
Improving the Performance of ADAS Application in
Heterogeneous Context: a Case of Lane Detection

Xiebing Wang, Mingyue Cui, Kai Huang, Alois Knoll and Long Chen

Abstract—This paper investigates the optimization of OpenCL-
based ADAS applications in heterogeneous context. In particular,
we take the widely-used lane detection algorithm (LDA) as a case
study. The application is profiled to identify the performance
bottlenecks and then three optimization strategies are adopted.
On the kernel side, the parallel granularity is regulated via
compute unit replication and loop unrolling. On the host side,
the kernel API function calls are scheduled in an interleaved
manner to overlap the accelerator execution time. Moreover, the
computation workload of the algorithm is tuned by dynamically
adjusting the processed image ROI size. Experimental results
reveal that the optimized implementation can achieve an average
2.27x speedup when compared with the naive parallel application.

I. INTRODUCTION

Modern vehicles are equipped with lots of electronic control

units (ECUs) used for diverse functionalities such as driving,

safety, navigation, and in-car entertainment, etc. This progres-

sively complex system poses us a big challenge: how to utilize

the limited computing power to deal with various real-time

and safety-critical tasks? To improve on-board computation

capacity, lots of early efforts have been paid by means of

continuously increasing the quantity and improving the quality

of the hardware components. However, this proved to be both

unrealistic and minimal due to the limitation of financial cost

and Amdahl’s law [1].

Along with the widespread use of high performance com-

puting (HPC) techniques, heterogeneous computing becomes a

feasible method to solve this computation bottleneck since it is

highly flexible and scalable. Taking advanced driver assistance

systems (ADAS) for instance, it is originally developed to

adapt vehicle systems for safety and better driving. To be

specific, the system collects environmental data by miscella-

neous sensors and processes them as real-timely as possible

to make an evaluation of current vehicle runtime status. Then

by means of different control strategies, the system either

takes emergency measures by itself when necessary or gives

response to drivers to assist their driving. Here the time con-

straints is extremely strict and therefore high computing power

is required. With unified accelerators, all these operations

are handled by, say, CPUs or GPUs, which could be time-

consuming since each type of the processors is only favorable

Xiebing Wang and Alois Knoll are with Institute of Informatics, Tech-
nische Universität München, 85748, Garching, Germany, {wangxie,
knoll}@in.tum.de.

Mingyue Cui, Kai Huang and Long Chen are with School of Data and
Computer Science, Sun Yat-sen University, 510275, Guangzhou, P. R. China,
cuimy@mail2.sysu.edu.cn, huangk36@mail.sysu.edu.cn,
chenl46@mail.sysu.edu.cn.

of specific data operations. Nevertheless the time cost can be

greatly shortened when both CPUs, GPUs and FPGAs are used

to perform their adept operations.

In heterogeneous context, real time constraint is well han-

dled since different accelerators are used to perform their adept

operations. However, how to schedule different accelerators to

gain optimal performance is nontrivial. Taking commonly used

lane detection algorithm (LDA) as case study, this paper gives

a thorough profiling analysis of the heterogeneous OpenCL

implementation and then optimizes the application using both

compiler optimization options and built-in application program

interface (API) function scheduling. The test LDA is based

on [2]. In [2], the authors developed a particle-filter based

algorithm that could detect and track on-road lane markings.

However, they only proposed the algorithm design and demon-

strated the performance on single accelerators. Heterogeneous

architecture was not involved and little effort was given to

improve the overall performance.

We customized this algorithm to enable its simultaneous

execution under an FPGA-GPU combined heterogeneous ar-

chitecture and then optimized it to a very large extent. First

of all, the kernel and host code blocks are profiled to identify

the performance bottlenecks. Afterwards on the kernel side,

pragma primitives that adjust the parallel granularity are used

to gain the performance enhancement. On the host side, the

order of the API function calls is investigated and carefully

scheduled to hidden part of the accelerator execution time.

Finally with regard to the algorithm itself, computation task

is dynamically changed to further increase the performance.

Experimental results present an average 2.27x speedup when

compared with the unoptimized parallel LDA application.

