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Abstract

Modern imaging modalities have revolutionized our lives by offering a deeper under-
standing of the nature. Discovery of x-rays however, allowed the exploration of different
structures and to exploit a micro-scaled information of human bodies, industrial objects
and materials. In total, several imaging modalities became available using different types
of x-ray contrasts, namely, absorption, phase contrast and dark-field.

In this work, we study two modern x-ray imaging modalities and propose several
data processing and analysis chains along with evaluation techniques to investigate the
effectiveness of proposed methods.

In the first part, we study X-ray Tensor Tomography, a novel imaging modality for
three-dimensional reconstruction of x-ray scattering tensors from dark-field images
obtained in a grating interferometry setup. One of the main limitations of X-ray Tensor
Tomography is the degradation of the measured two-dimensional dark-field images due
to the detector readout noise and insufficient photon statistics which is consequently
affecting the three-dimensional volumes reconstructed from this data.

In this study, we investigate different two- and three-dimensional noise reduction and
regularized reconstruction methods based on Total Variation technique incorporated into
the XTT processing pipeline using different schemes. The quantitative and qualitative
evaluation based on datasets from several industrial material samples as well as a clinical
sample reveal both qualitative and quantitative improvements in noise reduction for all
proposed methods compared to the method without denoising.

In the second part, we study Liver CT perfusion which is a novel x-ray imaging
technique to enable the evaluation of perfusion metrics that can reveal hepatic diseases
and that can be used to assess treatment responses. Despite the several potential
applications of CTP, associated x-ray radiation dose with hepatic CTP studies is significant,
as it requires many CT datasets spread over about a minute of acquisition. Radiation
dose issues limit the more widespread use of CT perfusion as a diagnostic tool. Several
traditional image processing methods have been proposed to reconstruct individual
temporal samples. However, the sequential scans acquired in CT perfusion share a large
amount of anatomical information between temporal samples suggesting an opportunity
for improved data processing.

In this work, we adopted a prior-image-based reconstruction approach called Recon-
struction of Difference to enable low-exposure data collections in CTP. Several simulation
studies have been performed using a four-dimensional digital anthropomorphic phantom
which was derived from a combination of human models and measured time-attenuation
curves from animal studies. Several evaluations have been performed to assess the
quality of temporal reconstructions and the accuracy of the estimated time-attenuation
curves, and to investigate the common perfusion metric maps including hepatic arte-
rial perfusion, hepatic portal perfusion, hepatic perfusion index and time-to-peak. The
studies suggest that Reconstruction of Difference enables significant exposure reductions
and can outperform both standard analytic reconstruction as well as more sophisticated
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model-based reconstruction.
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Zusammenfassung

Moderne Bildgebungsmodalitäten erlauben ein tieferes Verständnis der Natur und
haben dadurch unser Leben revolutioniert. Die Entdeckung von Röntgenstrahlen er-
möglichte die Erforschung von verschiedenen Strukturen und die Ausnutzung von
Informationen über den menschlichen Körper, industrielle Objekte und Materialien auf
Mikroskalen. Insgesamt wurden mehrere Bildgebungsverfahren entwickelt, die ver-
schiedene Röntgen-Kontrastmechanismen benutzen, insbesondere Absorption, Phasen-
Kontrast und Dunkelfeld.

In dieser Arbeit untersuchen wir zwei moderne Röntgen-Bildgebungsmodalitäten und
stellen mehrere Algorithmen für Datenverarbeitung und Datenanalyse vor, zusammen
mit Auswertungstechniken um die Effektivität der vorgeschlagenen Methoden zu prüfen.

Im ersten Teil untersuchen wir „X-ray Tensor Tomography“, eine neue Bildgebungs
modalität zur drei-dimensionale Rekonstruktion von Röntgen-Streutensoren aus Bildern,
die in einem Grating Interferometer aufgenommen wurden. Eine der größten Limita-
tionen der X-ray Tensor Tomography ist die Verschlechterung der gemessenen, zwei-
dimensionalen Dunkelfeld-Bilder durch Rauschen beim Auslesen des Detektors sowie
durch ungenügende Photonen-Statistiken, was in Folge in den von diesen Daten rekon-
struierten drei-dimensionalen Volumen ebenfalls zu Artefakten aufgrund von Rauschen
führt.

In dieser Arbeit untersuchen wir verschiedene zwei- und drei-dimensionale Meth-
oden zur Reduktion von Rauschen sowie Regularisierungs-Methoden basierend auf
der „Total Variation“ Technik, die auf verschiedene Arten in die XTT Bearbeitungs-
Pipeline eingebunden werden. Die quantitative und qualitative Evaluation auf Basis von
Datensätzen von verschiedenen industriellen Materialproben und einer klinischen Mate-
rialprobe zeigen Verbesserungen in der Rauschunterdrückung bei allen drei Methoden
im Vergleich zu der Methode ohne Rauschunterdrückung.

Im zweiten Teil untersuchen wir Leber CT Perfusion (CTP), eine neue Röntgen
Bildgebungs-Technik, die die Evaluierung von Perfusions-Metriken erlaubt, wodurch
hepatische Krankheiten entdeckt werden können, und womit der Behandlungserfolg
eingeschätzt werden kann. Trotz einige potentieller Anwendungen von CTP ist die
damit assoziierte Röntgen Strahlendosis für hepatische CTP Studien signifikant hoch, da
mehrere CT Datensätze über eine Minute hinweg aufgenommen werden müssen. Das
Problem der Strahlendosis beschränkt daher den weiteren, grösser angelegten Einsatz
von CTP als ein diagnostisches Hilfsmittel. Einige traditionelle Bildverarbeitungsmetho-
den wurden bereits vorgeschlagen, um einzelne zeitliche Aufnahmen zu rekonstruieren.
Allerdings teilen sich die sequentiellen Aufnahmen, die in CTP gemacht werden, einen
großen Anteil von anatomischen Informationen zwischen den einzelnen zeitlichen Auf-
nahmen, was eine Gelegenheit bietet für verbesserte Bildverarbeitungsmethoden.

In dieser Arbeit adaptieren wir a-priori Informationen in die Rekonstruktionsmeth-
ode, genannt „Reconstruction of Difference“, um CTP Aufnahmen mit einer geringen
Strahlendosis zu ermöglichen. Verschiedene Simulations-Studien wurden durchge-
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führt anhand eines vier-dimensionalen anthropomorphischen Phantoms, das wir aus
einer Kombination von menschlichen Modellen und gemessenen Abschwächungskurven
aus Tierstudien. Verschiedene Auswertungen wurden durchgeführt um die Qualität
der Rekonstruktionen zu beurteilen in Hinblick auf Zeit und Genauigkeit der Zeit-
Abschwächungs-Kurven, und um die allgemeinen Perfusions-Metriken zu untersuchen,
insbesondere die hepatische arterielle Perfusion, die hepatische Portal-Perfusion, den
hepatischen Perfusions-Index und die Zeit bis zum Peak. Die Studien legen nahe,
dass durch die „Reconstruction of Difference“-Methode signifikante Reduktionen in der
Strahlendosis möglich sind, und dass die Methode sowohl die Standard-Methoden der
analytischen Rekonstruktion und andere, hoch-entwickelte Modell-basierte Methoden
übertreffen kann.
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INTRODUCTION

1





1. Basics

Great discoveries are made
accidentally less often than the
populace likes to think.

A Shorter History of Science [Dam13]
Sir William Cecil Dampier

Electromagnetic waves can be classified and arranged according to their varying
frequencies; this classification is called electromagnetic spectrum. Visible light region
- the only part of electromagnetic spectrum we can see, is a very narrow band of
wavelengths that is located to the right of the infrared region and to the left of the
ultraviolet region (see Figure 1.1). As the full spectrum of visible light travels through
a prism, the wavelengths separate into the colors of the rainbow due to the different
wavelength of each color. Red has the longest wavelength at around 700 nanometers and
violet has the shortest wavelength at around 380 nanometers. When all the waves are
seen together, they make white light.

In the year 1665, Sir Isaac Newton experimented with light using a prism. In his
experiments, Newton had proved that white light was made up of colors mixed together,
and the prism merely separated them - he was the first person to understand the
rainbow [New04].

Figure 1.1.: The Electromagnetic spectrum describes all the wavelengths of light. The
electromagnetic waves that human eyes detect – visible light – oscillates
between 400 and 790 terahertz.

In the year 1800, Sir William Herschel was exploring the question of how much heat
was contained by the different colors of visible light [Her00]. In his experiment, he placed
several thermometers under each color separated using a glass prism and found that
the thermometer that was seemingly out of the light had the highest temperature. Thus,
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1. Basics

he discovered infrared light. A year later, Johann Wilhelm Ritter discovered ultraviolet
light [Rit06].

In 1867, James Clerk Maxwell, an English scientist, developed a scientific theory to
explain electromagnetic waves [Max65]. He noticed that electrical fields and magnetic
fields can couple together to form electromagnetic waves. Neither an electrical field,
nor a magnetic field will go anywhere by themselves. But, Maxwell discovered that a
changing magnetic field will induce a changing electric field and vice-versa.

In 1887 Heinrich Hertz, a German physicist, applied Maxwell’s theories to the produc-
tion and reception of radio waves [Her87]. In his laboratory, Hertz proved the existence
of radio waves in the late 1880s. Hertz showed that these signals possessed all of the
properties of electromagnetic waves.

It took a bit longer for scientists to discover the higher-energy light in the electromag-
netic spectrum.

3



2. X-ray based Imaging

X-ray imaging has been proven to be an incredible component of several medical diagnos-
tic and treatment techniques as well as many industrial Inspections of solid materials and
products. X-ray technology is the oldest and most commonly used form of imaging that
uses ionizing radiation to produce images of the internal structure of different objects.
Owing to the recent advances in computing power, several x-ray based imaging devices
and techniques have been developed and are in use in medical and non-medical applica-
tions, including computed tomography (CT), mammography, interventional radiology
and digital radiography.

2.1 X-radiation or Röntgen-rays
In the evening of November 8, 1895, Wilhelm Röntgen , a German professor of physics,
was the first person to discover electromagnetic radiation in a wavelength range com-
monly known as x-radiation or x-rays today, a significant scientific advancement that
became a useful tool for experiments and observations in several different applications
such as medical imaging and industrial objects’ inspection [Rön96]. Although, many
people had observed the effects of x-ray beams before, Röntgen was the first person to
study them systematically. To highlight the unknown nature of his discovery, he called
them x-rays, though they are still known as Röntgen-rays as well. The first x-ray image
was taken in the same year from Prof. Röntgen’s wife which was recorded on a film,
showing the finger bones and her ring (see Figure 2.1).

For his remarkable achievement, he was honored with the first Nobel Prize in Physics
in 1901. The award was officially "in recognition of the extraordinary services he has
rendered by the discovery of the x-rays or Röntgen-rays subsequently named after
him" [AB14].

Royal Swedish Academy of Sciences, mentioned this achievement of Röntgen using
the following words [Odh01]:

"Academy awarded the Nobel Prize in Physics to Wilhelm Conrad Röntgen, Professor
in the University of Munich, for the discovery with which his name is linked for all
time: the discovery of the so-called Röntgen rays or, as he himself called them, x-rays.
These are, as we know, a new form of energy and have received the name "rays" on
account of their property of propagating themselves in straight lines as light does.
The actual constitution of this radiation of energy is still unknown. Several of its
characteristic properties have, however, been discovered first by Röntgen himself and
then by other physicists who have directed their researches into this field. And there
is no doubt that much success will be gained in physical science when this strange
energy form is sufficiently investigated and its wide field thoroughly explored. Let us
remind ourselves of but one of the properties which have been found in Röntgen rays;
that which is the basis of the extensive use of x-rays in medical practice. Many bodies,

4



2. X-ray based Imaging

Figure 2.1.: The first x-ray projection was taken in 1895 from Prof. Wilhelm Röntgen’s wife
which was recorded on a film, showing the finger bones and her ring [Kev98].

just as they allow light to pass through them in varying degrees, behave likewise
with x-rays, but with the difference that some which are totally impenetrable to light
can easily be penetrated by x-rays, while other bodies stop them completely. Thus,
for example, metals are impenetrable to them; wood, leather, cardboard and other
materials are penetrable and this is also the case with the muscular tissues of animal
organisms... ."

2.2 Generation of X-rays
X-rays are waves of electromagnetic energy. They behave in a similar way as light rays, but
at much shorter wavelengths - in the range of 0.01-10 nm - and are capable of penetrating
some thickness of matter. There are three major ways that x-rays are generated. The
most common is the Bremsstrahlung process. Bremsstrahlung is a German term that
means "braking rays". It is an important phenomenon in the generation of x-rays where
rays are produced by slowing down of the primary beam electrons by the electric field
surrounding the nuclei of the atoms in the sample [Low58].

Another method is K-shell emission, where a high energy electron knocks an electron
from an inner orbit in an atom, and an x-ray is emitted with the replacement of that
electron.

The third method occurs in a synchrotron, which is a subatomic particle accelerator
that creates high intensity x-rays used for nuclear studies.

2.2.1 X-ray Tubes
The x-ray tubes serve the function of creating x-ray photons from electric energy supplied
by the x-ray generator [oth60; HN82; Nas14]. An x-ray tube is a vacuum tube which
is converting electrical input power into the x-rays. X-ray tubes have evolved from the
experimental Crookes tubes with which Röntgen implemented his first experiments.
Crookes tubes are cold cathode tubes which means that they do not include a heated
filament in them to release electrons like the later electronic vacuum tubes. Instead,
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Figure 2.2.: A diagram of a modern x-ray tube. This type of tube was devised by Coolidge
in 1913 [SP08].

electrons are generated by the ionization of the residual air by a high DC voltage which
is applied between the electrodes [Beh15; Alb77].

In 1913, William Coolidge invented the Coolidge tube, an x-ray tube with an improved
cathode to be used in x-ray machines which enabled more intense visualization of deep-
seated anatomy and tumors. Figure 2.2 illustrates basic parts of an original Coolidge
tube including a spherical bulb with two cylindrical arms, cathode arm and the anode
arm [Coo16].

2.2.2 Synchrotron X-rays
X-ray photons can also be created under different conditions. A synchrotron is an ex-
tremely powerful source of x-rays. The x-rays are produced by high energy electrons
which circulate around the synchrotron. Synchrotron x-rays can be used for traditional
x-ray imaging, phase-contrast x-ray imaging, and tomography. The Ångström-scale wave-
length of x-rays enables imaging well below the diffraction limit of visible light [Win97;
Wil91; Van79]. Extremely bright, short x-ray pulses which are tuned to selected wave-
length regions, have several applications including the probing of chemical reactions on
surfaces, electronic structures of semiconductors and magnetic materials, the structure
and function of proteins and biological macromolecules and also for photon activation
therapy, tomotherapy, microbeam radiation therapy [Lew97; AJ94; Bla05].

2.3 Interaction of X-rays with Matter
X-rays in the diagnostic range interact with matter via two main processes, which are
fundamental of the image formation in a radiographic measurement process. These
processes are the photoelectric effect (photoelectric absorption) and Compton effect or
Compton scattering [Set06; Spa94].

Photoelectric absorption (PEA) is a form of interaction of x-rays or gamma photons
with the matter (see Figure 2.3). A low energy photon interacts with the electron in
the atom and remove it from its shell. Photoelectric interactions usually happen with
electrons that are firmly bound to the atoms with a relatively high binding energy.

Photoelectric interactions are most probable when the energy of the electron is slightly
less than the photon energy. If the binding energy is more than the energy of the photon,
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Figure 2.3.: Photoelectric absorption process: a photon undergoes an interaction with an
absorber atom in which the photon completely disappears.

a photoelectric interaction will not occur. This interaction occurs only when the photon
has enough energy to overcome the binding energy and to remove the electron from its
atom [Eva68].

Compton effect or Compton scattering is another form of photon interaction. It is the
main cause of scattered radiation in a material which happens due to the interaction of
the x-rays or gamma photons with free electrons (unattached to atoms) or loosely bound
valence shell (outer shell) electrons [Hub82; Eva68] (see Figure 2.4).

2.4 Applications of X-rays
In clinical applications, two-dimensional Röntgen images as well as three-dimensional
images of human body acquired in computed tomography (CT) scanners are obtained by
using x-rays.

Several x-ray imaging modalities have been developed based on the different attenu-
ation of x-rays in the structures [WK03]. Different composition and density of tissues
are the causes for the variance in x-ray transmissions. For instance, hard tissues like
skeletal structures absorb x-rays more than lowly absorbing parts, such as surrounding
tissues. However, low x-ray attenuation acquired in softer tissues like liver and some of
the lesions which usually contain only minor density difference, results in poor x-ray
images [HRH03]. More advanced x-ray imaging techniques such as CT perfusion (CTP)
imaging method, have been recently developed to address these limitations by employing
contrast administrations in combination with dynamic acquisition based imaging meth-
ods [Win05; Koe98; Pan05]. Recently, an advanced family of x-ray imaging techniques
have been developed by using different physical concepts such as phase-contrast rather
than traditionally used attenuation contrast [Mar16; Mom96; Pfe07; BCS12; Hoh06].
X-ray dark-field imaging is another instance of the newly developed x-ray imaging
modalities which is being used for measurements and reconstruction of different clinical
and non-clinical samples [Pfe08b; Jen10].
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Figure 2.4.: Elastic scattering takes place between the incident photon and an electron in
the absorbing material.

Several x-ray phase-contrast and dark-field imaging methods exist. Among them are
crystal interferometer based phase-contrast, diffraction-enhanced imaging and propagation-
based phase-contrast. Most of these methods are limited to synchrotron setups, requir-
ing monochromatic and highly coherent x-ray illumination as well as a small field of
view [Sni95; BH65; FGZ80].

Grating-based x-ray interferometry, is a recently developed method that offers the
advantage of using the conventional polychromatic laboratory x-ray sources without the
necessity of a monochromator, enabling the use of relatively high flux and short exposure
times as well as the capability of acquiring absorption, phase-contrast and dark-field
signals simultaneously in the same measurement [Pfe06a; Mom03; Pfe08b; Bec10; Pel14a].
Despite certain problems such as phase wrapping, x-ray phase-contrast based imaging
methods have since become quite popular, particularly due to their improved soft-tissue
contrast, and several research studies currently investigating their applications.

Dark-field imaging techniques have recently become quite popular in several fields due
to their promising results for medical applications, such as the diagnosis of pulmonary
emphysema in lungs, providing better resolution of small, calcified tumor nodules in
breast scanning [Gra15; Yar13; And05; Sid11], the visualization of the orientation of bone
micro-architecture without requiring high resolution detectors [Pot12], x-ray imaging
using microbubbles as a scattering contrast [Vel13], reconstruction of tiny dentinal tubules
[Vog15], and also in material science applications, for example to acquire quantitative
information on the form and structure factor of materials [Pra15] and investigation of the
fiber orientation of injection moulded polymers [Han15; Rev11].

