

Chair of Electronic Design Automation

Advanced Timing for High-Performance Design and Security of Digital Circuits

Li Zhang

Vollständiger Abdruck der von der

Fakultät für Elektrotechnik und Informationstechnik

der Technischen Universität München zur Erlangung des akademischen Grades

eines Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzende/-r: Prof. Dr. phil. nat. Sebastian Steinhorst

Prüfende/-r der Dissertation:

1. Prof. Dr.-Ing. Ulf Schlichtmann

2. Assoc. Prof. Yiyu Shi, Ph.D.

Die Dissertation wurde am 17.04.2018 bei der Technischen Universität München

eingereicht und durch die Fakultät für

Elektrotechnik und Informationstechnik am 13.08.2018 angenommen.

Anhang I
Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die bei der

Fakultät für Elektrotechnik und Informationstechnik

der TUM zur Promotionsprüfung vorgelegte Arbeit mit dem Titel:

Advanced Timing for High-Performance Design and Security of Digital Circuits

in Chair of Electronic Design Automation

Fakultät, Institut, Lehrstuhl, Klinik, Krankenhaus, Abteilung

unter der Anleitung und Betreuung durch: Prof. Dr.-Ing. Ulf Schlichtmann ohne sonstige Hilfe erstellt und bei der Abfas-

sung nur die gemäß § 6 Ab. 6 und 7 Satz 2 angebotenen Hilfsmittel benutzt habe.

 Ich habe keine Organisation eingeschaltet, die gegen Entgelt Betreuerinnen und Betreuer für die Anfertigung von

Dissertationen sucht, oder die mir obliegenden Pflichten hinsichtlich der Prüfungsleistungen für mich ganz oder teil-

weise erledigt.

 Ich habe die Dissertation in dieser oder ähnlicher Form in keinem anderen Prüfungsverfahren als Prüfungsleistung

vorgelegt.

 Die vollständige Dissertation wurde in __

veröffentlicht. Die promotionsführende Einrichtung

Chair of Electronic Design Automation, Department of Electrical and Computer Engineering

hat der Veröffentlichung zugestimmt.

 Ich habe den angestrebten Doktorgrad noch nicht erworben und bin nicht in einem früheren Promotionsverfahren für

den angestrebten Doktorgrad endgültig gescheitert.

 Ich habe bereits am _________________ bei der Fakultät für ___

__

der Hochschule ___

unter Vorlage einer Dissertation mit dem Thema __

__

die Zulassung zur Promotion beantragt mit dem Ergebnis: ___

__

Die öffentlich zugängliche Promotionsordnung der TUM ist mir bekannt, insbesondere habe ich die Bedeutung von § 28

(Nichtigkeit der Promotion) und § 29 (Entzug des Doktorgrades) zur Kenntnis genommen. Ich bin mir der Konsequenzen

einer falschen Eidesstattlichen Erklärung bewusst.

Mit der Aufnahme meiner personenbezogenen Daten in die Alumni-Datei bei der TUM bin ich

 einverstanden, nicht einverstanden.

Ort, Datum, Unterschrift

Acknowledgments

Firstly, I would like to express my sincere gratitude to Prof. Schlichtmann. He gave

me the opportunity to do research in the Chair of Electronic Design Automation at

TUM. Within the past three years, I have learned a lot from his attitudes and pro-

fessionalism towards research and teaching. Every time I discussed with him, he

always gave me constructive advice and inspired me to explore novel ideas. I also

thank him for giving me a chance to be a teaching assistant. This precious experi-

ence helped me a lot in teaching and communicating with students. Furthermore,

he kindly considered my academic career and motivated me to attend the project

evaluation to gain relevant experience. I am grateful for his help and support very

much.

I would also like to thank Prof. Sebastian Steinhorst and Prof. Yiyu Shi for serving

as the committee members. I appreciate their effort and time very much.

Within the three years, I have been also cooperating with Dr. Bing Li on the research

topic of timing of digital circuits. He not only taught me how to be an excellent

researcher, but also helped open the door to a whole new research identity for me.

In every discussion with him, he never took existing techniques for granted and

motivated me to explore the scientific development in a comprehensive way. I thank

him for his philosophy of "thinking outside the box", which helped me to tread on

unknown frontiers of research.

During the three years, I also cooperated with other professors, including Professor

David Z. Pan, Professor Jiang Hu, Professor Masanori Hashimoto, Professor Yiyu

Shi, Professor Bei Yu. They gave me invaluable suggestions about our cooperation

projects and I appreciate their help and support very much.

Furthermore, I would like to thank Dr. Helmut Gräb, Dr. Daniel Müller-Gritschneder,

Susanne Werner, Hans Ranke, Tobias Baur and other colleagues in the institute for

their help and support. It is a great pleasure to work with them.

Last but not least, I give my deepest gratitude to my parents and my husband for

their endless patience in the challenging but fascinating three years.

Munich, January 2018

Grace Li Zhang

Contents

1 Introduction 1

1.1 Contributions of This Work . 3

1.2 Organization of This Dissertation . 4

1.3 Summary . 5

2 Timing of Digital Circuits 7

2.1 Sequential Circuits . 7

2.2 Timing of Sequential Circuits . 9

2.2.1 Timing of Flip-flop Based Circuits 9

2.2.2 Timing of Latch Based Circuits 11

2.3 Timing Optimization Methods for Sequential Circuits 14

2.3.1 Gate Sizing . 15

2.3.2 Retiming . 15

2.3.3 Clock Skew Scheduling . 16

2.3.4 Wave-Pipelining . 16

2.4 Summary . 17

3 Background and Problem Description 19

3.1 Process Variations and Aging . 19

3.1.1 Sources of Process Variations . 20

3.1.2 Categories of Process Variations 21

3.1.3 Correlation Modeling . 22

3.1.4 Circuit Aging . 23

3.2 Timing with Process Variations . 25

3.2.1 Traditional Corner-based Design Method in Digital Circuits . . 25

3.2.2 Statistical Static Timing Analysis 26

3.2.3 Post-Silicon Tuning to Mitigate Process Variations 27

I

3.2.4 Setup Time and Hold Time Characterization in Static Timing

Analysis . 29

3.2.5 The Confines of Traditional Timing Paradigms 35

3.3 Summary . 38

4 Post-Silicon Tuning to Mitigate Process Variations 41

4.1 Post-Silicon Tunable Buffer Insertion at the Design Phase 42

4.1.1 Timing Constraints with Post-Silicon Tunable Buffers 42

4.1.2 Problem Formulation of Buffer Insertion 46

4.1.3 Sampling-based ILP Modeling between Statistical Delays and

Profit . 48

4.1.4 Reducing the Number of Emulation Samples Using a Low-

discrepancy Sequence . 53

4.1.5 Buffer Allocation with Prefiltering and Iterative Learning . . . 55

4.1.6 Reducing Buffer Area by Tuning Concentration and Grouping 57

4.1.7 Acceleration Techniques . 61

4.2 Post-Silicon Tunable Buffer Configuration after Manufacturing 62

4.2.1 Path Selection and Statistical Delay Prediction 63

4.2.2 Path Test Multiplexing . 73

4.2.3 Test with Delay Alignment by Tuning Buffers 77

4.2.4 Buffer Configuration with Delay Estimation 80

4.2.5 Tuning Bounds Due to Hold Time Constraints 82

4.3 Experimental Results . 83

4.3.1 Results of Post-Silicon Tunable Buffer Insertion at the Design

Phase . 83

4.3.2 Results of Post-Silicon Tunable Buffer Configuration after Man-

ufacturing . 93

4.4 Summary . 101

5 A Holistic Timing Analysis Framework Considering Setup/Hold Time Inter-

dependency 103

5.1 Adaptive Piecewise Polygonization of a Three-dimensional Delay Sur-

face . 104

5.1.1 Approximating the Surface Boundary Using Triangles 104

5.1.2 Approximating the Delay Surface Using Rectangular Polygons 107

5.2 Piecewise ILP Model for Calculating the Minimum Clock Period . . . 109

5.3 Experimental Results . 113

5.4 Summary . 116

6 Timing Optimization by Synchronizing Logic Waves with Delay Units 119

6.1 The New Timing Model . 120

6.1.1 Delay Units . 120

6.1.2 Relative Timing References . 122

6.1.3 Synchronizing Logic Waves by Delay Units 124

6.2 Iterative Relaxation . 128

6.2.1 Emulation of Sequential Delay Units 129

6.2.2 Modeling with Clock/Data-to-Q Delays of Sequential Delay

Units . 130

6.2.3 Model Legalization for Timing of Sequential Delay Units . . . 131

6.2.4 Buffer Replacement with Sequential Units 132

6.3 Experimental Results . 132

6.4 Summary . 135

7 Flexible Timing for Netlist Security 137

7.1 Analysis of Counterfeiting of Digital Circuits 138

7.2 Wave-Pipelining Paths . 139

7.3 Attack Techniques and Counter Measures 141

7.4 Wave-Pipelining Construction . 145

7.4.1 Work Flow of Wave-Pipelining Construction 146

7.4.2 False Path Checking . 147

7.4.3 Wave-Pipelining Path Construction 148

7.5 Experimental Results . 150

7.6 Summary . 154

8 Conclusion 155

Bibliography 157

Chapter 1

Introduction

Integrated Circuits (IC) are making our lives more convenient in every aspect. They

are important drivers of technology innovation and economic progress. As one of

the core performance metrics, timing is used to reflect how fast ICs can operate.

In digital ICs, the timing performance is determined by their clock frequency. For

several decades, the timing performance enhancement of processors has been driven

by the improvement of manufacturing technology and the increasing number of

pipeline stages. For example, shrinking transistor sizes result in smaller propagation

delays for combinational gates and with pipelining long paths can be partitioned

into short paths to reduce the clock period. Unfortunately, such straightforward

enhancements have now mostly come to a stop.

As the manufacturing technology advances into the nanometer era, the shrinking

transistor size results in undesirable side-effects. One of the major concerns are the

increasing manufacturing deviations from the nominal specifications, because it is

extremely difficult to control the fabrication process accurately. The deviations of

process parameters, e.g., gate length, oxide thickness and doping profiles, cause

variability in electrical parameters of integrated circuit devices, such as Vth. Accord-

ingly, delays of combinational gates and interconnects have variations.

In addition to the traditional variations of parameters between dies and wafers, a

new type of variations, within-die variations, have become a non-negligible compo-

nent of total variations. These variations may have a low correlation, so that even

two transistors located side-by-side might vary in their performance significantly.

Accordingly, the traditional worst-case analysis cannot handle them very well.

For several decades, the worst-case analysis flow has been adopted in IC indus-

try. Worst-case analysis indicates the worst-conditions for the values of the process

parameters. With these parameters, the performance of the worst-case circuit is de-

termined. Because worst-case analysis is very efficient in terms of reducing design

1

1 Introduction

effort, it has become the most widely used method for timing analysis and verifi-

cation. However, this method chooses each process parameter value independently,

and ignores the correlations among these process parameters. Thus the worst-case

performance obtained with this method is extremely pessimistic. This pessimism

forces designers to optimize designs that may have met timing specifications fur-

ther. This overdesign consumes significant resources to improve circuit performance,

leading to an increase of design cost.

Circuit aging, another challenge, refers to the degradation of MOS device character-

istics. It degrades circuit timing performance over time, shortens circuit lifetime and

introduces potential timing failures into circuits. As aging becomes more promi-

nent, this phenomenon can no longer be ignored and must be addressed to ensure

timing performance of circuits. The major physical mechanisms of device aging in-

clude Hot Carrier Injection (HCI) and Negative Bias Temperature Instability (NBTI).

These effects cause an increase of threshold voltage Vth or a decrease of channel

carrier mobility, leading to a loss of performance over time.

As the fabrication technology enters the nanometer era, variations in manufacturing

and increasing fragility of devices require us to examine the concepts in the tradi-

tional timing paradigm carefully. For example, the combinational logic blocks in

a circuit perform computation and sequential components are used to synchronize

the logic computation in the traditional paradigm. This paradigm is suffering from

the performance limit due to the barrier of flip-flops. A new timing paradigm is

required to break these barriers to improve circuit performance further.

2

1.1 Contributions of This Work

1.1 Contributions of This Work

Facing the challenges of process variations and aging, in this thesis, a post-silicon

tuning technique is investigated to adjust the timing properties of chips after man-

ufacturing. This method can introduce customized clock skews individually for

each chip with respect to the results of process variations. Therefore, the chips

with timing failures after manufacturing might be rescued to meet the performance

requirements.

To apply this post-silicon technique, tuning components must be inserted into the

circuit during the design phase. A trade-off must be made between area overhead

and yield improvement. To solve this problem, this thesis proposes an iterative

learning method [ZLL+18] to determine where to insert post-silicon tuning buffers

during the design phase. This method learns the buffer locations with a Sobol

sequence iteratively and reduces the buffer ranges afterwards with tuning concen-

tration and buffer grouping.

In addition, chips must be tested after manufacturing to counter process varia-

tions. Previous methods rely on path-wise frequency stepping, which is very time-

consuming and causes expensive test cost. To solve this post-silicon test problem, an

efficient delay test framework [ZLS+18] is proposed in this thesis to reduce test cost

by testing only representative paths with delay alignment while taking advantage

of the tunable buffers in the circuit.

The presented post-silicon technique tunes the circuit with additional hardware, e.g.,

post-silicon tuning buffers, to counter process variations. Flexible timing properties

of flip-flops can also be used to mitigate the effects of process variations. However, in

traditional static timing analysis, the timing properties of flip-flops, e.g., setup time,

hold time and clock-to-q delay, are characterized as constants. In reality, the relation

between setup time, hold time and clock-to-q delay of a flip-flop is a continuous

function. In this thesis, a piecewise model is proposed to characterize the relation

of the timing properties of flip-flops [ZLS16c]. With this characterization, the timing

performance of circuits is improved.

In the traditional timing paradigm, sequential components are used to synchronize

logic computation. However, they limit the circuit performance in two regards.

3

1 Introduction

Firstly, they have inherent clock-to-q delays and impose setup time constraints. Sec-

ondly, delay imbalances between flip-flop stages cannot be exploited since signal

propagations are blocked at flip-flops instead of being allowed to propagate through

flip-flops. If these components are removed from the circuit, the delay compensation

between flip-flop stages can be achieved automatically. To break the confines of the

traditional timing paradigm, in this thesis, a new timing model is proposed to op-

timize the timing performance of circuits [ZLHS18]. In this new model, sequential

components and combinational gates are both considered as delay units. Thereafter,

a timing optimization framework is introduced to allocate sequential components at

necessary locations, while the functionality of the circuit is maintained.

In the traditional timing model, a netlist of a digital circuit carries all its design infor-

mation. Therefore, reconstructing the original netlist to counterfeit chips becomes

very easy for a third party who may produce the chips illegally. In this thesis, a

timing camouflage method is proposed to invalidate the assumption that a netlist

completely represents the function of a circuit [ZLY+18]. With the help of wave-

pipelining paths, this method forces attackers to capture delay information from

manufactured chips, which is a very challenging task because false paths are also

introduced.

1.2 Organization of This Dissertation

The structure of this thesis is as follows. The basic concepts of static timing analy-

sis are introduced in Chapter 2. Process variations and the state-of-the-art methods

to mitigate these variations are described in Chapter 3. Post-silicon tuning tech-

niques are explained in Chapter 4. The interdependency of setup time, hold time

and clock-to-q delay is modeled to exploit the flexible timing properties of flip-flops

in Chapter 5. Chapter 6 introduces the new timing model, with which the tim-

ing performance can be improved even beyond the traditional limit. Afterwards,

a timing camouflage method to improve circuit security against counterfeiting is

demonstrated in Chapter 7. In the end, this thesis is concluded in Chapter 8.

4

1.3 Summary

1.3 Summary

As the manufacturing technology advances into nanometer technology, process vari-

ations are becoming more and more pronounced. Therefore, the traditional worst-

case design methodology to handle these variations is too pessimistic. As a solution,

a post-silicon tuning technique is introduced to adjust the timing properties of chips

after manufacturing. The challenges of this techniques are investigated in this thesis.

Exploiting the flexible timing properties of flip-flops, as another technique to counter

process variations, is presented. However, these techniques are still confined within

the traditional timing paradigm, where the performance of a circuit has reached a

limit. Therefore, a new timing model is also proposed to improve the circuit per-

formance even beyond the traditional limit. To secure digital circuits, the traditional

assumption that the netlist represents the function of a circuit is invalidated with

the proposed timing camouflage method.

5

1 Introduction

6

Chapter 2

Timing of Digital Circuits

As mentioned in the previous chapter, the timing performance is one of the core

performances of digital circuits. In this chapter, the basic timing concepts of digital

circuits and several existing timing optimization methods are reviewed.

2.1 Sequential Circuits

Generally, digital circuits can be classified into two categories, namely, combina-

tional circuits and sequential circuits. Although combinational logic circuits con-

stitute the infrastructure of digital circuits, sequential circuits are used more often

in practice because they can provide more complex functions than combinational

circuits.

In combinational circuits, the output is a function of only the present input. Sequen-

tial circuits involve memory elements along with combinational logic. Fig. 2.1 shows

the typical structure of sequential circuits, where the output of memory elements is

fed back into the input of combinational circuits. With this structure, the output of

a sequential circuit is controlled by not only its current input but also the present

state of the circuit. The memory elements store data at their inputs when the clock

signal is valid.

Flip-flops and latches are basic memory elements in sequential circuits. Only at

the predefined clock edges can the data at the input of a flip-flop be transferred

to its output. Accordingly, a flip-flop is normally called edge-triggered. Different

from flip-flops, the data at the input of a latch can be transferred to its output

when the clock signal is active, high logic or low logic based on the type of a latch.

Accordingly, a latch is called level-triggered. In this section, flip-flop based circuits

are firstly introduced, and then latch based circuits are described.

7

2 Timing of Digital Circuits

Input Output
Combinational

Circuit

Memory
Element

clock

Figure 2.1: The structure of sequential circuits.

In sequential circuits, if flip-flops are used to store information, these circuits are

called flip-flop based circuits. They are the most popular circuit type adopted in

industry because of the their simple design and timing verification.

In flip-flop based circuits, flip-flops are used to synchronize signal propagations.

Consequently, these propagations are blocked at flip-flops until a clock edge arrives.

The data at the inputs of flip-flops are transferred to their outputs at each active

clock edge, assumed as rising clock edge in the rest of this thesis. With flip-flops,

combinational logic blocks are isolated naturally. In this way, designers only have

to guarantee that the logic functions of combinational blocks are correct without

having to worry about the interconnections between different stages. This design

style reduces design efforts significantly.

To guarantee the correct function of flip-flop based circuits, timing constraints should

be satisfied for each pair of flip-flops. One of them is the setup constraint, which

describes the scenario where the signal at the input of the source flip-flop should

not propagate too slowly to arrive at the sink flip-flop. Another constraint requires

that the signal arriving at the input of a flip-flop should not be too fast to affect the

latching data at the flip-flop. These timing constraints will be explained further in

Section 2.2.1.

Similar to flip-flops, latches can also be used as memory elements to design sequen-

tial circuits. This type of circuit is called latch based circuit. The design of latch

8

2.2 Timing of Sequential Circuits

based circuits is much more difficult than that of flip-flop based circuits due to the

inherent flexible property associated with latches. Accordingly, latch based circuits

are only used in high-performance designs.

In this thesis, latches are assumed to be active when the clock signal is high. The

data at the input of a latch is locked into this latch when the clock signal switches

from high to low. Accordingly, the falling edge is called latching edge of a latch.

On the contrary, the data at the input of a latch can propagate when the clock sig-

nal switches from low to high. The rising edge is called enabling edge of a latch.

The phenomenon that the input signal changes result in immediate changes at the

output is called latch transparency. This property of latch based circuits is the essen-

tial difference compared with that of flip-flop based circuits, where the path delay

between pairs of flip-flops should be smaller than the clock period. Accordingly,

timing analysis of latch based circuits is also more complicated than that of flip-flop

based circuits.

2.2 Timing of Sequential Circuits

In this section, timing constraints and static timing analysis of sequential circuits

will be described. These constraints are used to guarantee correct functionality

of circuits. Firstly, timing constraints and analysis of flip-flop based circuits are

introduced. Afterwards, those of latch based circuits are described.

2.2.1 Timing of Flip-flop Based Circuits

Fig. 2.2 illustrates the concept of timing constraints of flip-flop based circuits, where

two flip-flops are connected by a combinational circuit. Assume that at the reference

time 0, the signal at the input of FFi is transferred to its output and this signal starts

to propagate to the input of FFj at the next stage. To guarantee the correct function

of FFj, the data must be stable tsu time before it is latched by FFj at the next rising

clock edge at time T. Therefore, the following inequation should be satisfied

tcq,i + dij + tsu,j ≤ T (2.1)

9

2 Timing of Digital Circuits

comb. circuitFF FF

clk

hjsj

T

i j

clk

reference time 0

Figure 2.2: Timing constraints of flip-flop based circuits.

where tcq,i is the propagation delay from clock signal to the output of FFi, dij is the

maximum delay of combinational paths between FFi and FFj, tsu,j is the setup time

of FFj and T is the clock period. For each pair of flip-flops in sequential circuits,

(2.1) should be satisfied to guarantee the correct function.

To guarantee the data captured at FFj correctly, the data should also be stable th time

after the next rising edge. th indicates that there should not be any change in the

input data at FFj between the next rising edge T and T+th. Therefore, the earliest

arrival time from FFi should satisfy the following inequation

tcq,i + dij ≥ th,j (2.2)

where dij is the minimum delay of combinational paths between FFi and FFj and

th,j is the hold time of FFj. Hold time constraints defined in (2.2) should be satisfied

between all pairs of flip-flops in sequential circuits.

The maximum delay between all pairs of flip-flops in a sequential circuit determines

the minimum clock period the circuit can work with. To calculate the maximum de-

lay between a pair of flip-flops, the combinational circuit between two flip-flops

should be traversed. Path-based and block-based traversals are two methods to

calculate the maximum delay between pairs of flip-flops. The path-based method

enumerates all paths from inputs to outputs of a circuit by summing the gate delays

along a path together. Accordingly, it is suitable to evaluate circuits with a smaller

number of paths. Instead of computing the delays of paths, the block-based method

10

2.2 Timing of Sequential Circuits

visits each combinational gate in a circuit only once. Therefore, the runtime effi-

ciency is much higher than that of the path-based method. In the following, the

block-based timing analysis method is explained.

Algorithm 1 shows the pseudo code of the static timing analysis for flip-flop based

circuits as an example of timing analysis algorithms. For simplification, all outputs

of flip-flops are regarded as primary inputs and all inputs of flip-flops as primary

outputs. Lines 6-14 initializes the arrival times at the primary inputs to be prede-

fined values, e.g., the propagation delays of flip-flops. Thereafter, all combinational

gates whose fanins are only primary inputs are appended to Q. The main loop (lines

15-27) processes these gates in iteratively. In every iteration, a combinational gate

is taken from Q as the current gate. The arrival time of this gate is the maximum

value of all input arrival times plus the pin-to-pin delay of this gate. Afterwards,

the fanout gates are checked. Only when all the fanins of a fanout gate have been

already visited can it be appended to Q. The main algorithm terminates when Q

is empty, indicating the arrival times at the primary outputs of a circuit are already

calculated. With the sum of the maximum arrival times at all primary outputs and

setup time, the maximum delay of the circuit is obtained. This delay represents the

minimum clock period without setup time violations for flip-flop based circuits.

The minimum delay at each primary output can be computed with the min op-

eration in Algorithm 1. The minimum delay should be larger than the hold time

of the flip-flops to guarantee the correct function when the circuit works with the

maximum clock frequency obtained from Algorithm 1.

2.2.2 Timing of Latch Based Circuits

Timing of latch based circuits is more complicated than that of flip-flop based cir-

cuits because of the flexible timing properties of latches. Similar to flip-flops, the

arrival time at the input of each latch must satisfy the setup time constraint. To

formulate this constraint, we assume all arrival times of latches are with respect to

the local time zone. In this thesis, the start time of the local time zone for each latch

is assumed to be the time at which the clock signal switches from high to low, while

the latch is in transparency when the clock signal is 1.

11

2 Timing of Digital Circuits

Algorithm 1: Timing Analysis of Flip-flop Based Circuits.

// variables

1 TMin: minimum clock period (initialized to 0);

2 Q: FIFO-like queue of combinational gates to be visited;

3 n∗: primary inputs; m∗: primary outputs;

4 c∗: combinational gates; A∗: arrival times;

5 Wij: the pin-to-pin delay of gate i;

// algorithm initialization

6 foreach primary input ni do

7 set arrival time of ni;

8 mark ni as visited;

9 foreach fanout gates cj of ni do

10 if all fanin of cj are primary inputs then

11 append cj to Q;

12 end

13 end

14 end

// main loop

15 while Q is not empty do

16 ci ← head of Q; Ai ← 0;

17 foreach fanin nj or cj of ci do

18 At ← Aj + Wji;

19 Ai ← max{At, Ai};
20 end

21 mark ci as visited;

22 foreach fanout gates cj of ci do

23 if all fanin of cj are visited then

24 append cj to Q;

25 end

26 end

27 end

28 foreach primary output mj in the circuit do

29 Aj ← arrival time of the fanin gate;

30 At ← Aj + tsu,j;

31 TMin = max{TMin, At};
32 end

12

2.2 Timing of Sequential Circuits

0 T

0 T

enabling edge latching edge

passive active

phase
shift

comb. circuitL L

clk

i j

εij

ri

rj

Figure 2.3: Local time zone and clock phase shift.

Fig. 2.3 illustrates a latch based circuit with two latches i and j and their clock phases.

εij is the phase shift of the two clock phases for latch i and j. The start propagation

time of a data signal at the input of a latch is called departure time and represented

as Di, which is defined to the local time zone of latch i. The latest arrival time Aj is

calculated as

Aj = Di + tcq,i/tdq,i + dij − εij (2.3)

where −εij transforms Aj to the local time zone of j. tcq,i is the propagation delay

from clock signal to the output of latch i and tdq,i is the propagation delay from data

to the output of latch i. tcq,i/tdq,i is determined according to whether a data signal

at the input of latch i starts propagation at the enabling clock edge or during the

transparency.

In Fig. 2.3, the enabling clock edge of latch i is represented as ri. Only after ri can a

data signal can propagate to the next latch stage. Accordingly, the latest departure

time of i can be expressed as follows

Di = max{Ai, ri}. (2.4)

By substituting Di in (2.3) with max{Ai, ri}, (2.3) can be expressed as follows,

Aj = max{Ai, ri}+ tcq,i/tdq,i + dij − εij. (2.5)

To guarantee the data signal at the input of the latch j to be latched correctly, this

13

2 Timing of Digital Circuits

input signal must be stable at least tsu,j time before the latching clock edge. Accord-

ingly, the following timing constraint for latch j should be met.

Aj + tsu,j ≤ T. (2.6)

The definition for hold time analysis can be explained similarly. The earliest arrival

time aj at latch j can be computed as

aj = di + tcq,i/tdq,i + dij − εij. (2.7)

Only after ri can a data signal can propagate to the next latch stage. Accordingly,

the earliest departure time of latch i can be expressed as follows

di = max{ai, ri}. (2.8)

Accordingly, the earliest arrival time at latch j becomes

aj = max{ai, ri}+ tcq,i/tdq,i + dij − εij. (2.9)

To guarantee the data to be latched correctly, the following hold time constraint

should be satisfied

aj ≥ th,j. (2.10)

The minimum clock period in (2.6) for latch based circuits cannot be identified di-

rectly because latch transparency makes the arrival times depend on each other. To

deal with this dependency, a method was proposed in [SMO90b], where the con-

straints in (2.4) and (2.6) are relaxed to find the minimum clock period. The timing

constraints in latch based circuits will be used in the Section 6 to perform timing

optimization.

2.3 Timing Optimization Methods for Sequential Circuits

In this section, several existing timing optimization methods for improving the tim-

ing performance of sequential circuits are reviewed.

14

2.3 Timing Optimization Methods for Sequential Circuits

2.3.1 Gate Sizing

Gate sizing is one of the most popular methods for optimizing digital circuits. In

gate sizing, scaling factors of combinational gates are selected to improve objectives

such as clock frequency and area efficiency, while timing constraints between flip-

flops are satisfied. It is usually adopted in the overall design flow to fix timing

violations. For instance, it is used after placement to resize gates that violate the

rules of maximum fanout or setup time requirements of flip-flops. After routing, it

is used to fix setup and hold violations with the layout information.

Gate sizing has been investigated extensively in the literature. For example, [CCW98]

introduces a fast and exact algorithm for simultaneous gate and wire sizing to min-

imize total area and propagation delay inside a circuit. In [OBH11], a Lagrangian

Relaxation (LR) based formulation together with a graph model is proposed to op-

timize timing slacks and power consumption simultaneously. In [HKK+12], a meta-

heuristic approach is developed to size logic gates that have the greatest impact on

power-performance tradeoff. This method guarantees slack, capacitance and slew

constraints throughout the optimization process. In addition, [LKLZ12] presents

a framework for cell-type selection with a further extension of the traditional La-

grangian Relaxation to match discrete gate sizes, together with a min-cost network

flow method to optimize power consumption.

2.3.2 Retiming

Retiming is another technique for optimizing digital circuits. It repositions the se-

quential components, e.g., flip-flops, in a circuit without moving the combinational

portion. The objective of retiming is to find a circuit with the minimum number of

sequential components for a given clock period. There are usually two variants in

this method. The first one is minimizing the clock period without considering the

number of sequential components in the final circuit. The second one is minimizing

the number of sequential components in the final circuit with no constraints on the

clock period.

Retiming has been investigated extensively for over a decade. In [LZ06], an effi-

cient algorithm is proposed to retime sequential circuits under both setup and hold

15

2 Timing of Digital Circuits

constraints. The work in [HMB08] demonstrates a maximum-flow-based approach

to minimize the number of flip-flops. In [WZB17], a new retiming method with a

network-simplex algorithm is introduced for two-phase latch-based resilient circuits

to reduce the overhead of normal and error detecting latches. Retiming for FPGA

has been investigated in [SMB05] to meet architecture constraints such as avoiding

flip-flops through carry chains to guarantee a correct circuit function.

2.3.3 Clock Skew Scheduling

Clock skew scheduling is a technique that intentionally introduces skews to sequen-

tial components, e.g., flip-flops, to reduce the clock period. Similar to retiming, clock

skew scheduling can also balance the timing slacks between flip-flop stages to im-

prove the circuit performance. Retiming achieves delay compensations at gate level.

However, skew scheduling deals with delay imbalances at a finer level of granular-

ity. Retiming and clock skew scheduling can be combined together to reduce the

clock period. Intentional clock skews can be introduced statically with methods,

such as different wire-interconnect lengths from clock signal to sequential compo-

nents. After manufacturing, adjusting clock skews for each chip dynamically can be

achieved with methods, such as post-silicon tuning, at the expense of area overhead.

In [Fis90], clock skew scheduling is investigated to improve the circuit performance,

e.g., minimizing the clock period or maximizing the safety margin for a given clock

period. To tolerate process variations, in [NF96], a graph-based algorithm is pro-

posed to incorporate process-dependent delays when determining the minimum

clock period. [KK17] exploits the useful clock skew scheduling with adjustable de-

lay buffers allocated at the flip-flops.

2.3.4 Wave-Pipelining

Wave-pipelining is another method to improve circuit performance, where logic

waves are allowed to propagate through combinational paths without intermedi-

ate sequential components. Wave-pipelining provides a method to make the clock

frequency of a circuit independent of the largest path delay, which limits circuit

performance in traditional circuit designs. This technique has been explored in the

16

2.4 Summary

context of circuit design, where the numbers of waves on logic paths should be

defined and their synchronization should be maintained by designers during the

design phase. In wave-pipelining based design, logic design and timing cannot be

handled separately. Consequently, it is incompatible with the traditional fully syn-

chronous design.

As early as in [JC93], a linear method to minimize the clock period using wave

pipelining is proposed. The work in [BCKL98] introduces the fundamentals of wave-

pipelining and investigates wave-pipelined VLSI chips and CAD tools for designing

wave-pipelined circuits. Recently, this method is also explored for majority-based

beyond-CMOS technologies to improve the throughput of majority inverter graph

(MIG) designs in [ZMT+17].

2.4 Summary

The clock frequency determines the timing performance of sequential circuits. In

order to evaluate the timing performance, static timing analysis is commonly used.

The clock period of the circuit is determined by the maximum delays between pairs

of flip-flops and setup times without hold time violations. The static timing analysis

methods are a fundamental part of the timing analysis considering process varia-

tions in the following chapters.

In the traditional timing paradigm, four methods are usually adopted to improve

the timing performance of digital circuits. Gate sizing, retiming and clock skew

scheduling can be used separately or jointly. The combined methods achieve an ag-

gressive optimization by balancing the timing slacks with the smallest combinational

delay in the library. Wave-pipelining provides a way to balance the timing slacks

between several flip-flops stages. However, it is not compatible with the traditional

timing paradigm.

17

2 Timing of Digital Circuits

18

Chapter 3

Background and Problem Description

Traditional static timing analysis evaluates the timing performance of a circuit by

setting the process parameters to their worst/best corners. With the process varia-

tions more pronounced, it is intractable to analyze all possible corners. Furthermore,

the corner-based analysis is pessimistic in evaluating the circuit performance. Cir-

cuit aging also affects the timing properties of circuits. To counter process variations

and aging, a large timing margin is usually reserved. As aging effects becomes more

prominent, this conservative approach is increasingly less feasible. In this chapter,

variations and aging are discussed firstly. Thereafter, existing methods to alleviate

them are investigated.

3.1 Process Variations and Aging

Process variations are deviations of process parameters, e.g., device gate length and

oxide thickness, from their nominal specifications after manufacturing. These varia-

tions result from the fact that the semiconductor fabrication process cannot be pre-

cisely controlled. The deviations of process parameters cause variability in electrical

parameters of integrated circuit devices and wires. Accordingly, delays of combi-

national gates and interconnects have variations. As the manufacturing technology

advances into nanometer technology nodes, process variations are becoming more

and more pronounced and affect circuit performance significantly.

The traditional method to deal with process variations is the worst-case design

where delays of long paths are overestimated and those of short paths are under-

estimated. This method, however, leads to a large unnecessary margin reserved in

circuits. With the increasing process variations, it cannot be applied any more due

to the underestimation of circuit performance.

19

3 Background and Problem Description

To reduce the pessimism in the worst-case design, process variations should be

firstly investigated and modeled accurately instead of using the worst-case design

method. Afterwards, the analysis of process variations can be incorporated into

design optimization methods to improve yield and profit of circuits.

3.1.1 Sources of Process Variations

Generally, variations result from the inaccurate control of semiconductor manufac-

turing process. Various sources of variations affect characteristics of wafers and dies

on them during the fabrication process. In this section, the sources of variations are

analyzed from the perspective of integrated circuit devices and interconnects.

The variations of integrated circuit devices are typically categorized into two types:

device geometry variations and device material parameter variations. The first type

affect the physical geometric structure of devices. They include film thickness vari-

ations and lateral dimension variations. Film thickness variations occur primarily

from wafer-to-wafer or die-to-die control and cause deviations of gate oxide thick-

ness. Lateral dimension variations result from photolithography proximity effect,

lens, mask, plasma etch dependencies, or photo system deviations [BN00]. They

cause deviations of gate length, which is critical dimension (CD) because it affects

gate delay primarily. The second type, device material parameter variations, are

related to internal material parameters. For example, doping variations affect junc-

tion depth and dopant profiles, leading to variability in effective channel length.

There also exist variations during the processes of deposition and anneal, resulting

in variability in contact and line resistance.

Similar to devices, the variations of interconnects also include geometry variations

and material parameter variations. Deviations in line width and spacing due to

photolithography and etch dependencies impact line resistance and capacitance. In

addition, the fluctuations during CMP process affect the thickness of metal lines.

These fluctuations make electrical characteristics of interconnects, e.g., capacitance,

differ from nominal specifications. There are also variations in material property.

For example, metal resistivity varies from wafer to wafer and the dielectric constant

is affected by the deposition process.

20

3.1 Process Variations and Aging

3.1.2 Categories of Process Variations

Generally, there are two groups of process variations: systematic and non-systematic

variations. Systematic variations can be obtained after analyzing the design lay-

out. Accordingly, they can be considered as deterministic values during the design

process. Different from systematic variations, non-systematic variations can not be

predicted before manufacturing. They are also called random variations, indicating

the uncertainty of variations in physical parameters. Therefore, they are usually

modeled as statistical variables during the design process.

