärmeren Standorten in Franken vor, während die kühlen, niederschlagsreichen Standorte im Alpenraum nur selten mit Kiefern bestanden sind.

Besonders beachtlich ist die beobachtete kritische Temperatur- und Niederschlagsschwelle, oberhalb (Temperatur), bzw. unterhalb (Niederschlag) derer der Schwerpunkt des Befalls liegt und besonders hohe Befallsintensitäten ausschließlich vorkommen. Damit ist der Nachweis eines klimatischen Einflusses auf die potentielle Verbreitung starker Mistelbefälle erbracht.

5.1.4.3. Indizes

Im Zusammenhang mit Temperatur und Niederschlag zeigen Traktecken mit Mistelbefall eine höhere potentielle Evapotranspiration. Auch klimatische Wasserbilanz und Wasserbilanz (inklusive nutzbarer
Feldkapazität) zeigen schon alleine anhand klimatischer Parameter, dass Bäume an Traktecken mit Mistelbefall unter signifikant höherem potentiellen Wassermangel leiden – ohne, dass der zusätzlich durch Misteln verursachte Wasserstress einbezogen wird. So ist definitiv von einer Schwächung auszugehen, die den Befall durch Misteln gegenüber anderen Standorten wesentlich begünstigt. An einigen Standorten mit Mistelbefall ist im Mittel die potentielle Evapotranspiration sogar höher als die Summe aus Niederschlag und nutzbarer Feldkapazität (Wasserbilanz von Mai bis September negativ), sodass von anhaltendem, intensivem Trockenstress ausgegangen werden muss, welcher in jedem Fall negative Einflüsse auf die Vitalität potentieller Wirtsarten hat und neben einer Erstbefallsdisposition im Fall eines fortschreitenden Mistelbefalls die bereits geschwächten Bäume zusätzlich schwächt, sodass es ab einer kritischen Befallschwelle zur positiven Rückkopplung und somit zu Wachstumseinbußen bis hin zur Mortalität kommen kann (siehe auch 4.2.4. Zuwachs und soziale Stellung)(Sangüesa-Barreda et al. 2013; Bigler et al. 2006; Grundmann et al. 2010).

Als wichtigste mit dem Mistelbefall in Verbindung stehende Parameter ergeben sich also allen voran der Wasserhaushalt und die Parameter wie Temperatur und Niederschlag, die ihn bedingen, sowie in geringerem Maße die Nährstoffversorgung, insbesondere mit Magnesium. Betrachtet man die Ökophysiologie der Mistel erscheint dies logisch, da sie dem Baum in erster Linie Wasser und die darin gelösten Nährstoffe entzieht und vorhandene Mängel so verstärkt.

5.1.5. Topographie
Bei Betrachtung der topographieabhängigen Verbreitung der Nadelholzmistel ist auffällig, dass Mistelvorkommen, insbesondere starke Befallsgrade, hauptsächlich im flacheren Gelände und auf niedrigeren Meereshöhen vorkommen.

Besonders interessant ist die Tatsache, dass innerhalb der Höhenverbreitung der jeweiligen Wirtsbaumart vor allem die niedrigeren Meereshöhen wesentlich häufiger einen Mistelbefall aufweisen und die Befallsintensität mit abnehmender Meereshöhe zunimmt. Oberhalb einer oberen Höhenschwelle kommen kaum noch Misteln vor, unterhalb einer unteren Höhenschwelle ist im Fall der Kiefernkleptomistel der Großteil der Traktecken mit Mistel befallen. Bei der Tanne kommt nur im unteren Teil der Höhenverbreitung die Tannenkleptomistel vor, es sind jedoch auch bis zur unteren Verbreitungsgrenze der Tanne unbefallene Traktecken vorhanden.

Die Meereshöhe ist höchstwahrscheinlich als indirekter Parameter zu verstehen, da sich auf geringeren Höhen i.d.R. klimatische Bedingungen wie geringe Niederschläge und höhere Mitteltemperaturen finden, welche den Mistelbefall begünstigen (siehe 4.1.4.2. Temperatur und Niederschlag, Fehler! Verweisquelle konnte nicht gefunden werden. und Fehler! Verweisquelle konnte nicht gefunden werden.).

Außerdem ist die Mistel durch kalte Winter begrenzt – diese können bis zu einem gewissen Maß durch

Bei alleiniger Betrachtung der Hangrichtung ist sowohl für die Kiefern- als auch für die Tannenmistel eine Verschiebung der mittleren Hangrichtung der mistelbefallenen Traktecken in Richtung Süden gegenüber den unbefallenen Traktecken zu beobachten. Hierbei handelt es sich nur um einen nicht signifikanten Trend, dennoch ist erkennbar, dass Kiefern und Tannen an Traktecken, die an sonnenbegünstigten Süd- bis Südwesthängen liegen, tendenziell häufiger von Misteln befallen werden. Neben der für das Mistelwachstum förderlichen höheren Lichtverfügbarkeit (Nierhaus-Wunderwald und Lawrenz 1997) muss auch ein an diesen Stellen möglicherweise erhöhter Wasserstress der Wirtsbäume durch höhere Temperaturen, welcher diese für einen Mistelbefall prädisponieren (Grundmann et al. 2010), angenommen werden.

Dementgegen konnte die vorliegende Studie diesen Effekt nicht bestätigen – v.a. starke Hanglagen

5.2. Level 2 (Waldklimastationen)

5.2.1. Aufnahmeverfahren

Für die weiteren Auswertungen wurde ein Baum aufgrund dessen in das Kollektiv „Mistelbefall terrestrisch festgestellt“ (terr1) aufgenommen, wenn in mindestens einem der Jahre 2013 bis 2016 terrestrisch ein Mistelbefall festgestellt wurde.

Dies birgt selbstverständlich die Gefahr, die tatsächliche Mistelanzahl und vor allem die zeitliche Entwicklung verfälscht abzubilden, ist bei der vorhandenen Datenlage aber immer noch als zuverlässiger anzusehen als der Bezug auf ein einzelnes Aufnahmehjahr.

Auch die zusätzliche Aufnahme aus per Drohnenbefliegung erstellten Orthophotos liefert keine ausreichend sichere Aussage über den Mistelbefall – beide Verfahren erkennen Bäume als befallen, die das jeweils andere Verfahren nicht erkennt. Durch die Summe beider Verfahren lässt sich eine etwas sicherere Aussage treffen, jedoch ist hier die zeitliche Auflösung problematisch, da dafür eine Drohnenbefliegung jedes Jahr zusätzlich zur terrestrischen Erhebung durchgeführt werden müsste.

Der statistische Nachweis der Abhängigkeit beider Verfahren ist insofern kritisch zu betrachten, als dass in beiden Beständen relativ viele Bäume ohne Mistelbefall vorkommen, und der statistische Test so durch eine nicht normalverteilte Grundgesamtheit, also eine Überzahl der Bäume, die von beiden Verfahren (korrekt) als nicht befallen diagnostiziert werden, verfälscht wird.

Als Konsequenz wurden alle weiteren Tests jeweils für die Kollektive „Mistelbefall in mindestens einem der Jahre 2013 bis 2016 terrestrisch festgestellt ja/nein“ (terr0/terr1), „Mistelbefall 2016 per Drohne festgestellt ja/nein“ (drohne0/drohne1), „Mistelbefall entweder terrestrisch oder per Drohne festgestellt ja/nein“ (beide0/beide1) sowie „Mistelbefall sowohl terrestrisch als auch per Drohne festgestellt“ (overlap1) (siehe Tabelle 11) durchgeführt, um im jeweiligen Vergleich der Ergebnisse zwischen den Kollektiven den Einfluss des Aufnahmeverfahrens auf dieses beurteilen zu können.
5.2.2. Befallsentwicklung

Zunächst muss die Datenqualität kritisch beleuchtet werden. Wie unter 4.2.1. Aufnahmeverfahren gezeigt wurde, führt die terrestrische Ansprache des Mistelbefalls zu sehr unsicheren Ergebnissen, sodass bei allen hier ausgewerteten Daten einkalkuliert werden muss, dass in jedem Jahr mehrere Bäume mit Mistelbefall nicht zuverlässig als solche erkannt wurden.

