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Lehrstuhl für Mensch-Maschine-Kommunikation

Automatic General Audio Signal Classification

Kun Qian
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Abstract

Automatic General Audio Signal Classification (AGASC), defined as machine lis-
tening based recognition of daily life audio signals rather than speech or music, is
a very young field developing in recent years. Benefited from the state-of-the-art in
the area of speech and music recognition, there are some standard methodologies
(e. g., feature sets, classifiers, learning strategies) successfully applied into the area
of AGASC. But more specific and robust models are still needed for advancing this
area. This thesis proposes three typical tasks in AGASC, i. e., snore sound classifica-
tion, bird sound classification, and acoustic scene classification, which represent the
possible applications in healthcare, ecological monitoring, and public/home security
surveillance, respectively.

The aim of this thesis is to facilitate the state-of-the-art in AGASC in the fol-
lowing: First, a comprehensive investigation on standard methodologies is given. To
make the studies reproducible, the three databases used in this thesis are all publicly
accessible. Second, some specifically-designed features, e. g., wavelet features, are
presented and demonstrated to be very efficient for recognition of snore sounds and
acoustic scenes. Furthermore, to reduce the human annotations on bird sound data,
active learning is used. More precisely, a kernel based extreme learning machine is
found to be superior to conventional support vector machines in the task of bird
sound classification. Finally, a late fusion of multiple systems for acoustic scene
classification in noisy environments is evaluated. All the experiments demonstrate
the effectiveness of the methodologies proposed in this thesis.
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Zusammenfassung

Die automatische Klassifikation von Audiosignalen (AKAS), welche sich mehr auf die
maschinelle Erkennung von Audiosignalen aus dem täglichen Leben als auf Sprach-
oder Musiksignale konzentriert, ist ein sehr junges Forschungsgebiet, das erst in
den letzten Jahren enstanden ist. Vom Stand der Technik auf dem Gebiet der
Sprach- und Musikerkennung profitieren einige Standardmethoden (z. B. akustische
Merkmalsextraktion, Klassifikatoren, Lernstrategien), die erfolgreich im Bereich der
AKAS Anwendung finden. Es bedarf jedoch noch spezifischerer und robusterer Mod-
elle, um diesen Bereich weiter voranzutreiben. In dieser Arbeit werden drei typische
Aufgaben zur AKAS untersucht, nämlich die Klassifikation von Schnarchgeräuschen,
die Klassifikation von Vogelgesang und die Klassifikation akustischer Szenen, welche
mögliche Anwendungen im Bereich der Gesundheitsvorsorge, der Ökologie und der
öffentlichen Sicherheit darstellen.

Ziel dieser Arbeit ist es, den Stand der Technik in AKAS wie folgt zu
fördern: Zunächst wird eine umfassende Untersuchung von etablierten Methoden
des maschinellen Lernens durchgeführt. Um die Studien reproduktiv zu gestalten,
sind die drei in dieser Arbeit verwendeten Datenbanken alle öffentlich zugänglich.
Als nchstes werden einige speziell entworfene Audio-Merkmale, z. B. Wavelet-
Merkmale, vorgestellt und es wird gezeigt, dass diese sehr effizient für die Erken-
nung von Schnarchgeräuschen und akustischen Szenen sind. Darüber hinaus wird
aktives Lernen verwendet, um die notwendige Anzahl menschlicher Annotationen
der Vogelgesang-Daten zu reduzieren. Es hat sich herausgestellt, dass eine kernel-
basierte Extreme Learning Machine für die Klassifikation von Vogelgesang effizien-
ter als eine herkömmliche Support Vector Machine ist. Schließlich wird eine späte
Fusion mehrerer Systeme für die akustische Szenenklassifizierung in lauten Umge-
bungen evaluiert. Die beschriebenen Experimente belegen die Wirksamkeit der in
dieser Arbeit vorgeschlagenen Methoden.
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1

Introduction

1.1 Motivation

There is a long history for research in automatic speech recognition (ASR) [1], and
music information retrieval (MIR) [2]. However, speech and music are only two of
many types of sounds that can be heard in our daily life [3]. It is desirable within the
audio research community to extend the frontiers of the state-of-the-art in ASR and
MIR into more general sounds like body acoustics, animal sounds, environmental
sounds, etc. The aim of this thesis is to facilitate research on combining signal
processing and machine learning to find efficient and robust paradigms on features,
classifiers and learning strategies for automatic general audio signal classification
(AGASC) beyond speech and music. In this thesis, the classification tasks of three
typical general audio signals, i. e., snore sound, bird sound, and acoustic scene, are
proposed to evaluate the relevant methodologies applied to the area of healthcare,
ecological monitoring, and public/home security surveillance, respectively:

1. Snore Sound Classification. Snore sound (SnS), carries information about the
site and degree of obstruction in the upper airway of the subject [4]. There
is an increasing need from the medicine community to find a less–invasive
method, e. g., analysis of the snoring recordings, to understand the excitation
localisation of SnS. In medical practice, it will be helpful for Ear, Nose and
Throat (ENT) experts to plan a targeted surgery for both of the primary snor-
ers (which are asymptomatic and do not have breathing interruptions during
sleep), and the patients suffering from obstructive sleep apnea (OSA) [5], a
chronic serious sleep disorder (when untreated, it can risk to stroke [6], hyper-
tension [7], myocardial infarction [8], and even sudden death [9]) which affects
approximately 13 % of men and 6 % of women in the U. S. population [10].
The reason is that, due to the multifactorial mechanisms of SnS generation,
the surgical options for individual subjects can be manyfold [11, 12]. In addi-
tion, drug induced sleep endoscopy (DISE) [13], as the current popular method
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1. Introduction

to identify the location and form of vibrations and obstructions in the upper
airway, is time–consuming, costly and straining for the subjects. However, the
studies focused on using audio information to localise the excitation of SnS are
very limited [14]. The pilot work on using acoustic signal processing combined
with machine learning for the recognition of SnS were published in [15–21],
which showed promising and encouraging results. But, the subjects involved
in these studies are extremely limited (less than 50). Further, the database
the authors used are not publicly accessible, which makes the work difficult to
be reproduced.

2. Bird Sound Classification. Recognition of bird species by their sounds can
make it feasible to develop a long–term, non–human monitoring system for
measuring the state of nature [22], tracking climate change [23], and assess-
ing biodiversity within local ecosystems [24, 25]. This domain has attracted
ornithologists, ecologists, and engineers in both signal processing and ma-
chine learning, to work towards applications for automatically classifying bird
sound based only on the audio recordings throughout the past two decades.
The mainstream of the previous relevant studies can be roughly divided into
two directions, i. e., classification of bird sounds [26–41], or detection of syl-
lables [42–45] from the bird sound audio recordings. Nevertheless, there are
still few studies that focus on reducing the human expert annotation for the
unlabelled bird sound data (segmented syllables, or continuous recordings) col-
lected in the real–world. It was reported that, data collection, cleaning, and
annotation alone will require approximately 80 % of the entire time needed in
a typical data mining project [46]. More specifically, within the area of bird
sound studies, there are large amounts of unlabelled audio recordings made in
the field by ornithologists and amateurs, which bring forth a huge challenge
for human annotators.

3. Acoustic Scene Classification. As a subfield of computational auditory scene
analysis [47], acoustic scene classification (ASC) is defined as classification of
the environment in which a recording has been made [48]. ASC is based on
the assumption that, it is possible to use the general characterisations of a
location to distinguish various acoustic scenes from one another by their gen-
eral acoustic properties [48, 49]. Increasingly, there is large interest for ASC
within the audio research community, which can stimulate areas like multi-
media searching [50], smart mobile devices [51], and intelligent monitoring
systems [52, 53]. More importantly, machine listening applications based on
general environmental sound analysis can benefit applications in public/home
security surveillance [54–56]. A recent paper reviewed the features and clas-
sifiers used for ASC task in [57]. The existing approaches regarding features
include the use of Mel-frequency cepstral coefficients (MFCCs) [51, 58], his-
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tograms of sounds [59], histogram of gradients learnt from time-frequency rep-
resentations [60], and the time-frequency representations learnt by nonnegative
matrix factorization (NMF) [61]. On the aspect of classifiers, hidden Markov
models (HMMs) [59], Gaussian mixture models (GMMs) [58], and support
vector machines (SVMs) [60, 62] were repeatedly investigated. More notably,
the deep learning [63] methodologies are appearing as a mainstream direction
for the ASC task [64–77]. However, the most investigated features are based
on Fourier transformation [78], which cannot optimise the Heisenberg-alike
time-frequency trade-off [79]. Besides, the existing studies are insufficient in
investigation of combining the efficient features suitably for the ASC task in
noisy conditions, which is the prerequisite in real product development.

In general, all the three tasks above are related to signal processing and ma-
chine learning as to methodologies like designing features, building learning models,
selecting learning strategies (e. g., supervised learning, unsupervised learning, semi-
supervised learning, active learning), etc. However, limited to the narrowed scope
and field in each sub task, different emphasis is given on contributions of features for
snore sounds, learning strategies for bird sounds, and combining models for acoustic
scenes.

1.2 Contributions

To address the challenges listed above, this thesis makes contributions on the fol-
lowing aspects:

1. For snore sound classification, a comprehensive comparison on features and
classifiers is provided by an open access SnS database, i. e., the Munich Passau
Snore Sound Corpus (MPSSC) [80]. In particular, wavelet features are pro-
posed and demonstrated to be efficient in classification of SnS. Furthermore, a
method combining wavelet features [18] and bag-of-audio-words (BoAW) [19]
is presented. It achieves the best result for SnS classification on the MPSSC
database in this thesis.

2. For bird sound classification, active learning (AL) is used to reduce the need of
human annotation for unlabelled data. In addition, a robustness comparisons
between different AL algorithms, (i. e., sparse-instance-based AL (SI-AL) and
least-confidence-score-based AL (LCS-AL)) and their performances when using
two popular classifiers (i. e., support vector machine (SVM) [81] and kernel-
based extreme learning machine (KELM)) [82] is investigated. The algorithms
previously shown in [83] are successively extended from a binary classifica-
tion problem to multi-class classification problem. Moreover, it is found that,
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1. Introduction

changing to a new classifier, e. g., KELM, can considerably improve the perfor-
mance of AL for bird sound classification. All the experiments are evaluated by
a public bird sound database, i. e., the Museum für Naturkunde Berlin (MNB)
bird sound database.

3. For acoustic scene classification, the effectiveness of wavelets [84] and a late
fusion system of multiple features are investigated. The methodologies are
evaluated on the dataset Detection and Classification of Acoustic Scenes and
Events (DCASE) 2017 [48], an active and influential challenge among the
emerging evaluation campaigns and datasets in the area of environmental
sound classification and detection, which had also been successfully held in
2013 [85] and 2016 [86]. Furthermore, comparisons of different feature sets in
noisy environments are also given. As to classifiers, SVM, GRNN and BGRNN
(gated recurrent neural network [87], bidriectional gated recurrent neural net-
work [87, 88]) are selected and compared in this thesis for the ASC task.

Generally, some other contributions for AGASC from this thesis can also be
briefly concluded as: Firstly, to make the work described in this thesis reproducible
and sustainable, all the databases used are publicly accessible. Secondly, this thesis
gives standard benchmarks on features, classifiers, learning strategies, and evalua-
tion metrics for AGASC. Finally, the presented methodologies and implementations
can be extended and applied into other relevant work on other general sound clas-
sification tasks, e. g., insect sounds, heart beat sounds, mechanical noises, etc.

1.3 Structure of this thesis

The rest of this thesis is organised as follows: Chapter 2 will describe the method-
ologies in details. The experimental results and discussions are given in Chapter 3.
Finally, Chapter 4 gives a summary of the current work with the limitations, and
an outlook for the future work. In more detail:

Chapter 2 describes a set of methods used for dealing with the challenges pro-
posed in Section 1.1. To be more specific, a comprehensive study on features and
classifiers are investigated for snore sound classification. For bird sound classifica-
tion, active learning strategies are used to considerably reduce the human annota-
tions. For acoustic scene classification, the fused models are demonstrated to be
more efficient and robust than a single model.

Chapter 3 shows the implementations of the methods presented in Chapter 2.
All the experimental results are based on the evaluations on publicly accessible
databases. For each sub task mentioned in Section 1.1, different methods are used
to address the corresponding challenges. A brief summary will also be provided to
each application.
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1.3. Structure of this thesis

Chapter 4 summaries and concludes the current work done in this thesis. The
limitations are also discussed to point out some possible directions of future work,
which are given in an outlook.
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2

Methodology

This chapter introduces the methods used in this thesis. Typically, there are two
main stages for building a system for general audio signal classification, i. e., feature
extraction and model learning. Figure 2.1 briefly gives an overview of the system
which plays the main role in this thesis. More precisely, the whole system can be
referred to as two modules, i. e., the front-end and the back-end (refer to [89]).
In the front-end, the first goal is to enhance the input audio signal that might
be distorted by interfering noise, environmental noise, recording equipment noise,
and reverberation. Many signal processing methods, e. g., adaptive filtering [90],
spectral normalisation and subtraction [91], or beamforming [92] , can be employed
to overcome the effects of noise. Then, a stage of audio activity detection (AAD)
will be used to detect the events for further analysis. For instance, in an overnight
audio recording of snore sounds, the snore related events will be firstly detected and
segmented [17]. Subsequently, the detected audio signal will be sent to the feature
extraction phase, in which a series of acoustical low-level descriptors (LLDs) are
computed at a frame-level in a predefined window (with overlap). In this thesis,
for Fourier transformation based features, a Hamming window [78] is used before
extracting LLDs. Further, a summarisation of these LLDs over a segment (e. g.,
an instance) can be achieved by functionals or a bag-of-audio-words approach. To
reduce the feature dimensionality, a feature selection stage is usually added. In the
back-end, extracted features are fed into a machine learning model for its training
and tuning. The parameters of the classification models can be tuned and optimised
by train and development data sets, which have the labelled targets. The final
optimised model can be evaluated by predicting the labels of the test set (labels are
unseen).

This thesis mainly focuses on the phase of feature extraction and model learning
(as Figure 2.1 shows), which will be introduced in the following sections.
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2. Methodology

Feature Extraction

Feature Extraction

Model Learning

Classification

Predicted Classes

Training Audio Signal

Testing Audio Signal

Figure 2.1: Overview of a general audio signal classification system.

2.1 Acoustic Low-Level Descriptors

Acoustic low-level descriptors (LLDs) are raw representations extracted from a
short-time frame of the analysed audio signal. Extracting efficient LLDs suitably
reflecting the inherited characters of the analysed audio signal is an important phase
in the front-end module of building an audio classification system. Typically, for
speech recognition, prosodic features, e. g., intensity, fundamental frequency F0,
voicing probability, formants, and cepstral features, e. g., linear prediction cepstral
coefficients (LPCCs), Mel-frequency cepstral coefficients (MFCCs) are often used.
In the past decades, those acoustical LLDs have been demonstrated to be efficient
and robust in a tremendous amount of speech recognition related tasks. However,
directly using the conventional acoustic LLDs to train a model for a general audio
signal classification task might not always be successful or robust enough. For in-
stance, a snore sound is extremely different to a speech signal (see Figure 2.2) not
only in the time waveform, but also in the spectral distribution. In a pilot study [18]
of this thesis, wavelet features were found to be superior to formants and MFCCs,
which are widely used features in snore sound analysis. In addition, the conventional
frame length (usually about 10-30 ms) for extracting LLDs from speech might not
be suitable for other audio signals. An empirical study [93] showed that the frame
length and overlap for extracting LLDs from a snore sound can effect the final clas-
sification of the trained models. In this section, a series of acoustical LLDs used in
this thesis will be introduced and described as follows.

2.1.1 Formants

As defined in [94], formants are the spectral peaks of the sound spectrum. In
previous studies on the analysis of SnS, formants were widely investigated [95–97].
For otolaryngologists, formants can reflect the anatomical structure of the upper
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(b) an episode of snore

Figure 2.2: Examples of waveforms (top row, normalised) and spectrograms (bottom
row) for an episode of speech and snore. au: arbitrary unit.

airway. The first formant (F1) is thought to be associated with the tongue height; the
second formant (F2) is considered to be related to the degree of tongue advancement
from its neutral position; and the third formant (F3) is regarded as a factor to
indicate the amount of lip rounding [98]. In this thesis, linear predictive coding
(LPC) is used to estimate the formant frequencies [99–101]. Given a set of predictor
coefficients a0, a1, . . . , ap (a0 = 1), the z-domain transfer function of the filter (all-
pole autoregressive (AR) modeling [102]) can be expressed as [99]:

H(z) =
1

1−
p∑
i=1

aiz−i
, (2.1)

where the LPC coefficients will be determined via the Yule-Walker autoregressive
method along with the Levinson-Durbin recursive procedure [101]. Then, the i-th
formant frequency Fi can be estimated as:

Fi =
Fs
2π

∣∣∣∣arctan

(
Im(ri)

Re(ri)

)∣∣∣∣ , (2.2)

where Fs is the sampling frequency of the audio signal, and Im(ri) and Re(ri) are
the imaginary and real part for the i-th root (ri) of the model above, respectively.
We need to note that, the roots only with the positive imaginary parts are retained
when calculating the formant frequencies due to the fact that LPC coefficients are
real-valued and the roots are symmetric on the imaginary axis.
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2. Methodology

2.1.2 Spectral Frequency Features

It was found that, the spectrum of SnS can carry important information on dis-
tinguishing the snore sites [103]. In addition, the spectral frequency features were
proven to be efficient at both diagnosis of OSA [104], and classification of snore
related signals [16, 17, 21]. In this thesis, the peak frequency (Fpeak), the centre
frequency (Fcentre), the mean frequency (Fmean), and the mean frequency in each
subband spectrum (Fmean−sub) are extracted from SnS and combined together as
spectral frequency features (SFFs).

The peak frequency is defined as [103]:

Fpeak : s.t. XFpeak
= max{Xfn}, n = 1, 2, . . . ,

N

2
+ 1, (2.3)

where Xfn is the absolute value of the single-sided amplitude by fast Fourier trans-
formation (FFT) [78] of the audio signal at the n-th point. The FFT is performed
at N points (N is equal to the length of the audio signal in this thesis).

The centre frequency is defined as [103]:

Fcentre : s.t.
Fcentre∑
fn=0

Xfn =

Fh∑
fn=Fcentre

Xfn , (2.4)

where Fh is the highest frequency of the spectrum of the audio signal, i. e., Fs

2
by

Nyquist sampling theorem [78].
The mean frequency is defined as [21]:

Fmean =

Fh∑
fn=0

fnXfn

Fh∑
fn=0

Xfn

. (2.5)

The mean frequency in each subband spectrum is defined as [21]:

Fmean−sub(m) =

mFb∑
fn=(m−1)Fb

fnXfn

mFb∑
fn=(m−1)Fb

Xfn

,m = 1, 2, · · · , bFh
Fb
c, (2.6)

where Fb is a frequency to set subband of the whole spectrum.

2.1.3 Subband Energy Ratios

The energy distributions over the frequency spectrum might differ between different
types of SnS. In early studies, subband energy ratios (SERs) were found efficient

10



2.1. Acoustic Low-Level Descriptors

in snore/nonsnore classification [105, 106]. In this thesis, as a feature set, SERs is
defined as:

SER(m) =

mFb∑
fn=(m−1)Fb

(Xfn)2

Fh∑
fn=0

(Xfn)2
,m = 1, 2, · · · , bFh

Fb
c. (2.7)

2.1.4 Mel-Frequency Cepstral Coefficients

Mel-Frequency cepstral coefficients (MFCCs) are one of the most popular features
used in speech recognition. The real scale frequency f (in Hz) can be mapped by
triangular overlapping filters onto the a Mel-scale f(Mel) (in Mels) as [107]:

f(Mel) = 2595 log10

(
1 +

f

700

)
. (2.8)

The calculations of MFCCs take the non-linear frequency perception of the hu-
man ear into account, in which, the frequencies between 0 Hz and 1 kHz are linearly
approximated and a logarithmic scale will be applied for frequencies beyond 1 kHz.
Details on calculation of MFCCs can be found in [107].

2.1.5 ComParE Feature Set Extracted by openSMILE

The ComParE feature set, firstly proposed in the INTERSPEECH 2013 Compu-
tational Paralinguistics Challenge (ComParE) [108], is a set of standard widely-
used temporal and spectral acoustic features. This feature set extracted by the
openSMILE toolkit [109, 110] has been successfully used in various general au-
dio signal classification tasks (e. g., snore sound [111], bird sound [112], or acoustic
scene [113])), and continuously adopted to build the baseline system for the recent
computational paralinguistics challenges [108, 111, 114–116]. An overview of the 65
LLDs in the ComParE feature set is provided in Table 2.1. As the usage of the Com-
ParE feature set for AGASC is not the main direction of this thesis, the detailed
methodologies for extracting each kind of LLD can be found in [117].

2.1.6 Wavelet Features

The aforementioned LLDs are mainly extracted via the short-time Fourier transfor-
mation (STFT) [118]. It should be noted that, STFT has been successfully applied
to time-frequency analysis for decades, e. g. speech analysis. However, it does not
optimise the Heisenberg-like time-frequency trade-off [79], i. e., a good resolution of
the analysed signal cannot be achieved by STFT simultaneously in the time and
the frequency domain. It can be simply explained that, for a certain length (con-
stant) of the analysed signal, increasing the frequency resolution will cause a larger
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2. Methodology

Table 2.1: Overview of low-level descriptors (LLDs) in the ComParE feature set.
RMSE: Root Mean Square Energy; ZCR: Zero-Crossing Rate; RASTA: Representa-
tions Relative Spectra; RoP: Roll-off Point; SHS: Subharmonic Summation; HNR:
Harmonics to Noise Ratio. The source of the table can be found in [117].