Non-systematic variations can be further classified into die-to-die variations and

within-die variations according to the spatial scales of variations. Die-to-die vari-

ations affect all devices and interconnects equally. For example, they cause gate

length of all devices on one chip to vary in a similar way. In contrast, within-die

variations affect each device on the same die differently. For instance, some devices

on a die have a smaller gate length, whereas other devices on the same die have a

larger gate length than design values.

Furthermore, within-die variations can be classified into spatially correlated and in-

dependent variations. The former exhibit spatial dependence. For example, some

processes affect devices that are located closely to each other in a similar way. Ac-

cordingly, they can be modeled by establishing correlation between these variations.

However, independent variations do not exhibit spatially dependent correlation.

They are different for all devices. They result from the inaccuracy of manufacturing

equipments and process control and happen in nearly every processing step.

21

3 Background and Problem Description

1,1 1,2 1,3

2,1 2,2 2,3

3,33,23,1

Figure 3.1: Uniform Grid Correlation Model [CS03].

3.1.3 Correlation Modeling

Process variations can be decomposed into different variables [SBC97]. Accord-

ingly, they can be modeled by summing these decomposed variables. Die-to-die

variations result in global correlation or die-to-die correlation for parameters of the

devices and interconnects. Within-die variations demonstrate proximity correlation,

indicating that the distance between two devices on the die determines the corre-

lation [CCBC06]. For example, if the distance between two devices is large, the

correlation between their parameters is small.

The widely deployed correlation model for within-die variations is proposed in

[CS03]. In this model, uniform grids are used to partition the die area, illustrated

in Fig. 3.1. A random variable is assigned for each grid cell. Therefore, n variables

are assigned when there exist n grid cells. The correlations among the n random

variables are computed with methods, e.g., [XZH07]. To reduce the complexity

in handling correlated variables, principal component analysis (PCA) [Jol02] is de-

ployed to make decomposition of the n correlated variables into linear combinations

of independent random variables. After the decomposition, only the independent

variables with large coefficients are maintained in the linear combinations. Accord-

ingly, the number of variables modeling correlation can be reduced significantly. For

example, a process parameter p after decomposition can be represented as follows

p = p0 + pg + pl + pr (3.1)

where p0 is the nominal value of the process parameter. pg models the die-to-die

variation and is shared by all devices. pl is the vector of independent random

22

3.1 Process Variations and Aging

variables after decomposition of correlated random variables. pr is an independent

variable modeling the purely random effect during manufacturing processes.

To evaluate the circuit performance under process variations, gate delays should

be modeled as random variables based on the modeling of process variations. The

correlation between process variations leads to correlated gate delays. For instance,

the delays of two gates differ from the nominal specifications in a similar way when

these gates are located nearby on the die. If their distance is large, delays of both

gates demonstrate more randomness. In order to consider the effect of the corre-

lation from process variations on the gate delays, these delays are represented as

functions of process parameters.

The widely used delay description method uses linear functions [CS03, VRK+04].

Assume n process parameters affect gate delay. Therefore, a gate delay in this

method is formulated as follows

D =
n

∑
i=1

kp0 +
n

∑
i=1

kpg +
n

∑
i=1

kpl +
n

∑
i=1

kpr (3.2)

= D0 +
m

∑
i=1

divi + drvr (3.3)

where k and k are the coefficients and the coefficient vector. The gate delay in

(3.2) can be generalized into the canonical linear delay form [VRK+04] as in (3.3),

where m is the number of independent random variables after decomposition, vi are

independent random variables shared by all gate delays. vr is the purely random

variable specific for each delay. D0 is the nominal value of the delay. di and dr are

the coefficients of the random variables. The correlations between gate delays are

represented by sharing the same set of random variables vi.

With the canonical delay model (3.3), arrival times can be propagated very fast with

simple computations [VRK+04]. In the following chapters, this delay model is used

to represent gate delays.

3.1.4 Circuit Aging

Another challenge that has emerged as the manufacturing process has shrunk to

nanometer technology is circuit aging. Several aging phenomena affect the perfor-

mance of transistors prominently. They are Hot Carrier Injection (HCI), Negative

23

3 Background and Problem Description

Bias Temperature Instability (NBTI), Electromigration (EM), Timing Dependent Di-

electric Breakdown (TDDB) and Positive BTI (PBTI).

The analysis of aging is complicated because aging is sensitive to many factors,

such as process parameter variations, temperature, frequency and supply voltage.

In the traditional method, a safety margin is reserved to alleviate the effect of aging.

However, this method is increasingly infeasible because it is not a viable solution to

tolerate a large timing margin as aging has become more pronounced. Therefore, it

is desirable to analyze the aging effect of a circuit specifically.

To estimate aging effects, the traditional method adopts accurate transistor-level

simulations. However, this method is not efficient for analyzing large circuits. To

deal with this problem, researchers have investigated many methods to analyze HCI

and NBTI and the factors influencing them. In addition, timing models and algo-

rithms for aging analysis on gate level has been developed [BM09, CWT11, KKS06,

KKS07,PKK+06,KBW+14,AKGH16,KME+16]. Among these methods, the AgeGate

model [LGS09,LBS10,LBS12] is built on the canonical delay model [VRK+04] so that

it can be integrated into standard timing signoff flows [KS15]. The aging analysis is

accelerated further in [LBS14] while maintaining a good accuracy.

In the design phase, the aging effect still has to be considered statistically because

both process variations and aging affect chips individually in the manufacturing

process. To counter aging effects actively, post-silicon tuning techniques can also be

applied to adjust the timing properties of individual chips. Such techniques include

body bias tuning [KSB06, GLL+15], voltage control [And05, KCL+17, KLS+15] and

clock tuning [NSG+06, TZC05, LN14].

24

3.2 Timing with Process Variations

3.2 Timing with Process Variations

With the increasing process variations at nanometer technology nodes, it is a chal-

lenging task to verify timing of circuits before manufacturing. In addition, the chips

might not work with the designated clock period after manufacturing, leading to

yield loss. To deal with these variations, methods from design phase to test phase

have been proposed in the last several decades [SHJL16, LHS18]. In the following

subsections, these methods are reviewed to show how they meet the challenges im-

posed by process variations.

3.2.1 Traditional Corner-based Design Method in Digital Circuits

Traditional static timing analysis method depends on specific process corners. Two

letters are usually used to describe different corners, where the first letter represent

the NMOS device and the second refers to the PMOS device. For example, SS

represents a process corner with slow PMOS and slow NMOS. TT, SS, FF, SF and FS

are commonly used five corners for performance analysis. Interconnect parasitics

are extracted at multiple corners similarly. To guarantee the correct function of

designs throughout the process range, hold time violations are verified at the FF

corners and setup time violations are verified at the SS corner. Accordingly, corner-

based timing analysis is pessimistic due to the overestimation of delays of long paths

and underestimation of delays of short paths.

At submicron manufacturing technology nodes, process variations are becoming

more pronounced. To handle these variations, an exponential number of corners are

required as more complicated process effects occur. However, it is very difficult to

analyze all possible corners. Therefore, some missing corners may cause failures of

circuits after manufacturing. Furthermore, within-die variations cannot be ignored

any more. The common method to deal with these variations is to use a predefined

delay scaling factor for all circuit elements. For example, delay is increased for

long-path analysis and is decreased for short analysis. However, this method causes

overly pessimistic analysis because the factor is set to the worst-case within-die

variations.

25

3 Background and Problem Description

3.2.2 Statistical Static Timing Analysis

The demand for an effective modeling of process variations in timing analysis leads

to the boom of research on statistical static timing analysis (SSTA). Instead of using

deterministic values for gate or interconnect delays, SSTA models them as random

variables with known probability distributions. Therefore, delay distributions are

propagated to determine the probability distribution of circuit performance in SSTA.

Existing research on SSTA includes [VRK+04, CS05, SS08, BCSS08, LKS+08, LCS09a,

LCS+09b,LCS10,LCS11,LCS12,LCXS13,KLS+15,LS15]. They are generally classified

into two categories: path-based statistical timing analysis and block-based statistical

timing analysis.

In path-based statistical timing analysis, a set of paths are selected which have sig-

nificant probability of being critical and their delay distributions are calculated by

summing the delays of all gate and interconnect delays along these paths. The circuit

delay is then estimated with a statistical maximum operation over all path delays.

The method has the advantage of separating the computation of path delays and

the statistical maximum operation over these path delays. However, it is not clear

how to select paths with significant probability of being critical. Additionally, the

number of these critical paths is large in well-balanced circuits, leading to expensive

computation. Furthermore, it is not suitable for incremental timing analysis where

changes in circuits should be dealt with incrementally and efficiently.

Instead of enumerating paths in a "depth-first" way, block-based statistical timing

analysis traverses the circuit in a "breadth-first" manner. It propagates signal arrival

times at circuit nodes using sum and max operations, resulting in a runtime that

is linear with circuit size. Unlike path-based statistical timing analysis, block-based

statistical timing analysis is computationally efficient and is capable of incremen-

tal analysis. However, it is not trivial to calculate the statistical maximum of two

correlated arrival times.

Although SSTA has obtained extensive interest in recent years, it has not been used

widely in industry. On one hand, it is too complicated, especially with realistic

distributions instead of Gaussian distributions, which are widely used in SSTA.

Furthermore, the effort for the required characterization of standard cell libraries can

become significant. On the other hand, traditional deterministic STA is enhanced by

26

3.2 Timing with Process Variations

scanin 0 1 2
shift

scanout

configuration bits

CLK_IN CLK_OUT

Figure 3.2: Post-silicon delay tunable buffer in [NSG+06].

incorporating sensitivities and correlation. Accordingly, the benefit of SSTA is still

not certain.

3.2.3 Post-Silicon Tuning to Mitigate Process Variations

Post-silicon tuning is another technique to counter process variations. To apply

this technique, tunable components are inserted into the circuit during the design

phase. After manufacturing, chips with timing failures can be rescued by tuning

buffers with respect to the effect of process variations, which become deterministic

at this phase.

A widely used post-silicon tuning technique is clock tuning using delay buffers.

Post-silicon tunable buffers have various structures [TRND+00, TKMH04, MFDN05,

NSG+06]. The structure of the tunable buffer used in [NSG+06] is demonstrated in

Fig. 3.2, where the three registers control the delay between the clock input CLK_IN

and output CLK_OUT. During the design phase, tunable buffers of such type are

inserted onto the clock paths of selected flip-flops related to potential critical paths.

After manufacturing, the delay values of these buffers are adjusted through the test

access port (TAP) to allot critical paths more timing slack by shifting clock edges to-

ward stages with smaller combinational delays. Since critical paths might be differ-

ent in individual chips due to process variations, post-silicon tunable buffers can be

configured in each failed chip to counterbalance them efficiently. With post-silicon

tuning, chips that failed to meet timing specifications can be revitalized.

In recent years, several methods have been proposed to determine buffer locations

and evaluate the potential resulting yield improvement. A clock scheduling method

is developed in [TBCS04] and tunable buffers are selectively inserted to balance the

27

3 Background and Problem Description

skews resulting from process variations. In [TZC05] algorithms are proposed to

insert buffers into the clock tree to guarantee a given yield, while minimizing the

total area of these tunable buffers or the total number of them. In [KK17] the buffer

allocation problem is solved with a graph-based algorithm under useful clock skew

scheduling. Yield loss due to process variations and the total cost of tunable buffers

are formulated together for gate sizing in [KS07]. A machine learning method is

proposed in [YZLS17] to identify the locations of buffers. In [NK09], the placement

of tunable buffers is investigated and a considerable improvement is observed when

the clock tree is designed using the proposed tuning system. With the locations of

tunable buffers known, the improved yield of the circuit can be evaluated efficiently

using the method in [LCS11, LS15].

Since post-silicon tunable buffers take die area and require special treatment dur-

ing physical design, the number of these buffers should be small to provide a good

yield/profit improvement. This buffer insertion at the design phase is essentially

a statistical optimization problem when process variations are considered. Previ-

ous methods [TZC05, KS08] solve this problem by path search or the cutting plane

method. In these methods, yield values of different combinations of buffer locations

are evaluated using Monte Carlo simulation. New combinations of buffer locations

are then selected to evaluate according to the yield gradient. This is in fact a statisti-

cal extension of linear programming. Since Monte Carlo simulation is used at many

branching points, this direct extension requires a large runtime to determine buffer

locations, though the calculated buffer locations may still fall into a local optimum

in the problem space due to the nature of path search.

After manufacturing, necessary information, e.g., delays of combinational paths,

need to be extracted from chips with timing failures for post-silicon clock skew

scheduling. In [LN14] an efficient post-silicon tuning method is proposed to search

a configuration tree together with graph pruning and buffer grouping. The methods

in [NK08,TGB09] measure path delays individually in manufactured chips and tune

them accordingly. Furthermore, this post-silicon tuning technique has been applied

for on-line adjustment to improve lifetime performance of a circuit in view of pro-

cess variations and aging [YYX11,LN12]. Moreover, the method in [CDS+08] applies

tunable buffers to compensate dynamic delay uncertainty induced by temperature

variations. However, delay measurement in these methods is still performed by ap-

28

3.2 Timing with Process Variations

flip-flop

clk

D Q

clk

Q

D

tsu th

dcq

setup hold
slack slack

Figure 3.3: Setup time (tsu), hold time (th) and clock-to-q delay(dcq) of a flip-flop.

Setup slack and hold slack are defined as the distance from the latest and

earliest signal switching to the active clock edge, respectively.

plying frequency stepping to individual paths [LN14,NK08,TGB09], which requires

much time from expensive testers.

To apply the post-silicon tuning, a new technique will be introduced to insert tun-

able components into circuits during the design phase in Section 4.1. In Section 4.2,

how to reduce the test cost to configure the tunable components will be presented.

3.2.4 Setup Time and Hold Time Characterization in Static Timing

Analysis

Facing challenges from process variations, traditional definitions of timing con-

cepts in STA should be examined. In STA, combinational circuit stages between

flip-flops are assumed to be independent, and a flip-flop can work reliably if its

setup time and hold time constraints are met [Pat90, Roe03]. With this assump-

tion, only the worst/best corners (late and early modes) need to be verified with

the largest/smallest combinational delays. However, in reality the relation between

setup time, hold time and clock-to-q delay is a continuous function. Therefore, a

smaller setup time allows the critical paths before a flip-flop more timing budget

in case no timing violations are incurred at the next stage. These characteristics

give the circuit a chance to balance the slacks between successive flip-flop stages.

Therefore, the effect of process variations can be alleviated using the flexible timing

characteristics of flip-flops. In this section, the simplified timing model of a flip-

flop is reviewed. Afterwards, the interdependency between clock-to-q delays, setup

29

3 Background and Problem Description

FFi

clk

D Q D Q D Q

FFj FFk

Figure 3.4: Circuit example with three flip-flops and two combinational circuits.

times and hold times is discussed.

In STA, a flip-flop is characterized by its setup time, hold time, and clock-to-q delay.

These characteristics can be explained using the example in Fig. 3.3. If the latest

signal switching at the input of the flip-flop is tsu time before it is sampled by the

active clock edge, and if the earliest signal switching happens th time later than the

active clock edge, the data at the input of the flip-flop can be latched correctly. In

this case, the delay from the active clock edge to the output of the flip-flop (Q),

clock-to-q delay dcq, is characterized as a constant. If either of the two constraints

is violated, the flip-flop is considered to not work properly, and a timing error is

reported.

Timing constraints of digital circuits can be explained further using Fig. 3.4, where

three flip-flops are connected by combinational circuit blocks. When an active clock

edge is generated, all flip-flops are triggered at the same time. In traditional STA,

timing constraints are defined with setup time, hold time and constant clock-to-q

delays. For flip-flops i and j, the timing constraints can be written as

dcq,i + dij + tsu,j ≤ T (3.4)

dcq,i + dij ≥ th,j (3.5)

where dcq,i is the delay of flip-flop i, dij (dij) is the maximum (minimum) delay of

the combinational circuit between flip-flops i and j, tsu,j (th,j) is the setup (hold) time

of flip-flop j, and T is the clock period.

The traditional setup time of a flip-flop is characterized by moving the signal switch-

ing at the input of the flip-flop to the active clock edge gradually. As the signal

switching approaches the active clock edge, the delay of the flip-flop starts to in-

crease. When this delay reaches a given metric, e.g., 110% of the minimum delay of

the flip-flop characterized with very large setup and hold slacks, the time difference

30

3.2 Timing with Process Variations

between the signal switching and the active clock edge is defined as the setup time.

Hold time is characterized similarly by moving the signal switching after the ac-

tive clock edge to the clock edge gradually. Accordingly, this increased delay of the

flip-flop, 110% delay in this case, is used as the clock-to-q delay in timing analysis.

The characterization process above guarantees that the circuit works properly if the

constraints (3.4) and (3.5) are met for each pair of flip-flops, because the reserved

setup time from latest signal switching to the active clock edge and the reserved hold

time from the clock edge to the earliest signal switching together guarantee that the

clock-to-q delay of the flip-flop does not exceed the characterized delay. This guar-

antees further that the timing constraints of the next flip-flop stage, e.g., between

flip-flop j and k in Fig. 3.4 can be verified by assigning the clock-to-q delay of the

flip-flop j to the characterized constant delay. In this way, the timing dependency

between consecutive flip-flop stages is hidden from designers.

The timing model of a flip-flop with setup time, hold time and constant clock-to-q

delay described above is a significant simplification for timing analysis and opti-

mization. As a result, the combinational circuits between flip-flops can be analyzed

and optimized independently without considering time borrowing as in designs

using level-sensitive latches. This efficiency in timing analysis is very important

because front-end circuit design usually undergoes many analysis-optimization it-

erations.

The simplified flip-flop model, however, sacrifices circuit performance for the sake

of execution efficiency. In order to simplify the clock-to-q delay to be a constant, the

latest signal switching must be tsu earlier than the clock edge. Otherwise, the circuit

is not considered to work properly. In reality, however, the flip-flop may still latch

the input data correctly if the arrival time of a signal is late, although the clock-to-q

delay may become larger than the constant delay. If the arrival time of the input

signal is too close the clock edge, the flip-flop may finally enter metastability and

thus fail to work properly. Similarly, if the hold time constraint is violated, the flip-

flop also works with a larger delay in a feasible region, before the signal change is

too close to the clock edge. For a given signal, we refer to the distance from the

signal switching at the input of a flip-flop to the clock edge as setup slack, and the

distance from the clock edge to the signal switching as hold slack, as illustrated in

Fig. 3.3. Consequently, setup time and hold time in the traditional definition are

31

3 Background and Problem Description

setup slack hold slack

clock-to-q delay

Figure 3.5: The three dimensional clock-to-q delay surface of a 45nm flip-flop with

respect to setup slack and hold slack.

actually also slacks at which the clock-to-q delay of the flip-flop is characterized as

a constant.

The relation between clock-to-q delay, setup slack and hold slack can be demon-

strated using the simulated delay surface of a 45nm flip-flop in Fig. 3.5. In this

example, we can see that when the setup and hold slacks are large, the delay of

the flip-flop is a constant. If these slacks are reduced enough, the clock-to-q delay

becomes larger, until the flip-flop finally enters metastability. In traditional STA,

the flip-flop is assumed to work in the area with a constant clock-to-q delay. This

simplification does not take advantage of the feasible region beyond the setup time

and hold time, so that the circuit performance may be underestimated.

If the flip-flop is allowed to work in the region with the setup slack smaller than

setup time, the clock period for the critical path of the circuit can be smaller, be-

cause the latest signal switching can arrive at the ending flop-flip later. Accordingly,

the delay of this flip-flop becomes larger, but the increased delay only affects the

combinational path in the next stage. In case the delay of the combinational path of

the next stage is not large, no timing violation appears. Consequently, the critical

path receives more timing budget for signal propagation, leading to an improved

circuit performance. This delay compensation is very similar to designs with level-

sensitive latches, or designs using intentional clock skew scheduling. The advantage

32

3.2 Timing with Process Variations

of this phenomenon is that the performance increase comes from a more accurate

timing analysis, without invoking the complete design-optimization flow or timing

ECO. Therefore, timing analysis considering this delay compensation is specially

useful in late stages of design flow such as timing signoff.

As mentioned earlier, when setup slack or hold slack becomes smaller, the delay of

the flip-flop increases. Fig. 3.6 illustrates several curves with respect to the setup

slack and hold slack as in [KL14]. On each curve, the clock-to-q delay is a constant,

and the curve closer to the axes has a larger delay. Before the delay becomes very

large and soon the flip-flop enters the metastable region, all these curves are valid

and the flip-flop can work with each setup/hold slack combination on them. The

traditional setup/hold time delay model, however, only assumes that the flip-flop

works with curves with a delay no larger than the characterized delay, e.g., 110%

of the stable delay. All the other curves on the left of the 110% curve are simply

ignored.

When characterizing the traditional setup time, the hold slack is set to a very large

value to exclude its influence. The setup slack is then decreased gradually, until the

delay of the flip-flop increases to 110%. The hold time is characterized similarly.

Therefore, the setup and hold time point used for static timing analysis is shown as

point A in Fig. 3.6b. When point A is used in STA, the shaded area under the curve

is also included. This area is located below the curve, so that the delay in the area is

larger than 110% delay. However, the flip-flop delay used in STA is still assumed as

the characterized 110% delay, posing a risk that the circuit still does not work even

though all timing constraints are met.

The method in [SFD+06, SDT+07] excludes the delay curves lower than the 110%

delay curve in timing analysis, so that the clock period cannot be improved. For

example, assume flip-flop j in Fig. 3.4 works with a small setup slack, so that the

clock period for this flip-flop stage can be lowered. This small setup slack may

incur an increase of the clock-to-q delay of flip-flop j. This delay increase, however,

may be absorbed by the stage between flip-flops j and k, if this stage has a small

combinational delay, so that the lowered clock period works with the whole circuit.

This scenario is similar to the case that flip-flop j works at the point B in Fig. 3.6a

and flip-flop k still works at point C.

To consider the three dimensional interdependency between clock-to-q delay, setup

33

3 Background and Problem Description

delay
increase

hold
slack

setup slack

meta-

region
stable

110%
120%

100%

A

hold
slack

setup slack

110%

(a) (b)
setup

hold

time

time

B C

Figure 3.6: Delay curves of a flip-flop. (a) Curves of setup/hold slack combinations

with respect to different constant clock-to-q delays. (b) Characterization

point of setup time and hold time in traditional STA.

slack and hold slack, the method in [JB05] uses a quadratic programming model

to calculate the optimal clock period directly, but it is limited due to the scala-

bility of this high-order programming method. To simplify the three dimensional

model, the method in [CLS12] approximates the relation between clock-to-q delay

and setup/hold slacks using an analytic function and calculates the minimum clock

period of a circuit by iterations. This method, however, cannot guarantee to converge

in the given number of iterations. In addition, the method in [KL14] approximates

the three dimensional delay surface using linear planes, but in calculating the min-

imum clock period this method splits the problem into two dimensional problems,

so that it cannot guarantee an optimal solution. Furthermore, the method in [YTJ15]

proposes a very efficient algorithm to capture timing violations in a circuit, but it

only considers the relation between clock-to-q delay and setup slack.

The above methods either cannot solve the STA problem considering the interdepen-

dency between clock-to-q delay, setup slack and hold slack, or cannot guarantee the

quality of the solution. Accordingly, a holistic method is developed in Section 5 to

calculate the minimum clock period of a circuit by modeling the three dimensional

delay.

34

3.2 Timing with Process Variations

3.2.5 The Confines of Traditional Timing Paradigms

In Section 3.2.4, flexible timing characteristics of flip-flops are used to balance timing

slacks in circuits after manufacturing. In the traditional timing paradigm, flip-flops

synchronize logic computation, so that logic waves cannot be propagated through

them. Therefore, the timing performance of circuits is restricted by the barrier of

flip-flops. However, if a flip-flop between two stages is removed, delay imbalances

of two stages are automatically exploited without incurring the risk of extreme limit

performance of flip-flops. Furthermore, the effect of process variations can be allevi-

ated further by eliminating the inherent clock-to-q delays of flip-flops. The challenge

of this technique is to maintain the correct function of the original circuit after some

flip-flops are removed. In this section, the function of sequential components in the

traditional timing paradigm is explained. Afterwards, an analysis of the confines of

this paradigm is provided.

In digital circuit designs, clock frequency determines the timing performance of

circuits. In the traditional timing paradigm, sequential components, e.g., edge-

triggered flip-flops, synchronize signal propagations between pairs of flip-flops.

Consequently, these propagations are blocked at flip-flops until a clock edge arrives.

At an active clock edge, the data at the inputs of flip-flops are transferred to their

outputs to drive the logic at the next stage. Therefore, combinational logic blocks are

isolated by flip-flop stages. This fully synchronous style can reduce design efforts

significantly, since only timing constraints local to pairs of flip-flops need to be met.

Within the traditional timing paradigm, many methods have been proposed to im-

prove circuit performance. They are gate sizing, retiming, clock skew scheduling

and wave-pipelining, which are introduced in Section 2.3.

Sequential components are assumed to synchronize signal propagation in these

methods, where no signal propagation is allowed to pass through sequential com-

ponents except at the clock edges. This synchronization with sequential compo-

nents achieves many benefits such as reducing design efforts. However, it limits

circuit performance in two regards. Firstly, sequential components have inherent

clock-to-q delays and impose setup time constraints. The former becomes a part of

combinational paths driven by the corresponding flip-flops and the latter deprives a

further part of the timing budget for the critical paths. Secondly, delay imbalances

35

3 Background and Problem Description

between flip-flop stages cannot be exploited since signal propagations are blocked at

flip-flops instead of being allowed to propagate through flip-flops. Although clock

skew scheduling can relieve this problem to some degree, it still suffers the inherent

clock-to-q delays and setup time constraints of flip-flops. The third method above,

wave-pipelining, allows signals to pass through sequential stages without flip-flops,

however, this technique is not compatible with the traditional timing paradigm.

The limitation of timing performance of circuits in traditional timing paradigm can

be illustrated using Fig. 3.7. Fig. 3.7(a) shows a part of a circuit where the combina-

tional path between F2 and F3 is critical with a path delay equal to 17. Assume that

the clock-to-q delay, the setup time and the hold time of a flip-flop are 3, 1, and 1,

respectively. The minimum clock period of this circuit is thus equal to 21.

To reduce the clock period, logic gates with smaller delays can be selected from the

library to accelerate signal propagations on the critical paths of the circuit, at the

cost of additional area overhead, leading to the circuit shown in Fig. 3.7(b), where

the logic gates that are not on the critical path still have their original delays for the

sake of saving area. After sizing, the minimum clock period of this circuit is reduced

to 16 units. To reduce the clock period further, retiming can be deployed to move

F3 to the left of the XOR gate as shown in Fig. 3.7(c), leading to a minimum clock

period equal to 11.

The circuit in Fig. 3.7(c) has reached the limit of timing performance in the tradi-

tional timing model, and no other method except a logic redesign can reduce the

clock period further. However, this strict timing constraint can still be relaxed by

removing F6 from the circuit, leading to the circuit in Fig. 3.7(d). If the signal from

F2 can reach the sink flip-flops F3 and F4 after the next rising clock edge and before

the rising edge two periods later, data can still be latched by F3 and F4 correctly.

Since the inverter before F4 can also be sized further, the largest path delay is 16,

which imposes a lower bound for the clock period as (16+1)/2=8.5, 22.7% lower than

retiming.

Since F6 can be removed from the circuit without affecting its function in fact, it

makes no contribution to the logic function or timing performance in Fig. 3.7(c).

However, the flip-flop F5 in Fig. 3.7(c) cannot be removed, because the signal from

F1 should also arrive at F4 later than one clock period. Without F5, the signal from

F1 arrives at F4 even before the next rising clock edge, a loss of logic synchronization

36

3.2 Timing with Process Variations

(c)

3

F1

F2

F3 F4

(a)

(b)

F1
F3 F4

F2

F1

F6

F4

F2

F5

F3

5

6

4

4

4

3

4

4

(d)

F1

F4

F2

F3

43

4

2

F5

2

2

2

1

1

1

1

Figure 3.7: Timing optimization methods. Delays of logic gates are shown on the

gates. The clock-to-q delay (tcq), setup time (tsu) and hold time (th) of a

flip-flop are 3, 1 and 1, respectively. (a) Original circuit. (b) Sized circuit.

(c) Circuit after retiming. (d) Circuit after optimization allowing two

waves on logic paths from F2 to F4.

37

3 Background and Problem Description

compared with the circuit in Fig. 3.7(a). Comparing Fig. 3.7(b) and Fig. 3.7(d), we

can see that F3 in Fig. 3.7(b) simply blocks the fast path from F1 to F4 to avoid

loss of logic synchronization or timing violations at F4, but it degrades the circuit

performance by delaying the signal from F2 to F4 too.

The concept to allow logic signals to span several sequential stages without a flip-

flop separating them is called wave-pipelining [BCKL98]. Previously, this technique

has only been explored in the context of circuit design, where the numbers of waves

on logic paths should be defined and their synchronization should be maintained

by designers during the design phase. Since logic design and timing cannot be

handled separately as in traditional synchronous designs, wave-pipelining becomes

incompatible with the traditional fully synchronous design paradigm and prevents

its adoption in industrial designs.

The timing performance in the traditional timing paradigm is limited by the bar-

rier of flip-flops. Accordingly, a novel timing model is established in Section 6 to

break the confines of the traditional timing paradigm. In the new timing paradigm,

signals, specifically those along critical paths, are allowed to propagate through se-

quential stages without flip-flop while the functionality of circuits is maintained.

3.3 Summary

As transistor feature sizes continue to be scaled down, process variations are be-

coming more and more pronounced. To deal with these variations, various methods

have been proposed. The traditional corner-based method is pessimistic and re-

quires an exponential number of corners with the increasing of process variations.

SSTA models process variations as random variables with known probability dis-

tributions. Thus, delay distributions are propagated to determine the probability

distribution of circuit performance. However, this method is too complicated with

realistic distributions. Another direction to deal with process variations is post-

silicon tuning, where post-silicon devices are inserted in the circuits at the design

phase and the chips with timing failures are tuned with these devices after manu-

facturing to improve yield or profit. This method can achieve a better performance

by balancing the timing slacks at the cost of tuning circuitry. If the flexible setup

38

3.3 Summary

and hold time relation of flip-flops can be exploited, timing imbalances between

different flip-flop stages can be achieved automatically. Furthermore, flip-flops in

the traditional timing paradigm actually degrade the circuit performance by intro-

ducing clock-to-q delay and setup time constraints. By removing them from circuits

appropriately, the timing performance of circuits can be improved even beyond the

limit of the traditional sequential design.

39

3 Background and Problem Description

40

Chapter 4

Post-Silicon Tuning to Mitigate Process

Variations

At submicron manufacturing technology nodes, process variations become increas-

ingly pronounced and affect circuit performances significantly. To counter these

variations, a large timing margin is reserved to maintain yield, leading to an un-

affordable overdesign. Most of these margins, however, are wasted after manufac-

turing, because process variations cause only some chips to be really slow, while

other chips can easily work at the designated clock frequency. To reduce this pes-

simism, we can reserve less timing margin and tune failed chips after manufacturing

with clock buffers to make them meet timing specifications. With this post-silicon

clock tuning, timing budgets of critical paths can be balanced with those of neigh-

boring paths in each chip individually to counter the effect of process variations.

Consequently, chips with timing failures can be rescued and the yield can thus be

improved.

There are two challenges when using the post-silicon tuning. Firstly, tunable buffers

should be inserted into the circuit during the design phase to balance the trade-off

between the profit/yield and area overhead of these buffers. Secondly, after manu-

facturing, chips with timing failures will be rescued by tuning buffers according to

the delay test.

In this section, a method to determine where to insert post-silicon tuning buffers

during the design phase to improve the overall profit with clock binning is proposed

in Section 4.1. The proposed efficient delay test framework (EffiTest2) to solve the

post-silicon testing problem will be described in Section 4.2. Results for both of

these techniques will be presented in Section 4.3.

41

4 Post-Silicon Tuning to Mitigate Process Variations

3

6

F1 F2

F4 F3

0.5
85

x3x4

x1 clk x23
33.5

3

6

F1 F2

F4 F3

85
x3x4

x1 clk x2

2.53
02.5

3

6

F1 F2

F4 F3

85
x3x4

x1 clk x20
00.5

-2.5

(a) (b) (c)

Figure 4.1: Performance improvement using post-silicon tuning buffers. Minimum

achievable clock period is 5.5. Tuning values in (a) and (b) are con-

strained in [0, 4]. Setup time and hold time are assumed as 0 for sim-

plicity. (a) Tuning configuration without reduction. (b) Reduced tuning

configuration. (c) Reduced tuning configuration with negative tuning

values.

4.1 Post-Silicon Tunable Buffer Insertion at the Design

Phase

In this section, a method to determine buffer locations by iterative learning is pro-

posed. In each iteration the buffers that are important to the yield/profit of the

circuit are captured. Afterwards, the identified buffer locations are refined and

buffer ranges are compressed to reduce area cost. Firstly an overview of timing con-

straints for circuit with post-silicon tuning buffers in Section 4.1.1 is demonstrated.

The buffer insertion problem is formulated in Section 4.1.2. The proposed method

to determine buffer locations is explained in detail in Section 4.1.3–4.1.7.

4.1.1 Timing Constraints with Post-Silicon Tunable Buffers

If a circuit have post-silicon tunable buffers, the delays of clock paths to flip-flops

attached with these buffers can be adjusted after manufacturing for each chip indi-

vidually. The concept of this tuning can be explained using the example in Fig. 4.1a,

where four flip-flops are connected into a loop by combinational paths. Without

post-silicon clock tuning, the minimum clock period of this circuit is 8. If clock

42

4.1 Post-Silicon Tunable Buffer Insertion at the Design Phase

edges can be moved by adjusting the delays of these tuning buffers, the minimum

clock period can be reduced to 5.5. For example, the buffer value x2 shifts the

launching clock edge at F2 0.5 units later and the buffer value x3 shifts the capturing

clock edge at F3 3 units later. Therefore, with a clock period of 5.5, the combinational

path between F2 and F3 now has 5.5-0.5+3=8 time units to finish signal propagation.

This shifting of the clock edge reduces the timing budget of the path between F3

and F4 by 3 units, but this path still works with the clock period 5.5 without any

timing violation because the buffer value x4 moves the clock edge at F4 further later.

For an individual chip, this post-silicon clock tuning is similar to the concept of

useful clock skews [Fis90]. The difference is that the tuning values are specific to

each individual chip with timing failures after manufacturing, so that the effects

of process variations can be handled specifically for each chip. If the skew sched-

ule problem in [Fis90] is formulated with process variations, the skew to a flip-flop

should still be identical in all manufactured chips, so that there is no chance to tune

the chips with respect to the individual effect of process variations after manufac-

turing.

Four tunable buffers are used in Fig. 4.1a. To reduce the number of buffers, all the

delays of the buffers can be reduced by 0.5 time units and the circuit still works with

the clock period 5.5, as shown in Fig. 4.1b. Furthermore, we can reduce the number

of buffers even to two, if we can move the clock edge at F2 2.5 time units earlier,

so that the timing slack of the path between F1 and F2 can be shifted to the path

between F2 and F3 directly, as in Fig. 4.1c. This negative delay can be implemented

by shortening the original clock path in advance to introduce a negative delay in

reference to the predefined arrival time of clock signals. With negative clock delays

allowed, timing budgets can be balanced in both the clockwise direction and the

counterclockwise direction, so that the number of required buffers can be lowered

to reduce area and post-silicon configuration cost.

Fig. 4.2 explains the timing constraints with clock tuning buffers. In this figure, two

flip-flops with post-silicon tunable buffers are connected by a combinational circuit.

Assume that the clock signal switches at reference time 0. Then the clock events at

flip-flops i and j happen at time xi and xj, respectively. To satisfy the setup time and

43

4 Post-Silicon Tuning to Mitigate Process Variations

xjxi

clki

clk

clkj

comb. circuitFF FF

clkj

clk

clki

reference time 0

xj

hj sj

xi

T

i j

Figure 4.2: Timing of circuits with tuning buffers.

hold time constraints, the following inequations must be met.

xi + dij ≤ xj + T − sj (4.1)

xi + dij ≥ xj + hj (4.2)

where xi and xj are delay values of tuning buffers, dij (dij) is the maximum (min-

imum) delay of the combinational circuit between flip-flops i and j, sj (hj) is the

setup (hold) time of flip-flop j, and T is the clock period. Here the clock buffers

introduce two delay variables into the constraints (4.1) and (4.2). Without them, the

two inequations fall back to the normal timing constraints of digital circuits.

