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Human-guided multi-robot cooperative manipulation
Dominik Sieber, Student Member, IEEE, and Sandra Hirche, Senior Member, IEEE

Abstract—The interaction of a human with a team of coopera-
tive robots, which collaboratively manipulate an object, poses sig-
nificant challenges for the control design. In this work we propose
a formation-based approach to map the human input to the mo-
tion of the object cooperatively manipulated by multiple manipu-
lators which feature local compliance control at the end-effector
level. The formation-based approach guarantees that the refer-
ence trajectories maintain a desired geometry with respect to each
other. Without being in touch with the object the human operator
is part of the formation and guides the robots explicitly. Here
the human can be interpreted as a leader in a leader-follower
formation with the robotic manipulators being the followers. We
analyze the system consisting of human operator and multi-robot
manipulation task in both the transient phase and the steady-state
for which we derive the equilibrium of the object pose from the
human input and show its stability. A controllability analysis
suggests that it is beneficial to make the state of the human
accessible to all manipulators in order to reduce internal stress
on the object. The proposed approach is evaluated in a full-scale
multi-robot cooperative manipulation experiment with a human.

Index Terms—Multi-robot systems, Human-robot interaction,
Human-swarm interaction, Cooperative manipulation

I. INTRODUCTION

WHILE the physical cooperation of several manipulators
to achieve a common task has received some attention

in recent years [1]–[3], the interaction between a team of physi-
cally cooperating robots and humans has been far less explored.
The employment of human-guided cooperative manipulators
covers application areas including collaborative assembly in
manufacturing, construction, logistics, and search-and-rescue.
For manipulation tasks the cooperation of two or more partners
is often crucial to enhance functionality and flexibility. This
setting of multiple robots guided by a human is particularly
attractive as the multi-robot team typically outperforms the
human at repetitive and physically exhausting tasks but not
at cognitive reasoning in unstructured environments. On the
contrary, humans are very skilled in reasoning and decision
making even in previously unknown situations. Therefore
some attention has been dedicated to problem settings where a
human acts as an operator of an automated complex system [4].
Largely unexplored question is how the human command
should be mapped into the action space of the robots in a
cooperative manipulation task which is the topic of this article.

In this article we investigate the prototypical task where a
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human operator controls a multi-robot cooperative manipulation
task. We present a control scheme for a human to guide several
robotic manipulators which cooperatively manipulate an object
to a final configuration. In a cooperative manipulation task it
is essential that there is no significant deviation of the forces
exerted on the manipulated object from the desired forces.
Model uncertainties are always present and can be considered
by rendering each manipulator compliant with an impedance
control scheme in order to avoid high internal stress acting
on the object. Particular set-points for each cooperating robot
need to be generated which respect the kinematic coordination
of the robots’ motion and the human command. We formulate
the coordination problem as a formation control framework
in which set-points are distributedly generated for the robotic
manipulators. The human operator is considered as the leader
of the formation and controls the set-points of the particular
robots with the movement of his/her hand.

The contribution of this article is a novel approach for the
human guidance of a multi-robot cooperative manipulation task.
It is based on a leader-follower formation control approach.
We discuss system equilibria and their stability and show that
the human-guided set-point generator and the impedance-based
multi-robot interaction dynamics are asymptotically stable for
a human pose command being the input. Particularly critical
for the occurrence of internal forces is also the transient
phase, where excessive forces can easily occur if the motion
transients of the individual robots do not match. We approach
this issue by a controllability analysis of the human-robot
team interaction in cooperative manipulation. In particular, we
investigate the controllable eigenmodes of the robot formation.
We show that it is beneficial in terms of the reduction of
undesired internal forces during the transient phase if every
robot has direct access to the state information of the human
leader. Based on these results we devise a control strategy for
human-controlled formations of physically cooperating robots.

A. Related work
The design of interaction mechanisms to efficiently guide

multiple robots is a very recent topic and only a limited amount
of work is available in the literature. Controlling multiple
robots is explored in multi-robot teleoperation [5] where a
group of slave robots is controlled by the human. However the
actual task of manipulating an object is only incorporated by
grasping shape function [6] without considering the interaction
dynamics. Similarly, the interaction of a human with a swarm of
robots as in [7] does not account for physical coupling among
the robotic agents. The forward mapping from human to robots
is designed to satisfy robotic state constraints where the human
influence is evaluated by a controllability analysis [8]. In case
of non-holonomic mobile robots additionally input constraints
need to be considered [9]. The responsibility of adhering to
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these input constraints is with the human: constraint violation
is signaled to the human via visuo-haptic information [10].
Common input technologies for guiding the loosely coupled
multi-robot system are mobile handhelds [11] or gesture-based
interfaces [12]. A haptic interaction method for swarms
can improve the user experience by an optimal interaction
location [13]. All these works consider the interaction of a user
with a group of robots but lack the physical coupling through
the object with state and input constraints as in cooperative
robotic manipulation [14]. Hence, it remains open whether and
how we can transfer the stability and controllability properties
to the physically cooperating manipulators.