The rest of this paper is organized as follows: Section II

is related work and Section III overviews the LDA and the

heterogeneous design. Section IV presents our profiling and

optimization strategies. Section V gives experimental results

and Section VI concludes the paper.

II. RELATED WORK

LDA is mostly achieved via filtering techniques to capture

lanes like the work in [3] [4] [5], however it is rarely

adopted on the heterogeneous platform. In this paper we focus

on the optimization of the OpenCL-based LDA application.

As is known, the performance portability of OpenCL ap-

plications running among different accelerators remains an

open problem. To solve this issue, some researchers proposed

profiling and kernel optimization framework to assist better

development of OpenCL applications. Authors in [6] presented

2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC)

978-1-5386-1526-3/17/$31.00 ©2017 IEEEAuthorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 14:27:44 UTC from IEEE Xplore. Restrictions apply.

Input Stream Frame end? Pre-processing Redetection?

Lane Detection

Lane Tracking

Position of
lane markings

Output Stream

N

N

Y
Y

Fig. 1. Flow chart of LDA.

a generic tool interface for performance measurement of Open-

CL programs. They wrapped the OpenCL API functions and

kernel events to exhibit time costs of kernel and function calls.

Currently the tool is under construction and some features

like memory and buffer routines are not implemented yet.

In [7], the authors proposed a framework combing OpenCL

application auto-tuning and runtime resource management.

Authors in [8] presented a transparent OpenCL overlay called

Helium, for inter- and intra-kernel optimization.

The work mentioned above are yet not mature and ex-

tant researches still stay in the phrase that optimizations

are performed based on the specific algorithm, architecture

and OpenCL specifications. In [9], the authors analyzed and

profiled the components of the speeded up robust features

(SURF) algorithm. Their work only involved the profiling of

the program and this information can be referenced for perfor-

mance improvement. Recently, FPGA devices are mainly used

as the accelerator for convolutional neural network (CNN) like

the work in [10] and [11]. In their work, optimizations were

mainly performed based on the CNN algorithm itself.

The most related work to this paper is [12], where authors

used step by step optimization of face detection algorithm

including CPU execution time hidden, memory coalescing and

variable parallel granularity. The difference of our work is that

rather than using single GPU, we tested the heterogeneous

context so that (i) the execution time of accelerators can

also be hidden via changing build-in function order and (ii)

parallelism on FPGA side could be further adjusted by using

pragma primitives.

III. OVERVIEW AND IMPLEMENTATION OF THE LDA

A. Overview

As shown in Figure 1, the tested LDA mainly consists of

three modules, namely pre-processing, lane detection and lane
tracking. For each frame, the pre-processing module extracts

information about the lane markings and then passes the

processed image to the next step. Depending on whether or

not the estimated state in previous frame can still be applied

to current frame, the image is processed either using lane
detection module to redetect the positions of the lane markings

or using lane tracking module to track the previous position

of the lane markings.

The pre-processing module contains four steps successively

applied to the original image. First a region of interest (ROI)

is cropped from the raw image and only this ROI is further

processed. Then the ROI is transformed into a grayscale format

where each pixel reflects the intensities of the pixel in original

image. To enhance the contrast of pixel intensity in the ROI, a

Sobel filter [13] is applied to the grayscaled image to extract

transitions and edges. To avoid the influence of noises, a

threshold is used to tune the intensity of all pixels in the image.

During lane detection, a set of candidate lines are ran-

domly generated via assigning random values from a normal

distribution to the elements in the candidate line set X =
{X1, X2, · · · , Xn}, where n is the number of the candidate

lines. For each candidate line Xi, a weight wi is used to reveal

how close the line is located to the real lane. With this set,

the line with the highest weight is chosen as the best line and

certain number of candidate lines are reserved as good lines,
which would be further used in the lane tracking module.

For lane tracking, a particle filter [14] is adopted to predict

the lane markings, using both the ROI of the current frame and

the best line and good lines of the previous frame. The particle

filter consists of three steps: (i) the prediction update step

modifies previous good lines as prior probability distribution

of lane markings in current frame; (ii) the importance weight
update step recalculates the weights of the particles and (iii)

the resampling step selects particles from the newly updated

set so as to prevent a degeneration of the particle set.