Group A: (59)

Loudness, Modulation loudness, RMSE, ZCR, MFCC 1–14
RASTA auditory bands 1–26, Energy 250–650 Hz, Energy 1–4 kHz
Spectral RoP .25, .50, .75, .90, Spectral flux, Spectral entropy,
Spectral variance, Spectral slope, Spectral skewness and kurtosis
Spectral harmonicity, Spectral sharpness (auditory), Spectral centroid (linear)

Group B: (6)
F0 via SHS, Probability of voicing, Jitter (local and delta), Shimmer
log HNR (time domain)

window size (increasing N in one window) and therefore a reduction in time reso-
lution (decreasing the number of windows), and vice versa (see Figure 2.3). Thus,
STFT is not suitable for analysing signals which include structures having different
time-frequency resolutions whereas wavelets can address this issue by changing the
time-frequency resolution [84,119].

In this thesis, wavelet transformation (WT) is chosen as discrete wavelet trans-
formation (DWT), which is usually used to extract multi-resolution representations
from the analysed signal. Figure 2.4 shows the capacity of multi-resolution analysis
by wavelets. Generally, wavelets are defined by the wavelet function ψj,k(n

′) and
the scaling function φj,k(n

′), respectively. In the following, n′ denotes the index of
value in the functions. The two aforementioned functions are defined as [84]:

ψj,k(n
′) =

1√
2j
ψ
(n′ − 2jk

2j

)
, (2.9)

φj,k(n
′) =

1√
2j
φ
(n′ − 2jk

2j

)
, (2.10)

where j (nonnegative integer) and k (nonnegative integer) denote the scale and
the index of a subband within the scale, respectively. The value 2j, known as the
‘scaling parameter ’, measures the scaling. The ‘translation parameter ’, i. e., the
value of 2jk, reveals the time location of the wavelet. The mechanism of WT is to
decompose the signal from the original space Vj,k into two orthogonal subspaces,
i. e., an approximation space Vj+1,2k, and a detail space Vj+1,2k+1 [84]. This process
can be done by dividing the orthogonal basis {φj(n′ − 2jk)} of Vj,k into two new
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2.1. Acoustic Low-Level Descriptors

(a) (b)

Figure 2.3: Time-frequency resolution by STFT. The left (a) has a better resolution
in frequency but a worse resolution in time than the right (b).

orthogonal bases, i. e., {φj+1(n
′ − 2j+1k)} of Vj+1,2k, and {ψj+1(n

′ − 2j+1k)} of
Vj+1,2k+1 [84].

A vector of approximation coefficients and a vector of detail coefficients can be
obtained via the aforementioned orthogonal wavelet decomposition procedure [84].
Nevertheless, this analysis is based on a coarser scale due to the information lost
between two successive approximations in the detail coefficients, i. e., the WT will
not decompose the detail coefficients into the subsequent decomposition levels (see
Figure 2.5(a)). In contrast, the wavelet packet transformation (WPT) [120,121], not
only decomposes the approximation coefficients, but also the detail coefficients into
the subsequent decomposition levels, which in result produces a complete binary
tree (see Figure 2.5(b)).

In the following, two wavelet-based features, i. e., wavelet transform energy
(WTE) and wavelet packet transform energy (WPTE) will be described, respec-
tively. The two kinds of wavelet features were originally designed by Khushaba et
al. [122, 123] and the scripts for extracting the features are accessible1. Addition-
ally, an early fusion of WTE and WPTE, called wavelet feature energy (WEF), will
be given as another feature set, which was successfully applied to SnS classifica-
tion [18,21] and the ASC task [113].

1https://www.rami-khushaba.com/matlab-code.html
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Figure 2.4: Time-frequency resolution by wavelet analysis. Good frequency res-
olution can be achieved in low frequencies, whereas good time resolution can be
achieved in high frequencies.

Wavelet Transform Energy

The WTE feature set contains the variations of the WT coefficients’ energy percent-
age. At each decomposition level, a vector of energy percentage is defined as:

Ej =
(wj)

2

Jmax∑
j=1

(wj)2
× 100, (2.11)

where wj is the vector of coefficients generated by WT at the j-th decomposition
level. The parameter Jmax is the maximum level for wavelet decomposition. Subse-
quently, the mean, the variance, the waveform length (the sum of squared differences
between the adjacent elements of a vector), and the entropy [124] are calculated from
the vector Ej. In total, there are vectors representing the detail coefficients’ energy
percentage from level 1 to level Jmax and the approximation coefficients’ energy per-
centage at level Jmax will be used to generate the LLDs of the WTE, which in result
leads to a dimension of 4× (Jmax + 1).

Wavelet Packet Transform Energy

The WPTE feature set contains the normalised filter bank energy (added with the
natural logarithmic operator), which is defined as [123]:

Êj,k = log

√√√√√ Nj,k∑
n′′=1

(wj,k,n′′)2

Nj,k

, (2.12)
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V0,0

V1,0

V2,0 V2,1

V3,1V3,0

V1,1

(a) Wavelet Transformation (WT)

V0,0

V1,0 V1,1

V2,0 V2,1 V2,2 V2,3

V3,1V3,0 V3,2 V3,3 V3,4 V3,5 V3,6 V3,7

(b) Wavelet Packet Transformation (WPT)

Figure 2.5: Example of 3-level decomposition tree-structured subspaces by WT and
WPT. Compared with WT, WPT not only decomposes the approximation coeffi-
cients, but also the detail coefficients in the subsequent decomposition levels.

where wj,k,n′′ (n′′ denotes the index of the coefficients) represents the vector of
coefficients calculated by WPT from the analysed signal at the subspace Vj,k. Nj,k

is the total number of coefficients in k-th subband at j-th decomposition level. The
scale of k is 0, 1, 2, . . . , 2j − 1. In the j-th decomposition level, there will be 2j

LLDs extracted as the WPTE feature. The Êj,k will be extracted from the level 0
(i. e., the original analysed signal) to the level Jmax, which results in a dimension of
2Jmax+1 − 1.

Wavelet Energy Feature

In a previous study [93], an early fusion of the two aforementioned wavelet features
was found to be efficient and even better than merely using WTE or WPTE. How-
ever, this is usually dependent on application. In this thesis, both WTE, WPTE and
the early fusion of the two feature sets will be investigated. The early fusion of WTE
and WPTE is referred to as the wavelet energy feature (WEF) in the following.

2.2 Functionals and Bag-of-Audio-Words

In this section, two approaches applied to LLDs extracted from one instance will
be described, i. e., functionals and bag-of-audio-words (BoAW). Both of the two ap-
proaches can summarise the statistical information of LLDs over a given time period.
In addition, after the processing of functionals or within the BoAW approach, the
frame-based LLDs can be fixed into a single vector independent of the length of the
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frame-level LLDs functionals

Figure 2.6: Mechanism of functionals. The frame-level LLDs from instances (with
varied length) can be mapped into fixed dimension vectors (with the same length)
by functionals.

original instance, which makes it applicable for static models (e. g., SVMs, see Sec-
tion 2.4.1) to learn the patterns in the analysed audio signals. As a well-developed
method, functionals are widely used in many speech/audio related applications and
became a standard configuration in the large scale feature extraction open source
toolkit openSMILE [109,110]. Recently, the BoAW approach has become popular
for its comparable or even superior performance to functionals [19, 125] and can be
implemented via the open source toolkit openXBOW [126].

2.2.1 Functionals

In the analysis of general audio signals, the change of low-level features over a given
period of time can carry important information for a further model building step.
The supera-segmental features can summarise the information over a meaningful
unit of time [117]. As mentioned in [117], a straightforward approach is to stack
all the LLD vectors to a single, large vector, in which all the information from the
original features can be contained. However, if the number and dimensionality of
the LLD vector is large, specifically, when the analysed audio signal is long, it will
dramatically increase the computational cost and test time. Instead, functionals
can be applied to the time series of LLDs (frame-level LLDs) [117], which results
in a single, fixed dimension vector independent of the length of the input. The
mechanism of functionals is to map the time series to a scalar value per applied
functional. Figure 2.6 briefly shows the mechanism of functionals applied to frame-
level LLDs.

Typical functionals include the arithmetic mean, standard deviation, and ex-
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2.2. Functionals and Bag-of-Audio-Words

tremes (minimum value, maximum value). More advanced functionals, e. g., mo-
ments, percentiles, regression, can be found in [117]. In this thesis, four kinds of
functionals, i. e., the maximum value, the minimum value, the arithmetic mean, and
the linear regression offset, which were found efficient in previous studies [20,21,113]
are considered. Let y = x(n), n = 1, 2, . . . , N denote a general time series (the LLD
values in a given time period), the maximum, minimum, and arithmetic mean value
can be expressed as:

xmax = max{x(1), x(2), . . . , x(N)}, (2.13a)

xmin = min{x(1), x(2), . . . , x(N)}, (2.13b)

xmean =
1

N

N∑
n=1

x(n). (2.13c)

For linear regression, the goal is to approximate a line (ŷ = an+b) that has minimised
quadratic error between the line (ŷ) and the actual series (y). The quadratic error
can be written as:

ê2 =
N∑
n=1

(y − ŷ)2 =
N∑
n=1

(x(n)− an− b)2

=
N∑
n=1

(x(n)2 − 2anx(n)− 2bx(n) + 2abn+ a2n2 + b2),

(2.14)

where a is the slope, and b is the offset. To minimise ê2, the following differential
equations can be expressed as (can be referred to [117]):

∂ê2

∂a
=

N∑
n=1

(−2nx(n) + 2bn+ 2an2) = 0, (2.15a)

∂ê2

∂b
=

N∑
n=1

(−2x(n) + 2an+ 2b) = 0, (2.15b)

which can re-written as:

−
N∑
n=1

nx(n) + b

N∑
n=1

n+ a

N∑
n=1

n2 = 0, (2.16a)

−
N∑
n=1

x(n) + a
N∑
n=1

n+Nb = 0. (2.16b)

17



2. Methodology

Then, the solutions for a and b can be yielded as:

a =

N
N∑
n=1

nx(n)−
N∑
n=1

n
N∑
n=1

x(n)

N
N∑
n=1

n2 − (
N∑
n=1

n)2
, (2.17a)

b =

N∑
n=1

x(n)
N∑
n=1

n2 −
N∑
n=1

n
N∑
n=1

nx(n)

N
N∑
n=1

n2 − (
N∑
n=1

n)2
. (2.17b)

In the previous study [21], the offset (b) was found to be more efficient than the
slope (a). Therefore, in this thesis, the offset is included as a complementary func-
tional to aforementioned xmax, xmin, and xmean. The four functionals are applied to
the LLDs of Formants (Section 2.1.1), SFFs (Section 2.1.2), SERs (Section 2.1.3),
MFCCs (Section 2.1.4), and wavelet features (Section 2.1.6). The functionals used
for the ComParE feature set (Section 2.1.5) are listed in Table 2.2. More detailed
definitions and calculations of functionals can be found in [117].

2.2.2 Bag-of-Audio-Words

The bag-of-audio-words (BoAW) approach has originated from the bag-of-words
(BoW) principle, which can be referred to as the early description in [127]. The
BoW method is applicable in natural language processing [128], and being adopted
by the research community of computer vision [129,130]. Recently, the BoW method
has been widely used in audio classification tasks (referred to the term as BoAW)
like acoustic event classification [131–134], multimedia event detection [135–137],
speech emotion recognition [125,138], and health care [19, 139].

In the BoAW approach, term frequency histograms are generated from the acous-
tic LLDs. Compared to the BoW approach, where text documents are represented
as word histograms, the numerical LLDs extracted from the audio signal need to
undergo a vector quantisation (VQ) step first. The VQ is done employing a code-
book of template LLDs which is previously learnt from a certain amount of training
data. Although the codebook generation usually employs k-means clustering [135]
(see Algorithm 1), similar results can be achieved using a random sampling of the
LLDs [140], where the sampling follows the initialisation step of e. g., k-means++
clustering [141] (see Algorithm 2, which betters the initialisation step of k-means),
i. e., far-off LLDs are prioritised. Instead of assigning each LLD to only the most
similar word in the codebook, the Na words with the lowest Euclidean distance can
be considered, which usually results in an improved robustness of the approach [125].
In the resulting histogram, the logarithm (with a bias of 1) is then taken from the
word frequencies, in order to compress the range of values. The whole process of
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Table 2.2: Overview of functionals applied to LLDs in the ComParE feature set.
The functionals marked with A and B are only applied to Group A or B (see Ta-
ble 2.1) LLDs and the delta LLDs(referred to [117]), respectively. The functionals
marked with ζ or η are not or only applied to the delta LLDs, respectively. The
source of the table can be found in [117].

Functionals

ArithmeticAζ,B or positive arithmeticAη,B mean
Root-quadratic mean, flatness
Standard deviation, skewness, kurtosis, quartiles 1–3
Inter-quartile ranges 1–2, 2–3, 1–3, 99-th and 1-st percentile, range of these
Relative position of max. and min. value, Range (maximum to minimum value)
Linear regression slopeAζ,B, offsetAζ,B, Linear regression quadratic errorAζ,B

Quadratic regression coeff.Aζ,B, Quadratic regression quadratic errorAζ,B

Temporal centroidAζ,B, Peak mean valueA and distance to arithmetic meanA

MeanA and std. dev.A of peak to peak distances
Peak and valley rangeA (absolute and relative)
Peak-valley-peak slopes meanA and standard deviationA

Segment length meanA, min.A, max.A, standard deviationA

Up-level time 25 %, 50 %, 75 %, 90 %
Rise time, left curvature time, Linear Prediction gain and coefficients 1–5

BoAW generation is exemplified in Figure 2.7. In order to reduce the effect of differ-
ent magnitudes between the LLDs, they are subject to standardisation. Accordingly,
also the resulting term frequency histograms are standardised before they are fed
into a classifier.

The codebook size, i. e., Cs, and the number of assignments, i. e., Na are crucial
parameters in the BoAW approach and need to be optimised [19, 125]. However,
there is no general best practice regarding the aforementioned parameters. More
precisely, as indicated in [125], the optimum Cs depends not only on the number
and type of LLDs, but also the task. In this thesis, the Cs and Na will be tuned
empirically to be optimised in initial experiments. Besides, the open source toolkit
openXBOW [126] will be used to implement the whole BoAW approach, which
can make the experiments reproducible.

2.3 Feature Normalisation

The extracted features usually have their own physical meaning, which in turn have
their corresponding specific units. Besides, due to the variable circumstances of the
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Algorithm 1: k-means Clustering

1 Randomly choose k initial centres: C = {c1, c2, . . . , ck}.
2 repeat
3 Set the cluster Si as a set of points in the data set X that are closer to ci

than to cj (∀ i 6= j, i, j ∈ {1, 2, . . . , k}).
4 Set ci as the centre in Si: ci = 1

|Si|
∑

x∈Si x i ∈ {1, 2, . . . , k}.
5 until the set of centres C no longer changes.

Algorithm 2: k-means++ Clustering

1 Randomly choose one centre c1 from the data set X .
2 repeat

3 Choose a new centre ci: Choosing x ∈ X with a probability D(x)2∑
x∈X D(x)2

,

where D(x) denotes the shortest distance from x to the closest centre
that has already been chosen.

4 until k centres have been chosen.
5 Proceed as the standard k-means clustering.

audio environments, subjects and recording equipment, a normalisation technique
is needed to unify the feature values within a small specified range. Particularly,
for training neural networks, feature sets should be normalised before building the
models to speed up the the learning phase [142]. Given a feature vector x, simply
expressed as x(n) for n = 1, 2, . . . , N (N represents the number of values in this
vector), there are two main methods [89,117] to normalise x.

Min-max normalisation scales the feature values into a predefined interval.
In this method, the normalised feature vector x′ has values as:

x′(n) =
x(n)− µx

xmax − xmin
· (b− a) + a, (2.18)

where the value a and b define the interval [a, b] by linear scaling. The scalar
µx, xmax, xmin represents the arithmetic mean, maximum, and minimum values
calculated from the vector x. Usually, two scales are used, i. e., [0, 1] and [−1, 1].
As indicated in [117], this method is vulnerable to single outliers, which limits its
application in realistic conditions.

Standardisation (also called z-score normalisation) forces the feature values
to have an arithmetic mean of zero and a variance of one. The normalised values
can be expressed as:

x′(n) =
x(n)− µx

σx
, (2.19)

where σx is the standard deviation of the vector x. As indicated in [89], standardi-
sation is more robust to outliers than min-max normalisation.

20



2.4. Classification

S
ta

n
d

ard
-

isatio
n

C
o
d

eb
o
ok

G
en

era
tion

V
Q

&
H

istog
ra

m
G

en
eratio

n

L
og

a
rith

m
ic

W
eigh

tin
g

S
ta

n
d

ard
-

isatio
n

B
ag-o

f-A
u

d
io

-W
o
rd

s

LLDs

Figure 2.7: Diagram of the bag-of-audio-words generation process. The codebook
generation is only performed in the training phase.

In this thesis, features are normalised via the standardisation method ex-
cept an according statement is given. It should be noted that, the parameters
{µx, xmin, xmax, σx} of one certain feature vector are extracted from the train set
and applied to its counterpart in the development and test sets.

2.4 Classification

Given an instance (x, y), where x ∈ Rd is a feature vector in d-dimensional space,
and y ∈ {Y1, . . . ,Yκ} (κ denotes the number of classes) is the label (for the training
set) or the prediction (for the testing set). The process of classification is then to
build a statistical model that can operate the input feature vector x to the output
as its class y. In this section, the classification models involved in this thesis will be
introduced.

2.4.1 Classical Models

A series of classical models in the machine learning community are introduced in
this section. Generally, these models have a simplified mathematical theory and
can be efficient for some tasks within a limited data size. As general audio signal
classification is a young field with a small size of labelled data, specifically, healthcare
related audio data (e. g., snore sounds) are extremely expensive for human expert
annotation, the classical models are investigated as the fundamental research basis.

Näıve Bayes

The Näıve Bayes (NB) classifier is based on a conditional probability model, which
assigns the given instance’s probability as [143]:

P (y|x) = P (y|x1, . . . , xd) =
P (y)P (x1, . . . , xd|y)

P (x1, . . . , xd)
, (2.20)
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where (x1, . . . , xd) is the feature vector. For Näıve Bayes classifiers, the assumption
is made that each feature is independent of the value of the other features when
given the class variable. Therefore, Equation 2.20 can be simplified as:

P (y|x) =

P (y)
d∏

m=1

P (xm|y)

P (x1, . . . , xd)
, (2.21)

where m denotes the index of the feature value in the vector. As P (x1, . . . , xd)
will be a constant when the feature values x1, . . . , xd are known, there will be a
relationship inferred from Equation 2.21 as:

P (y|x) ∝ P (y)
d∏

m=1

P (xm|y). (2.22)

When constructing a classifier, the maximum a posteriori (MAP) [144] decision rule
is used:

ŷ = arg max
y

P (y)
d∏

m=1

P (xm|y), (2.23)

where ŷ is the prediction, and P (y) is the relative frequency of a class variable in
the training set. To estimate the distribution P (xm|y), there are various parametric
methods like Gaussian distribution estimation or nonparametric methods like kernel
density estimation [145].

In spite of the over-simplified assumptions, the NB classifier can work very well
in many fields, e. g., document classification [146] and spam filtering [147]. More
details on a theoretical analysis of NB’s strength can be found in [148].

k-Nearest-Neighbour

The k-nearest-neighbour (k -NN) classifier is a variant of the NN classifier (where
k = 1) [143, 149], which searches the nearest neighbour xσ from training instances
to a given test instance xt. The label of xσ, i. e., yσ, will be assigned to xt as the
prediction. For a k -NN classifier (when k > 1), it searches k nearest neighbours
rather than only one nearest neighbour as the NN classifier. The majority class
variable of these k nearest neighbours will be assigned to the given test instance
as the prediction [143]. One common method to find the nearest neighbours is by
measuring the Euclidean distance [150], which is defined as:

D(xt,xi) = D(xi,xt) =

√√√√ d∑
m=1

(xt,m − xi,m)2, (2.24)
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Figure 2.8: Mechanism of training an SVM classifier in a binary classification prob-
lem. The aim of training an SVM classifier is to find the best hyperplane which can
be achieved by maximising the margin. Data points with the widest possible gap
are called support vectors (indicated by circles); w is a normal vector; b is a bias.

where D(xt,xi) means the calculated distance between the given test instance xt
and a certain instance xi in the training set. Previous studies had demonstrated the
effectiveness of k -NN in classification of snore sounds [15–17]. In this thesis, k -NN
will be investigated in comparison to other classifiers for SnS classification.

Support Vector Machines

Support vector machines (SVMs) [81] aim to find a set of hyperplanes in a multi-
dimensional space such that instances of different class variables can be separated.
More precisely, it is the goal of an SVM to find the best hyperplane that maximises
the separation between classes. In other words, this hyperplane has the largest
distance (also know as margin) to the nearest training data point of any class [89].
When performing classification tasks, a subset of data points with the widest possible
gap (called as support vectors) from the training set will be selected as pivots to
support the hyperplane on both sides of the margin. The instances from the test set
will be mapped to this multi-dimensional space, and the predictions will be given
based on which side of the gap they fall onto. Figure 2.8 briefly shows the mechanism
of training an SVM classifier in a binary classification problem.

Formally, in a binary classification problem (e. g., yi ∈ {−1,+1}), SVMs find the
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2. Methodology

optimal margin separating hyperplane by solving the optimisation problem [81]:

minimise :
1

2

n∑
i,j=1

αiαjyiyjK(xi,xj)−
n∑
i=1

αi,

subject to :
n∑
i=1

αiyi = 0, 0 ≤ αi ≤ Cs, i = 1, . . . , n,

(2.25)

where αi corresponds to the Lagrange multiplier of a training sample (xi, yi), and
Cs is a pre-defined parameter. K(xi,xj) is called kernel function [81], which can
make SVMs analyse linearly or nonlinearly separable problems. There are some
commonly used kernel functions, e. g., linear, polynomial, and radial basis function
(RBF). The definitions of these kernel functions can be expressed as follows:

linear : K(xi,xj) = xT
i xj, (2.26a)

polynomial : K(xi,xj) = (γxT
i xj + c)d̂, (2.26b)

RBF : K(xi,xj) = e−γ‖xi−xj‖2 , (2.26c)

where γ, c, and d̂ are pre-defined parameters.
To solve the aforementioned optimisation problem, the sequential minimal op-

timisation (SMO) algorithm can be used [151]. For classification of a given test
sample xt, a decision function is defined as:

f(xt) =
n∑
i=1

αiyiK(xi,xt) + b, (2.27)

where b is the bias.
There are two popular methods which can combine several binary SVMs to solve

the multi-class problems: One-versus-all trains one binary SVM classifier for each
class, and then, the prediction of a test sample will be given by which SVM classifier
has the highest output function; One-versus-one trains one binary SVM classifier
for each pair of classes, and then, the prediction of a test sample will be given by
which class has the most votes [152]. In the past two decades, SVMs have been the
popular classifiers for various applications in machine learning, which can achieve a
satisfying recognition result.