Grating-based x-ray interferometry is one of the techniques used to exploit x-ray
dark-field contrast images [Mom03; Con12]. This technique, offers the advantage of
using a conventional polychromatic laboratory x-ray source without the necessity of a
monochromator, enabling the use of relatively high flux and short exposure times as
well as the capability of acquiring absorption , phase-contrast and dark-field signals
simultaneously in the same measurement [Pfe06a; Mom03; Pfe08b]. More discussions of
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Figure 2.5.: Three different x-ray contrast projections of a femur sample, (A) Absorption
contrast shows the attenuated parts of the sample, (B) Phase contrast which
visualizes its phase-shifting properties, and (C) Dark-field contrast which is
sensitive to scattering structures.

grating based imaging can be followed in chapter 6.
Figure 2.5 shows three different contrast projections of a femur bone sample measured

within a grating-based x-ray interferometry setup.
Recently, new applications have been developed using grating-based x-ray interfer-

ometry to utilize acquired dark-field contrast measurements and to three-dimensional
reconstruction of volumetric samples. Among them is X-ray Tensor Tomography (XTT),
which is a novel dark-field imaging modality for three-dimensional reconstruction of
x-ray scattering tensors from dark-field projections obtained in a grating interferometry
setup. Similar to other novel imaging modalities, several challenges related to XTT
measurement, data models and images’ quality needs to be addressed. One of the main
issues in XTT imaging modality, is that two-dimensional dark-field images measured in
XTT are degraded by noise effects, such as detector readout noise and insufficient photon
statistics, which is consequently affecting the reconstructed three-dimensional volumes
to show noise artifacts.
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In this section, we first introduce a brief history of computed tomography in section 3.1.
Next, we will introduce a theoretical concept of computed tomography imaging in sec-
tion 3.2 and finally will explain the tomographic reconstruction algorithms in section 4.1.

3.1 Background
Computed tomography (CT) is one of the well-established x-ray imaging modalities
with wide spread applications from medical diagnosis to industrial non-destructive
testing [Kal06]. CT technology has seen remarkable innovations in the past decades
which have improved the performance of this modality in diagnosis and steadily increased
its clinical indications. The first successful practical implementation of the theory was
achieved in 1972 by Sir Godfrey Newbold Hounsfield [AH73], who played a vital role in
the development of CT by conducting several experiments based on the mathematical
theories of Allan McLeod Cormack in 1964 [Cor63]. They received a Nobel Prize for their
contributions in the development of CT, and Hounsfield’s name was selected to be as a
standard measurement unit for recorded x-ray attenuation.

3.2 Theory
A CT scanner combines a series of two-dimensional x-ray projections taken from different
angles and uses computer processing to create three-dimensional images, or slices, of a
medical sample like bones, blood vessels and soft tissues inside the human body or some
industrial materials.

Due to the three-dimensional nature of CT scans, this modality provides more detailed
information in comparison to a single x-ray image acquisition. In fact, conventional CT
scanners are developed to acquire the absorption contrast projections. Due to this reason,
CT imaging is one of the mostly used modalities for imaging of hard tissues like bones
rather than softer tissues. However, recent advances in x-ray imaging modalities such as
contrast enhanced imaging and introduction of phase and dark-field contrast imaging
methods have proved a potential for precise measuring and visualizing of softer tissues
like hepatic tumors, brain tissue and long nodules.

3.3 Applications
Owing to the recent advancements in mechanics, electronics and computing power, the
CT scanning time has been reduced, resultant images have a better quality and readability
which helps CT scanners to be chosen as a good non-invasive imaging technology for
clinical and non-clinical studies.
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Figure 3.1.: (A) Godfrey Newbold Hounsfield developed the first CT scanner, and (B)
Transverse slice imaging of the brain at low resolution with 80× 80 pixels
became the standard CT application in the 1970s [Kal06].

Figure 3.2.: Illustration of a typical x-ray absorption tomography setup including an x-ray
tube (X), sample (S) with one degree of freedom (rotation angle φ), and x-ray
detector (D).

3.3.1 Clinical Applications
CT enables direct imaging and differentiation of soft and hard tissue structures in
abdomen, head and chest such as liver, lung tissue, fat, bone etc. It is especially useful
in detecting for presence, size, spatial location, texture and extent of different types of
abnormalities such as lesions, tumors and metastasis within body organs.

3.3.1.1 Abdomen

The abdomen contains several organs of the gastrointestinal, urinary, endocrine, and
reproductive systems including liver, kidneys, pancreas, spleen, GI tract, and the area
around these organs. A CT scan of the abdomen may be performed to assess the
abdominal organs for lesions, injuries, or other abnormalities and also to investigate
the effects of treatments on tumors [Hsi09]. Applying CT to hepatic imaging reveals
promising results in detection and characterizing of liver masses and hepatic tumors.
Several studies have been conducted to investigate the applicability of CT perfusion
imaging for detecting and analyzing of hepatocellular carcinoma (HCC), which is known
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as an epithelial tumor originating in the liver and composed of cells with characteristics
similar to those of normal hepatocytes [Rod01]. A CT scan of the kidney may be
performed to assess for tumors and other lesions, obstructions such as kidney stones and
abscesses[Ryd00].

3.3.1.2 Bone

CT scans are frequently performed to evaluate the bones, and joints for damage, lesions,
fractures, or other abnormalities, particularly when another type of examination, such as
X-rays or physical examination are not conclusive.

CT imaging of the bone is used to image the temporal anatomy as a useful map for
diagnosing pathologic disorders such as inflammatory and neoplastic processes and
identifying pertinent positives and negatives [JGM13]. High resolution CT scans could be
also utilized to study and diagnosis of osteoporosis based on the measurement of bone
mineral density (BMD) [Kan05].

3.3.1.3 Head

CT scans of the head can provide detailed information about head injuries, severe
headaches, dizziness, stroke and brain tumors. One of the major advances in modern
neuroimaging applications was the use of the contrast enhanced CT approach, which
enabled the accurate anatomic localization of brain lesions. A CT scan of the brain may
also be utilized to investigate the results of a treatment on brain tumors and to detect
abnormalities in the brain responsible for strokes. CT perfusion of the brain is also
used to analyze the blood flow in the brain which shows the areas of the brain that are
adequately supplied or perfused with blood and provides information on delivery of
blood to the brain [Cas14].

3.3.1.4 Chest

CT scans are frequently performed to detection of abnormalities and to help diagnosis of
unexplained cough, shortness of breath, chest pain, or fever. Lung nodules are detected
very commonly on CT scans of the chest, and the ability to detect very small nodules
improves with each new generation of CT scanner [Awa04].

Several worldwide large-scale clinical lung cancer screening trials are being conducted
using the low-dose CT (LDCT) examinations, investigating whether early detection of
lung cancer in high-risk individuals will eventually reduce lung cancer. In lung cancer
screening, individuals who have a high risk of developing lung cancer but no signs or
symptoms of the disease are being imaged using LDCT scanning of the chest [DWH03]
to find related disorders and diseases before symptoms begin.

3.3.2 Non-clinical Applications
Industrial CT is an emerging laboratory-based non-destructive testing technique that is
used in several applications for inspecting the industrial samples, machine parts and
manufactured devices. Usually, µCT scanners are used for industrial non-destructive
testing due to their superior resolution compared to medical CT scanners [PRG16]. Its use
is also widely found in academic research, with several research and applications in food
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science [Sch16], material science [MW14] as well as in geoscience applications [CB13].
Recently, CT imaging has successfully entered the field of coordinate metrology as a
flexible measurement technique for performing dimensional measurements on industrial
parts [War16].

3.4 Artifacts in CT
Artifacts can seriously degrade the quality of images in computed tomography scans,
which could make them diagnostically unusable. To improve image quality, it is essential
to understand why artifacts occur and how they can be corrected or removed.

CT artifacts originate due to the range of reasons. Physics-based artifacts occur due to
the physical processes in the acquisition process of images. Patient related artifacts are
happening due to the several factors associated with patient movement or the presence
of metal part in or on the patient body. Scanner related artifacts result from issues in
scanner functioning parts. However, in most of the cases, careful patient positioning
and precise selection of scanner parameters are the most vital factors to prevent CT
artifacts [Hsi09; BK04].

Noise, is one of the most commonly encountered artifact in CT images as a result of
the statistical error of reduced photon counts, which results in several bright and dark
streaks appearing along the direction of greatest attenuation [Hsi09]. Several iterative
reconstruction techniques associated with regularization and noise reduction methods
have been proposed to reduce the effect of this artifact [Nak05]. We will discuss more
about this artifact and several pipelines including denoising methods and reconstruction
techniques to prevent reduced image quality in the next chapters (see part I,chapter 11).

Beam hardening and scattering are two other commonly existing types of artifacts
that produce dark streaks in the CT images. Iterative reconstruction and several post-
processing approaches methods have been proposed to reduce the effect of this class of
artifacts [Van11; BF12; WFV00]. Its also proved that, dual energy CT imaging can reduce
the effects of beam hardening artifact by scanning the target with two different energies.
The acquired information can be used to derive virtual monochromatic images that do
not suffer from beam hardening effects [AM76].

Metal artifacts are another commonly seen artifacts that occur due to the existence of
high density objects such as metal prostheses, surgical clips, or dental fillings which could
generate streak-like lines in CT images [De 99; De 00]. Several techniques have been
proposed to address the metal artifact reduction. Among them are iterative metal deletion
technique [BF11], or a technique to determine the implant boundaries semi-automatically
and to replace the missing projection data by linear interpolation [KHE87].

Recently, Stayman et. al. [Sta12] proposed a Known-Component reconstruction method
to reduce the artifacts such as noise and streaking due to the existing of metal implants
that degrade the image quality. This method is integrating the already known shape and
material information of an object into the reconstruction problem benefiting a registration
step for the known component [Xu17; Zha17].
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While advances in CT hardware technology continue to overcome its physical limitations,
recent updates in computing power have opened additional doors for improving the
performance of CT imaging via more advanced processing methods, such as tomographic
reconstruction techniques.

Mathematically, computed tomography can be assumed as an inverse problem, since
it recovers the attenuation coefficients of a measured sample from a set of transmission
values. As shown in Figure 3.2, rotation of a sample results in several number of
coefficients of the two-dimensional Fourier transform for each sample slice. Tomographic
reconstruction seeks to estimate a specific system from a finite number of projections.
The mathematical fundamentals for tomographic imaging was described by Johann
Radon [Rad86].

As shown in Figure 4.1, the projection of an object is a set of line integrals acquired
during the measurement process at an arbitrary given angle such as θ.

Assuming the data collection process as a series of parallel rays, at position, across a
projection at angle θ, the computed tomography problem can be given according to the
Beer-Lambert law [Buz08], which describes the absorption of x-rays as,

I = I0e−
∫

µ(x,y)ds, (4.1)

where µ(x, y) refers to the attenuation coefficient which is specific to each material and I
and I0 denote the transmitted and incident intensities respectively.

In theory, the inverse Radon transformation would yield the original image. Fourier
slice theorem states that the values along the one-dimensional Fourier transform of
a parallel projection of an object’s slice are equal to those along a line parallel to the
detector through the center of the slice’s two-dimensional Fourier transform. In other
words, if we had an infinite number of one-dimensional projections of an object taken at
an infinite number of angles, we could perfectly reconstruct the original object, f (x, y).
However, in practical applications, there exist a finite number of projections available.

Figure 4.2 shows a visual illustration of the Fourier slice theorem.

4.1 Reconstruction Algorithms
Image reconstruction in CT imaging is a mathematical process that generates tomographic
images from x-ray projection data acquired at many different angles around the patient
and has fundamental impacts on image quality, radiation dose and therefore on diagnosis
process.

Image reconstruction algorithms play a critical role in the quality and appearance of
tomographic images. These methods are divided into two major categories, analytical
reconstruction methods and iterative reconstruction (IR) techniques. Although iterative
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Figure 4.1.: Sketch of a tomographic measurement at a given angle θ.

Figure 4.2.: Illustration of the Fourier slice theorem: one-dimensional Fourier transform
(1D FT) of a projection taken at angle θ equals the central radial slice at angle
θ of the two-dimensional Fourier transform (2D FT) of the original object.

image reconstruction algorithms were used to generate images with the very first commer-
cial clinical CT scanner and underwent substantial improvements in the 1980s, especially
in the context of emission tomography, analytical algorithms were used for CT image
reconstruction due to their faster image reconstruction and ease of implementation [SV82;
Sin10; L84a].

4.2 Analytical Reconstruction Methods
Analytical methods are a commonly used category of image reconstruction techniques
for CT imaging modality. The most commonly used analytical reconstruction methods
on commercial CT scanners are all in the form of filtered back-projection (FBP), which
uses a one-dimensional filter on the projection data before back-projecting (two- or
three-dimensional) the data onto the image space [Gey15; Oli11; FDK84].

As already mentioned, the reconstruction process is the solution of the resulting
integral equations by inversion which is also called back projection process. In other
words, back projection describes the propagation of the measured projections into the
image domain and is also combined with applying of a filter such as Ram-Lak filter.
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Figure 4.3.: A simplified schematic of CT data reconstruction in the context of analytic
reconstruction technique: FBP.

In clinical practice, different variations of the filter (kernels) can be chosen [Gen02]
depending on the target that is being imaged. Figure 4.3 displays a simplified pipeline of
CT data reconstruction in the context of FBP.

Several limitations reduce the performance of analytical reconstruction methods for
practical medical and industrial scenarios. These methods generally ignore associ-
ated noise of measurements in the problem and tries to reduce this artifact’s effect by
post-filtering operations. Also, it is usually assumed that the measurements are done
continuously and integral solutions are being applied [Fes].

4.3 Iterative Reconstruction Techniques
Iterative reconstruction (IR) refers to a category of algorithms used in CT imaging that
begin with an image assumption, and compares it to the real time measured values while
making constant adjustments until these two are in agreement‘[Her09; Hu99].

Figure 4.4.: A simplified schematic for principle steps of iterative reconstruction tech-
niques for CT data.

Due to the recent advances in computing power, IR algorithms have become a clinically
viable option in CT imaging scenarios. The principle of iterative image algorithms
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is illustrated in Figure 4.4 in several steps. As shown in this figure, following a CT
acquisition process to measure projections, a first image estimation is generated. An x-ray
beam is simulated via forward projection to obtain simulated projection data, which are
then compared with the measured projection data. In case of difference, the first image
estimation will be updated based on the features of the underlying method.

This correction of image and projection data will be repeated to reach to a condition
predefined by the algorithm and then final image will be generated [Fes00; Fes].

Due to the major difference in data handling in FBP and IR methods, reconstructed
images from IR may have a different appearance (e.g., noise texture) from those using
FBP approach. Its also known that the spatial resolution in a local region of IR images
is highly dependent on the contrast and noise of the surrounding structures due to the
non-linear regularization term and other factors during the optimization process [FR96].

4.3.1 Algebraic Reconstruction Technique (ART)
The algebraic reconstruction technique (ART) was the first widely used iterative approach
with a long history and rich literature. It was first introduced by Kaczmarz in 1937 [Kac37]
and was independently used by Gordon et al. [GBH70] in image reconstruction. ART is a
reconstruction algorithm that uses a set of projections to reconstruct the desired object.

Assuming the original linear problem AX = Y, we can write,

N

∑
j=1

aijxj = yi, s.t. i = 1, 2, ..., M and j = 1, 2, ..., N, (4.2)

where aij is the weighting parameter which denotes the influence of ith cell on the jth
line integral, xj is the constant intensity value of the jth cell, N refers to the total number
of cells, and M refers to the total number of rays.

The implementation procedure starts with an initial guess, x(0) at the solution, and
continues by projecting x(0) onto the first plane giving x(1). his process is updated so on
and can be formulated as projection of x(i−1) on the ith plane which yields x(i) as,

xk+1
j = xk

j +
(yi −∑N

m=1 aim.x(k)m )

∑N
m=1 a2

im

.aij, s.t. i = 1, 2, ..., M and j = 1, 2, ..., N, (4.3)

Updating process of Equation 4.3 continues until all the projections are considered and
all the pixel values converge to a solution [Gor74].

Figure 4.5 illustrates a visual flowchart of algebraic reconstruction technique.

4.3.2 Simultaneous Iterative Reconstruction Technique (SIRT)
Simultaneous Iterative Reconstruction Technique (SIRT) is an improved version of the
original ART approach with several major alterations to evaluate only one correction
term for each grid cell and to consider all observations. The correction term is therefore
independent of the order of the constant vector. Update term for SIRT is given by [KS88],

xk+1
j = xk

j +
M

∑
i=1

λaij
yi −∑N

j=1 aij.x
(k)
j

∑N
i=1 aij

, s.t. i = 1, 2, ..., M and j = 1, 2, ..., N, (4.4)
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Figure 4.5.: Flowchart of algebraic reconstruction technique.

where aij refers to the weighting parameter which denotes the influence of ith cell on the
jth line integral, xj is the constant intensity value of the jth cell, N is the total number of
cells, M is the total number of rays and yi refers to the measured data whereas λ denotes
the relaxation parameter.

SIRT approach requires several iterations to converge to a solution. A criteria could be
defined to be small in number, which controls the number of iterations. Another possible
approach would be to define a criterion such as |yi − ∑N

j=1 aij.x
(k)
j | < ε, where ε has a

small value.

4.3.3 Simultaneous Algebraic Reconstruction Technique (SART)
In 1984, the simultaneous algebraic reconstruction technique (SART) was introduced
with major changes in the standard ART approach. SART had a major impact in CT
imaging scenarios with limited projection data. It generates a good reconstruction in
just one iteration and illustrates superior performance comparing to the original ART
approach. SART formulation described by Andersen and Kak [KS88], is given by,

xk+1
j = xk

j +
λ

∑i aij

M

∑
i=1

aij.(yi −∑N
m=1 aim.x(k)m )

∑N
m=1 aim

, s.t. i = 1, 2, ..., M and j = 1, 2, ..., N,

(4.5)
where λ refers to the relaxation parameter. Larger values of λ may speed up convergence,
however, with larger values, too much weight will be assigned to the last projection,
which prevents convergence. Smaller values will cause the slower convergence, which is
not feasible for real-time applications with larger images.

4.3.4 Conjugate Gradient (CG)
There are some additional approaches for iteratively solving linear systems in mathemat-
ics. The conjugate gradients (CG) method is a widely used iterative algorithm for the
numerical solution of large sparse systems that have a symmetric matrix and are positive
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definite. CG approach was first proposed by Hestenes and Stiefel [HS52; Sti52] in 1952
and has become a well-known method for its rapid convergence in several application
areas [VV86].