Dass dennoch ein so klarer Aufwärstrend im Anteil mistelbefallener Bäume erkennbar ist, zeigt deutlich, dass sich der Mistelbefall innerhalb der vergangenen 10 Jahre in beiden untersuchten Beständen erheblich ausgeweitet hat.

Möglicherweise ist dies jedoch teilweise als Artefakt zu betrachten, da nach Angaben der Landesinventurleitung der Waldzustandserhebung ab 2013 die Aufnahmegrupps insbesondere für den Mistelbefall sensibilisiert wurden und somit evtl. auch schon vorher vorhandene Misteln erst danach durch gezielte Beachtung aufgrund einer veränderten selektiven Wahrnehmung aufgenommen wurden.

Auf die Parameter Bestandesdichte und Lichtdurchflutung hat der Mensch durch selektive Entnahme von Bäumen einen entscheidenden Einfluss. Unbewusst wird somit jedoch auch die Habitatqualität für Misteln und deren Vektoren verbessert (Alfaro et al. 1985). Vor allem die Misteldrossel bevorzugt offene Bestände und freistehende Kronen (Grundmann et al. 2010; Guest 2010; Tubeuf 1923). Lichtraumdurchforstungen führen somit zu einer wesentlich besseren Eignung der Bestände als Habitat für sie (Durand-Gillmann et al. 2014; Noetzli et al. 2003). Als wichtigster Vektor kommt es so zu einer positiven Rückkopplung: Die Misteldrossel hält sich vermehrt in den lichteren Beständen auf, dort können Misteln besser wachsen, was zu besserem Nahrungsangebot für die Misteldrossel und somit wieder stärkerer Mistelverbreitung durch die Misteldrossel in diesem Bestand führt (Aukema...

Nicht klar bleibt außerdem der temporale Zusammenhang zwischen Mistelbefall und Bestandesschäden – ob der Bestand also von Misteln befallen wird, weil er durch eine Prädisposition, z.B. durch Trockenstress, geschädigt ist, oder ob der Befall gesunder Bäume durch Misteln zu einer Prädisposition für weitere Schädigungen durch mistelinduzierten Trockenstress führt (Noetzli et al. 2003).

5.2.3. Horizontale Verteilung

Kritisch zu betrachten ist die Bestimmung der mistelbefallenen Bäume (siehe 5.2.1. Aufnahmeverfahren). In der vorliegenden Studie wurden verschiedene Methoden der Bestimmung des Mistelbefalls (per Drohne, terrestrisch, beide) separat behandelt. Hinsichtlich der Ergebnisse unterscheiden sich diese verschiedenen Aufnahmemethoden jedoch nicht.

natürlichen Hindernissen und an sich schon geklumpter Verteilung der potentiellen Wirtsbäume durch Begründung in Trupp- oder Gruppenstellungen der Fall wäre.

5.2.4. Zuwachs und soziale Stellung

Neben diesen allein mechanistischen Betrachtungen muss jedoch auch die Ökologie der Mistel und ihrer Verbreitungsektoren betrachtet werden.

Beobachtungen des Verhaltens der Misteldrossel, die als wichtigster Verbreiter der Mistel in Mitteleuropa gilt, zeigen, dass diese sich mit Vorliebe auf hohen Bäumen, optimalerweise bereits mit Mistelbefall, niederlassen, auf denen Sie die gesamte Umgebung gut im Blick haben, und diese territorial gegen andere Vögel verteidigen (Guest 2010) (siehe auch 2.3.1. Verhalten und Mistelverbreitung und 2.3.2. Misteldrossel).
Anhand dieser Betrachtungen lässt sich auf einen kausalen Zusammenhang zwischen Größe, sozialer Stellung des Wirtsbauumes und Mistelbefall schließen, wie er auch in dieser Studie auffällt.

Im zeitlichen Verlauf des Grundflächenzuwachses spiegelt sich der Mistelbefall kaum in der Steigung der Zuwachscurven zwischen den Jahren wieder. Besonders in extremen Trockenjahren wie z.B. 2003 wäre ein stärkerer Wachstumseinbruch der Bäume mit Mistelbefall als derjenigen ohne zu erwarten, da diese unter zusätzlichem Wasserstress leiden (Hartmann 1997). Selbst wenn der Baum zum Schutz vor Wasserverlust seine Spaltöffnungen schließt, verdunstet die Mistel weiter Wasser, das sie dem

Zudem ist zu beachten, dass das Durchmesserwachstum nicht über den gesamten Stamm hinweg gleichmäßig ist. Sangüesa-Barreda et al. (2012) stellten fest, dass der Zuwachs am stärksten an der Baumspitze absinkt und der Brusthöhen­durchmesser am schwächsten die Zuwachseinbußen bei Mistelbefall wiedergibt. Der besonders in Trockenjahren verstärkte Zuwachsabfall war in ihrer Studie regelmäßig am besten in apikalen Bohrkernen zu beobachten. Trotz geringer Reaktion des Brusthöhen­durchmessers wird der gesamte Zuwachs an Holzmasse also durch höhere Abholzigkei­t reduziert. Daraus folgt die Empfehlung, Zuwachsmessungen und -bohrungen in größeren Höhen durchzuführen, um Rückschlüsse auf den Zuwachs bei Mistelbefall zu ziehen (Sangüesa-Barreda et al. 2012). Die hier registrierten leichten Zuwachsrückgänge in 1,30 m Höhe könnten also möglicherweise sogar einen deutlichen Wachstumsrückgang der Mistelbäume bedeuten, welcher jedoch auf Brusthöhe nur schwach zeichnet.
6. Fazit und Ausblick

In der vorliegenden Studie konnte außerdem eine Höhenlimitierung des Mistelbefalls festgestellt werden, es war jeweils hauptsächlich der untere Teil der Höhenverbreitung beider Wirtsarten betroffen. Bei erhöhten Temperaturen könnte sich diese Schwelle in Zukunft nach oben verschieben und der Mistelbefall sich zusätzlich geografisch in höher gelegene Gebiete ausweiten, bzw. die

Während die Mechanismen der Mistelverbreitung durch Vögel gut bekannt sind, ist die Populationsdynamik dieser Arten bisher nur sehr wenig erforscht. Monitoringprogramme mit dem Ziel, mehr Informationen über ihre Lebensweise zu gewinnen und so bessere Rückschlüsse auf die Mistelverbreitung ziehen zu können, sollten in Zukunft verstärkt eingerichtet werden.

Andere, indirekte Ansätze sind die Pflanzung von Beerensträuchern als Ersatznahrung für Vögel, sodass diese seltener auf Mistelbeeren zurückgreifen (Sangüesa-Barreda et al. 2013) sowie die langfristige Anpassung der Wälder. Waldumbaumaßnahmen sind somit nicht nur im direkten Hinblick auf Klimaveränderungen, sondern auch unter Beachtung der Veränderung der Lebensweise von Pathogenen und Parasiten wie der Mistel angezeigt (Grundmann et al. 2010). Die Begründung standortgerechter Mischwälder, in denen für Mistelbefall anfällige Arten nur zu geringen Teilen und optimalerweise nicht gleichmäßig, sondern in Trupp- oder Gruppenstellung verteilt gepflanzt werden, sodass ein Mistelbefall sich schwerer ausbreiten kann, ist somit vermutlich das nachhaltigste und langfristig effektivste Instrument um großflächige wirtschaftliche Schäden durch die Intensivierung des Mistelbefalls zu verhindern.