Random Forests

Random forests (RFs) [153] are a combination of decision trees [154], which can
efficiently ease the influence of overfitting by a single trained decision tree. As a
kind of ensemble learning [155] algorithms, RFs use several individual trees to make
the final prediction via the ‘bagging’ algorithm [156]. In the paradigm of ‘bagging’
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2.4. Classification

(or bootstrap aggregating), weak learners (i. e., individual trees in RFs) are firstly
trained with different sets of bootstrap examples, i. e., randomly selected subsampled
training data sets with replacement (in the RFs algorithm, the subspace of the whole
features will also be randomly selected). Then, the final prediction will be given by
a majority voting (cf. Section 2.6) of the trained weak learners (i. e., individual trees
in RFs). Compared with a single decision tree classifier, RF classifier can be more
robust and generalised in real applications.

2.4.2 Deep Learning Models

Deep learning (DL) has now become a very popular subset of machine learning since
the greedy layer-wise unsupervised pre-training was proposed to train very deep
neural networks in 2006 [157,158]. The core idea of DL models is to extract higher
representations from the data with the help of a series of nonlinear transformation
of the inputs. More precisely, it is expected to learn more robust and generalised
features via DL models from a big data size, which was restrained by the capacity
of the aforementioned classical models (usually with a shallow architecture). The
success of DL has been proven in many fields like speech recognition [159], image
recognition [160], or object detection [161], etc. A recent study on snore sound
classification [93] demonstrated that, simple subband energy features via DL mod-
els can reach a better performance compared with more sophisticated features like
wavelets. In this section, some fundamental concepts of the neural networks will
be introduced firstly. Then, DL models involved in this thesis will be described.
It should be noted that, convolutional neural networks (CNNs) [162] have been a
popular DL model to serve as an efficient feature extractor for classification task.
When using a CNN-based feature extractor, the audio signal can for example be
transformed to images like spectrograms (via Fourier transformation) or scalograms
(via wavelet transformation). This thesis focuses on using acoustic features derived
from audio signals, which does not involve CNN models. For relevant work on using
CNNs, the reader is referred to the works in [39,41,163–166].

Multilayer Perceptrons

Multilayer perceptrons (MLPs) belong to the feed-forward neural networks (FNNs), a
kind of simple network architecture with connected neurons (nodes) feeding forward
from one layer to the next one [167]. Typically, in MLP, each layer is fully connected
with all nodes of the subsequent layer, however, there are no connections between
nodes within the same layer or across multiple layers. Figure 2.9 gives an example
of a two-hidden-layer MLP.

Formally, given the input vector hl−1 ∈ Rm to the l-th layer, its output vector
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Input Layer

Hidden Layer

Output Layer

Figure 2.9: Example of a two-hidden-layer MLP.

hl ∈ Rn can be written as:

hl = F(W lhl−1 + bl), (2.28)

whereW ∈ Rn×m and b ∈ Rn are the weight matrix and the bias vector, respectively.
F(·) denotes a nonlinear and differentiable function, which is called activation func-
tion. The commonly used activation functions (see Figure 2.10) include the sigmoid
function (sigm), the hyperbolic tangent function (tanh), and the rectified linear unit
function (ReLU). These functions are defined as follows:

sigm(x) =
1

1 + e−x
, (2.29a)

tanh(x) =
e2x − 1

e2x + 1
, (2.29b)

ReLU(x) = max(0, x). (2.29c)

It can be easily found that, the hyperbolic tangent function is a rescaled sigmoid
function, i. e., tanh(x) = 2sigm(2x)− 1. Apart from these functions, there are other
options like the soft plus [168] and the maxout [169]. There are many options to
chose the activation functions for all hidden layers. For the output layer, the choice
of the activation function depends on the task for building the MLP. In this thesis,
general audio signal classification is a usually a multi-class classification problem.
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Figure 2.10: Some commonly used activation functions for neural networks: sigmoid
(sigm), hyperbolic tangent (tanh), and rectified linear unit (ReLU).

Thus, the softmax function is used [167]:

yi =
exi
κ∑
j=1

exj
, i = 1, · · · , κ. (2.30)

In this equation, yi denotes the output of the i-th element (xi) in the vector input
to the softmax function, and κ is the number of output nodes (i. e., the number of
classes). The output vector y can be a valid probability distribution for 06yi61, ∀ i
and the

κ∑
i=1

yi = 1. For a given test sample, its prediction will be given as the node

of the output layer which has the maximum probability value.
The procedure of training a neural network is to iteratively update the parame-

ters of its layers (W and b) in order to minimise the loss function L(θ) (θ denotes
the parameters), which measures the difference between the target output vectors
and the actual output vectors of the network. For an instance x fed as the input
to the network, y as the actual output, t as the target output, the cross entropy is
usually adopted in multi-class classification task as the loss function:

L(θ) = H(y, t) = −
κ∑
i=1

tilogyi. (2.31)

One popular method to minimise the loss function is called backpropagation
(BP) [170], which repeatedly applies the chain rule of differentiation to compute the
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gradient ∇L(θ) of the loss function with respect to the parameters of the network.
The detailed formula derivation and implementation of BP can be found in [167,
170, 171]. The gradient descent algorithm is usually used to adjust the network
parameters in small steps towards the direction of the negative gradient [170]:

θτ+1 = θτ − η∇L(θτ ), (2.32)

where τ denotes the iteration step and η > 0 is the learning rate which should
be allowed to vary in the learning process [172]. The stochastic gradient descent
(SGD) [173] is often used in order to accelerate the process of updating the network
parameters when computing the gradient on the entire training set. In SGD, the
update to the network parameters will be based on the gradient value of the loss
function for one instance only. In practice, the network parameters will be repeatedly
updated by applying SGD to minibatches which include a set of instances divided
from the entire train set. The process of going over the entire training set is called an
epoch. Usually the number of epochs will be set empirically dependent on different
data sets and tasks.

Another technique to speed up the convergence of training neural network is to
use the momentum [174]:

θτ+1 = θτ − η∇L(θτ ) + µ(θτ − θτ−1), (2.33)

where µ ∈ (0, 1) is the momentum term. An improvement of the momentum method
is the Nesterov momentum [175]:

θτ+1 = θτ − η∇L(θτ + µ(θτ − θτ−1)) + µ(θτ − θτ−1). (2.34)

Both momentum and Nesterov momentum can be regarded as indirect methods to
change the learning rate to make a persistent reduction of the loss function across
iterations.

Apart from the basic BP algorithm mentioned above, there are more sophisti-
cated methods, e. g., the scaled conjugate gradient (SCG) [176], which avoids line-
search in learning iterations, can be more efficient and faster than standard gradient
descent. In addition, to cope with the overfitting problem, regularisation [177], drop
out [178], and batch normalisation [179] are usually used.

Stacked Autoencoders

As one efficient kind of deep learning frameworks, stacked autoencoders (SAEs)
can facilitate the network to learn higher representations from the inputs via an
unsupervised fashion in the initialisation phase of the network [158,180].

An autoencoder (AE) is a feed-forward neural network (often with one hidden
layer) having an equal number of nodes between the inputs and the outputs [181,
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Input Layer

Hidden Layer
Output Layer

Figure 2.11: Structure of an autoencoder.

182]. Figure 2.11 shows an example of the structure of an autoencoder. Unlike the
aforementioned MLP, training an AE is to reconstruct its inputs rather than give
the predictions in the output layer. Typically, an AE is composed of two parts, i. e.,
an encoder and a decoder. Firstly, in the encoder stage of training an AE, the input
vector x ∈ Rm will be mapped onto a new representation a ∈ Rn in the hidden
layer as:

a = F(Wx+ b), (2.35)

whereW ∈ Rn×m and b ∈ Rn are the weight matrix and the bias vector, respectively.
F is the activation function as mentioned above. Then, in the decoder stage, the
new representation a will be mapped to the reconstruction x′ ∈ Rm as:

x′ = F ′(W ′a+ b′), (2.36)

where the weight matrix W ′ ∈ Rm×n, the bias vector b′ ∈ Rm, and the activation
function F ′ are the parameters that may differ in general from the corresponding
W , b, and F used in the encoder stage. The procedure of training an AE is to
update the parameters θ = W ,W ′, b, b′ by minimising the loss function L(θ), e. g.,
mean squared error (MSE), as:

L(θ) = E(x,x′) =
1

N

N∑
j=1

‖xj − x′j‖2, (2.37)

where xj represents the j-th input vector. The aforementioned optimisation meth-
ods like BP, SGD, or SCG can be applied to the AE training process. In addition,
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to make the learnt representations from an AE more robust and generalised, sparse
coding [183] and regularisation [167] are usually exploited to calculate the recon-
struction error:

L(θ) = E(x,x′) =
1

N

N∑
j=1

‖xj − x′j‖2 + αL2 + β
n∑
k=1

SP (ρ||ρ̂k), (2.38a)

L2 =
1

2

N∑
j=1

(‖Wj‖2 + ‖W ′
j‖2), (2.38b)

SP (ρ||ρ̂k) = ρ log
ρ

ρ̂k
+ (1− ρ) log

1− ρ
1− ρ̂k

, (2.38c)

ρ̂k =
1

N

N∑
j=1

hk(xj), (2.38d)

where L2 is the L2 regularisation term, SP (ρ||ρ̂k) is the sparsity regularisation
term [184] (which can be referred to as Kullback-Leibler divergence [185]), ρ̂k is
the average activation value of the k-th node, ρ ∈ [0, 1) is the sparsity level, n is the
number of hidden nodes, α and β are parameters for the L2 regularisation term, and
the sparsity regularisation term, respectively. Another variant of the basic AE, the
denoising autoencoder (DAE) [186], is to reconstruct the inputs from a corrupted
version, which can learn more robust features than the basic AE.

When constructing an SAE classifier, the learnt representation al by the l-th
encoder will be used as the inputs (features) to the subsequent (l + 1)-th encoder.
Firstly, the stacked autoencoders will be trained layer by layer via an unsupervised
learning process to fulfil the pre-training phase for building the deep neural network.
Then, a softmax layer will be often added as the output of the SAE architecture in
a supervised learning process as when training the MLP described above.

Recurrent Neural Networks

When learning a sequence input (e. g., an audio clip includes some context infor-
mation), the aforementioned FNNs will process each frame independently, which
means using no context information. One simple and straightforward way is to
stack several successive frames together as the input to the network [187]. However,
this method can learn limited context information [188]. Recurrent neural networks
(RNNs) [189] can learn context information by incorporating the outputs of a pre-
vious time step as additional inputs for the current time step (see Figure 2.12). In
a RNN (referred to Elman network [189]), the output hlt of the l-th hidden layer at
the time t can be expressed as a modification from Equation 2.28:

hlt = F(U lhlt−1 +W lhl−1t + bl), (2.39)
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Figure 2.12: Structure of a RNN.

where U l is called recurrent weight matrix of the l-th hidden layer, W l and bl are
the weight matrix and bias vector of the l-th hidden layer, F denotes a nonlinear
and differentiable function as mentioned in training an MLP.

RNNs can be trained via backpropagation through time (BPTT) [171], which is
similar to BP for training MLP by repeatedly using the chain rule of differentia-
tion. However, training the standard RNNs is difficult. The back-propagated error
(repeatedly multiplied by the recurrent weight matrix) will be blown up (gradient
explosion) or vanish (vanishing gradient) over time [190]. The gradient explosion
will cause the training diverge, but it can be solved by gradient clipping [191], which
clips the gradients into a limited range to prevent them from getting too large. The
vanishing gradient problem will restrain an RNN to learn long-term context informa-
tion. In practice, more complicated functions which have a memory cell to preserve
long-term information are used to replace the traditional neurons in RNNs. There
are two popular structures that can fulfil this work, i. e., long short-term memory
(LSTM) cells [192] and gated recurrent units (GRUs) [87]. In this thesis, the RNNs
with GRUs are exploited for their simplicity in structure and effectiveness in pre-
vious relevant studies [113, 165, 166]. The GRU [87] contains an update gate z, a
reset gate r, an activation h, and a candidate activation h̃. Figure 2.13 illustrates
the structure of a GRU. The mechanism of GRU can be expressed by the following
equations:

rlt = Fσ(U l
rh

l
t−1 +W l

rh
l−1
t + blr), (2.40a)

h̃lt = Fh(U l
h(r

l
t � hlt−1) +W l

hh
l−1
t + blh), (2.40b)

zlt = Fσ(U l
zh

l
t−1 +W l

zh
l−1
t + blz), (2.40c)

hlt = zlt � h̃lt + (1− zlt)� hlt−1, (2.40d)

where � denotes the element-wise multiplication, Fσ is the sigmoid function (sigm)
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Figure 2.13: Structure of a Gated Recurrent Unit (GRU).

to scale values to the range between 0 and 1, and Fh is usually set to the hyperbolic
tangent function (tanh). As indicated in [87], the unit will not be overwritten if
the update gate is closed (gate activation values are close to 0), which helps to
remember the existing context information from inputs for a long series of time
steps. In addition, the error can be back-propagated without too much attenuation
by passing through the update gate when it is open (gate activation values are
close to 1), which solves the vanishing gradient problem in standard RNNs. In this
thesis, the RNNs using GRUs are referred as to as Gated Recurrent Neural Networks
(GRNNs) for conciseness.

Bidirectional Recurrent Neural Networks

The aforementioned RNNs only consider the information flow in one direction, which
ignores the future context information. Another structure (see Figure 2.14), bidi-
rectional recurrent neural networks (BRNNs) [88] can access the whole context in-

formation of inputs by calculating the forward hidden layer activation
−→
h (forward

chain: from the beginning to the end of the sequence), and the backward hidden

layer activation
←−
h (backward chain: from the end to the beginning of the sequence):

−→
h l
t = F(

−→
U l−→h l

t−1 +W lhl−1t +
−→
b l), (2.41a)

←−
h l
t = F(

←−
U l←−h l

t+1 +W lhl−1t +
←−
b l), (2.41b)
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Figure 2.14: Structure of a bidirectional RNN.

where
−→
U l,
−→
b l are the forward recurrent weight matrix and bias vector, and

←−
U l,←−

b l are the backward recurrent weight matrix and bias vector. The activation hlt
will be the concatenation of the two chains. Correspondingly, in this thesis, the
BRNNs using GRUs are referred to as Bidirectional Gated Recurrent Neural Net-
works (BGRNNs).

2.4.3 Extreme Learning Models

In the past decade, the extreme learning machines (ELMs) [82, 193, 194] and its
variants (a review is found in [195]) have been popular in the community of neural
network and machine learning. It is reported that, the extreme learning models
(ELM and its variants) have achieved superior performance to conventional models
like SVMs and MLPs in many applications of regression and classification [195]. The
universal approximation and classification capabilities of ELM have been proven in
theory [196–198].

Extreme Learning Machines

Extreme learning machines (ELMs) [193] are one kind of single hidden layer feed-
forward neural networks (SLFNNs). Figure 2.15 shows the structure of an SLFNN.
Unlike the conventional SLFNNs trained with gradient-based methods, there is no
need for tuning the parameters of the hidden nodes for ELMs [199,200]. For ELMs,
the hidden nodes are randomly initiated and the output weights can be analytically

33



2. Methodology

determined [194]. More specifically, the parameters of ELMs are independent of
the training data, i. e., the parameters of ELMs can be generated before seeing
the training data [199]. Formally, the output function of an ELM for generalised
SLFNNs (one output node as an example) can be written as [82,199]:

f(x) = h(x)w =
L∑
l=1

wlhl(x), (2.42)

where x ∈ RD is the input vector, wl is the output weight between the l-th hidden
node and the output node, and hl(x) = G(al, bl,x) is the output of the l-th hidden
node. h(x) maps the input x from a D-dimensional space to an L-dimensional space
(ELM feature space). The parameters al ∈ RD and bl are input weights and bias
in the l-th hidden node, which are assigned randomly in the ELM training process.
The activation function G(·) can be a nonlinear piecewise continuous function which
satisfies the ELM universal approximation capability theorems [196–198]. Except
for the sigmoid function (see Section 2.4.2), there are some other commonly used
activation functions (see Figure 2.16) for ELM, like the Fourier function (Fr), the
hard-limit function (hardlim), the triangle basis function (tribas), or the radical basis
function (radbas), which are defined as follows:

Fr(x) = sinx; (2.43a)

hardlim(x) =

{
1, if x>0,

0, otherwise;
(2.43b)

tribas(x) =

{
1, if x ∈ [−1, 1],

0, otherwise;
(2.43c)

radbas(x) = e−x
2

. (2.43d)

Given a set of training examples X = [x1, · · · ,xN ] with the target matrix T ∈
RN×M , ELM aims to minimise not only the training error ‖HW − T ‖2, but also
the norm of the output weights ‖W ‖ [82]. H ∈ RN×L is the output matrix of the
hidden layer:

H =

h(x1)
...

h(xN)

 =

h1(x1) · · · hL(x1)
...

...
...

h1(xN) · · · hL(xN)

 , (2.44)

W ∈ RL×M is the output weight matrix, and T ∈ RN×M is the target matrix. M
denotes the number of output nodes, i. e., the number of classes in a classification
problem. In the original implementations of ELMs [193, 194], the minimal norm
least square method was used to calculate the output weights as:

W = H†T , (2.45)
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Figure 2.15: Structure of an SLFNN.

where H† ∈ RL×N is the Moore-Penrose generalised inverse of the matrix H [201,
202]. As suggested in [82], two methods are usually used to accelerate the calculation
of the output weights as:

W = HT(
I

Ce
+HHT)−1T , I ∈ RN×N , (2.46)

W = (
I

Ce
+HTH)−1HTT , I ∈ RL×L, (2.47)

where I is an identity matrix, and Ce is a pre-defined parameter. As indicated
by Huang et al. in [82], one may use Equation 2.46 when the number of training
instances is not huge (N�L), or apply Equation 2.47 when the number of training
instances is huge (L�N), in order to reduce the computational costs. In this thesis,
to fully investigate the capacity of ELMs, the number of hidden nodes will be tuned
and tested including large values (more than 5 000). Thus, Equation 2.46 is used,
by which the output function of an ELM classifier can be expressed as:

f(x) = h(x)W = h(x)HT(
I

Ce
+HHT)−1T , (2.48)

where f(x) = [f1(x), . . . , fM(x)]T is the output vector. In a multi-class problem,
the label (prediction) y of an instance x is given as the index of the output node
which has the highest output value with respect to the input instance:

y = argmax
m∈{1,...,M}

fm(x). (2.49)

Kernel-based Extreme Learning Machines

If the feature mapping h(x) is unknown, the kernel trick K(xi,xj) (similar to SVM,
see Equation 2.26) can be used. In this case, Equation 2.46 will be used, and the
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Figure 2.16: Some commonly used activation functions for extreme learning ma-
chines: Fourier (Fr), hard-limit (hardlim), triangle basis (tribas), and radical basis
(radbas).

output function can be expressed as [82]:

f(x) = h(x)W = h(x)HT(
I

Ce
+HHT)−1T

=

K(x,x1)
...

K(x,xN)

 (
I

Ce
+ ΩELM)−1T ,

(2.50)

where ΩELM = HHT is the kernel matrix. In this thesis, to make the above
expressed method distinct with the aforementioned ELMs (with random feature
mappings), the name kernel-based extreme learning machines (KELMs) is used.
Compared with KELMs, SVMs may tend to reach sub-optimal solutions when the
same kernels are used [199].

2.5 Data Enrichment

In general, data enrichment is often needed when integrating the available data
in real world [89]. In this thesis, the main focus is to use active learning (AL)
for efficient labelling. Another typical approach for data enrichment is called semi-
supervised learning (SSL) [203], which can exploit the annotation work of unlabelled
data in a non–human involved scenario. However, for general audio data (e. g., bird
sound data), some domain knowledge from the human experts (e. g., ornithologists)
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Figure 2.17: Pool-based active learning scenario.

Algorithm 3: Passive Learning (PL)

1 repeat
2 Randomly select K samples DK from the pool of unlabelled data U .
3 Let human expert annotate the selected subset DK .
4 Remove DK from the unlabelled data U : U ← U \ DK .
5 Add DK to the labelled data L: L ← L ∪DK .

6 until iteration reaches a pre-defined number, or the trained model achieves a
certain performance on the validation set.

could sill be important to guarantee efficient annotations. Thus, AL was chosen to be
investigated in this thesis. There are several different scenarios of AL like member-
ship query synthesis, stream-based selective sampling, or pool-based sampling [204].
In this thesis, AL is applied to a pool-based sampling scenario (see Figure 2.17), in
which, there is a small set of labelled data L and a large pool of unlabelled data
U [204].

2.5.1 Passive Learning

In contrast to active learning, passive learning (PL) does not consider involving the
previously trained model to participate. PL randomly selects the unlabelled data
to query an oracle (e. g., a human expert) for annotation [204]. As indicated in [83],
this method is extremely time–consuming and costly. The detailed steps of PL are
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Algorithm 4: Sparse-Instance-based Active Learning (SI-AL)

1 repeat
2 Train a model C based on the labelled data L.
3 Randomly select K samples Dk from the pool of unlabelled data U that

are predicted by C as belonging to the sparse class.
4 Let human expert annotate DK .
5 Remove DK from the unlabelled data U : U ← U \ DK .
6 Add DK to the labelled set L: L ← L ∪DK .

7 until iteration reaches a pre-defined number, or the trained model C achieves
a certain performance on the validation set.

briefly shown in Algorithm 3.