Figure 4.6.: A schematic quadratic form for a normal equation (symmetric, positive-
definite) will have a shape similar to a bowl. To search Searching for the
minimum c using steepest descent approach to search for an xmin starting
from an initial guess (x0) is shown in blue. However, the conjugate gradient
method which is utilizing an optimal scheme to find the minimum quickly is
marked in orange. This figure is adapted from [Vog15].

Considering the least-square problem as,

arg min
x
{1

2
‖Ax− y‖2

2} (4.6)

where A refers to the system matrix and y denotes the values measured in a particular
experiment, a solution can be found using the normal equation,

AT Ax = ATy, (4.7)

from which the auxiliary variables could be defined as,

B := AT A, (4.8)

and,

k := AT, (4.9)

where B is square, symmetric and positive-definite. Then, we can define the quadratic
form as,

g(x) =
1
2

xTBx− kTx. (4.10)

Assuming the properties in B, as shown in Figure 4.6, function g will illustrate a
bowl shape around the minimum where the gradient is zero (5g(x) = 0) and will be
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computed as,
5 g(x) = Bx− k, (4.11)

which is simply describing the idea of relaxation approach. A vectorx which is solving a
linear system Bx = k, will also minimize the quadratic form of g(x).

Assuming this relation, rather than solving the normal equation AT Acx = Bx = k =

ATy, it will be possible to to search for a minimum of the quadratic form g(x) while
computing a least-squares image reconstruction. since the minimization problem is
non-linear, steepest descent (gradient descent) would be one possible method to solve
it [FP63].

A simplified pseudo-code of CG approach is illustrated in 2. However, the concept of
CG is to restrict number of search directions, and to take the optimal step size such that
a second search along the same direction is superfluous (see Figure 4.6).

CG approach, is initialized with an arbitrary location (x0), and evaluates the gradient
to obtain a search direction. Then, a new estimate will be computed by moving along this
search line to a close point to the solution with respect to the concept of B-orthogonality
as described in [AMS90; FR64]. One of the most important aspects in CG is the fact
that there is an upper bound on the number of iterations, such that CG is guaranteed
to find the optimal solution of the least-squares problem in as many steps as there are
dimensions, utilizing the mutually B-orthogonal search directions combined with optimal
step lengths [GKR85].

A detailed overview of CG, its applications and generalizations to indefinite or non-
symmetric matrices, can be found in [Saa03].

4.3.5 Maximum Likelihood Expectation Maximization (MLEM)
The methods introduced so far are assuming well-posed problem with some good
measurements and none of them model the statistical properties of the measurement
process.

Likelihood based approaches are another category of methods for photon-limited
conditions that are the standard since decades, in order to support low dose imaging.

The problem of image reconstruction can be formulated as a standard statistical
estimation problem. This leads to the following multiplicative update equation:

xk+1
j = xk

j +
1

∑i aij
∑

i

yi

aT
i x(k−1)

, s.t. i = 1, 2, ..., M and j = 1, 2, ..., N, (4.12)

where the variable k refers to the iteration index.
As shown in Equation 4.19, MLEM approach is iteratively maximizing a likelihood

function which has several advantages over the conventional FBP techniques. These
advantages could be summarized as (1) MLEM methods do not require equally spaced
projection data, (2) they can be utilized for limited set of projection data, and (3) they
yields less artifacts [VSK85; L84a].

4.3.6 Penalized Likelihood (PL)
Penalized likelihood (PL) estimation is a way to consider the complexity of a model while
estimating parameters of different models. In general, instead of applying a simple MLE,
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4. Tomographic Reconstruction

Algorithm 1 Conjugate Gradient algorithm adapted from [She94]

Inputs: B ∈ RN×N : a symmetric positive-definite matrix and y ∈ RN , initial guess
x[0] ∈ RN ,

Outputs: Minimizer x ∈ RN of the quadric problem, g(x) =
1
2

xTBx− kTx.

r := y− By
d := r
δnew := rTr
δ0 := δnew

for it = 0, 1, 2, ... and δnew/δ0 ε2 do
q := Bd

α :=
δnew

dTq
x := x + αd
if it mod NumO f Iters == 0 then

r := b− Bx
else

r := r− αq
end if
δold := δnew

δnew := rTr

β :=
δnew

δold
d := r + βd

end for

the log-likelihood minus a penalty term will be maximized, which is depending on the
model and most often increasing with number of parameters [Fes00].

The objective function of PL reconstruction can be written as,

φ(x; y) = −L(x; y) + β‖ψx‖, (4.13)

where L represents the log-likelihood function which is derived using the Poisson
likelihood assumption and a data model matching. The second term is a traditional
edge-preserving roughness penalty term. The operator ψ denotes a local pairwise voxel
difference operator. The regularization parameter controls the balance between the data
fidelity and roughness penalty allowing user control of the noise-resolution trade-off.
The optimization problem can be written as,

x∆ = argmin
x∈RNx

φ(x; y). (4.14)

This objective can be solved in an iterative manner, using different approaches such
as separable quadratic surrogates method [EF99a]. (more details on separable quadratic
surrogate methods in subsection 4.3.8)
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4. Tomographic Reconstruction

4.3.7 Prior Image Registered Penalized Likelihood Estimation
(PIRPLE)

Prior Image Registered Penalized Likelihood Estimation (PIRPLE) approach was recently
introduced by [Sta13] as a model-based approach which integrates both a (Poisson) noise
model and prior images in the reconstruction process and poses the problem as a joint
registration and reconstruction.

The objective function of PIRPLE includes a joint formula for the registration and
reconstruction as follows,

φ(x; y) = −L(x; y) + βR‖ψRx‖+ βP‖ψP(x−W(λ)xP)‖, (4.15)

where W refers to a transformation operator parameterized by the vector λ. Details of
the PIRPLE, its registration step and operators can be found in [Sta13].

Algorithm 2 Algorithm for iterative solution of the Prior Image Registered Penalized
Likelihood Estimation adapted from [Sta13]

Inputs: initial guess x0, initial guess of registration parameters λ0
0 and initial guess for

inverse Hessian H0
0 ,

Outputs: solution of the PIRPLE objective as stated in Equation 4.15.

for it = 0, 1, 2, ..., NumO f Iters− 1 do
// Registration Step
for r = 1, 2, ..., R do

Compute OλΘ(λ
[n]
r−1, x[n]0 )

BFGS [L84b] update based on {OλΘ(λ
[n]
r−1), H[n]

r−1}
φ̂ := linesearchinλ

[n]
r−1 + φH[n]

r OλΘ(λ
[n]
r−1)

end for
λ
[n+1]
0 := λ

[n]
R

H[n+1]
0 := H[n]

R
// Image Update Step [Sta13]
for j = 1, 2, ..., NumberO f Voxels do

x[n+1]
j := x[n]j + ∆x[n]j

end for
end for

4.3.8 Separable Paraboloid Surrogates (SPS)
A different type of approaches are utilizing optimization transfer principle [De 93], to-
gether with paraboloid surrogates, to maximize the likelihood by locally fitting a simple
paraboloid at the location of the current estimate. In 1999, Separable Paraboloid Surro-
gates (SPS) method, introduced by Erdogan and Fessler [EF99c], is the most commonly
used approach. In this approach, the paraboloid curvature has been precomputed, and
a relaxation scheme is usually utilized. An overview of SPS, and more details on its
applications can be found in [Erd99; AF03].
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4.4 Hybrid Algorithms
Hybrid algorithms combine both analytical and iterative methods using different arrange-
ments. In one example, the initial image is generated by the use of analytical methods (e.g.
FBP), and then iterative methods have been utilized in order to optimize several image
domain characteristics, such as noise [Fun11]. In another example, an iterative algorithm
can be directly used in the reconstruction process to focus on image improvements of an
initial image estimate that is generated by an analytical method [VLR13; Wil13].

4.5 Image Regularization and Noise Reduction
Images can be improved by considering more constraints e.g. fitting the input data subject
to a smooth shape. Mathematically, this can be expressed using Lagrange multipliers [La
97]. General regularised reconstruction can be written as,

arg min
x
{T(x) + λV(x)} (4.16)

where T(x) refers to the data fidelity term, V(x) denotes a penalty function or regulariser
and λ denotes the weight of the penalty term V, and thus its impact in comparison to
the data fidelity term T. The latter is minimised if the additional constraint is met.

4.5.1 Tikhonov Regularisation
Tikhonov regularization, named in honor of Andrey Tikhonov, is the most commonly
used method for regularization of ill-posed problems [Tik63]. The penalty can be written
as,

VTikhonov(x) = ‖Lx‖2
2 (4.17)

where L denotes the Tikhonov matrix and can be utilized based on the specific application,
and an operator mapping the coefficients into the Fourier domain can be used to level
the frequencies of the image.

4.5.2 Total Variation Regularization (TV)
Total Variation regularization (TV) is a most often used penalty in imaging and digital
image processing, that has applications in noise removal. It is based on the principle that
signals with excessive and possibly spurious detail have high total variation, that is, the
integral of the absolute gradient of the signal is high. Considering two-dimensional signal
x, such as images, the TV norm proposed by Rudin, Osher and Fatemi in 1992 [ROF92]
is,

V(x) = ∑
i,j

√
|xi+1,j − xi,j|2 + |xi,j+1 − xi,j|2 (4.18)

which is an isotropic and not differentiable. However, an anisotropic variation which
could be also easier to minimize, is shown as,
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Vanisotropic(x) = ∑
i,j
|xi+1,j − xi,j|2 + |xi,j+1 − xi,j|2 (4.19)

TV has been extensively used as a denoising method in imaging applications [SP08;
Sey18c; Sey13a; SY14a]. Assuming the signal x corrupted by additive white Gaussian
noise,

y = x + n x, y, n ∈ R (4.20)

Standard TV denoising problem can be expressed as,

minx‖y− x‖2
2 + λV(x). (4.21)

where λ refers to the regularization parameter, controlling how much smoothing is
performed. Larger noise levels call for larger λ.

4.6 Compressed Sensing and Sparse Regularization
Compressed Sensing (CS) enables a potentially large reduction in the sampling and
computation costs for sensing signals that have a sparse or compressible represen-
tations [EK12]. While the Nyquist-Shannon sampling theorem states that a certain
minimum number of samples is required in order to perfectly capture an arbitrary signal,
when the signal is sparse in a known basis we can vastly reduce the number of measure-
ments that need to be stored. Consequently, when sensing sparse signals we might be
able to do better than suggested by classical results. This is the fundamental idea behind
CS: rather than first sampling at a high rate and then compressing the sampled data, we
would like to find ways to directly sense the data in a compressed form.

In a recent work, Donoho, showed that a signal having a sparse representation can
be recovered exactly from a small set of linear, nonadaptive measurements. This result
suggests that it may be possible to sense sparse signals by taking far fewer measurements,
hence the name compressed sensing [Don06].

There are some significant factors in original CS method to be considered such as (1)
the image must be sparse, (2) reconstruction of the image must be done using a nonlinear
method, and (3) the standard linear reconstruction method should generate incoherent
view aliasing artifacts by applying the sparsifying transform [EK12],

min‖ψx‖1 s.t. AX = Y, (4.22)

4.6.1 Prior Image Constrained Compressed Sensing (PICCS)
Prior image constrained compressed sensing (PICCS) method considers a high quality
prior image xp to reconstruct the image x from an undersampled data set by solving the
following constrained minimization problem [CTL08a],

minx
[
α‖ψ1(x− xp)‖1 + (1− α)‖ψ2x‖1

]
s.t. AX = Y, (4.23)

Here the sparsifying transforms, ψ1 and ψ2 refer to any transform and α denotes the
regularization parameter.
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4.6.2 Alternating Direction Method of Multipliers (ADMM)
Alternating Direction Method of Multipliers (ADMM) approach has been proposed
by [Boy11], to solve a linear combination of two convex functionals via variable splitting.
The approach is to use two distinct variables while doing the optimization, where the
first one is the minimizing of least-squares data fidelity term and the second one is the
sparsity constraint.

Considering the optimization problem with an assumption of both data and regular-
ization terms being convex as,

arg min
x
{1

2
‖Ax− y‖2

2 + λ‖Tc‖1}, (4.24)

where operator T can be defined as analysis operator, transforming the pixel coefficients
into the coefficients of the respective basis or frame.

Equation 4.25 can be transfered into an equivalent constrained optimization problem
using ADMM and decoupling data and regularization terms as below, [Boy11]

arg min
x
{1

2
‖Ax− y‖2

2 + λ‖z‖1}, s.t. Tx = z. (4.25)

Considering the augmented Lagrangian Lp,

Lp(x, z, u) =
1
2
‖Ax− y‖2

2 + λ‖z‖1 + uT(Tx− z) +
ρ

2
‖Tx− z‖2

2, (4.26)

where the chosen parameter ρ couples Tx and z, and u refers to a Lagrange multiplier. In
general, each iteration of ADMM has three distinct steps which involves two optimization
problems and one pure update and can be solved as [Boy11],

(AT A + ρTTT)xp+1 = ATy + ρTTzp + up, (4.27)

where ρ ∈ R denotes the coupling parameter. Second, we perform,

zp+1 = Sλ/ρ(Txp+1 + up), (4.28)

where Sλ/ρ denotes the soft-thresholding operator. As the third step, we finally perform
the update,

up+1 = up + Txp+1 − zp+1, (4.29)

where the first part is a linear problem which can be solved using the methods like CG
(see chapter 11), and the second step minimizes the `1-penalty on the variable z and the
last step will be updating the Lagrange multiplier u [Wah12].
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5. Four-Dimensional CT Imaging

Four-dimensional (4D) CT is an imaging technique to obtain and reconstruct multiple
images of the same target over time. 4D CT increasingly offers potential advantages as
an alternative primary investigation and is a common second-line investigation [Hsi09].

4D CT can provide precise anatomic information and can help differentiate healthy
tissue and lesions. It includes image sets in three planes (axial, coronal, sagittal) and
the fourth dimension could be the perfusion information derived from multiple contrast
phases. It is most commonly performed with three phases: non-contrast, arterial, and
delayed phase imaging [Hoa14].

5.1 CT Perfusion Imaging
CT perfusion (CTP) is a functional imaging modality that measures the tissue blood-flow
parameters through sequential CT scanning of the same tissue or organ over the time.
Typically, an iodinated contrast agent is administered and projection images are acquired
before, during, and after injection of contrast to track temporal changes in CT attenuation.
Several commercial software packages are available for calculating parametric maps
like blood volume, blood flow and time to peak values. Most of the available packages
however, are using similar mathematical models to quantitatively asses the perfusion
parameters. Most of these models are based on the maximum slope method (SM) to
calculate the perfusion parameters. The principle of the SM is quite simple which makes it
very attractive for brain and liver perfusion evaluation tasks [MHD93a; MHD93b]. Some
other methods employ a deconvolution of the arterial input function (AIF). Algebraic
deconvolution approaches based on the singular value decomposition (SVD) are also
used in some packages [Eas02; Ass16].

CT perfusion imaging has several application for visualization and investigation of
abnormalities in brain and liver indications. CTP of the brain, is critical in characterizing
the irreversibly infarcted brain tissue and the severely ischemic but potentially salvageable
tissue [Kon09]. Liver CT perfusion provides valuable information on blood flow dynamics
as a valuable measurement for hepatic fibrosis in patients with chronic liver disease and
also in the evaluation of therapeutic effectiveness for liver cancer [KKW14; Qia10; Ass15].

5.2 Perfusion Analysis Techniques
Two basic functional CT paradigms are measured from the acquired data: perfusion
measurements and permeability studies [Mil99].

Figure 5.1 illustrates a general perfusion analysis workflow. As shown in this figure,
reconstructed CT volumes from different time points (left) are imported to the perfusion
analysis to create the perfusion maps (right).
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Figure 5.1.: Schematic illustration of the general perfusion analysis workflow. Recon-
structed CT volumes from different time points (left) are imported to the
perfusion analysis to create the perfusion maps (right). In this case, a liver
images are used which gives hepatic arterial perfusion (HAP), hepatic portal
perfusion (HPP), perfusion index (PI) and time-to-peak (TTP) maps. More
details on these maps creation can be found in section 12.6.

The calculation of perfusion parameters is performed using several mathematical
models including two commonly used approaches: Compartmental analysis and De-
convolution analysis [MG03a; MHD93a]. Therefore, the perfusion analysis block in
Figure 5.1 can be replaced with any of these models.

5.2.1 Compartmental Analysis
Compartmental analysis approaches include two main categories of single and double
compartment models [Mil12].

The single compartmental model is utilized to calculate the tissue perfusion considering
the intra-vascular and extra-vascular spaces as a single compartment. It estimates
the perfusion either from the maximal slope or the peak height of the same tissue
concentration curve normalized to the arterial input function [MEK07].

The two compartmental model, however, has been utilized to evaluating of capillary
permeability and blood volume [Mil02]. This model assumes the intra-vascular and
extra-vascular spaces as separate compartments and measures perfusion parameters
using a technique called Patlak analysis [MG03a].

More details and formulations for the compartment model and maximum slope method
can be found in section 12.6.

5.2.2 Deconvolution Analysis
Perfusion analysis using the deconvolution approach is based on the arterial and tissue
time attenuation curves (TAC) which have been utilized to calculate the impulse response
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5. Four-Dimensional CT Imaging

Figure 5.2.: The concept of convolution in CTP analysis (a) Schematic representation of
the vascular structure in a tissue region. FCa(t) refers to the input of contrast
agent into the tissue, (b) when blood flow is not changed for two injections of
the same concentration (left), then the tissue TAC for each injection will be the
same; This is called IRF of the tissue. The right shows two IRF for the case of
two identical bolus injections of contrast agent of the same concentration. For
each IRF, initially, there is a sudden increase in the shape of the graph because
the injection is directly into the arterial input. (c) Tissue TAC corresponding
to a case in which the arterial TAC consists of two bolus injections of different
concentrations C1 and C2, and, (d) shows a general arterial TAC as a series of
injections equally spaced in time and of different concentrations (left). For
each bolus injection, TAC of the tissue is a scaled IRF, which is the product
of blood flow, concentration of bolus, and the IRF. The total tissue TAC in
response to the general arterial concentration Ca(t) is the sum of all the
scaled IRF after they have been shifted in time in accordance to the times of
their corresponding bolus injection. This figure is adapted from [Lee02].

function (IRF) for the tissue.
In general, if the IRF is known, the tissue TAC in response to a general arterial

TAC, Ca(t), can be calculated as a summation of scaled and time-shifted IRF’s. The
corresponding scale factors and time shifts are given by the rate of input of contrast agent
into the tissue FCa(t) and t, respectively. This operation is called a convolution,

Cl(t) = Ca(t)⊗ FR(t), (5.1)
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where ⊗ denotes the convolution operator, Cl(t) refers to the TAC obtained from tissue,
and FR(t) is the blood-flow scaled IRF [Lee02; Cue02].