Due to extra area overhead, the configurable delay of a clock buffer usually has a

limited range. Assume that the lower bound of the tuning values of buffer i is ri

and the upper bound is ri + τi, where τi is the size of the buffer. The delay value of

buffer i can thus be constrained by a range window as

ri ≤ xi ≤ ri + τi. (4.3)

Unlike [TZC05], we model the range window of the tuning values as asymmetrical

with respect to 0 to achieve a maximal flexibility. Furthermore, xi may take only

discrete values due to implementation of the tunable buffers.

To determine the buffer locations during the design phase, the path delays, setup

times and hold times should be considered as random variables modeled using data

44

4.1 Post-Silicon Tunable Buffer Insertion at the Design Phase

Table 4.1: Notations

ri, τi Lower bound and size of a buffer range

Nb Upper bound of the number of buffers

Np Number of performance bins

Tm,l, Tm,u Lower and upper bounds of the mth bin

pm Average profit of a chip in the mth bin

ym Percentage of chips in the mth bin

P Overall profit

xk
i , xk

j Tuning values for the kth sample

d
k
ij, dk

ij Sampled delays

sk
j , hk

j Sampled setup time and hold time

Tk Clock period of the kth sample

ci 0-1 variable indicating whether the ith flip-flop has a buffer

bk
m 0-1 variable indicating whether the kth sample is assigned to the mth

bin

gk
m Auxiliary 0-1 variable to express bk

m

Ns Number of samples in the low-discrepancy sequence

N f Number of samples in the low-discrepancy sequence after prefiltering

Nt Number of samples in one batch processed together

B,B′ Buffer sets saving the allocation candidates

provided by foundries. With process variations considered, the tuning delays xi and

xj also become statistical, because the clock buffers are subject to process variations

too. These variations can be decomposed and merged with the random variables

representing dij, dij, sj and hj, e.g., using the canonical form in [VRK+04]. The

task of buffer allocation is thus to determine the locations of buffers that can make

as many chips as possible meet the given timing specification after manufacturing,

using only the statistical timing information available during the design phase. The

buffer insertion problem is formulated in the following section.

45

4 Post-Silicon Tuning to Mitigate Process Variations

4.1.2 Problem Formulation of Buffer Insertion

To apply the post-silicon tuning technique, buffers are inserted into the circuit after

logic synthesis is finished and before physical design is started. Since buffers incur

area overhead, and require additional test to configure them, the number of buffers

in a design should be constrained. In addition, the ranges of the buffers should

be reduced as much as possible. Furthermore, in high-performance designs such

as CPUs, chips are tested after manufacturing and assigned into bins of different

performance grades, and the price of a chip from a bin of high speed is higher than

that from a low-speed bin. In this scenario, improving the overall profit of all bins is

more important than improving the yield of the circuit with respect to a single clock

period.

The important notations that appear in this section are listed in Table 4.1, and the

problem of buffer allocation is formulated as follows.

Input:

• Circuit structure and statistical path delays;

• Buffer specification, including the maximum allowed size τi of buffers defined in

(4.3) and the number of discrete steps in the tunable delay range;

• The maximum number of buffers allowed in the circuit Nb;

• The number of performance bins Np. For the mth bin, an upper bound Tm,u and

a lower bound Tm,l are defined by the designer. After manufacturing, a chip with

a clock period T assigned to the mth bin should meet Tm,l < T ≤ Tm,u. For a chip

in the mth bin, the average profit is given as pm. For convenience, we order the

bins from high performance to low performance, so that Tm,u = Tm+1,l.

Output:

• A set of flip-flops at which tuning buffers should be inserted on the their clock

paths;

• The sizes of the buffers inserted into the circuit. These sizes must be no larger

than the given maximum size τi.

Constraints:

46

4.1 Post-Silicon Tunable Buffer Insertion at the Design Phase

• For any pair of flip-flops i and j with combinational paths between them, the

constraints (4.1)–(4.3) hold;

• The number of buffers inserted in the circuit must not exceed Nb.

Objectives:

• Maximize the overall profit

P =
Np

∑
m=1

pmym (4.4)

where ym is the percentage of the chips that are assigned into the mth bin after

manufacturing;

• Reduce the sizes of the inserted buffers while maintaining the overall profit P .

To define the bins, the first bin has the highest clock frequency, and it has no lower

bound for the clock period T, so that T1,l can be set to any positive value given by

designers. After manufacturing, if a chip cannot be assigned to any of those bins,

i.e., T > TNp,u, this chip is considered as a part of yield loss. The definition (4.4) can

be expanded. Consider the case that only one bin is used, this problem is equivalent

to the yield improvement problem with respect to a single clock period.

Since the relation between profit and the number of buffers is very complicated, we

do not include the number of tuning buffers in the problem formulation above as

a part of the optimization objective. With our formulation, designers can generate

several combinations of buffer number and profit, and select the most appropriate

setting according to their own cost model. If the number of buffers are required

to be moved from a constraint into the optimization objective (4.4), the proposed

method can still work with only a slight modification.

There are two challenges in solving the optimization problem above. The first chal-

lenge comes from the random variables in (4.1) and (4.2), because only statistical

timing information are available during the design phase when the buffers are al-

located. The profit in (4.4) is thus defined similar to an expected value, which is

slightly larger than the actual profit after manufacturing because statistical delays

and timing properties cannot be measured exactly [ZLS+18]. The second challenge

is that the variables xi and xj in (4.1) and (4.2) may take only discrete values in

the range window defined by (4.3). For example, the de-skew buffer in [TRND+00]

47

4 Post-Silicon Tuning to Mitigate Process Variations

can be configured to only 20 discrete delays. In this case, integer linear program-

ming (ILP) becomes almost the only method available to deal with the constraint set

defined by (4.1)–(4.3) after the random variables are fixed by sampling.

To combat these challenges, the learning-based statistical sampling is deployed. The

basic idea is that we use a set of representative samples and model the numbers of

samples in the different performance bins directly. We then determine buffer loca-

tions by maximizing the overall profit calculated from the yield values of these bins

and the profit per chip for each bin. By sampling the random variables directly we

can transform the statistical optimization problem into an ILP problem. Therefore,

the relation between the statistical variables and the profit of the circuit can be es-

tablished directly. With this relation, we can then capture buffer locations that are

sensitive to yield/profit. The proposed method is in fact learning-based when deal-

ing with a large number of samples in the problem space. Learning-based methods

have been applied in the design automation field extensively, e.g., for statistical path

selection considering large process variations [XSZV09], for sensor placement in dy-

namic noise management systems [WZXS13], and for parametric yield estimation

for analog/mixed signal circuits [GYSH14].

The overall flow of the proposed method is illustrated in Fig. 4.3. In this flow, we

first generate a low-discrepancy sample sequence (Sobol sequence) and filter out

the samples that are not affected by any buffers. Thereafter, we try to capture buffer

locations and refine them iteratively. The ranges of buffers are compressed and the

number of buffers is reduced by grouping in the end to reduce area cost. This flow

will be explained in detail in the following sections.

4.1.3 Sampling-based ILP Modeling between Statistical Delays and

Profit

If a large number of Ns samples can be generated from the joint distribution of all

the random variables in the optimization problem, they can actually emulate the

chips after manufacturing. If tunable buffers are attached to critical flip-flops, we

can introduce intentional clock skews customized for each sample, or emulated chip,

individually, to make the failing samples work again, or to move low-performance

samples into high-performance bins by tuning the buffers. For each emulated chip,

48

4.1 Post-Silicon Tunable Buffer Insertion at the Design Phase

Generate a Sobol sequence

Prefilter fast samples and

Calculate sample size Nt

Yes

dN f /Nte No

reduced?

of Ns length

must_fail samples for a reduced

for each subsequence

for i = 1, . . . dN f /Nte do
Solve (4.16)–(4.17)

Nt ← 1

B′ ← ∅

If no buffer can be added into B′

break;

B ← B′

Init:
B ← all buffer locations

in the last three iterations then

return B and the profit P

O
uter

loop Inner
loop

sequence of N f length

Tuning range compression and grouping

on B and update B′

Figure 4.3: Prefiltering and iterative buffer allocation flow.

49

4 Post-Silicon Tuning to Mitigate Process Variations

the statistical variables in the constraints become fixed values, so that the perfor-

mance improvement can be evaluated. In this way, the relation between buffer lo-

cations and the profit can be established directly and an ILP solver can be used to

determine the optimal buffer allocation.

For the kth sample from the Ns samples, the constraints (4.1)–(4.3) become

xk
i + d

k
ij ≤ xk

j + Tk − sk
j (4.5)

xk
i + dk

ij ≥ xk
j + hk

j (4.6)

ri ≤ xk
i ≤ ri + τi (4.7)

where d
k
ij, dk

ij, sk
j and hk

j are the kth sample values of random variables dij, dij, sj

and hj; xk
i and xk

j are intentional clock skews for this specific sample introduced by

configuring the corresponding tuning buffers after manufacturing to improve the

performance, in other words, to reduce the minimum clock period Tk. Note in (4.7)

ri and τi are not indexed by k, because if a buffer is inserted on the clock path to a

flip-flop, it appears in all the chips after manufacturing, and its range in all chips is

also the same.

To indicate whether there is a buffer inserted on the clock path to the ith flip-flop, we

assign a binary variable ci to it. If there is no buffer inserted, ci is set to 0; otherwise,

ci is set to 1. Because a post-silicon clock skew can be added only when a buffer

appears, the skew or the tuning value of the buffer at the ith flip-flop can be written

as

xk
i =

{
0 if ci = 0,

any valve ∈ [ri, ri + τi] when ci = 1.
(4.8)

According to the definition of ci, we need only to force xk
i to be 0 to disable the

potential clock tuning when ci is equal to 0. The constraint (4.8) can thus be trans-

formed to

xk
i ≤ ciΓ (4.9)

−xk
i ≤ ciΓ (4.10)

where Γ is very large constant. If ci is set to 0, xk
i must be set to 0 to meet (4.9)

and (4.10). If ci is set to 1, these two constraints have no effect because Γ is a

50

4.1 Post-Silicon Tunable Buffer Insertion at the Design Phase

predetermined constant larger than any possible value of xk
i or −xk

i . In this case, xk
i

is actually constrained by (4.7).

With ci defined to indicate the appearance of a buffer at the ith flip-flop, we can

constrain the number of buffers in the circuit easily as

∑
i

ci ≤ Nb (4.11)

where the sum on the left adds the ci variables for all flip-flops in the circuit together,

and Nb is the given upper bound of the number of buffers allowed in the circuit.

To check the minimum clock frequency of an emulated chip that can work with, we

need to compare the minimum clock period Tk of the kth sample with the upper

and lower bounds of the performance bins. If Tk falls into the mth bin by satisfying

Tm,l < Tk ≤ Tm,u, the number of the chips in this bin is increased by one. Instead

of comparing Tk with the bounds of the bins directly, we take advantage of the fact

that the yield values of the circuit in different bins are a part of the optimization

objective defined in (4.4) and the price of a chip in a high performance bin is higher

than that in a low performance bin. We define the 0-1 variables gk
m, m = 1, . . . , Np

to represent whether the minimum clock period Tk of the kth sample is smaller than

the upper bound of the mth bin. Therefore, gk
m can be constrained as

gk
m = 1⇐⇒ Tk ≤ Tm,u, m = 1, 2, . . . , Np. (4.12)

We then use gk
m to define another 0-1 variable bk

m which indicates whether the kth

sample falls into the mth bin meeting Tm,l < Tk ≤ Tm,u, as

bk
m =

{
gk

m m = 1,

gk
m − gk

m−1 m = 2, . . . , Np.
(4.13)

The constraint (4.12) can be transformed into

Tk − Tm,u ≤ (1− gk
m)Γ, m = 1, 2, . . . , Np (4.14)

where Γ is very large positive constant.

The constraints (4.13) and (4.14) can be explained as follows. If Tk is no larger than

the upper bound of the mth bin Tm,u, the left side of (4.14) is negative, so that gk
m

can be either 0 or 1; otherwise, gk
m must be 0. Since the objective of the optimization

51

4 Post-Silicon Tuning to Mitigate Process Variations

problem is to increase the numbers of chips in high-performance bins as much as

possible, the solver will assign all gk
m, gk

m+1, . . . , gk
Np

to 1 if Tk ≤ Tm,u, because the

bins are arranged in the high performance to low performance order so that Tk is

also smaller than Tm+1,u, . . . , TNp,u. Therefore, the constraint (4.13) only keeps the bk
m

for the fastest bin to which the sample can be assigned to be 1, and for the slower

bins it is set to 0. Consequently, bk
m represents whether the chip is assigned to the

mth bin.

With bk
m we can calculate the numbers of emulated chips in all bins easily, and the

yield or the percentage ym for the mth bin can be expressed as

ym =
Ns

∑
k=1

bk
m

/
Ns (4.15)

where Ns is the total number of samples.

With the constraints defined above, the problem to optimize the overall profit can

be expressed as

maximize
Np

∑
m=1

pmym (4.16)

s.t. (4.5)–(4.7), (4.9)–(4.11), (4.13)–(4.15),

w.r.t. all flip-flops pair indexed by (i, j), (4.17)

and k = 1, . . . , Ns.

In this formulation, we use a given number of samples to emulate chips after manu-

facturing and model the bin assignment process. We then use an ILP solver to max-

imize the profit for the simulated chips to determine the locations of buffers. Since

the relation between the locations of buffers and the yield assignment is established

in this formulation, we can determine the locations of buffers directly by solving

the optimization problem above. In previous methods [TZC05, KS08], the relation

between buffer locations and yield is not analyzed directly. Instead, this relation is

considered as a separate evaluation problem in these methods, and the yield values

for different combinations of buffer locations are calculated using Monte Carlo sim-

ulation, and only used as a metric to determine the next decision points in the path

search or cutting plane methods. Consequently, Monte Carlo simulation have to be

executed many times, leading to a large runtime.

52

4.1 Post-Silicon Tunable Buffer Insertion at the Design Phase

If there are a large number of emulated samples Ns in the integer linear optimization

problem (4.16)–(4.17), the profit can be modeled accurately and the results of ci show

the indication of the optimal locations to insert tuning buffers to maximize the profit.

However, a large Ns may increase the number of constraints in (4.17) to a point

where the size of the ILP problem exceeds the capacity of all existing ILP solvers.

To deal with this scalability problem, two techniques are applied: 1) the number

of emulated samples Ns is reduced by using a low-discrepancy sample sequence

instead of a purely random sampling sequence; 2) the problem (4.16)–(4.17) is split

into subsets and use them to learn the locations of buffers iteratively. After each

iteration, the candidates of buffer locations can be refined.

4.1.4 Reducing the Number of Emulation Samples Using a

Low-discrepancy Sequence

To guarantee the quality of the resulting buffer locations, a large number of samples

are required to emulate the chips after manufacturing. If the number of samples are

not large enough, the selections of buffers cannot represent the locations that are

most important for profit or yield improvement. Consider the extreme case where

we use only two samples, which have different probabilities to appear in the man-

ufactured chips. In the formulation (4.16)–(4.17), however, we do not differentiate

these two samples with respect to their probabilities so that the two samples have

the same influence on the selection of buffers. Consequently, the formulation loses

accuracy because the calculated optimal profit deviates from the real profit.

In traditional Monte Carlo simulation methods, this discrepancy problem is solved

by using a large number of samples, say 10,000. Since the samples are generated

according to the joint distribution of the variables, the number of points falling into

a part of the sampling space corresponds to the probability of that region. The

effect of probability can thus be handled by (4.16)–(4.17) implicitly, because samples

from regions with large probabilities in the problem space appear more often than

samples from other regions. The second method to solve this discrepancy problem

is to use the probability of representative samples as further coefficients of the yield

values in the objective (5.11) directly. But it is not clear how many samples should

be generated to guarantee the quality of the result.

53

4 Post-Silicon Tuning to Mitigate Process Variations

(a) (b)

(c) (d)

Figure 4.4: Purely random sequence and Sobol low-discrepancy sequence. (a) 256

random samples of two uniform variables. (b) 256 samples of a Sobol

sequence for two uniform variables. (c) The first 128 samples from the

Sobol sequence in (b). (d) The next 128 samples from the Sobol sequence

in (b).

54

4.1 Post-Silicon Tunable Buffer Insertion at the Design Phase

The third method to solve the problem of a large sampling number is to use a low-

discrepancy sequence such as studied in [SR07]. In such a sequence, the number of

samples in a given part of the sampling space is proportional to the probability of

that region. The advantage of such a sequence is that this quasi-random sequence

ensures the low discrepancy even with a small number of samples, so that it is

widely used in quasi-Monte Carlo methods to reduce runtime. In statistical timing

analysis, this method also demonstrates a strong advantage, e.g., more than 20 times

acceleration has been achieved in [VCBS11]. In the proposed method, the Sobol se-

quence is used in [Sob67] to reduce the number of samples Ns. The effect of this

sequence can be demonstrated using the examples in Fig. 4.4, where Fig. 4.4a shows

a purely random number sequence of 256 samples for two uniform-distributed vari-

ables. Fig. 4.4b demonstrate that the Sobol sequence with the same number of sam-

ples spreads more evenly in the space. The original Sobol sequence follows uniform

distribution, and it can be transformed to other distributions easily using methods

such as the Box-Muller transform [BM58]. In the proposed method, 1000 samples

in the Sobol sequence are used, which are one tenth of the usually used 10,000 sam-

ples of random variables in statistical static timing analysis [BCSS08]. In practice,

test cases can converge even earlier with fewer than 1000 samples.

4.1.5 Buffer Allocation with Prefiltering and Iterative Learning

For the Ns emulated chips, some might work at the given clock frequency without

tuning buffers; others cannot work even all flip-flops attached with tuning buffers.

In both scenarios, tuning buffers are not important in improving the overall profit.

Therefore, we exclude these samples from the ILP formulation (4.16)–(4.17) to reduce

the number of variables and constraints.

If we want to filter out the samples which are fast enough, we need only to set all

values of tuning buffers, xk
i and xk

j in (4.5) and (4.6) to 0, and calculate the clock

period Tk
min for this sample as Tk

min = maxi,j{d
k
ij + sk

j }. If Tk
min is smaller than the

upper bound of the fastest bin, this sample is fast enough and no tuning is required.

The constraint (4.6) is checked similarly. If all these constraints can be met without

tuning buffers, this sample is excluded to reduce the computation cost.

To filter out the samples that are too slow to be assigned to a bin even when all

55

4 Post-Silicon Tuning to Mitigate Process Variations

flip-flops have tuning buffers, we evaluate each path delay in a sample by verifying

whether it is possible to tune this path to meet the upper bound of the slowest bin

without considering the other paths. In the constraint (4.5), the sum of the path delay

d
k
ij + sk

j and xk
i − xk

j should be no larger than Tk. We set buffer values xk
i and xk

j to the

smallest and the largest values that are possible according to buffer specifications,

respectively, and check whether the resulting clock period Tk is smaller than the

upper bound of the slowest bin. If this still does not hold, there is no chance that

this emulated chip can be assigned to one of the bins and the corresponding sample

is considered as a part of yield loss and not included in the profit optimization

problem. We repeat this prefiltering checking using (4.6) to exclude samples that do

not work in any case due to unavoidable hold time violations.

After we prefilter the samples that are not important for profit/yield improvement,

the remaining samples are used to determine buffer locations by solving the opti-

mization problem (4.16)–(4.17). The number of these remaining samples is denoted

as N f . For a large circuit, the number of remaining variables and constraints in this

ILP problem may still be too large to be dealt with by a modern solver. To reduce

the scale of the ILP problem further, we split the ILP problem (4.16)–(4.17) into sub-

problems and determine the buffer locations with an iterative flow based on: 1) a

subsequence of a Sobol sequence still exhibits a good low discrepancy as shown in

Fig. 4.4c-d; 2) in a circuit only a small number of buffers can be inserted due to area

cost. The iterative flow is illustrated in Fig. 4.3.

The first fact above shows that we may solve the ILP problem (4.16)–(4.17) with only

a part of the Sobol sequence, indicating that we can capture the buffer locations only

using a subset of samples. Therefore, we partition the whole Sobol sequence into

several parts so that each part contains Nt samples which are processed together in

one ILP problem (4.16)–(4.17). We call the samples processed in one ILP problem a

batch. In our implementation, the number of samples Nt in one batch is determined

by evaluating the numbers of variables and constraints and the capacity of the ILP

solver. Since variables in an ILP problem define the dimension of the problems

space, they carry more complexity into the ILP problem than constraints. Therefore,

we consider the complexity of a variable to be five times that of a constraint, and the

total number of the equivalent constraints should be smaller than a constant, 2× 106

for Gurobi [Gur13] used in our experiments.

56

4.1 Post-Silicon Tunable Buffer Insertion at the Design Phase

Though the samples in subsequences generally have lower discrepancy compared

with a purely random sequence, there are still some slight patterns with higher

discrepancy in these subsequences because of the small number of samples in one

subsequence, as shown in Fig. 4.4c-d. Consequently, a subsequence with a limited

number of samples may not capture all the buffer locations. We solve this problem

by combining the buffer locations captured by different subsequences into a buffer

set B′. Once we finish solving (4.16)–(4.17) with all sample batches, the buffer lo-

cations in B′ are the possible locations to insert buffers, as shown in the inner loop

in Fig. 4.3. In this loop, we also relax the number of buffers from Nb to βNb in the

constraint (4.11) (β = 1.5 in our experiments) to increase the coverage of potential

buffer locations captured by the subsequences. We will use a group technique to

reduce the number of buffers back to Nb after all location candidates are captured.

The inner iterative flow stops if no new buffer is added into the buffer set B′ in the

past three iterations.

After processing all sample batches in the inner loop, we execute the iterative buffer

allocation flow as the outer loop in Fig. 4.3. In these iterations, only the buffer

candidates in B need to be modeled with variables ci as in (4.8) and only the delays

of paths connected to these buffer candidates need to be sampled as (4.5)–(4.7).

Consequently, more samples can be processed in one iteration so that the number

of batches dN f /Nte can be reduced. With these outer iterations, buffer locations are

gradually refined and the outer loop finishes if the number of batches cannot be

decreased.

4.1.6 Reducing Buffer Area by Tuning Concentration and Grouping

After solving the optimization flow in Fig. 4.3, the locations of inserted buffers for

profit improvement are determined. However, the sizes of the buffers are not dealt

with. In this section, a method is introduced to concentrate tuning values toward

each other and to group buffers thereafter.

The concept of area reduction can be illustrated using Fig. 4.5. After executing the

iterative buffer allocation in Fig. 4.3, the tuning values of a buffer in all samples may

be scattered in a wide range such as in Fig. 4.5a, because the solver only minimizes

the number of buffers, but does not consider the relation between the tuning values

57

4 Post-Silicon Tuning to Mitigate Process Variations

-5 5 10 15

num. of occurrences

adj. values0

lower bound ri

(a)

concentrate delay values

5 10

num. of occurrences

adj. values

buffer range

0

(c)

5 10 15

num. of occurrences

adj. values

reduced adjustment range

0

(b)

concentrate delay values
toward 0 toward average

xavg,i

Figure 4.5: Concentrating tuning values of a buffer in all samples. The x-axis repre-

sents the adjusted delays of the buffer in all samples, and the y-axis the

number of occurrences of the discrete delay values. (a) Scattered tuning

values. (b) Tuning values concentrated toward zero. (c) Reduced buffer

range after concentrating tuning values toward the average.

58

4.1 Post-Silicon Tunable Buffer Insertion at the Design Phase

of different samples, so that it only returns one of the many feasible tuning combi-

nations. If we can concentrate the tuning values toward each other, the real ranges

of the buffers which cover all the tuning values appearing in the samples can be

reduced. In addition, the concentrated tuning values may exhibit a high correlation

by forming similar trends of tuning values as in Fig. 4.5c. This resemblance can thus

be used to group buffers.

To push the scattered tuning values into a narrower range, we minimize their ab-

solute values in the optimization, as illustrated in Fig. 4.5a. In this way, the solver

tries to return the buffer values around 0 as much as possible using only the buffer

candidates in B and guaranteeing the profit P calculated by executing the flow in

Fig. 4.3. This process is formulated as follows.

minimize ∑
i∈IB ,k

|xk
i | (4.18)

s.t. (4.5)–(4.7), (4.9)–(4.11), (4.13)–(4.15),

w.r.t. all flip-flops pair indexed by (i, j), (4.19)

and k = 1, . . . N f , and
Np

∑
m=1

pmym ≥ P (4.20)

where IB is the index set of all buffer locations in B. The objective function (4.18)

can be transformed into a linear form easily as explained in [CBD11].

The difference between the optimization problem (4.18)–(4.20) and the optimization

problem (4.16)–(4.17) includes: 1) the objective becomes the sum of the absolute

values of all tuning values; 2) the buffer candidates are narrowed as the buffer set

B returned by the flow in Fig. 4.3; 3) the profit becomes a constraint to guarantee

the tuning range concentration does not affect the profit. By solving the problem

(4.18)–(4.20), all tuning values are pushed toward zero as illustrated in Fig. 4.5b, so

that the buffer ranges become more compact.

The second technique to reduce area cost is to group buffers that have similar tuning

patterns into one buffer. For example, if two buffers have very similar tuning values

in all samples, only one buffer needs to be inserted in the circuit and the delayed

59

4 Post-Silicon Tuning to Mitigate Process Variations

r(i, j) ≥ 0.8

group buffers

d(i, j) ≤ 10 FF FFi j

buffer grouping

FF

FF

i

j
(xi, yi)

(xj, yj)

Manhattan distance

correlated

distance

Figure 4.6: Buffer grouping according to tuning correlation and distance. Corre-

lation threshold r(i, j) is set to 0.8. Distance threshold d(i, j) between

buffers is set to ten times of the minimum distance between flip-flops.

clock signal is connected to two flip-flops. To make the patterns in buffer tuning

more obvious, we first calculate the weighted average of all tuning values of a buffer

after solving (4.18)–(4.20). Afterwards, the buffer tuning values are pushed further

toward this average. This process makes the number of different tuning values

smaller, so that it is easier for two buffers to have similar tuning patterns. The

result of this step is that buffer tuning values may form a peak at the tuning average

as illustrated in Fig. 4.5c. This step is very similar to the problem formulation in

(4.18)–(4.20), except that the optimization objective is replaced by

minimize ∑
i∈IB ,k

|xk
i − xavg,i| (4.21)

where xavg,i is the weighted average of all tuning values calculated from the result

of solving (4.18)–(4.20).

After tuning values are concentrated, we try to cover all the tuning values using

the smallest range window. The upper bound of the size of this range window

is predefined as τi in (4.3). As shown in Fig. 4.5c, the range window slides along

the x-axis. Since the y-axis represents the numbers of the corresponding tuning

value occurrences in all samples, the total number of buffer tunings covered by the

window is the sum of the tuning occurrences in the window. For yield improvement,

we select the range window that covers the largest number of tunings, indicating

that these tuning values are feasible in post-silicon configuration. The other values

that fall out of the window are discarded. With this step, both the buffer size τi and

60

4.1 Post-Silicon Tunable Buffer Insertion at the Design Phase

the lower bound ri in (4.3) are determined.

In the last step of buffer insertion, we group buffers with similar tuning values to

reduce the number of buffers inserted into the circuit. Buffers in the same group are

implemented by only one physical buffer and the tuning values are shared by all the

flip-flops connected to the buffer. The concept of grouping is illustrated in Fig. 4.6.

In grouping buffers, we first calculate the correlation coefficients of tuning values

of buffer pairs. If the mutual correlation coefficients between several buffers are all

above the threshold r(i, j) and their distance is smaller than d(i, j), they are grouped

together and implemented with only one physical buffer. In practice, designers can

also constrain the total number of buffers in the circuit as Nb. If the number of

buffers after grouping still exceeds the specified number, the buffers with the fewest

tunings are removed until the number of buffers meets the specification.

4.1.7 Acceleration Techniques

To improve the efficiency of the proposed method, we sample statistical delays be-

tween flip-flops directly instead of sampling delays of combinational gates. For

example, the delays in (4.1) and (4.2) are calculated using a statistical timing engine

only once. We then generate a Sobol sequence from these statistical delays directly,

instead of executing a static timing analysis algorithm for each sample.

In addition, we filter connections between flip-flops according to their statistical

distributions. If the 3σ delay of a path is still small enough not to affect the circuit

performance, this path is not included when creating the constraints (4.1)–(4.2). For

example, in the constraint (4.1) we first set xi to the largest value and xj to the

smallest value in the range windows, respectively, and dij and sj to their 3σ values.

If this extreme setting still allows this path to work with a clock period in the fastest

bin, this path is simply discarded from the problem formulation. Similarly, we also

filter hold time constraints (4.2) according to the -3σ values of path delays.

61

4 Post-Silicon Tuning to Mitigate Process Variations

4.2 Post-Silicon Tunable Buffer Configuration after

Manufacturing

Post-silicon tunable buffers are inserted in chips during the design phase. After

manufacturing, path delays in chips become deterministic. For a chip with tim-

ing failures, the delays of combinational paths related to tunable buffers should be

evaluated. Thereafter, the configuration values of tunable buffers are determined

by finding a feasible solution with respect to the given clock period T. The most

challenging task of applying this post-silicon tuning technique is delay evaluation

of combinational paths after manufacturing. These delays should be estimated rel-

atively accurately to configure buffers properly. But the cost of this delay test on

all failed chips must remain low; otherwise, the benefit of using tunable buffers to

improve yield may be offset by the ensuing test cost.

In the previous methods, path delays are measured straightforwardly using fre-

quency stepping. In this technique, a path is tested with a given clock period. If the

sink flip-flop of this path can latch data correctly, the setup time constraint at the

sink flip-flop is met, so that an upper bound of the path delay is found. Thereafter,

a smaller clock period is applied until data cannot be latched correctly anymore to

find a lower bound of the path delay. With a binary search of different frequency

steps, the path delay can be approximated by narrowing the range defined by the

lower and upper bounds.

In using frequency stepping in this test scenario, the number of iterations (frequency

steps) might be large if many paths are tested. Though there are some techniques

that can be used to combine tests of several paths to reduce the number of iterations,

no method has considered the fact that the tunable buffers in the circuit can be used

to align path delays, so that a clock period can sweep the delay ranges of several

paths at the same time. For example, if delays of tunable buffers in Fig. 4.1c could

be set to values as shown, the delays of the combinational paths are well balanced

and can thus be tested concurrently.

In this section, the proposed method EffiTest2 based on the previous method in

[ZLS16b] is introduced to reduce the total number of frequency stepping iterations in

testing path delays with two techniques: statistical prediction and delay alignment

62

4.2 Post-Silicon Tunable Buffer Configuration after Manufacturing

yes

Path selection for prediction

Test batch assignment

Scan test with delay alignment

Path delay range estimation

Buffer value configuration

Pass/fail test

Paths
to

predictDelay rangesno
small enough?

Hold time
tuning bounds

Paths to test

Figure 4.7: Delay test and buffer configuration flow in EffiTest2

during test. With the tested and estimated delays, tunable buffers in chips with

timing failures are then configured to maximize the chance that manufactured chips

work with the given clock period T. In the test scenario, we assume that the locations

of buffers have been determined, using a method in Section 4.1. The flow of the

proposed method is summarized in Fig. 4.7. It includes four major steps: path

selection in Section 4.2.1, test batch assignment in Section 4.2.2, frequency stepping

with delay alignment in Section 4.2.3, buffer configuration in Section 4.2.4, and hold

time constraints in Section 4.2.5. The important notations used in the following are

listed in Table 4.2.

4.2.1 Path Selection and Statistical Delay Prediction

To tune manufactured chips with timing failures, the maximum delays between

flip-flop pairs need to satisfy setup time constraints, and the minimum delays hold

time constraints, as defined in (4.1)–(4.2). Fig. 4.8 illustrates an example, where only

setup time constraints are considered. In this example, nodes represent flip-flops,

63

4 Post-Silicon Tuning to Mitigate Process Variations

Table 4.2: Notations

P
All critical combinational paths between pairs of flip-flops with at least

one tunable buffer

Dp The statistical delays of combinational paths in P

Dm
The statistical maximum delays between pairs of flip-flops with at least

one tunable buffer

Pt The combinational paths that are tested using frequency stepping

Dp
t The statistical delays of combinational paths in Pt

Dm
t

The selected maximum delays that can predict Dm\Dm
t within a given

accuracy

Pc The chosen combinational paths for maximum delays in Dm
t

Dc The statistical delays of combinational paths in Pc

solid edges represent combinational paths and dashed edges represent maximum

path delays between flip-flops. If a path between a pair of flip-flops is critical, the

clock edge to the flip-flop in the middle can be tuned to the other side to give the

critical path more timing budget, provided that the timing constraints between the

other pair of flip-flops are not violated.

To determine the configuration of tunable buffers attached to the flip-flops with

respect to the setup time constraint (4.1), the maximum delays between flip-flops

need to be evaluated. Since process variations affect combinational paths in man-

ufactured chips differently, many paths between a pair of flip-flops may be critical

after manufacturing. Due to test cost, it is impractical to test all combinational

paths that can potentially become critical with frequency stepping directly, as as-

sumed in [TBCS04, LN14, NK08, TGB09]. Instead, statistical delay prediction can

be deployed to estimate the maximum delays between flip-flops using the data of

representative combinational paths.

Statistical delay prediction requires a strong correlation between path delays to guar-

antee a high accuracy. Since a high correlation indicates that two delays vary sim-

ilarly in manufactured chips, the measurement of one delay after manufacturing

also contains information about the other. In high-performance designs, logic gates

64

4.2 Post-Silicon Tunable Buffer Configuration after Manufacturing

1 2 3

p1
p2
p3

p4
p5 1 2 3

D12 = max{d1, d2, d3}

D23D12

D23 = max{d4, d5}

(a) (b)

Figure 4.8: Test scenario with maximum path delays, where nodes represent flip-

flops with tunable buffers. Multiple combinational paths, p1–p5 with

delays d1–d5, respectively, exist between flip-flops with tunable buffers

in (a). Post-silicon skew configuration by tunable buffers is determined

by the maximum delays of all paths as simplified in (b).

on a critical path usually are not spread out all over the chip. Therefore, critical

paths converging at or leaving from flip-flops with buffers tend to form physical

clusters on the chip. This physical proximity results in a high correlation between

path delays [BCSS08], which can be exploited to reduce the number of paths to be

tested. For example, a conditional statistical prediction technique [JW07] has been

used in [LS09] to predict the timing performance of a circuit from the measurements

of on-chip test structures.

Consider a pair of flip-flops to at least one of which a tunable buffer is attached.

Under process variations, usually many combinational paths between this pair of

flip-flops have a probability to dominate the rest of them. We denote all these paths

in the circuit as a set P and their statistical delays as Dp. The task of delay measure-

ment is to extract sufficient information about delays by testing only a small subset

of paths Pt ⊂ P. Assume the statistical delays of Pt are denoted as Dp
t . The statis-

tical prediction from Dp
t to Dp\Dp

t is a well-known problem and has been studied

extensively, e.g., in [FYCT13].

In post-silicon tuning, the individual delays of paths in Dp, however, are not needed,

and only the maximum delays between each pair of flip-flops should be determined

as illustrated in Fig. 4.8(b). When process variations are considered, path delays can

be represented as random variables. The maximum of a set of path delays between

pairs of flip-flops can be calculated using Monte Carlo simulation or statistical tim-

ing analysis. Assume the statistical maximum delays are collected in a set Dm, which

contains one statistical maximum delay for every pair of flip-flops to at least one of

which a tunable buffer is attached. We then need to establish the relation between

65

4 Post-Silicon Tuning to Mitigate Process Variations

the delays Dp
t of selected combinational paths Pt ⊂ P to Dm, i.e., Dp

t → Dm.

To identify Pt from P, we need to consider all the combinational paths between each

pair of flip-flops with at least one tunable buffer. This leads to a huge amount of

paths to be examined. To solve this problem, a second level of statistical prediction

is introduced. Instead of predicting the maximum delays Dm, we use the measured

delays Dp
t to predict a subset Dm

t ⊂ Dm, provided that the predicted values of

Dm
t can also provide sufficient information for the other maximum delays Dm\Dm

t ,

thus establishing a chained relation Dp
t → Dm

t → Dm. Since Dm
t is a subset of

Dm, to identify it from Dm is the same statistical prediction problem as discussed in

[FYCT13]. Therefore, we only need to focus on the task to find a set of combinational

paths to predict Dm
t . The information of Dm

t is derived from the delays of the

combinational paths from which Dm
t is computed. This characteristic allows us to

search only the combinational paths between those pairs of flip-flops corresponding

to Dm
t , thus reducing the effort of path enumeration significantly.