B. Parallel implementation

The pre-processing module presents a high potential of

parallelization since each pixel in the ROI can perform

grayscaling and thresholding manipulations by itself. More-

over, the Sobel filter requires only knowledge about nine

neighbors of the processing pixel. This again implies that all

the pixels can be handled independently. Thus an OpenCL k-

ernel kernelPRE is developed to perform the pre-processing

operations entirely on hardware accelerators.

As for the lane detection module, notice that the candidate
lines are randomly generated and hence they are mutually

independent. However the selection of the best line is based

on the aggregated result of all the candidate lines and conse-

quently should be performed only once on the host. As a result

another kernel named kernelLD is implemented to sample

the lines and calculate their weights.

As can be seen, similar with lane detection, the prediction

and importance weight update steps in the lane tracking
module are executed on every single particle and therefore

are unrelated with others. The resampling step, in contrast,

relies on knowledge from the whole particle set and thus is

performed on the host. Again we use a kernel kernelPF to

calculate the updated results of the particles.

Furthermore, it should be noted that both the lane detection

and tracking module require normally distributed random num-

bers to process their following tasks. In our tested LDA, these

numbers are generated by MWC64X [15], which is a small and

fast random number generator developed for use with GPUs

via OpenCL. As this task is mandatorily executed on hardware

accelerators, we also introduce a kernel called kernelRNG
to realize it. In current work this kernel initializes a stream of

random numbers and splits them with a period of 240, which

2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC)

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 14:27:44 UTC from IEEE Xplore. Restrictions apply.

allows the processing of videos lasting far more than 24 hours

and even in the worst case scenario where 106 random numbers

per frame are used.

C. Heterogeneous context

In the heterogeneous context, the host utilizes an installable

client driver (ICD) loader to coordinate the tasks handled on

FPGA and GPU. When invoking OpenCL API functions, the

program runtime passes kernel parameters to the ICD loader

and then the loader enables FPGA- or GPU-specific functions

with required fpga- or gpu-specific parameters. The host side

is responsible for (i) kernel parameters initialization and raw

image I/O at the program beginning, and (ii) data collection,

weight updating and resampling during each iteration. On the

hardware accelerators, the four kernels are deployed on both

FPGA and GPU.

IV. PROFILING AND OPTIMIZATION

A. Profiling

Profiling of the application is needed to locate the hotspot

of the source code so that the bottleneck can be identified

and optimized. To figure out the execution time and flow

distribution of the program, the high-level source code is

segmented into several blocks and then the execution time of

each block is measured. Table I gives a list of the main code

blocks whose executions express the skeleton of the whole

program. For each code block, time stamps are inserted before

and after the execution of the code and the proportion of time

cost in the total time consumption is calculated after each run.

In theory, the code block that consumes the most part of the

total time is optimized first.

As can be seen in Section V-B, the kernel execution time

takes up the majority of overall time cost, consequently in the

following we focus on the kernel optimization and give three

strategies to improve the performance of LDA.

B. Optimization

1) Compute unit replication and loop unrolling: In Open-

CL, the kernel code is instantiated as a work item running

on a compute unit and a group of work items can execute

simultaneously to accelerate the applications. By assigning

more compute units, the performance can be enhanced to a

large margin as long as the peak computation capacity and

resource utilization are not reached. Especially on the FPGA

platform, replicating kernel compute units ensures the increase

TABLE I
LIST OF SOURCE CODE BLOCKS TO BE MEASURED.

No. Name Function
1 kernelRNG random number generation
2 cpMatToArray copy image matrix data into array
3 kernelPRE pre-processing of raw image
4 kernelLD lane detection of ROI
5 extractLine extract good and best lines
6 kernelPF lane tracking of ROI
7 resample particles resampling

of data throughput at the expense of memory bandwidth

contention among compute units.

Loop unrolling is a code transformation technique used to

reduce program’s execution time at the expense of its binary

size, which is known as the space-time tradeoff. By unwinding

the loop code several times, the control statements are reduced

or avoided so that the branches are minimized. On the GPU

side, loop unrolling is implemented by manually replacing the

loop with repeated sequential statements which eliminates the

branches penalty. Loop unrolling on the FPGA board increases

the length of pipeline, thus overlapping the executions of more

logic units. On both platforms, due to the expansion of loop

size, memory read of data chunk can be coalesced as their

have adjacent memory addresses.