A schematic overview of the convolution concept for CTP analysis is illustrated
in Figure 5.2.

For the estimation of capillary permeability a distributed parameter model is used
which consists of an extended deconvolution model [Mil12]. More details and formula-
tions of this approach can be found in [Lee02]

29



6. Grating Based Imaging

Modern Grating-based imaging (GBI) is a recently introduced approach to phase contrast
and dark-field imaging which includes conventional laboratory sources and is based
on the use of a three-grating Talbot-Lau interferometer [Cla98; Pfe06b]. It has some
similarities to the crystal interferometer [BH65] as it consists of a beam splitter and a
beam analyzer, and is also similar to analyzer based imaging (ABI) [IB95] as it measures
the first derivative of the phase front, and enables the dark-field imaging.

As shown in Figure 6.1, an ordinary setup of x-ray tube (X), specimen (S) and detector
(D) has been extended by inserting a source grating (G0) after the tube, and two more
gratings (G1, G2). The source grating G0 creates multiple sources with sufficiently high
coherence to allow for a periodic interference behind the phase grating G1. Finally the
analyzer grating G2 enables to measure the interference pattern with conventional x-ray
detectors [Mom96].

Measurement process starts with several images that recorded while the relative
lateral position of G2 is being shifted relatively to G1 which could be translated into
the interference pattern that is too small to be measured directly with a conventional
detector.

A periodic function for each detector pixel can be described as [Wei05],

I(xg) ≈ a0 + a1cos(φ +
2π

p2
xg) (6.1)

where p2 refers to the period in G2, xg denotes the stepping and φ refers to the phase of
the intensity curve.

As shown in Figure 6.2, from a scan Is with a sample located in the setup and also a
reference scan Ir without, multiple signals can be extracted. The different signals and
their relation to the sample as well as the reference scan are illustrated in the same Figure.

These quantities are computed as [Pfe08b] described below. The absorption a is
calculated by the ratio of the mean intensity as,

a =
a0,s

a0,r
. (6.2)

Also the differential phase-contrast ∆φ can be calculated as

∆φ = φs − φr, (6.3)

and dark-field signal V will be extracted as,

V =
a1,sa0,r

a0,sa1,r
. (6.4)

where a∆,s and a∆,r refer to a. as in Equation 6.1 respectively for Is and Ir. The quotients
of a1,s and a0,s refer to the visibility Vs, with the reference visibility Vr defined accord-
ingly [Bec10]. More detailed information on grating based imaging concept can be found
in [Bec09; Mom96; Pfe06a; Pfe08a; Wei05].
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Figure 6.1.: Sketch of the Talbot-Lau X-ray Grating Based Interferometry setup.

Figure 6.2.: Illustration of three signal components, (A) Absorption-contrast which is
shoeing the attenuation of the x-ray beam leads to a reduction of the ampli-
tude of the interference pattern. (B) Phase-contrast which is the refraction
that causes a shift of the pattern, and (C) Dark-field contrast showing the
scattering that reduces the amplitude of the interference pattern and creates
an offset. This figure is adapted from [Sch13].
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In previous sections, We have discussed x-ray based imaging modalities and described
CT imaging modality including its physics, theory, reconstruction techniques, limitations
and challenges. However, several different types of medical imaging modalities are also
being used for clinical and non-clinical applications.

Positron emission tomography (PET) is a nuclear imaging technology that enables the
visualization of metabolic processes in the body. Another similar modality, Single-photon
emission computed tomography (SPECT) is also using gamma rays and can provide
three-dimensional information in the form of cross-sectional slice images of the patient.
Some types of medical imaging modalities work without using ionizing radiation, for
example magnetic resonance imaging (MRI) and ultrasound imaging, and have been
utilized in diagnosis of several diseases.

In this section, we will briefly introduce some of these modalities by explaining their
theory, structures and existing challenges.

7.1 Positron Emission Tomography (PET)
A PET scan is a type of nuclear medicine imaging modality which is used to image
different tissues to identify some conditions by looking at blood flow, metabolism, and
oxygen use [Bai05].

PET imaging modality construct three-dimensional images by detecting gamma rays
emitted when certain Radioactive tracers (radiotracers) are injected into a patient’s body.
Radiotracers are absorbed by tissues with higher levels of metabolism (e.g., active tumors)
than the rest of the body. Gamma rays are generated when a positron emitted from the
radiotracer collides with an electron in tissue and results a pair of photons that emanate
in opposite directions and are detected by detectors which are located around the patient.
Unlike other anatomical imaging modalities such as CT and ultrasound, PET imaging
provides functional information of the imaging target [ABP12; Ter83; Ass17].

PET scans have been utilized to diagnose several diseases including heart disease, brain
tumors, stroke, cancer, head injuries, Parkinson’s disease, and many other disorders. In
neurology, PET has been used in a range of conditions, and in particular in severe focal
epilepsy, where it may be used to compliment Magnetic Resonance Imaging [Gam02].

7.2 Single-photon Emission Computed Tomography
(SPECT)

SPECT scanning is similar to PET, and is used to determine how organs inside the body
work using the injection of a radioactive tracer; for the SPECT scan, the tracer will stay in
the bloodstream [Hol10].
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Similar to PET, the radiotracer starts emitting gamma rays, from the patient, which
contrasts with the PET scans which emit positrons. Then, these rays are detected by the
gamma camera that rotates through 360 degrees around the patient which enables the
cross-sectional images to be assembled three-dimensionally similar to CT imaging. This
enable the visualization of three-dimensional volumes or a series of two-dimensional
images at the end [Kno83].

SPECT imaging has several different applications, which make this form of imaging
convenient for the medical tests. Cardiac SPECT scans can be used to inspect the blood
flow through the heart. SPECT scans can be also utilized to reveal hidden fractures in
bone, such as shin splints and stress fractures because areas of bone healing usually light
up on the scans. It could be also used to inspect the parts of the brain that are affected by
various disorders including Dementia, Epilepsy and head injuries [HT90].

7.3 Magnetic Resonance Imaging (MRI)
Magnetic resonance imaging is a noninvasive imaging modality that allows for the
visualization of both structural and functional information of the scanned human body.

In 1938, Isidor Isaac Rabi described the NMR phenomenon for the first time by devel-
oping a technique to measure the magnetic characteristics of atomic nucleus. Discovery
of Rabi, facilitated the development of MRI for use in clinical problems [ABP12]. In 1971,
Raymond Damadian used NMR in medical applications by measuring T1 and T2 relax-
ation times in rat tumors. Dr Damadian observed that a tumor tissue possessed longer
T2 times than those of a normal tissue, a finding that was published in Science [Dam71].
The first images of humans scanned in an MR machine were produced in 1977 which
is the crude images of the human thorax. In 1984, Michael Moseley established his
work in diffusion imaging as a groundwork for fMRI techniques [WME84]. In the recent
years, diffusion tensor imaging (DTI) and fMRI using blood oxygenation level-dependent
(BOLD) techniques were also introduced [Mos90].

Today, an MRI scanner consists of a large, powerful magnet in which the target lies.
Signals will be sent to the body using a radio wave antenna and then received back.
Returned signals are then converted into images. MR imaging has several applications
including imaging of organs of the chest and abdomen such as heart, liver, biliary tract,
kidneys, spleen, bowel, pancreas, and adrenal glands. It is also used to visualize the
pelvic organs including the bladder and the reproductive organs such as the uterus and
ovaries in females and the prostate gland in males and also blood vessels [Le 92; ABP12].

7.4 Ultrasound
In Ultrasound imaging, also known as sonography, sound waves are used to be reflected
by organs and other interior body parts in real-time for image producing. An ultrasound
image is produced based on the reflection of these waves off of the imaging target
structures. The amplitude of the signal and the signal traveling time through the object
provide the information to produce the images. Ultrasound imaging has been used for
several years and has an excellent safety record. Unlike x-ray based imaging modalities,
there is no ionizing radiation exposure associated with ultrasound modality [Sza04;
MRA14]. However, diagnostic ultrasound has been one of the active research areas for
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last decade and several advancements have been reported in medical ultrasound imaging,
elastography, ultrasound contrast agent imaging, super resolution imaging, and 2D array
transducer [Lee17; SK17].

Ultrasound imaging has applications to evaluate the abnormalities in pregnancy,
imaging of the heart and blood vessels and inspecting organs in the abdomen symptoms
of pain [Shu15].
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8. Structure of this Thesis

Subject of this thesis is the advanced reconstruction and noise reduction techniques in
four- and six-dimensional x-ray imaging modalities. We study two major research topics
organized in two main parts, including Part (I) to study the six-dimensional x-ray tensor
tomography as a newly developed grating-based imaging modality which leverages
the dark-field contrast projections to reconstruct volumes of medical and non-medical
targets scanned. In this part, we will introduce XTT setup, theory and discuss the
issues and limitations with using this modality for measuring of some medical and
non-medical specimens. We particularly, focus on the data processing chain of XTT,
including image reconstruction and also noise reduction of XTT data and introduce
several evaluation methods to assess the acquired data using these techniques. In this
part, we will investigate the best way to incorporate a denoising technique into the XTT
reconstruction pipeline, in particular the popular total variation denoising technique.
We will propose two different schemes of including denoising into the reconstruction
process, one using a column block-parallel iterative scheme and one using a whole-system
approach. Additionally, we will compare results using a simple denoising approach,
applied either before or after reconstruction. Several experiments will be introduced and
corresponding results will be illustrated visually and quantitatively for both medical and
non-medical datasets.

Part (II) of this thesis, includes the low-dose CT perfusion imaging study of the
liver and includes various advanced data processing, image reconstruction and analysis
approaches. In this part, we will introduce CT perfusion which is a recently developed
CT imaging technique with several demonstrated clinical and pre-clinical utility in the
detection, staging, and analysis of treatment response for different applications such head
and neck, liver, lung and colorectal imaging [Mil12]. CT perfusion has been successfully
employed to assess the extent of salvageable tissue in acute stroke cases [SL05]. It has
also been used in assessing tumor vascularity changes that result from chemotherapy
and radiation therapy [Sah07]. CT perfusion of the liver can reveal hepatic diseases and
that can be used to assess treatment responses [LMS15]. More widespread adoption of
liver CTP in clinical trials to assess its potential as a biomarker as well as broader clinical
use have been hampered by concerns over radiation exposure.

A variety of strategies have been proposed to limit radiation exposure including
the individualization of scanning parameters, modification of tube current or voltage
throughout the observation period. However, decreasing the x-ray radiation dose reduces
CT image quality with increased noise and possible streak artifacts which lowers the
clinical and diagnosis utility of the scan.

In this part, we address the low-dose CT perfusion imaging of the liver by designing a
simulation study based on the real animal data. Finally, we adapt a novel data processing
chains including reconstruction of difference [Pou16] to investigate the reduction of
radiation dose level for CT perfusion studies.

we apply the RoD method to low-dose CTP data. The approach is investigated in
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simulation studies using an anthropomorphic phantom with realistic time attenuation
curves (TACs) for different tissue types. We analyze imaging performance in individual
reconstructions in the imaging sequence from contrast injection, through uptake, and
washout, and perform a perfusion analysis to compare several perfusion metrics including
hepatic arterial perfusion, hepatic portal perfusion, hepatic perfusion index and time-
to-peak metrics. The RoD approach is compared with traditional FBP and penalized-
likelihood (MBIR) reconstructions.
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X-RAY TENSOR TOMOGRAPHY
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9. Introduction to X-ray Tensor Tomography

9.1 Overview
In this chapter, we introduce X-ray Tensor Tomography (XTT), as a novel x-ray imaging
modality used for reconstruction of three-dimensional x-ray scattering tensors from
dark-field projections obtained in a grating-based interferometry setup. A detailed
introduction on the background of XTT imaging modality and previous related studies
will be discussed in section 9.2. An introduction of acquisition and forward model will
follow in sections 9.3 and 9.4. Finally, in 9.5, we explain the existing reconstruction
method for XTT imaging.

9.2 Background
Conventional x-ray imaging methods rely on the attenuation of x-rays when they pass
through an object. Recently, grating interferometer based approaches [Mom03; Pfe06a]
have been proposed to extract the scattering and refraction of x-rays by the scanned object
in order to obtain phase and dark-field contrast. Dark-field contrast is a measurement
of the ultra-small angle of x-rays deviating from their origin after interaction with sub-
micron sized structures [Con12; Pel14b; Wan14]. The dark-field contrast obtained in a
grating interferometry setup is an anisotropic signal, which means that the measured
signal depends on the orientation of the scattering material with respect to the grating
sensitivity direction [Bay14a; Yas11]. This feature can be used to extract the information
about the orientation of different materials from the variations in the dark-field signal.

Dark-field imaging techniques have recently become quite popular in several fields of
research by showing promising results not only in medical applications, such as the diag-
nosis of pulmonary emphysema in lungs, providing better resolution of small, calcified
tumor nodules in breast scanning [Gra15; Yar13; And05; Sid11], the visualization of the
orientation of bone micro-architecture without requiring high resolution detectors [Pot12],
x-ray imaging using microbubbles as a scattering contrast [Vel13], reconstruction of tiny
dental tubules [Vog15], but also in material science applications, for example to ac-
quire quantitative information on the form and structure factor of materials [Pra15] and
investigation of the fiber orientation of injection molded polymers [Han15; Rev11].

Jensen et al. [Jen10; Pot12] introduced directional two dimensional x-ray dark-field
imaging or x-ray vector radiography (XVR) to reconstruct structure orientations from sev-
eral projections acquired by rotating the sample around the beam propagation direction.

Malecki et al. [Mal14; Mal13] introduced a novel three-dimensional extension of
directional X-ray dark-field imaging, called X-ray Tensor Tomography (XTT), which
places the sample on an Eulerian cradle, which allows rotation of the sample with three
degrees of freedom to provide a three-dimensional reconstruction of x-ray scattering
tensors at each location of the scanned sample, revealing the local orientation and
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9. Introduction to X-ray Tensor Tomography

Figure 9.1.: Illustration of an x-ray tensor tomography setup including an x-ray tube (X),
source grating (G0), sample (S) mounted on an Eulerian cradle with three
degrees of freedom (Euler angles ψ, θ, φ), shifting interferometer grating (G1),
static interferometer grating (G2), and x-ray detector (D). The vector tj refers
to the sensitivity direction of the gratings, while sj corresponds to the beam
direction.

anisotropy of microstructures.
XTT is a promising technique with a number of applications, such as visualization

of the directionally dependent information in three-dimensional volumes of carbon
fibers, as well as medical imaging applications such as the visualization of tiny dentinal
tubular structures of teeth. [Mal14; Vog15; Sey16b; Sey16a; Bay14b]. Recent studies,
however, demonstrated the feasibilty of XTT imaging for larger variety of applications
by introducing a sparse acquisition scheme to perform a full six dimensional XTT with
at most two axes of sample rotation [Sha16] and also a novel general closed-form,
continuous forward model for solving the anisotropic dark-field imaging to improve the
resolution of multiple scattering directions in one volume element [Wie16].

9.3 XTT Setup and Acquisition
As illustrated in Figure 9.1, XTT is an ordinary setup of x-ray source and detector
extended by an x-ray grating interferometer using three gratings (G0, G1, G2) and the
sample mounted on an Eulerian cradle.

While the sample is rotating around all three axes corresponding to the Euler angles
(ψ, θ, φ), several horizontal steps of the phase grating (G1) are used to acquire several
images, allowing the recovery of the three signal components, attenuation contrast,
phase-contrast and the dark-field contrast as shown in Figure 6.2 [Pfe06a; Bec10].

For XTT, the acquired dark-field images are used in an iterative reconstruction algo-
rithm to recover scattering coefficients for different scattering directions, followed by a
tensor fit.

An overview of the XTT acquisition and reconstruction method is shown in Figure 9.2.
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9. Introduction to X-ray Tensor Tomography

Figure 9.3.: Tensor fitting in x-ray tensor tomography: (A) Selected scattering directions
ε̂k, for example the coordinate axes, and the space and face diagonals, (B)
scattering directions ε̂k shown for a location x ∈ R3 (coordinate axes shown
in red, space diagonals shown in blue, and face diagonals shown in green),
(C) scattering coefficients ζk(x) for every scattering direction ε̂k shown by
black stars, corresponding mirrored coefficients along the negative scattering
direction shown as red stars, (D) tensor fitted to the black and mirrored red
stars, (E) several reconstructed scattering tensors, with their smallest half axis
indicating the direction of a fiber or tube-like structure (in grey).

9.4 XTT Forward Model
As scattering is an anisotropic entity, a tensor in each location of the sample is re-
quired [Mal14]. In their work, Malecki et al. [Mal14] proposed to consider several
auxiliary scattering directions ε̂k ∈ R3, k = 1, . . . , K, evaluating the tensor (see Fig-
ure 9.3(A,B)). For each of these directions and every location x ∈ R3, a corresponding
scattering coefficient ζk(x) ∈ R will be reconstructed, as illustrated in Figure 9.3(C).
Finally, a tensor is fitted to the reconstructed scattering coefficients at location x using
principal component analysis [Hot33] (see Figure 9.3(D)).

Every fitted tensor’s major axis then points in the direction of maximum scattering, and
the ratio between the length of the major and minor axis is a measure of the anisotropy
at this location. For fibrous materials, the direction of the smallest half-axis indicates the
direction of the fiber in that location (see Figure 9.3(E)).
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9. Introduction to X-ray Tensor Tomography

Figure 9.4.: CT and XTT viewing directions, (A) an Euler cradle used to sample the
unit sphere for XTT measurements, (B) sampling coverage in CT and, (C)
sampling unit sphere for XTT.

For tomographic reconstruction, we use the forward model proposed by Malecki et al.
[Mal14],

mj = exp

[
−
∫

Lj

K

∑
k=1
〈|ŝj × ε̂k|(ζk(x)ε̂k), t̂j〉2dx

]
. (9.1)

Here, mj ∈ R denotes the j’th dark-field signal measurement, and j = 1, ..., J extends
over all pixels of all the detector images acquired for all angles ψ, θ, φ. Lj denotes the
corresponding x-ray from the source to the j-th detector pixel, with normalized direction
ŝj ∈ R3; the vector t̂j ∈ R3 denotes the normalized sensitivity direction of the grating
interferometer and the ε̂k represent the normalized scattering directions chosen earlier,
while ζk(x) represents the scattering coefficient to be reconstructed.

Since the measurements mj depend on both the ray direction ŝj and the grating
sensitivity direction t̂j, it is necessary to rotate the sample not only around a single
rotation axis as in traditional computed tomography, but to rotate it freely, sampling the
unit sphere (see Figure 9.4).