Bis alle Wälder dementsprechend angepasst sind, wird jedoch aufgrund der langen Lebensdauer von Bäumen noch einige Zeit vergehen. Für aktuell bereits befallene Bestände wären deshalb weitere Forschungen darüber anzustellen, in welchem Ausmaß ein Mistelbefall an welchem Standort und unter welchen Voraussetzungen weitgehend unschädlich ist und wo die kritische Schwelle liegt, oberhalb derer es zu einer kontinuierlichen Ausbreitung und langfristig zur intensiven Schädigung und zum frühzeitigen Absterben von Bäumen und Beständen kommt. Anhand dessen könnte dann auch entschieden werden, in welchen Beständen es noch nicht zu spät ist, Gegenmaßnahmen zu treffen, bzw. ab wann sich eine Bekämpfung der Mistel nicht mehr lohnt.

Neben all diesen Betrachtungen müssen jedoch auch mögliche ökonomisch und/oder ökologisch potentiell positive Effekte der Mistel beachtet werden. Für Ökosysteme ist die Mistel eine Schlüsselspezies in deren natürlicher Entwicklung, sodass aus ökologischer Sicht eine Erhaltung möglicherweise wünschenswerter ist als ihre Bekämpfung (Mathiasen et al. 2008). Sie führt in
Waldökossystemen zu oft positiv konnotierten Effekten wie Heterogenität, Diversität und Produktivität, auch wenn die unmittelbare Holzproduktion der Wirtschaftsbaumarten möglicherweise verringert wird (Mellado et al. 2017).

Abschließend zeigt sich die Mistel also als sehr interessante, facettenreiche und in Zukunft sehr bedeutsame Art. Ihre komplexen Interaktionen und Auswirkungen in Waldökossystemen genauso wie ihre positiven und negativen Effekte für Natur und Forstbetriebe versprechen viele weitere interessante Forschungsmöglichkeiten und bedürfen genauer Betrachtung bezüglich ihrer Auswirkungen auf die forstliche Praxis.
7. Zusammenfassung

Die Weißbeerige Mistel (Viscum album) als epiphytischer Halbparasit der forstlich wichtigen Waldbaumarten Kiefer (Pinus sylvestris) und Tanne (Abies alba) hat intensive, langanhaltende und möglicherweise forstwirtschaftlich negative Effekte auf Waldökosysteme.

Während bisherige Arbeiten sich meist mit Fallstudien in einzelnen oder mehreren Beständen beschäftigten, kombiniert diese Studie landesweit vorliegende Langzeitmonitoringdaten aus verschiedenen Monitoringprogrammen, um auf größerer Skalenebene und mit längeren Zeitreihen Aussagen über die Entwicklung, Ursachen und Auswirkungen des Mistelbefalls in Bayern zu treffen. Neben flächigen Aussagen aus Inventurtrakten in ganz Bayern wurden auch zwei Intensivmonitoringflächen einbezogen.

Anhand der terrestrischen Ansprache an den Inventurpunkten wurde der Anteil betroffener Bäume an der Gesamtstichprobe berechnet. Der Mistelbefall hat sich in den letzten Jahren deutlich verstärkt: Sowohl die mittlere Anzahl befallener Kiefern und Tannen (von unter 1% auf über 7%) als auch der Anteil von Inventurtrakten mit Mistelbefall (von ca. 6% auf fast 25%) hat sich seit 2007 deutlich erhöht. Schwerpunkte des Befalls liegen in Mittelfranken und im Bayerischen Wald.

Zur Quantifizierung der Bestandesstrukturvielfalt wurde ein Strukturindex berechnet und seine Werte zwischen Trakten mit und ohne Mistelbefall verglichen. Es konnte jedoch kein Zusammenhang zwischen Mistelbefall und Strukturvielfalt festgestellt werden. Auch bei Betrachtung der horizontalen Verteilung der Mistelbäume auf den Intensivmonitoringflächen konnte kein besonders geklumptes Muster festgestellt werden, lediglich beim Vergleich zwischen Traktecken eines Inventurtraktes fiel auf, dass häufig keine oder alle Traktecken, wesentlich seltener nur einzelne Ecken befallen sind.

Für Waldränder konnte gegenüber geschlossenen Waldgebieten kein statistisch sicherer Zusammenhang mit dem Mistelbefall nachgewiesen werden. Das Mistelvorkommen war jedoch in 5 bis 10 m Abstand von Waldrändern gegenüber anderen Abstandsklassen auffällig höher.

Anhand von Umweltvektordaten, welche Informationen zu Standort- und Wasserhaushaltsparametern für alle Inventurtrakten liefern, wurden in einer logistischen Modellierung die Ursachen des Mistelbefalls untersucht. Hauptursachen waren die Temperatur in der
Vegetationszeit, der Magnesiumvorrat im Boden und die Transpirationsdifferenz als Maßzahl für potentiellen Trockenstress.

8. Abstract

The European Mistletoe (*Viscum album*) as an epiphytic semi-parasite of economically important tree species has long-lasting intense and from an economic point of view possibly negative effects on the development of forest ecosystems. As past studies mainly assessed its effects in small-scale experimental sites, this study’s goal is to gather information about the misteltoe infestation of forests, their causes and impacts at a larger scale and all across Bavaria by combining long-term monitoring data derived from different monitoring programs.

Based on the terrestrial recordings, the percentage of affected trees was calculated. Mistletoe infestation has spread in terms of mean number of infested trees per plot and mean number of mistletoes per infested tree as well as the percentage of plots showing mistletoe infestation. Distribution centers in Bavaria are in Middle Franconia and the Bavarian Forest.

Stand structure was expressed in an index and compared between infested and non-infested plots. No statistical differences could be found here. Also, there was no hint of an altered horizontal distribution of infested trees compared with other random subsamples of the same size. On the other hand, examining the number of infested subplots per plot showed that mostly either none or all subplots were infested.

With GIS software, the distance from every individual tree to the next forest edge (within 25 m) was calculated. The distance from forest edges showed no relevant differences between infested and uninfested trees. Still, a higher percentage of trees was found to be infested in 5 to 10 m distance from the forest edge than in all other distance classes.

Data on climate, soil and water supply were used to create a logistic regression model explaining the mistletoe infestation. Most important explaining parameters were the temperature during vegetation time, the magnesium supply from the soil and the potential drought stress expressed as the transpiration difference.

Mistletoes were found to mainly infest trees in the lower part of the altitudinal distribution of each host tree species and to have a limitation in maximum elevation, above which infestation is much less likely. Also, misteltoe infestations tend to occur on less steep slopes and with a peak at south-southwest aspect. A relation between topography and temperature is very likely to be the main influence.

Radial growth of infested trees seemed to be generally higher, but the effect was influenced by a higher infestation probability on trees having a higher social status. Comparing only trees of the same social class, growth was slightly decreasing in infested trees and from 2013 on up to 2017 was also partly lower than in uninfested ones.

A critical limit of infestation severity above which misteltoe infestation caused constant and irreversible impairment of tree vigor and growth in accordance with the site could not be determined. Also, further research would be needed about the economic consequences, negative and positive, of mistletoe infestation.

Durand-Gillmann, Marion; Cailleret, Maxime; Boivin, Thomas; Nageleisen, Louis-Michel; Davi, Hendrik (2014): Individual vulnerability factors of Silver fir (Abies alba Mill.) to parasitism by two contrasting biotic agents: mistletoe (Viscum album L. ssp. abietis) and bark beetles (Coleoptera: Curculionidae: Scolytinae) during a decline process. In: *Annals of forest science* 71 (6), S. 659–673.

Kramer, Horst; Akça, Alparslan (2008): Leitfaden zur Waldmesslehre. 5., überarb. Aufl. Frankfurt am Main: Sauerländer, J D.