For brevity, we use λRC and λLU as notes for the number

of replicated compute units and loop unrolling factor, respec-

tively. Due to device resource limitation, on our test platform

the compute units can be replicated in maximum 3 times and

the loop is unrolled at most 9 times.
2) Accelerator execution time overlapping: The heteroge-

neous implementation of the LDA is data-level parallel and

each kernel is executed on both FPGA and GPU boards.

Here exists a trade-off of how and when the kernels are

invoked from the host side. Generally speaking, an overall

execution of an OpenCL kernel contains at least two API

functions: clEnqueueNDRangeKernel function drives the

kernel code to run and clWaitForEvents function waits

on the host for kernel commands to complete. The kernel func-

tion clEnqueueNDRangeKernel is non-blocking, while

function clWaitForEvents is blocking.

In our implementation, the ICD loader is used and each cl-
function call passes the handler to the corresponding FPGA or

GPU libraries to execute the fpga- or gpu-specific functions.

With regard to the aforementioned four kernels, each time

functions fpgaEnqueueNDRangeKernel, fpgaWaitForEvents,
gpuEnqueueNDRangeKernel and gpuWaitForEvents are re-

spectively called once. These function calls can be interleaved

and consequently their execution order should be carefully

considered. For simplicity, we use short symbols to represent

these API functions and the details are shown in Table II. To

investigate how the call order of these functions influences the

final performance, the functions are permutated to obtain the

full sample space and each case is tested (results shown in

Section V-C2).
3) Adjustable ROI size: As described in Section III-A, only

the ROI of the image frame is processed and information

of pixels falling in this area is further computed. Therefore

decreasing the ROI size could distinctly shrink the calculation

TABLE II
SYMBOLS FOR THE OPENCL API FUNCTIONS.

Symbols API functions
F1 fpgaEnqueueNDRangeKernel
F2 fpgaWaitForEvents
G1 gpuEnqueueNDRangeKernel
G2 gpuWaitForEvents

2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC)

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 14:27:44 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 ROI adjusting scheme

Input: B, roiStart, roiWidth, initRoiStart, initRoiEnd, imgWidth
Output: roiStartAdapted, roiWidthAdapted
1: roiStartAdapted ← roiStart
2: roiEndAdapted ← roiStart+ roiWidth
3: for all bestLine ∈ B do
4: roiStartAdapted ← min{roiStartAdapted, bestLineStart}
5: roiEndAdapted ← max{roiEndAdapted, bestLineEnd}
6: end for
7: if roiStartAdapted < initRoiStart then
8: roiStartAdapted ← initRoiStart
9: else if roiStartAdapted > imgWidth ∗ 0.25 then

10: roiStartAdapted ← imgWidth ∗ 0.25
11: end if
12: if roiEndAdapted > initRoiEnd then
13: roiEndAdapted ← initRoiEnd
14: else if roiEndAdapted < imgWidth ∗ 0.75 then
15: roiEndAdapted ← imgWidth ∗ 0.75
16: end if
17: roiWidthAdapted ← roiEndAdapted− roiStartAdapted
18: if redetection then
19: roiStartAdapted ← initRoiStart
20: roiWidthAdapted ← initRoiEnd− initRoiStart
21: end if

task load and thereupon improve the performance. In our

optimization, the size of the ROI is adjusted each time after

the frame is processed, so that the proper ROI for the next

frame is obtained.

Algorithm 1 gives the details of the ROI adjusting scheme.

First the best line set B is traversed to get the minimum and

maximum coordinates of the lines. These two coordinates are

seen as the candidate start and end positions of the updated

ROI. Then the updated ROI is upper-bounded by the start and

end positions of the initial ROI and lower-bounded by a certain

proportion of the image width (here the thresholds are set as

0.25 and 0.75). If the redetection step is triggered, the size

of the ROI is reset as the same size as the initial ROI. This

scheme ensures that the computation workload of each image

frame is no more than that using unadjusted ROI and no less

than that using only half of the image width.