2.5.2 Active Learning

AL uses a query strategy based on the evaluation of a previously trained model
to ask for human annotation. By selecting the ‘most informative’ unlabelled data
from the pool, AL aims to improve the model’s performance using as few human
annotated instances as possible [204]. There are a variety of AL query strategies
that can be chosen for evaluating the informativeness of unlabelled data (details can
be found in [204]). In this thesis, considering simplicity and effectiveness in real-
world applications (e. g., for bird sound data), two strategies are investigated and
compared, i. e., sparse-instance-based AL (SI-AL), and least-confidence-score-based
AL (LCS-AL).

Sparse-Instance-based Active Learning

In SI-AL (see Algorithm 4), the sparsity of certain classes in the unbalanced data
is taken into account. The instances which are predicted by the previously trained
model to a certain sparse class will be selected for asking for human annotation.
Formally, the query function is defined as:

QSI(x) =

{
1, if ŷx ∈ Ysparse,
0, otherwise,

(2.51)

where ŷx is the predicted label of instance x, Ysparse is a set of sparse classes. Intu-
itively, Ysparse can be pre-defined in a global view of the whole data, or dynamically
re-defined through the AL iterative process. In a real world application, some cer-
tain sparse classes are usually known to the data mining developers (e. g., bird sound
data). Besides, dynamically changing the sparse classes may cause an unstable per-
formance of the model. Therefore, in this thesis, Ysparse is pre-defined before the AL
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Algorithm 5: Least-Confidence-Score-based Active Learning (LCS-AL)

1 repeat
2 Train a classifier C based on the labelled data L.
3 Predict the unlabelled data U by C, and rank the data by its prediction

confidence score.
4 Randomly select K samples DK from the last λcNU of the ranked data in

U , NU is the number of instances in U , λc is a pre-defined factor.
5 Let human expert annotate DK .
6 Remove DK from the unlabelled data U : U ← U \ DK .
7 Add DK to the labelled data L: L ← L ∪DK .

8 until iteration reaches a pre-defined number, or the trained model C achieves
a certain performance on the validation set.

process. SI-AL was previously proposed in a binary case [83]. In that case, Ysparse
can simply be assigned to one of the two classes. In this thesis (a multi-class case),
a sparseness factor λs is introduced to define Ysparse as:

Ysparse =
Ns⋃
i=1

{Yi|NYi < λsNmax}, (2.52)

where Ns is the total number of sparse classes, NYi is the number of instances that
belong to the class Yi, and Nmax is the number of instances that belong to one
certain class which occupies the biggest proportion in the whole data. It should be
noted that SI-AL will temporarily perform a PL paradigm if there are no instances
assigned to the sparse classes.

Least-Confidence-Score-based Active Learning

In LCS-AL (see Algorithm 5), the query framework is based on uncertainty sam-
pling [204, 205], in which the unlabelled instances with least uncertainty for a pre-
viously trained model to label will be selected for asking for human annotation.
Formally, the query function can be defined as:

QLCS(x) =

1, if x = argmin
x∈X

CS(x),

0, otherwise,
(2.53)

where CS(·) denotes a function to calculate the confidence score of a previously
trained model when it is making the prediction for instance x. Some commonly used
methods to calculate include least confident, margin sampling, and entropy [204].
However, the best method may be application-dependent due to each method having
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its own strengths and weaknesses [204]. In this thesis, the margin sampling [206]
is used for its ability to reduce the classification error by bettering the model on
discriminating among specific classes [204]. The CS value based on margin sampling
can be defined as [204]:

CS(x) = PC(ŷ1 | x)− PC(ŷ2 | x), (2.54)

where ŷ1 and ŷ2 are the predicted labels corresponding to the first and second highest
posterior probability under the trained model C. It can be understandable that
instances with smaller margins will be more ambiguous to the model than those
with larger margins. Thus, knowing the true labels of such instances can contribute
to the improvement of the model’s performance [204]. To estimate the posterior
probability, the methods can be varied based on different classification models. For
neural networks (e. g., DNNs, ELMs, or RNNs), the posterior probabilities can be the
outputs passing a softmax function. For SVMs (involved in this thesis), the posterior
probability can be estimated by using a logistic regression of the SVM’s outputs (in
the binary case) [207]. In a multi-class case, the aforementioned method can be
extended to [208] (implemented in the WEKA toolkit [209]) or [210] (implemented
in the LIBSVM toolkit [211]).

2.6 Late Fusion

It is expected to better the system’s performance by an early fusion (feature fusion)
and, or late fusion (model fusion). In a previous study [21], early fusion involved
feature selection and reduction, which might be much dependent on human expe-
rience, time-consuming, and unstable. In this thesis, two simple and efficient late
fusion strategies are employed, i. e., majority voting (MV) and margin sampling vot-
ing (MSV). For both the two strategies, models (classifiers) are trained dependently
at first. Then, the trained models are combined together as members of a commit-
tee. The final prediction will be given by evaluating each member’s prediction with
a certain strategy.

Majority Voting

In the scenario of majority voting, the final prediction will be assigned to a class
which appears mostly among all the predictions of the independently trained models.
Let di,j ∈ {0, 1} denote the decision value of the i-th model for the j-th class, the
behaviour of MV can be described as:
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ỹ = {Yj|
N∑
i=1

di,Yj =
Nc

max
j=1

N∑
i=1

di,j}, (2.55a)

di,j =

{
1, Yi = Yj,
0, otherwise,

(2.55b)

where N is the number of models, Nc is the number of classes, Yi is the prediction
of i-th model, Yj is the label of j-th class, and ỹ is the final prediction. When the
predictions of the models are not consistent with each other, or there is more than
one class that has the most votes, the final prediction will be given as:

ỹ = {Yi|
N

argmax
i=1

Wi,Yi}, (2.56)

where Wi,Yi is a calibration weight for the i-th model to make its prediction as Yi.
In this thesis, Wi,Yi is adopted as the Recall (see Equation 2.58) of the i-th model
for class Yi.

Margin Sampling Voting

In the scenario of margin sampling voting, the final prediction will be assigned to the
class of a model which has the highest margin sampling value (see Equation 2.54)
in the committee. The behaviour of MSV can be described as:

ỹ = {Yi|
N

argmax
i=1

Mi}, (2.57)

where Mi is the margin sampling value of i-th model. Therefore, this strategy is
based on measuring each model’s confidence when making the decision. The same
as for MV, the calibration weight (see Equation 2.56) will be given once there are
more than one model that can have the maximum margin sampling value.

2.7 Evaluation Metrics

In this section, the evaluation metrics for measuring the classification performance
and the significance level will be given a brief description. Evaluations are usually
done for measuring the performance of a trained system. Therefore, the following
relevant instance numbers are referred to as the numbers in the development or the
test sets.
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2.7.1 Classification Evaluation

In a classification task, the evaluations are usually based on comparing the predicted
labels and the ground truth. Recall (or class-wise accuracy) is the proportion of the
instances that are correctly predicted among all the instances that belong to one
certain class. In a multi-classs classification problem, Recalli (the recall for i-th
class) can be defined as:

Recalli =
Ñi

Ni

, (2.58)

where Ñi is the number of correctly predicted instances for i-th class, Ni is the total
number of instances labelled as i-th class. Recall is usually used to evaluate the
system’s performance for a specific class. When evaluating a general performance
of the system for all classes, weighted average recall (WAR) (or accuracy) is used:

WAR =
Nc∑
i=1

λiRecalli,

λi =
Ni

N
,

(2.59)

where λi is called the weight for i-th class, Nc is the number of classes, N is the
total number of instances.

WAR is widely used because it can give a general evaluation of the performance
achieved by the trained system. However, an essential factor ignored by WAR is that,
in the real world, data are usually unbalanced in distribution among classes. Thus,
the real performance of a recognition system might be overestimated if the correctly
classified instances belong to a class that coincidentally occupies a large proportion
among the whole instances, and vice versa. Therefore, unweighted average recall
(UAR) is used as the primary metric in this thesis unless stated otherwise. UAR is
defined as:

UAR =

Nc∑
i=1

Recalli

Nc

, (2.60)

where Nc is the number of classes. It can be easily seen that, WAR will be equal
to UAR if the weight λi becomes a constant for all classes, i. e., a case of balanced
data.

2.7.2 Significance Tests

It is essential to know whether that system A performs better than system B is
significant or not in statistics. When comparing the difference of measured values
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(e. g., UARs) of two systems, a z-test is adopted. The standard score z can be given
as [212]:

z =
mA −mB√

2m(1−m)/N
, (2.61)

where m = (mA +mB)/2, and mA and mB are the measure value of system A and
system B, respectively, N is the total number of instances. For the one-tailed case
(e. g., mA > mB), the p-value is calculated as:

p = 1− Φ(z) < α, (2.62)

where Φ(·) denotes the standard normal cumulative distribution function, the α is
called the significance level (e. g., .05, .01, .001). Generally, the p-value represents
the probability of rejecting the null hypothesis, which means a smaller p-value means
a more significant difference between the compared two systems.

When comparing the measures of two systems when they are applied in multiple
experiments, e. g., comparing the performances of different features fed into a variety
of classifiers, Student’s t-test is used. The test static is calculated as:

t =
m̄A − m̄B√
σ2
A

NA
+

σ2
B

NB

, (2.63)

where m̄A, m̄B are the sample means of the measure values from a sample size of NA

and NB, respectively. σA and σB are the sample standard deviations. The p-value
of the Student’s t-test can be calculated from a Student’s t-distribution [212].

In this thesis, a one-tailed z-test and a one-tailed Student’s t-test are used in
different cases (will be stated when appears) to take the significance tests. For
theoretical details, one can refer to [212,213].
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Applications

AGASC covers a wide range of topics on computational audio analysis using signal
processing and machine learning to fulfil the relevant task. In this thesis, three typ-
ical general audio signals related respectively to healthcare, ecological monitoring,
and public/home security surveillance were proposed in Chapter 1.

In this chapter, comprehensive experiments will be executed to evaluate the ap-
proaches proposed in Chapter 2. For snore sound classification, wavelet features
are introduced and compared with other widely used acoustical features. Partic-
ularly, a comprehensive comparison on features and classifiers is given. Moreover,
a BoAW approach is employed to improve the performance achieved by features
using functionals. For bird sound classification, data enrichment using AL is inves-
tigated on reducing the human expert annotation work. Moreover, the effectiveness
and robustness of AL algorithms (i. e., SI-AL and LCS-AL) and selected classifiers
(i. e., SVM and KELM) is evaluated. For acoustic scene classification, WPTE and
WEF feature sets are combined with the ComParE feature set by a late fusion
strategy. SVM, GRNN, and BGRNN are selected as the classification models. The
effectiveness and robustness of proposed systems are measured both in clean and
noisy environments.

To facilitate the reproducibility and sustainability of the relevant research, all
the databases used in this thesis are publicly accessible. Table 3.1 gives an overview
of all the databases used in this thesis.

For each topic involved in this thesis, there will be a background introduced
before the experiments. Further, a brief description of each database used is given.
In addition, the detailed experimental setup and the corresponding results will be
illustrated. A summary will be added at the end of each section.

1http://www.animalsoundarchive.org/RefSys/Statistics.php
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Table 3.1: Overview of the three databases used in this thesis.

Instances (#) Classes (#) Time (hours)

MPSSC [80] 828 4 0.35
MNB Bird Sound 1 5 060 86 4.00
DCASE 2017 Acoustic Scene [48] 6 300 15 17.50

3.1 Computer Audition for Snore Sound Excita-

tion Localisation

Snore sound classification based on its excitation location is a young field with
limited databases and literature coverage. As main part of applications in this thesis,
the work will be firstly done on comparing features and classifiers. In particular,
wavelet features (cf. Section 2.1.6) are introduced and investigated in the area of
SnS classification. Furthermore, wavelet LLDs applied within the BoAW approach
(cf. Section 2.2.2) can contribute to a better performance than traditional functionals
(cf. Section 2.2.1) when using a simple NB classifier.

3.1.1 Background

Obstructive sleep apnea (OSA) is a chronic disease affecting 13 % (men) and 6 %
(women) in the US population [10], which can severely affect health and quality
of life. OSA is defined as a sleep disorder with subject’s cessation, or reduction of
airflow during sleep due to a complete (apnoea) or partial (hypopnea) collapse of the
upper airway for more than ten seconds (with five or more episodes per hour) [5].
Usually, it is associated with a decrease in oxyhemoglobin saturation [5]. When
untreated, OSA increases the risks of stroke [6], hypertension [7], myocardial infarc-
tion [8], and is associated with diabetes [214, 215]. Moreover, OSA can be linkable
to accidents and harmful for patients’ mood [216, 217]. It is reported that, loud
snoring is a typical symptom among more than 80 % of OSA patients [218]. Pi-
oneers’ work was focused on analysing acoustic properties of snoring, which aims
to develop methods to replace, or complement Polysomnography (PSG), the gold
standard for diagnosis of OSA [4]. The relevant results are promising and encour-
age that, methods based on SnS acoustical analysis can reach accuracies of up to
80 % and sensitivities and specificities of up to 90 % on detection of OSA (small
populations between 5 and 60 subjects) [219].

Depending on individual anatomy and multifactorial mechanisms of SnS genera-
tion, the surgical options for OSA patients may differ and include, among others, soft
palate stiffening, tongue base suspension, hypoglossal nerve stimulation, mandibular
advancement, tonsillectomy or tonsillotomy, uvulotomy, uvulopalatopharyngoplasty,
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hyoid suspension, and epiglottectomy [11]. Specifically, for a severe OSA patient,
multilevel surgery, i. e., a combination of several surgical treatments at different
anatomic levels will be used [12]. Therefore, knowing the individual anatomical site
of snoring generation and the obstruction mechanism is more important for ear,
nose, and throat (ENT) surgeons than only screening OSA. Among a variety of
methods, drug induced sleep endoscopy (DISE) has been increasingly used to iden-
tify the location and form of vibrations and obstructions in the upper airway [13].
Nevertheless, the drawback of DISE is obvious. It is time-consuming, costly, strain-
ing for subjects, and cannot be performed in a case of natural sleep. Multi-channel
pressure measurement might be another option, in which a thin tube with multiple
pressure sensors will be introduced into the upper airway of the subject [220–222].
The obstruction location during an apnoeic or hypopnoeic event can be determined
via observing the pressure changes during breathing of the different sensors. Even
though this method can be used in natural sleep, introducing the tube within the
upper airway cannot be tolerated by every subject.

Computer audition analysis of SnS using signal processing and machine learning
can facilitate the study on developing a less-invasive method to plan a targeted ENT
surgery not only for OSA [5]) patients, but also for primary snorers (snoring with the
absence of apnoeic or hypopnoeic episodes [80]). The early work on this topic was
focused on finding the statistical differences between properties of simple features
extracted from a few kinds of SnS. The fundamental frequency was used to distin-
guish SnS generated from soft palate, tonsils/tongue base, combined location (both
palate, and tonsils/tongue base), and the larynx [223]. It was found by Miyazaki
et al. that, the average value of the fundamental frequency was 102.8 Hz, 331.7 Hz,
115.7 Hz, and around 250.0 Hz in the corresponding sites mentioned above, respec-
tively (an examination based on 75 adult subjects) [223]. Hill et al. indicated that
the crest factor, i. e., the ratios of the peak to the root mean square value of a time-
varying signal, was significantly higher for palatal snorers in 11 subjects (p < .01,
Student’s t or Mann-Whitney tests) [224]. In addition, peak frequency, centre fre-
quency, and power ratio were investigated by Agrawal et al. in [103] among palate
and tongue-based SnS during natural and induced sleep (16 subjects involved). Bee-
ton et al. studied the statistical dimensionless moment coefficients of skewness and
kurtosis of palatal and non-palatal SnS were collected from 15 subjects [225]. A se-
ries of psychoacoustic features (e. g., loudness, sharpness, roughness and fluctuation
strength [226]) were studied by Herzog et al. on SnS defined as velar, velar obstruc-
tive, tonsillar, and post-apnoeic snoring (based on 41 subjects) [227]. In summary,
the studies mentioned above were only concentrated on evaluating some certain
acoustic features selected by human experts for their sensitivity to the anatomical
mechanisms of snoring sound generation, or the obstruction in the upper airway,
whereas more advanced techniques in signal processing and machine learning were
not involved.

The pilot work done by Qian et al. introduced wavelet features to SnS classifica-
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tion by an SVM classifier [18]. Wavelet features were demonstrated to be superior
to some other widely-used features like crest factor, fundamental frequency, power
ratio, formants, and MFCCs, for the recognition of SnS [18]. Furthermore, Qian et
al. investigated a detailed study on comparing multiple acoustic features and classi-
fiers for SnS classification in [21]. In that study, contributions of features like crest
factor, power ratio, and fundamental frequency, are very limited [21]. However,
these studies were all done within a small group of subjects (less than 50 indepen-
dent subjects). Besides, the instances used for machine learning were segmented
episodes rather than whole snore events [18, 21]. This might cause overestimated
results due to a replicated training from too many similar instances for one certain
class. In medical practice, it is more often the task to analyse a whole snore event
rather than the segmented episodes from it.

In this thesis, a comprehensive comparison of features and classifiers will be in-
vestigated in a publicly accessible SnS database (cf. Section 3.1.2), in which 219 in-
dependent subjects were involved. Furthermore, a novel method combining wavelet
features and the bag-of-audio-words (BoAW) approach is presented. In addition,
the best results of the experiments will be compared with the other colleagues’
state-of-the-art work by using the same database.

3.1.2 Munich Passau Snore Sound Corpus

The Munich Passau Snore Sound Corpus (MPSSC) [80] was first released as a sub-
challenge in the INTERSPEECH 2017 Computational Paralinguistics Chal-
lenge (ComParE) [111]. The MPSSC contains audio clips (16 bit PCM encoded
single channel, 16 kHz sampling rate) from selected audio-video recordings taken
during DISE from three medical centres, i. e., Klinikum rechts der Isar, Technis-
che Universität München, Germany, Alfried Krupp Hospital, Essen, Germany, and
University Hospital Halle (Saale), Germany. Detailed information about the SnS
data acquisition system, data selection and labelling can be found in the work by
Christoph et al. [80]. In the audio-track of the DISE videos, snore events were
separated using a combination of automated and manual selection steps [80]. The
selected snore events were then labelled by an ENT expert by watching the DISE
videos and based on the VOTE classification [228] (‘V’ represents the level of the
velum; ‘O’ represents the oropharyngeal area; ‘T’ represents the tongue base; ‘E’
represents the level of the epiglottis). Only the snore events which showed one clear
vibration source were included in the corpus, the ones with mixed or unclear source
of vibration were excluded. Figure 3.1 shows the typical screen shots of the corre-
sponding vibration locations from the DISE videos.

The final MPSSC database contains 828 snore events from 219 independent sub-
jects (93.6 % are male). The overall time duration of MPSCC is 1 250.11 s (approx-
imately 0.35 hours), and the average length of the events is 1.51 s (ranging from
0.73 s to 2.75 s). Balanced by class, centre, gender, and age, the whole database
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(a) V (the level of the velum) (b) O (the oropharyngeal area)

(c) T (the tongue base) (d) E (the level of the epiglottis)

Figure 3.1: Typical screen shots taken from the DISE video recordings showing
snoring from soft palate (velum) (V), oropharyngeal (O), tongue base (T), epiglottal
(E).

was partitioned into a train, a development, and a test set. For details of the data
partition, readers can refer to [80]. Table 3.2 illustrates the number of snore events
per class in each partitioned split. For the sake of comparability, this thesis uses the
same splits as in the INTERSPEECH 2017 ComParE Snoring sub-challenge [111].
It can be seen that, MPSSC is an extremely unbalanced database, in which the
instances with class of V occupy the maximum proportion (58.5 %), then comes the
class of O (26.1 %). The T type and E type of instances only account for 4.7 % and
10.8 %, respectively. However, as indicated in [80], such an unbalanced character of
SnS is in line with some early findings by DISE examinations [229].

Figure 3.2 illustrates the examples of waveforms and spectrograms of the differ-
ent types of snore events. From the time domain analysis, SnS belongs to typical
non-stationary signals. From the frequency domain analysis, the main energy com-
ponents in SnS are concentrated in the low frequency area (below around 4 kHz in
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(a) V type of snore event
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(b) O type of snore event
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(c) T type of snore event
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(d) E type of snore event

Figure 3.2: Examples of waveforms (top row) and spectrograms (bottom row) for
the snore event labelled as type of V, O, T, and E. The waveforms are normalised
and the amplitude has an arbitrary unit (au).

the four examples given in Figure 3.2).

3.1.3 Experimental Setup

Acoustic Features

Based on previous studies [21, 93], Formants, SFFs, SERs, MFCCs, WTE, WPTE,
and WEF are investigated and compared in this thesis. The definition of LLDs of
those features mentioned above can be found in Section 2.1. The first three formant
frequency values (F1, F2, and F3) are included in the feature set of Formants. The
MFCCs (0–12) are obtained from 27 triangular Mel filter banks added to the anal-
ysed chunk (frame) of SnS. The subband for extracting SFFs and SERs is selected
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Table 3.2: The number of snore events per class in each partitioned split, as originally
used in [111]. Dev: development. Details of data partition on class, centre, gender,
and age can be found in [80].

Train Dev Test Σ

V 168 161 155 484
O 76 75 65 216
T 8 15 16 39
E 30 32 27 89
Σ 282 283 263 828

Table 3.3: The frame size and overlap for extracting LLDs following with the di-
mension of LLDs. Dim: dimension.

Frame Size Overlap Dim of LLDs

Formants 16 ms 12 ms 3
SFFs 32 ms 16 ms 19
SERs 32 ms 8 ms 16
MFCCs 32 ms 24 ms 13
ComParE2 20 ms 10 ms 65
WTE 16 ms 4 ms 16
WPTE 32 ms 16 ms 1 023
WEF 64 ms 32 ms 87

as 500 Hz empirically in initial experiments. In addition, the ComParE feature
set (cf. Section 2.1.5) is involved in the study. It was observed that the frame size
and overlap of the analysed audio chunk for extracting LLDs can effect the final
classification performance [20,93]. In this thesis, based on tremendous experiments
in previous study [93], the frame size and overlap was empirically set as Table 3.3
shows. The ComParE feature set is extracted by openSMILE toolkit [109, 110].
The wavelet types and the corresponding maximum decomposition level Jmax for
WTE, WPTE, and WEF are chosen based on initial experiments, which are listed
in Table 3.4. To get rid of the effects by data imbalance and outliers, the data (fea-
tures) are upsampled and standardised before feeding into the classification models.