The relation between the delay sets discussed above is illustrated in Fig. 4.9. In the

following, we firstly identify the representative maximum delays Dm
t from Dm to re-

duce the path search scope. Thereafter, the combinational paths between the pairs of

flip-flops whose maximum delays are Dm
t are examined to select the combinational

paths Dp
t for delay test.

To identify the representative maximum delays Dm
t from Dm, an algorithm based on

SVD-QRcp is used that has been used previously such as in [FYCT13, YW99, XD10,

FYCT15]. Since the identified Dm
t from Dm should provide sufficient prediction

accuracy, before the algorithm to determine the Dm
t from Dm is introduced, the

prediction accuracy is explained as follows.

Assume in a general case that N statistical variables Dt that are selected to measure

their values dt in a chip directly, and another variable dk whose value should be pre-

dicted with dt. Assume also that these delays follow Gaussian distributions, which

are widely used in statistical timing analysis [BCSS08]. Under this assumption, these

delays can be written together as D =

dk

Dt

 ∼ NNN(µ, Σ), where µ is the mean value

vector of D, Σ is the covariance matrix of D, dk ∼ N(µk, σk) and Dt ∼ NNN(µt, Σt).

66

4.2 Post-Silicon Tunable Buffer Configuration after Manufacturing

Dm

Dm
t

Dp
t

{d1, d2}

{D12}

{D12, D23}

frequency stepping

Dm

buffer configuration

iterative

selecion
maximum

delay

prediction
reduce

path

search

scope

path

search

selection by

SVD/QRcp

Figure 4.9: Relation between delay sets, using the test scenario in Fig. 4.8 as exam-

ple. The thin dashed lines represent the relation between the delay sets

for identifying representative combinational paths. The thick dashed

lines illustrate the real test and prediction procedure.

Accordingly, µ and Σ can be expressed as µ =

µk

µt

, and Σ =

 σk Σk,t

Σt,k Σt

, where

Σk,t = ΣT
t,k is the covariance matrix between dk and Dt.

With the measured values dt of Dt, the mean value µ′k and the variance σ′2k of dk

under the condition Dt = dt can be expressed as follows [JW07].

µ′k = µk + Σk,tΣ
−1
t (dt − µt) (4.22)

σ′2k = σ2
k − Σk,tΣ

−1
t Σt,k. (4.23)

After delay prediction, dk is still a random variable because there are purely random

process variations that reduce the correlation between delays. However, the variance

of the predicted delays becomes smaller due to the second product term in (4.23),

indicating that the real path delay dk in a chip is confined into a small range with a

nonnegligible probability. This range reduction results from the fact that the mea-

surement results of dt provide the information of the shared random components

between dk and Dt to reduce the variability of dk. Therefore, it may be unnecessary

67

4 Post-Silicon Tuning to Mitigate Process Variations

to measure the exact delay of dk for buffer configuration after delay prediction if the

correlation between dk and Dt is high. On the other hand, a small correlation allows

the delay dk to vary freely, leading to a relatively large variance even after statistical

prediction. Since the standard deviation σ′ represents how wide the distribution of

the predicted value of dk spreads, we use it as an indicator of the prediction accu-

racy. If σ′ is lower than a given threshold σth, the predicted value is considered as

having a sufficient accuracy.

To identify a set of maximum delays Dm
t from Dm with sufficient prediction accu-

racy, an algorithm based on SVD-QRcp is proposed. Assume that a delay from Dm

is written as a linear combination of M random components S = [s1, s2, . . . , sM]T,

such as in the canonical form in [VRK+04]. The delay Dm can then be expressed as

Dm = CS, where C is the coefficient matrix. The SVD-QRcp algorithm first performs

Singular Value Decomposition (SVD) to decompose C as

C = UΛVT (4.24)

where U and V are unitary matrices and Λ is a diagonal matrix with singular values

in a descending order.

The large singular values in Λ reveal the importance of delays that carry orthogonal

statistical information. To select the delays Dm
t to predict Dm\Dm

t the correspon-

dence between the singular values and the delays in Dm needs to be established

using the permutation matrix in the QRcp (QR with column pivoting) decomposi-

tion. Assume n delays should be selected from Dm. Then the first n columns of U,

written as U[1:n] are decomposed as

UT
[1:n] = QRΠT (4.25)

where ΠT is a permutation matrix to identify the n most important random variables

from Dm.

To illustrate the decomposition process above, we use an example with three de-

lays in Dm, each of which is expressed as a linear combination of three random

components. The SVD and QRcp are performed using the routines from the LA-

PACK [ABB+99] and GSL [G+] libraries. The coefficient matrix C of Dm and the

68

4.2 Post-Silicon Tunable Buffer Configuration after Manufacturing

matrices after decomposition are shown in the following.

C U Λ
10 6 1

13 4 2

7 5 1

 =

−0.59 0.43 −0.68

−0.69 −0.72 0.13

−0.43 0.55 0.72

 ×

19.83 0 0

0 2.76 0

0 0 0.31

VT

×

−0.90 −0.40 −0.18

−0.42 0.90 0.10

−0.12 −0.16 0.98

Q R ΠT

UT
[1:2] =

−0.69 −0.72

−0.72 0.69

 ×
0.99 0.09 −0.10

0 0.72 0.69

 ×

0 1 0

1 0 0

0 0 1

In the example above, two delays are selected to predict the third one, so that only

the first two columns of U, written as U[1:2], are used in the QRcp decomposition. In

the permutation matrix ΠT, the first column shows that we need to select the second

delay because the only 1 in this column appears in the second row. Similarly, the

second column of ΠT shows that we need to select the first delay.

The decomposition process above requires that we state the number of delays n to

be included in Dm
t . This number needs to be determined so that the concept of

prediction accuracy is maintained. To achieve this, we check whether the standard

deviation σ′ of a delay from Dm\Dm
t exceeds a given threshold σth. If it exceeds

σth, we increase the number of delays from Dm to be selected and rerun the QRcp

decomposition. Since all delays in Dm contain a purely random component from

process variations [BCSS08,VRK+04], σ′ cannot be reduced to zero. Instead, it must

be larger than the standard deviation of the corresponding purely random compo-

nent. In EffiTest2, we enumerate all the delays in Dm to identify the maximum σmax

of the standard deviations of all the purely random components and use σth = 2σmax

as the threshold of the prediction accuracy. Therefore, the iterations should always

converge because the given threshold σth is larger than σmax, which is the accuracy

when all delays are measured directly. The selection process of Dm
t from Dm is

summarized in Algorithm 2.

69

4 Post-Silicon Tuning to Mitigate Process Variations

Algorithm 2: Select Dm
t from Dm to reduce path search scope

Input : Coefficient matrix C of maximum delays Dm from SSTA

Output: Representative maximum delays Dm
t ⊆ Dm

1 U← Decompose C using SVD (4.24);

2 for i← 1 to |Dm| do

3 U[1:i] ← First i columns of U;

4 ΠT ← Decompose UT
[1:i] using QRcp (4.25);

5 Select Dm
t from Dm using ΠT;

6 foreach dk ∈ Dm\Dm
t do

7 Compute σ′2k using (4.23);

8 if σ′k > σth then

9 goto L2;

10 end

11 end

12 break;

13 end

1515 return Dm
t

The maximum delays Dm
t returned by Algorithm 2 are actually used to narrow

the search scope of combinational paths for delay test. In manufactured chips, only

the delays of these combinational paths can be measured with frequency stepping

directly [Pat03,LPR+03]. After Dm
t is identified from Dm, we scan the circuit to find

the starting and ending flip-flops corresponding to Dm
t . For example, in Fig. 4.9

the maximum delay D12 is identified from the set {D12, D23} using the SVD-QRcp

method described above. This maximum delay indicates that the combinational

paths between the flip-flops 1 and 2 in Fig. 4.8 are candidates for delay test. To

reduce test cost, only the minimum number of paths from them should be tested

using frequency stepping for post-silicon configuration. For example, the delays of

paths p1 and p2 may already provide sufficient accuracy in predicting the maximum

delays {D12, D23}, while more paths in addition to them may not improve the pre-

diction accuracy further, because the purely random components in the maximum

70

4.2 Post-Silicon Tunable Buffer Configuration after Manufacturing

delays then dominate the predicted values.

The number of combinational paths between a pair of flip-flops is usually very large,

so that the path candidates related to Dm
t need to be reduced further. Since the com-

binational paths related to the same pair of flip-flops are generally located close

to each other on the die, their delays exhibit a high correlation due to proximity.

Therefore, we need to consider only a small subset of paths between each pair of

flip-flops. A static critical path identification is used in our method to extract five

combinational paths for each maximum delay in Dm
t by forward and backward ar-

rival time propagation. The extracted combinational paths are denoted as a set Pc.

The delays of these paths are denoted as a set Dc.

The final step for path selection is to choose Pt from Pc. The objective is that the

measured values of the selected paths Pt should be able to predict the delays of Dm

with a sufficient accuracy. A new challenge in this step is that the set of delays Dc

is not a subset of Dm, so that the SVD-QRcp method cannot be used to identify

the paths Pt. To solve this problem, all the path delays in Dc are enumerate and

select the delay that can reduce the maximum of the variances of the predicted

values of Dm the most. The selection step stops when the maximum of the standard

deviations σ′k is smaller than the threshold σth as used in Algorithm 2.

The procedure of selecting combinational paths for delay test is summarized in

Algorithm 3. In L1–L7 the combinational paths related to Dm
t are saved in Pc and

their statistical delays in Dc. To select representative paths from Pc, the loop L9–L31

adds one delay dnext from Dc into Dp
t in each iteration. The newly selected delay

dnext is the one from Dc that, together with the already selected delays in Dp
t , predicts

the maximum delays Dm with the best accuracy. To identify this delay, each delay

in Dc\Dp
t is evaluated in L12–L25 as dc, where dc and the current Dp

t are combined

as Dp′
t to evaluate the accuracy of predicting the maximum delays Dm in the loop

L15–L20 using (4.23). The prediction accuracy is indicated as the maximum variance

σ2
max of predicted values of Dm, and the delay dc that can produce the smallest σ2

max

is selected and added into Dp
t . Meanwhile, the accuracy indicator σ2

max is assigned

to σ2
next. When σnext becomes lower than the threshold σth, the selection procedure

finishes and the current Pt is returned as the paths to be tested using frequency

stepping.

71

4 Post-Silicon Tuning to Mitigate Process Variations

Algorithm 3: Path selection to predict maximum delays Dm

Input : Maximum delays Dm from SSTA

Delay set Dm
t from Algorithm 2

Output: Selected paths Pt for delay test

1 Pc ← ∅;

2 foreach dk ∈ Dm
t do

3 {ffsrc, ffdst}← Find flip-flops corresponding to dk;

4 Ps ← Trace five most critical paths ffsrc → ffdst;

5 Pc ← Pc ∪ Ps ;

6 end

7 Dc ← Delays of Pc;

8 Dp
t ← ∅;

9 for i← 1 to |Dc| do

10 σ2
next ← ∞;

11 dnext ← null;

12 foreach dc ∈ Dc\Dp
t do

13 Dp′
t ← {dc} ∪Dp

t ;

14 σ2
max ← 0;

15 foreach dk ∈ Dm do

16 Compute σ′2k from Dp′
t to Dm using (4.23);

17 if σ′2k > σ2
max then

18 σ2
max ← σ′2k ;

19 end

20 end

21 if σ2
max < σ2

next then

22 σ2
next ← σ2

max;

23 dnext ← dc;

24 end

25 end

26 Dp
t ← {dnext} ∪Dp

t ;

27 if σnext ≤ σth then

28 Pt ← Paths corresponding to Dp
t ;

29 break;

30 end

31 end

3333 return Pt

72

4.2 Post-Silicon Tunable Buffer Configuration after Manufacturing

1

2

3

4

5

6 7 9

8

a

b

p14 p34
p46 p67

p89

pab

p9a

p78

p7a

p24
p45 p′67

Figure 4.10: Test scenario with multiple combinational paths. The nodes represent

flip-flops. The solid edges represent combinational paths whose delays

need to be tested using frequency stepping. The dashed edges repre-

sent an additional path that can also be tested without increasing the

number of test batches.

4.2.2 Path Test Multiplexing

To predict the maximum delays Dm between flip-flops, the delays Dp
t of represen-

tative combinational paths Pt need to be tested. In frequency stepping, the delay

of a path is compared with the period of the test clock signal by checking whether

the sink flip-flop of the path latches data correctly. A violation of the setup time

constraint indicates the maximum delay is larger than the test clock period. Since

the data latching state of a flip-flop can only indicate whether there is a timing vio-

lation, only the delay of one path converging to it can be tested in one clock cycle.

In addition, paths leaving from a flip-flop cannot be tested in parallel, because the

values of the flip-flops need to be set to trigger specific paths. In practice, the con-

straints may be relaxed because some paths can share parts of test patterns. In the

following discussion, we will only assume the strictest case without allowing this

sharing of test vectors to simplify the description of the proposed test multiplexing,

which can be adapted easily to deal with the relaxed test scenarios.

Consider the test scenario shown in Fig. 4.10, where the nodes represent flip-flops

and the edges represent combinational paths. During delay test, the paths p14, p24,

and p34 cannot be processed in parallel, because they converge at the same flip-flop.

Similarly paths p45 and p46 cannot be tested at the same time due to the shared

source flip-flop. On the contrary, paths that can be tested in parallel can be arranged

into the same group. For example, paths p14, p46, p67, p7a, and pab can be tested

73

4 Post-Silicon Tuning to Mitigate Process Variations

with the same clock period together. These paths are called a batch in the following

discussion. In real test scenarios, there might be cases that some paths in a test batch

cannot be activated by ATPG vectors at the same time. These paths can be set as mu-

tually exclusive and arranged into different test batches. The proposed method does

not consider the logic inconsistencies that might arise while activating/propagating

faults. However, we can use existing methods, e.g., [MT05] and [PRU95], to obtain

testing compatibility, i.e., subsets of paths which can be tested simultaneously for a

given set of paths that need to be tested. Accordingly, testing compatibility of the

representative combinational paths Pt after path selection in Algorithm 3 can be de-

rived with these methods. The compatibility of Pt can be incorporated into path test

multiplexing to generate test batches in which paths can be tested simultaneously.

Since the delays of paths in a test batch can be measured in parallel, naturally we

should arrange paths to be tested into as few batches as possible to reduce the

overall number of frequency stepping iterations. To identify the minimum number

of test batches, we formulate this path arrangement task into an Integer Linear

Programming (ILP) problem.

Assume there are Nt (|Pt| = Nt) paths p1, p2, . . . , pNt to be tested. For the path pj,

we assign a 0-1 variable bi,j, i = 1, 2, . . . , Nt to indicate whether pj is assigned into

the ith batch. For all the selected paths, the variables can be written into an Nt × Nt

submatrix, as shown in the first Nt columns of the following matrix,
b1,1 b1,2 . . . b1,Nt b1,Nt+1 . . . b1,Nt+Na

b2,1 b2,2 . . . b2,Nt b2,Nt+1 . . . b2,Nt+Na
...

...
...

...
...

...
...

bNt,1 bNt,2 . . . bNt,Nt bNt,Nt+1 . . . bNt,Nt+Na

 (4.26)

where the columns correspond to the paths to be tested, and the rows correspond

to test batches.

Because a path delay needs to be measured only once, the sum of the variables in a

column in (4.26) should be equal to one, written as

Nt

∑
i=1

bi,j = 1, 1 ≤ j ≤ Nt. (4.27)

74

4.2 Post-Silicon Tunable Buffer Configuration after Manufacturing

To prevent paths from converging at or leaving from the same flip-flop to be ar-

ranged in the same batch, we add the following constraints for each flip-flop,

∑
pj∈IF

bi,j ≤ 1, ∑
pj∈OF

bi,j ≤ 1, 1 ≤ i ≤ Nt (4.28)

where IF is the set of paths converging at the flip-flop and OF the set of paths leaving

the flip-flop.

To reduce the number of batches, the number of rows containing at least one 1 value

in (4.26) should be minimized. For the ith row corresponding to the ith test batch,

we assign a 0-1 variable Bi to indicate whether this test batch is occupied, so that

bi,j ≤ Bi, 1 ≤ j ≤ Nt, 1 ≤ i ≤ Nt. (4.29)

By minimizing ∑Nt
i=1 Bi, we can minimize the number of test batches that are really

occupied by test paths.

In test iterations, the delays of the paths in the same test batch are always swept by

the same test clock. If the delays of these paths differ significantly, the test clock can

only capture the delay information of a part of them, while the other paths are swept

by changing the period of the clock signal in other test iterations. Consequently,

the number of iterations may have to be increased. To improve test efficiency, we

arrange the paths with comparable delays into the same test batch according to their

statistical delay information.

Since comparable delays in a test batch mean that large delays tend to be assigned

in the same batch and small ones in other ones, we simplify the delay balancing

problem in path arrangement by pushing paths with large delays into into the same

test batch as much as possible. For each test batch, we assign a variable Wi, i =

1, 2, . . . , Nt to represent the sum of the delays of the paths in the ith batch. Therefore,

Wi can be defined as

Wi =
Nt

∑
j=1

bi,jµj, 1 ≤ i ≤ Nt (4.30)

where µj is the mean value of the jth path. If the jth path is assigned into the ith

batch, its delay contributes to Wi. Afterwards, we maximize the weighted sum of

∑Nt
i=1 εiWi, where εi are constants and εi > εi+1. With the weights εi in the descending

order, the paths with large delays tend to be assigned to the first test batches to

improve the efficiency of frequency stepping.

75

4 Post-Silicon Tuning to Mitigate Process Variations

After test batches are formed, there might still be some unoccupied slots in a test

batch because paths might not be distributed evenly at flip-flops with buffers. For

example, the test scenario in Fig. 4.10 requires at least three test batches because

there are three edges converging at node 4. Therefore, these test batches can cover

not only the edge p67 but also p′67. Because the batches of paths should be tested

anyway, we add additional paths to these empty test slots to gather more delay

information.

Additional paths are added according to the prediction accuracy of their corre-

sponding maximum delays. As discussed in Section 4.2.1, the predicted standard

deviation is used as an indicator of the prediction accuracy. Since a large standard

deviation σ′k calculated by (4.23) represents that the corresponding maximum de-

lay cannot be estimated with enough accuracy, we first identify those maximum

delays whose predicted standard deviations are larger than a given percentage of

their original standard deviations, 10% in our framework. Thereafter, for each of

these delays, we find a combinational path from the corresponding source flip-flop

to the sink flip-flop to reduce the predicted variance of the delay. These newly iden-

tified combinational paths are written as a set Pa with delays Da and |Da| = Na.

To incorporate these paths into the test batches, we assign 0-1 variables bi,j, i =

1, 2, . . . , Nt, j = Nt + 1, Nt + 2, . . . , Nt + Na as shown in the extended submatrix (4.26).

Since it is preferred, but not mandatorily required, to add these new paths into the

test batches, their appearance in the test batches can be constrained as

Nt

∑
i=1

bi,j ≤ 1, Nt ≤ j ≤ Nt + Na. (4.31)

Consequently, a new path is included into one of the test batches when the sum

above is equal to 1. To incorporate the new paths into test batches as many as

possible, we maximize the objective ∑1≤i≤Nt,Nt+1≤j≤Nt+Na bi,j. With the new columns

in (4.26), (4.29) and (4.30) should be revised to incorporate the extended indexes as

bi,j ≤ Bi, 1 ≤ i ≤ Nt, 1 ≤ j ≤ Nt + Na (4.32)

Wi =
Nt+Na

∑
j=1

bi,jµj, 1 ≤ i ≤ Nt. (4.33)

Considering the three objectives discussed above, we formulate the path assignment

76

4.2 Post-Silicon Tunable Buffer Configuration after Manufacturing

task into an ILP problem as

Minimize α
Nt

∑
i=1

Bi − β
Nt

∑
i=1

εiWi − γ ∑
1≤i≤Nt

Nt+1≤j≤Nt+Na

bi,j (4.34)

Subject to (4.27)–(4.28) and (4.31)–(4.33) (4.35)

where α, β and γ are constants with α� β� γ to guarantee the minimum number

of test batches are generated. After solving this problem, only the rows with at least

a one in (4.26) are kept as test batches, denoted as B.

4.2.3 Test with Delay Alignment by Tuning Buffers

After path batches are identified, they should be tested using frequency stepping to

evaluate the path delays. In this section, how the delays of paths in a single batch

are measured is discussed. Note this is the only step in the proposed framework

that is executed by expensive testers able to generate various clock signals with a

high accuracy.

In frequency stepping, a clock period is applied to the chip under test and the paths

in a test batch are triggered by test vectors. If the setup time constraint (4.1) at a flip-

flop is violated, the data at this flip-flop cannot be latched correctly. This error shows

that Dij + xi − xj is larger than T so that T is its lower bound. On the other hand, if

the clock period is large enough so that there is no timing violation, the constraint

(4.1) is met and T is an upper bound of Dij + xi − xj. By applying different clock

periods in a binary search style, Dij can be approximated with a given accuracy.

Consider the case shown in Fig. 4.11(a), where a delay has given upper and lower

bounds. These bounds are initialized with µ ± 3σ, where µ and σ are the mean

value and the standard deviation of the delay calculated by statistical timing anal-

ysis. When the delay is tested with a given clock period T in an iteration, either a

new upper bound or a new lower bound of it is generated. Consequently, the cor-

responding delay range is partitioned into two parts by T and the real delay value

falls into one of them. To partition the delay range efficiently, it is preferable that

T is aligned to the center of the range. Otherwise, T might not partition the delay

range evenly, but instead slices it in small steps, leading to many test iterations to

estimate the delay, as illustrated in Fig. 4.11(b).

77

4 Post-Silicon Tuning to Mitigate Process Variations

upper bound

lower bound

TDij
T

real delay

(a) (b)

T

(c)

d1

d2

d3

xi − xj > 0
xi − xj < 0

T

(d)

d1
d2 d3

T

(e)

d1

d2

η2

η1

Figure 4.11: Frequency stepping and delay range alignment.

When several path delays in one test batch are considered as in Fig. 4.11(c), it is

not always possible to partition all the delay ranges evenly with one clock period.

However, we can still find a clock period T that partitions several delay ranges at the

same time, so that the ranges of these delays can be reduced in one test iteration.

To use a clock period T to partition multiple delay ranges, there must be some

overlap between the delay ranges, such as d2 and d3 in Fig. 4.11(c). According to

(4.1), the actual constraint that is tested using T is Dij + xi − xj. Since the tunable

buffers are already deployed in the circuit and their values xi and xj can be adjusted

through the scan chain, we change the value of xi − xj to align the delay ranges,

as illustrated in Fig. 4.11(d). Consequently, a clock period can partition more delay

ranges so that the delays can be measured more efficiently compared with the case in

Fig. 4.11(c). In EffiTest2, at-speed scan test is deployed for delay tests. At-speed scan

test has been applied in [NK08], [TGB09] and investigated thoroughly in [PZCB+10].

In this method, scan chains are loaded with test vectors and two clock pulses are

applied at the functional frequency. Because the configuration bits of buffers can

be scanned into the chip under test together with the test vectors, the proposed

technique requires no change to the existing test platform.

In real circuits, the buffer values xi and xj can only be adjusted in a limited range

as specified by (4.3). In addition, these buffer values may affect more than one

path delay. For example, in Fig. 4.10 the buffer value of node 4 affects all the paths

converging at or leaving from it. To test the path delays efficiently, we need to find

a proper set of buffer values to align the ranges of path delays as much as possible.

Assume that the upper and lower bounds of Dij between nodes i and j are uij and

lij, respectively. When the buffers at the source and sink nodes of the path are

78

4.2 Post-Silicon Tunable Buffer Configuration after Manufacturing

considered, the lower bounds and the upper bounds are shifted by xi− xj as defined

in (4.1). Therefore, the distance ηij between a given T and the center of the shifted

range of the path delay Dij can be expressed as

ηij = |T − ((uij + lij)/2 + xi − xj)|. (4.36)

If we minimize the sum of ηij from all delay ranges, the resulting T will approximate

the centers of delay ranges as much as possible, while the buffer values xi and xj are

also determined.

Minimizing the sum of ηij directly, however, cannot handle the special case in

Fig. 4.11(e) where the two delay ranges still do not overlap even after the buffer

values have been adjusted to the limit. In this case, the sum of distances η1 + η2 is

independent of where T is placed between the centers of the two ranges. To solve

this problem, we sort the centers of delay ranges determined in the previous test

iteration. Thereafter, we assign the weight k0 to the range whose center is in the

middle of the sorted list, and reduce the weights of other ranges by kd successively.

In the proposed method, we set k0 � kd, so that the ranges at the middle of the

sorted list have slightly higher priorities. With this weight assignment, the weights

of the two ranges in Fig. 4.11(e) are different so that the next test clock period T

should align at the center of the range with the larger weight.

The optimization problem to determine the clock period T and the corresponding

set of buffer values xi and xj to align delay ranges can thus be expressed as

Minimize ∑
i,j

kijηij (4.37)

Subject to ∀ path pij in the test batch

T − ((uij + lij)/2 + xi − xj) ≤Mzp
ij (4.38)

(T − ((uij + lij)/2 + xi − xj))− ηij ≤M(1− zp
ij) (4.39)

−(T − ((uij + lij)/2 + xi − xj)) + ηij ≤M(1− zp
ij) (4.40)

−(T−((uij + lij)/2 + xi − xj)) ≤Mzn
ij (4.41)

−(T − ((uij + lij)/2 + xi − xj))− ηij ≤M(1− zn
ij) (4.42)

(T − ((uij + lij)/2 + xi − xj) + ηij ≤M(1− zn
ij) (4.43)

ri ≤xi ≤ ri + τi, rj ≤ xj ≤ rj + τj (4.44)

79

4 Post-Silicon Tuning to Mitigate Process Variations

where (4.38)–(4.43) are linear constraints transformed from (4.36) and M is a very

large positive constant [CBD11]; zp
ij and zn

ij are two 0-1 variables corresponding to

the two cases that T − ((uij + lij)/2 + xi − xj) are no less than zero and no greater

than zero, respectively. (4.44) defines the ranges of buffer values as in (4.3).

After the clock frequency and the corresponding buffer values are determined by

solving the ILP problem (4.37)–(4.44), the paths in the current batch are tested. Ac-

cording to the test result, either the upper bounds or the lower bounds of their

delays are updated. If the distance between the range bounds uij and lij of a path

is smaller than a threshold ε, which is set to a constant times of the maximum of

the mean values of the path delays, 0.005 in our framework, the path is removed

from the current batch. The test iterations finish when all paths in the batch have

been removed. The pseudocode of the test process is shown in Algorithm 4. The

testing process of one test batch only requires the calculation of buffer configuration

and one clock frequency. The test patterns are determined once and no adaptive test

generation based on the measurements from the tester is needed.

4.2.4 Buffer Configuration with Delay Estimation

To make chips with timing failures after manufacturing work with a given clock

frequency, buffers can be configured according to results of the delay test and pre-

diction. Unlike delay alignment using existing tuning buffers to reduce the number

of test iterations above, this step really configures tuning buffers so that the corre-

sponding chips with timing failures can operate at the designated clock frequency.

After a path in Pt has been tested by frequency stepping, its delay is confined to a

narrow range with a lower bound and an upper bound. For another delay dk that is

not measured directly but is to be estimated, (4.22) and (4.23) are used to calculate

the mean value µ′k and the standard deviation σ′k. According to (4.22) and (4.23), σ′k is

determined exclusively by the covariance matrix, but µ′k is affected by dt, which are

the delays measured by frequency stepping. When calculating µ′k, we use the upper

bounds of dt so that the estimated delays are conservative. Since the variances of

estimated delays are often non-zero, which indicate that purely random variations

still affect path delays, we assign a lower bound and an upper bound µ′k − 3σ′k and

µ′k + 3σ′k for an estimated delay, so that all path delays are constrained similarly for

80

4.2 Post-Silicon Tunable Buffer Configuration after Manufacturing

Algorithm 4: Test procedure with frequency stepping

Input: B: the queue of test batches

1 foreach Bk ∈ B do

2 while Bk contains an edge do

3 T ← solve (4.37)–(4.44);

4 test_with_frequency_stepping(Bk, T);

5 foreach pij in Bk do

6 if passed(pij) then

7 uij=T − xi + xj;

8 else

9 lij=T − xi + xj;

10 end

11 if uij − lij < ε then

12 remove_edge(pij, Bk);

13 end

14 end

15 end

16 end

the following buffer configuration.

In the delay range defined by the lower and upper bounds, a real delay may take any

value. However, due to test resolution and delay estimation, the exact location of this

delay in the range is unknown. To deal with uncertainty, a conservative method to

configure the buffers is to assume the upper bounds of the ranges to be path delays,

so that the chip always works with the resulting buffer configuration. This method,

however, may incorrectly evaluate some chips as nonfunctional due to pessimistic

delay overestimation. To alleviate this problem, we try to find a buffer configuration

for a chip while assuming the delays are as close to their corresponding upper

bounds as possible. By minimizing the distance of the assumed delays from their

corresponding upper bounds when determining the buffer configuration, the chance

that the chip works after configuration becomes large, so that the final pass/fail test

will accept most post-silicon configured chips as functional. Because the variances of

81

4 Post-Silicon Tuning to Mitigate Process Variations

predicted maximum delays differ from each other, the distance to the upper bounds

are also scaled by the standard deviations of the predicted delays.

The optimization problem to find a buffer configuration while minimizing the dis-

tance ξ of the assumed delays from the corresponding upper bounds is described as

follows.

Minimize ξ (4.45)

Subject to ∀ path pij

Td ≥ D′ij + xi − xj (4.46)

lij ≤ D′ij ≤ uij, ξ ≥ (uij − D′ij)/σ′ij (4.47)

ri ≤ xi ≤ ri + τi, rj ≤ xj ≤ rj + τj (4.48)

where D′ij is the assumed delay value of a path during buffer configuration; σ′ij is the

standard deviation of the corresponding predicted delay; Td is the designated clock

period for the design; (4.46) and (4.48) are derived from (4.1) and (4.3), respectively.

By solving the optimization problem (4.45)–(4.48), a set of buffer configuration val-

ues xi and xj can be found.

4.2.5 Tuning Bounds Due to Hold Time Constraints

In the discussion above, we do not consider hold time constraints. However, tuning

buffers may affect hold time constraints significantly if they are configured improp-

erly. For example, in Fig. 4.2, if xj is much larger than xi, the constraint (4.2) may be

violated.

As shown in (4.2), hold time constraints are affected by xi − xj instead of individual

values of xi and xj. In the proposed method, we do not test against hold time

violations after configuring buffers. Instead, we set a lower bound λij for xi − xj

by sampling the statistical distribution of dij in (4.2) so that a given yield can be

maintained.

Consider the case that dij in (4.2) is sampled M times for all short paths and its value

in the kth sample is dij,k. For the kth sample, we use a 0-1 variable yk to represent

that the lower bound λij meet

λij − dij,k ≥M(yk − 1), for all short paths pij (4.49)

82

4.3 Experimental Results

whereM is a very large constant. The yield of the circuit with respect to hold time

can thus be constrained as

∑ yi/M ≥ Y, i = 1, 2, . . . M (4.50)

where Y is a given yield for hold time constraints, set to 0.99 in our method. To allow

buffers to have the largest freedom in value configuration, we minimize the sum

of all the lower bounds ∑i,j λij. After λij are determined, the buffer configuration

values can be constrained to avoid hold time violation, as shown below

xi − xj ≥ λij. (4.51)

This constraint is added into the optimization problems in Section 4.2.3 and Sec-

tion 4.2.4 to incorporate hold time constraints to determine buffer values xi and

xj.

4.3 Experimental Results

The proposed framework was implemented in C++ and tested using a 3.20 GHz

CPU. We demonstrate the results with four circuits, s9234 to s38584, from the IS-

CAS89 benchmark set and four circuits, mem_ctrl to pci_bridge32, from the TAU13

variation-aware timing analysis contest. We set the maximum allowed buffer ranges

to 1/8 of the original clock period and all tuning delays with 20 discrete steps

[TRND+00]. The logic gates in the circuits were sized and mapped using a 45 nm

library. The standard deviations of transistor length, oxide thickness and threshold

voltage were set to 15.7%, 5.3% and 4.4% of the nominal values [Nas01]. We used

Gurobi [Gur13] to solve the optimization problems in the proposed method.

4.3.1 Results of Post-Silicon Tunable Buffer Insertion at the Design

Phase

The results with circuits from the ISCAS89 benchmark and the TAU13 benchmark

set are demonstrated. The number of flip-flops and the number of logic gates in

these circuits are shown in the columns ns and ng in Table 4.3. Three bins were used

83

4 Post-Silicon Tuning to Mitigate Process Variations

Table
4.3:R

esults
of

buffer
allocation

for
post-silicon

binning

C
ircuit

Buffer
W

ith
Buffer

A
llocation

R
untim

e

n
s

n
g

n
b

sb
Y

b1
Y

b2
Y

b3
Y

µ
T
+

σ
T
Y

inc (%
)
P

inc (%
)

tc (s)

s9234
211

5597
2

18.00
52.31%

18.80%
13.72%

84.83%
0.70%

3.37%
20.83

s13207
638

7951
6

13.83
63.40%

13.55%
11.03%

87.98%
3.85%

18.47%
34.93

s15850
534

9772
5

7.20
67.93%

14.01%
10.16%

92.10%
7.97%

26.18%
56.81

s38584
1426

19253
14

12.52
63.79%

16.33%
10.71%

90.83%
6.70%

20.62%
71.03

m
em

_ctrl
1065

10327
10

13.06
58.41%

17.49%
12.93%

88.83%
4.70%

12.76%
164.62

usb_funct
1746

14381
17

14.71
54.61%

17.58%
14.03%

86.22%
2.09%

6.67%
147.88

ac97_ctrl
2199

9208
21

13.08
57.96%

16.45%
12.85%

87.26%
3.13%

11.39%
115.93

pci_bridge32
3321

12494
33

8.08
60.02%

16.84%
12.00%

88.86%
4.73%

14.87%
1816.81

A
verage

12.56
59.80%

16.38%
12.18%

88.36%
4.23%

14.29%

Yield
w

ithout
buffers

50.00%
19.15%

14.98%
84.13%

84

4.3 Experimental Results

in the experiments to improve the overall profit. The boundaries between these bins

were set to µT, µT + 0.5σT and µT + σT, where µT and σT are the mean value and the

standard deviation of the clock period of the original circuit without clock buffers.

Chips with clock period larger than µT + σT were considered as yield loss. With this

setting, the original yield values of these three bins without tuning buffers are 50%,

19.15%, and 14.98%, respectively. In all these test cases, the numbers of allocated

buffers Nb were constrained as lower than 1% of the numbers of flip-flops in the

circuits, as shown in the nb column. After allocating post-silicon tuning buffers

using the proposed method, Monte Carlo simulation are run with these circuits to

verify the yield improvement. In the simulation, 10 000 samples were generated. For

each sample its minimum clock period was calculated using an ILP solver due to the

appearance of tuning buffers, and assigned the sample to one of the performance

bins. The yield value of a circuit in a bin is the number of samples in that bin

divided by 10 000. The samples in the experiments are conceptually different from

the samples discussed in Section 4.1.3, because they were only used to emulate post-

silicon measurements. For each sample, whether a chip can be assigned into a bin

was verified by solving the classical skew scheduling problem in [Fis90]. In reality,

the delays and timing properties cannot be measured exactly from the manufactured

chips, so that the actual yield is slightly smaller than the reported yield, as discussed

in [ZLS+18]. This yield, however, still serves as a good indicator to determine buffer

locations.

The yield values of the three bins are shown in the columns Yb1, Yb2 and Yb3 in

Table 4.3, respectively. Compared with the yield values without clock buffers, we

can see that the yield in the first bin is increased significantly but the yield values

of the other two bins are smaller, because with tuning buffers chips have a better

chance to be tuned to a higher performance. Adding the yield values of the three

bins together, we can calculate the yield of a circuit with respect to µT + σT, shown

in the YµT+σT column. Compared with the original yield 84.13%, the yield increase

is shown in the column Yinc, with an average 4.23%.

With these yield values in the three bins, we can calculate the profit using (4.4).