V. EXPERIMENT AND ANALYSIS

A. Evaluation Setup

Table III is the detailed information about the platform used

in our evaluation and Table IV lists the video streams used in

our experiment, of which the videos cordova1, cordova2,

washington1 and washington2 are from caltech lanes

dataset [16], while others are self-recorded. From the table it

is seen that the frame numbers of the videos have a great

range from 232 to 4992. Moreover, these videos represent

various road situations including day and night, heavy traffic,

blurred and broken lines, street and highway, etc. This aims

to demonstrate a high availability of using the tested LDA for

real scenarios and hence obtain as actual results as possible.

As for the parameters of the LDA, we use 212 good lines
and 213 candidate lines to detect 2 lane markings. Each time

the FPGA side is allocated with different task proportions, i.e,

from 10% to 90% (vice versa the task proportion on the GPU

is from 90% to 10%). Each video is run 10 times per device

and at last the overall results are collected and averaged.

Fig. 2. Normalized execution time distribution of the profiled code blocks.

B. Profiling results

Figure 2 reveals the normalized execution time distribution

of the code blocks in Table I. As can be observed, kernelLD
and kernelPF account for minimum 61.28% (when FPGA

task proportion is 10%) and maximum 85.61% (when FPGA

task proportion is 90%) of the total execution time. These

two kernels are therefore the hotspot of the program and need

to be optimized with top priority. The optimization methods

illustrated in Section IV-B1 and IV-B2 is aimed at this and

the ROI adjusting scheme is used to accelerate the whole

program. Besides, note that cpMatToArray also consumes

considerable time, this is inevitable since the raw image data

has to be read into memory. Optimization of this code block

is viable by either using faster transmission medium, which

is beyond the scope of this paper, or reducing the transmitted

data, which is done by the ROI adjusting scheme.

C. Optimization results

1) Compute unit replication and loop unrolling: As men-

tioned in Section IV-B1, the maximum values of λRC and λLU

are 3 and 9, respectively. We iterated the overall conditions and

found that λRC and λLU cannot reach the maximum value

at the same time, because of the resource limitation on the

FPGA. In details, when λRC = 1, λLU is valid with data

range of [1, 2, · · · , 9]. When λRC = 2, maximum of λLU is

TABLE III
DETAILED SPECIFICATION OF THE HARDWARE PLATFORMS

Platform Information
Host CPU Intel Core 2 Quad Q9300 @ 2.50GHz 4 Cores
Device FPGA GPU
Model Nallatech 385 Quadro K600
Architecture Stratix V GS Kepler GK
OpenCL SDK version Intel FPGA SDK 13.1 Nvidia CUDA 8.0
Peak GFLOPS 294.7 336.4

2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC)

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 14:27:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Performance results of compute unit replication and loop unrolling.

3. As λRC achieves 3, the valid value of λLU is only 1. Table

V summarizes all the possible conditions.

Figure 3 gives the result of the program performance when

λRC and λLU adopt different values. Due to space limit, the

figure only shows results when task proportion on the FPGA

is assigned as 10%, 30%, 50%, 70% and 90%, respectively.

From the figure it is seen that using compute unit replication

gains a larger performance improvement than performing

loop unrolling. When comparing Condition #1 and Condition

#2(#3), or comparing Condition #10 and Condition #11(#12),

we can see that loop unrolling could even degrade the program

performance. The lesson from here is that compute unit

replication is always preferred and loop unrolling speeds up

the performance only when λLU is very large (greater than 2

in our case).

2) Accelerator execution time overlapping: Section IV-B2

indicates that the order of function call influences the total

execution time. Consequently we explored the permutations

of the functions in Table II and tested the possible cases.