2The frame size and overlap to extract LLDs of F0 is set to 60 ms and 50 ms, respectively.
3The short names representing the wavelet types can be referred to the MATLAB Wavelet

Toolbox: https://www.mathworks.com/products/wavelet.html.
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Table 3.4: The parameters for extracting wavelet features in the task of snore sound
classification. Jmax: maximum decomposition level.

Wavelet Type3 Jmax

WTE ‘bior2.8’ 3
WPTE ‘haar’ 9
WEF ‘coif5’ 5

Classification Models

For classification, the classical models (cf. Section 2.4.1), e. g., NB, k -NN, SVM, and
RF are involved. Besides, deep learning models (cf. Section 2.4.2), MLP and SAE,
and extreme learning models (cf. Section 2.4.3), ELM and KELM, are investigated.
However, recurrent neural networks (cf. Section 2.4.2), GRNN and BGRNN are not
used due to the limited context information in such short snore events (less than 3
seconds). The NB and SVM classifiers are implemented by the WEKA toolkit [209]
and the other classifiers mentioned above are implemented by MATLAB. When
training the MLP and SAE classifiers, the fast and efficient scaled conjugate gradient
(SCG) method [176] is used. The main parameters of each classifier are tuned and
optimised within a searching grid on the development set, and applied to the model
for evaluating the test set (see Table 3.5).

BoAW Approach

For the processing of the BoAW approach, the toolkit openXBOW is used. The
frame size and overlap for extracting LLDs from chunks of each feature set are shown
in Table 3.3. As the counterpart of BoAW-based features, the functionals applied to
LLDs of ComParE can be found in Table 2.2. The functionals for the other kinds of
LLDs are selected as maximum value, minimum value, arithmetic mean, and linear
regression offset, which were demonstrated to be efficient in previous studies [21].
The codebook size and number of assignments are empirically optimised to be 5 000
and 10, respectively. The codebook is generated via a random sampling process
(by default random seed of openXBOW). Both the LLDs and the resulting term-
frequency histograms are standardised. In experiments on BoAW, the NB classifier
is chosen because it was found to be superior for BoAW features to other models
in initial experiments such as SVM or MLP, which might explain by, Näıve Bayes
could be much less prone to overfitting than others when learning BoAW features
from such a small size of SnS data.

4https://www.mathworks.com/help/stats/classificationknn-class.html
5https://www.mathworks.com/help/stats/treebagger.html
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Table 3.5: The searching grids for tuning the main parameters of each classifier.
These parameters will be optimised on the development set, and applied to the test
set.

Classifier Main Parameters

NB estimator: kernel density, normal distribution

k -NN
k -value: {1, 10, 20, · · · , 90, 100};
distance metrics4: ‘euclidean’, ‘cityblock’, ‘chebychev’, ‘cosine’
‘correlation’, ‘hamming’, ‘jaccard’, ‘minkowski’, ‘spearman’

SVM linear kernel; Cs-value: {10−6, 10−5, · · · , 105, 106}

RF
number of trees: {21, 22, · · · , 29, 210};
fraction for the treebagger5: {0.1, 0.2, · · · , 0.9, 1.0}

ELM
activation functions: {‘sigmoid’, ‘sine’, ‘hardlim’, ‘tribas’, ‘radbas’};
number of hidden units: {21, 22, · · · , 214}
Ce-value: {10−6, 10−5, · · · , 105, 106}

KELM linear kernel; Ce-value: {10−6, 10−5, · · · , 105, 106}

MLP two hidden layers; number of hidden units: {21, 22, · · · , 29, 210}

SAE

an architecture of two-layer stacked auto-encoders;
number of hidden units: {21, 22, · · · , 29, 210};
L2 weight regularisation: {10−5, 10−4, · · · , 104, 105};
sparsity proportion: {0.1, 0.2, · · · , 1.0}

3.1.4 Features and Classifiers for Snore Sound Classification

The SnS classification results by multiple features and classifiers are listed in Ta-
ble 3.6. Additionally, the significance levels by one-tailed Student’s t-test on features
and classifiers are given in Table 3.7 and Table 3.8, respectively. The features are
fed into each classifier in the form of functionals (cf. Section 2.2.1).

As to features, wavelet features i. e., WTE, WPTE, and WEF are demonstrated
to be efficient in this study (see Table 3.7). This is consistent with the previous find-
ings in [18]. The experiments showed the excellent ability of wavelet transformation
in analysis of SnS, a kind of non-stationary signals. Moreover, it is reasonable to
think that SnS might be distinguishable by the energy distribution differences be-
tween subbands. Therefore, the multi-resolution analysis by wavelet features can
contribute to find more suitable subband representations than simple STFT-based
ones (e. g., SERs). As the standard and popular feature sets, MFCCs and Com-
ParE have a comparable performance with wavelet features. Previously, formants
were widely investigated for their clear relationship between the properties and the
anatomical structure of the upper airway [95–97]. However, formants cannot per-
form so well in this study. Compared with other feature sets, Formants have a very
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Table 3.6: Classification results (UARs: [%]) achieved by multiple features and
classifiers. Parameters are optimised on the development set and applied to the test
set. Results of the development set are the ones achieved by the optimised model.
Dev: development. The results higher than the official baseline (58.5 % in UAR,
refer to [111]) of the INTERSPEECH 2017 ComParE Snoring sub-challenge are
highlighted (bold).

NB k -NN SVM RF ELM KELM MLP SAE

Formants
Dev 31.9 42.9 35.6 38.2 43.8 32.2 40.0 38.0
Test 49.3 35.6 39.3 33.0 30.4 39.9 34.0 43.5

SFFs
Dev 32.5 43.6 40.6 41.2 42.5 38.7 43.7 45.1
Test 49.2 47.6 45.1 44.9 29.4 50.5 40.6 46.8

SERs
Dev 29.7 41.7 38.5 38.7 46.0 37.7 45.4 39.0
Test 43.4 47.9 56.6 34.9 34.6 56.4 25.3 42.1

MFCCs
Dev 30.0 54.4 35.7 46.9 45.8 38.0 50.5 50.6
Test 45.7 45.2 54.5 52.7 48.8 48.8 54.4 43.8

ComParE
Dev 28.6 44.0 36.0 42.8 43.5 39.3 51.6 43.9
Test 27.4 48.7 54.6 55.0 49.3 51.1 53.5 39.1

WTE
Dev 27.7 45.2 46.2 38.9 49.9 46.4 47.6 46.8
Test 49.9 38.5 60.3 58.1 52.7 46.0 48.8 46.0

WPTE
Dev 34.0 46.7 42.3 42.9 42.7 44.5 49.8 43.7
Test 46.6 45.5 62.2 52.3 61.5 59.2 47.8 50.7

WEF
Dev 33.5 49.4 40.7 42.3 36.2 48.0 41.4 45.5
Test 49.7 57.7 53.8 37.2 63.5 51.5 58.1 44.8

limited dimension in LLDs (see Table 3.3), which result in a limited performance in
expressing more information in the spectrum to classify SnS. Similarly, SFFs yields
to other excellent feature sets (e. g., wavelet features) in this study. The reason
might be the lower amount of information carried by the frequency-based features
than by the more sophisticated wavelet features. Specifically, ComParE has a
limited performance in this study. As a large feature set designed originally for the
computational paralinguistics challenge tasks [108], ComParE has many redundant
LLDs, which makes it not perfectly suitable for SnS classification. On classifiers,
SVM shows its significant superiority over NB, k -NN, and SAE (see Table 3.8). As a
popular and standard machine learning technique, SVM were regarded as the stan-
dard classifier for many benchmarks in past decades. In contrast, the deep learning
models are restrained by the limited size of SnS data in this study.
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Table 3.7: Significance levels obtained from the statistical comparison (one-tailed
Student’s t-test) by measuring UARs on the test set between different features by
feeding them into multiple classifiers. The comparisons are made between a pair of
counterparts listed in the left column and the top row of the table. The significance
levels are highlighted by grayscale shading, based on the values p < .05, p < .01,
and p < .001.
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MFCCs
ComParE
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WEF

p < .05 p < .01 p < .001

The best four results reaching an UAR at 63.5 %, 62.2 %, 61.5 %, and 60.3 % are
achieved by the models of WEF-ELM, WPTE-SVM, WPTE-ELM, and WTE-SVM,
respectively. Table 3.9 shows the confusion matrices of the four models. Commonly,
‘E’ (the epiglottis) type of SnS is easier to be classified than the other three types,
whereas the ‘O’ (the oropharyngeal area) type of SnS can be the most difficult one
to be recognised. More precisely, the ‘O’ type of snores can be wrongly classified
as ‘V’ type (the level of the velum), which could be reasonably explained by the
acoustical similarities of the two types of SnS due to the closed anatomical position
in the upper airway of the two locations (refer to [21]). For ‘T’ (the tongue base)
type of SnS, the four models share a common recall at 68.8 %. The best recall
for ‘V’ (71.6 %), ‘O’ (32.3 %), and ‘E’ (96.3 %) can be achieved by the models of
WEF-ELM, WPTE-ELM, and WTE-SVM, respectively. Interestingly, when being
fed with the same feature set (WPTE), SVM and ELM share a similar confusion
matrix (see Table 3.9(b) and Table 3.9(c)).

Even though all of the four models beat the official baseline (58.5 % in UAR)
of the INTERSPEECH 2017 ComParE Snoring sub-challenge [111], the results
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Table 3.8: Significance levels obtained from the statistical comparison (one-tailed
Student’s t-test) by measuring UARs on the test set between different classifiers fed
by multiple features. The comparisons are made between a pair of counterparts
listed in the left column and the top row of the table. The significance levels are
highlighted by grayscale shading, based on the values p < .05, p < .01, and p < .001.
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p < .05 p < .01 p < .001

are not significantly higher (p > .05, one-tailed z-test). Table 3.10 lists the results
of the late fusion, in which the majority voting (MV) and margin sampling voting
(MSV) strategies are adopted (cf. Section 2.6). There are three results (by the MV
strategy) showing a significance level of p < .05 (one-tailed z-test) when comparing
them with the official baseline. In particular, the best two results (67.1 % and
66.4 %) are comparable to the results achieved by training complicated deep neural
networks in the work [163] (67.0 % in UAR) and the work [164] (66.5 % in UAR).
Furthermore, even the third place result, i. e., an UAR of 65.5 % beats the winner’s
performance (a UAR of 64.2 %, refer to [230]) in the sub-challenge. The confusion
matrices of the three results are shown in Table 3.11. It can be found that, the
recalls of the ‘V’ and ‘E’ types of SnS are improved as compared with the single
models (see Table 3.9). Nevertheless, the fusion has limited positive effect to recalls
of the ‘O’ and ‘T’ types of SnS.

3.1.5 A Bag of Acoustic Features for Snore Sound Classifi-
cation

In this section, the features of SnS mentioned previously will be investigated and
compared by the method of Functionals (cf. Section 2.2.1) and BoAW (cf. Sec-
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Figure 3.3: Results (UARs: [%]) achieved by each acoustic feature set within Func-
tionals and BoAW. Feature sets showing significant improvement (p < .001, one-
tailed z-test) by BoAW compared with Functionals on the test set are marked by
an asterisk.

57



3. Applications

Table 3.9: Confusion matrices (normalised, in [%]) of the best four models on the
test set. The diagonal elements are the recalls corresponding to each class.

(a) WTE-SVM

Pred -> V O T E

V 60.6 3.9 7.7 27.7
O 35.4 15.4 3.1 46.2
T 0.0 0.0 68.8 31.3
E 3.7 0.0 0.0 96.3

(b) WPTE-SVM

Pred -> V O T E

V 61.9 22.6 7.1 8.4
O 55.4 29.2 10.8 4.6
T 25.0 6.3 68.8 0.0
E 11.1 0.0 0.0 88.9

(c) WPTE-ELM

Pred -> V O T E

V 56.1 22.6 11.0 10.3
O 50.8 32.3 10.8 6.2
T 18.8 6.3 68.8 6.3
E 7.4 3.7 0.0 88.9

(d) WEF-ELM

Pred -> V O T E

V 71.6 6.5 13.5 8.4
O 49.2 24.6 15.4 10.8
T 6.3 0.0 68.8 25.0
E 0.0 0.0 11.1 88.9

tion 2.2.2), respectively. The classification model is NB as it was found to be efficient
for this study in initial experiments. Figure 3.3 illustrates the classification results
of SnS by each kind of feature set within Functionals or BoAW. Generally, for the
development set, all of the feature sets can have an improvement in UAR when using
BoAW instead of Functionals. For the test set, MFCCs, ComParE, WPTE, and
WEF reach a better UAR using BoAW while Formants, SFFs, SERs, and WTE
lead to a decrease in performance. When paying more attention to the results on
the test set, the improvements by BoAW are significant on the ComParE feature
set and WEF (p < .001, one-tailed z-test).

On Functionals, WTE and WEF perform best with a UAR of 49.9 %, and 49.7 %,
respectively. Furthermore, Formants (UAR of 49.3 %) and SFFs (UAR of 49.2 %)
show comparable performance to the two aforementioned wavelet features when
using Functionals. The LLDs of ComParE yield to others when applied with
Functionals, only reaching a UAR of 27.4 %.

On BoAW, WEF and ComParE achieve the best results among all feature sets,
with a UAR of 69.4 %, and 51.6 %, respectively. MFCCs are comparable to WPTE
(UAR: 48.1 % vs 50.1 %). In particular, LLDs of ComParE considerably improve
the performance from 27.4 % to 51.6 % UAR (p < .001, one-tailed z-test) when using
BoAW rather than Functionals. This indicates that the ComParE feature set can
be enhanced to be more suitable to describe the inherited characteristics of SnS with
the help of BoAW when using an NB classifier. In addition, the best feature set,
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Table 3.10: Results (UARs: [%]) achieved by late fusion. The symbol × denotes the
model involved in the late fusion. Dev: development. MV: majority voting. MSV:
margin sampling voting.

WTE-SVM WPTE-SVM WPTE-ELM WEF-ELM Dev Test

MV

× × 44.7 60.6
× × 41.1 61.9
× × 38.6 62.9

× × 48.5 60.5
× × 45.6 62.4

× × 38.3 63.3
× × × 42.1 62.0
× × × 39.6 67.1

× × × 41.4 62.0
× × × 42.2 66.4
× × × × 40.9 65.5

MSV

× × 45.6 61.6
× × 43.8 62.2
× × 42.1 62.4

× × 47.7 60.7
× × 45.6 60.1

× × 40.5 62.8
× × × 46.2 61.3
× × × 45.0 60.7

× × × 43.8 62.4
× × × 47.7 60.7
× × × × 45.5 60.2

i. e., WEF with BoAW, reaches a UAR of 69.4 %, which improves by 19.7 % from the
baseline by Functionals (p < .001, one-tailed z-test). BoAW can provide a global
view on the statistical information of LLDs from the whole data set, whereas the
statistical information achieved by Functionals is limited (to one instance).

The confusion matrices of the results on the test set for ComParE and WEF
with Functionals and BoAW are presented in Table 3.12. One common finding, both
for ComParE and WEF, is that BoAW decreases the recall on recognition of ‘V’
type snores. Nevertheless, for ‘T’ type snores, BoAW can dramatically improve the
recall for ComParE (from 0.0 % to 43.8 %, p < .001, one-tailed z-test), and WEF
(from 12.5 % to 75.0 %, p < .001, one-tailed z-test), which is the main contribution
to the improvement in UAR. In particular, for ComParE, the recall of recognising
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Table 3.11: Confusion matrices (normalised, in [%]) of the best three models on the
test set by late fusion. The diagonal elements are the recalls corresponding to each
class.

(a)

Pred -> V O T E

V 74.8 7.7 8.4 9.0
O 52.3 24.6 9.2 13.8
T 6.3 0.0 68.8 25.0
E 0.0 0.0 0.0 100.0

(b)

Pred -> V O T E

V 72.3 5.8 11.0 11.0
O 50.8 24.6 9.2 15.4
T 6.3 0.0 68.8 25.0
E 0.0 0.0 0.0 100.0

(c)

Pred -> V O T E

V 71.6 8.4 11.0 9.0
O 52.3 29.2 9.2 9.2
T 18.8 6.3 68.8 6.3
E 7.4 0.0 0.0 92.6

‘E’ type snores has been improved from 3.7 % to 74.1 % (p < .001, one-tailed z-test),
which results in another considerable enhanced performance for the final UAR. For
the recognition of ‘O’ type snores, ComParE and WEF respectively show an in-
crease of 21.5 % (p < .01, one-tailed z-test), and 27.7 % (p < .001, one-tailed z-test)
for recall after using BoAW instead of Functionals. Thus, it can be concluded that,
for some rare types of SnS, i. e., ‘O’, ‘T’ and ‘E’, BoAW can improve their recalls
compared with Functionals, which will be beneficial to the unbalanced distribution
of SnS data. The types ‘V’ and ‘O’ are still the most misclassified samples (both
for Functionals and BoAW ). Most probably, this is due to the small sample size in
the database, a limitation that should be targeted in future work.

3.1.6 Summary

Computer audition for localisation of snore sound excitation can facilitate the de-
velopment of less-invasive methods to plan a targeted ENT surgery for both OSA
patients and primary snorers. However, the research in this field is very limited.
Section 3.1.1 briefly introduced the background of relevant work. A publicly acces-
sible SnS database was described in Section 3.1.2. A comprehensive comparison of
features and classifiers was presented in Section 3.1.4. Four best models trained by
SVM or ELM within wavelet features were demonstrated to be superior to other
models in SnS classification. Moreover, a late fusion of the four models can generate
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Table 3.12: Confusion matrices (normalised, in [%]) of ComParE and WEF with
Functionals and BoAW on the test set. The diagonal elements are the recalls
corresponding to each class.

(a) ComParE: Functionals

Pred -> V O T E

V 70.3 22.6 2.6 4.5
O 55.4 35.4 7.7 1.5
T 56.3 37.5 0.0 6.3
E 22.2 66.7 7.4 3.7

(b) ComParE: BoAW

Pred -> V O T E

V 31.6 47.1 6.5 14.8
O 21.5 56.9 4.6 16.9
T 50.0 0.0 43.8 6.3
E 3.7 18.5 3.7 74.1

(c) WEF: Functionals

Pred -> V O T E

V 61.3 32.3 1.3 5.2
O 40.0 40.0 1.5 18.5
T 43.8 43.8 12.5 0.0
E 7.4 7.4 0.0 85.2

(d) WEF: BoAW

Pred -> V O T E

V 49.7 39.4 5.2 5.8
O 18.5 67.7 1.5 12.3
T 25.0 0.0 75.0 0.0
E 3.7 11.1 0.0 85.2

a best result reaching 67.1 % UAR, which significantly outperformed the official base-
line (58.5 % of UAR) of the INTERSPEECH 2017 ComParE Snoring sub-challenge
(p < .05, one-tailed z-test). Section 3.1.5 proposed a bag of acoustic features which
used BoAW (cf. Section 2.2.2) approach instead of functionals (cf. Section 2.2.1) to
generate the representations from LLDs for machine learning. The results showed
a significant improvement for WEF and the ComParE feature sets when using
BoAW instead of functionals when fed into a NB classifier (p < .001, one-tailed
z-test). More precisely, a bag of wavelet features (WEF+BoAW) can reach a UAR
of 69.4 % on the test set, which contributed to the best result for SnS classification
in this thesis.

Table 3.13 shows the results of methods which beat the official baseline of the
INTERSPEECH ComParE Challenge 2017 Snoring sub-challenge [111]. The best
two methods proposed in this thesis outperform all these models. Gosztolya et
al. extracted frame-level features, e. g., MFCCs, voicing probability, harmonics to
noise ratio (HNR), fundamental frequency (F0), zero-crossing rate (ZCR) and the
combination with derivatives, mean and standard deviation to train an SVM classi-
fier [231]. The final prediction is based on a late fusion of the aforementioned SVM
and another SVM model trained on the ComParE feature set, which reached a UAR
of 64.0 % on the test set [231]. The winning submission by Kaya et al. took the un-
balanced nature of SnS database into account, in which, weighted kernel partial least
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Table 3.13: Results (UARs: [%]) of the methods which beat the official baseline of
the INTERSPEECH ComParE challenge 2017 Snoring sub-challenge on the test
set. † marks the two submissions without participation in the challenge; ‡ marks the
submission of the winner in the sub-challenge. The two best methods proposed in
this thesis are highlighted (bold). All the listed SVM classifiers used a linear kernel.

UAR [%] Main Methods

Official Baseline [111] 58.5 ComParE Features, SVM

Amiriparian et al. [163]† 67.0 CNN-based Spectrum Features, SVM

Freitag et al. [164]† 66.5
CNN-based Spectrum Features,

Evolutionary Feature Selection, SVM

Gosztolya et al. [231] 64.0
ComParE Features, Voicing Probability

MFCCs, HNR, F0, ZCR, SVM

Kaya et al. [230]‡ 64.2
ComParE Features, MFCCs,
RASTA-PLP, Fisher Vector,

WKPLS, WKELM

Method A 67.1
WTE, WPTE, WEF

SVM, ELM, Late Fusion (MV)

Method B 69.4 WEF, BoAW, NB

squares (WKPLS) [230,232] and a weighted kernel-based extreme learning machine
(WKELM) [233,234] were implemented [230]. Further, LLDs like MFCCs, RASTA-
PLP (representations relative spectra perceptual linear prediction) were fused and
represented by a Fisher vector [235]. Their best result reached 64.2 % UAR by fusing
multiple models [230]. Amiriparian et al. proposed deep representations learnt from
the spectrum of SnS by convolutional neural networks (CNNs) [160,162,236], which
achieved a UAR of 67.0 % [163]. Freitag et al. [164] used an evolutionary feature
selection algorithm based on competitive swarm optimisation [237, 238] to reduce
the dimension of features extracted by CNN-based spectrum representations pro-
posed in [163]. Finally, they used approximately 54.8 % of the original CNN-based
descriptors in [163] to reach a UAR of 66.5 % [164].