In the experiments, we set the profit per chip of the three bins to 6, 2, and 1, re-

spectively. The overall profit increase is shown in the column Pinc, with an average

14.29%. If we compare the column Pinc and the column Yinc, we can see that the

85

4 Post-Silicon Tuning to Mitigate Process Variations

2000

4000
R

un
tim

e
(s

)

Number of samples in a batch

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

mem ctrl usb funct ac97 ctrl

Figure 4.12: Scalability trend of the proposed method with a fixed number of sam-

ples in each batch.

improvement of profit is much more significant than the overall yield improvement

due to the introduced tuning buffers and clock binning. To achieve this profit im-

provement, the number of buffers in the circuit is still less than 1% of the number of

flip-flops. If we assume that a buffer takes 10 times area of a flip-flop and flip-flops

take 5% of the die area, the area cost of these buffers is about 0.5% of the die area.

Therefore, we can expect a good overall revenue improvement, even when we con-

sider the potential cost of post-silicon configuration. A concrete evaluation of this

cost will be our future work.

In the proposed method, we also reduced the buffer sizes by concentrating tuning

values. The average buffer sizes in the benchmark circuits are shown in the column

sb. Compared with the maximum allowed size 20, the buffer sizes have been reduced

effectively by the proposed method while maintaining a good profit improvement.

The execution time of the proposed method is shown in the last column of Table 4.3.

The largest execution time of the proposed method is 1816.81 seconds, which is

already acceptable because the proposed method is executed offline only for a few

times.

Since the runtime of solving an ILP problem depends on the structure of constraints

as well as their relations, it is difficult to analyze the scalability of the proposed

method theoretically. Instead, we tested this method by fixing the number of sam-

ples in each batch to solve the buffer insertion problem with respect to a given clock

period µT + σT as used in Table 4.3. The relation between the number of samples in

86

4.3 Experimental Results

s13207
s15850

s38584
mem ctrl

usb funct
ac97 ctrl

80%

90%

Y
ie

ld
brute-force method proposed method

Figure 4.13: Yield comparison between the proposed method and the brute-force

method with 10 000 samples.

a batch and the runtime is illustrated in Fig. 4.12. pci_bridge32 did not finish due to

memory limitation, so that it was not included in this evaluation. According to these

results, the runtime increases exponentially with respect to the number of samples,

especially with large circuits. In the proposed method, the number of samples in

each batch is limited to Nt as discussed in Section 4.1.5. This limitation might lead

to a yield degradation because the optimization problem is split into several small

problems. To verify the quality of the results produced by the proposed method,

we compared them with the yield results of a brute-force method processing 10 000

samples as a whole, as shown in Fig. 4.13. With this comparison, it can be observed

that the yield degradation of the proposed method is negligible, because the pro-

posed work flow in Fig. 4.3 first tries to capture all the buffer locations that have

a potential to affect the yield. Afterwards, only these locations are considered in

further iterations so that a batch can contain more samples, still leading to a good

yield result. The runtime of the brute-force method, however, is much larger than

the proposed method, as shown in Fig. 4.14.

In the profit definition (4.4), if we use only one bin, the problem formulation be-

comes the problem to improve the yield with respect to a single clock period. In our

experiments, we tested this single-bin setting using µT, µT + 0.5σT, and µT + σT as

the upper bounds of the single bins, respectively. The results of yield improvement

are shown in Fig. 4.15. In all these test cases, the yield values have been improved

effectively, up to 18.19% for the circuit s15850 in the µT bin. In these test cases, the

yield improvement is consistently better for bins with higher performance, because

in these bins the original yield values without tuning buffers are lower so that there

87

4 Post-Silicon Tuning to Mitigate Process Variations

s13207
s15850

s38584
mem ctrl

usb funct
ac97 ctrl

>
2

hours

1000

2000

3000

4000

5000

R
un

tim
e

(s
)

brute-force method proposed method

Figure 4.14: Runtime comparison between the proposed method and the brute-

force method with 10 000 samples.

s13207
s15850

s38584
usb funct

ac97 ctrl
pci bridge32

10%

20%

Y
ie

ld
Im

pr
ov

em
en

t

µT µT + 0.5σT µT + σT

Figure 4.15: Yield improvement with clock tuning buffers with respect to µT, µT +

0.5σT and µT + σT, compared with the yield values without tuning

buffers.

88

4.3 Experimental Results

0.5

0.6
0.7
0.8
0.9
1.0

Y
ie

ld
at

µ
T

Yield w/o buffers=0.5
s13207

s15850
s38584

usb funct
ac97 ctrl

pci bridge32

1% 3% 5%

Figure 4.16: Yield increase with respect to different numbers of tuning buffers with

the target clock period set to µT.

0.5

0.6
0.7
0.8
0.9
1.0

Y
ie

ld
at

µ
T

+
σ

T

Yield w/o buffers=0.84

s13207
s15850

s38584
usb funct

ac97 ctrl
pci bridge32

1% 3% 5%

Figure 4.17: Yield increase with respect to different numbers of tuning buffers with

the target clock period set to µT + σT.

is a large potential for the tuning buffers to take effect.

In the experiments, we constrained the number of buffers to be smaller than 1%

of the number of the flip-flops. If this number can be increased, we can expect an

increase of yield because there are more chances to tune the chips after manufac-

turing. To show the effect of more tuning buffers, we tested the numbers of buffers

equal to 1%, 3%, and 5% of the number of flip-flops. For each of these buffer num-

bers, we calculated the yield values with respect to the single clock periods µT and

µT + σT, respectively. The results are shown in Fig. 4.16 and Fig. 4.17. According to

these experiments, we can see that the yield generally increases when the number of

buffers inserted into the circuit increases. Similar to the trend of the yield improve-

ment with respect to different clock periods in Fig. 4.15, the yield improvement with

respect to µT in Fig. 4.16 is more obvious compared with the yield improvement

with respect to µT + σT in Fig. 4.17. For the former, the average improvement of

the 5% setting to the 1% setting is 6.78%, but for the latter this improvement is

89

4 Post-Silicon Tuning to Mitigate Process Variations

Table 4.4: Runtime comparison w/o and w/ acceleration techniques

Circuit s15850 s38584 ac97_ctrl pci_bridge32

Without acceleration (s) 3411.29 8435.14 15967.7 > 8h

With acceleration (s) 56.81 71.03 115.9 1816.811

only 2.75%. Consequently, we can conclude that post-silicon buffers are more useful

in high-performance designs, specially with clock binning, where the potential for

profit/yield improvement is large.

To reduce the execution time of the proposed method, several acceleration tech-

niques were introduced. With the Sobol sequence, the inner loop of the iterative

flow in Fig. 4.3 converged with the test cases usb_funct and pci_bridge32, while the

other cases used up all the samples. To demonstrate the efficiency of the acceleration

techniques, we disable all of them and show the execution time in Table 4.4. Accord-

ing to this comparison, it is obvious that the proposed acceleration techniques can

shorten the execution time effectively.

The buffer insertion problem is also addressed in [TZC05] with a direct statistical

model. For comparison, we show the results from their paper and the results of our

method applied to the same set of circuits in Table 4.5. The N1 column shows the

number of buffers in [TZC05], and the N2 column that of our method. Note their

method is designed for a clock network with a tree structure and they do not group

buffers as we do. Consequently, there is a large difference between the numbers

of buffers. The columns Y1 and Y2 show the yield values from their method and

our method with the same clock period setting. In this comparison, the proposed

method outperforms the method in [TZC05] with a higher yield, while the number

of clock tuning buffers is much smaller. Furthermore, we have implemented the

method in [LN14] and the yield comparison is shown in Fig. 4.18. In this compar-

ison, the numbers of inserted buffers are equal, so that we can conclude that the

proposed method outperforms the method in [LN14] consistently.

In the last step of the proposed method, we group buffers according to the correla-

tion between tuning values. This correlation information is a natural result of the

sampling-based method. In [LN14], a grouping algorithm is also proposed accord-

ing to circuit structure and distances between flip-flops. We compare the results

90

4.3 Experimental Results

Table 4.5: Yield comparison with [TZC05]

Circuit N1 Y1 N2 Y2

s9234 8 96.94% 2 98.57%

s13207 18 98.95% 6 99.40%

s15850 21 99.24% 5 99.96%

s38584 162 98.17% 14 99.70%

s13207
s15850

s38584
usb funct

ac97 ctrl
pci bridge32

80%

90%

Y
ie

ld

method in [LN14] proposed method

Figure 4.18: Yield comparison with the buffer insertion method in [LN14].

of our correlation-based grouping method with theirs and the results are shown in

Table 4.6, where Y1 is the yield with the grouping algorithm in [LN14] and Y2 is

the yield with the proposed correlation-based grouping. For comparison, we have

changed the numbers of buffers in the proposed method so that they are equal to

the ones in [LN14]. From this comparison, we can see that our method produces a

better yield, because we have the correlation information from emulated samples.

The method proposed in [ZLS16a] uses the same concept in this dissertation, but

it captures the locations of buffers by processing emulated samples once at a time.

Therefore, the relation between tuning values in different samples is not incorpo-

Table 4.6: Yield comparison of different grouping algorithms

Circuit s15850 s38584 ac97_ctrl pci_bridge32

Y1 84.57% 85.43% 84.67% 84.16%

Y2 93.51% 92.33% 88.01% 89.10%

91

4 Post-Silicon Tuning to Mitigate Process Variations

s13207
s15850

s38584
usb funct

ac97 ctrl
pci bridge32

70%

80%

Y
ie

ld

yield in [ZLS16a] yield of this method

Figure 4.19: Yield improvement with the same setting compared with [ZLS16a].

s13207
s15850

s38584
usb funct

ac97 ctrl
pci bridge32

2500

5000

E
xe

cu
tio

n
T

im
e

(s
)

runtime in [ZLS16a] runtime of this method

Figure 4.20: Execution time compared with [ZLS16a].

92

4.3 Experimental Results

rated. In addition, the method in [ZLS16a] uses a purely random sequence so

that the number of samples is still large. To verify the improvement of the pro-

posed method, we mapped the circuits used in [ZLS16a] to the same library and

tested the yield improvement with respect to µT. The results are shown in Fig. 4.19,

where we can see that the proposed method produces a better yield improvement

than [ZLS16a] with the same number of buffers. Furthermore, we show the execu-

tion time of these methods in Fig. 4.20. It is clear that the extended method in this

dissertation is more efficient than [ZLS16a].

4.3.2 Results of Post-Silicon Tunable Buffer Configuration after

Manufacturing

The results with circuits from the ISCAS89 benchmark and the TAU13 benchmark

are demonstrated. The number of flip-flops and the number of logic gates in these

circuits are shown in the columns ns and ng in Table 4.7. The column |Dm| shows the

numbers of maximum delays between flip-flops whose delays need to be evaluated

for post-silicon buffer configuration. If a flip-flop is attached a tunable buffer, the

maximum delays from all its fanin flip-flops to it and from it to all its fanout flip-

flops are added into Dm as discussed in Section 4.2.1. Consequently, these numbers

may still be large, specially in the test cases mem_ctrl and pci_bridge32, despite only

a small number of buffers (nb) are inserted into the circuits. The column |Dm
t | shows

the numbers of maximum delays Dm
t after applying SVD-QRcp decomposition in

Algorithm 2. These maximum delays are identified from Dm and used to narrow

the search scope of real combinational paths. Due to statistical prediction, the size

of Dm
t is much smaller than that of Dm, so that the number of paths that are really

tested can be reduced effectively. The numbers of real combinational paths to be

tested are shown in the column |Pt|. These paths are identified by iterative selection

in Algorithm 3. The tested delays of these paths are used to predicted Dm. The

efficiency of this delay prediction can be demonstrated by the comparison between

|Pt| and |Dm| clearly, where the numbers of test paths are only about 2%–3% of the

numbers of the maximum delays in most cases. The paths in Pt are grouped in test

batches as described in Section 4.2.2, and the numbers of these batches are shown

in the column |B|. Since multiple combinational paths are multiplexed during delay

93

4 Post-Silicon Tuning to Mitigate Process Variations

Table
4.7:Test

R
esults

W
ith

D
elay

A
lignm

ent
and

StatisticalPrediction

C
ircuit

Frequency
Stepping

R
untim

e

n
s

n
g

n
b

|D
m|
|D

mt |
|P

t |
|B|

n
a

n
v

n
′a

n
′v

ra (%
)

rv (%
)

T
p (s)

T
t (s)

T
s (s)

s9234
211

5597
2

87
6

7
5

46.33
6.62

871.31
10.02

94.68
33.91

5.93
0.06

0.00

s13207
638

7951
6

456
12

12
2

51.25
4.27

4550.88
9.98

98.87
57.20

16.34
0.10

0.00

s15850
534

9772
5

546
10

11
4

47.05
4.28

5452.90
9.99

99.14
57.17

50.46
0.12

0.01

s38584
1426

19253
14

437
14

14
3

61.42
4.39

4366.07
9.99

98.59
56.09

89.94
0.15

0.03

m
em

_ctrl
1065

10327
10

2210
15

36
4

105.48
2.93

22038.12
9.97

99.52
70.62

299.63
0.69

0.06

usb_funct
1746

14381
17

1402
13

28
2

87.98
3.14

13975.14
9.97

99.37
68.48

143.13
0.36

0.04

ac97_ctrl
2199

9208
21

1714
13

20
2

58.78
2.94

16879.47
9.85

99.65
70.16

146.53
0.24

0.02

pci_bridge32
3321

12494
33

4501
22

58
6

181.60
3.13

44784.95
9.95

99.59
68.53

1712.57
0.92

0.79

94

4.3 Experimental Results

test, these numbers can be much smaller than those of Pt.

In the experiments, we tested 10 000 simulated chips by sampling statistical delays

from statistical timing analysis. The column na shows the average number of fre-

quency stepping iterations for each chip using EffiTest2 , and the column nv shows

the average number of iterations per path, where nv = na/|Pt|. For comparison, we

implemented the method applying frequency stepping to each path individually, as

assumed in [TBCS04, LN14, NK08, TGB09]. The column n′
a in Table 4.7 shows the

average number of test iterations for each chip. These large numbers confirm that

the straightforward frequency stepping method is impractical for large circuits. Fur-

thermore, the column n′
v shows the average number of frequency stepping iterations

per path where n′v = n′a/|Dm|. The columns ra(%) and rv(%) show the reduction

ratios of the test iterations per chip and the test iterations per path achieved using

EffiTest2, where ra = (n′a − na)/n′a ∗ 100 and rv = (n′v − nv)/n′v ∗ 100. Combining

statistical prediction and aligned delay test, EfiiTest2 can reduce the overall test ef-

fort by more than 94% (94.68%∼99.65%). In addition, the ratios of test iterations

per path rv(%) demonstrate that test reduction can reach from 33.91% to 70.62%.

This reduction comes only from test multiplexing and aligned delay test, while the

statistical prediction technique does not affect this ratio. Both comparisons confirm

that the proposed framework reduces test effort significantly.

The runtimes of the proposed method are shown in the last three columns in Ta-

ble 4.7, where Tp is the runtime for path identification, batch assignment and hold

time bound computation before delay test starts. Because these steps are performed

offline, the runtime is already acceptable. The column Tt(s) shows the average run-

time when computing the clock period T and the buffer configuration values for all

test batches of a chip. Since this computation can be performed in parallel while

path batches are tested, the runtime is also acceptable compared with the execu-

tion time of scan test. The last column Ts(s) shows the runtime to determine the

final buffer values using the method in Section 4.2.4. This step is not performed on

high-end testers so that the efficiency is good enough.

In the proposed framework, the results of aligned delay test produce lower and up-

per bounds for delays. This inaccuracy cannot be avoided due to the nature of delay

test and it affects the yields of the circuits after buffer configuration. In addition,

the technique of statistical prediction also introduces configuration inaccuracy in the

95

4 Post-Silicon Tuning to Mitigate Process Variations

Table 4.8: Yield Comparison

Circuit
T1 T2

yi(%) yt(%) yr(%) yi(%) yt(%) yr(%)

s9234 52.77 52.51 0.26 85.01 84.99 0.02

s13207 63.58 61.98 1.60 89.88 89.81 0.07

s15850 68.19 67.08 1.11 93.51 92.63 0.88

s38584 64.67 63.01 1.66 92.33 91.56 0.77

mem_ctrl 59.08 58.35 0.73 89.30 88.95 0.35

usb_funct 54.98 53.69 1.29 86.72 85.85 0.87

ac97_ctrl 58.37 57.84 0.53 88.01 87.81 0.20

pci _bridge32 60.56 58.87 1.69 89.10 88.08 1.02

Yield w/o tuning 50.00 84.13

estimated delays. Consequently, it is expected that the yield values of the circuits

should drop from the ideal yield values with delays assumed being measured ex-

actly. We tested several cases with two clock periods T1 and T2 and the results are

shown in Table 4.8. The yield in this table was calculated by checking the setup and

hold time constraints between pairs of flip-flops for the 10000 simulated chips after

buffer configuration. If the timing constraints were satisfied for a simulated chip

that failed initially without buffer configuration, we assumed the chip after buffer

configuration was rescued, so that the yield was improved by 0.01%. For T1 and T2

the original yield values without buffers were 50% and 84.13%, corresponding to the

cases of setting the target clock period to mean and mean plus standard deviation

of the clock period calculated by SSTA, respectively. The column yi shows the yield

values with a perfect delay measurement; the column yt shows the yield values with

delays measured by the proposed method; and the column yr shows the yield drops

due to the inaccuracy in the tested delays, where yr = yi − yt. In these results, we

can see that the yield drops are around 1-2%, where the improved yield values are

still far better than those without buffers.

Since the results of the statistical prediction technique in Section 4.2.1 depend on the

correlations between path delays, we manually increased the standard deviations

of all delays by 10%. These increased variations are added to the purely random

part of the delays so that the correlations between delays are decreased accordingly.

Figure 4.21 shows the yield results of three cases with respect to the clock period T2

96

4.3 Experimental Results

s9
23

4

s1
32

07

s1
58

50

s3
85

84

m
em

_c
trl

usb
_fu

nct

ac
97

_c
tr

pci_
brid

ge3
2

60

80

100

Yi
el

d
(%

)

Ideal EffiTest2 w/o buffer

Figure 4.21: Yield with enlarged random variation.

s9
23

4

s1
32

07

s1
58

50

s3
85

84

m
em

_c
trl

usb
_fu

nct

ac
97

_c
tr

pci_
brid

ge3
2

5

10

15

It
er

.p
er

pa
th

Path-wise Path multiplexing EffiTest2

Figure 4.22: Test comparison without statistical prediction.

in Table 4.8: 1) ideal yield with buffers configured with presumed accurate delays;

2) with buffers configured using tested and predicted delays in ; 3) no buffers in

the circuits. Compared with the results in Table 4.8, the yield values in Fig. 4.21

are lower due to the increased random variation. The first two cases, however,

demonstrate clearly that the yield results were still improved impressively using

tunable buffers when compared with the cases without them. When testing and

configuring the buffer values with , the yield values dropped slightly from the ideal

cases in Fig. 4.21, because of the expected inaccuracy in delay test and prediction.

These yield values, however, still followed the ideal cases closely, confirming the

strength of EffiTest2.

97

4 Post-Silicon Tuning to Mitigate Process Variations

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
80

90

100
Yi

el
d

(%
)

s15850 s38584
ac97_ctr pci_bridge32

(a)

0.001 0.005 0.01 0.015 0.02
80

90

100

Yi
el

d
(%

)

s15850 s38584
ac97_ctr pci_bridge32

(b)

Figure 4.23: Prediction threshold and its effect on yield in Algorithm 2 and Algo-

rithm 3 (a), and test threshold over yield in Algorithm 4 (b).

To verify the effectiveness of aligned delay ranges described in Section 4.2.2 and Sec-

tion 4.2.3, we applied them directly to reduce test iterations without statistical pre-

diction. Figure 4.22 shows the comparison of the numbers of test iterations per path

in three cases: 1) path-wise frequency stepping, where around ten iterations were

needed for each path; 2) test multiplexing without delay alignment using buffers; 3)

multiplexing with delay alignment using buffers in EffiTest2. The second case used

the method in Section 4.2.2 and Section 4.2.3, but all the buffers values were set to

zero during test. Comparing the results of the first case and the second case, we can

see that test multiplexing is a powerful technique to reduce test iterations. When

the technique of delay alignment is applied, test iterations can be reduced further,

as demonstrated by the third case. These results confirm that even without taking

advantage of the correlations between path delays, the proposed method can still

reduce test cost significantly.

98

4.3 Experimental Results

1 10 20 30
0

10

20

30

Pr
ed

ic
te

d
va

ri
an

ce
s13207

pci_bridge32

Figure 4.24: Effect of the number of selected variables over prediction accuracy.

In the statistic prediction technique described in Algorithm 2 and 3, the iterations

stop when the predicted maximum variances reach a threshold σth. In delay predic-

tion, the variance of a predicted variable cannot be lower than that of its purely ran-

dom component. To experiment with different thresholds σth used in Algorithm 2

and 3, we first find the maximum of these purely random components of the pre-

dicted delays and set the threshold as constant times of them. Figure 4.23(a) shows

the effect of these threshold values. As the threshold value reaches 3.5× σmax, the

yield values of the circuits start to drop, because of the large range of the predicted

delays. In EffiTest2, this constant was set to 2.0. Similarly, in the test procedure, the

binary search of frequency stepping quits when an accuracy is reached. We have

also tested different threshold values of ε in Algorithm 4 and the results are shown

in Figure 4.23(b), where the x axis shows the constant times of the maximum of the

mean values of the delays. As this number reaches 0.01, slight accuracy loss starts

to appear. This number was set to 0.005 in EffiTest2 to maintain the test quality.

In Algorithm 2 and 3 we also increased the number of variables in Dm
t gradu-

ally in the loops, instead of using a binary search to reduce execution time. Fig-

ure 4.24 shows the trend of accuracy improvement with the two cases s13207 and

pci_bridge32. For these two circuits, the accuracy does not improve notably after

the number of variables becomes relatively large. Using the threshold setting dis-

cussed in Section 4.2.1, this number was set to 12 for s13207 and 22 for pci_bridge32

in the experiments. Furthermore, it can be observed that the curves for these two

circuits do not decrease monotonously, so that a binary search may not return the

best result. For example, 15 instead of 12 variables for s13207, and 24 instead of 22

99

4 Post-Silicon Tuning to Mitigate Process Variations

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

M
ax

im
um

pr
ed

ic
te

d
σ

m
ax

s9234 s13207 ac97_ctrl

Figure 4.25: Comparisons of predicted standard deviations using different numbers

of combinational paths. Lower values indicate better prediction accu-

racy.

variables for pci_bridge32, should be selected if a binary search would be used for

these two cases.

To demonstrate the prediction accuracy using a given number of combinational

paths for each maximum delay in Dm
t as discussed in Section 4.2.1, we compared

the accuracy of all delays in Dm when the number of selected combinational paths is

varied to from 1 to 10 in Algorithm 3. For a circuit, the threshold of the prediction

accuracy σth for path selection in Algorithm 3 is set with respect to the standard

deviations of purely random components of path delays described in Section 4.2.1.

Accordingly, the predicted maximum standard deviations σmax in Dm are different

in the tested circuits. With more paths selected for testing, σmax decreases due to the

correlation information, however, with an increase of test cost. Fig. 4.25 shows the

trend of maximum standard deviations σmax of predicted values of Dm with respect

to the number of selected paths. With the increase of the selected number, σmax de-

creases, meaning the prediction accuracy is improved. When the number of selected

paths is larger than 5, the accuracy does not change noticeably. Therefore, we set

this number to 5 in to maintain the accuracy. The other circuits that are not included

in Fig. 4.25 show less trend changes in the predicted standard deviations in terms

of the number of combinational paths.

In EffiTest2, we do not test short paths using frequency stepping so that test itera-

tions can be reduced. Instead, we set adjustment ranges as described in Section 4.2.5

to reduce hold time violations. These constraints are controlled by the threshold Y

100

4.4 Summary

1.0

0.99

0.98

0.97

0.96

0.95

0.94

0.93

85

90

95

100

91.99

88.38Yi
el

d
(%

)

1.0

0.99

0.98

0.97

0.96

0.95

0.94

0.93

88.56

85.92

s38584 pci_bridge32

Figure 4.26: Hold time threshold effect over yield.

in (4.50), whose effect over the yield values of s38584 and pci_bridge32 are shown in

Fig. 4.26. In each of these two figures, the two straight lines and the corresponding

numbers show upper bound and lower bound of the yield values, where the former

is computed by ignoring all hold time violations and the latter is computed by not

adding the constraints in (4.50)–(4.51). When the threshold Y decreases to 0.98, the

yield values of the circuits start to drop. Therefore, we set Y to 0.99 in EffiTest2.

4.4 Summary

In this chapter, a complete framework is proposed to consider the yield improve-

ment with post-silicon tuning and the ensuing cost due to additional area and test

holistically. Firstly, a sampling-based method is proposed to determine locations and

ranges of post-silicon tuning buffers in a circuit to improve the overall profit with

clock binning. By establishing the relation between buffer locations and the yield

with an ILP model directly, the proposed method can learn the buffer locations for

yield improvement effectively. With acceleration techniques such as a low discrep-

ancy sequence, the proposed method takes much less time than previous methods.

Experimental results confirm that the profit of the circuit after manufacturing can

be improved significantly with a small number of buffers.

To reduce the test cost in configuring tunable buffers, an efficient framework is

101

4 Post-Silicon Tuning to Mitigate Process Variations

proposed. By providing customized clock schemes to manufactured chips, tim-

ing failures may be alleviated by intentional clock skews with respect to the effect

of process variations. The proposed framework combines statistical prediction and

aligned delay test with path multiplexing to reduce test cost during post-silicon con-

figuration. Consequently, the number of test iterations can be reduced by more than

94%, while the improved yield of the circuit is well maintained. The effectiveness

of these techniques has been confirmed by experimental results using ISCAS89 and

TAU13 benchmark circuits.

102

Chapter 5

A Holistic Timing Analysis Framework

Considering Setup/Hold Time

Interdependency

In static timing analysis, clock-to-q delays of flip-flops are considered as constants.

Setup times and hold times are characterized separately and also used as constants.

The characterized delays, setup times and hold times, are applied in timing analysis

independently to verify the performance of circuits. However, clock-to-q delays of

flip-flops depend on both setup and hold times in reality. Instead of being constants,

these delays change with respect to different setup/hold time combinations. Conse-

quently, the simple abstraction of setup/hold times and constant clock-to-q delays

introduces inaccuracy in timing analysis. In this chapter, a holistic timing analysis

framework considering setup/hold time interdependency is proposed.

To consider the flexibility of flip-flop delays, two problems have to be solved. 1) The

three dimensional surface of the flip-flop in Fig. 3.5 should be modeled. In this step,

only the necessary delay information that can be used to calculate the minimum

clock period should be retained. Other delay information should be omitted to

reduce simulation time; 2) A timing analysis algorithm using the piecewise delay

model to calculate an accurate minimum clock period for a circuit. This algorithm

should take the delay compensation across flip-flop stages into account and calculate

the minimum clock period in a reasonable time.

In Section 5.1, firstly the three dimensional surface of the flip-flop in Fig. 3.5 is

modeled using linear planes. The proposed algorithm to use the piecewise model

to calculate an accurate minimum clock period is introduced in Section 5.2.

103

5 A Holistic Timing Analysis Framework Considering Setup/Hold Time Interdependency

5.1 Adaptive Piecewise Polygonization of a

Three-dimensional Delay Surface

To transform the delay surface in Fig. 3.5 into a form that can be used by static

timing analysis, we partition it into small regions and approximate each one using

a linear plane in the region, or a polygon. This piecewise approximation has the

flexibility enabling the tradeoff between runtime and accuracy. The more polygons

into which the surface is partitioned, the more accurate this approximation is, but

the more time is required to generate these polygons and the slower the timing

analysis algorithm becomes.

The linearization of a three dimensional surface is a problem studied widely and

many methods have been proposed [Cla88,VHB87], using techniques such as adap-

tive sampling. But these methods are very general and do not take advantage of

the special shape of the three dimensional delay surface as shown in Fig. 3.5. In

this section, an adaptive method is proposed to approximate the delay surface using

a set of polygons. This piecewise delay model can be used by the timing analysis

algorithm in Section 5.2 directly.

The linearization of the delay surface includes three steps. First, we identify the

boundary of the surface projected to the setup/hold slack dimensions using trian-

gles. When the setup slack or the hold slack is very small, the flip-flop enters the

metastable region, which should be excluded from the valid working space of the

flip-flop. Second, we partition the delay surface inside the boundary with rectan-

gles. We then check the approximation accuracy of each rectangle and split it further

if the approximated delay is too far away from the real delay on the surface. Third,

we merge the rectangles produced in the second step so that the number of poly-

gons can be reduced, which improves the efficiency of timing analysis using this

piecewise model.

5.1.1 Approximating the Surface Boundary Using Triangles

When the setup slack or the hold slack becomes too small, the flip-flop may enter

the metastable region. The boundary between the working region of a flip-flop and

104

5.1 Adaptive Piecewise Polygonization of a Three-dimensional Delay Surface

B

perpen-

hold
slack

setup slack

meta-

region
stable A

search
dicular

(a)

binary search

binary search

C

D

B

hold
slack

setup slack

A

(b)

F

E

Figure 5.1: Approximation of the boundary of the delay surface. (a) Approximation

with linear segments. (b) Delay surface approximation with triangles.

its metastable region has a shape similar to the curve in Fig. 5.1a when projected

into the setup and hold dimensions.

In the proposed method, the boundary of the delay surface is approximated by a

chain of linear segments whose ending points are on the boundary curve, as shown

in Fig. 5.1a. As we do not know the shape of the curve, we generate these linear

segments to approximate it. We start from a single linear segment shown as the

right-most segment connecting points A and B where the setup slack and hold slack

are set to large values, respectively.

In this setting, the setup slack at point A does not affect the delay of the flip-flop,

so that a binary search of different hold time slacks can capture the delay value at

A quickly. In each search, we run SPICE simulation at the target point. If the clock-

to-q delay is larger than a given threshold or the SPICE simulator does not return

a valid delay, this point is considered outside the feasible region of the clock-to-q

delay. Otherwise, we find a valid point in the feasible region. After the binary search

is finished, the valid point with the smallest hold slack is identified as point A in

Fig. 5.1a. Similar to this process, we assign the flip-flop a very large hold time slack

and execute a binary search along the setup slack to identify point B.

The linear segment connecting A and B (A↔B) still cannot be used as an approx-

imation of the surface boundary, because the point at the middle of this segment

may be far away from the real boundary. To check the distance between this ap-

105

5 A Holistic Timing Analysis Framework Considering Setup/Hold Time Interdependency

proximation point (C) and the real boundary point (D), we apply a binary search in

the direction perpendicular to the segment A↔B toward D using SPICE simulation.

Afterwards, we compare the distance between C and D. If it is larger than a given

threshold (kth), we split the segment A↔B and create two linear segments A↔D and

B↔D. In this way, the distance between the linear segments and the real boundary

is reduced. This refining process is repeated further until the entire boundary curve

is approximated within the accuracy requirement.

With the linear segments following the boundary closely, we then create triangles to

approximate the three dimensional delay surface in the area close to this boundary.

First we create triangles using these linear segments as their hypotenuse, as shown

in Fig. 5.1b. Each of these triangles defines a valid region in which the delay surface

is approximated with a linear plane defined by the corner points of the triangle. For

example, in the triangle formed by the points B, E, and F, the clock-to-q delays at

B and F are already known from SPICE simulation during constructing the linear

segments. We then run SPICE simulation at point E. With the coordinates of the

three corner points B, E, and F as well as the corresponding clock-to-q delays, the

linear plane in the three dimensional space can be constructed easily.

To verify the accuracy of the triangular approximation in the three dimensional

space, we select a point inside the triangle and run SPICE simulation again. We

then compare the approximated delay by the linear plane and the simulated delay.

Since the real delay surface is convex, the point that has an equal distance to the

three ending points is chosen for the verification. In a right triangle, this point is at

the middle of its hypotenuse.

In the comparison above, if the difference between the approximated value and

the real delay value is larger than a threshold dth, we split the triangle into two

as illustrated in Fig. 5.1b. Consequently, we create more linear segments along

the delay boundary to increase the approximation accuracy. Note in generating the

linear segments along the boundary above, we check the distance of the approximate

point to the boundary in the setup/hold slack dimensions using the threshold kth.

In verifying the approximation accuracy of the delay, we compare the delays directly

so that the linear segments approximating the boundary might be split further as

shown in Fig. 5.1b.

106

5.1 Adaptive Piecewise Polygonization of a Three-dimensional Delay Surface

5.1.2 Approximating the Delay Surface Using Rectangular Polygons

The triangles found above only cover the areas of the delay surface close to the

boundary. In order to approximate the whole surface, more polygons are required.

Instead of using a lot of polygons directly, we take advantage of the fact that the

delay surface is a constant surface when both the setup slack and the hold slack are

large. In other words, if the signal switching at the input of a flip-flop is always far

way from the active clock edge, the flip-flop always works in a stable region with a

constant delay. To approximate this area, we need only one linear plane.

To identify the constant linear plane, we start a search from a stable point (G) at

which the setup slack and hold slack are very large, in the direction in which setup

and hold slacks decrease at the same time, as illustrated in Fig. 5.2a. At each step,

we run SPICE simulation to find the real delay on the surface. Once we reach the

first point at which the simulated delay increases, we use the last stable point (H) as

the the corner of the stable linear plane.

The ending point H in Fig. 5.2a is hardly the optimal point from which the largest

stable region is covered, because there are many such points at which the clock-

to-q delay deviates from the stable value on the delay surface. However this non-

optimal point does not affect the approximation accuracy or efficiency, because the

uncovered region will be split and merged as follows.

To cover the areas between the triangles close to the boundary of the delay surface

and the newly identified stable region, we create rectangles and split them with re-

spect to the approximation accuracy. As illustrated in Fig. 5.2b, we start from the

edges of the triangles and expand to the right and to the top of the area. Con-

sequently, relatively large rectangles are created. Note there is some overlapping

between these rectangles, e.g., the ones covering the corner point H. In the proposed

ILP formulation, this overlapping is allowed and the solver chooses one of the points

on the overlapping polygons as the working point of the flip-flop. In fact, a working

point from any polygon works because they are all delay approximations meeting

the specified accuracy.

The corners of a rectangle in Fig. 5.2b are located on the real delay surface directly.

Therefore, the largest approximation error likely happens at the center of the rectan-

gle. We run SPICE simulation at each center of the rectangle and compare the real

107

5 A Holistic Timing Analysis Framework Considering Setup/Hold Time Interdependency

hold
slack

setup slack
(a)

H

G

hold
slack

setup slack
(b)

G

H

hold
slack

setup slack
(c)

G

hold
slack

setup slack
(d)

G

Figure 5.2: Rectangle construction, split and merge. (a) Identify the stable plane by

search from G to H. (b) Construct rectangle between the triangles and

the boundary of the stable region. (c) Split the rectangles to increase

modeling accuracy. (d) Merge rectangles to reduce modeling complex-

ity.

108

5.2 Piecewise ILP Model for Calculating the Minimum Clock Period

delay with the approximated delay on the plane. If the difference is larger than the

threshold dth, the rectangle is split further, as shown in Fig. 5.2c.

In forming the rectangles, we simply expand from the triangles. This simplification

and the following split may produce more rectangles than necessary. Therefore,

we try to merge neighboring rectangles in the last step, because a smaller number

of rectangles means fewer constraints in the following ILP formulation. To merge

rectangles, we search from each rectangle to the upper and right directions, because

the delay in these directions changes relatively slowly. We combine each pair of

neighboring rectangles into one rectangle, if the approximation value at the center

of the new rectangle is in the range dth from the real delay on the delay surface. The

result of the rectangle merging is illustrated in Fig. 5.2d.

5.2 Piecewise ILP Model for Calculating the Minimum

Clock Period

After the delay surface is approximated using polygons, we need to calculate the

minimum clock period of a circuit. Compared with traditional STA, the challenge

of using this piecewise model is to determine on which polygon a flip-flop works.

In this section, a method based on ILP formulation to calculate the minimum clock

period is proposed.

Assume in total there are np polygons approximating the delay surface. Since in

timing analysis a flip-flop can only work with one setup/hold slack combination,

only one of these polygons should be selected for the flip-flop. Therefore, we define

a 0-1 variable zk
i for the kth polygon in the piecewise delay model for flip-flop i.

