TIM IAPG

Towards a 1 mm geoid at height reference points of the International Height Reference System (IHRS)

Martin Willberg, Philipp Zingerle & Roland Pail

Chair of Astronomical and Physical Geodesy Technical University of Munich (TUM)

IIII IAPG

Global Geodetic Reference Frame

$$P = P(\mathbf{X}, W, \mathbf{g}(\mathbf{X}) = -\partial W / \partial H)$$

Geometric Reference Frame

- International Terrestrial Reference System (ITRS)
- Position X and rotation

- Physical Reference Frame
 - Gravity field
 - Height over equipotential surface *H*[m]
 - Potential values W [m²/s²]
 - (Gravity vector g(X) [m/s²])
 - International Height Reference System (IHRS)
 - A main objective of the IAG

TIM IAPG

- Worldwide unified reference system
- System and frame declaration analogue to ITRS/ITRF
 - Standards and conventions
 - Global distribution of stations
- Goal: sea level variations, mass displacements
- IAG Resolution 2015: "an integrated global geodetic reference frame with millimeter accuracy must be implemented."
- Realized by high precision gravity
 potential values at reference stations
- Poster Sánchez & Madzak (X3.40): GGOS activities related to the implementation of the IHRS

[Sanchez & Madzak, 2018]

Research topics:

- 1. How can we quantify the **errors**?
- 2. Which quality have **global models** and which role do they play?
 - 3. What influence has the distribution of **terrestrial data**?
 - 4. How can we improve the **processing**?

IIII IAPG

Requirements & quality criteria:

- 1. IHRS definitions
- 2. Global model
- 3. Terrestrial data
- 4. Processing

Processing

Challenges:

- Combine global model and terrestrial data
- Different processing methods
- Stochastic modelling

TITT IAPG

Requirements & quality criteria:

- 1. IHRS definitions
- 2. Global model
- 3. Terrestrial data
- 4. Processing

- Combine global model and terrestrial data
- Different processing methods
- Stochastic modelling

Least Squares **Collocation (LSC)**

Standard LSC methods:

- Assume global models as error-free
- Include error degree variances to collocation
- Approximate global model accuracy with commission error

Covariances:

- From signal or Tscherning-Rapp degree variances
- Assumes
 - coefficients as uncorrelated
 - no dependency of order m

Add covariances from global model

- Correlations between input points (also between input and output)
- Consistent stochastic information of global model
- All stochastic effects are included

Covariances:

- From propagation of a global model (from normal equations)
- Considers:
 - correlation between coefficients
 - order-dependency of covariance

TITTI IAPG

Include full covariance information to system

Basic Least Squares Collocation (LSC)

 $s = \frac{C_{sl}}{(C_{ll}^{noise} + C_{ll})^{-1}l}$

• LSC with Remove-Compute-Restore (RCR) (Assumption: global model is error free) I = input (gravity anomaly Δg)

- s = output (geoid height N)
- C_{ll} = auto covariance
- C_{sl} = cross covariance (transformation Input – Output)

$$s = \left[\frac{C_{sl}^{topo}(C_{ll}^{noise} + C_{ll}^{topo})^{-1}(l - l^{global} - l^{topo})}{l^{remove}}\right] + \underbrace{s^{global} + s^{topo}}_{s^{restore}}$$

• LSC with full global model covariance

$$s = \left[\begin{pmatrix} C_{sl}^{global} + C_{sl}^{topo} \end{pmatrix} \begin{pmatrix} C_{ll}^{noise} + C_{ll}^{global} + C_{ll}^{topo} \end{pmatrix}^{-1} \begin{pmatrix} l - l^{global} - l^{topo} \end{pmatrix} \right] + \underbrace{s^{global} + s^{topo}}_{lremove} \\ S^{restore}$$
NEW COVARIANCES
EGU 2018 - Willberg et al

Side note: XGM2016

- Experimental Geopotential Model (XGM) 2016
- Maximum degree 719 (equals to 15 min of spatial resolution)
- Calculated from
 - Satellite model GOC005s
 - 15' x 15' global equi-angular grid of gravity anomalies (by NGA)
- Regional weighting depending on terrestrial data quality and homogeneity
- Potential [0.1m²/s²] ≙ Geoid height [0.01m]
- In the following: accuracy decreased by factor 3

Full error propagation to gravity potential based on XGM2016 variance/covariance matrix [m²/s²]

TITT IAPG

TIM IAPG

Test case in the South American Andes

- Terrestrial measurements and altimetry
- Synthetic data
- Heterogeneous data distribution

Collocation parameters

- Input: gravity anomalies Δg (14613 points)
- Output: geoid heights N (regular grid)
- Truth: spherical harmonic synthesis to 2190 (OGMOC model) (Gruber & Fecher, X.3.41)
- Global model for reduction: XGM2016
- Topography for reduction: dV_ELL_Earth2014

Noise of model

- Noise directly to SH-coefficients
- Simulates commission error
- Calculated from global model accuracy

Noise of observations

- White noise 1 mGal
- Not related to degree

$$s = \begin{bmatrix} C_{sl}^{global} + C_{sl}^{topo} \end{bmatrix} \begin{pmatrix} C_{ll}^{noise} + C_{ll}^{global} + C_{ll}^{topo} \end{pmatrix}^{-1} \begin{pmatrix} l - l^{global} - l^{topo} \end{pmatrix} \end{bmatrix} + s^{global} + s^{topo}$$

Cov. Input-output Cov. of input Cov. of input Remove Restore

Noise of model

- Noise directly to SH-coefficients
- Simulates commission error
- Calculated from global model accuracy

Noise of observations

- White noise 1 mGal
- Not related to degree

$$s = \begin{bmatrix} C_{sl}^{global} + C_{sl}^{topo} \end{bmatrix} \begin{pmatrix} C_{ll}^{noise} + C_{ll}^{global} + C_{ll}^{topo} \end{pmatrix}^{-1} \begin{pmatrix} l - l^{global} - l^{topo} \end{pmatrix} \end{bmatrix} + s^{global} + s^{topo}$$

Cov. Input-output Cov. of input Input Remove Restore

45.0

TIM IAPG

45.0

IIII IAPG

45.0

IIII IAPG

45.0

TIM IAPG

45.0

IIII IAPG

Collocation with full model covariance

Summary & outlook

- 1. How can we quantify the **errors**?
 - Consistent stochastic modelling
 - Error estimation for potential values with all included effects

2. Which quality have **global models** and which role do they play?

Use quality of high-resolution global models as basis

3. What influence has the distribution of terrestrial data?

- Used for densification
- Decrease amount of terrestrial data
- 4. How can we improve the **processing**?
 - Include full covariance matrix of a global model to LSC