TABLE IV
DETAILED INFORMATION OF THE TEST VIDEOS

Video name Total frames Resolution Scenario
cordova1 250 640×480 bus view
cordova2 406 640×480 blur lane

washington1 337 640×480 street shade
washington2 232 640×480 blur lane

street 3056 640×480 street road
day highway 1718 640×480 high way

Frontfacingobstacle 4601 480×360 crossing lane
HighSpeedDrivingShort 1871 1920×1080 high way

clip2 1289 640×360 rural
clip4 899 640×360 dark

night land car 4992 640×480 night
night traffic 2654 640×480 heavy traffic

oli 4 2287 480×320 broken lane
night 4 2799 640×480 night highway

night brokenlanes 1897 640×480 broken lane
Weilerhemmen 4944 640×480 light disturbance

Fig. 4. Performance results with different function call orders.

Since functions F2 and G2 must always be called before F1
and G1 respectively, in total six conditions are deduced and

the performance results of each case is presented in Figure 4.

It is interesting to observe that according to their respective

performance, the six cases can be divided into three groups:
1© {F1F2G1G2, G1G2F1F2}, 2© {F1G1F2G2, G1F1F2G2}
and 3© {F1G1G2F2, G1F1G2F2}. Each case in the same

group gains the equivalent performance. Result of Group 1©
is easily understood as the kernel executions on FPGA and

GPU are sequential, thus there is no hidden execution time.

Cases in Group 2© and 3© exhibit the accelerate execution

time overlapping and the total time cost is shortened. As can

be seen, Group 2© always consume less time than Group 3©
and this is due to the reason that function call of F2 is before

G2. Since F2 and G2 are blocking the process after called,

they have to wait after kernel operations are completed and

then return the handler to the host. Libraries of GPU and

FPGA drivers use different function handling mechanisms so

that their behaviours are implementation- and vendor-specific.

The lesson learned from here is that calling API functions

in an interleaved way can overlap the kernel executions on

different devices and hence boost the performance.

3) Adjustable ROI size: It is evident that the ROI adjusting

scheme can increase the program performance as long as

TABLE V
POSSIBLE CONDITIONS OF COMPUTE UNIT REPLICATION AND LOOP

UNROLLING ON THE TEST PLATFORM

Condition λRC λLU Condition λRC λLU
#1 1 1 #8 1 8
#2 1 2 #9 1 9
#3 1 3 #10 2 1
#4 1 4 #11 2 2
#5 1 5 #12 2 3
#6 1 6 #13 3 1
#7 1 7 - - -

2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC)

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 14:27:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Performance results with step-by-step optimization.

the best lines do not always locate near the border of the

initial ROI. The red and black polylines in Figure 5 show the

performance gains when running LDA with and without the

ROI adjusting scheme. The results indicate that the adjustable

ROI size can increase the performance by 12.88% (average)

and 21.66% (maximum when FPGA task proportion is 30%).

For brevity, Figure 5 also presents the step-by-step opti-

mization results of the strategies explained in Section IV-B1,

IV-B2 and IV-B3. Note that each optimization method is

gradually used. From the figure it is observed that compute

unit replication and loop unrolling boosts the performance

to the largest margin, with an increase by 66.41% (average)

and 130.20% (maximum when FPGA task proportion is 80%).

Accelerator execution time overlapping further improves the

performance by 21.60% (average) and 40.48% (maximum

when FPGA task proportion is 20%). In summary, our op-

timization gains a 2.27x (average) and 2.90x (maximum when

FPGA task proportion is 60%) speedup when compared with

the unoptimized parallel LDA application.

VI. CONCLUSION AND FUTURE WORK

This paper investigates the optimization of the heteroge-

neous executions of an OpenCL-based LDA. The program

is first profiled to locate the performance bottlenecks of the

implementation. Then three optimization strategies are used

to accelerate the application, from the perspective of kernel,

host and the algorithm itself. Compute unit replication and

loop unrolling is performed on the kernel code and the kernel

function calls are scheduled in an interleaved way to hidden the

on-device execution time. Finally the ROI size is tuned during

every iteration of the frame processing to speed up the overall

program performance. Experimental results indicate that our

three methods can effectively reduce the time consumption

and on average the optimization implementation increases the

performance by 127% when compared with the naive parallel

LDA application.

Our future work is to use the optimization methods to speed

up more ADAS applications and give a general optimization

paradigm. Further research is also necessary to investigate

the workload distribution among the accelerators so that load

balance can be achieved to obtain an optimal heterogeneous

execution.