If the working point of the flip-flop falls into the kth polygon, zk
i = 1; otherwise,

zk
i = 0. To allow the solver to choose one and only one polygon, we specify the

following constraint

∑
k=1,...,np

zk
i = 1. (5.1)

If the projection of the kth polygon to the setup/hold slack dimensions is a rectangle,

as illustrated in Fig. 5.3a, the clock-to-q delay of flip-flop i in this region can be

109

5 A Holistic Timing Analysis Framework Considering Setup/Hold Time Interdependency

expressed as

dk
cq,i = f (sk

i , hk
i) = ck · zk

i + ck
s · sk

i + ck
h · h

k
i (5.2)

sk
l · z

k
i ≤ sk

i ≤ sk
u · zk

i , hk
l · z

k
i ≤ hk

i ≤ hk
u · zk

i (5.3)

where sk and hk are the setup slack and the hold slack, respectively, and (5.2) defines

the linear plane in the three dimensional delay space.

As described in Section 5.1, the real delays of the flip-flop at the corner points of

the rectangle are known from SPICE simulation. Therefore, we can deduce a linear

plane which passes the delay points corresponding to the corners of the rectangle.

Such a plane can be characterized with only three points, and to be conservative

we select three out of the four corner points with the largest delays to create the

plane. Consequently, the constant coefficients ck, ck
s , ck

h in (5.2) can be determined.

Since this polygon is valid only in the rectangular region as illustrated in Fig. 5.3a,

the lower and upper bounds of the setup slack are known from the characterization

process as sk
l and sk

u. Similarly, the lower and upper bounds of the hold slack are

known as hk
l and hk

u. In (5.3) the lower and upper bounds are all multiplied by zk
i

to enable or disable this polygon. If this polygon is selected so that zk
i = 1, the

constraints (5.2) and (5.3) describe a set of linear constraints. If this polygon is not

selected with zk
i = 0, the ranges of the setup slack and the hold slack are all forced

to 0, so that both sk
i and hk

i are forced to 0. In this case, the delay f (sk
i , hk

i) is also

equal to 0, because the constant coefficient ck is also multiplied by zk
i .

For a triangular region, the corresponding polygon can be defined similar to (5.2)

and (5.3). To prevent a setup/hold slack combination from falling into the area lower

than the hypotenuse of the triangle, we add another constraint as

hk
i ≥ ck

t + ck
t,s · sk

i (5.4)

where ck
t and ck

t,s are characterized constants for the triangle. The concept of this ad-

ditional constraint can be explained using the example in Fig. 5.3a. The newly added

constraint (5.4) only allows the slack combination to fall into the region above the

hypotenuse. Together with (5.3), this new constraint defines exactly the triangular

region.

With the constraints (5.2)–(5.4) defined, the setup slack si, hold slack hi and the

110

5.2 Piecewise ILP Model for Calculating the Minimum Clock Period

clock-to-q delay di
cq at flip-flop i can be written as

si = ∑
k=1,...,np

sk
i , hi = ∑

k=1,...,np

hk
i (5.5)

di
dq = f (si, hi) = ∑

k=1,...,np

f (sk
i , hk

i) (5.6)

The constraints (5.5) and (5.6) are valid because the solver can only select one poly-

gon constrained by (5.1). Consequently, the slacks and clock-to-q delays sk
i , hk

i and

dk
cq,i can take nonzero values only in one region. Therefore, the sums in (5.5) and

(5.6) are equal to the slacks and clock-to-q delay at the flip-flop.

In static timing analysis, timing constraints are defined with setup time, hold time

and constant clock-to-q delays. For flip-flops i and j, the timing constraints can be

written as

dcq,i + dij + tsu,j ≤ T (5.7)

dcq,i + dij ≥ th,j (5.8)

where dcq,i is the delay of flip-flop i, dij (dij) is the maximum (minimum) delay of

the combinational circuit between flip-flops i and j, tsu,j (th,j) is the setup (hold) time

of flip-flop j, and T is the clock period.

In setup constraints of pairs of flip-flops (5.7), setup time should be added to the

path delay to verify the clock period. This setup time, however, is a virtual metric to

guarantee that the clock-to-q delay is no larger than a given value, e.g., 110% of the

stable delay. Since we incorporate the increase of clock-to-q delay in the delay model,

this setup time is not needed in the constraint anymore. For the same reason, hold

time is also removed from the constraint (5.8). Consequently, the timing constraints

between flip-flops i and j can be written as

sj ≤ T − f (si, hi)− dij (5.9)

hj ≤ f(si, hi) + dij. (5.10)

In the constraints (5.9) and (5.10), the feasible working region of the flip-flop is

already included in the regions of the polygons approximating the delay surface.

With the constraints above, the ILP problem to calculate the minimum clock period

111

5 A Holistic Timing Analysis Framework Considering Setup/Hold Time Interdependency

(a) (b)
sk

usk
l

hk
l

hk
u

hk
l

hk
u

sk
usk

l

hk
i = ck

t + ck
t,s · sk

i

T − f − dijT − f − dij

f + dij

f + dij

Figure 5.3: Slack ranges and polygon trimming. (a) Triangular and rectangular

ranges of setup and hold slacks. (b) Trimming polygons using absolute

upper and lower bounds of slacks.

can be expressed as

minimize T (5.11)

subject to (5.1)− (5.10), ∀ flip-flop pair (5.12)

Note that we relax the constraints for the variables sj and hj in (5.9) and (5.10)

from equation to inequation to simplify the formulation. Since the values of sj and

hj returned by the solver are always no larger than the real slacks defined by the

right side of (5.9) and (5.10), the calculated minimum value of T is always a feasible

solution.

Since the interdependency between clock-to-q, setup slack and hold slack allows

timing compensation across flip-flop stages, the clock period can be lowered com-

pared with the results of the traditional STA. However, this improvement incurs a

large runtime in solving the ILP problem (5.11)–(5.12).

To reduce the computational complexity, we trim the polygons in the delay model

of flip-flops. The basic idea is that we find absolute lower and upper bounds of the

setup slack si and the hold slack hi. The polygons completely falling outside the

bounding box can be removed from the delay model.

In characterizing the flip-flop delay surface, we know that the delay f (si, hi) are

bounded in a range [f , f], where f is the stable delay of the flip-flop when the setup

112

5.3 Experimental Results

slack and the hold slack are very large, and f is the delay beyond which we consider

that the flip-flop enters metastability. For the clock period T, we also specify its

range as [T, T], where T (T) is the lower (upper) bound of the clock period calculated

by setting all setup slacks to the smallest (largest) values from delay characterization,

and all clock-to-q delays to the lower (upper) bound f (f). Consequently, we can

specify the range of the setup slack of flip-flop j with a combinational path from

flip-flop i as [T − f − dij, T − f − dij]. For the hold slack at flip-flop j, the range

can be calculated similarly as [f + dij, f + dij]. Thereafter, we check all the polygons

in the delay model and delete those that are completely outside the bounding box,

as illustrated in Fig. 5.3b, where the thick dashed line shows the boundary of the

possible region for the flip-flop.

After trimming polygons, we remove combinational paths and flip-flops that do not

need to be included in the ILP formulation. If the source and sink flip-flops of a path

always work in the stable region, this path is removed because it does not affect

the minimum clock period. If all the paths connected to a flip-flop are removed,

the flip-flop is also removed from the ILP formulation to reduce the computational

complexity.

5.3 Experimental Results

The proposed framework was implemented in C++ and tested using a 2.67 GHz

CPU. We demonstrate the results with circuits from the TAU13 benchmark set.

These circuits were synthesized and optimized using a 45nm library and thereafter

balanced by clock skews. The number of flip-flops and the number of logic gates

in these circuits are shown in the columns ns and ng in Table 5.1, respectively. The

interdependency of clock-to-q delay, setup slack and hold slack was characterized

with HSPICE. The ILP solver for the optimization problem was Gurobi [Gur13].

In characterizing the three dimensional surface as discussed in Section 5.1, the piece-

wise model was constructed in 9 minutes and in total 401 points were simulated

using HSPICE. The final piecewise model contains 64 polygons. We also simulated

the delay surface within the region in which setup and hold slacks are smaller than

100ps with 1ps resolution. The total simulation time of this surface is 2.8 hours,

confirming the efficiency of the proposed characterization method.

113

5 A Holistic Timing Analysis Framework Considering Setup/Hold Time Interdependency

Table 5.1: Experimental Results of The Piecewise Linear Model and The ILP-based

STA

Circuit Trimming Comparison Runtime

ns ng nt gt ts(%) t′s(%) vs
p vs

f vh
p vh

f T(s)

systemcdes 339 3617 160 53 1.30 1.27 875 67 167 10 2

wb_dma 550 3780 338 59 2.42 2.36 3031 255 177 11 4

aes_core 1015 26638 413 54 1.04 1.02 9351 246 201 13 11

tv80 1044 8499 433 54 1.12 1.10 6199 108 101 11 5

mem_ctrl 2043 9833 635 60 0.91 0.88 1087 89 152 25 24

usb_funct 2262 19234 763 45 0.99 0.94 6123 201 69 11 4

ac97_ctrl 2525 11482 1328 62 1.92 1.87 5580 799 178 12 9

pci _bridge32 3673 16918 1620 55 1.22 1.19 3918 187 191 10 17

The results applying the piecewise delay model and the ILP-based timing analysis

are shown in Table 5.1. The number of flip-flops after trimming is shown in the

column nt. The number of polygons in the delay model was reduced from 64 to

the average number shown in the column gt. These results demonstrate that the

trimming technique in our algorithm can reduce the number of flip-flops in the ILP

model and the number of polygons effectively, resulting in a much smaller problem

space.

To demonstrate the improvement in clock period considering the interdependency of

clock-to-q delay, setup slack and hold slack, we compare the clock period calculated

by our method with the result from traditional STA. The column ts in Table 5.1

shows the relative clock period reduction from STA, in which the setup time is

defined as the input slack when the clock-to-q delay is degraded to the 110% of

the stable delay. The column t′s shows the clock period reduction from the result

of STA with the setup time defined with respect to the point at which the clock-

to-q delay just starts to increase. This setting produces a smaller clock-to-q delay

but a larger setup time. In both scenarios, our method achieved up to 2.42% and

2.36% of improvement in the clock period. This reduction of clock period exclusively

results from the more accurate modeling and evaluation of the interdependency of

clock-to-q delay, setup slack and hold slack, and no additional resource is required.

Therefore, the proposed method is very useful in late stages of design flow, where

114

5.3 Experimental Results

20

40
60
80

100
R

un
tim

e

Number of polygons
22 32 44 64 102 147

usb funct
mem ctrl
tv80
aes core

Figure 5.4: Runtime with different polygon numbers.

design iteration is normally not preferred.

In traditional STA, the three dimensional clock-to-q delay model is not used. There-

fore, STA cannot recover from timing violations. Consider the scenario that the

target clock period is the one calculated by the proposed method. With the target

clock period given, the column vs
p in Table 5.1 shows the number of paths with

setup violation in STA, and the column vs
f shows the number of flip-flops with

timing violation. This comparison demonstrates that the proposed method has a

significant advantage in removing timing violations. Furthermore, the numbers of

paths and flip-flops with hold violation in STA are shown in the columns vh
p and vh

f ,

respectively. This comparison confirms again the advantage of the proposed method

where there is no timing violation in all these cases.

The runtime of the proposed method is shown in the last column in Table 5.1. The

largest runtime is 24 seconds for the circuit mem_ctrl with 2043 flip-flops. This

runtime is larger than that of a block-based STA algorithm. However, considering

that the application scenario of the proposed method is at late stages of design flow,

this runtime is acceptable. In the proposed method, the number of polygons in the

clock-to-q model affects the runtime of the ILP-based timing analysis. Figure 5.4

shows the runtime trend of the proposed method with respect to the number of

polygons in the delay model. In all these cases, there is no noticeable difference in

the calculated clock periods. Generally the runtime increases proportionally to the

number of polygons.

To compare the proposed method with previous methods, we first calculate a min-

imum clock period using our method and use it as the target clock period. There-

after, we identify the timing violations in the results from the methods in [KL14]

115

5 A Holistic Timing Analysis Framework Considering Setup/Hold Time Interdependency

systemcdes
wb dma

aes core
tv80 mem ctrl

usb funct
ac97 ctrl

pci bridge32

500

1000

Se
tu

p
vi

ol
at

io
ns

Results using [KL14] Results using [YTJ15]

Figure 5.5: Comparisons of setup violations of flip-flops with [KL14] and [YTJ15].

The proposed method has no violation.

systemcdes
wb dma

aes core
tv80 mem ctrl

usb funct
ac97 ctrl

pci bridge32

5000

10000

Se
tu

p
vi

ol
at

io
ns

Results using [KL14] Results using [YTJ15]

Figure 5.6: Comparisons of setup time violations of paths with [KL14] and [YTJ15].

The proposed method has no violation.

and [YTJ15]. Figure 5.5 and Fig. 5.6 show the comparisons of setup violations of

flip-flops and paths, respectively. In [YTJ15], only the dependency between setup

slack and clock-to-q delay is considered, and it does not exploit the interdependency

of clock-to-q delay, setup slack and hold slack together. In the method [KL14], hold

slack is fixed when maximizing the shared setup slack. Consequently, these lim-

itations lead to many timing violations in their results. Besides setup violations,

the number of hold violations from the method [YTJ15] are shown in Fig. 5.7. This

comparison confirms again the effectiveness of the proposed method.

5.4 Summary

In this chapter, a holistic method is proposed to evaluate the timing performance

of a circuit considering the interdependency of clock-to-q delay, setup slack and

hold slack. Because this interdependency allows timing compensation across flip-

116

5.4 Summary

systemcdes
wb dma

aes core
tv80 mem ctrl

usb funct
ac97 ctrl

pci bridge32

5

10

H
ol

d
vi

ol
at

io
ns Flip-flops Paths

Figure 5.7: Hold time violations at flip-flops and on paths from [YTJ15]. The pro-

posed method has no violation.

flop stages, the clock period of a circuit can be reduced. This is especially useful in

late-stage designs where timing ECO is expensive. The proposed method models

the clock-to-q delay surface using a piecewise model, reducing the modeling de-

tails by extracting only the necessary delay information useful to timing analysis.

Thereafter, the minimum clock period of the circuit is evaluated using an ILP-based

formulation, which for the first time provides a holistic solution considering the

interdependency to improve circuit performance.

117

5 A Holistic Timing Analysis Framework Considering Setup/Hold Time Interdependency

118

Chapter 6

Timing Optimization by Synchronizing

Logic Waves with Delay Units

In digital circuit designs, sequential components such as flip-flops are used to syn-

chronize signal propagations. Logic computations are aligned at and thus isolated

by flip-flop stages. Although this fully synchronous style can reduce design ef-

forts significantly, it may affect circuit performance negatively, because sequential

components can only introduce delays into signal propagations instead of acceler-

ating them. In this chapter, a new timing model, VirtualSync, is proposed in which

signals, specially those along critical paths, are allowed to propagate through sev-

eral sequential stages without flip-flops. Timing constraints are still satisfied at the

boundary of the optimized circuit to maintain a consistent interface with existing

designs.

To establish VirtualSync, sequential components and combinational logic gates are

considered as delay units. Combinational logic gates add linear delays of the same

amount to short and long paths. However, sequential components have non-linear

delay effects, providing different delay effects to fast and slow signal propagations.

With the new timing model, sequential components are allocated only at necessary

locations in the circuit to synchronize signal propagations, while the functionality

of circuits is maintained. The absence of flip-flops at some sequential stages allows

a virtual synchronization to provide identical functionality as in the original circuit.

Consequently, the original clock-to-q delays and setup requirements along the crit-

ical paths can be removed to achieve a better circuit performance even beyond the

limit of traditional sequential design.

To incorporate the above concepts into the VirtualSync framework, all flip-flops

are removed and then the necessary locations are identified to block fast signals

119

6 Timing Optimization by Synchronizing Logic Waves with Delay Units

using combinational gates and sequential components, e.g., buffers, flip-flops, and

latches. The advantage of this formulation is that it is possible to insert the minimum

number of delay units into the circuit to achieve the theoretical minimum clock

period.

The problem formulation of VirtualSync is described as follows:

Given: the netlist of a digital circuit; the delay information of the circuit; the target

clock period T.

Output: a circuit with adjusted number and locations of sequential components;

logic gates with new sizes; inserted delay units, e.g., buffers.

Objectives: the circuit should maintain the same function viewed from the sequential

components at the boundary of the optimized circuit; the target timing specification

should be met; the area of the optimized circuit should be reduced.

6.1 The New Timing Model

6.1.1 Delay Units

In the VirtualSync framework, we first remove all sequential components, flip-flops,

from the circuit under optimization. Consequently, logic synchronization may be

lost because signals across fast paths may arrive at flip-flops in incorrect clock cy-

cles, e.g., earlier than specified, or timing violations may be incurred. In addition,

signals along combinational loops should also be blocked to avoid the loss of logic

synchronization.

To slow down a signal, three different components can be used as delay units,

namely, combinational gates such as buffers, flip-flops, and latches, which exhibit

different delay characteristics, as shown in Fig. 6.1, where the term input gap refers

to the difference of arrival times of two signals at a delay unit, and the term output

gap represents the difference between their arrival times after they pass through the

unit.

In Fig. 6.1(a), a combinational delay unit adds the same amount of delay to any

input signal. Consequently, the arrival time sv at the output of the combinational

120

6.1 The New Timing Model

T/2+tcq

T+tcq

sususu sv

td
F

sv

su

sv

T

L
sv

TD ∗ T
(a) (b) (c)

tsu

su

sv

su

sv

td

tsu

input gap

output
gap

th th

output
gap

input
gap

Figure 6.1: Properties of delay units. (a) Linear delaying effect of a combinational

delay unit. (b) Constant delaying effect of a flip-flop. (c) Piecewise

delaying effect of a latch.

delay unit is linear to the arrival time su at the input of the delay unit. Therefore,

the absolute gap between arrival times of signals through short and long paths does

not change when a combinational delay unit is passed through.

In delaying input signals, a flip-flop, as a sequential delay unit, behaves completely

differently from a combinational delay unit, as shown in Fig. 6.1(b). If the arrival

time of a signal falls into the time window [th, T − tsu], where th is the hold time

and tsu is the setup time, the output signal always leaves at the time T + tcq, with

tcq as the clock-to-q delay of the flip-flop. Therefore, the gap between the arrival

times of two signals reaching at the input of a flip-flop is always reduced to zero

at the output of the flip-flop. This property is very useful when the delays of short

paths and long paths in a circuit differ significantly after all sequential components

are removed from the circuit under optimization. For many short paths, it is not

possible to pad their delays by adding combinational delay units such as buffers

to them, because the combinational delay units on the short paths may also appear

on other long paths. The increased delays along long paths might affect circuit

performance negatively. Flip-flops thus can be used in this scenario, because short

paths receive more delay padding than long paths to align logic waves in the circuit.

As the second type of sequential delay units, level-sensitive latches, have a delay

property combining those of combinational delay units and flip-flops, as shown in

121

6 Timing Optimization by Synchronizing Logic Waves with Delay Units

Fig. 6.1(c), where 0 < D < 1 is the duty cycle of the clock signal. Assume that a latch

is non-transparent in the first part of clock period and transparent in the second part

of the clock period. If two input signals arrive at a latch when it is non-transparent,

the output gap is reduced to zero. If both signals arrive at a latch when it is trans-

parent, the gap remains unchanged. However, if the fast signal reaches the latch

when it is non-transparent while the slow signal reaches it when it is transparent,

the output gap of the two signals is neither zero nor unchanged. Instead, it takes

a value between the two extreme cases as illustrated in Fig. 6.1(c). This property

allows us to modulate signals with different arrival times more flexibly, specifically

those along critical paths where fast signals require more delay padding and slow

signals should be not affected.

6.1.2 Relative Timing References

For a circuit under optimization, we consider the flip-flops which locate at the

boundary of the circuit as boundary flip-flops. No matter how signals inside the

circuit propagate, the function of the whole circuit is still maintained if we can

guarantee that for any input pattern at the input boundary flip-flops in the circuit

produces the same result at the output boundary flip-flops at the same clock cycle

as the original circuit.

Consider a general case in Fig. 6.2, where F1 and F4 are the boundary flip-flops and

F2 and F3 are removed in the initial circuit for optimization. At F4, the arrival times

are required to meet the setup and hold time constraints, written as

sz + tsu ≤ T (6.1)

s′z ≥ th (6.2)

where sz and s′z are the latest and earliest arrival times at z. These two constraints in

fact are defined with respect to the rising clock edge at F3, since the clock period T

in (6.1) shows that the signal should arrive at F4 within one clock period. Although

F2 and F3 are removed from the circuit, the constraints at F4 should still be the same

as (6.1)-(6.2) to maintain the compatibility of the timing interface at the boundary

flip-flops.

122

6.1 The New Timing Model

F2F1 F3

u v w t

F4
11 3 2

-10 -10

su=14 sv=4 sw=7 st=3

zo

sz=5so=3

boundary boundary

Figure 6.2: Concept of relative timing references. Clock period T=10. Clock-to-q

delay tcq=3. Both setup time tsu and hold time th are equal to 1. F3 is

kept in the optimized circuit and F2 is not included.

In the general case in Fig. 6.2, we can also observe that the timing constraint at

F3 in the original circuit is also defined with respect to the rising clock edge at

F2. This definition can be chained further back until the source flip-flop F1 at the

boundary is be reached. We call the locations of these removed flip-flops such as F2

and F3 anchor points. After all sequential components are removed from the circuit

under optimization, these anchor points still allow to relate timing information to

boundary flip-flops. Every time when a signal passes an anchor point, its arrival

time is converted by subtracting T in VirtualSync. When a signal finally arrives at a

boundary flip-flop along a combinational path, its arrival time must be converted so

many times as the number of flip-flops on the path, so that (6.1)-(6.2) is still valid.

In Fig. 6.2, assume that F2 is removed but F3 is inserted back in the optimized circuit.

The arrival time su is subtracted by the clock period T=10 to convert it with respect

to the time at F1, leading to sv=4. The arrival time sw is defined with respect to

the previous flip-flop before F3, so that the timing constraints can be checked using

(6.1)-(6.2). Since the arrival time before F4 should meet its timing constraints, F3

thus cannot be removed. Otherwise, the arrival time st would be equal to 7-10=-3.

Accordingly, the arrival time sz becomes -3+2=-1, definitely violating the hold time

constraint in (6.2).

Since F3 is kept in the optimized circuit, it introduces the delay with the property

shown in Fig. 6.1(b). The arrival time after this sequential delay unit thus becomes

T + tcq=13. This signal at t in Fig. 6.2 also passes an anchor point. Therefore, the

arrival time st is equal to 3, leading to no timing violation at F4. This example

demonstrates that the timing constraints at the boundary flip-flops force the usage

of the internal sequential delay units. The model to insert these delay units auto-

matically will be explained in the next section.

123

6 Timing Optimization by Synchronizing Logic Waves with Delay Units

6.1.3 Synchronizing Logic Waves by Delay Units

With all flip-flops removed from the circuit under optimization, we only need to de-

lay signals that are so fast that they reach boundary flip-flops too early; signals that

propagate slowly are already on the critical paths, thus requiring no additional de-

lay. Since it is not straightforward to determine the locations for inserting additional

delays, we formulate this task as an ILP problem and solve it later with introduced

heuristic steps. The values of variables in the following sections are determined by

the solver, unless they are declared as constants explicitly.

The scenario of delay insertion at a circuit node, i.e., a logic gate, is illustrated in

Fig. 6.3, where a combinational delay unit ξuv may be inserted, the original delay

of the logic gate may be sized, and a sequential delay unit may be inserted to block

fast and slow signals with different delays. Furthermore, the number of flip-flops

between w and t in the original circuit is represented by an integer constant λtz.

When λtz≥1, an anchor point is found at the location. λtz is used to convert arrival

times.

In Fig. 6.3, the delay at the circuit node can be changed by sizing the delay of the

logic gate, e.g., the XOR gate in Fig. 6.3. For the case that the required gate delay

exceeds the largest permissible value, a combinational delay unit is inserted at the

corresponding input. For convenience, we assume the combinational delay unit

inserted at the input is implemented with buffers. The relation between the arrival

times u and w is thus expressed as

sw ≥ su + ξuv ∗ ru + dvw ∗ ru (6.3)

s′w ≤ s′u + ξuv ∗ rl + dvw ∗ rl (6.4)

where su, s′u, sw and s′w are the latest and earliest arrival times of node u and w

, respectively. ξuv is the extra delay introduced by an inserted buffer and dvw is

the pin-to-pin delay of the logic gate. If ξuv is reduced to 0 after optimization, no

buffer is required in the optimized circuit. The ≤ and ≥ relaxations of the relation

between arrival times guarantee that only the latest and the earliest arrival times

from multiple inputs are propagated further. ru and rl are two constants to reserve

a guard band for process variations, so that ru > 1 and rl < 1.

124

6.1 The New Timing Model

u
dvw

comb. delay?

seq. unit?
anchor?

λtz

ξuv

sizing?

w t zv

Figure 6.3: Delay insertion model in VirtualSync.

Since arrival times through long and short paths reaching w may have a large dif-

ference, we may need to insert sequential delay units to delay the fast signal more

than the slow signal. This can be implemented with the sequential units shown in

Fig. 6.1, where the gap between the arrival times is reduced after passing a sequen-

tial delay unit, either a flip-flop or a latch. To insert a sequential delay unit, three

cases need to be examined.

Case 1: No sequential delay unit is inserted between w and t in Fig. 6.3, so that

st ≥ sw (6.5)

s′t ≤ s′w. (6.6)

Case2: A flip-flop is inserted between w and t. Assume the flip-flop works at a rising

clock edge. As shown in Fig. 6.1(b), a flip-flop only works properly in a region th

after the rising clock edge and tsu before the next rising clock edge. Therefore, we

need to bound the arrival times sw and s′w into such a region by

sw, s′w ≥ Nwt ∗ T + φwt + th ∗ ru (6.7)

sw, s′w ≤ (Nwt + 1) ∗ T + φwt − tsu ∗ ru (6.8)

where Nwt is an integer variable determined by the solver. T is the given clock

period. φwt is phase shift of the clock signal. The available values of φwt can be set

by designers. If only one clock signal is available, φwt can be set to 0 and T/2 to

emulate flip-flops working at rising and falling clock edges.

When the input arrival times fall into the valid region of a flip-flop as constrained

by (6.7)–(6.8), the signal always starts to propagate from the next active clock edge,

125

6 Timing Optimization by Synchronizing Logic Waves with Delay Units

so that constraints can be written as

st ≥ (Nwt + 1)T + φwt + tcq ∗ ru (6.9)

s′t ≤ (Nwt + 1)T + φwt + tcq ∗ rl. (6.10)

Case3: A level-sensitive latch is inserted between w and t. To be consistent with the

active region of flip-flops, we assume that the latches are transparent when the clock

signal is equal to 0. We can then bound the arrival times at w the same as (6.7)–(6.8).

As illustrated in Fig. 6.1(c), the latch is non-transparent in the first part of the region

and transparent in the second region. Accordingly, the latest time a signal leaves the

latch can be expressed as

st ≥ Nwt ∗ T + φwt + D ∗ T + tcq ∗ ru (6.11)

st ≥ sw + tdq ∗ ru (6.12)

where (6.11) corresponds to the case that the latch is non-transparent, so that the

signal leaves the latch at the moment the clock switches to 1. D is the duty cycle

of the clock signal with 0 < D < 1. (6.12) corresponds to the case that the latch is

transparent, so that only the delay of the latch is added to sw. tdq is the data-to-q

delay of the latch.

The earliest time a signal leaves the latch is, however, imposed by a constraint in the

less-than-max form as in [SMO90a],

s′t ≤ max{Nwt ∗ T + φwt + D ∗ T + tcq ∗ rl, s′w + tdq ∗ rl} (6.13)

which cannot be linearized easily. In the VirtualSync framework, the purpose of

introducing the sequential delay unit is to delay the short path as much as possible.

This effect happens when a signal arrives at a non-transparent latch. Therefore,

we impose the arrival times of fast signals to be positioned in the non-transparent

region, expressed as

Nwt ∗ T + φwt + th ∗ ru ≤ s′w ≤ Nwt ∗ T + φwt + D ∗ T (6.14)

while relaxing (6.13) as

s′t ≤ Nwt ∗ T + φwt + D ∗ T + tcq ∗ rl. (6.15)

126

6.1 The New Timing Model

When inserting the sequential delay unit, each of the three cases above can happen

in the optimized circuit. We use an integer variable to represent the selection and

let the solver determine which case happens during the optimization.

The arrival times in the model need to be converted each time when an anchor point

is passed. The constant λtz represents the number of flip-flops at such a point in the

original circuit. In Fig. 6.3, the arrival time at z is shifted as

sz = st − λtzT. (6.16)

Since we allow multiple waves to propagate along a combinational path, we need to

guarantee that the signal of the next wave starting from a boundary flip-flop never

catches the signal of the previous wave starting from the same flip-flop [BCKL98].

This constraint should be imposed to every node in the circuit. For example, the

constraint for node u is written as

su + tstable ≤ s′u + T (6.17)

where tstable is the minimum gap between two consecutive signals.

The introduction of the relative timing references, or the anchor points, in Sec-

tion 6.1.2 guarantees that the number of clock cycles along any path does not change

after optimization. With the timing constraints (6.1)-(6.2) at boundary flip-flops, the

correct function of the optimized circuit is always maintained, without requiring

any change in other function blocks.

The constraints (6.1)–(6.17) excluding (6.13) needs to be established at each node in

the circuit after flip-flops are removed. The appearance of the combinational and se-

quential delay units needs to be determined by the solver. The delays of logic gates

should also be sized. The objective of the optimization is to find a solution to make

the circuit work at a given clock period T, while reducing the area cost. Taken all

these factors into account, the straightforward ILP formulation may become insolv-

able. In practice, however, this technique only needs to be applied to isolated circuit

parts containing critical paths. In addition, heuristic techniques are introduced to

overcome this scalability problem, as explained in the following section.

127

6 Timing Optimization by Synchronizing Logic Waves with Delay Units

Emulation of sequential delays
with δ′ − δ

All δ′wt − δwt = 0

No

No

Yes

Optimized circuit

Model approximation with clock/data-to-q delays

Buffer replacement using sequential units
and delay discretization

Decrease the lower bound of
δ′wt − δwt

Yes

Model legalization using accurate delay models
and update Sd

All δ′wt − δwt = 0

Figure 6.4: VirtualSync flow.

6.2 Iterative Relaxation

In applying the timing model above, a framework is introduced to identify the lo-

cations of delay units iteratively. The flow of this framework is shown in Fig. 6.4.

Necessary locations of sequential delay units are refined gradually in the models

from Section 6.2.1 to Section 6.2.3.

128

6.2 Iterative Relaxation

6.2.1 Emulation of Sequential Delay Units

After we remove all the flip-flops from the original circuit, the short paths may have

extremely small delays. The gap between these delays and those of long paths is very

large, which cannot be reduced with combinational delay units since they introduce

the same delays to the fast and slow signals as shown in Fig. 6.1(a). Instead, only

sequential delay units are able to reduce this gap so that the fast and slow signals

still arrive at boundary flip-flops within the same clock cycle as those of the original

circuit.

In the first step of the framework, the locations at which sequential delay units

are indispensable are identified. Without these units, the fast and slow signals,

such as those within feedback loops, may not be aligned properly into the correct

clock cycles, even though unlimited combinational delay units can be inserted into

the circuit. In practice, however, it is not easy to identify the exact locations of

these units using the exact and complete model in (6.5)–(6.15) directly. To solve

this problem, the delay effects of sequential delay units shown in Fig. 6.1(b)–(c) are

firstly emulated, in which sequential delay units provide different delay paddings

for short and long paths. Therefore, two variables δwt and δ′wt are used to emulate

different delays to be padded to slow and fast signals, respectively. When signals

travel from u to z in Fig. 6.3, the relation of arrival times from nodes u to z can be

written as

sz ≥ su + ξuv ∗ ru + dvw ∗ ru + δwt − λtzT (6.18)

s′z ≤ s′u + ξuv ∗ rl + dvw ∗ rl + δ′wt − λtzT (6.19)

δwt ≤ δ′wt (6.20)

s′u + δ′wt ≤ su + δwt (6.21)

where the variables δwt and δ′wt emulate delays introduced by sequential delay units.

(6.20) specifies that the fast signal should be padded with more delays than the slow

signal. (6.21) specifies that the arrival time of the fast signal should not exceed the

arrival time of the slow signal after padding.

The optimization problem to find the potential locations of sequential delay units is

129

6 Timing Optimization by Synchronizing Logic Waves with Delay Units

thus written as

minimize α ∑
G
(δ′wt − δwt) + β ∑

G
(δ′wt + ξuv)− γ ∑

G
dvw (6.22)

subject to (6.17)–(6.21) for each gate in G (6.23)

constraints (6.1)–(6.2) for each boundary flip-flop (6.24)

where G is the set of all logic gates in the original circuit. This optimization prob-

lem also maximizes the overall delays of logic gates in the circuit, so that not only

the inserted delays but also the area of the circuit can be reduced. α, β and γ are

constants, set to 100,10,10, to specify the balance between sequential delay units,

inserted buffers and logic gates roughly. Solving the optimization problem above

identifies nodes with unequal padding delays δwt and δ′wt, indicating potential loca-

tions of sequential delay units, as a set S. These delays may still violate the exact

constraints in (6.5)–(6.15), so that they need to be refined further.

6.2.2 Modeling with Clock/Data-to-Q Delays of Sequential Delay

Units

The optimization problem (6.22)–(6.24) does not consider the inherent clock-to-q de-

lays of flip-flops and data-to-q delays of latches. Since these delays are introduced

only at locations where sequential delay units are inserted, they need to be mod-

eled for all the locations S returned by the previous step. A binary variable xwt is

introduced to represent whether a sequential delay unit appears at a location from

S, and revise the constraints (6.18)–(6.19) as

sz ≥ su + ξuv ∗ ru + dvw ∗ ru + xwtδwt + xwttcd→q ∗ ru − λtzT (6.25)

s′z ≤ s′u + ξuv ∗ rl + dvw ∗ rl + xwtδ
′
wt + xwttcd→q ∗ rl − λtzT (6.26)

where tcd→q represents clock-to-q delay or data-to-q delay, approximated with the

same value for simplicity, and the delays δwt, δ′wt and tcd→q are only valid when xwt

is equal to 1. The inclusion of the binary variables xwt is very computation-intensive,

so that they can only be dealt with after the potential locations of sequential delay

units are reduced to S by solving (6.22)–(6.24). Since xwt is a binary variable, the

multiplications xwtδwt and xwtδ
′
wt can be converted into equivalent linear forms so

that the overall formulation is still an ILP problem [CBD11].

130

6.2 Iterative Relaxation

Considering the inherent delays of sequential delay units, their locations can be

refined further by solving the optimization problem as

minimize α ∑
G/S

(δ′wt − δwt) + β ∑
G/S

(δ′wt + ξuv)− γ ∑
G

dvw (6.27)

subject to (6.17)–(6.21) for each gate in G/S (6.28)

(6.17), (6.20)–(6.21) and (6.25)–(6.26) for each gate in S (6.29)

constraints (6.1)–(6.2) for each boundary flip-flop. (6.30)

In the implementation, the lower bound of δ′wt − δwt is also constrained when xwt is

equal to 1 and lower it iteratively, so that the most important locations for inserting

sequential delay units are identified first, as illustrated in Fig. 6.4. The iterations

terminate when no different δwt and δ′wt exist, indicating no indispensable sequential

delay units are required to align fast and slow signals. The refined locations of

sequential delay units from this step are returned as a set Sd.

6.2.3 Model Legalization for Timing of Sequential Delay Units

In this step, the complete model described in Section 6.1.3 is applied to the locations

in Sd to generate sequential delay units that are really required in the circuit. The

optimization problem is described as

minimize α ∑
G/Sd

(δ′wt − δwt) + β ∑
G/Sd

(δ′wt + ξuv)− γ ∑
G

dvw (6.31)

subject to (6.17)–(6.21) for each gate in G/Sd (6.32)

(6.5)–(6.12) and (6.14)–(6.17) for each gate in Sd (6.33)

constraints (6.1)–(6.2) for each boundary flip-flop. (6.34)

After solving the optimization above, there might still be different δwt and δ′wt in

G/Sd, because the timing legalization of sequential delay units with the complete

model in Section 6.1.3 may invalidate some locations in Sd. The accurate sequential

delay model is applied to these new locations iteratively, until no different δwt and

δ′wt exists, indicating the remaining timing synchronization can be achieved with

buffers and gate sizing directly.