9.5 XTT Reconstruction
Assuming aj denotes the discretized x-ray transform along the ray-direction ŝj, then
the matrix A = (aj), j = 1, ..., J, also called ’system matrix’, represents the measurement
process. Furthermore, let the vector ηk denote the square root of the scattering coefficient
ζk discretized on a voxel grid. Following the approach of Vogel et al. [Vog15], we then
formulate the XTT reconstruction problem as a set of linear equations

− ln mj =
K

∑
k=1

vkj
〈

aj, ηk
〉
=

K

∑
k=1

vkjaT
j ηk, (9.2)

where the weight factors vkj :=
(
|ŝj × ε̂k|〈ε̂k, t̂j〉

)2 can be precomputed.
Assuming diag(vkj) as a diagonal scaling matrix containing the weighting factors vkj

and Equation 9.2 a huge linear system can be derived as,
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Figure 9.5.: Overview of the unregularized XTT reconstruction.
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 η2 + · · ·

= diag(v1j)Aη1 + diag(v2j)Aη2 + · · ·+ diag(vKj)AηK

= ∑
k

diag(vkj)Aηk = Hη.

(9.3)

The reconstruction problem now reduces to computing K volumes ηk. As presented in
Algorithm 5, unregularized reconstruction is performed iteratively in a block-sequential
manner, starting with pre-computation of weighted forward projections WFP, and
component-wise updates for modified right-hand sides r using a single CG iteration
each.

An illustration of XTT reconstruction flowchart is shown in Figure 9.5. We will be
using the abbreviation XTT for the unregularized XTT reconstruction (as in Algorithm 5).
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Algorithm 3 X-ray tensor tomography reconstruction method. This algorithm is comput-
ing Q outer iterations of a block-sequential algorithm, using a single inner Conjugate
Gradient step (CG). Here, diag(vkj) denotes a diagonal scaling matrix containing the
weighting factors vkj, and A denotes the system matrix of the setup.

η0
k = 0 for all k = 1, . . . , K

for outer iteration q = 1 to Q do
// pre-compute weighted forward projections
for scattering directions k ∈ {1, . . . , K} do

WFPk = diag(vkj) · A · η
q−1
k

end for

// component-wise reconstruction
for scattering directions k ∈ {1, .., K} do

// compute right-hand side
r = m−∑l 6=k WFPl
// compute xk using single CG iteration
xk = CG(diag(vkj) · A, r, η

q−1
k )

// update with relaxation
η

q
k = (1− 1

k )η
q−1
k + 1

k xk
end for // scattering directions k

end for // outer iteration q
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10. XTT Evaluation Techniques

10.1 Overview
In this chapter, we introduce several evaluation and image quality assessment techniques
to investigate the existing XTT reconstruction methods and to compare them to the
proposed regularized XTT reconstruction, denoising and regularization approaches in
this study. A new tensor orientation evaluation method using the absorption images
will be introduced in section 10.2 which follows with section 10.3 where we introduce
couple of numerical analysis techniques to investigate and to compare the convergence
of available and newly proposed methods. Finally, in section 10.4, several image quality
assessment techniques will be introduced for noise estimation and contrast evaluation.

10.2 Tensor Orientation Evaluation

Figure 10.1.: Evaluation of XTT reconstructed images vs. attenuation image: (A) Fast
marching method calculating centerline in region of interest of attenua-
tion image, and (B) XTT orientations calculated after fitting tensor to XTT
reconstructed image zoomed for the same region of interest.

In order to evaluate the orientations acquired after tensor fitting to XTT reconstructed
images (as described in Figure 9.3), the attenuation contrast images of the carbon knot
sample have been reconstructed using the attenuation projections which are acquired
at the same time as dark-field projections measurements in XTT setup. Acquiring both
attenuation and dark-field projections at the same time in XTT setup helps to do any of
post evaluation steps without need to performing registration. Finally, we choose two
regions of interest in reconstructed attenuation as well as in XTT reconstructed images as
shown in Figure 10.1 and calculate the orientation of the attenuation image of carbon
knot sample,Wamp, in these regions using fast marching centerline method [Bær01; HF07].
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For evaluation we use,

δ = tan−1
(‖Wamp ×Wxtt‖

Wamp ·Wxtt

)
, (10.1)

where δ denotes the angle between Wamp, and corresponding Wxtt denoting the XTT
direction extracted after tensor fitting in the same region [Sey18c].

10.3 Numerical Analysis
In order to study the numerical behavior of the proposed methods, we computed the
normalized residual norms,

r(q) :=
‖m−∑k diag(vkj) · A · η

(q)
k |2

‖m‖2
, (10.2)

and also the normalized update,

M(q):=
mean‖η(q)

k − η
(q−1)
k ‖2

‖η(q)
k ‖2

. (10.3)

10.4 Image Quality Assessment
In order to quantitatively measure the contrast in the images for the three different
methods, we compute the contrast-to-noise ratio CNR() as,

CNR =
|η̄ROI − η̄BG|

σBG
, (10.4)

where η̄BG denotes the mean of the scattering signal of the all background (BG) area
which is segmented and masked out using threshold mask.

Another qualitative evaluation metric that we use here is the signal-to-noise ratio
(SNR),

SNR =
η̄ROI

σBG
, (10.5)

where η̄ROI denotes the mean of the scattering signal in a certain region of interest (ROI)
of a component image η and σBG refers to the standard deviation of the background (BG)
of each component.

To estimate noise levels, we use the median absolute deviation (MAD)[MT77],

MAD = median
(
|ηROI −median(ηROI)|

)
, (10.6)
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11. XTT Reconstruction, Regularization and
Noise Reduction

11.1 Overview
In this chapter, we introduce several regularized reconstruction methods, noise reduction
approaches and post processing techniques for XTT imaging data . We propose various
regularized XTT reconstruction techniques such as parallel-block regularized XTT recon-
struction technique in sections 11.2.2 and 11.2.1 and the whole-system regularized XTT
reconstruction approach in section 11.3. Furthermore, two different noise reduction meth-
ods will be introduced for incorporation of denoising step into the projection domain
measurements and image domain data respectively in sections 11.2.1 and 11.2.2. Finally,
in section 11.6, we will explain several conducted experiments to evaluate the proposed
methods and the corresponding results will be illustrated in section 11.7.

11.2 Block-parallel Regularized XTT Reconstruction
Methods

Measured XTT data is always subject to signal fluctuations of various origins, which are
generally and collectively referred to as "noise". The noise present in the recorded raw
dark-field images will propagate through the reconstruction algorithm and influence the
quality of the resulting images. Chabior et al.[Cha11] showed that the noise in dark-field
contrast images will always be higher than in attenuation-contrast images. Thus, the XTT
imaging modality is very vulnerable to noise and should highly profit from denoising.

Total variation (TV) denoising is a well-known technique that was originally developed
for denoising images with additive Gaussian noise by Rudin, Osher and Fatemi [ROF92].
Since then, TV methods have been successfully applied to a multitude of other image
denoising problems, also within the computed tomography community[SP08; CTL08b;
SY14b; Sey13b; Ert12; Sey14]. In particular, the TV denoising approach is often used in
order to recover images with a reduced noise level, while preserving the edges of the
underlying signal.[CL97; DS96].

In this section, we investigate the applicability of component based denoising approach
in XTT modality by incorporating a TV denoising step into the XTT reconstruction using
two different pipeline designs and evaluate the best way to incorporate the TV noise
reduction step for XTT data.

11.2.1 ADMM Regularized XTT Reconstructions
In this section, we introduce a way to add a total variation (TV) regularization step when
updating each XTT component ηk. For this purpose, we use several iterations of the
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alternating direction method of multipliers (ADMM) method in place of the original
conjugate gradient (CG) step of XTT reconstruction method in section 9.5, which provides
us with reasonable convergence rates within the first few iterations for each component
[Boy11].

For each component, we thus compute an approximate solution as,

arg min
ηk

{
1
2‖Aηk −m‖2

2 + λ‖z‖1

}
s.t. Fηk = z. (11.1)

where m refers to the full measurement vector m = (mj), F denotes the discretized finite
differences operator and λ ∈ R refers to the regularization parameter.

The p-th iteration of ADMM now reduces to three steps. First we approximately solve
a Tikhonov-regularized linear system for ηk using three iterations of conjugate gradient,

(AT A + ρFT F)ηp+1
k = (ATm + ρFTzp + up), (11.2)

where ρ ∈ R denotes the coupling parameter.
Second we perform the update,

zp+1 = Sλ/ρ(Fη
p+1
k + up), (11.3)

where Sλ/ρ denotes the soft-thresholding operator. As third step we finally perform the
update:

up+1 = up + Fη
p+1
k − zp+1. (11.4)

The full algorithm of the component-based TV regularization method isshortrXTT −
ADMM for XTT is shown in Algorithm 4. It consists of the outer iterations of the
previous sequential algorithm [Vog15] to update each of the components ηk, as well
as our proposed component-based TV regularization using several inner iterations of
ADMM [Sey16b].

11.2.2 Total-Variation Regularized XTT Reconstruction
One approach to reduce noise in XTT is to incorporate anisotropic TV regularization into
the standard XTT reconstruction method. To do so, we keep the iterative component-
based scheme of unregularized XTT reconstruction, using Q outer iterations. However,
in addition to the single CG step for each component ηk, we add a consecutive step
applying TV regularization only to that component ηk.

To perform TV regularization, we use several iterations of the alternating direction
method of multipliers [Boy11] (ADMM) applied separately to each component ηk,

arg min
η

{
1
2‖η − ηk‖2

2 + λ‖Fη‖1

}
, (11.5)

where λ ∈ R refers to the regularization parameter and F denotes the finite differences
operator. The computational cost for each regularization step is negligible compared to
the cost of the CG step.

The algorithm of component-based TV regularized CG reconstruction for XTT (in
short rXTT) is shown in Algorithm 5. Figure 11.1 displays a simplified flowchart of the
proposed regularized XTT (rXTT) technique [Sey18b].

51



11. XTT Reconstruction, Regularization and Noise Reduction

Algorithm 4 ADMM regularized x-ray tensor tomography reconstruction method. This
algorithm consists of the outer iterations of the previous sequential algorithm introduced
in section 9.5 to update each of the components ηk, as well as our proposed component-
based TV regularization using several inner iterations of ADMM.

η0
k = 0 for all k = 1, . . . , K

for outer iteration q = 1 to Q do
// pre-compute weighted forward projections
for scattering directions k ∈ {1, . . . , K} do

WFPk = diag(vkj) · A · η
q−1
k

end for

// component-wise reconstruction
for scattering directions k ∈ {1, .., K} do

// compute right-hand side
r = m−∑l 6=k WFPl

// run several ADMM iterations to compute xk
for inner iteration p = 1 to P do

// step 1 of ADMM
solve for xk using three iterations of CG
(AT A + ρFT F)(xp+1

k ) = (ATr + ρFTzp + up)

// step 2 of ADMM
zp+1 = Sλ/ρ(Fxp+1

k + up)

// step 3 of ADMM
up+1 = up + Fxp+1

k − zp+1

end for

// update coefficients with relaxation
β = 1/K
η

q
k = (1− β)η

q−1
k + βxk

end for // scattering directions k
end for // outer iteration q

11.3 Whole-System Regularized XTT Reconstruction
Method

In addition to the component-wise block-parallel approach, we can also interpret the
XTT reconstruction problem as a single linear system. The block-parallel approach, was
introduced in section 11.2, in which we aimed to compute the tomographic reconstruction
for each scattering direction in parallel. We will use the same problem formulation as a
large-scale linear system, and directly apply an algorithm to deal with the whole linear
problem at once.

Instead of the component-wise block-parallel approach, here, we can interpret the
XTT reconstruction problem as a single linear system, with an unknown η consisting
of all the components (ηk). For this we define the diagonal scaling matrix Dk :=
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Figure 11.1.: Overview of the regularized XTT reconstruction.

diag(vk1, vk2, ..., vkJ) containing the weight factors vkj, we abbreviate η := (η1, . . . , ηK)

and m := (m1, . . . , mJ) and can now write the XTT reconstruction problem as the linear
system

m = Hη (11.6)

using H := (D1A, D2A, ..., DK A) ∈ RJ×IK, a column block matrix.
We now add TV regularization and solve the whole system

arg min
η

{
1
2‖Hη−m‖2

2 + λ‖Fη‖1

}
(11.7)

using ADMM, applying again a few CG iterations for the data term and soft-thresholding
for the `1 term. Please note that the finite differences operator F here respects the
component boundaries of the ηk.

We will be using the abbreviation wXTT for the whole-system regularized XTT recon-
struction in the following sections.

11.4 Projection Domain Denoising
The noise originally appears in the measured dark-field images, and is amplified by the
ill-posed[Had02] XTT reconstruction process. Hence we propose to use two-dimensional
TV denoising (TV2D) directly on the acquired dark-field images (also called "projections").
Similar to rXTT previously, we employ ADMM on the measured dark-field images m,

arg min
x

{
1
2‖x−m‖2

2 + λ‖Fx‖1

}
, (11.8)

performing two-dimensional TV denoising for each dark-field image m separately [Sey18b].
This approach is illustrated in Figure 11.2, and we abbreviate this method as TV→XTT
in the following.
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Algorithm 5 Regularized x-ray tensor tomography reconstruction method. This algorithm
is computing Q outer iterations of a block-sequential algorithm, using a single inner
Conjugate Gradient step (CG). P inner iterations of ADMM with TV are executed after
CG for each component. Here, diag(vkj) denotes a diagonal scaling matrix containing the
weighting factors vkj, and A denotes the system matrix of the setup.

η0
k = 0 for all k = 1, . . . , K

for outer iteration q = 1 to Q do
// pre-compute weighted forward projections
for scattering directions k ∈ {1, . . . , K} do

WFPk = diag(vkj) · A · η
q−1
k

end for

// component-wise reconstruction
for scattering directions k ∈ {1, .., K} do

// compute right-hand side
r = m−∑l 6=k WFPl
// compute xk using single CG iteration
xk = CG(diag(vkj) · A, r, η

q−1
k )

// TV using several ADMM iterations
for inner iteration p = 1 to P do

xk = ADMM(I, xk, xk)

end for

// update with relaxation
β = 1/K
η

q
k = (1− β)η

q−1
k + βxk

end for // scattering directions k
end for // outer iteration q

11.5 Image Domain Denoising
Similarly, one can denoise the resulting component images after reconstruction. Here, we
apply three-dimensional TV denoising on each reconstructed component ηk separately
after the unregularized reconstruction technique described in Algorithm 5. Here we also
use the anisotropic TV model with ADMM, solving

arg min
η

{
1
2‖η − ηk‖2

2 + λ‖Fη‖1

}
. (11.9)

This approach is illustrated in Figure 11.3 and is abbreviated as XTT→TV in the
following sections.
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Figure 11.2.: Overview of the projection domain TV denoising for XTT reconstruction.

Figure 11.3.: Overview of the image domain TV denoising for XTT reconstruction.

11.6 Experiments
In this section, we show the experiments conducted to evaluate the proposed methods by
applying them to several medical and non-medical sample datasets.

All samples were measured in the XTT setup located at our institute. The x-ray source
was a conventional x-ray tube (MXR-160HP/11, Comet AG, Switzerland) with a focal
spot size of 0.4 mm2. Both measurements were performed at an acceleration voltage of 60
kVp. A flat panel x-ray detector with pixel pitch of 127µm (Varian PaxScan2520D, Varian
Medical Systems, USA) was used to acquire the images. G0 and G2 were absorption
gratings with a period of 10 µm and a duty cycle of 0.5, the phase grating G1 had a
phase shift of π/2 with a period of 5 µm and a duty cycle of 0.5. The grating G2 was
positioned in the first fractional Talbot distance. The grating G1 was stepped for eight
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Figure 11.4.: Photography of the XTT setup used to measure the samples. From left to
right: (S) x-ray source, (G0) source grating, (G1) phase grating, (S) sample
mounted on the Euler cradle, (G2) the analyzer grating and, (D) the detector

equally distanced phase steps in order to acquire sufficient data with an exposure time
of 1 s per phase step for a stable extraction of the signal components including dark-field
signal.[Pfe06a].

Our proposed methods are implemented within our C++ software framework for linear
inverse problems, CampRecon [WVL14]. All experiments were run on a computer with
dual Intel Xeon E5-2643 processors and four Nvidia Tesla K10 accelerators.

Each of the proposed methods were set to use Q = 50 outer iterations and P = 2 inner
iterations (without employing any other stopping criterion). 13 scattering directions ε̂k
were chosen as illustrated in Figure 9.3(a).

11.6.0.1 Carbon Fiber Knot Sample

The first sample is a "carbon knot", a knotted bunch of carbon fibers fixed by glue.
We use 112 dark-field images of 210×210 pixels acquired at different angles (ψ, θ, φ)

for the carbon knot sample to reconstruct a discretized volume of 2103 isotropic voxels.
Carbon knot sample was mounted in an Eulerian cradle at a position of 61.5 cm

Figure 11.5.: Photography of the carbon knot sample.
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Figure 11.6.: Photography of the crossed sticks sample.

upstream of grating G1 and where ψ ∈ {0◦, 20◦, 40◦}, θ ∈ {0◦, 30◦, 60◦, 90◦} and φ ∈
{0◦, 30◦, 60◦, 90◦}.

11.6.0.2 Crossed Sticks Sample

The second sample we used is a "crossed sticks", which consists of two wooden sticks
attached to a sample holder using hot glue.

We use 121 x-ray dark field projections of 320× 320 pixels, sparsely sampling the unit
sphere. The reconstruction volume was discretized using 3203 isotropic voxels.

Crossed sticks sample was mounted in an Eulerian cradle at a position of 61.5 cm
upstream of grating G1 and where ψ ∈ {0◦, 20◦, 40◦}, θ ∈ {0◦, 30◦, 60◦, 90◦} and φ ∈
{0◦, 30◦, 60◦, 90◦}.

11.6.0.3 Femur Sample

The second sample is a "femur sample", a human femur head bone sample excised into a
cubic shape of 1 cm3. We use 116 dark-field images of 350×350 pixels also acquired at
different angles (ψ, θ, φ) for the femur sample to reconstruct a discretized volume of 3503

isotropic voxels.
For the femur sample, we used a combination of Eulerian angles including ψ ∈
{0◦, 20◦, 40◦}, θ ∈ {0◦, 30◦, 60◦, 90◦} and φ ∈ {0◦, 30◦, 60◦, 90◦}.