Generally, sophisticated features are essential for the final performance of the
model. For instance, wavelet features (used in this thesis), and deep represen-
tations [163, 164] can contribute to an excellent recognition performance using a
simple classifier, e. g., SVM or ELM. However, due to the extremely limited number
of SnS instances, directly using deep neural networks cannot come up with a good
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(a) ‘V’ type of SnS
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(b) ‘O’ type of SnS
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(d) ‘E’ type of SnS

Figure 3.4: Examples of multi-resolution time-frequency analysis of four types of
SnS by WPT (top row: J = 2, bottom row: J = 7). Wavelet type: ‘haar’. J :
decomposition level. The audio examples are the same as used in Figure 3.2.

result in these experiments. In particular, wavelet features are found to be efficient
both applied with functionals and BoAW. It is reasonable to think that, when us-
ing different decomposition levels, a multi-resolution time-frequency analysis of the
signal will be given by WT or WPT. Therefore, an abundance of information inher-
ited of the SnS from different resolutions can be included in the wavelet features,
which results in an efficient performance for pattern recognition. Figure 3.4 shows a
multi-resolution time-frequency analysis by WPT (more suitable than WT for time-
frequency analysis) for different types of SnS. One direction of future work can be
finding suitable frequency bands for analysis of SnS, which might contribute to more
sophisticated wavelet features designed for SnS. In addition, combining wavelet fea-
tures with some other efficient features (e. g., the CNN-based descriptors [163,164])
using feature selection methods could better the performance of SnS classification.
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3.2 Data Enrichment for Bird Sound Classifica-

tion

In real–world applications for classification of animal sounds, e. g., bird sounds,
there is an unavoidable challenge that human expert annotated audio recordings are
much less than the ones unlabelled. Besides, asking human experts to annotate large
amounts of bird sound data will be extremely time–consuming, expensive and even
difficult to be fulfilled. To address this issue, two active learning (AL) algorithms,
i. e., SI-AL and LCS-AL, will be investigated and compared in this study. Fur-
thermore, a comparison between two popular classifiers, i. e., SVM and KELM, will
also be presented to demonstrate that, changing a classifier in AL’s paradigm could
considerably enhance the algorithm’s performance. The background of bird sound
classification will be firstly given in Section 3.2.1. Then, Section 3.2.2 introduces the
publicly accessible bird sound database used in this thesis. The experimental setup
will be described in Section 3.2.3. The experiments in Section 3.2.4 demonstrate the
effectiveness of AL for reducing the human annotation work. To make a comparison
of the proposed algorithms in terms of robustness, more experiments will be given
in Section 3.2.5. Finally, Section 3.2.6 briefly summarises this study.

3.2.1 Background

Bird sound can offer a plethora of information for helping human experts under-
stand the bird mating and evolutionary changes [239]. Recognising bird species
by their sounds will facilitate the development of acoustic-based long–term, non–
human systems for monitoring bird species, which can benefit measuring the state
of nature [22], tracking climate change [23], and assessing biodiversity within local
ecosystems [24,25].

Looking over the past two decades, there have been increasing efforts of ornithol-
ogists, ecologists, and engineers in both signal processing and machine learning to
work collaboratively towards applications for automatically classifying bird sound
based only on audio recordings. McIlraith et al. [26] proposed two-layer perceptrons
to classify 6 species of birds, which reached correct identification ranging from 82 %
to 93 %. A parametric model for bird sound classification was given by Somervuo et
al. [27], by which the average recognition accuracy for single syllables was between
40–50 % for 14 common North-European Passerine bird species. Chen et al. studied
a spectral peak track method that achieved 95 % recognition accuracy in noisy en-
vironments for 12 natural bird species, and 16 synthesized syllables [28]. Fagerlund
used Mel-cepstrum parameters and low-level signal parameters within a decision
tree based on support vector machine (SVM) classifiers to reach an accuracy of up
to 91 %, and 98 % for 6, and 8 differing species, respectively [29]. A method on using
wavelet packet decomposition to extract features was studied by Selin at al. [30], in
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which an unsupervised self-organising map (SOM) and a supervised multilayer per-
ceptron (MLP) were chosen as classifiers. Their reported accuracy reaches to 96 %
accuracy for 8 bird species [30]. Lee et al. [31] proposed a method based on two-
dimensional cepstral coefficients combined with Gaussian mixture models (GMMs)
and vector quantisation (VQ) to correctly classify nearly 84 % of syllable-based units
from 28 bird species. A further work based on [31] uses a novel feature set extracted
from spectrogram image shapes was presented in [32], which achieved approximately
up to 95 % recognition accuracy among 28 bird species. The methods of frequency
track extraction and tonal-based features were studied in [33], and [34], respectively.
A multi-instance multi-label (MIML) framework for classification of multiple simul-
taneous bird species was proposed by Briggs et al. [35]. Jančovič et al. [36] proposed
an automated bird sound recognition system based on frequency track features and
hidden Markov models (HMMs) within a decision making by penalised maximum
likelihood, which was demonstrated to be efficient for both the case of single bird
species, and the case of multiple bird species.

Another direction was specifically given for the detection of syllables from bird
sound recordings. A comparative study on dynamic time warping (DTW) and
HMMs for bird song element recognition within recordings was done by Kogan et
al. [42]. It was shown that HMMs needed more training examples than DTW tem-
plates whereas DTW-based techniques require expert knowledge to select suitable
templates [42]. Ranjard et al. proposed a method based on evolving neural networks
for unsupervised bird sound syllable classification [43], in which, a DTW-based dis-
tance measure was designed to give an insight into the relationship of spectrogram
structures between syllables. An SVM model (with a linear kernel) was reported to
achieve around 99 % recognition accuracy in day–long recordings (26 055.8± 17 672.3
syllables) [44]. Tan et al. introduced an algorithm based on DTW and sparse repre-
sentation to classify up to 81 phrase classes of Cassins Vireo (Vireo Cassinii) [45].
In their study, classification accuracies of 94 % and 89 % on manually and auto-
matically segmented phrases were reached, respectively, using only limited training
data (one to five samples per phrase) [45]. A template-based algorithm using DTW
and prominent (high-energy) time-frequency regions of training spectrograms was
studied in [240], which can outperform DTW and HMMs in most training and test
conditions. Moreover, the robustness of this method was demonstrated with data
sets of limited sizes, and within noisy background conditions.

Recently, the LifeCLEF Bird task [241] provided the research community a bird
sound study on a public database within large scale of bird species, which included
501 species within 14 027 audio recordings in 2014, extended to 1500 species with
36 496 audio recordings in 2017. A method on a combination of large scale feature
sets (with feature selection), segment-probabilities, and randomised decision trees,
was proposed by Lasseck [37], which outperformed the other submitted methods in
the LifeCLEF Bird task (BirdCLEF challenge) in 2014. Stowell et al. [38] studied an
unsupervised feature learning method, which was demonstrated to be efficient in the
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BirdCLEF 2014 challenge. Noticeably, the state-of-the-art deep learning methods
were increasingly demonstrated to be excellent in performing the classification of
large scale bird sound data. Promising results by using deep architectures for bird
sound classification had been reported in recent BirdCLEF challenges [39–41, 242–
244].

Generally, most existing studies on bird sound classification are focused on find-
ing efficient features and classifiers whereas few studies focus on reducing the human
expert annotation for unlabelled bird sound data (segmented syllables, or continuous
recordings). Specifically, within the study of bird sound, there are large amounts
of unlabelled audio recordings made in the field by ornithologists and amateurs,
which bring forth a huge challenge for human annotators. Nevertheless, human
annotation is time–consuming, expensive, and undesirable. To overcome the chal-
lenges mentioned above, active learning (AL) [204] is significant for the domain
of bird sound classification. A pilot work was firstly proposed in [245], in which
two basic AL algorithms modified from [83] were investigated and compared, i. e.,
sparse-instance-based AL (SI-AL), and least-confidence-score-based AL (LCS-AL).
This preliminary work reported that for classifying 60 species or birds, using the AL
paradigm via an SVM classifier can reduce up to 35.2 % human annotations com-
pared with randomly selecting samples. In addition, a previous work demonstrated
that introducing extreme learning machines (ELMs) [194] can benefit the bird sound
classification [246]. Moreover, it was also reported that combining the ELM-based
AL paradigm can be superior to or at least comparable to SVM [247–249]. Moti-
vated by the success of the aforementioned relevant work, a kernel-based extreme
learning machine (KELM) [200] is introduced to the paradigm of AL. Two popular
AL algorithms, SI-AL (cf. Section 2.5.2) and LCS-AL (cf. Section 7) are investigated
and compared when using KELM and SVM. Furthermore, a detailed comparison on
effectiveness and robustness of the algorithms will be given in this thesis. The main
part of this study was previously published in [112].

3.2.2 Museum für Naturkunde Berlin Bird Sound Database

In this study, a publicly accessible bird sound database is provided from the Museum
für Naturkunde Berlin (MNB), Berlin, Germany6. There are three main reasons for
selecting this database: First, it can be accessed via a web-based interface, which
makes the proposed study reproducible and sustainable. Second, compared with
other popular public bird sound databases, e. g., the LifeCLEF Bird task [241],
the MNB bird sound database only includes recordings that have a high acoustic
quality. Furthermore, there is a rigid process of determination of species along with
the location of the recording. Therefore, this database can be suitable to evaluate
the algorithms, which aim for reducing the human annotations rather than only

6http://www.animalsoundarchive.org/RefSys/Statistics.php
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Table 3.14: Number of instances and percentage of the total database for the initial
training set, pool set and validation set, respectively.

Initial Pool Validation Σ

539 (10 %) 3 478 (70 %) 1 043 (20 %) 5 060 (100 %)
1 030 (20 %) 2 987 (60 %) 1 043 (20 %) 5 060 (100 %)

recognising bird species by their sounds. Thirdly, the recordings included in this
database were recorded at a variety of locations and within different equipment,
which can make the study more robust and close to the real–world scenario.

The whole database originally contains 6 487 audio recordings from 273 species
(subspecies) of birds. To guarantee an efficient initial training in the AL paradigm,
the species which have less than 20 audio recordings were eliminated, which results in
86 species (5 060 audio recordings) for this study (refer to Table A.1 in Appendix A).
The time duration of these recordings ranges from 0.3 s to 59.0 s within an average of
2.8 s. The total time duration of these recordings is approximately 4.0 hours. Among
each species of bird sound, 20 % (≈ 1 043) of the instances were randomly selected
for the validation set (see Table 3.14). In this study, there are two experiments that
will be implemented, i. e., evaluation of the efficiency of the algorithms proposed
in Section 2.5.2, and comparison of the algorithms’ robustness. To fulfil the first
experiment, an initial training set with a size of 10 % (≈ 539) from each species of
bird sound was set up. In the second experiment, both of the two initial training
sizes, i. e., 10 % (≈ 539), and 20 % (≈ 1 030) from each species of bird sound were
used. In each experiment, the rest of the data will be the pool data set (unlabelled
instances). The real labels of the pool data were fed to the classifiers as imitating
the human annotation process.

3.2.3 Experimental Setup

Acoustic Features

In this study, the large scale acoustic feature set ComParE (cf. Section 2.1.5)
is chosen for its excellent performance in a previous relevant study [245]. This
feature set is extracted by the openSMILE toolkit [109,110], which totally contains
6 373 features. Before feeding into the classifier, all the features are normalised
(cf. Section 2.3) to a scale from 0 to 1. The parameters of the normalisation are
calculated from an initial training set, and applied to the pool and validation sets.
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Classification Models

Both for SVM and KELM, a polynomial kernel [250], K(xi,xj) = (γxT
i xj + c)d̂, is

used for its excellent performance in initial experiments. In particular, the parame-
ter γ is set to 1/6 373 and 1 for SVM and KELM, respectively. Both for SVM and
KELM, c and d̂ are set to 1 and 10, respectively. These parameters are all based on
initial empirical experiments. The Cs-value (cf. Section 2.4.1) and Ce-value (cf. Sec-
tion 2.4.3) for SVM and KELM are set to be the same as 10 optimised by a searching
grid of {10−5, 10−4, · · · , 104, 105}. SVM is implemented by the open source toolkit
LIBSVM [211]. KELM is implemented by MATLAB scripts provided online7.

PL vs. AL

The performance of randomly selecting unlabelled instances for human annotation,
i. e., passive learning (PL) is taken as the baseline to be compared with AL (SI-
AL and LCS-AL). The implementations of the PL and AL algorithms are written
in MATLAB scripts. The parameter λs (cf. Section 2.5.2) for SI-AL, and the pa-
rameter λc for LCS-AL (cf. Section 7) are set to 0.5 and 0.1, respectively. UAR
(cf. Section 2.7.1) is selected as the evaluation metric for considering the unbalanced
character of bird sound data. To evaluate the effectiveness of AL (Section 3.2.4),
an initial training size of 539 labelled instances is used. To compare the robustness
of the algorithms, two initial training sizes, i. e., 539 and 1 030, are used. In the
following experiments, all of the pool data set will be used during the final iteration
of each algorithm to make a comprehensive comparison.

3.2.4 Comparison of Passive Learning and Active Learning

To evaluate the effectiveness of AL, an initial training set with a size of 539 labelled
instances is fed into the classifier (refer to Table 3.14). The UARs achieved by the
trained classifier through the whole AL iterative process versus the corresponding
human labelled instances from the pool data set are shown in Figure 3.5. The ex-
periments for PL are run independently 20 times to make a thorough fulfilment of
PL due to its nature of randomly selecting unlabelled data for human annotation.
It can be seen that, AL is more efficient in improving the trained classifier’s per-
formance than PL for both SVM and KELM. Particularly, LCS-AL (for both SVM
and KELM) can reach the best recognition performance during its very early iter-
ations. Even though by SVM, SI-AL cannot considerably enhance the classifier’s
performance as LCS-AL; it can still be comparable to the maximum UAR value
reached by PL at each iteration step (see Figure 3.5(a)). For AL algorithms im-
plemented by KELM, both SI-AL and LCS-AL outperformed PL in improving the

7http://www.ntu.edu.sg/home/egbhuang/
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Figure 3.5: Comparison of UARs vs the number of human annotated instances
between algorithms with 539 initial supervised training instances. The measures for
PL are shown with 20 independent runs.

trained classifier’s performance when using the same number of human annotated
instances.

Generally, the experiments above demonstrate that, when using the same num-
ber of human annotated instances, AL algorithms are superior to PL in improving
the capacity of the trained classifier. In other words, AL can save more human
annotation work than PL when the task needs an acceptable recognition perfor-
mance. Furthermore, LCS-AL is found to be more efficient than SI-AL in selecting
the ‘most informative’ samples. Another phenomenon that should be noted is that,
compared with PL, AL tends to have a slight decrease in improving the classifier’s
performance after reaching its highest point. This can be explained as when the
‘most informative’ samples are being fed into the classifier, other samples will bring
uncertain information to the model.

3.2.5 Comparison of Robustness

To make a comparison of the robustness of the proposed algorithms, in this sec-
tion, two scales were selected for the initial training set, i. e., 539 and 1 030 (refer
to Table 3.14). Meanwhile, the performances of the two classifiers, i. e., SVM and
KELM, will be investigated in this study. For each comparison group, the two scales
mentioned above are randomly generated and equally fed into different algorithms
by 20 independent runs. It should be noted that in the experiments, the algorithms
had different iteration steps. More specifically, for SI-AL, it normally needed longer
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time to use up all the pool data set than for LCS-AL and PL. Therefore, the results
(UARs) are shown only in common learning iterations of PL, SI-AL, and LCS-AL,
respectively. In addition, considering the difference of the initial performance by
SVM and KELM (see Figure 3.5), a common UAR’s range of improvement (from
60.0 % to be 80.0 %) is evaluated for measuring the two classifiers’ capacity to re-
duce human annotation work when applied to the AL paradigm. As a baseline,
experimental results on PL algorithm will also be presented.

The mean and standard deviations of UARs averaged across 20 independent runs
of each algorithm versus human annotated instances are shown in Figure 3.6. It can
be seen that, for both SVM and KELM, LCS-AL is the fastest algorithm to improve
the classifier’s performance at early iterations. All the standard deviations of UARs
exhibit a descending trend, which indicates that the classifier can be more stable
when adding more human annotated instances. Particularly, compared with PL,
LCS-AL can improve the classifier’s performance using much less human annotated
instances, and with less instability (smaller standard deviations than PL). In this
study, SI-AL is not demonstrated to be more efficient and robust in reducing the
human annotated instances than PL, especially by SVM.

Figure 3.7 illustrates the percentage (in statistical box plots) of the used human
annotated instances in the pool data set by various algorithms within the UAR’s
improvement ranging from 60.0 % to 80.0 %. As consistent with the findings in Fig-
ure 3.6, for both SVM and KEML, LCS-AL can be superior to SI-AL in improving
the classifier’s capacity using less human annotations. Comparing classifiers, KELM
shows more strengths than SVM in reducing human annotated instances when ap-
plied to the AL paradigm. In particular, SI-AL can fulfil its function of reducing
human annotation work compared with PL when it uses KELM as the classifier.
More details (the minimum, maximum, mean, and median values of percentage in
[%]) from Figure 3.7 are listed in Table 3.15 (for an initial training size of 539)
and Table 3.16 (for an initial training size of 1 030), respectively. For SVM, LCS-
AL can reduce performance from approximately 20-29 % (within 539 initial training
instances) to more than approximately 30-35 % (within 1 030 initial training in-
stances) human annotated instances from pool data set compared with PL, while
SI-AL might use slightly more human annotations than PL. In contrast, SI-AL works
well for KELM, which can considerably reduce the human annotation work by PL
(approximately 17-25 % to 6-20 %). Among the various algorithms, LCS-AL within
the use of KELM occupies the best place in this study by reducing from approxi-
mately 35-40 % to approximately 33-47 % human annotated instances compared to
PL.

It should be noted that, in Figure 3.6, given a larger size of the initial training
set i. e., 1 030 human annotated instances, the models (for both SVM and KELM)
can have smaller deviation at the beginning. However, most of the AL algorithms’
performances on reducing human annotation work have a slight decrease (see Ta-
ble 3.15 and Table 3.16). This phenomenon could be explained as when adding
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Figure 3.6: Comparison of UARs vs the number of human annotated instances
between algorithms across 20 independent runs (both for the averaged UAR and
standard deviation). The charts only illustrate the UARs in common iterations of
PL, SI-AL, and LCS-AL, respectively.
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Figure 3.7: Boxplots of the percentage of used human annotated instances in the
total pool data when the performance (UAR) was improved from 60.0 % to 80.0 %.

more initial human annotated instances, the initial classifier could build more sta-
ble (smaller deviation at beginning). On the other hand, more unavoidable mistakes
by human experts might be involved when using a larger human annotated initial
training set, which could lead to a worse performance of the classifier to select the
‘most informative’ data in the following learning iterations (a slight decrease on AL’s
performance).

In order to explore more details, one-tailed Student’s t-test [213] is used to make
a statistical analysis of UARs across iterations by various algorithms (see Table 3.17
and Table 3.18). To eliminate the effect of early iterations’ instability and to mean-
while guarantee a common length for each algorithm, the one-tailed Student’s t-test
was set from the 4-th to the 18-th iteration by each algorithm within 539 initial
training instances, and the 4-th to the 15-th iteration by each algorithm within
1 030 initial training instances. The comparisons are made between a pair of various
algorithms listed in the left column and the top row of each table. The significance
levels are illustrated by grayscale shading, based on the values p < .05, p < .01,
and p < .001. The analysis of both tables confirms the previous observations and
indicates that, among the algorithms, LCS-AL is significantly better than SI-AL and
PL. For classifiers, KELM can significantly outperform SVM when applied to the
same AL algorithm, e. g., SI-AL or LCS-AL. The LCS-AL algorithm using KELM
as the classifier shows its best performance and robustness in this study.

3.2.6 Summary

Bird sound, as a typical and prevalent animal sound, has been studied for decades.
Recognition of bird species by their sounds has been continuously attracting ex-
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Table 3.15: The percentage [%] of used human annotated instances when the per-
formance (UAR) was increased from 60.0 % to 80.0 % with 539 initial supervised
training instances.

Min Max Mean Median

SVM
PL 57.5 71.2 65.8 65.5
SI-AL 59.0 71.2 66.8 66.9
LCS-AL 28.4 50.9 40.0 39.0

KELM
PL 51.8 69.0 61.5 63.3
SI-AL 34.5 51.8 38.0 37.4
LCS-AL 17.3 28.8 23.9 23.0

Table 3.16: The percentage [%] of used human annotated instances when the per-
formance (UAR) was increased from 60.0 % to 80.0 % with 1 030 initial supervised
training instances.

Min Max Mean Median

SVM
PL 60.3 80.3 76.7 79.9
SI-AL 61.3 86.6 77.6 79.9
LCS-AL 32.7 49.7 40.6 43.0

KELM
PL 53.6 80.3 67.0 67.0
SI-AL 46.9 60.3 53.5 53.6
LCS-AL 20.1 33.5 26.1 26.8

perts from the research community of ecology, bioacoustics, signal processing, and
machine learning to work together to develop a long–term, non–human acoustical
monitoring system for measuring the activities of birds, which can be an important
fingerprint of the state of nature [22], climate change [23], and biodiversity in local
ecosystem [24, 25]. Nevertheless, an important fact had been ignored in previous
bird sound classification study, namely that, there are large amount of bird sound
data in the real–world that are not annotated by human experts. Besides, it would
be expensive or even difficult for human experts to annotate the large amount un-
labelled bird sound data. In this section, active learning, had been investigated for
reducing the human annotation work for bird sound recordings.