Rigling, Andreas; Eilmann, Britta; Koechli, Roger; Dobbertin, Matthias (2010): Mistletoe-induced crown degradation in Scots pine in a xeric environment. In: Tree physiology.

10. Abbildungsverzeichnis

Abbildung 1 - Schematischer Aufbau eines Level 1-Traktes der Waldzustandserhebung. Ein Trakt besteht aus vier Stichprobenmittelpunkten, die die Ecken eines Quadrats mit einer Seitenlänge von 150 m darstellen. Dort werden alle Bäume, die in einer Winkelzählprobe mit Faktor 4 gezählt werden, aufgenommen. Zusätzlich wird an Ecke 1 in je 25 m Entfernung in jede Haupthimmelsrichtung eine Sechsbaumstichprobe nach Prodan (1968) angelegt („Kreuztrakt“).
Quelle: Wauer (2017), verändert .. 22

Abbildung 3 - Inneres Modell zur Durchführung des multiplen Randomisierungstests zur Signifikanzberechnung des Clark&Evans-Index.. 32

Abbildung 4 - Mittleres Modell zur Durchführung des multiplen Randomisierungstests zur Signifikanzberechnung des Clark&Evans-Index... 33

Abbildung 5 - Äußeres Modell zur Durchführung des multiplen Randomisierungstests zur Signifikanzberechnung des Clark&Evans-Index... 34

Abbildung 7 - Räumliche Entwicklung des Anteils mistelbefallener Kiefern und Tannen an der Gesamtzahl der Kiefern und Tannen je Trakt. Dargestellt sind nur die in jedem der Jahre 2007 bis 2017 aufgenommenen Trakte... 38

Abbildung 8 - Räumliche Entwicklung des Anteils mistelbefallener Kiefern und Tannen an der Gesamtzahl der Kiefern und Tannen je Trakt. Dargestellt sind alle im jeweiligen Jahr aufgenommenen Trakte mit Kiefern und Tannen sowie nicht aufgenommene Trakte ohne Kiefern und Tannen in weiß (n.a. = nicht aufgenommen) ... 39

Abbildung 9 - Eingeschnürte Boxplots zur Darstellung der Unterschiede des GAS-Index zwischen den Gruppen „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke gleich 0“ (M0) und „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke größer 0“ (M1). Zwei extreme Ausreißer der Gruppe M0 mit einem GAS-Index über 30 wurden aus Lesbarkeitsgründen nicht dargestellt... 40

Abbildung 10 - Anteile der von Misteln befallenen (M1, orange, n=19) und der unbefallenen (M0, blau, n=52) Kiefern und Tannen an den Klassen des Waldrandabstandes für Waldaußenränder (Rart1, siehe auch Tabelle 1). Die Gesamtzahl aller betrachteten Kiefern und Tannen je Traktecke entspricht 100%... 42

Abbildung 11 - Anteil der von Misteln befallenen (M1, orange, n=4)) und der unbefallenen (M0, blau, n=70)) Kiefern und Tannen an den Klassen des Waldrandabstandes für Bestandesgrenzen mit starkem Bestandeshöhenunterschied (Rart3, siehe auch Tabelle 1). Die Gesamtzahl aller betrachteten Kiefern und Tannen je Traktecke entspricht 100%.. 43
Abbildung 12 - Anteil der von Misteln befallenen (M1, orange, n=20) und der unbefallenen (M0, blau, n=234) Kiefern und Tannen an den Klassen des Waldrandabstandes für sonstige eingemessene Bestandesgrenzen (Rart4, siehe auch Tabelle 1). Die Gesamtzahl aller betrachteten Kiefern und Tannen je Traktecke entspricht 100%.

Abbildung 13 - Eingeschnittene Boxplots zur Darstellung der Unterschiede der Umweltvektoren Ca_aus_vor_kmolha (Calciumvorrat), K_aus_vor_kmolha (Kaliumvorrat) und Mg_aus_vor_kmolha (Magnesiumvorrat) (Erklärung siehe Tabelle 2) zwischen den Gruppen „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke gleich 0“ (M0) und „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke größer 0“ (M1).

Abbildung 14 - Eingeschnittene Boxplots zur Darstellung der Unterschiede der Umweltvektoren Corg (oranischer Kohlenstoffgehalt) und N_Vor_tha (Stickstoffvorrat) (Erklärung siehe Tabelle 2) zwischen den Gruppen „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke gleich 0“ (M0) und „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke größer 0“ (M1).

Abbildung 15 - Eingeschnittene Boxplots zur Darstellung der Unterschiede der Umweltvektoren T_5to9 (Mitteltemperatur Mai bis September) und T_678 (Mitteltemperatur Juni bis August) (Erklärung siehe Tabelle 2) zwischen den Gruppen „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke gleich 0“ (M0) und „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke größer 0“ (M1).

Abbildung 16 - Streudiagramme zur Darstellung des Zusammenhangs zwischen mittlerer Mistelanzahl aller Kiefern und Tannen je Traktecke (MEAN_Mi_gesamt), bzw. des Anteils der von Misteln befallenen Bäume an der Gesamtzahl der Kiefern und Tannen der Traktecke (Mistelbaeume_pro_Baumzahl) und den Umweltvektoren T_5to9 (Mitteltemperatur Mai bis September) und T_678 (Mitteltemperatur Juni bis August) (Erklärung siehe Tabelle 2).

Abbildung 17 - Eingeschnittene Boxplots zur Darstellung der Unterschiede der Umweltvektoren P_5to9 (Niederschlagsmittel Mai bis September) und P_678 (Niederschlagsmittel Juni bis August) (Erklärung siehe Tabelle 2) zwischen den Gruppen „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke gleich 0“ (M0) und „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke größer 0“ (M1).

Abbildung 18 - Streudiagramme zur Darstellung des Zusammenhangs zwischen mittlerer Mistelanzahl aller Kiefern und Tannen je Traktecke (MEAN_Mi_gesamt), bzw. des Anteils der von Misteln befallenen Bäume an der Gesamtzahl der Kiefern und Tannen der Traktecke (Mistelbaeume_pro_Baumzahl) und den Umweltvektoren P_5to9 (Niederschlagsmittel Mai bis September) und P_678 (Niederschlagsmittel Juni bis August) (Erklärung siehe Tabelle 2).

Abbildung 19 - Eingeschnittene Boxplots zur Darstellung der Unterschiede des Umweltvektors Tdiff (Transpirationsdifferenz) (Erklärung siehe Tabelle 2) zwischen den Gruppen „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke gleich 0“ (M0) und „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke größer 0“ (M1).

Abbildung 20 - Eingeschnittene Boxplots zur Darstellung der Unterschiede des Umweltvektors ETP_5to9_Turc (potentielle Evapotranspiration) (Erklärung siehe Tabelle 2) zwischen den Gruppen „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke gleich 0“ (M0) und „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke größer 0“ (M1).
Abbildung 21 - Streudiagramme zur Darstellung des Zusammenhangs zwischen mittlerer Mistelanzahl aller Kiefern und Tannen je Traktecke (MEAN_Mi_gesamt), bzw. des Anteils der von Misteln befallenen Bäume an der Gesamtzahl der Kiefern und Tannen der Traktecke (Mistelbaeume_pro_Baumzahl) und dem Umweltvektor ETp_sto9_Turc (potentielle Evapotranspiration) (Erklärung siehe Tabelle 2)... 52

Abbildung 22 - Eingeschnürte Boxplots zur Darstellung der Unterschiede der Umweltvektoren KWB_sto9_Turc (klimatische Wasserbilanz) und WB_sto9_Turc (Wasserbilanz) (Erklärung siehe Tabelle 2) zwischen den Gruppen „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke gleich 0“ (M0) und „durchschnittliche Mistelzahl aller Kiefern und Tannen der Traktecke größer 0“ (M1)... 53