11.6.1 Regularization Techniques Investigation
In this section, investigate the performance of implemented XTT, XTT-ADMM, rXTT and
wXTT reconstruction methods. In order to have comparable computational costs, we
selected 54 outer iterations for the original XTT reconstruction method and the proposed
rXTT method (with 5 inner iterations to compute the TV regularization), while we used 6
outer iterations and 9 inner iterations for the XTT-ADMM method. Using grid search, we
selected the coupling parameter ρ = 10 for the XTT-ADMM method and ρ = 100 for the
proposed rXTT method. The regularization parameter λ was chosen using an adaptive
thresholding scheme, such that 99% of the coefficients are zero afterwards.

The corresponding results of this experiment will be shown in section 11.7.1.
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11.6.2 Denoising Techniques Investigation
ADMM has two parameters, the regularization parameter λ and the coupling parameter
ρ. Due to the lack of any ground truth, we performed a systematic grid search to select
the best parameters empirically by visual assessment. For the carbon knot sample, this
resulted in the coupling parameter ρ = 103.

For the regularization parameter λ, we use an indirect scheme by choosing an adaptive
percentual thresholding parameter β between 0% and 100%, such that β percent of
the coefficients are zero. For the first experiments, we fixed β = 80% for all proposed
methods to compare their performance in carbon knot dataset. Secondly, we additionally
chose β such that identical noise levels are achieved according to the MAD estimator.

In particular, for the estimated noise level of 0.020, which is reached by setting β to
80% in rXTT, this leads to β =76% for wXTT, β =89% for TV→XTT and β =85% for
XTT→TV. For the estimated noise level of 0.005, this leads to β =88% for wXTT, β =96%
for TV→XTT, β =87% for rXTT and β =94% for XTT→TV and for the estimated noise
level of 0.100, this leads to β =65% for wXTT, β =74% for TV→XTT, β =64% for rXTT
and β =72% for XTT→TV (see Figure 11.13).

The corresponding results of this experiment will be shown in section 11.7.2.

11.7 Results

11.7.1 Regularization Techniques Investigation
Figure 11.8 shows the center slice of reconstructed component volumes η1 for three
scattering directions ε̂1 = (1, 0, 0)T, η8 for ε̂8 = (0.7, 0.7, 0)T and η9 for ε̂9 = (0.7,−0.7, 1)T.

On the left hand side, the slices are from the unregularized XTT reconstruction, the
middle column shows the result of the ADMM method, while the right hand side shows
the results of the rXTT method. Corresponding CNR results are shown in Table 11.1.

Comparison of the components in Figure 11.8 demonstrates a qualitative improve-
ment when using regularization, in particular in terms of suppressed background noise.
Compared to ADMM approach, the proposed rXTT approach allows for an efficient incor-
poration of TV regularization and shows better noise suppression, while demonstrating
less artifacts (see for example Figure 11.8(E) vs. (H)). The visualization of the fitted
tensors in Fig. 11.9 shows a marked improvement, with smoother tensors representing
the structure orientations, while the background is less noisy.

Figure 11.7 shows a comparison of r(q) and M(q) for the three methods. The XTT
method shows the smallest residual norm r(q), but oscillating behavior in update M(q),
while both the XTT-ADMM method and rXTT method show a larger residual norm and
smoother updates.
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Table 11.1.: CNR of slices from Fig. 11.8. Representative ROI is marked in red and
background as green in Fig. 11.8(A).

Component XTT XTT-ADMM rXTT

ε̂1 2.63× 105 2.88× 105 1.32× 106

ε̂8 2.14× 105 3.73× 105 4.84× 105

ε̂9 4.40× 105 8.07× 105 1.04× 106

Figure 11.7.: Comparison of (A) normalized residual norm r(q) and (B) normalized mean
update M(q) for the three studied reconstruction methods.
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(A) XTT
ε̂1 = (1, 0, 0)T

(D) XTT-ADMM
ε̂1 = (1, 0, 0)T

(G) rXTT
ε̂1 = (1, 0, 0)T

(B) XTT
ε̂8 = (0.7, 0.7, 0)T

(E) XTT-ADMM
ε̂8 = (0.7, 0.7, 0)T

(H) rXTT
ε̂8 = (0.7, 0.7, 0)T

(C) XTT
ε̂9 = (0.7,−0.7, 1)T

(F) XTT-ADMM
ε̂9 = (0.7,−0.7, 1)T

(I) rXTT
ε̂9 = (0.7,−0.7, 1)T

Figure 11.8.: Illustration of center slice of the reconstructed component volumes of
crossed-sticks dataset using XTT, ADMM regularized XTT and TV reg-
ularized XTT reconstruction techniques corresponding to the scattering
directions ε̂1, ε̂8. and ε̂9 for all three methods. All images windowed to
[0.1, 0.9].

60



11. XTT Reconstruction, Regularization and Noise Reduction

Fi
gu

re
11

.9
.:

Te
ns

or
vi

su
al

iz
at

io
n

of
a

si
ng

le
sl

ic
e

of
th

e
re

co
ns

tr
uc

te
d

cr
os

se
d

st
ic

ks
sa

m
pl

e
fo

r
al

lt
hr

ee
m

et
ho

ds
:(

A
)

X
TT

,(
B)

A
D

M
M

,a
nd

(C
)

rX
TT

.T
he

st
ru

ct
ur

e
or

ie
nt

at
io

n
is

co
lo

r
en

co
de

d
as

sh
ow

n
in

or
ie

nt
at

io
n

sp
he

re
in

th
e

ri
gh

t
si

de
of

th
is

fig
ur

e.

61



11. XTT Reconstruction, Regularization and Noise Reduction

11.7.2 Denoising Techniques Investigation

11.7.2.1 Dark-Field Projection Denoising

11.7.2.1.1. Carbon Knot Sample Figure 11.10 illustrates three dark-field images mea-
sured from carbon knot sample in three angle combinations (ψ = 20◦, θ = 45◦, φ = 60◦),
(ψ = 0◦, θ = 0◦, φ = 0◦) and (ψ = 0◦, θ = 60◦, φ = 0◦), along with the results of
two-dimensional TV denoising. As shown in this figure, for projection domain noise
reduction (TV→XTT) of carbon knot sample, the noise level measured in terms of MAD
and SNR shows a significant improvement for each of the dark-field images.

(A)
MAD: 0.051
SNR: 4.718

(B)
MAD: 0.041
SNR: 4.163

(C)
MAD: 0.053
SNR: 4.040

(D)
MAD: 0.032
SNR: 7.513

(E)
MAD: 0.030
SNR: 7.360

(F)
MAD: 0.029
SNR: 6.908

Figure 11.10.: Example images of two-dimensional TV denoising of dark-field image
measurements of the carbon knot dataset, windowed to [0.1,0.75], (A-C)
showing angle combinations (ψ = 20◦, θ = 45◦, φ = 60◦), (ψ = 0◦, θ =

0◦, φ = 0◦) and (ψ = 0◦, θ = 60◦, φ = 0◦), respectively, before denoising
and (D-F) showing the same angles after denoising with β fixed to 80%.
Corresponding MAD and SNR values are displayed below each image.

11.7.2.1.2. Femur Sample Figure 11.11 illustrates three dark-field images measured
from three angle combinations (ψ = 20◦, θ = 45◦, φ = 60◦), (ψ = 0◦, θ = 0◦, φ = 0◦) and
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(ψ = 0◦, θ = 60◦, φ = 0◦) of the femur sample, along with the results of two-dimensional
TV denoising. As shown in this figure, for projection domain noise reduction (TV→XTT)
of the femur sample, the noise level measured in terms of MAD and SNR shows a
significant improvement for each of the dark-field images.

(A)
MAD:0.029
SNR:6.812

(B)
MAD:0.028
SNR:6.933

(C)
MAD:0.029
SNR:6.500

(D)
MAD:0.027
SNR:7.673

(E)
MAD:0.025
SNR:7.574

(F)
MAD:0.025
SNR:7.671

Figure 11.11.: Illustration of two-dimensional TV denoising on dark-field image mea-
surements of the femur dataset, (a-c) showing angle combinations of
(ψ = 20◦, θ = 0◦, φ = 180◦), (ψ = 0◦, θ = 30◦, φ = 0◦) and (ψ = 36◦, θ =

0◦, φ = 0◦) respectively, before denoising and (d-f) showing the same an-
gles after denoising with β fixed to 80%. Corresponding MAD and SNR
values are displayed below each image.

11.7.2.2 Reconstructed Components

11.7.2.2.1. Carbon Knot Sample Figure 11.12 shows the center slice of the reconstructed
and denoised component of the carbon knot dataset corresponding to the scattering direc-
tion ε̂3 = (0, 0, 1), with a zoomed area of interest marked in red boxes, and corresponding
MAD estimates in the captions.

Reconstruction using the denoised dark-field images, instead of the original ones,
shows a both qualitative and quantitative improvement in the reconstructed carbon knot
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volumes, as shown in Figure 11.12(E). However, the TV→XTT approach requires a fairly
high regularization parameter in order to compete with the rXTT and wXTT methods
in terms of CNR and MAD which results in flatten features that are indistinguishable
from noise as shown in Figure 11.12. This denoising methods can also lead to amplified
streaking artifacts, as can be seen in Figure 11.12(B).

Both regularized XTT reconstruction (rXTT) and whole-system regularized XTT (wXTT)
methods shows the most promising results for experimented knot dataset by reducing
noise level and improving CNR compared to all other approaches, as seen in all the
results.

In particular, for the carbon knot sample, the rXTT and wXTT methods are significantly
reducing the background noise and dampens streak artifacts, as shown in Figure 11.12(A-
E).

In order to investigate the effect of regularization parameters, we provide more data
points by showing the results for parameters β, which lead to the same noise level as
estimated by MAD in Figure 11.13 for carbon knot sample. In particular, for the estimated
noise level of 0.020, which is reached by setting β to 80% in rXTT, this leads to β =76%
for wXTT, β =89% for TV→XTT and β =85% for XTT→TV. For the estimated noise level
of 0.005, this leads to β =88% for wXTT, β =96% for TV→XTT, β =87% for rXTT and
β =94% for XTT→TV and for the estimated noise level of 0.100, this leads to β =65% for
wXTT, β =74% for TV→XTT, β =64% for rXTT and β =72% for XTT→TV.

11.7.2.2.2. Femur Sample Figure 11.14 shows the center slice of the reconstructed and
denoised component of the carbon knot dataset corresponding to the scattering direction
ε̂1 = (1, 0, 0), with a zoomed area of interest marked in red boxes, and corresponding
MAD estimates in the captions.

Similar to the results acquired for carbon knot sample, reconstruction using the de-
noised dark-field images, instead of the original ones, shows qualitative and quantitative
improvements in the reconstructed femur sample volumes, as shown in Figure 11.14(E).

Regularized XTT reconstruction (rXTT) and whole-system regularized XTT reconstruc-
tion (wXTT) methods shows the most promising results for femur datasets by reducing
noise level and improving CNR compared to all other approaches, as seen in all the
results.

In particular, for the femur sample, the rXTT and wXTT methods are significantly
reducing the background noise and dampens streak artifacts, as shown in Figure 11.14(A-
E).

Denoising of the reconstructed component volumes after performing unregularized
XTT reconstruction (XTT→TV) is the second proposed method. Comparison of the
results for both samples show that this method is also decreasing the noise level (as
measured by MAD), while increasing CNR for different components, see Figure 11.14(D).
However, it seems that this method retains a significant amount of noise, in particular in
the background areas of both samples, see Figure 11.14.

In order to investigate the effect of regularization parameters, we provide more data
points by showing the results for parameters β, which lead to the same noise level as
estimated by MAD in Figure 11.15 for femur sample. In particular, for the estimated
noise level of 0.040, which is reached by setting β to 80% in rXTT, this leads to β =87% for
TV→XTT and β =84% for XTT→TV. For the estimated noise level of 0.005, this leads to
β =97% for TV→XTT, β =89% for rXTT and β =95% for XTT→TV and for the estimated
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Figure 11.12.: Center slice of the reconstructed and denoised carbon knot dataset for
component ε̂3 = [0, 0, 1]. A ROI is marked with a red square and zoomed
for the (A) XTT, (B) TV→XTT, (C) rXTT, (D) XTT→TV, and (E) wXTT
methods. The parameter β was fixed to 80%. All images are windowed to
[0.10,0.85].

noise level of 0.100, this leads to β =76% for TV→XTT, β =73% for rXTT and β =75%
for XTT→TV.
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Figure 11.13.: Zoomed area of interest of the images (see Figure 11.12) of the carbon
knot dataset corresponding to the scattering direction ε̂3, windowed to
[0.10,0.85]. The parameters β have been chosen such that the TV→XTT,
rXTT and XTT→TV methods match in noise level as estimated by MAD.
(A,E,I) TV→XTT, (B,F,J) rXTT, (C,G,K) XTT→TV, and (D,H,L) wXTT.

11.7.2.3 Components Quality Assessment

Illustration of MAD and CNR comparisons are shown in Figure 11.16, respectively, for
the reconstructed components of the scattering directions ε̂1, ε̂2 and ε̂3.

MAD and CNR comparisons for femur sample are shown in Figure 11.17, respectively,
for the reconstructed components of the scattering directions ε̂1, ε̂2 and ε̂3.
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Figure 11.14.: Center slice of the reconstructed and denoised femur dataset for component
ε̂1 = [1, 0, 0]. A ROI is marked with a red square and zoomed for the (A)
XTT, (B) TV→XTT, (C) rXTT, (D) XTT→TV, and (E) wXTT methods. The
parameter β was fixed to 80%. All images are windowed to [0.05,0.80].
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(A) TV→XTT
[MAD : 0.100]
[β = 76%]

(B) rXTT
[MAD : 0.100]
[β = 73%]

(C) XTT→TV
[MAD : 0.100]
[β = 75%]

(D) TV→XTT
[MAD : 0.040]
[β = 87%]

(E) rXTT
[MAD : 0.040]
[β = 80%]

(F) XTT→TV
[MAD : 0.040]
[β = 84%]

(G) TV→XTT
[MAD : 0.005]
[β = 97%]

(H) rXTT
[MAD : 0.005]
[β = 89%]

(I) XTT→TV
[MAD : 0.005]
[β = 95%]

Figure 11.15.: Zoomed area of interest of the images (see Figure 11.14) of the femur dataset
corresponding to the scattering direction ε̂1, windowed to [0.05,0.80]. The
parameters β have been chosen such that TV→XTT, rXTT and XTT→TV
methods match in noise level as estimated by MAD. (A,D,G) TV→XTT,
(B,E,H) rXTT, (C,F,I) XTT→TV
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11.7.2.4 Tensor Visualization

Figure 11.18 shows the center slice of the finally reconstructed tensors of carbon knot
sample using all the scattering directions ε̂k, visualized as tensors with the color encoding
the main structure orientation (see orientation color coding sphere in the center of
Figure 11.18).

Figure 11.19 shows the center slice of the finally reconstructed tensors of femur sample
using all the scattering directions ε̂k, visualized as tensors with the color encoding
the main structure orientation (see orientation color coding sphere in the center of
Figure 11.19).

11.7.2.5 Numerical Behavior

In order to study the convergence of proposed methods, a comparison of r(q) and ∆(q)

plots for the proposed methods was shown in Figure 11.20. The TV→XTT and XTT
methods show smaller residual norm r(q), but oscillating behavior in update ∆(q), while
rXTT and wXTT methods shows a larger residual norm and smoother updates. The rXTT
and wXTT methods have been shown to produce considerably less noise artifact and
visually smoother, non-oscillating updates.

11.7.2.6 Tensor Orientation Evaluation

One of the limitations in XTT imaging assessment is the lack of any XTT ground
truth phantom to evaluate the proposed reconstruction and image denoising methods.
However, In order to evaluate the XTT reconstruction and noise reduction methods
proposed in this paper, we introduced an approach based on the using of attenuation
images as a standard ground truth.

Figure 11.21(A,B) shows a histogram comparison of the angular differences δ of the
fiber orientations for regular XTT and the two proposed methods rXTT and wXTT.
A corresponding box plot is shown in Figure 11.21(C,D). As shown in this figure,
comparison between the orientation information acquired from XTT reconstruction
and noise reduction methods shows fairly small angles of deviations δ’s to the centerline
orientation of attenuation image while the proposed rXTT method exposes smaller
deviations comparing to the other methods.

11.8 Conclusion
In this chapter, we studied the best way to incorporate a denoising technique into the XTT
reconstruction pipeline, in particular the popular total variation denoising technique. We
proposed two different schemes of including denoising into the reconstruction process,
one using a column block-parallel iterative scheme and one using a whole-system
approach. Additionally, we compared results using a simple denoising approach, applied
either before or after reconstruction. As shown in the experiments and corresponding
results, all proposed methods show marked improvements in noise reduction for both of
our experimental datasets.

In order to study the convergence speed of the proposed methods, a comparison of r(q)

and ∆(q) plots was shown in Figure 11.20. The TV→XTT and XTT methods show smaller
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Figure 11.18.: Tensor visualization of a single slice of the reconstructed carbon knot
sample volumes for all four methods: (A) XTT (B) TV→XTT, (C) rXTT, (D)
XTT→TV, (E) wXTT and (F) The structure orientation is color encoded as
shown in orientation sphere. β fixed to 80%.
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Figure 11.19.: Tensor visualization of a single slice of the reconstructed femur sample for
all four methods: (A) XTT, (B) TV→XTT, (C) rXTT, (D) XTT→TV, (E) wXTT
and (F) The structure orientation is color encoded as shown in orientation
sphere. β fixed to 80%.
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Figure 11.20.: Illustration of diagrams for (A) normalized residual norm r(q) and (B)
normalized mean update r(q) for the proposed methods. Normalized mean
horizontal axis is shown from iteration 5 to illustrate the difference between
different plots.

residual norm r(q), but oscillating behavior in update ∆(q), while the rXTT and wXTT
methods show a larger residual norm and smoother updates.

One of the limitations in XTT imaging assessment is the lack of any XTT ground truth
to evaluate the proposed reconstruction and image denoising methods. However, in
order to evaluate the XTT reconstruction and noise reduction methods proposed in this
paper, we introduced an approach based on the absorption images in place of a ground
truth. As shown in Figure 10.1, the comparison between the fiber orientations acquired
from the XTT reconstruction and noise reduction methods shows fairly small angles
of deviations δ compared to the centerline orientation of absorption image, while both
proposed rXTT and wXTT methods demonstrate even smaller deviations.

Both regularized XTT reconstruction (rXTT) and whole-system regularized XTT recon-
struction (wXTT) methods show promising results for both datasets by reducing noise
level and improving CNR compared to all other approaches, as seen in all the results.
In particular, as shown in Figure 11.14 for the femur sample, the background noise is
reduced significantly using rXTT and wXTT, and the zoomed image of Figure 11.14(A-E)
illustrates a successful preservation of trabecular tissue edges in the sample. For the car-
bon knot sample, the rXTT and wXTT methods are significantly reducing the background
noise and dampens streak artifacts, as shown in Figure 11.12(A-E).