131

6 Timing Optimization by Synchronizing Logic Waves with Delay Units

6.2.4 Buffer Replacement with Sequential Units

After solving (6.31)–(6.34), delays dvw of logic gates are discretized according to

the library. Buffer delays ξuv are also determined. If ξuv is large, several buffers

are needed for its implementation. As shown in Fig. 6.1, sequential delay units

can introduce a very large delay. For example, a flip-flop can introduce a delay

as large as T + tcq − th, if the incoming signal arrives at the flip-flop right after a

clock edge. According to this observation, buffers with large delays are replaced

using sequential delay units to reduce area iteratively. In each iteration, the accurate

sequential model (6.5)–(6.12) and (6.14)–(6.17) is applied to guarantee these new

sequential delay units are valid. The iteration stops when no buffer can be replaced

by sequential units. Buffers that cannot be replaced by sequential delay units are

implemented directly in the optimized circuit.

6.3 Experimental Results

The proposed method was implemented in C++ and tested using a 3.20 GHz CPU.

We demonstrate the results using circuits from the ISCAS89 benchmark set and

the TAU 2013 variation-aware timing analysis contest as shown in Table 6.1. The

number of flip-flops and the number of logic gates are shown in the columns ns

and ng, respectively. The benchmark circuits were sized using a 45 nm library. To

tolerate process variations, 10% of timing margin was assigned, so that ru and rl in

previous sections were set to 1.1 and 0.9, respectively. The allowed phase shifts φwt

in previous sections are 0, T/4, T/2 and 3T/4. The ILP solver used in the proposed

framework was Gurobi [Gur13].

For timing optimization, combinational paths whose delays were within 95% range

of the largest path delay in the circuit were selected. The source and sink flip-

flops of these paths were allowed to be removed, while the other flip-flops in the

circuits were considered as boundary flip-flops. All the combinational logic gates

that can reach the flip-flops at the sources or sinks of these selected paths through

a combinational path in the original circuit are considered as the critical parts of a

circuit together. This extraction of the critical parts of a circuit in fact allows wave-

pipelining within three sequential stages. In real circuits, the extracted critical parts

132

6.3 Experimental Results

Table 6.1: Results of VirtualSync
Circuit Cri. Part Opt. Circuit Comparison Runtime

ns ng ncs ncg n f nl nb nt na t(s)

s5378 179 2779 35 1877 11 14 94 11.5% 2.84% 121.6

s9234 228 5597 91 3981 58 45 91 2.5% -5.17% 7251.1

s13207 669 7951 191 3483 95 73 52 2.5% -1.09% 3121.6

s15850 534 9772 71 3847 72 18 26 0% 6.01% 289.97

s38584 1452 19253 126 9498 62 75 46 0.5% -0.50% 1142.3

systemcdes 190 3266 92 3232 90 81 227 3.5% 2.43% 7310.5

mem_ctrl 1065 10327 136 7500 101 39 140 3.5% 0.97% 3750.1

usb_funct 1746 14381 138 5378 123 37 60 4% 0.21% 1211.7

ac97_ctrl 2199 9208 237 4873 42 172 218 0% -9.76% 2936.8

pci_bridge 3321 12494 239 9510 188 68 338 3% 0.05% 7418.5

may overlap, thus allowing wave-pipelining with more than three stages. Since the

original circuits have been sized to reduce the clock period, the critical parts of the

circuits still occupied a large portion of original circuits. As shown in the ncs and

ncg columns in Table 6.1, more than 7% of flip-flops and more than 35% of logic

gates have been selected for timing optimization.

The column n f and nl show the numbers of flip-flops and latches after optimization,

respectively. The sums of these numbers are comparable or even smaller than the

numbers of flip-flops in the original critical parts of the circuits. The numbers of

extra inserted buffers to match arrival times are shown in the column nb. Compared

with the number of original logic gates shown in the column ncg, these numbers

show that the cost due to the inserted buffers is still acceptable.

To verify the improvement of circuit performance, we gradually reduced the clock

period by 0.5% of the clock period obtained from combining retiming and sizing.

The column nt in Table 6.1 shows the clock period reduction compared with the

circuits after retiming&sizing. The maximum and average reduction are 11.5% and

3.1%, respectively, which resulted from the compensations between several flip-flop

stages and the removal of clock-to-q delays and setup time requirements on critical

paths. For most cases, the minimum clock periods have been pushed even further

than those from retiming&sizing, the limit of the traditional sequential design. This

133

6 Timing Optimization by Synchronizing Logic Waves with Delay Units

s9
23

4

s1
32

07

s1
58

50

s3
85

84

m
em

_c
trl

usb
_fu

nct

ac
97

_c
tr

pci_
brid

ge0

100

200

N
um

.o
f

se
q.

un
it

s
Before rep. After rep.

Figure 6.5: Comparison of sequential delay units after buffer replacement.

comparison demonstrates that the proposed method provides a very good potential

method to improve circuit performance specially at a late stage of timing closure

further, because no circuit redesign is required. The area increase compared with

retiming&sizing is shown in column na. In the cases with area increase, the over-

head is still negligible; in other cases, the area is even smaller because unnecessary

flip-flops were removed in the proposed framework, whereas in retiming flip-flops

can only be moved instead of being removed. The last column tr in Table 6.1 shows

the runtime of the proposed method. Since the ILP formulation with the complete

model in Section 6.1.3 is NP-hard, it is impractical to find a solution with respect to

area and clock period. In the experiments, the runtime with iterative relaxations is

acceptable at a late stage of timing closure, but still has space for further improve-

ment.

In the proposed framework, sequential delay units are first inserted only at neces-

sary locations to delay signal propagations. Afterwards, more of them are used to

replace buffers to reduce area, as described in Section 6.2. Figure 6.5 shows the

numbers of sequential delay units before and after buffer replacement, which shows

a clear increase of the number of such delay units to replace buffers. Figure 6.6

shows the area comparison after this replacement. In most test cases, the area taken

by the sequential delay units and buffers in the optimized circuits is less than 1%

of those replaced buffers, demonstrating the efficiency of sequential delay units in

delaying fast signals.

The comparison of the area overhead in Table 6.1 is between the method retim-

ing&sizing with its own clock period and the proposed method with a smaller clock

134

6.4 Summary

s9
23

4

s1
32

07

s1
58

50

s3
85

84

m
em

_c
trl

usb
_fu

nct

ac
97

_c
tr

pci_
brid

ge0

5

10

15

20
A

re
a

ra
ti

o
(%

)

Figure 6.6: Area comparison before and after buffer replacement.

s9
23

4

s1
32

07

s1
58

50

s3
85

84

m
em

_c
trl

usb
_fu

nct

ac
97

_c
tr

pci_
brid

geA
re

a
cm

p.
(r

el
at

iv
e)

Retiming VirtualSync

Figure 6.7: Area comparisons with retiming&sizing with the same clock period.

period. To demonstrate the area efficiency of the proposed method, we also com-

pared the proposed method and the timing&sizing with the same clock period from

the latter. The results are shown in Fig. 6.7. In most cases, the area overhead with

our framework is smaller.

6.4 Summary

In this chapter, a new timing model is proposed, in which sequential components

and combinational logic gates are considered as delay units. They provide differ-

ent delay effects on signal propagations on short and long paths. With this new

timing model, a timing optimization framework has been proposed to insert delay

units only at necessary locations. With this technique, circuit performance can be

improved by up to 11.5% with a negligible increase of area overhead.

135

6 Timing Optimization by Synchronizing Logic Waves with Delay Units

136

Chapter 7

Flexible Timing for Netlist Security

Today’s semiconductor business model involves many global vendors from vari-

ous countries and regions. This distributed supply chain makes integrated circuits

vulnerable to attacks and counterfeiting in nearly all phases from design to post-

fabrication. Consequently, the research community has invested a great effort to

deal with security challenges [GHD+14].

A major IC counterfeiting threat is the production of illegal chips by a third party

with a netlist reverse engineered from authentic chips. In reverse engineering, au-

thentic chips are delayered and imaged to identify logic gates, flip-flops, and their

connections. Afterwards, the recognized netlist can be processed by a standard IC

design flow and manufactured in a foundry, even with a different technology. This

reverse engineering flow gives counterfeiters much freedom in reproducing authen-

tic chips, because the recognized netlist carries all necessary design information and

counterfeiters can revise and optimize it freely.

Several techniques have been proposed to thwart reverse engineering attacks on

authentic chips. Firstly, IC camouflage tries to prevent the netlist from being rec-

ognized easily. In [BRPB14] transistors are manipulated with a stealthy doping

technique during manufacturing so that they function differently than they appear.

The work in [MBPB15, RSSK13, RSK13] mixes real and dummy contacts to camou-

flage standard cells. The method in [LT15] explores netlist obfuscation by iterative

logic fanin cone analysis at circuit level. Moreover, the method in [LSM+16] intro-

duces a quantitative security criterion and proposes camouflaging techniques with

a low-overhead cell library and an AND-tree structure. In addition, logic lock-

ing inserts additional logic gates, e.g., XOR/XNOR in [RPSK12, RKM08], AND/OR

in [DBN+14] and MUX in [PM15], into the netlist to disable its function if the cor-

rect key is not applied. This method is expanded in [XS17] to incorporate delay

information into the locking mechanism.

137

7 Flexible Timing for Netlist Security

F1
F2 F3

F1 F3

(a)

(b)

wave 2
wave 1

Figure 7.1: Conventional timing and wave-pipelining: (a) Single-period clocking;

(b) Pipelining with two data waves.

The methods discussed above all focus on either making the netlist more difficult

to be recognized, or making the correct behavior of the circuit dependent on ad-

ditional input information even after the netlist is recognized. However, they are

still restricted to the conventional single-period clock timing model so that attackers

only need to recognize the netlist correctly.

In this chapter, a method is proposed to invalidate the assumption that a netlist

completely represents the function of a circuit. With the help of wave-pipelining

paths, this method forces attackers to capture delay information from manufactured

chips, which is a very challenging task because false paths are also introduced.

An analysis of counterfeiting of digital circuits is made in Section 7.1. Thereafter,

the concept of wave-pipelining deployed in the proposed method is introduced in

Section 7.2. This application of wave-pipelining is different compared with that

introduced in Section 2.3.4, where the objective of wave-pipelining is to optimize

the timing performance of circuits by implementing pipelining in logic without the

use of intermediate latches or registers. However, in this chapter, wave-pipelining

is applied to preventing the counterfeiting of digital integrated circuits. Afterwards,

potential attack techniques are analyzed and counter measures to thwart them are

proposed in Section 7.3. The implementation details of constructing wave-pipelining

paths and false paths are described in Section 7.4.

7.1 Analysis of Counterfeiting of Digital Circuits

In the conventional single-period clocking timing model, all the paths in a combina-

tional block operate within one clock period. Figure 7.1(a) shows a part of a sequen-

138

7.2 Wave-Pipelining Paths

tial circuit with three flip-flops F1, F2 and F3. To guarantee the correct operation,

setup and hold time constraints should be satisfied between all pairs of flip-flops

and interaction between different clock stages can be ignored. In this single-period

clocking model, the netlist carries all logic information and this simplification allows

attackers to counterfeit chips relatively easily because they only need to recognize

the logic types of gates, flip-flops, and interconnect connections during reverse en-

gineering.

To thwart the attack attempt on a design, a method is proposed to invalidate the

conventional timing model in some parts of the circuit. For example, the flip-flop

in the middle of Fig. 7.1(a) is removed to construct the circuit in Fig. 7.1(b). On the

combinational path from F1 to F3, there are now two data waves without a flip-flop

separating them. If the second wave does not catch the first one before it is latched

by F3, the correct function of the circuit is still maintained. This technique is called

wave-pipelining (WP) and has been investigated for circuit optimization [HLCG95,

BCKL98, SV09]. When attackers recognize a netlist as in Fig. 7.1(b), they face the

challenge to determine whether there should be one or two logic waves. If they

assume the former and process the netlist using a standard EDA flow, the circuit

loses synchronization because the data at the input of F3 is latched one clock period

earlier. If they want to determine whether it is the latter case, additional effort

is required to extract the timing information for the combinational path. In this

way, the function of the circuit depends on both its structure and the timing of

combinational paths.

Although wave-pipelining paths look similar to multiple-cycle paths in digital de-

sign, the essential difference is that there is only one wave on a multiple-cycle path

at a moment and the circuit still works if a multiple-cycle path is optimized to finish

its calculation in one clock period, or if the clock frequency is lowered to make it

work in one clock period. Therefore, multiple-cycle paths cannot be used to replace

wave-pipelining paths to increase netlist security.

7.2 Wave-Pipelining Paths

A wave-pipelining path such as the one in Fig. 7.1(b) allows two data waves propa-

gating on the path at the same time. Since the second data wave should not catch the

139

7 Flexible Timing for Netlist Security

0 T 2T 3T

wave 1 wave 2

time

logic
delay

maximum
logic delay

data waves reach F3

data latching at F3

Figure 7.2: Temporal/spatial diagram for wave propagation on a combinational

path.

first one, special timing constraints should be specified for this path. The scenario

of data wave propagation is illustrated in Fig. 7.2. At first, wave 1 is injected into

the path by F1. This data wave propagates along the path continuously and should

reach F3 after the first rising clock edge at T and before the second rising clock edge

at 2T. At time 2T, the first data is latched by F3. The second wave is injected by F1 at

the rising clock edge at time T and it starts to propagate along the same path. Since

this wave arrives at F3 with a delay larger than T, it does not catch the first wave at

any time during the propagation, shown as the vertical gap between the two data

waves in Fig. 7.2. Consequently, the two data waves on the path never interfere and

F3 always latches the same value as in the original circuit shown in Fig. 7.1(a).

In forming wave-pipelining paths, a flip-flop is removed from the circuit as in the

example from Fig. 7.1(a) to 7.1(b). In practice, this operation may lead to many

paths with wave pipelining, because any combinational path reaching F2 together

with any path starting from F2 forms a new wave-pipelining path. All these wave-

pipelining paths should meet two constraints. First, the delay of a path should be

larger than the clock period T; otherwise, the data wave is latched at the first rising

clock edge instead of the second by F3. Second, the delay of the path should be no

larger than 2T to guarantee that the data is latched by F3 in time. Assume the set of

all these paths is P and the delay of a path p ∈ P is dp. The timing constraints for

all these paths can be written as

dp ≥ T + th, ∀p ∈ P ⇐⇒ min
p∈P
{dp − th} ≥ T (7.1)

dp ≤ 2T − tsu, ∀p ∈ P ⇐⇒ max
p∈P
{dp + tsu} ≤ 2T. (7.2)

After removing a flip-flop from the circuit, if all the wave-pipelining paths meet the

140

7.3 Attack Techniques and Counter Measures

two constraints (7.1) and (7.2), the wave-pipelining version of the circuit is function-

ally equivalent to the original circuit.

If attackers try to duplicate the function of a circuit by reverse engineering, in ad-

dition to netlist extraction, they need to find out which paths have wave-pipelining.

For this purpose, they need to capture the delay information of logic gates or paths,

which is very challenging and increases the cost of counterfeiting significantly. With-

out this information, the circuit still does not work if all the paths are assumed as

working within a single clock period by default, since the logic containing wave-

pipelining loses synchronization with other parts of the circuit in this case.

To apply wave-pipelining, some changes in existing design tools should be made to

guarantee the timing constraints (7.1) and (7.2). For example, physical design tools

need to maintain not only an upper bound of path delays but also a lower bound.

In addition, timing analysis algorithms need to be aware of these constraints instead

of only checking the worst case against one clock period. Testers are required to

consider wave-pipelining paths in post-silicon test. Since only the paths with wave-

pipelining in the circuit should be dealt with specially, these additional constraints

may be imposed in a post-processing/ECO step in practice.

7.3 Attack Techniques and Counter Measures

In attacking a design with wave-pipelining, if attackers have no knowledge that this

technique has been applied, the recognized netlist by reverse engineering does not

function correctly. Once attackers become aware of this technique, various methods

may be deployed to identify where the wave-pipelining paths are or to circumvent

them simply. In the assumed attack model, the available information includes a

netlist recognized by reverse engineering and estimated delays of logic gates as

well as interconnects with an inaccuracy factor τ. The objective of the attack is to

identify on which combinational paths in the netlist wave-pipelining is applied. The

potential attack techniques are summarized in Fig. 7.3.

The first attack technique is to measure all gate and interconnect delays while the

netlist is recognized by reverse engineering. With all gate and interconnect delays

known, path delays can be calculated from the netlist easily. Since the delays of

141

7 Flexible Timing for Netlist Security

Capture gate delays in

Limitations:

Test all suspicious paths
Limitation:

Counter measure:

Limitations:

Size all false paths as

Limitations:

1

3

2

4

reverse engineering

high cost
insufficient delay accuracy;

large number of test vectors

wave-pipelining false paths

Simulate all possible
wave-pipelining cases

large simulation number;
long runtime

wave pipelining

Limitations:
unsolvable problem;
design risk

Calculate gate delays
from tested path delays

large test number;
inaccurate delays

5

Figure 7.3: Attack techniques to identify or circumvent wave pipelining, where the

last three techniques may be combined to reduce the problem space of

attack.

wave-pipelining paths are between T and 2T as defined in (7.1) and (7.2), these paths

can therefore be identified. The challenge of this attack technique is that it is difficult

to extract accurate gate and interconnect delays just from reverse engineering due

to unknown process parameters, challenges in 3D RC extraction, and switching-

window-dependent crosstalk-induced delay variations, etc. Assume that the real

delay of a path is d and the delay recognition technique suffers an inaccuracy factor

τ (0 < τ < 1). Consequently, this path delay can be any value in the range [(1− τ)d,

(1 + τ)d] when recognized. If the upper bound of a path delay is smaller than T,

this path is definitely a single-period clocking path. If the lower bound of a path

delay is larger than T, the path is definitely a wave-pipelining path. However, if a

path delay covers the clock period T, namely,

(1− τ)d ≤ T ≤ (1 + τ)d. (7.3)

This path can only be considered as suspicious of wave-pipelining but without a

142

7.3 Attack Techniques and Counter Measures

clear differentiation. In the following, we call the range [(1− τ)d, (1 + τ)d] the gray

region for a path with delay d. In reality, a well-optimized design contains many crit-

ical paths with delays close to the clock period T so that their gray regions cover T

easily. When constructing wave-pipelining paths in the proposed method, their de-

lays are guaranteed in the gray region. Consequently, this direct delay recognition in

reverse engineering is not sufficient to decipher the information of wave-pipelining.

With the estimated delays, attackers can actually narrow down the number of po-

tential wave-pipelining paths, because paths with delays definitely smaller or larger

than T considering the inaccuracy in delay estimation can be screened out. The

second attack technique is to test the delays of the remaining paths using authentic

chips from the market. With the netlist recognized, it is not difficult to determine

test vectors to trigger the suspicious paths. Since the only information of interest is

whether a path delay is larger than T, only one delay test for each path is sufficient.

Without considering the cost to test many paths, this test strategy is in fact able to

differentiate wave-pipelining paths from other paths eventually.

To prevent all suspicious paths from being tested, a counter measure is proposed to

create unsensitizable paths with wave-pipelining. When wave-pipelining paths are

constructed by removing flip-flops, the paths are preferred that, viewed directly with

the conventional single-period clocking, are false paths, which cannot be sensitized

by any test vectors.

Definition 1. False Path: A combinational path which cannot be activated in functional

mode or test due to controlling signals from other paths [YX10, DYG89]. On the contrary,

true paths can be activated in functional mode or test.

Definition 2. Wave-Pipelining False Path (WP False Paths): A combinational path with

wave pipelining that is a false path when viewed with the conventional single-period clocking.

Wave-pipelining false paths are true paths with data waves propagating along them

when the circuit is running, but they are false paths when the netlist is examined

only. An example of wave-pipelining false paths is shown in Fig. 7.4, which is a

snippet of the s298 circuit from the ISCAS89 benchmark set. When the flip-flop in

the middle is removed, the dashed path becomes a wave-pipelining path and also a

false path, if it is considered as working within a single clock period. In this case,

143

7 Flexible Timing for Netlist Security

false path after wave-pipelining

controlling signal

removed flip-flop

v1
v2

Figure 7.4: Two true paths form a wave-pipelining false path.

a signal switching at the beginning of the dashed path never reaches the final flip-

flop. If the signal v2 has a value ‘1’, which is the controlling signal to an OR gate, it

blocks the dashed path at the last OR gate; if the signal v2 has a value ‘0’, it blocks

the dashed path at the AND gate right away. Consequently, the dashed path cannot

be triggered for delay test and attackers have no way to differentiate it from all the

other false paths in the original circuit, which may contribute up to 75% of all the

combinational paths in real circuits [HPA97]. The counter measure of forming wave-

pipelining false paths relies on the circuit structure. If there is no such a structure

in the original circuit, this technique cannot be applied. In practice, however, most

relatively large circuits have such paths, as shown in the experimental results in

Section 7.5.

Since the delays of false paths cannot be tested, the third attack technique, brute-

force logic simulation, could be considered to differentiate the camouflaged false

paths from real false paths. In this method, each false path that cannot be excluded

by delay screening in the first step is assumed to be a real false path once and a

wave-pipelining false path once. Assuming the number of such paths is n, then 2n

simulations of the complete circuit should be performed to check which combination

is correct. In theory, this method can eventually find the correct combination of real

false paths and wave-pipelining false paths. However, it is still impractical because

of the unaffordable simulation time due to the large number of false paths in the

original design [HPA97, YX10] and the very long runtime for a full simulation of

the complete circuit. If an attacker tries to decipher the circuit by sweeping the

operation frequency with parameterized wiring parasitics exhaustively, the data of

parasitics must be available, which, however, are difficult to extract directly from

the chips sold in the market. In addition, a systematic simulation-learning solution

is also required, leading to additional counterfeiting effort and risk induced by the

144

7.4 Wave-Pipelining Construction

proposed timing camouflage technique.

The fourth technique to attack wave-pipelining false paths is to consider all false paths

in the circuit as wave-pipelining paths and size logic gates so that delays of all these

paths meet the constraints (7.1) and (7.2). The concept behind this technique is that

false paths are not triggered anyway so that they do not affect the logic of the circuit

if their delays are larger than the clock period T. This assumption, however, is too

optimistic because false paths sized to have delays larger than T may still affect the

normal circuit operation [DYG89]. Another challenge of this attack technique is that

it is very difficult to find a solution to size so many false paths without affecting the

normal true paths whose delays should be smaller than T, because a gate delay may

appear on many paths, either false or active paths.

The fifth technique to identify wave-pipelining paths is to calculate all gate delays in

a circuit from path delays measured by at-speed test, such as applied in [VDP14].

Since path delays are linear combinations of gate delays, the measured path delays

can be used to calculate gate delays by linear algebra. The challenges of this method

are: 1) a large number of combinational paths should be tested in a commercial de-

sign; 2) all logic gates should appear on testable paths in a way that the coefficient

matrix of linear equations has a rank equal to the number of gate/interconnect de-

lays, even in view of a large percentage of false paths [HPA97,YX10]; 3) inaccuracy in

at-speed test of path delays due to environmental factors such as noise and temper-

ature as well as the nature of binary-search of at-speed delay test. Detailed analysis

of attack and counter measures based on this technique is still an open question

requiring further exploration at this moment. Potential methods such as machine

learning might be applied to facilitate the attack, but further counter measures, such

as logic and delay camouflage at gate level, may be combined with wave-pipelining

paths to form a holistic netlist protection solution.

7.4 Wave-Pipelining Construction

When constructing wave-pipelining paths into a circuit while maintaining its orig-

inal function, the constructed paths should be guaranteed to meet the timing con-

straints (7.1) and (7.2). To counter the attack techniques discussed in Section 7.3,

145

7 Flexible Timing for Netlist Security

the constructed paths should not be screened out easily by delay test and estima-

tion. Furthermore, the constructed wave-pipelining paths should contain false paths

when considered as single-period clocking paths. The wave-pipelining construction

problem can thus be formulated as follows.

Inputs: An optimized design; delay information; the given clock period T; the de-

lay recognition inaccuracy factor τ (0 < τ < 1); the required numbers of wave-

pipelining true and false paths nwpt and nwp f .

Outputs: A revised design containing at least the given numbers of wave-pipelining

true and false paths. The delays of these wave-pipelining paths should meet the

gray region requirement (7.3).

Objectives: The original design should be kept unchanged as much as possible; the

increased resource usage should be as little as possible.

7.4.1 Work Flow of Wave-Pipelining Construction

The major steps to construct wave-pipelining paths are shown in Fig. 7.5. To con-

struct wave-pipelining false paths, flip-flops are visited in the netlist iteratively. At

each flip-flop ffi, whether there are wave-pipelining false paths formed from single-

period true paths on the left and on the right of ffi is checked. The number of such

paths is stored in n f as shown in L5. Thereafter, wave-pipelining false paths are

constructed at this flip-flop with the function construct_WP_paths(ffi, T, τ) which

will be explained later.

As shown in Fig. 7.1(b), a wave-pipelining path requires that the flip-flop at the

beginning of the path and the flip-flop at the end of the path are kept in the cir-

cuit. These fanin and fanout flip-flops are inserted into the set Fw and all the flip-

flops tracked by Fw cannot be considered as candidates to construct wave-pipelining

paths.

In the last step of the proposed method, additional wave-pipelining paths are con-

structed that are still true when viewed with the single-period clocking model.

These paths are used to guarantee that attackers must test all single-period clocking

or wave-pipelining true paths whose delays are in the gray region. Without these

paths, attackers can assume all testable paths are clocked by a single clock period

146

7.4 Wave-Pipelining Construction

Input: netlist, delay information, T, τ, nwp f , nwpt

For i=1 to |F| do

n f =check_WP_false_paths(ffi, T, τ);
If n f > 0 then

construct_WP_paths(ffi, T, τ);

If nwp f ≤ 0 then
nwp f = nwp f − n f ;

break;

Fw = ∅;

If ffi /∈Fw then

Fw← ffi, fanin(ffi) and fanout(ffi);

Construct wave-pipelining true paths similar to L3–L11

L1

L5

L10

L3

L11

L9

Figure 7.5: Major steps of wave-pipelining construction.

and skip the expensive test procedure. The path construction in this step is nearly

the same as L3–L11 in Fig. 7.5. The only differences are that at L5 wave-pipelining

true paths should be checked and in L9 and L10 nwpt should be used as the number

of such paths to be constructed.

7.4.2 False Path Checking

In the work flow above, whether a path is a false path need to be checked. In

the proposed method, the statically unsensitizable paths are considered as false

paths [DKM93,Cou10], such as the false path shown in Fig. 7.4. In this example, the

path cannot be sensitized because the controlling signal blocks either the AND gate

or the last OR gate no matter what its value is.

To verify whether a path is statically unsensitizable, a Boolean variable is assigned to

the output of each gate and formulate false path checking as a SAT problem [Cou10].

The logic relations between these variables are established according to functions of

logic gates. If a path can be sensitized, all the side inputs of the path must be

set to the non-controlling values. For example, the path in Fig. 7.4 requires that

the condition (v2 ∧ ¬v2) is true, which is, however, always false. In implement-

ing the function check_WP_false_paths(ffi, T, τ) in Fig. 7.5, 500 paths are selected

147

7 Flexible Timing for Netlist Security

randomly that drive the current flip-flop ffi and the false paths are excluded from

them, because the wave-pipelining paths to be constructed should be formed by two

single-period clocking true paths. Similarly 500 paths are selected that are driven by

ffi and the false paths are excluded. The selected number is in fact abundant in the

circuits as demonstrated by experimental results in Section 7.5. The concept of this

path selection is illustrated in Fig. 7.6(a).

7.4.3 Wave-Pipelining Path Construction

At flip-flop ffi, wave-pipelining paths are needed to be constructed in the circuit with

the function construct_WP_paths(ffi, T, τ) in Fig. 7.5. Unfortunately, the intuitive

idea to remove flip-flop ffi in the middle is not a viable solution, because there

usually are many short paths on the left and on the right of ffi and connecting them

directly generates many paths whose delays are too small to meet the lower bound

of the path delay constraint (7.1).

To solve this problem, the logic in the circuit is duplicated and the gates are sized

so that the delays of all wave-pipelining paths meet (7.1) and (7.2) as illustrated in

Fig. 7.6(b). In the duplicated circuit on the right of ffi, only the flip-flops at which

wave-pipelining paths terminate are kept. The other flip-flops stay in the original

circuit. Afterwards, the logic gates backwards are deleted to remove those gates

that do not drive any flip-flop to reduce resource usage. When duplicating the logic

on the left of ffi, however, all the logic gates are needed to be kept to maintain the

correct function of the circuit.

In the duplicated logic in Fig. 7.6(b), flip-flop ffi are not duplicated. Therefore, all

combinational paths in the duplicated logic are wave-pipelining paths and their

delays should meet the gray region requirement (7.3) as well as (7.1)–(7.2). To meet

these constraints, the gates are sized in the duplicated logic with an ILP formulation.

In this formulation, two variables are assigned to a pin of a logic gate to represent

the latest and earliest arrival times, respectively. Assume that an input pin of a

gate is indexed by i and the variables are written as ai and ai. Similarly, assume

that the output pin of the gate is indexed by j and the two variables are aj and aj.

Furthermore, the gate delay from an input pin to the output pin is written as dij,

which is a variable since the corresponding logic gate is sized. With these definitions,

148

7.4 Wave-Pipelining Construction

ffi F
T

T WP

ffi

fanin(ffi) fanout(ffi)

F
T
F

TT
F

T

T

500 path limit 500 path limit
(a)

(b)duplicated duplicated

non-WP

sized

arrival times: ac
i , ac

i

arrival times: ai, ai
maximum delay

of WP paths

Figure 7.6: WP path construction. (a) The number of paths on each side of ffi is

limited to 500. A WP false path is constructed by two single-period

clocking true paths. (b) Logic duplication and gate sizing.

the arrival time constraints from an input pin to the output pin can be written as

aj ≥ ai + dij (7.4)

aj ≤ ai + dij. (7.5)

To reduce the number of duplicated gates, we try to connect the input pins of logic

gates in the duplicated logic to the original gates as much as possible, as illustrated

in Fig. 7.6(b). In the original logic, the latest and the earliest arrival times are con-

stants. Assume that the two arrival times to the original counterpart of an input

pin are ac
i and ac

i , and a 0-1 variable pi indicates whether the input pin in the dupli-

cated logic should be driven by the original logic. the constraints (7.4)–(7.5) can be

extended as

aj ≥ ai + dij − pi M (7.6)

aj ≥ ac
i + dij − (1− pi)M (7.7)

aj ≤ ai + dij + pi M (7.8)

aj ≤ ac
i + dij + (1− pi)M, (7.9)

149

7 Flexible Timing for Netlist Security

where M is a very large positive constant used to transform the conditional con-

straints to linear constraints [CBD11]. In either case when the input pin is connected

or disconnected in the duplicated logic, only two constraints in (7.6)–(7.9) are valid.

In the description above, gate delays are not bounded strictly. Instead, they are

allowed to exceed the maximum gate delays defined in the library, respectively, so

that the path delay constraints (7.1)–(7.2) and the gray region constraint (7.3) can be

guaranteed. However, we try to keep the increased gate delays as small as possible,

so that they can be absorbed by interconnect delays during physical design. To

reduce resource usage and avoid excessive delay padding, the optimization problem

can be formulated as

minimize α ∑
I

dij − β ∑
I

pi (7.10)

subject to (7.1)–(7.2), (7.3), (7.6)–(7.9), (7.11)

where α � β and I is the index set of all input pins. After the ILP problem above

is solved, the gates that do not drive any other gates in the duplicated logic are

removed from the circuit.

7.5 Experimental Results

The proposed method was implemented in C++ and tested using a 3.20 GHz CPU.

The results using circuits from the ISCAS89 benchmark set are demonstrated. The

number of flip-flops and the number of logic gates are shown in the columns ns and

ng in Table 7.1, respectively. The benchmark circuits were sized using a 45 nm library.

15% of timing margin is kept to tolerate PVT (Process, Voltage and Temperature)

variations and the inaccuracy factor τ of delay estimation in (7.3) is set to 20%.

Gurobi [Gur13] is used to solve the optimization problems in the proposed method.

The results of wave-pipelining path construction are shown in Table 7.1. The column

nt shows the number of single-period clocking combinational paths that are true

paths in the original circuits and whose delays meet the gray region requirement

(7.3). When attackers try to detect the locations of wave-pipelining paths, these true

paths need to be tested to determine whether their delays are actually larger or

150

7.5 Experimental Results

Table 7.1: Results of Constructing WP Paths

Circuit WP Cons. Runtime

ns ng nt nwpt nwp f nd np tr(s)

s35932 1728 16065 180039 20 1022 178 80 625.29

s38584 1452 19253 502561 48 431 130 117 3685.88

s38417 1636 22179 298922 82 63 321 65 1711.01

s15850 522 9772 361544 20 838 186 141 3018.06

s13207 669 3716 927424 20 115 152 74 446.17

s9234 228 5597 10922 20 983 148 83 291.45

s5378 179 2779 10143 401 78 139 55 266.022

s4863 104 2342 4140 680 0 184 77 3766.98

s1423 74 657 8506 450 12 75 213 1170.71

s1238 12 508 15 3 4 94 90 2.07

smaller than T. These results show that attackers need to perform many expensive

test iterations to attack a chip even if they can estimate gate delays to some degree.

The column nwpt shows the numbers of wave-pipelining true paths whose delays

are in the gray region. These paths are used to guarantee that attackers must test all

single-period clocking or wave-pipelining true paths whose delays are in the gray

region. The column nwpf shows the numbers of wave-pipelining false paths whose

delays are in the gray region. These paths are used to obstruct the attempt that

attackers test all paths to determine the wave-pipelining paths. In the experiments,

the target numbers of wave-pipelining true and false paths both is set to 10. The

construction of wave-pipelining true and false paths shown as in Fig. 7.5 is executed.

When wave-pipelining false paths were constructed using the technique illustrated

in Fig. 7.6, wave-pipelining true paths were also found in the duplicated circuit

snippet. In addition, wave-pipelining false paths were found in the circuit snippet

duplicated to construct wave-pipelining true paths. Consequently, the numbers of

these paths shown in the columns nwpt and nwp f are larger than 10 for many test

cases except s4863 and s1238. In s4863 there is no wave-pipelining false path and

in s1238 the numbers of wave-pipelining paths are very small due to the limited

circuit size. In all the large test cases, however, wave-pipelining paths have been

151

7 Flexible Timing for Netlist Security

Table 7.2: Wave-pipelining False Paths in Test Cases

Circuit n f τ = 0.2 τ = 0.1

s5378 122757 80386 4845

s4863 0 0 0

s1423 2331927 58992 37312

s1238 392 0 0

constructed successfully.

The column nd in Table 7.1 shows the number of logic gates duplicated in the final

circuits. Since wave-pipelining paths are only inserted at limited locations, generally

the number of duplicated gates does not increase with respect to circuit size. The

column np shows the number of delay units equivalent to buffer delays that were

inserted to extend wave-pipelining path delays. Since the number of duplicated

gates does not increase with respect to circuit size, the area cost for constructing

wave-pipelining paths is negligible in relatively large circuits. The last column tr in

Table 7.1 shows the runtime of the proposed method, which is acceptable because

wave-pipelining construction is a one-time effort.

In the proposed method, the number of wave-pipelining false paths depends on the

original circuit structure. If there is no such a path in a circuit, we cannot use this

technique to thwart test-based attack. To verify whether this feature is common for

most circuits, we checked the numbers of wave-pipelining false paths in the test

cases and the results are shown in Table 7.2, where the column n f shows the num-

bers of wave-pipelining false paths without considering path delays. The columns

τ = 0.2 and τ = 0.1 show the numbers of such paths with delays meeting the gray

region requirement (7.3). Since τ = 0.1 means that the gray region is smaller, the

numbers of wave-pipelining paths under this condition decrease compared with the

τ = 0.2 cases. For all the other test cases not appearing in Table 7.2, the numbers

of such paths corresponding to the three columns are all larger than 100k, meaning

that there are plenty of wave-pipelining false paths which can be used to camouflage

the timing of these circuits.