The approaches mentioned above do not discuss a uniform
forward mapping, i.e. if the operator should directly control the
robot positions (position control) or the velocities (rate control).
We employ position control based on multi-agent formation
control. For teleoperation in robotics [15] position control
usually outperforms rate control. Furthermore, in position
control the drawbacks of differential approaches are avoided
as error accumulation [16]. Since the coordination of multiple
robots relies on the differential kinematics between object
and manipulators through the grasp matrix [17], a position
control scheme can only be applied with a proper mechanism
such as a formation-based approach with potential fields [18].
Formation control for cooperative mobile robot manipulation
is explored under the term caging for example in [19].
To compensate for formation uncertainties in cooperative
manipulation a distributed impedance-based control scheme
is employed in [20], which controls the internal forces [21].

A preliminary version of this work appeared in [22]. In this
article we provide an additional analysis of the internal forces
based on the translational and nonlinear rotational dynamics of
object and multiple robots and the 6 DoF set-point generator.
Furthermore, a weighted set-point generation is proposed which
avoids undesired forces and the system stability is shown.

The remainder of this article is organized as follows. Sec-
tion II describes formally the dynamical system of physically
cooperating robots. In Section IV the resulting internal stress
in a formation-based set-point generator is discussed. Stability
is analyzed in Section III and controllability is discussed in
Section V. The experimental evaluation is presented in VI.

II. COOPERATIVE MANIPULATION TASK

In this work we consider a human-robot interaction task
where multiple manipulators rigidly grasp an object. The rigidly
grasped object is effortlessly manipulated by a single human
through the movement of his/her hand by guiding the set-points
of the cooperating robots. The general setup with physically
cooperating manipulators is depicted in Fig. 1. The objective
of the human is to guide a cooperatively manipulated object
starting from an initial configuration to a goal configuration.
In this setup autonomous functionalities such as avoidance of
excessive forces on the object or obstacle avoidance are required
to be masked from the human operator. To achieve this we
employ an interaction mechanism which establishes a formation
to generate the individual desired robot trajectories such that
all robots move in compliance with the object geometry and
only the desired force are exerted on the manipulated object

by the manipulators. For the description of the overall system
dynamics, a virtual coordinate system is attached to each end-
effector denoted by Σi and to the manipulated object denoted by
Σo. For the sake of exposition let the coordinate systems Σi and
Σo be aligned in the world frame Σw as Ri

o = I3, where Ri
o is a

rotation matrix from end-effector frame Σi to object frame Σo.

Σw

ξ 1

ξ 2

ξ 3

ξ o

r1

r2

r3

M3,D3,K3

M1,D1,K1

M2,D2,K2

uh

d1h d3h

Fig. 1. Three impedance controlled manipulators are rigidly connected to the
object. To control the desired internal forces acting on the object the set-points
of the mass-spring-damper systems are driven by a formation-based control
approach.

A. Manipulator and object dynamcics
The equations of motion of the manipulated object and of

the impedance-controlled robotic manipulators are outlined
in this section. In order to allow minor deviations of the
desired position trajectories from the constraints, which can
result e.g. from model and geometric uncertainties or external
disturbances, we employ a impedance control scheme for
each of the N manipulators here. The Cartesian impedance
control [23] for each manipulator is described as

Miv̇i +Divi +hK
i (ξ i,ξ

d
i ) = hi−hd

i (1)

where ξ i = [pᵀi ,q
ᵀ
i ] denotes the pose and hi = [ f ᵀi , t

ᵀ
i ]
ᵀ ∈ R3

is the applied wrench to the i-th manipulator. Here, the pose
is split into the end-effector position pi ∈ R3 describing the
translational part and the unit quaternion qi = (ηi,ε i)

ᵀ ∈ SO(3)
describing the rotational part where ηi ∈ R is the real part
and ε i ∈ R3 is the imaginary part. Throughout this article
all quaternions qi are unit quaternions i.e. qi