For projection domain noise reduction (TV→XTT), the noise level has been measured
in terms of MAD and SNR and shows a significant improvement for each of the dark-field
images. Reconstruction using the denoised dark-field images, instead of the original
ones, shows qualitative and quantitative improvements in the reconstructed volumes,
as shown in Figures 11.12(D) and 11.14(D). However, the TV→XTT approach requires a
fairly high regularization parameter in order to compete with the rXTT method in terms
of CNR and MAD, which results in flattened features that are indistinguishable from
noise as shown in Figure 11.12. This can also lead to amplified streaking artifacts, as can
be seen in Figure 11.12(B).
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Figure 11.21.: Histogram showing angle differences δ comparison of attenuation recon-
structed image with XTT reconstruction method and proposed noise re-
duction and regularization methods for ROI1 (A) and ROI2 (B). Box plots
illustrating the distribution of data from all proposed reconstruction and
denoising methods with green line and red circle marks showing the
median and mean for (C) ROI1 and (D) ROI2, as marked in Figure 10.1.

Comparison of the results for both samples reconstructed and denoised using the
denoising of reconstructed volumes method (XTT→TV), shows significant decrease in
the noise level (as measured by MAD) and increasing CNR for different components, see
Figures 11.12(D) and 11.14(D). However, it seems that this method retains a significant
amount of noise, in particular in the background areas of both samples, see Figures 11.12
and 11.14.

In order to investigate the effect of the regularization parameter, we provide more data
points by showing the results for parameters β, which lead to the same noise level as
estimated by MAD in Figure 11.13 for carbon knot samples respectively.

As future work, it would be valuable to investigate the proposed methods using other
samples with different characteristics and also using more advanced evaluation methods,
such as a model-observer evaluation pipelines. Instead of using TV denoising, adapting
the denoising method to a more exact noise model of the dark-field signal as acquired
from a grating-based interferometry setup should yield further improvements in the
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resulting image quality. The adapted denoising method could then be integrated into
the XTT reconstruction pipeline in the same way as suggested in this work for the TV
denoising method.

In summary, we have investigated several ways of incorporating a denoising approach
into the XTT reconstruction technique. In particular, we studied a component-based
regularized reconstruction technique, interleaving denoising with the regular block-
parallel XTT reconstruction step in each iteration (rXTT), as well as a whole-system
approach using regularization directly (wXTT). The results of the conducted experiments
show a marked improvement in noise reduction for both experimental datasets, both
qualitatively and quantitatively, for all methods, when compared to the unregularized
XTT reconstruction technique. The two proposed approaches incorporating denoising into
the reconstruction process, rXTT and wXTT, perform markedly better than the simple
denoising of the raw dark-field images (TV→XTT) or the reconstructed component
images (XTT→TV), with very slight advantages for the wXTT approach.
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12. CT Perfusion Imaging of the Liver

12.1 Overview
This chapter will provide an overview of CT perfusion (CTP) imaging and its applications
for liver imaging. First, a theoretical overview of the CTP data acquisition will be
presented in section 12.3. Next, in section 12.4, the forward model will be introduced.
In section 12.5, we provide a review of several existing tomographic reconstruction
techniques for CTP imaging and finally, will explain perfusion data analysis techniques
in section 12.6.

12.2 Background
CT perfusion (CTP) is a functional imaging modality that requires the acquisition of a
baseline image before injection of any contrast enhancement which will be followed by a
series of images acquired as a function of time following an intravenous bolus injection
of a conventional iodinated CT contrast material [Mil02; MG03b]. Thus, the temporal
changes in contrast enhancement effectively provide a time–attenuation curve (TAC)
, which can be analysed to quantify a range of parameters such as tissue blood-flow
parameters that indicate the functional status of the vascular system within tumors
and adjacent tissues [May00; MEK07; Jai08]. Typically, an iodinated contrast agent is
administered and projection images are acquired before, during, and after the injection
of contrast to track temporal changes in CT attenuation [Gil01]. (see Figure 12.1)

With the availability of wide-area detectors (e.g. 256 slices or more), CT can cover whole
organs which has facilitated CTP in a variety of applications including head and neck,
liver, lung and colorectal imaging [Mil12; MG03a]. CTP has shown remarkable results in
diagnosing malignant and non-malignant parotid lesions [Bis07] and in assessing tumor
vascularity changes that result from chemotherapy and radiation therapy [Sah07].

Liver CT perfusion provides valuable information on blood flow dynamics in the
assessment of liver damage or severity of hepatic fibrosis in patients with chronic liver
disease‘[Has06], in the evaluation of therapeutic effectiveness for liver cancer [KKW14],
and in the assessment of hepatic perfusion changes after surgical and radiological
interventions [Qia10; Wei05]. Recent studies also revealed promising results of using
CTP as a viable biomarker for of hepatocellular carcinoma (HCC) tumor and pancreatic
lesion detection and analysis [Sah07; Ipp12].

12.3 Acquisition
Several data acquisition protocols have been proposed for CTP imaging. In this study,
however, we use a similar protocol to the animal model with denser sampling at the
beginning of the sequence [Bui11].
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Figure 12.1.: An illustration of the dynamic enhanced CT perfusion imaging. Sequential
CT scanning of the same tissue (rabbit abdomen in this figure) have been
acquired before, during, and after injection of contrast to track temporal
attenuation changes.

Figure 12.2.: Temporal sampling in the CT perfusion study.

The exact sampling pattern is shown in Figure Figure 12.2 starting with an initial
non-enhanced scan followed by a 4 sec delay and 7 scans over 12 sec, a 6 sec delay
followed by 8 scans over 28 sec, a 5 sec delay, and finally 5 scans over 16 sec.

12.4 Forward Model
We adopt a simple monoenergetic forward model for our experiments. The mean
measurements in this transmission tomography model can be written as,

ȳi = I0.exp(−[Aµ(t)]i), (12.1)

where I0 is a gain term associated with the unattenuated x-ray fluence for each
measurement. The patient anatomy (at a single time point) is denoted by the vector µ.
We presume an ideal detector so that the random vector y is independent and Poisson
distributed. The projection operation is denoted by A and [Aµ]i is the line integral
associated with the ith measurement.

12.5 Reconstruction
In this section, we discuss two different reconstruction methods that are applied to the
data. These methods are outlined in the following sections.
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12.5.1 Feldkamp–Davis–Kress Reconstruction
For a baseline analytic reconstruction, we used the Feldkamp–Davis–Kress (FDK) algo-
rithm [FDK84] which is a commonly used method for direct CT reconstruction. Data was
prepared using ideal gain correction, logarithmic transformation, and thresholding of the
data at 10−4. The reconstruction filter used for this approach was a raised cosine ramp
function filter with a cutoff frequency of 0.8 times Nyquist.

12.5.2 Penalized-Likelihood Reconstruction
To investigated performance using a well-known MBIR approach we adopted a penalized-
likelihood estimator [Fes00]. The objective function for this reconstruction may be written
as

φ(µ; y) = −L(µ; y) + β‖ψµ‖, (12.2)

where L represents the log-likelihood function which is derived using the Poisson
likelihood assumption and a data model matching. The second term is a traditional
edge-preserving roughness penalty term. The operator denotes a local pairwise voxel
difference operator and, in this work, we will choose to implement using a Huber cost
function [Hub64]. The regularization parameter controls the balance between the data
fidelity and roughness penalty allowing user control of the noise-resolution trade-off.
The optimization problem can be written as,

µ∆ = argmin
µ∈RNµ

φ(µ; y). (12.3)

We solve this objective iteratively using the separable quadratic surrogates approach [EF99b]
using 100 iterations and 10 subsets.

12.5.3 Prior Image Penalized-Likelihood Estimation (PIPLE)
To investigate performance using a prior image based MBIR approach we implemented a
PIPLE as described in [Sta13] which has the following objective function

φ(µ; y) = −L(µ; y) + βR‖ψµ‖+ βP‖µ− µP‖, (12.4)

with the same log-likelihood function and traditional roughness penalty as 12.2. The third
term is a prior image penalty with denoting the prior image. The parameters βR and
βP denote the relative strengths of the roughness and prior image penalty respectively.
The optimization has the same form as 12.3 and is solved using the separable quadratic
surrogates (SPS) algorithm [EF99b]. For PIPLE, 100 iterations and 10 subsets were used.

12.6 Hepatic Perfusion Analysis
We use the dual-input maximum slope method [Mil91; MHD93b] to calculate the perfu-
sion metrics for both the baseline truth as well as processed data. The slope method is
commonly used in the evaluation of dual liver blood supply components, i.e. hepatic
arterial perfusion (HAP) and hepatic portal perfusion (HPP) (see Figure 12.3).
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Figure 12.3.: Hepatic perfusion analysis, (A) Dual input liver perfusion model, and (B)
Dual-input maximum slope method based on the equation for measurement
of tissue perfusion, Ca(t), Cp(t) and Cl(t) denote the concentration in aorta,
portal vein and liver respectively where Cl(t) = Ca(t) + Cp(t).

Figure 12.4.: Perfusion maps (HAP, HPP, PI and TTP) visualization for the rabbit’s ab-
domen and liver acquired for the CT scans from Figure 12.1 with acquisition
protocol of Figure 12.2.

The HAP was determined as the peak gradient of the hepatic TAC before the peak
splenic attenuation (arterial phase) divided by the peak aortic attenuation. (Portal
perfusion) presumed to be negligible during the arterial phase.) Thus,

HPP =
Fa

V
=

dCl(t)
dt max

Ca(t)maxmax
, (12.5)

HPP was calculated by dividing the peak gradient of the hepatic TAC after the peak
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splenic attenuation portal phase () by the peak portal vein attenuation as,

HPP =
Fp

V
=

dCl(t)
dt max

Cp(t)maxmax
, (12.6)

where Fa and Fp denote the arterial and portal flows and Ca(t), Cp(t) and Cl(t) refer
to the concentration in aorta, portal vein and liver respectively (Cl(t) = Ca(t) + Cp(t)).
Another common metric, the arterial fraction, or hepatic perfusion index (PI; %), was
determined as,

PI =
HAP + HPP

HAP
. (12.7)

The perfusion index is commonly used since it is less sensitive to some biases present
in the HAP and HPP estimates. Note that in Figure 13.2, the tumor enhances more in the
arterial phase than healthy tissue providing an important diagnostic cue.

Lastly, we also compute the time-to-peak (TTP) by identifying the maximum value in
the TAC and recording the time to achieve that value since the injection. The TTP metric
has previously been used in stroke imaging [May00], but may also provide an additional
diagnostic test for identification of lesions in the liver.

Figure 12.4 illustrates an example perfusion maps obtained from reconstructed rabbit
liver data.
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13. Low-dose CT Perfusion Imaging

13.1 Overview
Our aim in this chapter is to describe low-dose CT perfusion (CTP) imaging and to
introduce its applications in liver imaging scenarios. Next, we will provide an overview
of the data generation in section 13.3. Then, a detailed discussions on the phantom
design and proposed reconstruction method to reduce the radiation dose in CTP exams
follows in sections 13.4 and 13.5 respectively. Next, in section 13.6, several experiments
will be introduced and the corresponding results will be illustrated in section 13.7.

13.2 Background
CT perfusion imaging of the liver enables the evaluation of perfusion metrics that can
reveal hepatic diseases and that can be used to assess treatment responses. Despite the
potential clinical applications of the CTP, the excessive radiation dose exposed during
the sequential scanning is a major drawback that limits more widespread use of CTP in
clinical and research applications [Pan05; Ogu14]. Several techniques have been studied
to decrease the radiation exposures including patient-size-specific scanning parameter
modifications and variation of exposure throughout the temporal scanning [Mur05;
OKM11; Che09; Li14]. However, lowering x-ray exposure, inevitably reduces the quality
of the acquired images and can introduce noise and streak artifacts which, in turn,
lowering the accuracy of the desired perfusion parameters.

Model-based iterative reconstruction (MBIR) techniques have been proposed as one of
the solutions to improve the trade-off between radiation dose and acquired image quality.
Recent studies on body CT scanning have demonstrated that such advanced processing
methods can improve image quality in a low exposure scan, thereby reducing the
effective dose exposed to the patient [Vor11; Har09]. Recent study of Negi et al. [Neg12]
demonstrated that the adaptive iterative dose reduction (AIDR) reduced the image noise
while maintaining hepatic perfusion parameters. However, most reconstruction methods
tend to be applied in isolation, neglecting the large amount of shared information between
scans.

In contrast, prior-image-based reconstruction (PIBR) approaches have been proposed
to incorporate anatomical information found in previous scans. Prior information is
much stronger than traditional assumptions of image smoothness and should allow for
further reductions of noise and artifacts comparing to conventional MBIR regularization.

Example PIBR methods include prior-image-constrained compressed sensing () [CTL08b]
and prior-image-registered penalized-likelihood estimation (PIRPLE) [Sta13]. Both of
these techniques use a high quality prior image volume to help reconstruct low ex-
posure or sparsely sampled projection data. PICCS has previously been investigated
for small animal CTP [Net10]. A modification of PIRPLE with deformable registration
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has been used to reduce x-ray exposures in lung nodule surveillance by more than an
order of magnitude [Dan14]. Recently, Pourmorteza et al. [Pou16] proposed a novel
Reconstruction of Difference (RoD) technique that uses a penalized likelihood objective
to directly reconstruct the difference between an already scanned prior image and the
current anatomy enabling direct reconstructions of anatomical change (analogous to
digital sub- traction angiography) with reduced noise.

In this study, we investigate the feasibility of using RoD technique for liver CTP by
providing a digital simulations based on real time activity data and introduce several
evaluation and perfusion analysis techniques [Sey18a]. An illustration of the proposed
acquisition and processing chain for liver CTP is shown in Figure 13.1.

Tomographic measurements (yn) are acquired over a range of time points n = 0 to
N. These measurements cover a changing anatomy (µn) from an unenhanced volume
(pre-iodine-injection) at n = 0, through uptake and washout of the contrast. A high-
quality unenhanced baseline image (µ0) serves as a prior image (µp) for input into RoD
to reconstruct difference image volumes (µ̂∆) for all subsequent low-dose sequential
data. These difference images can be used to form estimates of the current image
anatomy (µ̂ = µp + µ̂∆) at each time point. Subsequent perfusion analysis using standard
computations on the entire image sequence is then used to create perfusion maps using
various metrics.
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13. Low-dose CT Perfusion Imaging

13.3 Data Generation

Figure 13.2.: TACs obtained from an abdominal scan of a rabbit animal model with HCC
are obtained using a smooth fit to attenuation values at individual time
points. A region of interest in five tissue types allowed estimation of TACs
for the aorta, portal vein, spleen, healthy liver tissue, and a liver tumor.

For this study, we obtained realistic time-attenuation curves (TACs) from an animal
model. Specifically, an adult male New Zealand white rabbit (3.5 kg) was selected for the
study. The animal was implanted with a VX2 tumor in the left lobe of the liver using
previously documented procedures [Che04; Bui11] and allowed to grow for 13-15 days
prior to CTP imaging. The rabbit was sedated using ketamine (20 mg/kg) and xylazine (8
mg/kg) via intramuscular injection. CTP studies were acquired using an Aquilion ONE
(Toshiba, Japan) 320-slice CT scanner with a 22 cm field-of-view and x-ray technique
of 120 kVp and 80 mA. Contrast agent (1.5 ml/kg, 320 I/ml Visipaque, GE Healthcare,
Princeton, NJ) was administered at 1 ml/second via a marginal ear vein followed by a 7
ml saline flush at 1 ml/second. Following a 6 sec delay, CT data was acquired at 2-sec
intervals for 25 seconds, followed by 3-second intervals for 42 seconds. Each scan took 0.5
seconds for a total of 17.5 seconds of scan time (CTDIvol = 164.7 mGy). CT reconstruction
was performed using AIDR 3D (Toshiba Medical Systems, Japan) with 0.349 mm voxels.
In order to compensate for breathing motion, CT dataset were registered using Body
Registration (Toshiba Medical Systems, Tochigi, Japan).

Regions-of-interest (ROI) were identified within the aorta, portal vein, spleen, healthy
liver tissue, and the liver tumor. Attenuation was averaged over the region to form raw
TAC samples. A smoothing spline function [Uns99; DAn10] was used to fit the liver
perfusion TACs to reduce noise in the estimates. The resulting TACs for each region are
shown in Figure 13.2.
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Figure 13.3.: 4D Digital liver phantom with two lesions designed for CT perfusion studies.
Single slices and a zoomed region around both simulated homogeneous
tumor (marked in red) and Gaussian tumor (marked in green) are shown
for six time points in the sequence.

13.4 Phantom Design
To assess the performance of proposed methods in human CTP, TACs from Figure 13.2
were mapped onto a digital anthropomorphic phantom and two simulated spherical
tumors were included afterwards.

Designed phantom covers an axial extent of 20.48 cm and includes two simulated
spherical tumor based on the same tumor TAC. The homogeneous lesion with a diameter
equal to 12 mm and a sharp edge profile is marked red in Figure 13.3). Second simulated
tumor (marked green in Figure 13.3) has flat interior profile with a smooth edge based
on a Gaussian profile. Both lesions have the same full-width half-maximum of 3.2 mm.

An illustration of dynamic digital liver phantom with two lesions is shown in Fig-
ure 13.3 for several time points.

Specifically, the healthy liver TAC was mapped onto the segmented liver, the aorta
TAC was mapped onto the aorta, and a simulated spherical tumors were created using
the tumor TAC.

Temporal sampling for data generation followed a similar protocol as that used in
the animal model with denser sampling at the beginning of the sequence. The exact
sampling pattern was shown in Figure Figure 12.2 starting with an initial non-enhanced
scan followed by a 4 sec delay and 7 scans over 12 sec, a 6 sec delay followed by 8 scans
over 28 sec, a 5 sec delay, and finally 5 scans over 16 sec.

13.5 Reconstruction of Difference
Reconstruction of Difference (RoD) algorithm aims to reconstruct the difference image
(µ∆) between the current anatomy (µ) and a prior image (µp). In CT perfusion imaging,
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RoD can be employed to reconstruct contrast changes as the difference image between
the unenhanced baseline (as a prior image) and individual enhanced images of the same
anatomy post-contrast-injection. Under the RoD model

µ = µp + µ∆. (13.1)

Plugging into the forward model in Equation 12.1 yields,

y = [I0.exp(−Aµp)].exp(−Aµ∆) = g.exp(−Aµ∆), (13.2)

where g denotes a new “gain” parameter that includes µp. Thus the forward model has
a familiar form (same as 12.1) and it is straightforward to write a penalized-likelihood
objective function for estimation of the difference image, µ∆, as,

φ(µ∆; y, µp) = −L(µ∆; y, µp) + βR‖ψµ∆‖+ βM‖µ∆‖, (13.3)

where the log-likelihood function is denoted with L. Two penalty terms are included:
1) an edge-preserving roughness penalty term which encourages the smoothness in
the difference image and controlled by a regularization parameter βR. (denotes a local
pairwise voxel difference operator.) And, 2) a magnitude penalty on µ∆ which encourages
sparseness of the difference image controlled by parameter βM. The second penalty term
also controls the amount of prior information integrated from the unenhanced baseline
image since increased sparsity of the change image implies increased similarity to the
prior image.