Abbildung 23 - Streudiagramme zur Darstellung des Zusammenhangs zwischen mittlerer Mistelanzahl aller Kiefern und Tannen je Traktecke (MEAN_Mi_gesamt), bzw. des Anteils der von Misteln befallenen Bäume an der Gesamtzahl der Kiefern und Tannen der Traktecke (Mistelbaeume_pro_Baumzahl) und den Umweltvektoren KWB_sto9_Turc (klimatische Wasserbilanz) und WB_sto9_Turc (Wasserbilanz)... 54

Abbildung 24 - Eingeschnürte Boxplots zur Darstellung der Unterschiede der Höhe über NN in m (Hoehe) zwischen den Gruppen „durchschnittliche Mistelzahl aller Kiefern, bzw. Tannen der Traktecke gleich 0“ (M0) und „durchschnittliche Mistelzahl aller Kiefern, bzw. Tannen der Traktecke größer 0“ (M1)... 55

Abbildung 25 - Streudiagramme zur Darstellung des Zusammenhangs zwischen mittlerer Mistelanzahl aller Kiefern, bzw. Tannen je Traktecke (MEAN_Mi_gesamt) sowie des Anteils der von Misteln befallenen Bäume an der Gesamtzahl der Kiefern, bzw. Tannen der Traktecke (Mistelbaeume_pro_Ki/Ta_Anzahl) und der Höhe über NN in m (Hoehe)... 56

Abbildung 26 - Eingeschnürte Boxplots zur Darstellung der Unterschiede der Hangneigung (Slope) in Grad zwischen den Gruppen „durchschnittliche Mistelzahl aller Kiefern, bzw. Tannen der Traktecke gleich 0“ (M0) und „durchschnittliche Mistelzahl aller Kiefern, bzw. Tannen der Traktecke größer 0“ (M1)... 57

Abbildung 27 - Eingeschnürte Boxplots zur Darstellung der Unterschiede der Hangrichtung (Exposition; Aspect) in Grad zwischen den Gruppen „durchschnittliche Mistelzahl aller Kiefern, bzw. Tannen der Traktecke gleich 0“ (M0) und „durchschnittliche Mistelzahl aller Kiefern, bzw. Tannen der Traktecke größer 0“ (M1)... 58

Abbildung 28 - Streudiagramme zur Darstellung des Zusammenhangs zwischen mittlerer Mistelanzahl aller Kiefern, bzw. Tannen je Traktecke (MEAN_Mi_gesamt), sowie des Anteils der von Misteln befallenen Bäume an der Gesamtzahl der Kiefern, bzw. Tannen der Traktecke (Mistelbaeume_pro_Ki/Ta_Anzahl) und der Hangrichtung (Aspect) in Grad ... 59

Abbildung 30 - Räumliche Darstellung der mistelbefallenen (1) sowie unbefallenen (0) Kiefern an den Waldklimastationen Altdorf (ALT) und Dinkelsbühl (DIN). Zur Erläuterung der Abkürzungen der Vergleichskollektive siehe Tabelle 11... 64
Abbildung 31 - Entwicklung der Anzahl der von Misteln befallenen Bäume (aus terrestrischer Erhebung) für die Level 2-Flächen Waldklimastation Altdorf (ALT) und Dinkelsbühl (DIN). Für ALT waren 2010 keine Daten verfügbar................................. 65

Abbildung 32 - Entwicklung des relativen Anteils der von Misteln befallenen Bäume (aus terrestrischer Erhebung) an der gesamten Baumzahl des Bestandes für die Level 2-Flächen Waldklimastation Altdorf (ALT) und Dinkelsbühl (DIN) und in der Summe (Gesamt) sowie Entwicklung der Anzahl von Bäumen im Gesamtbestand (n ALT; n DIN). Für ALT waren 2010 keine Daten verfügbar................................. 65

Abbildung 33 - Durchschnittliche Anzahl terrestrisch erhobener Mistelbüsch pro befallenem Baum (Aufnahme ab 2013).. 66

Abbildung 34 - Durchschnittliche Mistelstufe (terrestrische Erhebung) befallener Bäume 66

Abbildung 35 - Entwicklung der Mittelwerte von jährlichem mittlerem Grundflächenzuwachs, mittlerer Kraft-Klasse und Anzahl der terrestrisch erfassten Mistelbüsch über die Zeit zwischen den Extremkollektiven „beide0“ und „overlap1“ (Erläuterung der Abkürzungen siehe Tabelle 11).... 69

Abbildung 36 - Boxplots zur Darstellung der mittleren Kraft-Klasse (KKl) (Kraft 1884) über die Baumkollektive (Erklärung siehe Tabelle 11) nach Mistelbefall ... 70

Abbildung 37 - Eingeschnürte Boxplots zur Darstellung der Unterschiede der Kronenprojektionsfläche zwischen den Baumkollektiven (Erklärung siehe Tabelle 11) nach Mistelbefall............................... 70

Abbildung 38 - Eingeschnürte Boxplots zur Darstellung der Unterschiede der Kronenprojektionsfläche zwischen den Baumkollektiven (Erklärung siehe Tabelle 11) nach Mistelbefall für die zwei Extremgruppen... 71

Abbildung 41 - Eingeschnürte Boxplots zur Darstellung des mittleren jährlichen Grundflächenzuwachses in cm² in der Periode von 2001 bis 2016, gruppiert nach bzgl. Mistelbefall verschiedenen Baumkollektiven (Erklärung siehe Tabelle 11), getrennt für die Kraft-Klassen 1 (oben) und 2 (unten)... 74

Abbildung 42 - Eingeschnürte Boxplots zur Darstellung des mittleren jährlichen Grundflächenzuwachses in cm² in der Periode von 2001 bis 2016, gruppiert nach bzgl. Mistelbefall verschiedener Baumkollektiven für die beiden Extremkollektive (Erklärung siehe Tabelle 11), getrennt für die Kraft-Klassen 1 und 2... 75
11. Tabellenverzeichnis