ᵀqi = 1. In line
with the literature the twist vi is defined by the end-effector’s
translational and angular velocity as vi =

[
ṗᵀi ,ω

ᵀ
i

]ᵀ ∈ R6 . A
proper conversion between the time derivative of the robot
state ξ̇ i and the twist vi is given by

vi =

[
I3 0
0 2U(qi)

ᵀ

]
ξ̇ i, (2)

where the conversion can be compactly written with the help
of an aid matrix U(qi) ∈ R4×3 defined as

U(qi) =

(
−ε i

ᵀ

ηiI3 +S(ε i)

)
. (3)

Here, the operator S(·) is the skew-symmetric matrix operator
defining the cross product, i.e. S(a)b = a×b. For unit quater-
nions the aid matrix U(qi) features the following identities
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U(qi)U(qi)
ᵀ = I4−qiqi

ᵀ and (4a)
U(qi)

ᵀqi = 0. (4b)

The wrench hi is split into forces and torques f i, t i ∈ R3.
Furthermore, the desired manipulator pose is represented by
ξ

d
i = [pd

i ,q
d
i ] and the desired wrench by hd

i . Here, pd
i ∈

R3 is the desired position and qd
i =

[
ηd

i ,ε
d
i
]
∈ S3 is the

desired orientation where νd
i is the scalar part and εd

i is
the vector part of the quaternion. The compliance is rep-
resented by Mi = diag(miI3,µiI3),Di = diag(diI3,δiI3),Ki =
diag(kiI3,κiI3) ∈ R6×6 which are the positive definite mass,
damping, and stiffness matrices, respectively. The translational
behavior is determined by scalar values mi,di,ki ∈R+ rendering
an isotropic translational behavior. The rotational behavior is
specified by the scalar parameters µi,τi,κi ∈ R+. A stiffness
in six degrees-of-freedom is given by

hK
i (ξ i,ξ

d
i ) =

[
f K

i
tκ
i

]
=

[
ki(pi− pd

i )
2κiU(qi)

ᵀ(qi−qd
i )

]
, (5)

where the force f K
i is defined as the product between the

translational error and the corresponding stiffness value ki. The
rotational error between the current and the desired orientation
is defined as the imaginary part of the quaternion product qi ·
(qd

i )
−1 and can be expressed with (3) as U(qi)

ᵀ(qi−qd
i ). The

applied torque tκ
i is the product between rotational error and the

stiffness value κi. In case of a free-space motion, i.e. hi = 0 and
no desired wrench hd

i = 0, it is straightforward using Lyapunov
theory [24] to show that the set-point converges as

lim
t→∞

ξ i = ξ
d
i . (6)

Note that the robotic manipulators can still have different
dynamics and hardware restrictions. By designing appropriate
nonlinear feedback control law similar to [23] the apparent dy-
namics of the robot can be expressed as (1). Hence, the applied
wrench to the environment, that is in our case the object, does
not explicitly depend on different robot dynamics but it does
only depend on the tuneable impedance parameters Mi,Di,Ki.
For simplicity of exposition we want to avoid effects which
arise from heterogenous or non-isotropic impedance parameters.

Assumption 1: The impedance parameters are isotropic in
all dimensions and for all manipulators, i.e. m = mi,d = di,k =
ki,µ = µi,δ = δi,κ = κi∀i

The equation of motion of the object is given by

Mov̇o +

[
0 0
0 S(ωo)Jo

]
vo +

[
−mog

0

]
= ho, (7)

where ho is the effective wrench acting on the object resulting
from the interaction with in our case the manipulators or
generally the environment. Mo = diag(moI3,Jo) and mo ∈ R+

is the mass and Jo ∈ R3×3 is the inertia of the object. The
gravity vector is denoted by g. Furthermore, ξ o =

[
pᵀo ,q

ᵀ
o
]

and
vo =

[
ṗᵀo ,ω

ᵀ
o
]ᵀ is the object pose and twist, respectively. For

illustration we build up simple examples for the setup which
is employed in the experiments.

Example 1: Let us consider robot dynamics (1) along one
translational dimension. We choose the scalar damping to be

di = 120, the stiffness to be ki = 160, the mass to be mi = 10,
and f d

i = 0 yielding

10 p̈i +120ṗi +160pi = 160pd
i + fi. (8)

The initial position is pi(t0) = 0 and at t = 1s the desired
position pd

i of each robot is set to 1. Between t = 5s and t = 7s
an external force fi = −20N acts on the manipulator which
causes a deviation of the robot trajectory from the desired
position pd

i as depicted in Fig. 2.