The optimization problem for the image volume updates can be written as,

µ∆ = arg min
µ∆

φ(µ∆; y, µp)

= arg min
µ∆
{−L(µ∆; y, µp) + βR‖ψµ∆‖+ βM‖µ∆‖}

(13.4)

We solve the optimization problem for µ∆ using separable paraboloidal surrogates
(SPS) algorithm [EF99b] with 100 iterations and 10 subsets.

All reconstruction methods and evaluation routines were implemented in Matlab
(The Mathworks, Natick, MA) with projectors/back-projectors in C/C++ using CUDA
libraries for acceleration.

13.6 Experiments
All experiments used a common CT geometry. Table 13.1 summarizes the simulated
system parameters. Projection data used the separable footprints projector [LFB10].

13.6.1 Regularization Investigation

13.6.1.1 Penalized-Likelihood Regularization

While PL reconstruction is widely used in CT, we are unaware of previous attempts to
optimize regularization as a function of time throughout a contrast-enhanced study. To
study general trends in optimal penalty strength for PL, we performed an exhaustive
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Table 13.1.: Simulation parameters used for liver CTP studies.

Quantity Value

Rotation Angle 360 degrees
Volume Size 512× 512× 64
Voxel Size 0.4 mm
Number of Projections 360
Source-to-Axis Distance 1000 mm
Source-to-Detector Distance 500 mm
Detector Pixel Size 1mm× 1mm

Figure 13.4.: ROIs for TAC and perfusion RMSE calculation. The ROI for the homoge-
neous and Gaussian tumors are marked in red and blue respectively and
healthy liver tissue is marked with green circles.

1D search to find the optimal regularization parameter by comparing the root-mean-
square error (RMSE) between the original image and the PL reconstructed image. We
repeated this search for each time point. The incident fluence was fixed to I0 = 103 for
all experiments. RMSE was calculated in a 50× 50 voxel ROI including the lesion and
liver tissue around it (as illustrated in Figure 13.3).

13.6.1.2 Prior-Image Penalized-Likelihood Regularization

The PIPLE objective function includes two coefficients, βR and βP, which control the
strength of the roughness and prior magnitude penalty, respectively. To study the optimal
penalty strength, we performed an exhaustive 2D sweep of these parameters. Optimal
parameters based on the RMSE around a region-of-interest (ROI), shown in Figure ??)
including the simulated tumor were selected for each time point in the temporal sequence.

13.6.1.3 Reconstruction of Difference Regularization

The RoD objective function includes two coefficients, βR and βM, which control the
strength of the roughness and prior magnitude penalty, respectively. Similar to PIPLE
optimization, we performed an exhaustive 2D sweep of these parameters to study the
optimal penalty strength. Optimal parameters based on the RMSE around a region-of-
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Figure 13.5.: Illustration of penalized-likelihood regularization parameter optimization
using root-mean-square error (RMSE) change between iterations.

interest (ROI), shown in Figure 13.4) including the simulated tumor were selected for
each time point in the temporal sequence.

13.6.2 Incident Fluence Investigation
To study the performance of RoD under different exposure conditions, we simulated
different levels of Poisson noise for noisy measurements with fluence ranging from
I0 = 5× 103 to 105 (photons per pixel) in each of the time points. The prior image for
RoD was produced by PL reconstruction of the t = 0 (unenhanced image volume) using
I0 = 5× 103 photons.

13.6.3 Time-Attenuation Curves
To study perfusion accuracy we conduct an analysis of TAC accuracy. For this study,
TACs are reproduced for each reconstruction approach by averaging over healthy and
tumor ROIs (shown in Figure 13.4). Errors are computed for each time point. RMSE is
also computed for healthy liver and tumor ROI.

To consider the effects of noise, five different noise realizations were generated and
reconstructed for all comparisons. Standard deviations over noise realizations were
computed for each time point to place error bars on TAC estimate curves and their
corresponding RMSE plots.

13.6.4 Perfusion Analysis
Another study conducted to investigate the perfusion accuracy of each approach is to
assess perfusion metric accuracy. For this study, the four different perfusion metrics iden-
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Figure 13.6.: Illustration of PIPLE regularization investigation for I0 = 103 and t = 21s.
(A) Regional RMSE as a function of both penalty coefficients βR and βP

evaluated at a 100.5 interval and (B) a zoomed ROI showing reconstructions
µ associated with each regularization parameter pair. the red box denotes
the optimal values.

tified previously are computed to form perfusion maps for each approach. Corresponding
RMSE is also computed for healthy liver and tumor ROI.

To consider the effects of noise, five different noise realizations were generated and re-
constructed for all comparisons and computed standard deviations over noise realizations
were computed for the RMSE plots of the perfusion maps.

13.7 Results

13.7.1 Regularization Investigation
In this section, we will provide the results for investigation of the regularization parameter
optimization for all iterative reconstruction approaches. Several plots and figures will be
illustrated to show the best parameter selection procedure.
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Figure 13.7.: Optimal PIPLE penalty coefficients, βR and βP, as a function of time in the
sequential CTP study for incident fluence I0 = 103.

13.7.1.1 Penalized-Likelihood Regularization

PL was used to reconstruct the simulated images using various regularization parameters
swept linearly (in exponent) from 100.5 to 104 at 100.5 increments. The regularization
parameter that resulted in the lowest RMSE was chosen as the optimal setting. As shown
in Figure 13.5, across all time points β = 101.5 resulted in the best RMSE. This suggests
an optimization for each time point is not strictly required for PL.

13.7.1.2 Prior-Image Penalized-Likelihood Regularization

Optimal penalty coefficients for PIPLE were computed for all images and exposure levels.
The results of a sample 2D parameter sweep for the I0 = 103 and t = 21s scenario are
shown in Figure 13.6. Specifically, both the RMSE and the reconstructed region-of-interest
images are shown as a function of both regularization parameters. The best image quality
in terms of RMSE has been achieved by setting βR = 10 and βP = 101.5 for this case.
Similar patterns emerged for other exposure levels and time points with some variation
in optimal parameter values.

Repeating the optimal parameter search for all time points, one can see varying
optimality of regularization strength as a function of time point. These optima are shown
in Figure 13.7. The optimal value of βR is decreases for increasing the contrast while βP

is lower for increased contrast between the tumor and surrounding healthy tissue.
Performing an exhaustive search of the 2D and space for each time point may be a

time consuming task.
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Figure 13.8.: Illustration of RoD regularization investigation for I0 = 103 and t = 21s.
(A) Regional RMSE as a function of both penalty coefficients βR and βM

evaluated at a 100.5 interval and (B) a zoomed ROI showing difference
reconstructions µ∆ associated with each regularization parameter pair. the
red box denotes the optimal values.

13.7.1.3 Reconstruction of Difference Regularization

Optimal penalty coefficients for ROD were computed for all images and exposure levels.
The results of a sample 2D parameter sweep for the I0 = 103 and t = 21s scenario are
shown in Figure 13.8. Specifically, both the RMSE and the reconstructed region-of-interest
difference images are shown as a function of both regularization parameters. One sees
increased noise for lower values and increased blur for large βR values. Similarly, large
values of βM decreases noise; however, values larger than 103 prevented the change from
appearing in the reconstructed image. The best image quality in terms of RMSE has been
achieved by setting βR = 10 and βM = 10 for this case. Similar patterns emerged for
other exposure levels and time points with some variation in optimal parameter values.

Similar to PIPLE, repeating the optimal parameter search for RoD for all time points,
one can see varying optimality of regularization strength as a function of time point.
These optima are shown in Figure 13.9. As shown in this figure, the optimal value of βR
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Figure 13.9.: Optimal RoD penalty coefficients, βR and βM, as a function of time in the
sequential CTP study for incident fluence I0 = 103.

is decreases for increasing contrast between tumor and healthy liver tissue. Similarly, we
see the opposite relationship for βM – increasing contrast between the tumor and healthy
tissue corresponds to lower optimal values. This suggests that traditional regularization
works better for high contrast regions and prior-image-based regularization is more
important in low contrast regions.

Performing an exhaustive search of the 2D and 3D space for RoD at each time point may
be a time consuming task (similar to PIPLE). However, the results shown in Figure 13.8
are similar to optimizations found in [Dan14], suggesting a directed 1D search could be
used.

13.7.2 Incident Fluence Investigation
Figure 13.10(A) and 13.10(B) compare reconstructed ROI images using FDK, PL, PIPLE
and RoD reconstruction techniques near the peak of the lesion enhancement curve
(t = 21s) in the temporal series respectively for homogeneous and Gaussian tumors.

The performance of all methods deteriorated for very low exposures; however, RoD
performed consistently qualitatively better than the other methods. These qualitative
assessments are echoed in the RMSE values shown in Figure 13.10(C) and 13.10(D). The
rank ordering of methods is consistent across all fluence levels with RoD outperforming
PL, PIPLE and FDK, and FDK performing worst. The error bars in Figure 13.10(C)
and 13.10(D) for different noise realizations shows that the rank order performance has
not changed and performance differences are greater than the error bars.

13.7.3 Time-Attenuation Curves

Focusing on the I0 = 103 scenario, Figure 13.11(A) and 13.11(B) show individual re-
construction of the homogeneous and Gaussian tumors ROIs across all time points
using each reconstruction method, as well as the corresponding ground truth images.
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Figure 13.10.: Comparison of different reconstruction methods for incident fluence rang-
ing from I0 = 5× 102 to I0 = 105 at the t = 21s time point. (A) Homo-
geneous tumor ROI of the reconstructed volume using FDK, PL, PIPLE
and RoD for different incident fluence values, and (B) Gaussian tumor ROI
of the reconstructed volume using FDK, PL, PIPLE and RoD for different
incident fluence values, (C) corresponding RMSE plots of FDK, PL, PIPLE
and RoD for homogeneous tumor, and (D) corresponding RMSE plots of
FDK, PL, PIPLE and RoD for Gaussian tumor.

Qualitative comparison of reconstructed images shows that RoD reconstruction yielded
better image quality across the entire range, even in low contrast regions. In contrast
FDK exhibits strong noise across all points. PL and PIPLE perform better but appear to
have increased blur as compared with RoD images.

For the same incident fluence of I0 = 103, we used all time points in the image sequence
to form TACs for each reconstruction approach. Smoothed TACs based on a healthy
liver, homogeneous and Gaussian tumors’ ROIs are shown in Figure 13.12 for each
reconstruction method and ground truth. TACs associated with the reconstructions are
shown in Figure Figure 13.12(A), (C) and (E) for the healthy liver tissue, homogeneous
tumor and Gaussian tumor tissues, respectively. RMSE plots associated with these
estimates are shown in Figure 13.12 (B), (D) and (F) respectively. Stochastic fluctuations
observed in the TACs are strongest for FDK and are mitigated by MBIR methods.

The best results are found of RoD which has the lowest RMSE across all time points.
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RoD produces TACs closest to the ground truth with a more substantial improvement
for the tumor ROI.
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13.7.4 Perfusion Analysis
Figure 13.13 shows the calculated perfusion maps including HAP, HPP, PI and TTP maps
for different reconstruction techniques at an incident fluence of I0 = 103. Consistent
with previous results FDK exhibits increased noise as compared with other approaches.
Similarly, the tumor does not appear in the TTP map. RoD outperforms the other methods
with better tumor PI contrast and a conspicuous tumor apparent in the TTP map. PL
and RoD appear to perform comparably for the HAP and HPP maps. Corresponding
RMSE comparisons for these perfusion maps are presented in Figure 13.14 for both the
healthy liver and tumor ROIs. PL performs better than FDK, but increased blue in the PI
map reduces conspicuity of the tumor. PIPLE performs better than FDK, PL and PIPLE,
however the intensity of tumor region in the PI map is still lower than RoD and TTP map
also shows a noisy appearance for the liver tissue.

Again, the quantitative results reinforce the qualitative observations with improved
performance using RoD. As shown in this figure, the differences are greatest for PI and
in the tumor ROI. Similar performance of PL and RoD in the tumor ROI is also noted.

13.8 Conclusion
In this chapter, a novel pipeline for acquisition, reconstruction and processing of sequen-
tial CTP imaging data was presented. In particular, an initial high-quality baseline recon-
struction of the unenhanced anatomy was used in a prior-image-based reconstruction
method called Reconstruction of Difference to improve the image quality of subsequent
reconstructions of low-exposure contrast-enhance CT data. The proposed RoD approach
outperformed both traditional approaches and another prior image method (PIPLE). The
improved performance was demonstrated across a range of exposures for individual
time-point reconstructions, for time-attenuation curve estimates, and in the computation
of common perfusion metric maps.

The experimental conditions used a high-quality baseline image volume acquired at a
fluence of 105 photons per detector element (which is a clinically relevant exposure in our
experience). Using RoD suggests that this exposure could be dropped to 103 photons and
retain useful perfusion images instead of repeating the 105 photon exposure over 20 times.
In the low-exposure RoD case, the dose would be dominated by the initial baseline scan
representing a substantial dose reduction (e.g. a 20 times reduction). These preliminary
results suggest the underlying methodology is a potentially powerful approach that can
be applied in sequential data reconstruction like CT perfusion. Moreover, such methods
may enable techniques like liver CTP which have not found widespread clinical use due
to radiation dose concerns.
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Figure 13.12.: Comparison of TAC estimates homogeneous Gaussian tumor ROIs for
FDK, PL, PIPLE and RoD reconstructions for incident fluence (A) TAC
plot resulting from averages over healthy liver tissue ROIs, (B) RMSE plot
for TAC shown in (A), (C) TAC estimates for the homogeneous tumor
ROI, and (D) RMSE plot for TAC shown in (C), (E) TAC estimates for the
Gaussian tumor ROI and (F) RMSE plot for TAC shown in (E).
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Figure 13.13.: HAP, HPP, PI and TTP maps for FDK, PL, PIPLE and RoD reconstruction
methods compared to ground truth for an incident fluence of I0 = 103

photons.
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13. Low-dose CT Perfusion Imaging

Figure 13.14.: RMSE comparisons of perfusion maps for incident fluence I0 = 103 using
(A) healthy liver ROIs, (B) the homogeneous tumor ROI and (C) the
Gaussian tumor ROI.
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14. Outlook

Do not fear to be eccentric in opinion,
for every opinion now accepted was
once eccentric.

Bertrand Russell

Medical imaging has advanced rapidly in the beginning of the twenty-first century.
Diagnostic images captured at the right place and at the right time give physicians,
surgeons, and researchers an important tool to help provide better patient care at a lower
cost than before. The application of 3D and 4D imaging technologies have the potential
to create better images for improved diagnostics in radiology. Recent advances in image
acquisitions and formations, resulted in digital images rather than traditional non-digital
data. Digital images are more than pictures; they offer sources of data which include
several information and solutions that are not easily traceable by human eyes.

Improvements in x-ray based imaging such as computed tomography, in the next
decades, will result in reductions of radiation dose in a way where this issue will no
longer be of concern. Phase contrast x-ray imaging is also likely to be the next new
imaging method to be explored more clinically and in the real applications area.

Until recently, all computed tomography systems reconstructed images using the
filtered back projection techniques due to its relatively short running time using older
computer systems. However, with recent improvements in computing power and the
reduction in costs for the power itself, all the major imaging device vendors now include
and offer iterative image reconstruction techniques. New noise reduction, regularization
and artifact removal methods have been developed during last decade which enables
diagnostic image clarity on low dose scans that was not possible before. This enables CT
scanning at much lower doses that a decade ago.

In this thesis, we studied two novel four- and six-dimensional x-ray imaging modalities
and investigated several data processing and analysis pipelines along with evaluation
techniques to assess the effectiveness of proposed methods.

Particularly, in the first part of this study, we focused on X-ray Tensor Tomography, a
novel imaging modality developed for three-dimensional reconstruction of x-ray scatter-
ing tensors from dark-field images obtained in a grating interferometry setup. In this
part, we addressed one of the main limitations of X-ray Tensor Tomography which is
the degradation of the measured two-dimensional dark-field images due to the detector
readout noise and insufficient photon statistics affecting, which is consequently, affecting
the reconstructed three-dimensional volumes from these data showing noise artifacts.
We investigated the best way to incorporate total variation denoising technique into
the reconstruction pipeline. Several different schemes for applying noise reduction
methods based on two- and three-dimensional TV regularization have been proposed
to reduce the noise level before, during or after the reconstruction process and evaluate
the effectiveness and quality of images reconstructed and denoised using these schemes.
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The quantitative and qualitative evaluation based on datasets from different industrial
and clinical samples show improvements in noise reduction for all proposed methods
compared to the method without denoising. The best results are achieved by the regular-
ized reconstruction technique for x-ray Tensor Tomography, which aims in interleaving
reconstruction and denoising.

In the second part, we studied the low-dose CT perfusion of the liver. Liver CT
perfusion is a novel x-ray imaging technique that has demonstrated clinical utility in the
detection, staging, and analysis of treatment response in hepatic diseases by enabling
the evaluation of several perfusion metrics. We addressed the reduction of radiation
exposures associated with hepatic CTP studies which is one the main limitations of CT
perfusion tests by developing a novel scheme for acquiring and processing sequential
CT perfusion data. We proposed to adapt Reconstruction of Difference method which
estimates the difference between unenhanced baseline and subsequent scans. This use of
the baseline as a prior image permits significant reductions in noise in reconstructions.
Several experiments evaluating the performance of RoD relative to traditional analytic and
model based iterative reconstruction methods suggest that proposed method produces
better images, better quantification in the TACs, and better perfusion maps for commonly
used perfusion metrics. These results suggest the RoD processing can dramatically
reduce exposure requirements. In this case, the exposure of all but the unenhanced
baseline scan was dropped by two orders of magnitude and accurate perfusion results
were maintained.

Through all of this, exciting advances in diagnostic medical imaging, x-ray images
processing and computed tomography can be expected. However, so much work is
needed to reach to that point by developing faster, clearer and safer imaging technologies
that would be available for majority of the populations in the world. On a more positive
note, the future of medical imaging and image processing, will bring new capabilities
and tools that have even greater medical values to improve humans’ lives. We will see
radiation dose in x-ray imaging modalities continue to drop and utilization of all imaging
services become more efficient, with lower costs and even fewer waste in healthcare
resources, to the benefit of patients, physicians and everyone in the healthcare cycle.
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