Tabelle 1 - Randarten (Rart) nach BMELV (2011) ... 27
Tabelle 2 - Erklärung der verwendeten Umweltvektor-Codes .. 28
Tabelle 4 - Anteile der Ecken mit Mistel an der gesamten Zahl bewaldeter Ecken 41
Tabelle 5 - Kreuztabelle der Anzahl der Kiefern und Tannen mit den kombinierten Merkmalen Mistel ja/nein und Waldrand ja/nein ... 41
Tabelle 6 - Statistischer Test auf Unabhängigkeit der Faktoren „Waldrandlage“ und „Mistelbefall“.. 41
Tabelle 9 - Kreuztabelle terr * drohne (Erklärung der Abkürzungen siehe Tabelle 11) 62
Tabelle 10 - χ^2-Unabhängigkeitstest zwischen den Variablen terr und drohne (Erklärung der Abkürzungen siehe Tabelle 11) .. 62
Tabelle 11 - Erklärung der bei der Auswertung verwendeten Baumkollektive 63
Tabelle 12 - Ergebnisse für die Berechnung des Clark&Evans-Index für verschiedene Subkollektive von Probebäumen der Waldklimastationen Altdorf (ALT) und Dinkelsbühl (DIN) (Erklärung der Abkürzungen siehe Tabelle 11) sowie Baumzahl und Fläche des jeweiligen Subkollektiv. Außerdem sind beobachteter und erwarteter mittlerer Abstand und der daraus berechnete Clark&Evans-Index je Kollektiv angegeben. p gibt die Wahrscheinlichkeit an, dass es sich bei der Berechnung um ein zufälliges Ergebnis handelt .. 67
Tabelle 13 - Anzahl der Bäume und Fläche je Subkollektiv (Erklärung der Abkürzungen siehe Tabelle 11). Aus den zufällig ausgewählten Subkollektiven mit gleicher Baumanzahl wurden Mittelwert und Standardabweichung bestimmt und damit die Mittelwertdifferenz z auf eine Standardnormalverteilung angepasst. Die Wahrscheinlichkeit p, dass die Hypothese H_0 (z liegt innerhalb der Konfidenzintervalle der Normalverteilung) gültig ist, wurde anhand einer Normalverteilungstabelle bestimmt. ... 68
Tabelle 14 - Nichtparametrischer Spearman-Korrelationstest der Faktoren „Grundflächenzuwachs über die gesamte Periode 2001 bis 2016“ (G_Zuwachs), „Kraft-Klasse“ (KKl) und „Kronenprojektionsfläche“ (KPF) ... 71
12. Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abt.</td>
<td>Abteilung</td>
</tr>
<tr>
<td>ALT</td>
<td>Waldklimastation Altdorf</td>
</tr>
<tr>
<td>BaSIS</td>
<td>Bayerisches Standortinformationssystem</td>
</tr>
<tr>
<td>bzgl.</td>
<td>bezüglich</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>ca.</td>
<td>circa</td>
</tr>
<tr>
<td>cm</td>
<td>Zentimeter</td>
</tr>
<tr>
<td>d.h.</td>
<td>das heißt</td>
</tr>
<tr>
<td>DIN</td>
<td>Waldklimastation Dinkelsbühl</td>
</tr>
<tr>
<td>durchschn.</td>
<td>durchschnittlich</td>
</tr>
<tr>
<td>engl.</td>
<td>englisch</td>
</tr>
<tr>
<td>evtl.</td>
<td>eventuell</td>
</tr>
<tr>
<td>ggf.</td>
<td>gegebenenfalls</td>
</tr>
<tr>
<td>i.d.R</td>
<td>in der Regel</td>
</tr>
<tr>
<td>KAK</td>
<td>Kationenaustauschkapazität</td>
</tr>
<tr>
<td>LWF</td>
<td>Bayerische Landesanstalt für Wald und Forstwirtschaft</td>
</tr>
<tr>
<td>m</td>
<td>Meter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>M.Sc.</td>
<td>Master of Science</td>
</tr>
<tr>
<td>o.ä.</td>
<td>oder ähnliche(s)</td>
</tr>
<tr>
<td>ssp.</td>
<td>Subspezies</td>
</tr>
<tr>
<td>u.a.</td>
<td>unter anderem</td>
</tr>
<tr>
<td>UAV</td>
<td>Unmanned Aerial Vehicle, ugs. auch "Drohne"</td>
</tr>
<tr>
<td>ugs.</td>
<td>umgangssprachlich</td>
</tr>
<tr>
<td>v.a.</td>
<td>vor allem</td>
</tr>
<tr>
<td>VBA</td>
<td>Visual Basic for Applications (Programmiersprache)</td>
</tr>
<tr>
<td>vgl.</td>
<td>vergleichle</td>
</tr>
<tr>
<td>WKS</td>
<td>Waldklimastation</td>
</tr>
<tr>
<td>WZE</td>
<td>Waldzustandserhebung</td>
</tr>
<tr>
<td>z.B.</td>
<td>zum Beispiel</td>
</tr>
</tbody>
</table>
13. Anhang

13.1. VBA-Programmroutine zur automatischen Berechnung des GAS-Index

Sub GASIndex()
'Überprüfen ob Voraussetzungen erfüllt sind, sonst abbrechen
Check = MsgBox("Das Jahr wird in diesem Skript nicht berücksichtigt. Sat ungleich 0 ist ausgelöscht (nur Ecken werden betrachtet). Datei muss wie folgt sortiert sein: 1. Nach Tnr aufsteigend 2. Nach Enr aufsteigend 3. nach Ba aufsteigend. Tnr steht in Spalte C, Enr in Spalte D, Ba in Spalte H, Grundflaeche in cm2 in Spalte L. Ist dies der Fall?", vbYesNo))
If Check = vbNo Then
MsgBox "Bitte Voraussetzungen schaffen und erneut starten"
Exit Sub
End If
'letzte Zeile feststellen
lastrow = Tabellen1.Cells(Rows.Count, 1).End(xlUp).Row
'Damit auch letzter Datensatz bearbeitet wird, Endmarke nach der letzten Zeile einfügen
Cells(lastrow + 1, 1) = "Ende"
Cells(lastrow + 1, 2) = "Ende"
Cells(lastrow + 1, 3) = "Ende"
Cells(lastrow + 1, 4) = "Ende"
'letzte Zeile neu feststellen (ist jetzt 1 mehr)
lastrow = Tabellen1.Cells(Rows.Count, 1).End(xlUp).Row
'Noch ist nichts ausgewertet
AnzahlEcken = 0
AnzahlBa = 0
'Für erste Zeile GEV (Grundflaeche der analysierten Ecke) und nEV (Baumzahl der Ecke) setzen
GEV = Cells(2, 12).Value
nEV = 1
'Gesamte Grundflaeche der TnrEnrE (momentan analysierte Ecke) feststellen - E anhaengt um von eckenweise von baumweiser Analyse zu unterscheiden
For e = 2 To lastrow
'Tnr und Enr der aktuellen Zeile auslesen
TnrE = Cells(e, 3).Value
EnrE = Cells(e, 4).Value
TnrEnrE = TnrE & EnrE
'Tnr und Enr der vorherigen zeile auslesen
TnrEV = Cells(e - 1, 3).Value
EnrEV = Cells(e - 1, 4).Value
TnrEnrEV = TnrEV & EnrEV
If TnrEnrE = TnrEnrEV Then
'Gleicher Tnr und Enr wie Zeile vorher
'Grundflaeche und Baumzahl der TnrEnr weiter aufsummieren
GEV = GEV + Cells(e, 12).Value
nEV = nEV + 1
ElseIf TnrEnrE <> TnrEnrEV Then
'Neue Ecke beginnt
'Erste Zeile ausschließen, denn da stehen nur die Spaltentitel
If e > 2 Then
'Tieferliegende Schleife über die j Baumarten dieser Ecke ausfuehren
For j = (e - nEV) To e
'aktuelle Zeile auslesen
Tnr = Cells(j, 3).Value
Enr = Cells(j, 4).Value
Ba = Cells(j, 8).Value
'
'vorherige Zeile auslesen
TnrV = Cells(j - 1, 3).Value
EnrV = Cells(j - 1, 4).Value
BaV = Cells(j - 1, 8).Value
TnrEnr = Tnr & Enr
TnrEnrV = TnrV & EnrV
TnrEnrBa = Tnr & Enr & Ba
TnrEnrBaV = TnrV & EnrV & BaV
If TnrEnrBa = TnrEnrBaV Then
'Gleiche TnrEnrBa wie Zeile vorher
'Grundflaeche und Baumzahl der Baumart weiter aufaddieren
G = G + Cells(j, 12).Value
n = n + 1
ElseIf TnrEnrBa <> TnrEnrBaV Then
'Ersten Datensatz abfangen, enthält nur die Spaltentitel
If AnzahlBa = 0 Then
'Wenn erster Datensatz: G und n gesondert setzen
G = Cells(j, 12).Value
n = 1
'wenn es nicht der erste Datensatz ist hiernach weitermachen
Else
'Zuerst vorherige TnrEnrBa zusammenfassen, Betrag_t fuer jeden der t Baeume berechnen und zu Faktor 2 aufsummieren
Gmean = G / n
For t = 1 To n
Gt = Cells(j - t, 12).Value
Betrag_t = Abs(((Gt - Gmean) / Gmean))
'Betrag dieses Baumes zum Faktor 2 dazuaddieren
Faktor2 = Faktor2 + Betrag_t
Betrag_t = 0
Next t
'jetzt entspricht Faktor2 dem zweiten Teil der GAS-Formel fuer diese Baumart
'Der erste Teil der Formel wird mit der relativen Grundflaeche der TnrEnr, die aus der außerensten Schleife e stammt (GEV), und der Grundflaeche G der aktuellen Ba berechnet
relG = G / GEV
Faktor1 = ((21 - relG) / 20)
'Berechne des GASj fuer die aktuelle Baumart j
GASj = (Faktor1 * (1 + Faktor2))
'Aufaddieren des Baumart j-GAS zum gesamten GAS der Ecke
GAS = GAS + GASj
'Summe über TnrEnrBa zuruecksetzen und G und n neu mit erstem Wert der naechsten Ba beschreiben
G = Cells(j, 12).Value
n = 1
End If
'Eine Baumart mehr analysiert
AnzahlBa = AnzahlBa + 1
'Berechnungen fuer naechste Ba zuruecksetzen
Faktor1 = 0
Faktor2 = 0
relG = 0
GASj = 0
End If
Next j