0 2 4 6 8 10
0

0.2
0.4
0.6
0.8

1

External force fi =−20N

t[s]

x[
m

] pi

pd
i

Fig. 2. Robot trajectories pi resulting from step response at t = 1s. Deviation
of the trajectory from the desired position results from an external force
fi =−20N between t = 5s and t = 7s .

B. Kinematic constraints in cooperative manipulation
In a cooperative manipulation task as depicted in Fig. 1 the

object and manipulators cannot move independently of each
other, i.e. all motions are coupled and there are constraints
between the motion of the object and of the manipulators which
are now presented. We consider a cooperative manipulation
task where the manipulated object is rigid and the robotic
end-effectors are rigidly connected to the object. Due to that
we can express the position pi of the ith robot as a function
of the distance to the object center and the quaternion qi as

ξ i =

[
pi
qi

]
=

[
po + ri

qo

]
(9)

where the displacement ri = Ro(qo)
ori indicates the relative

displacement between the object frame and the end-effector
frame and Ro(qo) ∈ R3×3 is a rotation matrix from world
frame to object frame. Rigidly connected end-effectors yield a
constant displacement in the object frame as ori = const.

Assumption 2: We assume the object frame Σo is in the
geometric center of all manipulator frames Σi.
This assumption does not pose any restriction and is merely for
the convenience of representation as it implies the following
equality condition for the relative displacements

∑
i

ori = ∑
i

ri = 0. (10)

The constraints of a cooperation manipulation task (9) are
differentiated w.r.t. time as

vi =

[
ṗi
ω i

]
=

[
ṗo +S(ri)

ᵀωo
ωo

]
= Gi(ri)

ᵀvo, (11)

v̇i =

[
p̈i
ω̇ i

]
=

[
p̈o +S(ri)

ᵀωo +S(ωo)
2ri

ω̇o

]
, (12)

where the matrix Gi(ri) ∈ R6×6 is a submatrix of the grasp
matrix G ∈ R6×6N which is defined by

G = [G1,G2, . . . ,GN ] where Gi =

[
I3 0

S(ri) I3

]
. (13)
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We are now ready to compactly rewrite the constrained
acceleration condition (12) for all manipulators i as

A
[

v̇o
v̇

]
= b, (14)

where v̇ =
[
v̇ᵀ1 , . . . , v̇

ᵀ
N

]ᵀ ∈ R6N are the concatenated accel-
erations of the manipulator states. The constraint matrix
A ∈ R6N×6(N+1) and the centripetal terms b ∈ R6N are then

A =
[
−Gᵀ I6N

]
and b =


S(ωo)

2r1
0
·

S(ωo)
2rN

0

 , (15)

which represents the constraints of object and manipulators.

C. Constrained dynamics of multiple manipulators and object
So far the dynamics of object and manipulators are con-

sidered separately in Sec. II-C and are linked together by
the constraints of cooperative manipulation in Sec. II-B. In
this section both dynamics (1), (7) and constraints (14) are
combined into a single dynamical system by deriving a joint
system model of object and impedance controlled manipulators
which is driven by distributed set-points. The inputs of
the manipulators dynamics (1) and the object dynamics (7),
respectively and are given by

hΣ
o =−

[
0 0
0 S(ωo)Jo

]
vo−

[
−mog

0

]
and (16)

hΣ
i =−Divi−hK

i (ξ i,ξ
d
i )−hd

i . (17)

By applying the Gauss’ principle of least constraint for
the constrained motion of multiple dynamics [25] a linear
projection indicates to what extent the particular input wrenches
hΣ =

[
hΣ

1 , . . . ,h
Σ
N
]
∈ R6N and hΣ

o ∈ R6 of the dynamics (1)
and (7) satisfy the constraint (14):[

ho
h

]
= Aᵀ (AM̄−1Aᵀ)−1

(
b−AM̄−1

[
hΣ

o
hΣ

])
, (18)

where M̄ = diag(Mo,M1, . . . ,MN) is a block-diagonal matrix
of all mass matrices. Let now be M = diag(M1, . . . ,MN). By
employing (15) into (18) the interaction wrench ho of the object
is given by

ho =−GQGᵀM−1
o hΣ

o +GQM−1hΣ−GQb, (19)

where we additionally introduce the auxiliary matrix Q =
(M−1 + GᵀM−1

o G)−1 for reasons of better readability. We
are now ready to model the system dynamics of multiple
manipulators and object by replacing ho and hΣ

o in (7):