In the proposed wave-pipelining construction formulation (7.10)–(7.11), the number

of signals is maximized that can be driven by the original circuit as illustrated in

152

7.5 Experimental Results

s35932
s38584

s38417
s15850

s13207
s9234

s5378
s4863

s1423
s1238

0

5

10
N

um
be

r
of

ga
te

s
(×

10
2)

Originally duplicated Reduced

Figure 7.7: Comparison of gate numbers before/after reduction.

s35932
s38584

s38417
s15850

s13207
s9234

s5378
s4863

s1423
s1238

0

2

4

N
um

be
r

of
Pa

th
s

(×
10

3)

False paths Two-period sens. Failed

Figure 7.8: Results of false path sizing attack.

Fig. 7.6. Consequently, the number of logic gates in the duplicated circuit can be

reduced. Fig. 7.7 compares the numbers of gates in the originally duplicated circuit

before the removed flip-flop in Fig. 7.6 and the number of gates after reduction. In

all the test cases, the numbers of duplicated gates were reduced significantly.

In the experiments, the gate sizing attack on the netlist as discussed in Section 7.3

is also simulated. The basic idea was that all false paths whose delays were in the

gray region were treated as wave-pipelining paths and their delays were sized to

meet (7.1)–(7.2). The results of this simulated attack are shown in Fig. 7.8, where

the first bar shows the number of false paths we used to simulate the attack. The

last bar shows the number of false paths that were not sized successfully. In all

these simulation cases, no sizing attack succeeded. As discussed in Section 7.3, false

paths may be sensitized if their delays exceed one clock period. The second bar in

Fig. 7.8 shows the number of the false paths that can be sensitized when considered

153

7 Flexible Timing for Netlist Security

as wave-pipelining paths in the attack. Obviously many of them can be sensitized

so that the circuit does not work even if the sizing attack could succeed.

7.6 Summary

In this chapter, a new timing camouflage technique is proposed to secure circuit

netlists against counterfeiting. Since a netlist itself does not carry all design infor-

mation anymore, the difficulty of attack has increased significantly due to additional

test cost and the introduced wave-pipelining false paths. The introduced method

opens up a new dimension of netlist camouflage at circuit level, and it is fully com-

patible with other previous counterfeiting methods so that they can be combined

together to strengthen netlist security.

154

Chapter 8

Conclusion

With the increasing process variations at nanometer technology nodes, it is a chal-

lenging task to meet timing of sequential circuits before manufacturing and chips

might not work with the given clock period after manufacturing. To counter process

variations, different kinds of methods from the design phase to the test phase were

proposed in this thesis.

As a method to alleviate the effects of process variations, post-silicon tuning tech-

nique is widely adopted. This method can adjust the timing properties of chips

after manufacturing individually. To apply this technique, two challenges need to

be handled. The first challenge is where the tuning components should be inserted

to balance the trade-off between area overhead and yield. The second challenge

is that chips must be tested after manufacturing to determine the effect of process

variations. In this thesis, a complete framework was developed to consider the yield

improvement and the cost due to additional area and test holistically. According

to the experimental results, the yield for all circuits can be improved significantly,

while the number of post-silicon tuning components is less than 1% of the number

of flip-flops. Furthermore, the test cost is reduced by more than 94%, thanks to the

statistical prediction and delay test with delay alignment.

Facing the challenges from process variations, the concepts in the traditional timing

paradigm should be also examined. For example, in STA, setup times, hold times

and clock-to-q delays of flip-flops are characterized as constants. This simplification

sacrifices circuit performance for the sake of timing simplicity. In reality, clock-to-q

delays of flip-flops depend on both setup and hold times. In this thesis, a holistic

timing analysis framework considering interdependency of setup and hold time us-

ing a piecewise model was proposed. With this model, the minimum clock period of

circuits is evaluated using an ILP-based formulation. Experimental results demon-

strate the effectiveness of the proposed model in terms of accuracy and runtime

155

8 Conclusion

efficiency.

In digital circuits, combinational logic blocks perform computation and sequen-

tial components, e.g., flip-flops, are used to synchronize the logic computation.

However, the performance of circuits has reached a limit in the traditional timing

paradigm. If we look beyond the barriers of flip-flops, the effects of process varia-

tions can be alleviated further. For example, if the flip-flop between two stages is

removed, the delay imbalance is exploited automatically. To break the confines of

the traditional timing paradigm, in this thesis, a new timing model was proposed,

where sequential components and combinational logic gates are both considered

as delay units. With this model, a timing optimization framework was proposed

to allocate sequential components only at necessary locations in the circuits. Com-

pared with the method combining sizing and retiming, the circuit performance can

be improved even beyond the traditional limit.

The traditional timing model also increases the security risk for digital circuits. Since

the netlist carries all the design information, attackers can reconstruct the original

netlist to counterfeit chips with reverse engineering. To invalidate this assumption,

in this thesis, a timing camouflage method was proposed to secure digital circuits.

This technique potentially opens up a new dimension of circuit security and it is

fully compatible with previous anti-counterfeiting methods.

The methods deploying post-silicon tuning and flexible timing properties of flip-

flops are continuous refinements of the traditional timing. The improvement in

timing performance with these methods is already approaching its limit. Therefore,

a new definition of timing is also proposed in this thesis, which provides an oppor-

tunity to break the confines of the traditional timing paradigm. To enable such a

new paradigm, innovative solutions from logic synthesis to physical design are re-

quired to balance the design complexity and the benefits of improvement in timing

performance.

156

Bibliography

[ABB+99] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-

garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and

D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied

Mathematics, third edition, 1999.

[ABZ+03] A. Agarwal, D. Blaauw, V. Zolotov, S. Sundareswaran, M. Zhao,

K. Gala, and R. Panda. Statistical delay computation considering spatial

correlation. In Proc. Asia and South Pacific Des. Autom. Conf. (ASP-DAC),

pages 271–276, 2003.

[AKGH16] H. Amrouch, B. Khaleghi, A. Gerstlauer, and J. Henkel. Reliability-

aware design to suppress aging. In Proc. Design Autom. Conf. (DAC),

pages 12:1–12:6, 2016.

[And05] Y. Ando. Integrated circuits having post-silicon adjustment control. In

US Patent 6,957,163, 2005.

[BCKL98] W. P. Burleson, M. Ciesielski, F. Klass, and W. Liu. Wave-pipelining: A

tutorial and research survey. IEEE Trans. VLSI Syst., 6(3):464–474, 1998.

[BCSS08] D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer. Statistical timing

analysis: From basic principles to state of the art. IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst., 27(4):589–607, 2008.

[BM58] G. E. P. Box and M. E. Muller. A note on the generation of random

normal deviates. Ann. Math. Statist., 29(2):610–611, 1958.

[BM09] A. H. Baba and S. Mitra. Testing for transistor aging. In Proc. VLSI Test

Symp. (VTS), pages 215–220, 2009.

157

Bibliography

[BN00] D. S. Boning and S. Nassif. Models of process variations in device

and interconnect. In Design of High Performance Microprocessor Circuits,

chapter 6. IEEE Press, 2000.

[BRPB14] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson. Stealthy dopant-

level hardware trojans: Extended version. J. Cryptographic Engineering,

4(1):19–31, 2014.

[CBD11] D. Chen, R. Batson, and Y. Dang. Applied Integer Programming: Modeling

and Solution. Wiley, 2011.

[CCBC06] B. Cline, K. Chopra, D. Blaauw, and Y. Cao. Analysis and modeling

of CD variation for statistical static timing. In Proc. Int. Conf. Comput.-

Aided Des. (ICCAD), pages 60 – 66, 2006.

[CCW98] C.-P. Chen, C. C. Chu, and D. Wong. Fast and exact simultaneous gate

and wire sizing by lagrangian relaxation. In Proc. Design Autom. Conf.

(DAC), pages 617–624, 1998.

[CDS+08] A. Chakraborty, K. Duraisami, A. V. Sathanur, P. Sithambaram,

L. Benini, A. Macii, E. Macii, and M. Poncino. Dynamic thermal clock

skew compensation using tunable delay buffers. IEEE Trans. VLSI Syst.,

16(6):639–649, 2008.

[Cla88] J. H. Clark. Tutorial: Computer graphics; image synthesis. chapter A

Fast Algorithm for Rendering Parametric Surfaces, pages 88–93. Com-

puter Science Press, Inc., New York, NY, USA, 1988.

[CLS12] N. Chen, B. Li, and U. Schlichtmann. Iterative timing analysis based on

nonlinear and interdependent flipflop modelling. IET Circuits, Devices

& Systems, 6(5):330–337, 2012.

[Cou10] O. Coudert. An efficient algorithm to verify generalized false paths. In

Proc. Design Autom. Conf. (DAC), pages 188–193, 2010.

[CS03] H. Chang and S. S. Sapatnekar. Statistical timing analysis considering

spatial correlations using a single PERT-like traversal. In Proc. Int. Conf.

Comput.-Aided Des. (ICCAD), pages 621–625, 2003.

158

Bibliography

[CS05] H. Chang and S. S. Sapatnekar. Statistical timing analysis under spa-

tial correlations. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,

24(9):1467–1482, September 2005.

[CWT11] J. Chen, S. Wang, and N. B. M. Tehranipoor. A framework for fast and

accurate critical-reliability paths identification. In IEEE North Atlantic

test workshop (NATW), 2011.

[DBN+14] S. Dupuis, P.-S. Ba, G. D. Natale, M.-L. Flottes, and B. Rouzeyre. A

novel hardware logic encryption technique for thwarting illegal over-

production and hardware trojans. In Int. On-Line Testing Symp. (IOLTS),

pages 49–54, 2014.

[DKM93] S. Devadas, K. Keutzer, and S. Malik. Computation of floating mode

delay in combinational circuits: Theory and algorithms. IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., 12(12):1913–1923, November

1993.

[DYG89] D. H.-C. Du, S. H. Yen, and S. Ghanta. On the general false path prob-

lem in timing analysis. In Proc. Design Autom. Conf. (DAC), pages 555–

560, 1989.

[Fis90] J. Fishburn. Clock skew optimization. IEEE Trans. Comput., 39(7):945–

951, 1990.

[FYCT13] F. Firouzi, F. Ye, K. Chakrabarty, and M. B. Tahoori. Representative

critical-path selection for aging-induced delay monitoring. In Proc. Int.

Test Conf. (ITC), pages 1–10, 2013.

[FYCT15] F. Firouzi, F. Ye, K. Chakrabarty, and M. B. Tahoori. Aging- and

variation-aware delay monitoring using representative critical path se-

lection. ACM Trans. Design Autom. Electr. Syst, 20(3):1–39, 2015.

[G+] M. Galassi et al. GNU Scientific Library Reference Manual. Third edition.

[GHD+14] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor, and

Y. Makris. Counterfeit integrated circuits: A rising threat in the global

semiconductor supply chain. Proc. IEEE, 102(8):1207–1228, 2014.

159

Bibliography

[GLL+15] H. Geng, J. Liu, P.-W. Luo, L.-C. Cheng, S. L. Grant, and Y. Shi. Selec-

tive body biasing for post-silicon tuning of sub-threshold designs: An

adaptive filtering approach. IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., 34(5):713–725, 2015.

[Gur13] Gurobi Optimization, Inc. Gurobi optimizer reference manual, 2013.

[GYSH14] F. Gong, H. Yu, Y. Shi, and L. He. Variability-aware parametric yield

estimation for analog/mixed-signal circuits: Concepts, algorithms, and

challenges. IEEE Design & Test, 31(4):6–15, 2014.

[HKK+12] J. Hu, A. B. Kahng, S. Kang, M.-C. Kim, and I. L. Markov. Sensitivity-

guided metaheuristics for accurate discrete gate sizing. In Proc. Int.

Conf. Comput.-Aided Des. (ICCAD), pages 233–239, 2012.

[HLCG95] H.-Y. Hsieh, W. Liu, R. K. Cavin, and C. T. Gray. Concurrent timing

optimization of latch-based digital systems. In Proc. Int. Conf. Comput.

Des. (ICCD), pages 680–685, 1995.

[HMB08] A. P. Hurst, A. Mishchenko, and R. K. Brayton. Scalable min-register

retiming under timing and initializability constraints. In Proc. Design

Autom. Conf. (DAC), pages 534–539, 2008.

[HPA97] K. Heragu, J. H. Patel, and V. D. Agrawal. Fast identification of

untestable delay faults using implications. In Proc. Int. Conf. Comput.-

Aided Des. (ICCAD), pages 642–647, 1997.

[JB05] A. Jain and D. Blaauw. Slack borrowing in flip-flop based sequential

circuits. In Proc. Great Lakes Symp. VLSI (GLSVLSI), pages 96–101, 2005.

[JC93] D. A. Joy and M. J. Ciesielski. Clock period minimization with wave

pipelining. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,

12(4):461–472, 1993.

[Jol02] I. Jolliffe. Principal Component Analysis. Springer, 2002.

[JW07] R. A. Johnson and D. W. Wichern. Applied multivariate statistical analysis.

Pearson Prentice Hall, 2007.

[KBW+14] V. B. Kleeberger, M. Barke, C. Werner, D. Schmitt-Landsiedel, and

U. Schlichtmann. A compact model for NBTI degradation and recov-

ery under use-profile variations and its application to aging analysis of

160

Bibliography

digital integrated circuits. Microelectronics Reliability, 54(6–7):1083–1089,

2014.

[KCL+17] J. Kao, C. Chao, C. Lin, N. Katta, K. Yang, and C. Wang. Post-silicon

tuning in voltage control of semiconductor integrated circuits. In US

Patent 9,564,896, 2017.

[KK17] J. Kim and T. Kim. Adjustable delay buffer allocation under useful clock

skew scheduling. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,

36(4):641–654, 2017.

[KKS06] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar. An analytical model for

negative bias temperature instability. In Proc. Int. Conf. Comput.-Aided

Des. (ICCAD), pages 493–496, 2006.

[KKS07] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar. NBTI-aware synthesis

of digital circuits. In Proc. Design Autom. Conf. (DAC), pages 370–375,

2007.

[KL14] A. B. Kahng and H. Lee. Timing margin recovery with flexible flip-flop

timing model. In Proc. Int. Symp. Quality Electron. Des. (ISQED), pages

496–503, 2014.

[KLS+15] R. Kumar, B. Li, Y. Shen, U. Schlichtmann, and J. Hu. Timing verifica-

tion for adaptive integrated circuits. In Proc. Design, Autom., and Test

Europe Conf. (DATE), pages 1587–1590, 2015.

[KME+16] N. Koppaetzky, M. Metzdorf, R. Eilers, D. Helms, and W. Nebel. RT

level timing modeling for aging prediction. In Proc. Design, Autom., and

Test Europe Conf. (DATE), pages 297–300, 2016.

[KS07] V. Khandelwal and A. Srivastava. Variability-driven formulation for

simultaneous gate sizing and post-silicon tunability allocation. In Proc.

Int. Symp. Phys. Des. (ISPD), pages 11–18, 2007.

[KS08] V. Khandelwal and A. Srivastava. Variability-driven formulation for

simultaneous gate sizing and postsilicon tunability allocation. IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst., 27(4):610–620, 2008.

161

Bibliography

[KS15] S. Karapetyan and U. Schlichtmann. Integrating aging aware timing

analysis into a commercial STA tool. In Int. Symp. on VLSI Des., Aut.

and Test (VLSI-DAT), pages 1–4, 2015.

[KSB06] S. H. Kulkarni, D. Sylvester, and D. Blaauw. A statistical framework

for post-silicon tuning through body bias clustering. In Proc. Int. Conf.

Comput.-Aided Des. (ICCAD), pages 39–46, 2006.

[LBS10] D. Lorenz, M. Barke, and U. Schlichtmann. Aging analysis at gate and

macro cell level. In Proc. Int. Conf. Comput.-Aided Des. (ICCAD), pages

77–84, 2010.

[LBS12] D. Lorenz, M. Barke, and U. Schlichtmann. Efficiently analyzing the

impact of aging effects on large integrated circuits. Microelectronics Re-

liability, 52(8):1546–1552, 2012.

[LBS14] D. Lorenz, M. Barke, and Schlichtmann. Monitoring of aging in in-

tegrated circuits by identifying possible critical paths. Microelectronics

Reliability, 54(6-7):1075–1082, 2014.

[LCS09a] B. Li, N. Chen, and U. Schlichtmann. Timing model extraction for

sequential circuits considering process variations. In Proc. Int. Conf.

Comput.-Aided Des. (ICCAD), pages 336–343, 2009.

[LCS+09b] B. Li, N. Chen, M. Schmidt, W. Schneider, and U. Schlichtmann. On

hierarchical statistical static timing analysis. In Proc. Design, Autom.,

and Test Europe Conf. (DATE), pages 1320–1325, 2009.

[LCS10] B. Li, N. Chen, and U. Schlichtmann. Fast statistical timing analysis of

latch-controlled circuits for arbitrary clock periods. In Proc. Int. Conf.

Comput.-Aided Des. (ICCAD), pages 524–531, 2010.

[LCS11] B. Li, N. Chen, and U. Schlichtmann. Fast statistical timing analysis

for circuits with post-silicon tunable clock buffers. In Proc. Int. Conf.

Comput.-Aided Des. (ICCAD), pages 111–117, 2011.

[LCS12] B. Li, N. Chen, and U. Schlichtmann. Statistical timing analysis

for latch-controlled circuits with reduced iterations and graph trans-

formations. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,

31(11):1670–1683, 2012.

162

Bibliography

[LCXS13] B. Li, N. Chen, Y. Xu, and U. Schlichtmann. On timing model extraction

and hierarchical statistical timing analysis. IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., 32(3):367–380, 2013.

[LGS09] D. Lorenz, G. Georgakos, and U. Schlichtmann. Aging analysis of cir-

cuit timing considering NBTI and HCI. In Int. On-Line Testing Symp.

(IOLTS), pages 3–8, 2009.

[LHS18] B. Li, M. Hashimoto, and U. Schlichtmann. From process variations to

reliability: A survey of timing of digital circuits in the nanometer era.

PSJ Transactions on System LSI Design Methodology, 11:2–15, 2018.

[LKLZ12] L. Li, P. Kang, Y. Lu, and H. Zhou. An efficient algorithm for library-

based cell-type selection in high-performance low-power designs. In

Proc. Int. Conf. Comput.-Aided Des. (ICCAD), pages 226–232, 2012.

[LKS+08] B. Li, C. Knoth, W. Schneider, M. Schmidt, and U. Schlichtmann. Static

timing model extraction for combinational circuits. In Int. Workshop

on Power and Timing Modeling, Optimization and Simulation (PATMOS),

pages 156–166, 2008.

[LN12] Z. Lak and N. Nicolici. On using on-chip clock tuning elements to

address delay degradation due to circuit aging. IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst., 31(12):1845–1856, 2012.

[LN14] Z. Lak and N. Nicolici. A novel algorithmic approach to aid post-silicon

delay measurement and clock tuning. IEEE Trans. Comput., 63(5):1074–

1084, 2014.

[LPR+03] X. Lin, R. Press, J. Rajski, P. Reuter, T. Rinderknecht, B. Swanson, and

N. Tamarapalli. High-frequency, at-speed scan testing. IEEE Des. Test.

Comput., 20(5):17–25, 2003.

[LS09] Q. Liu and S. S. Sapatnekar. A framework for scalable postsilicon sta-

tistical delay prediction under process variations. IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst., 28(8):1201–1212, 2009.

[LS15] B. Li and U. Schlichtmann. Statistical timing analysis and criticality

computation for circuits with post-silicon clock tuning elements. IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst., 34(11):1784–1797, 2015.

163

Bibliography

[LSM+16] M. Li, K. Shamsi, T. Meade, Z. Zhao, B. Yu, Y. Jin, and D. Z. Pan.

Provably secure camouflaging strategy for IC protection. In Proc. Int.

Conf. Comput.-Aided Des. (ICCAD), pages 28–35, 2016.

[LT15] Y.-W. Lee and N. A. Touba. Improving logic obfuscation via logic cone

analysis. In Latin-American Test Symp., pages 1–6, 2015.

[LZ06] C. Lin and H. Zhou. An efficient retiming algorithm under setup and

hold constraints. In Proc. Design Autom. Conf. (DAC), pages 945–950,

2006.

[MBPB15] S. Malik, G. T. Becker, C. Paar, and W. P. Burleson. Development of a

layout-level hardware obfuscation tool. In Comput. Society Ann. Symp.

on VLSI, pages 204–209, 2015.

[MFDN05] P. Mahoney, E. Fetzer, B. Doyle, and S. Naffziger. Clock distribution on

a dual-core, multi-threaded Itanium R©-family processor. In Proc. Int.

Solid-State Circuits Conf. (ISSCC), pages 292–293, 2005.

[MT05] M. Michael and S. Tragoudas. Function-based compact test pattern

generation for path delay faults. IEEE Trans. VLSI Syst., 13(8):996–1001,

2005.

[Nas01] S. R. Nassif. Modeling and analysis of manufacturing variations. In

Proc. Custom Integr. Circuits Conf. (CICC), pages 223–228, 2001.

[NF96] J. L. Neves and E. G. Friedman. Optimal clock skew scheduling tolerant

to process variations. In Proc. Design Autom. Conf. (DAC), pages 623–

628, 1996.

[NK08] K. Nagaraj and S. Kundu. An automatic post silicon clock tuning sys-

tem for improving system performance based on tester measurements.

In Proc. Int. Test Conf. (ITC), pages 1–8, 2008.

[NK09] K. Nagaraj and S. Kundu. A study on placement of post silicon clock

tuning buffers for mitigating impact of process variation. In Proc. De-

sign, Autom., and Test Europe Conf. (DATE), pages 292–295, 2009.

[NSG+06] S. Naffziger, B. Stackhouse, T. Grutkowski, D. Josephson, J. De-

sai, E. Alon, and M. Horowitz. The implementation of a 2-core,

164

Bibliography

multi-threaded Itanium family processor. IEEE J. Solid-State Circuits,

41(1):197–209, 2006.

[OBH11] M. M. Ozdal, S. Burns, and J. Hu. Gate sizing and device technology

selection algorithms for high-performance industrial designs. In Proc.

Int. Conf. Comput.-Aided Des. (ICCAD), pages 724–731, 2011.

[Pat90] D. Patel. CHARMS: characterization and modeling system for accurate

delay prediction of ASIC designs. In Proc. Custom Integr. Circuits Conf.

(CICC), pages 9.5/1–9.5/6, 1990.

[Pat03] S. Pateras. Achieving at-speed structural test. IEEE Des. Test. Comput.,

20(5):26–33, 2003.

[PKK+06] B. Paul, K. Kang, H. Kufluoglu, M. Alam, and K. Roy. Temporal perfor-

mance degradation under NBTI: Estimation and design for improved

reliability of nanoscale circuits. In Proc. Design, Autom., and Test Europe

Conf. (DATE), pages 780–785, 2006.

[PM15] S. M. Plaza and I. L. Markov. Solving the third-shift problem in IC

piracy with test-aware logic locking. IEEE Trans. Comput.-Aided Design

Integr. Circuits Syst., 34(6):961–971, 2015.

[PRU95] I. Pomeranz, S. Reddy, and P. Uppaluri. NEST: A nonenumerative test

generation method for path delay faults in combinational circuits. IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst., 14(12):1505–1515, 1995.

[PZCB+10] P. Pant, J. Zelman, G. Colon-Bonet, J. Flint, and S. Yurash. Lessons from

at-speed scan deployment on an Intel R© Itanium R© microprocessor. In

Proc. Int. Test Conf. (ITC), pages 1–8, 2010.

[RKM08] J. A. Roy, F. Koushanfar, and I. L. Markov. EPIC: Ending piracy of

integrated circuits. In Proc. Design, Autom., and Test Europe Conf. (DATE),

pages 1069–1074, 2008.

[Roe03] W. Roethig. Library characterization and modeling for 130 nm and 90

nm SoC design. In Proc. Int. SOC Conf., pages 383–386, 2003.

[RPSK12] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri. Security analysis

of logic obfuscation. In Proc. Design Autom. Conf. (DAC), pages 83–89,

2012.

165

Bibliography

[RSK13] J. Rajendran, O. Sinanoglu, and R. Karri. VLSI testing based security

metric for IC camouflaging. In Proc. Int. Test Conf. (ITC), pages 1–4,

2013.

[RSSK13] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri. Security analysis of

integrated circuit camouflaging. In Proc. Conf. on Comput. & Commun.

Security, pages 709–720, 2013.

[SBC97] B. E. Stine, D. S. Boning, and J. E. Chung. Analysis and decomposition

of spatial variation in integrated circuit processes and devices. IEEE

Trans. Semiconductor Manufacturing, 10(1):24–41, 1997.

[SDT+07] E. Salman, A. Dasdan, F. Taraporevala, K. Küçükçakar, and E. G. Fried-

man. Exploiting setup-hold-time interdependence in static timing anal-

ysis. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 26(6):1114–

1125, 2007.

[Seb77] G. Seber. Linear Regression Analysis. John Wiley & Sons, 1977.

[SFD+06] E. Salman, E. G. Friedman, A. Dasdan, F. Taraporevala, and

K. Küçükçakar. Pessimism reduction in static timing analysis using in-

terdependent setup and hold times. In Proc. Int. Symp. Quality Electron.

Des. (ISQED), pages 159–164, 2006.

[SHJL16] U. Schlichtmann, M. Hashimoto, I. H.-R. Jiang, and B. Li. Reliability,

adaptability and flexibility in timing: Buy a life insurance for your cir-

cuits. In Proc. Asia and South Pacific Des. Autom. Conf. (ASP-DAC), pages

705–711, 2016.

[SMB05] D. R. Singh, V. Manohararajah, and S. D. Brown. Incremental retiming

for FPGA physical synthesis. In Proc. Design Autom. Conf. (DAC), pages

433–438, 2005.

[SMO90a] K. Sakallah, T. Mudge, and O. Olukotun. checkTc and minTc: Timing

verification and optimal clocking of synchronous digital circuits. In

Proc. Int. Conf. Comput.-Aided Des. (ICCAD), pages 552–555, 1990.

[SMO90b] K. A. Sakallah, T. N. Mudge, and O. A. Olukotun. Analysis and design

of latch-controlled synchronous digital circuits. In ACM/IEEE Design

Automation Conference (DAC), pages 111–117, 1990.

166

Bibliography

[Sob67] I. M. Sobol. The distribution of points in a cube and the approximate

evaluation of integrals. Comput. Math. Math. Phys., 7(4):86–112, 1967.

[SR07] A. Singhee and R. A. Rutenbar. From finance to flip flops: A study

of fast quasi-monte carlo methods from computational finance applied

to statistical circuit analysis. In Proc. Int. Symp. Quality Electron. Des.

(ISQED), pages 685–692, 2007.

[SS08] J. Singh and S. S. Sapatnekar. A scalable statistical static timing analyzer

incorporating correlated non-gaussian and gaussian parameter varia-

tions. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 27(1):160–

173, January 2008.

[SV09] G. Seetharaman and B. Venkataramani. Automation schemes for FPGA

implementation of wave-pipelined circuits. ACM Trans. Reconf. Tech.

Sys., 2(2):11:1–11:19, 2009.

[TBCS04] J. Tsai, D. Baik, C. C.-P. Chen, and K. K. Saluja. A yield improvement

methodology using pre- and post-silicon statistical clock scheduling. In

Proc. Int. Conf. Comput.-Aided Des. (ICCAD), pages 611–618, 2004.

[TGB09] D. Tadesse, J. Grodstein, and R. I. Bahar. AutoRex: An automated post-

silicon clock tuning tool. In Proc. Int. Test Conf. (ITC), pages 1–10, 2009.

[TKMH04] E. Takahashi, Y. Kasai, M. Murakawa, and T. Higuchi. Post-fabrication

clock-timing adjustment using genetic algorithms. IEEE J. Solid-State

Circuits, 39(4):643–650, 2004.

[TRND+00] S. Tam, S. Rusu, U. Nagarji Desai, R. Kim, J. Zhang, and I. Young. Clock

generation and distribution for the first IA-64 microprocessor. IEEE J.

Solid-State Circuits, 35(11):1545–1552, 2000.

[TZC05] J. Tsai, L. Zhang, and C. C.-P. Chen. Statistical timing analysis driven

post-silicon-tunable clock-tree synthesis. In Proc. Int. Conf. Comput.-

Aided Des. (ICCAD), pages 575–581, 2005.

[VCBS11] V. Veetil, K. Chopra, D. Blaauw, and D. Sylvester. Fast statistical

static timing analysis using smart Monte Carlo techniques. IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., 30(6):852–865, 2011.

167

Bibliography

[VDP14] K. Vaidyanathan, B. P. Das, and L. T. Pileggi. Detecting reliability at-

tacks during split fabrication using test-only BEOL stack. In Proc. De-

sign Autom. Conf. (DAC), pages 156:1–156:6, 2014.

[VHB87] B. Von Herzen and A. H. Barr. Accurate triangulations of deformed,

intersecting surfaces. Comput. Graph., 21(4):103–110, 1987.

[VRK+04] C. Visweswariah, K. Ravindran, K. Kalafala, S. Walker, and S. Narayan.

First-order incremental block-based statistical timing analysis. In Proc.

Design Autom. Conf. (DAC), pages 331–336, 2004.

[WZB17] H.-L. Wang, M. Zhang, and P. A. Beerel. Retiming of two-phase latch-

based resilient circuits. In Proc. Design Autom. Conf. (DAC), pages 1–6,

2017.

[WZXS13] T. Wang, C. Zhang, J. Xiong, and Y. Shi. Eagle-eye: A near-optimal

statistical framework for noise sensor placement. In Proc. Int. Conf.

Comput.-Aided Des. (ICCAD), pages 437–443, 2013.

[XD10] L. Xie and A. Davoodi. Representative path selection for post-silicon

timing prediction under variability. In Proc. Design Autom. Conf. (DAC),

pages 386–391, 2010.

[XS17] Y. Xie and A. Srivastava. Delay locking: Security enhancement of logic

locking against IC counterfeiting and overproduction. In Proc. Design

Autom. Conf. (DAC), pages 1–6, 2017.

[XSZV09] J. Xiong, Y. Shi, V. Zolotov, and C. Visweswariah. Statistical multilayer

process space coverage for at-speed test. In Proc. Design Autom. Conf.

(DAC), pages 340–345, 2009.

[XZH07] J. Xiong, V. Zolotov, and L. He. Robust extraction of spatial correla-

tion. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 26(4):619–

631, 2007.

[YTJ15] Y.-M. Yang, K. H. Tam, and I. H.-R. Jiang. Criticality-dependency-

aware timing characterization and analysis. In Proc. Design Autom. Conf.

(DAC), pages 167:1–167:6, 2015.

168

Bibliography

[YW99] J. Yen and L. Wang. Simplifying fuzzy rule-based models using orthog-

onal transformation methods. IEEE Trans. Systems, Man, and Cybernetics,

Part B, 29(1):13–24, 1999.

[YX10] F. Yuan and Q. Xu. On timing-independent false path identification. In

Proc. Int. Conf. Comput.-Aided Des. (ICCAD), pages 532–535, 2010.

[YYX11] R. Ye, F. Yuan, and Q. Xu. Online clock skew tuning for timing spec-

ulation. In Proc. Int. Conf. Comput.-Aided Des. (ICCAD), pages 442–447,

2011.

[YZLS17] B. Yigit, G. L. Zhang, B. Li, and U. Schlichtmann. Application of ma-

chine learning methods in post-silicon yield improvement. In Proc. Int.

System-on-Chip Conf. (SOCC), pages 243–248, 2017.

[ZLHS18] G. L. Zhang, B. Li, M. Hashimoto, and U. Schlichtmann. VirtualSync:

Timing optimization by sychronizing logic waves with sequential and

combinational components as delay units. In Proc. Design Autom. Conf.

(DAC), 2018.

[ZLL+18] G. L. Zhang, B. Li, J. Liu, Y. Shi, and U. Schlichtmann. Design-phase

buffer allocation for post-silicon clock binning by iterative learning.

IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 37(2):392–405,

2018.

[ZLS16a] G. L. Zhang, B. Li, and U. Schlichtmann. Sampling-based buffer in-

sertion for post-silicon yield improvement under process variability. In

Proc. Design, Autom., and Test Europe Conf. (DATE), pages 1457–1460,

2016.

[ZLS16b] G. L. Zhang, B. Li, and U. Schlichtmann. EffiTest: Efficient delay test

and statistical prediction for configuring post-silicon tunable buffers.

In Proc. Design Autom. Conf. (DAC), pages 60:1–60:6, 2016.

[ZLS16c] G. L. Zhang, B. Li, and U. Schlichtmann. PieceTimer: A holistic timing

analysis framework considering setup/hold time interdependency us-

ing a piecewise model. In Proc. Int. Conf. Comput.-Aided Des. (ICCAD),

pages 100:1–100:8, 2016.

169

Bibliography

[ZLS+18] G. L. Zhang, B. Li, Y. Shi, J. Hu, and U. Schlichtmann. EffiTest2: Effi-

cient delay test and prediction for post-silicon clock skew configuration

under process varaitions. IEEE Trans. Comput.-Aided Design Integr. Cir-

cuits Syst., 2018.

[ZLY+18] G. L. Zhang, B. Li, B. Yu, D. Z. Pan, and U. Schlichtmann. TimingCam-

ouflage: Improving circuit security against counterfeiting by uncon-

ventional timing. In Proc. Design, Autom., and Test Europe Conf. (DATE),

2018.

[ZMT+17] O. Zografos, A. D. Meester, E. Testa, M. Soeken, P. E. Gaillardon, G. D.

Micheli, L. Amarù, P. Raghavan, F. Catthoor, and R. Lauwereins. Wave

pipelining for majority-based beyond-CMOS technologies. In Proc. De-

sign, Autom., and Test Europe Conf. (DATE), pages 1306–1311, 2017.

170

	Introduction
	Contributions of This Work
	Organization of This Dissertation
	Summary

	Timing of Digital Circuits
	Sequential Circuits
	Timing of Sequential Circuits
	Timing of Flip-flop Based Circuits
	Timing of Latch Based Circuits

	Timing Optimization Methods for Sequential Circuits
	Gate Sizing
	Retiming
	Clock Skew Scheduling
	Wave-Pipelining

	Summary

	Background and Problem Description
	 Process Variations and Aging
	Sources of Process Variations
	Categories of Process Variations
	Correlation Modeling
	Circuit Aging

	Timing with Process Variations
	Traditional Corner-based Design Method in Digital Circuits
	Statistical Static Timing Analysis
	Post-Silicon Tuning to Mitigate Process Variations
	Setup Time and Hold Time Characterization in Static Timing Analysis
	The Confines of Traditional Timing Paradigms

	Summary

	Post-Silicon Tuning to Mitigate Process Variations
	Post-Silicon Tunable Buffer Insertion at the Design Phase
	Timing Constraints with Post-Silicon Tunable Buffers
	Problem Formulation of Buffer Insertion
	Sampling-based ILP Modeling between Statistical Delays and Profit
	Reducing the Number of Emulation Samples Using a Low-discrepancy Sequence
	Buffer Allocation with Prefiltering and Iterative Learning
	Reducing Buffer Area by Tuning Concentration and Grouping
	Acceleration Techniques

	Post-Silicon Tunable Buffer Configuration after Manufacturing
	Path Selection and Statistical Delay Prediction
	Path Test Multiplexing
	Test with Delay Alignment by Tuning Buffers
	Buffer Configuration with Delay Estimation
	Tuning Bounds Due to Hold Time Constraints

	Experimental Results
	Results of Post-Silicon Tunable Buffer Insertion at the Design Phase
	Results of Post-Silicon Tunable Buffer Configuration after Manufacturing

	Summary

	A Holistic Timing Analysis Framework Considering Setup/Hold Time Interdependency
	Adaptive Piecewise Polygonization of a Three-dimensional Delay Surface
	Approximating the Surface Boundary Using Triangles
	Approximating the Delay Surface Using Rectangular Polygons

	Piecewise ILP Model for Calculating the Minimum Clock Period
	Experimental Results
	Summary

	Timing Optimization by Synchronizing Logic Waves with Delay Units
	The New Timing Model
	Delay Units
	Relative Timing References
	Synchronizing Logic Waves by Delay Units

	Iterative Relaxation
	Emulation of Sequential Delay Units
	Modeling with Clock/Data-to-Q Delays of Sequential Delay Units
	Model Legalization for Timing of Sequential Delay Units
	Buffer Replacement with Sequential Units

	Experimental Results
	Summary

	Flexible Timing for Netlist Security
	Analysis of Counterfeiting of Digital Circuits
	Wave-Pipelining Paths
	Attack Techniques and Counter Measures
	Wave-Pipelining Construction
	Work Flow of Wave-Pipelining Construction
	False Path Checking
	Wave-Pipelining Path Construction

	Experimental Results
	Summary

	Conclusion
	Bibliography