'Alle Baumarten dieser Ecke abgearbeitet
'AnzahlEcken um 1 erhöhen, dadurch ergibt sich die Zeile des Ausgabeblatts
AnzahlEcken = AnzahlEcken + 1

'Weitere für GAS dieser Ecke in Tabelle2 schreiben
Tabelle2.Cells(AnzahlEcken + 1, 1).Value = TnrEV
Tabelle2.Cells(AnzahlEcken + 1, 2).Value = EnrEV
Tabelle2.Cells(AnzahlEcken + 1, 3).Value = GAS

'Eckenweise Werte zurücksetzen, bevor nächste Ecke beginnt
GEV = Cells(e, 12).Value
nEV = 1
GAS = 0
End If
Else

'nichts unternehmen
End If
Next e

'Alle Ecken sind durchlaufen

Endmarkierungen in der letzten Zeile wieder rausschmeissen
Cells(lastrow, 1).Clear
Cells(lastrow, 2).Clear
Cells(lastrow, 3).Clear
Cells(lastrow, 4).Clear

'Tabelle mit der Auswertung anwählen
Tabelle2.Select
End Sub
13.2. Berechnung von Gauss-Krüger-Koordinaten aus Polarkoordinaten

\[
RW_{4\text{Baum}} = RW_{4\text{Ecke}} + \left[\frac{d_{\text{Hori}}}{100} \cdot \sin \left(\frac{2\pi}{400} \cdot \alpha_{\text{Azi}} \right) \right]
\]

\[
HW_{4\text{Baum}} = HW_{4\text{Ecke}} + \left[\frac{d_{\text{Hori}}}{100} \cdot \cos \left(\frac{2\pi}{400} \cdot \alpha_{\text{Azi}} \right) \right]
\]

Mit

\(RW_{4\text{Baum}} \): Rechtswert der Gauss-Krüger-Koordinaten (Zone 4) des Baums
\(HW_{4\text{Baum}} \): Hochwert der Gauss-Krüger-Koordinaten (Zone 4) des Baums
\(RW_{4\text{Ecke}} \): Rechtswert der Gauss-Krüger-Koordinaten (Zone 4) der Traktecke
\(HW_{4\text{Ecke}} \): Hochwert der Gauss-Krüger-Koordinaten (Zone 4) der Traktecke
\(d_{\text{Hori}} \): Horizontalentfernung des Baums vom Ecken-, bzw. Satellitenmittelpunkt in cm
\(\alpha_{\text{Azi}} \): Azimut des Baums vom Ecken-, bzw. Satellitenmittelpunkt aus in [gon]

Für die Bäume der Kreuztrakte musste zusätzlich ein Term für die Umrechnung der als Polarkoordinaten angegebenen Lage der Satellitenmittelpunkte in kartesische Koordinaten eingefügt werden:

\[
RW_{4\text{Baum}} = RW_{4\text{Ecke}} + \left[\frac{d_{\text{HoriSat}}}{100} \cdot \sin \left(\frac{2\pi}{400} \cdot \alpha_{\text{AziSat}} \right) \right] + \left[\frac{d_{\text{HoriB}}}{100} \cdot \sin \left(\frac{2\pi}{400} \cdot \alpha_{\text{AziB}} \right) \right]
\]

\[
HW_{4\text{Baum}} = HW_{4\text{Ecke}} + \left[\frac{d_{\text{HoriSat}}}{100} \cdot \cos \left(\frac{2\pi}{400} \cdot \alpha_{\text{AziSat}} \right) \right] + \left[\frac{d_{\text{HoriB}}}{100} \cdot \cos \left(\frac{2\pi}{400} \cdot \alpha_{\text{AziB}} \right) \right]
\]

zusätzlich mit

\(d_{\text{HoriB}} \): Horizontalentfernung des Baums vom Ecken-, bzw. Satellitenmittelpunkt in cm
\(\alpha_{\text{AziB}} \): Azimut des Baums vom Ecken-, bzw. Satellitenmittelpunkt aus in [gon]
\(d_{\text{HoriSat}} \): Horizontalentfernung des Satellitenmittelpunktes vom Eckenmittelpunkt in cm
\(\alpha_{\text{AziSat}} \): Azimut des Satellitenmittelpunktes vom Eckenmittelpunkt aus in [gon]

Für die Datenbankabfrage in Microsoft Access wurde die Formel wie folgt umgesetzt:

\[
RW_{\text{Baum}}: \text{WENN}([\text{WZE_Baumdaten.Sat}]=0;[\text{RW4}]+(([\text{Hori}]/100)\cdot\sin((2\cdot3,14159)/400)\cdot[\text{Azi}]));\]
\([\text{RW4}]+(([\text{HoriS}]/100)\cdot\sin((2\cdot3,14159)/400)\cdot[\text{AziS}]))+(([\text{Hori}]/100)\cdot\sin((2\cdot3,14159)/400)\cdot[\text{Azi}]))\)

\[
HW_{\text{Baum}}: \text{WENN}([\text{WZE_Baumdaten.Sat}]=0;[\text{HW4}]+(([\text{Hori}]/100)\cdot\cos((2\cdot3,14159)/400)\cdot[\text{Azi}]));\]
\([\text{HW4}]+(([\text{HoriS}]/100)\cdot\cos((2\cdot3,14159)/400)\cdot[\text{AziS}]))+(([\text{Hori}]/100)\cdot\cos((2\cdot3,14159)/400)\cdot[\text{Azi}]))\)
13.3. Programmcode zur logistischen Regressionsmodellierung mit R

grunddaten <- read.csv2("/Lvl1/Umweltvektor/WZE_Mistel_je_Enr_nur_TaKi_Umweltvektor.csv")

summary(grunddaten)

Mistelvorkommen faktorisieren
grunddaten$Mistel_janein_fac <- as.factor(grunddaten$Mistel_janein)

grunddaten <- subset(grunddaten, is.na(grunddaten$MEAN_Mi_gesamt) == FALSE)

summary(grunddaten)

Modell 1
mod1 <- glm(Mistel_janein_fac ~ P_5to9, data = grunddaten, family = binomial())
summary(mod1)

Modell 2
mod1 <- glm(Mistel_janein_fac ~ P_5to9 + T_5to9, data = grunddaten, family = binomial())
summary(mod1)

Modell 3
mod1 <- glm(Mistel_janein_fac ~ P_5to9 * T_5to9, data = grunddaten, family = binomial())
summary(mod1)

Modell 4
mod1 <- glm(Mistel_janein_fac ~ T_5to9, data = grunddaten, family = binomial())
summary(mod1)

Modell 5
mod1 <- glm(Mistel_janein_fac ~ T_5to9 + BS_perc, data = grunddaten, family = binomial())
summary(mod1)

Modell 6
mod1 <- glm(Mistel_janein_fac ~ T_5to9 + Ca_aus_vor_kmolha, data = grunddaten, family = binomial())
summary(mod1)