Mov̇o = (I6−GQGᵀM−1
o )hΣ

o +GQM−1hΣ−GQb. (20)

After application of Woodbury and Searle matrix identities the
object dynamics (20) can be expressed as

(Mo +∑GiMiG
ᵀ
i )v̇o = hΣ

o +∑
i

GihΣ
i −GMb. (21)

Finally, we substitute (15), (16), and (17) in (21). Here, we
set ∑i Gihd

i = [−mogᵀ,0ᵀ]ᵀ to account for the object’s gravity
force and the overall dynamics is given by

M v̇o +Dvo +Covo +Koξ o = ∑
i

Kiξ
d
i + h̃o, (22)

where h̃o is an external disturbance and the apparent inertia M ,
damping D , coriolis-centripetal matrix Co, and the stiffness
Ko,Ki result in

M =

[
(mo +∑mi)I3 0

0 Jo +∑ µiI3 +miS(ri)S(ri)
ᵀ

]
,

D =

[
∑i diI3 0

0 ∑δi +diS(ri)S(ri)
ᵀ

]
,

Co =

[
0 ∑miS(ωo)S(ri)

ᵀ

0 S(ωo)Jo +∑miS(ri)S(ωo)S(ri)
ᵀ

]
,

Ko =

[
∑i kiI3 0

0 ∑i κiU(qo)
ᵀ

]
and

Ki =

[
kiI3 0

kiS(ri) κiU(qo)
ᵀ

]
.

Here, the off-diagonal entries ∑miS(ri)
ᵀ,∑miS(ri) in M ,

∑i diS(ri),∑diS(ri)
ᵀ in D , and kiS(ri)

ᵀ in Ko vanish due to
Assumptions 1 and 2. For a more detailed derivation and analy-
sis of this interaction model the reader is referred to [14]. Note
that for the equation of motion (22) we obtain a centralized
equation of motion for ξ o which is driven by decentralized
set-point inputs Kiξ

d
i from each attached manipulator.

D. Internal force as formation-maintaining forces
The manipulators and the object are physically coupled. At

the same time however, the desired pose for the manipulators
can be set independently of each other. These reference
inputs may violate the kinematic constraints and result in
internal forces which do not induce a motion of object
and manipulators. Internal forces can be interpreted as
formation-maintaining forces. We derive the formulation for
internal forces by shifting the reference into one particular
agent i, denoted by pi, which is the reference for all the
others, denoted by p j. Employing (9) between any pair i and
j the desired displacement di j is given by

pi− p j = di j = ri− r j, (23)

for which the rotation of the object Ro(qo) is required in the
world frame. The rotational constraint between two frames i
and j can be expressed using quaternion formalism as follows

qi = q j. (24)

For the sake of exposition let now be i = 1 and j = 2, . . . ,N.
Derivating (23) and (24) twice w.r.t time yields a modified
constraint matrix

Ā =
[
−Gᵀ(d1) I6(N−1)

]
and b̄ =


S(ωo)

2d12
0
...

S(ωo)
2d1N

0

 ,
where d1 = [d12, . . . ,d1N ]. An explicit solution for the internal
force hint is given by [14]

hint = M
1
2 (ĀM−

1
2 )†(b̄− ĀM−1hΣ). (25)

Note here that the desired set-points need to be generated for
each physically cooperating robot. Hence, decentralized inputs
ξ

d
i can cause an violation of the constraint (23) and (24) and

can thus result in an internal force.
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Remark 1: Note that isotropic and homogenous impedance
parameters do not result in internal forces from the system
dynamics. In fact, it is straightforward to show with (25) that
the system dynamics do not induce an internal force if the
natural frequency ωi =

√
ki
mi

and the damping ratio ζi =
di

2
√

kimi
are equal for each robot, i.e. ωi = ω j,ζi = ζ j,∀(i, j). Other
parametrisation result in undesired internal forces during the
transient phase which is excluded here by Assumption 1.

In this work we set the desired internal force to zero in order
to simplify the argumentation. However, the principle approach
also holds for non-zero internal force. At this stage we are inter-
ested how the set-points ξ

d need to be generated by a formation-
based approach such that there is no internal force hint = 0.