Firstly, the effectiveness of AL algorithms had been demonstrated in Sec-
tion 3.2.4. Compared with PL (randomly selecting unlabelled bird sound data for
human annotation), AL (selecting the ‘most informative’ unlablled bird sound data
for human annotation) can truly reduce the human annotation work. Particularly,
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Table 3.17: Significance levels of the averaged UARs obtained from the statistical
comparison (one-tailed Student’s t-test) between iteration: 4 to 18 with 539 initial
supervised training instances (800 ∼ 3 478 instances for SVM-PL, 200 ∼ 2 732
(averaged) instances for SVM-SI-AL, 800 ∼ 2 674 (averaged) instances for SVM-
LCS-AL, 800 ∼ 3 478 instances for KELM-PL, 200 ∼ 2 906 (averaged) instances for
KELM-SI-AL, 800 ∼ 2 927 (averaged) instances for KELM-LCS-AL.)
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for SVM, SI-AL cannot considerably reduce the human annotation work while it
can be comparable to the maximum performance of PL’s 20 independent runs of
experiments in Section 3.2.4.

Secondly, a comparison on robustness of various algorithms was presented in
Section 3.2.5. In contrast to Section 3.2.4, there were two scales of initial training
sets, i. e., 539 and 1 030 instances, fed into the classifier. It was found that, for
SVM, SI-AL did not show any improvement compared with PL. However, LCS-AL
can perform significantly better than PL when using SVM as the classifier (refer to
Table 3.17 and Table 3.18). This might be the reason that LCS-AL can be well-
matched to SVM’s boundary–learning behaviour [81]. In this study, a ‘sampling
margin value’ (MSV) was used in LCS-AL as the measure of the confidence score,
which can be excellent for distinguishing the two most similar possible classes of a
given sample. In addition, KELM’s superior performance to SVM had been demon-
strated through the whole study in this section. This could be explained mainly
by two reasons: First, when a same kernel (e. g., polynomial kernel in this study)
was used, SVM tends to find a solution sub-optimal to KELM’s solution [199]. Sec-
ond, KELM can be directly applied to multi-class cases while SVM has to convert
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Table 3.18: Significance levels of the averaged UARs obtained from the statistical
comparison (one-tailed Student’s t-test) between iteration: 4 to 15 with 1 030 initial
supervised training instances (800 ∼ 2 987 instances for SVM-PL, 200 ∼ 2 552
(averaged) instances for SVM-SI-AL, 800 ∼ 2 550 (averaged) instances for SVM-
LCS-AL, 800 ∼ 2 987 instances for KELM-PL, 200 ∼ 2 334 (averaged) instances for
KELM-SI-AL, 800 ∼ 2 287 (averaged) instances for KELM-LCS-AL.)
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and indirectly solve the multi-class problems to some type of binary classification
problems, which might change the application property and distribution [199].
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3.3 Robust Systems for Acoustic Scene Classifi-

cation

In this study, the wavelet features, WPTE (cf. Section 2.1.6) and WEF (cf. Sec-
tion 2.1.6) are introduced to the application of acoustic scene classification. When
combining these with the large scale feature set ComParE, wavelet features can
contribute to an improvement of the model’s performance, specifically in noisy en-
vironments. Section 3.3.1 firstly gives a background on the study of acoustic scene
classification. In the following, a publicly accessible database will be introduced
in Section 3.3.2. Then, the experimental setup will be described in Section 3.3.3.
The experiments are done in clean and noisy environments, which are discussed in
Section 3.3.4 and Section 3.3.5, respectively. Finally, Section 3.3.6 summarises this
work and gives possible future directions.

3.3.1 Background

Acoustic scene classification (ASC) is a subfield of computational auditory scene
analysis (CASA) [47], which has been studied for more than two decades [57]. ASC
refers to the task of predicting an audio stream where the audio was recorded (e. g.,
beach or park). More precisely, in this thesis, ASC refers to developing computa-
tional algorithms that can automatically perform audio classification using signal
processing and machine learning (refer to [57]). Relevant applications of ASC can
benefit areas like multimedia searching [50], smart mobile devices [51], intelligent
monitoring systemss [52, 53], and public/home security surveillance [54–56]. A lit-
erature survey summarises the early work on features and classifiers for the ASC
task [57]. The popularly used features include Mel-frequency cepstral coefficients
(MFCCs), linear predictive coefficients (LPCs), etc. As to classifiers, hidden Markov
models (HMMs), Gaussian mixture models (GMMs), and support vector machines
(SVMs) were used. A detailed introduction and comparison of the features and
classifiers aforementioned can be found in [57]. Recently, advanced technologies
in deep learning have become a mainstream in ASC [64–77]. In particular, using
convolutional neural networks (CNNs) [160, 162, 236] to extract higher representa-
tions from the spectrum of audio scene recording can save time on designing human
hand-crafted features and usually outperforms the conventional acoustic features.

Generally, most investigated features (including the CNN-based representations)
are based on Fourier transformation [78]. The Heisenberg-alike time-frequency
trade-off [79] restrained the Fourier-based short time analysis of the signal to not
have a good time and frequency resolution at the same time. Unlike Fourier trans-
formation, the wavelet transformation (WT) can be applicable to reach a multi-
resolution of the signal [84,119]. However, the existing studies on introducing wavelet
features into the ASC task are limited. Rabaoui et al. used a combination of wavelet
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decomposition features and other widely used features (e., g., MFCCs) to train sev-
eral one-class SVM classifiers to classify nine classes of acoustic scenes [55], in which
the final results could reach an accuracy of approximately 97.0 %. Li et al. com-
bined wavelet and MFCC features to feed a treebagger classifier, which can achieve
an accuracy of 72.0 % for classifying 10 acoustic scenes [251]. The main drawback of
these studies is that they are focused on a very small size database (instance number
< 1 500). In addition, in the work by Rabaoui et al. [55], the model trained individ-
ually by wavelet features was not strong enough, which might need more advanced
wavelet-based features to be compared against.

In this thesis, two kinds of wavelet features, WPTE (cf. Section 2.1.6) and WEF
(cf. Section 2.1.6) are applied to the ASC task. In addition, the large scale feature
set ComParE (cf. Section 2.1.5) will also be investigated and combined with the
aforementioned wavelet features within a late fusion (cf. Section 2.6). As to clas-
sifiers, an SVM classifier (cf. Section 2.4.1) and deep learning models (GRNN and
BGRNN, cf. Section 2.4.2) will be used. The evaluation will be measured in both
clean and noisy environments.

3.3.2 DCASE 2017 Acoustic Scene Database

The released database, i. e., the TUT Acoustic Scenes 2017 (for task 1: acoustic
scene classification) of the IEEE AASP Challenge on Detection and Classification
of Acoustic Scenes and Events (DCASE 2017) [48] can be accessed via the chal-
lenge website8. The whole database contains 312 and 108 segments of 10 seconds
in each of 15 classes in the development and test (evaluation) set, respectively.
The total duration for the development and test set is 13.0 and 4.5 hours, respec-
tively. The fifteen acoustic scene classes needed to be recognised include: beach,
bus, cafe/restaurant, car, city centre, forest path, grocery store, home, library, metro
station, office, park, residential area, train, and tram. Compared with the previously
released database [86], in this edition of the challenge, the instances are shorter (10
second segments) in length (30 seconds in [86]). This length of recordings,, i. e.,
10 seconds, provides less information to the system for decision making process. It
can be challenging for both human and machine recognition [51]. In addition, in
this edition of the challenge, the test set was newly recorded, which needs a high
robustness of the trained system. In the phase of the development, the data was in-
dependently (based on the origination of recordings) split into four folds to conduct
a cross-validation for developing the system. The evaluation of the development set
will be based on the averaged accuracy of the system achieved among the four-fold
cross-validation. In the phase of the test, as was done in the official baseline [48], all
the data from the development set will be used to train the system when evaluating
the test set. The performance will also be measured by the metrics of accuracy.

8http://www.cs.tut.fi/sgn/arg/dcase2017/
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Table 3.19: The parameters for extracting wavelet features for the task of acoustic
scene classification. Jmax: maximum decomposition level. Dim: dimension.

Wavelet Type Jmax Dim of LLDs Dim of Feature Set

WPTE ‘rbio3.3’ 7 255 1 020
WEF ‘db7’ 7 287 1 148

3.3.3 Experimental Setup

In this study, to make a direct comparison with the baseline system [48], accuracy
will be used as the evaluation metrics. The results shown in the development are
averaged values of four-fold cross-validation as was setup in the official baseline [48].
The test set will be used to evaluate the system validated and trained with all
the data from the development set. The whole experimental setup is described as
follows:

Baseline System

The official baseline system9 is implemented with log mel-band energies as the fea-
tures and a multilayer perceptron (MLP) as the classifier. The features are calcu-
lated within a frame of 40 ms (20 ms as the overlap) to extract 40 mel bands covering
the frequency range from 0 to 22.05 kHz. To construct the feature vector, a 5-frame
context is used resulting in a length of 200. The MLP consists of two-layers of 50
hidden units each (drop out rate: 20 %, epoch: 200, learning rate: 0.001). The out-
put layer of the network consists of softmax type neurons representing 15 classes,
which can be active only one at a time. The prediction will be based on the majority
voting for frame-based decisions to obtain a single label per classified segment. The
system is based on Keras10, on which more detailed information can be found [48].

Proposed Systems

The proposed systems use ComParE (cf. Section 2.1.5), WPTE (cf. Section 2.1.6),
and WEF (cf. Section 2.1.6) feature sets (applied within functionals). On the
back-end side, the SVM (cf. Section 2.4.1), GRNN (cf. Section 2.4.2), and BGRNN
(cf. Section 2.4.2) are used. The parameters for both features and classifiers were
optimised in initial experiments on the development set and applied to the test set.
The frame sizes and overlaps for extracting LLDs of the aforementioned three feature
sets are all set to be consistent to the configuration in the baseline system, i. e., 40 ms

9https://github.com/TUT-ARG/DCASE2017-baseline-system
10https://keras.io/
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frame with 20 ms overlap. The wavelet type and the maximum decomposition level
Jmax are listed in Table 3.19. The names of the wavelet types and the decomposition
scripts are based on the Wavelet Toolbox of MATLAB by MathWorks as mentioned
in Section 3.1.3. Functionals used for ComParE, WPTE, and WEF are the same as
used in Section 3.1.3. The SVM classifier is implemented by the popular toolkit LIB-
SVM [211] with a linear kernel and the Cs-value is set to 0.1. The GRNN/BGRNN
classifier is implemented by Python scripts based on TensorFlow11 and TFLearn12

with an architecture of 120 and 160 GRU hidden units respectively in the first and
second layer (drop out rate: 10 %, epoch: 50, learning rate: 0.0002). The opti-
misation method is set to RMSprop [252]. More specifically, when extracting the
features (in the format of functionals) fed into the GRNN/BGRNN classifier, the
original instance (10 second segment) was cut to episodes (of 1 second) sequenced
by time steps of 0.5 seconds. In the phase of late fusion (cf. Section 2.6), there
are two strategies that will be used and compared, i. e., majority voting (MV, can
be referred to Section 2.6), and margin sampling voting (MSV, can be referred to
Section 2.6). The decision will be made by adopting the fusion strategies from the
predictions made by the classifier trained independently with various feature sets.

Noisy Environments

In this study, white Gaussian noise was added to the original audio recordings to
evaluate the system’s robustness in noisy environments. There are five levels of the
signal-to-noise ratio (SNR) at -10 dB, -5 dB, 0 dB, 5 dB, and 10 dB, respectively. It
should be noted that, even though there are numerous advanced signal processing
techniques that can fulfil the task on noise reduction [253], the main direction of
this study is to investigate the effectiveness of the proposed systems in low SNR
environments rather than signal enhancement at the front-end side.

3.3.4 Acoustic Scene Classification in Clean Environments

The accuracies achieved by each kind of classifier when feeding with different fea-
ture sets in a clean environment (noise–free) are listed in Table 3.20. The results
on the development set are best performances of models trained within optimised
parameters, which are applied to the model for test set. It can be seen that, over
half of the whole results can outperform the official baseline. Most of these perfor-
mances are achieved by the fused models using the strategy of MV (majority voting,
cf. Section 2.6) or MSV (margin sampling voting, cf. Section 2.6). The three best
models that show significance levels (p < .01, p < .05, and p < .05, respectively by
one-tailed z-test) are all based on the SVM classifier.

11https://github.com/tensorflow/tensorflow
12https://github.com/tflearn
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Table 3.20: Results (accuracies in [%]) achieved by various classifiers when feeding
within different feature sets in clean environment. The official baseline of DCASE
2017 Challenge Task 1 is 74.8 for development set, and 61.0 for test set (can be
referred to [48]). Bold entries represent the results better than the official baseline
(on test set). Results (on test set) showing significance levels are highlighted by
grayscale shading, based on the values p < .05, and p < .01 by one-tailed z-test.
Dev: Development.

SVM GRNN BGRNN

Dev Test Dev Test Dev Test

ComParE 77.9 61.3 78.3 58.6 75.8 59.0

WPTE 75.5 58.7 73.7 55.7 73.2 54.6

WEF 77.8 60.4 77.1 63.3 75.7 60.3

ComParE+WPTE
MV 76.4 60.6 76.0 57.3 65.6 60.1
MSV 82.1 65.0 81.0 60.7 65.6 61.9

ComParE+WEF
MV 76.9 63.1 77.3 63.3 75.6 63.6
MSV 82.9 63.6 82.7 63.0 81.4 62.5

WPTE+WEF
MV 76.6 60.4 75.1 59.5 74.9 58.3
MSV 78.7 61.2 77.1 61.7 76.1 59.6

ALL
MV 80.9 63.8 80.1 62.5 78.5 63.4
MSV 83.1 64.6 82.5 63.0 81.1 62.2

p < .05 p < .01

As consistent with most of the submissions to DCASE 2017 Task 113, there are
big gaps between the results on the development set and the test set. It could
be explained by the fact that, the test set was recorded newly compared with the
development set [48], which could lead the trained models on the development set
to overfit.

In this clean environment, the ComParE feature set shows comparable per-
formances (e. g., 61.3 % by SVM classifier) to wavelet features (e. g., WEF reaches
60.4 % by SVM classifier). However, it still yields to the models fused with wavelets.
In addition, when comparing the performance of the classifier trained by a single
feature set, WEF with a GRNN classifier can reach the best place (63.3 %). These
results support the previous findings in [113] that, introducing wavelet features can

13http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-acoustic-scene-classification-results
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considerably benefit the model’s performance on acoustic scene classification. More-
over, as consistent with the results in [113], GRNN cannot be superior to SVM in
this study. The reason might be explained by the reason that, the recordings are
short time duration (10 seconds), which restrains the capacity of GRNN to learn
sufficient context information of a certain acoustic scene. Additionally, unlike hu-
man speech conversation, learning the information from past and future states could
not better the predictions by BGRNN. Therefore, in this study, the performance of
BGRNN does not show significant improvement compared with GRNN.

3.3.5 Acoustic Scene Classification in Noisy Environments

The results of the proposed systems in noisy environments (SNR level at -10 dB,
-5 dB, 0 dB, 5 dB, and 10 dB, respectively) are shown in Table 3.21 (by an SVM
classifier), Table 3.22 (by a GRNN classifier), and Table 3.23 (by a BGRNN clas-
sifier), respectively. In noisy environments, the superiority of proposed systems to
official baseline system is more significant than that in the clean environment. More
precisely, in low SNR environment (e. g., -10 dB), most of the fused models (using
MSV strategy) can outperform the baseline system at a significance level of p < .001
by one-tailed z-test. Both ComParE and wavelet features have shown their robust-
ness in noisy environments. As consistent with the findings in the clean environment,
introducing wavelets by a late fusion strategy can contribute to an improvement of
the system. Generally, the performances of GRNN/BGRNN are only comparable
to SVM, which might be due to the same reason as in the clean environment, i. e.,
there is limited context information in acoustic scenes.

To find more details on the performance of the baseline system and the best
proposed system in clean and noisy environments, the class-wise accuracies on the
test set are illustrated in Table 3.24. In the clean environment, the top three class-
wise accuracies improved by the best propose system compared with the baseline
system are cafe/restaurant (from 43.5 % to 74.1 %, p < .001 by one-tailed z-test),
office (from 73.1 % to 91.7 %, p < .001 by one-tailed z-test), and beach (from 40.7 %
to 57.4 %, p < .01 by one-tailed z-test), respectively. The counterparts in the low
SNR (-10 dB) environment are car (from 0.0 % to 29.6 %, p < .001 by one-tailed
z-test), forest path (from 43.5 % to 70.4 %, p < .001 by one-tailed z-test), and
residential area (from 3.7 % to 27.8 %, p < .001 by one-tailed z-test), respectively.
Nevertheless, there are some acoustic scenes having a decrease in the best proposed
system, e g., park in the low SNR (-10 dB) environment (from 28.7 % to 15.7 %,
p < .01 by one-tailed z-test).

3.3.6 Summary

In this study, three feature sets, i. e., ComParE (cf. Section 2.1.5), WPTE (cf. Sec-
tion 2.1.6), and WEF (cf. Section 2.1.6) were evaluated for the task of acoustic scene
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Table 3.21: Results (accuracies in [%]) achieved by an SVM classifier when fed
with different feature sets in noisy environments. The results (on the test set) by
the official baseline system [48] are: 32.8 (-10 dB), 40.2 (-5 dB), 39.9 (0 dB), 45.9
(5 dB), and 49.6 (10 dB). The bold entries represent the results that are better than
the official baseline system (on the test set). The results (on the test set) showing
significance are highlighted by grayscale shading, based on the values p < .05, p < .01
and p < .001 by one-tailed z-test. Dev: Development. SNR [dB]: Signal-to-Noise
Ratio. Dev: development.

SNR: dB -10 -5 0 5 10

ComParE
Dev 55.4 60.4 64.4 70.0 71.9
Test 39.0 45.2 49.0 52.7 54.3

WPTE
Dev 45.7 53.0 56.6 60.2 63.2
Test 34.4 36.9 41.7 46.1 49.3

WEF
Dev 52.5 55.7 60.8 64.5 66.8
Test 39.3 43.3 44.8 45.5 48.0

ComParE+WPTE
MV

Dev 51.0 57.7 61.9 66.5 68.6
Test 36.4 38.9 43.8 48.3 52.0

MSV
Dev 56.4 61.2 64.9 69.5 72.4
Test 39.6 44.8 49.3 52.7 54.6

ComParE+WEF
MV

Dev 54.9 59.7 63.8 67.8 70.0
Test 39.0 42.9 46.7 49.6 52.2

MSV
Dev 58.6 62.8 66.2 70.8 73.2
Test 40.9 47.2 50.1 51.8 53.8

WPTE+WEF
MV

Dev 49.1 54.7 59.2 62.7 65.6
Test 36.2 39.4 42.9 45.4 49.3

MSV
Dev 52.3 56.4 60.2 64.4 67.5
Test 39.9 42.2 45.4 46.9 49.1

ALL
MV

Dev 55.3 59.9 64.2 67.8 70.4
Test 41.0 44.3 46.9 48.9 53.3

MSV
Dev 58.1 62.1 65.4 70.1 73.0
Test 41.9 46.2 49.9 52.1 53.4

p < .05 p < .01 p < .001

82



3.3. Robust Systems for Acoustic Scene Classification

Table 3.22: Results (accuracies in [%]) achieved by a GRNN classifier when fed
with different feature sets in noisy environments. The results (on the test set) by
the official baseline system [48] are: 32.8 (-10 dB), 40.2 (-5 dB), 39.9 (0 dB), 45.9
(5 dB), and 49.6 (10 dB). The bold entries represent the results that are better than
the official baseline system (on the test set). The results (on the test set) showing
significance are highlighted by grayscale shading, based on the values p < .05, p < .01
and p < .001 by one-tailed z-test. Dev: Development. SNR [dB]: Signal-to-Noise
Ratio. Dev: development.

SNR: dB -10 -5 0 5 10

ComParE
Dev 51.4 59.9 63.5 66.2 70.1
Test 37.0 42.4 49.7 53.6 56.7

WPTE
Dev 32.6 39.2 47.7 53.8 57.5
Test 23.8 31.0 38.0 38.8 45.1

WEF
Dev 51.7 57.1 60.7 62.8 63.5
Test 39.4 42.1 40.8 44.4 44.9

ComParE+WPTE
MV

Dev 40.4 47.6 55.7 59.2 65.8
Test 29.9 42.0 39.2 47.0 50.4

MSV
Dev 51.0 59.3 63.1 66.7 70.3
Test 36.4 41.5 49.8 54.0 55.9

ComParE+WEF
MV

Dev 53.2 59.3 62.9 64.9 67.6
Test 35.0 41.4 42.7 48.8 49.1

MSV
Dev 53.4 61.8 65.2 68.5 71.7
Test 39.8 44.6 49.1 54.0 56.5

WPTE+WEF
MV

Dev 41.4 46.7 55.8 57.9 62.6
Test 32.5 39.4 37.8 42.6 44.1

MSV
Dev 50.2 55.8 58.9 62.7 63.6
Test 39.8 40.4 41.5 43.6 46.4

ALL
MV

Dev 49.4 56.8 61.8 65.0 67.9
Test 33.8 41.7 45.2 47.3 51.9

MSV
Dev 53.1 61.3 64.9 68.4 71.4
Test 39.8 44.1 49.1 54.1 56.0

p < .05 p < .01 p < .001
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Table 3.23: Results (accuracies in [%]) achieved by a BGRNN classifier when fed
with different feature sets in noisy environments. The results (on the test set) by
the official baseline system [48] are: 32.8 (-10 dB), 40.2 (-5 dB), 39.9 (0 dB), 45.9
(5 dB), and 49.6 (10 dB). The bold entries represent the results that are better than
the official baseline system (on the test set). The results (on the test set) showing
significance are highlighted by grayscale shading, based on the values p < .05, p < .01
and p < .001 by one-tailed z-test. Dev: Development. SNR [dB]: Signal-to-Noise
Ratio. Dev: development.