Modell 7
mod1 <- glm(Mistel_janein_fac ~ T_5to9 * Ca_aus_vor_kmolha, data = grunddaten, family = binomial())
summary(mod1)

Modell 8
mod1 <- glm(Mistel_janein_fac ~ T_5to9 + K_aus_vor_kmolha, data = grunddaten, family = binomial())
summary(mod1)

Modell 9
mod1 <- glm(Mistel_janein_fac ~ T_5to9 * K_aus_vor_kmolha, data = grunddaten, family = binomial())
summary(mod1)

Modell 10
mod1 <- glm(Mistel_janein_fac ~ T_5to9 + Mg_aus_vor_kmolha, data = grunddaten, family = binomial())
summary(mod1)
Modell 11
mod1 <- glm(Mistel_janein_fac ~ T_5to9*Mg_aus_vor_kmolha, data=grunddaten, family=binomial())
summary(mod1)

Modell 12
mod1 <- glm(Mistel_janein_fac ~ T_5to9*Mg_aus_vor_kmolha+Corg_Gehalt, data=grunddaten, family=binomial())
summary(mod1)

Modell 13
mod1 <- glm(Mistel_janein_fac ~ T_5to9*Mg_aus_vor_kmolha*Corg_Gehalt, data=grunddaten, family=binomial())
summary(mod1)

Modell 14
mod1 <- glm(Mistel_janein_fac ~ T_5to9*Mg_aus_vor_kmolha+N_Vor_tha, data=grunddaten, family=binomial())
summary(mod1)

Modell 15
mod1 <- glm(Mistel_janein_fac ~ T_5to9*Mg_aus_vor_kmolha*N_Vor_tha, data=grunddaten, family=binomial())
summary(mod1)

Modell 16
mod1 <- glm(Mistel_janein_fac ~ T_5to9*Mg_aus_vor_kmolha+P_5to9, data=grunddaten, family=binomial())
summary(mod1)

Modell 17
mod1 <- glm(Mistel_janein_fac ~ T_5to9*Mg_aus_vor_kmolha*P_5to9, data=grunddaten, family=binomial())
summary(mod1)

Modell 18
mod1 <- glm(Mistel_janein_fac ~ T_5to9*P_5to9, data=grunddaten, family=binomial())
summary(mod1)

Modell 19
mod1 <- glm(Mistel_janein_fac ~ T_5to9+P_5to9, data=grunddaten, family=binomial())
summary(mod1)

Modell 20
mod1 <- glm(Mistel_janein_fac ~ T_5to9*Mg_aus_vor_kmolha+nFK, data=grunddaten, family=binomial())
summary(mod1)

Modell 21
mod1 <- glm(Mistel_janein_fac ~ T_5to9*Mg_aus_vor_kmolha*nFK, data=grunddaten, family=binomial())
summary(mod1)

Modell 22
mod1 <- glm(Mistel_janein_fac ~ T_5to9*Mg_aus_vor_kmolha+Tdiff, data=grunddaten, family=binomial())
summary(mod1)

Modell 23
mod1 <- glm(Mistel_janein_fac ~ T_5to9*Mg_aus_vor_kmolha*Tdiff, data=grunddaten, family=binomial())
summary(mod1)

Modell 24
mod1 <- glm(Mistel_janein_fac ~ T_5to9* Mg_aus_vor_kmolha + Tdiff + KWB_5to9_Turc,
 data = grunddaten, family = binomial())
summary(mod1)

Modell 25
mod1 <- glm(Mistel_janein_fac ~ T_5to9 * Mg_aus_vor_kmolha + Tdiff + WB_5to9_Turc,
 data = grunddaten, family = binomial())
summary(mod1)

Modell 26
mod1 <- glm(Mistel_janein_fac ~ T_5to9 * Mg_aus_vor_kmolha * WB_5to9_Turc + Tdiff,
 data = grunddaten, family = binomial())
summary(mod1)

Bestes Modell: Modell 23
mod1 <- glm(Mistel_janein_fac ~ T_5to9 * Mg_aus_vor_kmolha * Tdiff,
 data = grunddaten, family = binomial())
summary(mod1)
13.4. ArcPy-Skript zur Zufallsselektion einer bestimmten Anzahl von Features

Quelle: abgewandelt nach Brundage@StackExchange (2015)

```python
import arcpy
#arcpy.env.overwriteOutput = True
def SelectRandomByCount (layer, count):
    arcpy.SelectLayerByAttribute_management(layer, "CLEAR_SELECTION")
    layerCount = int(arcpy.GetCount_management(layer).getOutput(0))
    if layerCount < count:
        print "input count is greater than layer count"
        return
    oids = [oid for oid, in arcpy.da.SearchCursor(layer, "OID@")]
    oidFldName = arcpy.Describe(layer).OIDFieldName
    path = arcpy.Describe(layer).path
    delimOidFld = arcpy.AddFieldDelimiters(path, oidFldName)
    randOids = random.sample(oids, count)
    oidsStr = ", ".join(map(str, randOids))
    sql = "{0} IN {(1)}".format(delimOidFld, oidsStr)
    arcpy.SelectLayerByAttribute_management(layer, "", sql)

layer = arcpy.GetParameter(0)
count = arcpy.GetParameter(1)
SelectRandomByCount (layer, count)
success = True
arcpy.SetParameter(2, success)
```

13.5. ArcPy-Skript zum CSV-Export gesammelter Daten

Quelle: abgewandelt nach blah238@StackExchange (2012)

```python
import os, csv
def multivaluesToCsv(csvfilepath, csvfilename, cycle, NNRatio, PValue, NNExpected, NNObserved, NNZScore):
    ext = 'csv'  # Define output file extension (e.g. csv or txt)
    header = ['cycle', 'NNRatio', 'PValue', 'NNExpected', 'NNObserved', 'NNZScore']  # Define header row (column names)

    # Join CSV file path and name, adding extension if necessary
csvfile = os.path.join(csvfilepath, os.extsep.join((csvfilename, ext))
if not os.path.splitext(csvfilename)[1].lower().endswith(ext) else
    csvfile)

    # Open text file for writing
    with open(csvfile, 'wb') as f:
        w = csv.writer(f)
        w.writerow(header)  # Write header row
        rows = zip(*map(lambda x: x.split(';'), [cycle, NNRatio, PValue, NNExpected, NNObserved, NNZScore]))
        # Transpose the semicolon-delimited values into rows
        w.writerows(rows)
    return csvfile
```
14. Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit eigenständig und ohne fremde Hilfe angefertigt habe. Textpassagen, die wörtlich oder dem Sinn nach auf Publikationen oder Vorträgen anderer Autoren beruhen, sind als solche kenntlich gemacht.

Die Arbeit wurde bisher keiner anderen Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht.

Freising, 21.12.2017

[Unterschrift]

Kai Behrendt
15. CD mit digitalen Inhalten zur Arbeit

- Digitale Version der Arbeit
- Datenbank mit Primärdaten
- Auswahl verwendeter Literatur
- Grafiken und Animationen zur Befallsentwicklung (Level 1 – Waldzustandserhebung)
- Grafiken zur Visualisierung der verschiedenen Baumkollektive (Level 2 – Waldklimastationen)
- Skripte
 - ArcGIS-Modell für den Multiplen Randomisierungstest (siehe 3.3.3. Horizontale Verteilung)
 - VBA-Skript zur Berechnung des GAS-Index (siehe 13.1. VBA-Programmroutine zur automatischen Berechnung des GAS-Index)
 - R-Skript zur logistischen Regressionsmodellierung (siehe 13.3. Programmcode zur logistischen Regressionsmodellierung mit R)
 - ArcPy-Skripte für Zufallsselektion (siehe 13.4. ArcPy-Skript zur Zufallsselektion einer bestimmten Anzahl von Features) und CSV-Export (siehe 13.5. ArcPy-Skript zum CSV-Export gesammelter Daten)