Hence, we neglect the effect of the desired forces and
the motion, i.e. hd

i = vi = v0 = 0. Consequently, b = 0 and
the internal forces hint (25) generated by distributed set-
points (5) are given by

hint = M
1
2 (ĀM−

1
2 )†ĀM−1


k(p1− pd

1)
−2κU(q1)

ᵀqd
1

...
k(pN − pd

N)
−2κU(qN)

ᵀqd
N

 . (26)

Evaluating exemplarily the first equations of ĀM−1hΣ in (26)
yields

f int
1 =−k(p1− pd

1)−S(d12)2κU(q1)
ᵀqd

1 + k(p2− pd
2)

τ
int
1 = 2κU(q1)

ᵀqd
1−2κU(q2)

ᵀqd
2 .

Since U(q1)
ᵀ = U(q2)

ᵀ due to (24) it is obvious that the
internal torque τ int

1 = 0 only if the rotations match qd
1 = qd

2 . For
the internal force we have f int

1 = 0 if the current orientation q1
matches the desired one as q1 = qd

1 and if pd
1− pd

2 = d12. For
the latter result we employed (23) for the current set-points
p1, p2. This result also holds for any manipulator pair i and j.
In conclusion the desired property of the trajectory generator
is to always satisfy the constraints (23) and (24) concerning
the manipulator positions pi, p j and orientations qi,q j also for
the desired set-point pair pd

i , pd
j and qd

i ,q
d
j as follows

pd
i − pd

j = di j. (27)

qd
i = qd

j . (28)

A special case is present when only translational motions are
considered and the constraint matrix is then given by

¯̄A =
[

1 I3(N−1)
]
. (29)

Under Assumption 1 a more specific result for the internal
forces (25) is given by

f int = (
√

m)2 ¯̄A† ¯̄A
1
m

k(p− pd) = k ¯̄A† ¯̄Ae, (30)

where e = p − pd , p = [p1
ᵀ, . . . , pN

ᵀ]ᵀ ∈ R3N , and pd =
[pd

1
ᵀ
, . . . , pd

N
ᵀ
]ᵀ ∈ R3N . Furthermore, ¯̄A† ¯̄A ∈ R3N×3N reads as

¯̄A† ¯̄A = IN−
1
N

11ᵀ. (31)

By employing the average of the particular state ē =
1
N [∑ei

ᵀ,∑ei
ᵀ, . . . ,∑ei

ᵀ]ᵀ we can simplify (30) as

f int = k(e− ē). (32)

The interpretation of (32) is that an internal force, f int 6= 0,
acts on the object if the particular robot inputs e are not equal
to the averaged system input ē: e 6= ē. As a result an internal
force f int 6= 0 acts on the object. Hence, to avoid an internal
force, f int = 0, all inputs e need to be equal: ei = e j =

1
N ∑ei.

We now want to illustrate the occurrence of internal forces
based on the previous example.

Example 2: We continue here with the previously defined
Example 1. An object is manipulated by three manipulators
whose dynamics are defined in (8). The mass of object is
mo = 1 and the initial position is po(t0) = 0. The particular
manipulator dynamics (8) yield an overall dynamics given by

31p̈o +360ṗo +480po =
3

∑
i=1

160pd
i + f̃o. (33)

At t = 1s the set-points are driven from pd = [0,0,0]ᵀ to pd =
[0.9,1,1.1]ᵀ. The motion of the object follows the desired
position 0 to p̄d = 1, yet there is an internal force (32) as acting
on the object as depicted in Fig 3. The reason for the internal
force is a deviation of the particular desired positions pd

1 , pd
3

from pd
2 without satisfying the object geometry.

0 2 4 6 8 10
0

0.5

1

x[
m

]

po pd
1 pd

3 pd
2

0 2 4 6 8 10

−10
0

10

t[s]

F[
N

]

f int
1 f int

2 f int
3

Fig. 3. Object trajectory po resulting from distributed robot set-points
pd

1 , pd
3 , pd

2 . Deviation of the set-points results in an internal force f int
i 6= 0.

After discussing internal forces in cooperative manipulation,
we present a set-point generator to avoid internal forces.