SNR: dB -10 -5 0 5 10

ComParE
Dev 51.2 57.2 61.0 65.0 69.6
Test 36.3 41.7 45.7 55.2 53.4

WPTE
Dev 31.9 41.8 49.5 55.2 55.9
Test 23.6 32.7 37.5 44.7 46.2

WEF
Dev 51.2 58.5 59.3 61.5 62.4
Test 36.7 42.6 42.5 45.7 49.9

ComParE+WPTE
MV

Dev 39.3 50.2 55.8 59.8 65.4
Test 24.5 33.7 44.9 48.3 50.7

MSV
Dev 50.6 57.2 61.1 66.1 70.2
Test 36.1 41.3 45.3 53.7 53.2

ComParE+WEF
MV

Dev 51.5 58.2 60.7 62.8 66.1
Test 36.5 41.0 43.3 52.3 52.0

MSV
Dev 54.8 61.1 63.3 67.5 70.9
Test 39.6 42.7 47.3 52.4 53.6

WPTE+WEF
MV

Dev 39.0 50.5 54.9 58.4 61.3
Test 29.0 34.7 40.1 45.0 48.5

MSV
Dev 48.9 57.3 58.1 61.8 62.4
Test 35.7 41.2 39.9 46.2 48.6

ALL
MV

Dev 48.2 56.9 61.0 64.6 67.6
Test 34.3 42.5 44.8 49.4 53.0

MSV
Dev 54.4 60.7 63.0 67.7 70.6
Test 39.4 42.7 46.0 51.9 53.3

p < .05 p < .01 p < .001
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Table 3.24: Class-wise accuracies (in [%]) on test set of the baseline system and the
best proposed system (highlighted by bold entries) in clean and low SNR (-10 dB)
environment. The best proposed system in clean environment: a MSV fusion of
ComParE and WPTE by SVM classifier. The best proposed system in low SNR
(-10 dB) environment: a MSV fusion of ComParE, WPTE and WEF by SVM
classifier.

Acoustic Scene clean -10 dB

beach 40.7 57.4 40.7 55.6
bus 38.9 45.4 58.3 52.8
cafe/restaurant 43.5 74.1 48.1 46.3
car 64.8 70.4 0.0 29.6
city centre 79.6 81.5 37.0 53.7
forest path 85.2 84.3 43.5 70.4
grocery store 49.1 47.2 47.2 40.7
home 76.9 71.3 69.4 73.1
library 30.6 29.6 14.8 14.8
metro station 93.5 92.6 1.9 24.1
office 73.1 91.7 57.4 53.7
park 32.4 37.0 28.7 15.7
residential area 77.8 59.3 3.7 27.8
train 72.2 75.0 35.2 44.4
tram 57.4 58.3 6.5 25.9
Overall 61.0 65.0 32.8 41.9

classification. On classifiers, SVM (cf. Section 2.4.1), GRNN (cf. Section 2.4.2) and
BGRNN (cf. Section 2.4.2) were selected. Models trained independently by different
feature sets were combined within a late fusion strategy, i e., MV (cf. Section 2.6) or
MSV (cf. Section 2.6). The publicly accessible database of the DCASE Challenge
2017 Task 1 [48] were used to evaluate these proposed methods. Experiments were
done in clean (Section 3.3.4) and noisy (with SNR level at -10 dB, -5 dB, 0 dB, 5 dB,
and 10 dB) environments (Section 3.3.5), respectively.

In the clean environment, a single model trained by ComParE with SVM (ac-
curacy of 61.3 %) and WEF (accuracy of 63.3 %) with GRNN can outperform the
official baseline (accuracy of 61.0 %). The fusion strategy (MV or MSV) can consid-
erably improve the performances of models, which generates more promising results
(the ones higher than the official baseline). Among these results, SVM-based late
fusion (by MSV strategy) of ComParE and WPTE reached the best accuracy of
65.0 %, which significantly outperformed the official baseline (p < .01 by one-tailed
z-test).
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(d) car SNR: -10 dB

Figure 3.8: Examples of time-frequency analysis of an acoustic scene labelled as car
in clean and noisy environment (SNR: -10 dB). Waveform (top) and spectrogram
(bottom) are listed in (a) and (c). Multi-resolution time-frequency analysis by WPT
(top: J = 2, bottom: J = 7) is listed in (b) and (d). Wavelet type: ‘db7’. J :
decomposition level.

In the noisy environments, the contributions of wavelet features, i e., WPTE
and WEF were more obvious than those in clean environment. In particular, the
fused models can still have robustness in low SNR environment (e. g., -10 dB). In
such a low SNR environment, the signal is so weak that the official baseline cannot
even work for some certain acoustic scenes (e. g., car, metro station, residential area,
tram), which can be found in more detail from Table 3.24. In contrast, the best
proposed system, i. e., SVM-based late fusion (by MSV strategy) of ComParE,
WPTE and WEF can significantly (p < .001 by one-tailed z-test) improve the class-
wise accuracies for those aforementioned acoustic scenes (see Table 3.24). Figure 3.8
gives the examples of time-frequency analysis of the acoustic scene labelled as car
by Fourier transformation and WPT in clean and noisy (SNR: -10 dB) environment,
respectively. When introducing wavelet features, there is more information that
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can be given to the models by using multi-resolution analysis rather than only
using traditional short-time Fourier transformation (STFT). Therefore, similar to
the conclusion in SnS classification (cf. 3.1), wavelet features can contribute to the
classification of acoustic scenes.

It should be noted that, in the previous study [113], when fusing models learnt
by different classifiers, the final performance of the system was decreased. Hence,
in this study, fusion strategies, i. e., MV and MSV, were applied to features rather
than classifiers. Besides, to make a direct comparison with the official baseline,
there was no data augmentation involved in these experiments, which might limit the
performances on the test set. One potential future direction is to use the state-of-the-
art data augmentation techniques, e. g., generative adversarial network (GAN) [254],
which mainly contributed to the work by the winner of DCASE Challenge 2017 Task
1 [255]. Moreover, both the baseline system and the proposed systems extracted
features by averaging the left and the right channel into one channel when reading the
audio recordings, which in result in losing the spacial information of the recordings.
In fact, both the first [255] and second place [72] of the DCASE Challenge 2017
Task 1 used multi-channel input rather than mono to extract features. Therefore,
another future work can be done at exploring the spacial information from the stereo
recordings.
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Conclusion

As an increasingly developing field in Artificial Intelligence (AI), computer audition
(CA) can facilitate intelligent systems to hear like humans or beyond the human
hearing frontier, i. e., 20 –20 000 Hz [256]. Automatic general audio signal classifica-
tion (AGASC), aims to leverage methods in signal processing and machine learning
to build an intelligent system hearing more general audio signals (e. g., snore sound,
bird sound, acoustic scene) rather than speech or music. Compared to the study on
speech or music, AGASC is a young research area. The challenges of three typical
tasks in AGASC, i. e., snore sound classification, bird sound classification, and acous-
tic scene classification were proposed (cf. Chapter 1), and addressed (cf. Chapter 3)
by the methods described (cf. Chapter 2) in this thesis.

In this chapter, a summary will be given in Section 4.1. Section 4.2 will sketch
some future directions based on the limitations of the current research work.

4.1 Summary

After an introduction of the general research background, challenges, and contribu-
tions in Chapter 1, the proposed methodologies used in this thesis were described
in Chapter 2 (theoretical aspects) and evaluated in Chapter 3 (empirical aspects).
The work achieved in each of the aforementioned three tasks can be summarised as
follows:

(1) A comprehensive comparison on features and classifiers for SnS classification
was given. In Section 2.1, firtsly, the previously used ones in the snore sound area
(e. g., Formants, SFFs, SERs, MFCCs) were introduced. Then, an integration of
human expert designed temporal and spectral features (ComParE) extracted by the
openSMILE toolkit was described. Finally, wavelet features, i. e., WTE, WPTE,
and WEF were proposed. The classifiers (Section 2.4), including the classical models
(e. g., NB, k -NN, SVM, RF, MLP) and the state-of-the-art (ELM, KELM, SAE) were
selected. The experimental results were given in Section 3.1.4. The wavelet features
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were found to be efficient in SnS classification task. A late fusion of SVM and ELM
models trained individually by wavelet features can reach an excellent performance.
Moreover, a combination of wavelet features and the BoAW approach (Section 2.2.2)
was found to considerably improve the capacity of the classifier (NB) to recognise
SnS, when comparing the features extracted as functionals (Section 2.2.1). The work
was evaluated in Section 3.1.5. More precisely, the best proposed method for SnS
classification, i. e., a WEF feature set enhanced via BoAW (trained by NB classifier)
beat the winner of the INTERSPEECH ComParE challenge 2017 Snoring sub-
challenge. Encouragingly, it was found that two proposed methods in this thesis can
even outperform some other participants’ methods using deep learning [163,164,257],
and evolutional feature selection [164] (Section 3.1.5).

(2) To reduce the human annotation work from a large amount of unlabelled bird
sound data, two popular algorithms of AL, i. e., SI-AL and LCS-AL were proposed
(Section 2.5.2). Compared with PL (Section 2.5.1), AL (except SI-AL by an SVM
classifier) algorithms can be efficient in finding ‘most informative’ data from the
unlabelled pool data set, which in result can considerably reduce the need of human
annotation when improving the trained model’s recognition performance to a certain
level. Particularly, LCS-AL was found to be superior to SI-AL in reducing the human
annotation work. In addition, LCS-AL was demonstrated to be more stable and
robust than SI-AL when run in replicated experiments (Section 3.2.5). It was also
found that, when selecting a suitable classifier, e. g., KELM, the performance and
robustness of AL algorithms can be dramatically enhanced (Section 3.2.5). These
successful experimental results will stimulate the work in data enrichment for animal
sound (e. g., bird sound) recognition, which in nature has to handle much more data
unlabelled than labelled by human experts.

(3) Motivated by the success of wavelet features in SnS classification (Sec-
tion 3.1), WPTE (Section 2.1.6) and WEF (Section 2.1.6) were introduced to the
ASC task (Section 3.3). As to features, the ComParE feature set (Section 2.1.5)
was combined with the two aforementioned wavelet features by a late fusion strat-
egy, i. e., MV (Section 2.6) or MSV (Section 2.6). As to classifiers, static modelling
(SVM, cf. Section 2.4.1) and sequential modelling (GRNN, cf. Section 2.4.2 and
BGRNN, cf. Section 2.4.2) were used. The experimental results showed the effec-
tiveness and robustness of the proposed systems in both clean (Section 3.3.4) and
noisy environments (Section 3.3.5). Particularly, singly using wavelet features can
be comparable to the ComParE feature set (which has much larger size of feature
dimension and are mainly based on Fourier transformation). Furthermore, when
combining wavelet features with the ComParE feature set, most of the proposed
systems can be superior to the official baseline system in the DCASE Challenge 2017
Task 1 [48], particularly in noisy environments (Section 3.3.5).
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4.2 Outlook

The proposed methods had been successfully evaluated by publicly accessible
databases in this thesis, which advanced the state-of-the-art in the area of AGASC.
However, the accomplished work reaches only the tip of the iceberg of AGASC. There
are several future directions along which the line of research can be investigated in
the future.

First, there are not so many deep learning architectures involved in this thesis;
the main reason is due to the limited size of the databases as are used currently. It
is reasonable to think that deep architectures can learn richer information from the
inputs than shallow architectures when the data size becomes big enough. There-
fore, the proposed methods will be optimised to be implemented in deep models
with databases having large size, e. g., Bird Task by LifeCLEF [241], AudioSet by
Google [258].

Then, all the acoustic feature proposed in this thesis are hand crafted, which
needs human expert knowledge. Usually, designing suitable features for a specific
domain is expensive and time–consuming. Recently, some emerging techniques us-
ing convolutional neural networks (CNNs) to learn feature representations from the
spectrogram/scalogram of audio signal have been popularly investigated in classifi-
cation of snore sounds [163, 164], bird sounds [39, 40], and acoustic scenes [70, 165].
One direction of future work can be leveraging transfer learning [259], and multi-task
learning [260] to make the system automatically learn deep robust representations
from images generated from the general audio signals.

Moreover, AL still needs some human expert annotation work in its paradigm.
The state-of-the-art semi-supervised learning [261], cooperative learning [262] should
be investigated and developed to help improve the efficiency of the whole data
enrichment process for AGASC tasks. In addition, data augmentation, specifically
for deep learning, is an important phase when the data size is limited. Another
direction in this line is to use generative adversarial networks (GANs) [254] to play
the role in data in the augmentation phase.

Overall, hopefully more attention could be attracted to the field presented by
this thesis and the relevant work could stimulate future research.
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A

Bird Species

The original MNB bird sound database contains 6 487 audio recordings from 273
species (subspecies) of birds. However, there are many species only including several
few audio recordings. To make an efficient study on training models and evaluating
algorithms, the species which have less than 20 audio recordings were eliminated.
The name and number of instances (audio recordings) for each bird species selected
are listed in Table A.1. The selected subset of the MNB bird sound database includes
86 species of birds and 5 060 audio recordings.
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ŷ . . . . . . . . . . . . . . . approximated line

100



List of Acronyms
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µx . . . . . . . . . . . . . arithmetic mean calculated from x

xmax . . . . . . . . . . . maximum value in x

xmin . . . . . . . . . . . .minimum value in x

σx . . . . . . . . . . . . . .standard deviation calculated from x

Classification

x . . . . . . . . . . . . . . feature vector

y . . . . . . . . . . . . . . . label or prediction

Rd . . . . . . . . . . . . . d-dimensional feature space

Y . . . . . . . . . . . . . . label variable

κ . . . . . . . . . . . . . . . number of classes
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Classical Models

x . . . . . . . . . . . . . . . value in x

d . . . . . . . . . . . . . . . index of value in x

P (y|x) . . . . . . . . . conditional probability

P (y) . . . . . . . . . . . relative frequency

k . . . . . . . . . . . . . . . number of nearest neighbours in k-NN

xt . . . . . . . . . . . . . . a given instance in test set

xσ . . . . . . . . . . . . . nearest neighbour of xt

yσ . . . . . . . . . . . . . . label of xσ

i . . . . . . . . . . . . . . . index of instance in training set

j . . . . . . . . . . . . . . . index of instance in training set

n . . . . . . . . . . . . . . .number of instances in training set

α . . . . . . . . . . . . . . .Lagrange multiplier

Cs . . . . . . . . . . . . . .pre-defined parameter for SVM

K(·) . . . . . . . . . . . kernel function

γ . . . . . . . . . . . . . . . pre-defined parameter for kernel

c . . . . . . . . . . . . . . . pre-defined parameter for kernel

d̂ . . . . . . . . . . . . . . . pre-defined parameter for kernel

f(·) . . . . . . . . . . . . decision function of SVM

b . . . . . . . . . . . . . . . bias of SVM decision function

Deep Learning Models

l . . . . . . . . . . . . . . . index of layer

hl . . . . . . . . . . . . . . output of l-th layer

Rn . . . . . . . . . . . . . n-dimensional feature space

Rm . . . . . . . . . . . . .m-dimensional feature space

W . . . . . . . . . . . . . weight matrix

b . . . . . . . . . . . . . . . bias vector
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F(·) . . . . . . . . . . . . activation function

y . . . . . . . . . . . . . . .actual output

t . . . . . . . . . . . . . . . target output

i . . . . . . . . . . . . . . . index of output node

j . . . . . . . . . . . . . . . index of output node

L(·) . . . . . . . . . . . . loss function

θ . . . . . . . . . . . . . . .parameters of the network

τ . . . . . . . . . . . . . . . iteration step

η . . . . . . . . . . . . . . . learning rate

µ . . . . . . . . . . . . . . .momentum term

a . . . . . . . . . . . . . . .new representation of x by encoder

x′ . . . . . . . . . . . . . . reconstruction of x by decoder

F ′ . . . . . . . . . . . . . .activation function in decoder stage

W ′ . . . . . . . . . . . . .weight matrix in decoder stage

b′ . . . . . . . . . . . . . . bias vector in decoder stage

j . . . . . . . . . . . . . . . index of input vector

N . . . . . . . . . . . . . . number of input vectors

L2 . . . . . . . . . . . . . .L2 regularisation term

SP (·) . . . . . . . . . . sparsity regularisation term

ρ . . . . . . . . . . . . . . . sparsity level

n . . . . . . . . . . . . . . .number of hidden nodes

hk(·) . . . . . . . . . . . activation value of k-th node

ρ̂k . . . . . . . . . . . . . . average activation value of k-the node

α . . . . . . . . . . . . . . .parameter for L2

β . . . . . . . . . . . . . . .parameter for SP (·)
t . . . . . . . . . . . . . . . time step

U . . . . . . . . . . . . . . recurrent weight matrix

z . . . . . . . . . . . . . . .update gate in GRU

r . . . . . . . . . . . . . . . reset gate in GRU

h̃ . . . . . . . . . . . . . . candidate activation in GRU
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−→
h . . . . . . . . . . . . . . forward hidden layer activation
←−
h . . . . . . . . . . . . . .backward hidden layer activation
−→
U . . . . . . . . . . . . . . forward recurrent weight matrix
←−
U . . . . . . . . . . . . . .backward recurrent weight matrix
−→
b . . . . . . . . . . . . . . forward bias vector
←−
b . . . . . . . . . . . . . .backward bias vector

Extreme Learning Models

D . . . . . . . . . . . . . . dimension of input feature vector

L . . . . . . . . . . . . . . number of hidden nodes

l . . . . . . . . . . . . . . . index of hidden node

a . . . . . . . . . . . . . . . input weight vector

b . . . . . . . . . . . . . . . bias

w . . . . . . . . . . . . . . output weight vector

f(·) . . . . . . . . . . . . output function at one node

h(·) . . . . . . . . . . . . output of hidden layer

G(·) . . . . . . . . . . . . activation function

N . . . . . . . . . . . . . . number of training examples

X . . . . . . . . . . . . . . training examples

T . . . . . . . . . . . . . . target matrix

H . . . . . . . . . . . . . .output matrix of hidden layer

W . . . . . . . . . . . . . output weight matrix

H† . . . . . . . . . . . . .Moore-Penrose generalised inverse of H

I . . . . . . . . . . . . . . . identity matrix

Ce . . . . . . . . . . . . . .pre-defined parameter for ELM

f . . . . . . . . . . . . . . output vector

m . . . . . . . . . . . . . . index of output node

M . . . . . . . . . . . . . .number of output nodes

ΩELM . . . . . . . . . . kernel matrix for ELM
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Data Enrichment

L . . . . . . . . . . . . . . labelled data

U . . . . . . . . . . . . . . unlabelled data

C . . . . . . . . . . . . . . . trained model

K . . . . . . . . . . . . . . number of selected samples for human annotation in each itera-
tion of PL or AL

DK . . . . . . . . . . . . . selected subset with K samples for human annotation in each
iteration of PL or AL

x . . . . . . . . . . . . . . instance

QSI(·) . . . . . . . . . . query function by SI-AL

ŷx . . . . . . . . . . . . . . predicted label of instance x

Ysparse . . . . . . . . . .a set of sparse classes

i . . . . . . . . . . . . . . . index of sparse class

Yi . . . . . . . . . . . . . . label of i-th sparse class

NYi . . . . . . . . . . . . number of instances that belong to Yi class

λs . . . . . . . . . . . . . . sparse factor in SI-AL

Ns . . . . . . . . . . . . . total number of sparse classes

Nmax . . . . . . . . . . . number of instances that belong to one certain class which oc-
cupies the biggest proportion in the whole data

QLCS(·) . . . . . . . . query function by LCS-AL

CS(·) . . . . . . . . . . function to calculate confidence score

PC(·) . . . . . . . . . . . posterior probability under the trained model C
ŷ1 . . . . . . . . . . . . . . predicted label corresponding to the first highest posterior prob-

ability

ŷ2 . . . . . . . . . . . . . . predicted label corresponding to the second highest posterior
probability

λc . . . . . . . . . . . . . . pre-defined factor in LCS-AL

NU . . . . . . . . . . . . . number of instances in U

105



List of Acronyms

Late Fusion

i . . . . . . . . . . . . . . . index of model

j . . . . . . . . . . . . . . . index of class

ỹ . . . . . . . . . . . . . . . final prediction made by MV or MSV strategy

di,j . . . . . . . . . . . . . decision value of i-th model for j-th class

N . . . . . . . . . . . . . . number of models

Nc . . . . . . . . . . . . . number of classes

Yi . . . . . . . . . . . . . . prediction of i-th model

Yj . . . . . . . . . . . . . . label of j-th class

Wi,Yi . . . . . . . . . . . calibration weight for i-th model to make its prediction as Yi
Mi . . . . . . . . . . . . .margin sampling value of i-th model

Evaluation Metrics

i . . . . . . . . . . . . . . . index of class

Ñi . . . . . . . . . . . . . .number of correctly predicted instances for i-th class

Ni . . . . . . . . . . . . . .total number of instances labelled as i-th class

λi . . . . . . . . . . . . . . weight for i-th class

Nc . . . . . . . . . . . . . number of classes

N . . . . . . . . . . . . . . total number of instances

z . . . . . . . . . . . . . . . standard score for z-test

mA . . . . . . . . . . . . .measure value of system A

mB . . . . . . . . . . . . .measure value of system B

m . . . . . . . . . . . . . . arithmetic mean value of mA and mB

Φ(·) . . . . . . . . . . . . standard normal cumulative distribution function

t . . . . . . . . . . . . . . . test static for Student’s t-test

NA . . . . . . . . . . . . . sample size of measures in system A

NB . . . . . . . . . . . . . sample size of measures in system B

m̄A . . . . . . . . . . . . . sample mean of measures in system A

m̄B . . . . . . . . . . . . . sample mean of measures in system B
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σA . . . . . . . . . . . . . sample standard deviation of measures in system A

σB . . . . . . . . . . . . . sample standard deviation of measures in system B

p . . . . . . . . . . . . . . . p-value calculated by z-test or Student’s t-test

α . . . . . . . . . . . . . . .significance level
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“Snoring as a risk factor for ischaemic heart disease and stroke in men,” British
Medical Journal, vol. 294, no. 6563, pp. 16–19, 1987.

[7] W. W. Schmidt-Nowara, D. B. Coultas, C. Wiggins, B. E. Skipper, and J. M.
Samet, “Snoring in a hispanic-american population: risk factors and associa-
tion with hypertension and other morbidity,” Archives of Internal Medicine,
vol. 150, no. 3, pp. 597–601, 1990.

[8] R. D’alessandro, C. Magelli, G. Gamberini, S. Bacchelli, E. Cristina, B. Mag-
nani, and E. Lugaresi, “Snoring every night as a risk factor for myocardial
infarction: a case-control study,” British Medical Journal, vol. 300, no. 6739,
pp. 1557–1558, 1990.

109



Bibliography
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