ACKNOWLEDGMENT

This work is supported in part by the scholarship from

China Scholarship Council (CSC) under the Grant Number

201506270152.

REFERENCES

[1] D. P. Rodgers, “Improvements in multiprocessor system design,” in ACM
SIGARCH Computer Architecture News, vol. 13, no. 3. IEEE Computer
Society Press, 1985, pp. 225–231.

[2] K. Huang, B. Hu, J. Botsch, N. Madduri, and A. Knoll, “A scalable
lane detection algorithm on cotss with opencl,” in Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2016, pp.
229–232.

[3] X. An, E. Shang, J. Song, J. Li, and H. He, “Real-time lane departure
warning system based on a single fpga,” EURASIP Journal on Image
and Video Processing, vol. 2013, no. 1, p. 38, 2013.

[4] R. Gopalan, T. Hong, M. Shneier, and R. Chellappa, “A learning
approach towards detection and tracking of lane markings,” IEEE
Transactions on Intelligent Transportation Systems, vol. 13, no. 3, pp.
1088–1098, 2012.

[5] M. Nieto, A. Cortés, O. Otaegui, J. Arróspide, and L. Salgado, “Real-
time lane tracking using rao-blackwellized particle filter,” Journal of
Real-Time Image Processing, vol. 11, no. 1, pp. 179–191, 2016.

[6] R. Dietrich and R. Tschüter, “A generic infrastructure for opencl per-
formance analysis,” in IEEE 8th International Conference on Intelligent
Data Acquisition and Advanced Computing Systems: Technology and
Applications (IDAACS), vol. 1. IEEE, 2015, pp. 334–341.

[7] D. Gadioli, S. Libutti, G. Massari, E. Paone, M. Scandale, P. Bellasi,
G. Palermo, V. Zaccaria, G. Agosta, W. Fornaciari et al., “Opencl
application auto-tuning and run-time resource management for multi-
core platforms,” in IEEE International Symposium on Parallel and
Distributed Processing with Applications (ISPA). IEEE, 2014, pp. 127–
133.

[8] T. Lutz, C. Fensch, and M. Cole, “Helium: a transparent inter-kernel
optimizer for opencl,” in Proceedings of the 8th Workshop on General
Purpose Processing using GPUs (GPGPU). ACM, 2015, pp. 70–80.

[9] P. Mistry, C. Gregg, N. Rubin, D. Kaeli, and K. Hazelwood, “Analyzing
program flow within a many-kernel opencl application,” in Proceedings
of the 4th Workshop on General Purpose Processing on Graphics
Processing Units (GPGPU). ACM, 2011, p. 10.

[10] J. Zhang and J. Li, “Improving the performance of opencl-based fpga
accelerator for convolutional neural network,” in Proceedings of the
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (ISFPGA). ACM, 2017, pp. 25–34.

[11] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J.-s.
Seo, and Y. Cao, “Throughput-optimized opencl-based fpga accelerator
for large-scale convolutional neural networks,” in Proceedings of the
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (ISFPGA). ACM, 2016, pp. 16–25.

[12] W. Wang, Y. Zhang, S. Yan, Y. Zhang, and H. Jia, “Parallelization and
performance optimization on face detection algorithm with opencl: A
case study,” Tsinghua Science and Technology, vol. 17, no. 3, pp. 287–
295, 2012.

[13] I. Sobel, “An isotropic 3× 3 image gradient operator,” Machine Vision
for three-demensional Sciences, 1990.

[14] N. J. Gordon, D. J. Salmond, and A. F. Smith, “Novel approach to
nonlinear/non-gaussian bayesian state estimation,” in IEE Proceedings
F-Radar and Signal Processing, vol. 140, no. 2. IET, 1993, pp. 107–
113.

[15] David B. Thomas, “The MWC64X Random Number Generator,”
http://cas.ee.ic.ac.uk/people/dt10/research/rngs-gpu-mwc64x.html, 2011.

[16] Mohamed Aly, “Caltech Lanes Dataset,”
http://cas.ee.ic.ac.uk/people/dt10/research/rngs-gpu-mwc64x.html,
2014.

2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC)

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 14:27:44 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