E. General set-point generator to satisfy kinematic constraints
The motion and accordingly the desired poses ξ

d
i =

[pd
i
ᵀ,qd

i
ᵀ]ᵀ for each manipulator need to be in compliance with

the object geometry to avoid internal forces as discussed before.
We now present a uniform approach with which suitable set-
points can be generated based on a formation control approach.
We consider the desired position pd

i and the desired orientation
qd

i for the ith end-effector being the state of a formation control
approach which evolves according to

ṗd
i = ui, (34)

q̇d
i =

1
2

U(qd
i )ω i, (35)

where ui ∈R3 is the translational system input. Here, 1
2U(qd

i )ω i
is the quaternion propagation as e.g. defined in [26] where the
angular input is given by ω i. Note here that during translational
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Human Set-point generator Multi-robot dynamics

uh

ξ d
N

ξ d
1

ξo...
Eq. (47)

Eq. (47)

Eq. (22)

Fig. 4. General control approach for the cooperative manipulation task guided
by the human input uh. The human input uh clearly determines the desired
poses ξ

d of impedance-controlled manipulators and influences the actual pose
ξo of the cooperatively manipulated object.

motions of each manipulator, the dynamics ṗd
i,k = ui,k for each

translational degree of freedom k ∈ {1,2,3} are decoupled.
Using (27) a translational error for the set-point of the ith
manipulator w.r.t the jth manipulator is defined as

ep
i j = pd

i − pd
j −di j. (36)

This formation is presented by a desired displacement di j =
[di j,1,di j,2,di j,3] among the cooperating manipulators i and
j, which needs to be established and maintained throughout
the complete task execution. Furthermore, the desired displace-
ments di j have to be chosen to be realizable [27], i.e. there exist
a pd∗ = [pd

1
∗
, . . . , pd

N
∗
] ∈ R3N such that p∗i − p∗j = di j, ∀(i, j).

Note that the displacements are realizable when choosing
them according to (27). Likewise the translational error (36) a
suitable orientation error for the unit quaternion representing
the ith manipulator is given by

eo
i j = η

d
j ε

d
i −η

d
i ε

d
j − ε

d
i × ε

d
j =−U(qd

i )
ᵀqd

j . (37)

To minimize the translational error ep
i j and the rotational error

eo
i j which is present between set-point i and any neighbor j

we choose the input ui of the translational movements to be
ui = ∑

j∈Ni

ep
i j and the input ω i of the rotational movements to

be ω i = ∑
j∈Ni

eo
i j Hence, a 6 DoF set-point generator is given by

ṗd
i =− ∑

j∈Ni

ep
i j +S(τ i)eo

i j, (38)

q̇d
i =− ∑

j∈Ni

1
2

U(qd
i )e

o
i j, (39)

where S(τ i)eo
i j is the radial motion which is present for two set-

points on a rigid body during a rotational motion. Note here that
the displacement vector τ i determines the center of rotation. The
desired displacement di j between i and j is transformed in the
frame Σo as defined in (23). Ni describes the neighbors of agent
i. In the following the set of neighborhood sets {N1, . . . ,NN} is
called interaction topology. Note that from a formation-control
perspective, this approach is characterized as a displacement-
based control approach [28] where the particular robots have
to communicate the relative positions to their neighbors. Under
the control law (38) the desired robot position converge to
the desired formation if the underlying interaction topology
resulting from the Nis is connected or if there exists a spanning
tree [28] which we address in the following assumption.

Assumption 3: The interaction graph describing the interac-
tion topology is undirected and connected.

Note here that the dynamical system (39) which determines
the desired rotation q̇d

i only depends on the rotational error
eo

i j. The dynamics of the translational set-point ṗd
i depend

on the translational error ep
i j itself but additionally they are

influenced by the rotational part eo
i j due to the radial motion

of the physically connected robots. Furthermore, we point out
at this stage that the dynamics (38) and (39) do not guarantee
collision avoidance [28] of the desired set-points among the
manipulators. This is acceptable as a collision of two set-points
results in no actual collision of the manipulators due to the rigid
grasp. However, it violates the constraint (27) and therefore
results in a corresponding internal force.

F. Compact formulation of human guidance

The objective of this work is to let the human operator
to manipulate the object by being an active member of the
formation without being physically in touch with the object
as depicted in Fig. 1. Due to the generality of the formation-
based approach the human operator can be easily integrated
into the formation-based set-point generator as leading agent.
To achieve this the desired displacements dih between the
human and particular robots i have to be defined such that the
virtual formation remains realizable. Therefore, the Cartesian
pose uh =

[
xᵀh ,q

ᵀ
h

]ᵀ ∈R7 of the human is required in the world
frame Σw. In our task xh is the position and qh is the orientation
of the human hand which can e.g. be sensed by the robots.

Remark 2: In this work we focus on a direct and explicit
interaction method where a human operator controls the robots
non-physically by hand motion. Here, the hand motion is
only one possible option for a direct interaction method.
Alternatively, the command can be specified remotely by
an appropriate input device as e.g. presented in [11]. The
remaining results of this article still hold for such cases.
For a compact formulation of the human-guided set-point
system model we transform the distributed set-points pd

i into a
particular reference. We choose this reference to be the center
of rotation and transform the ith robot state as

xi =

[
xp

i
xq

i

]
=

[
pd

i − τ i
qd

i

]
, (40)

where τ i is a displacement vector which satisfies di j = τ i− τ j.
For the sake of exposition we choose the constant displacement
of the human input used in the transformation (40) to be τh = 0
which makes the human hand to be the center of rotation and

τ i = dih. (41)

Remark 3: The strength of the human is to know the high-
level task of indicating the object pose while the physical
manipulation task is performed by multiple robots. If the human
interfaces the robots through another device as discussed in
Remark 2 it might be beneficial to change the center of rotation
to be e.g. the center of mass, i.e. τ i = ri.
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Hence, differentiating (40) w.r.t time yields the dynamics of
set-point generator given by

ẋi =

[
ṗd

i − τ̇ i
q̇d

i

]
=

 − ∑
j∈Ni

ep
i j +S(τ i)eo

i j−S(ω i)τ i

− ∑
j∈Ni

1
2U(qd

i )e
o
i j


=

 − ∑
j∈Ni

ep
i j

− ∑
j∈Ni

1
2U(qd

i )e
o
i j

 , (42)

where the rotational error − ∑
j∈Ni

S(τ i)eo
i j and the time-

derivative of the displacement vector −S(ω i)τ i cancel
out as ω i = ∑

j∈Ni

eo
i j and S(ω i)τ i = −S(τ i)ω i. Hence, the

transformation results in a decoupling of the translational
motion from the rotational one. Since ep

i j =(pd
i −τ i)−(pd

j−τ j)

and eo
i j = U(qd

i )
ᵀ(qd

i − qd
j ) the dynamics (42) constitute a

consensus protocol for the translational and rotational
set-points. With the transformation (40) the constraints (23)
and (24) for the desired set-points pd and qd are given by

xi = x j, (43)

which defines the transformed kinematic constraints.

G. Human operator to guide multiple robots as leader
For the sake of readability we reformulate the proposed

formation-based set-point generator interfaced by a human
operator in a more compact fashion so that the later performed
stability and controllability analysis is done more conveniently.
The reformulation is done without any modification or adap-
tation to the approach. Partially following the argumentation
in [29], we can compactly rewrite (42) using (4b) and (37). By
doing so the human-extended dynamical system which involves
the input of the human is given by

˙̄x =−
[

L̄⊗ I3 0
0 1

2 Ū (xq,qh)(L̄⊗ I4)

]
x̄ (44)

where L̄ is the human-extended Laplacian matrix which can
be decomposed as

L̄ =−

[
Afms bfms

bᵀfms γ

]
, (45)

and x̄ =
[
xpᵀ,xᵀh ,x

qᵀ,qᵀh
]ᵀ ∈ R7(N+1) is the concatenated pose

and xp =
[
xp

1
ᵀ
, . . . ,xp

N
ᵀ]ᵀ ∈R3N and xq =

[
xq

1
ᵀ
, . . . ,xq

N
ᵀ]ᵀ ∈R4N

is the concatenated position and quaternion vector. The
matrix L̄ ∈ RN×N is the graph Laplacian. Furthermore, the
matrix Ū (xq,qh)∈R4N×4N is defined as Ū (xq,qh)= diag(I4−
xq

1xq
1
ᵀ
, . . . , I4−qhqh

ᵀ).
Here, Afms is the principal submatrix of L̄ and reflects the

influence of the cooperating robots on each other. Accordingly,
bfms ∈ RN represents the influence of the human leader
on the team of robots. Similar to [8], Afms ∈ RN×N and
bfms ∈ RN are the system and input matrices of the controlled
consensus problem resulting from the graph Laplacian. It is
generally known that 0 is an eigenvalue of L belonging to the
eigenvector 1 [30]. Due to the decomposition (45) a relationship
between Afms and bfms is then given by

Afms1 =−bfms. (46)

Here, −L is known to be symmetric and negative semi-definite.
Due to Cauchy’s interlacing theorem, Afms is then negative
definite, i.e. all eigenvalues are negative [31]. Both Afms
and bfms result from the neighborhood topology of the
formation control law. More precisely, bfms contains entries
with 1 and 0, where a 1-entry at the kth position indicates that
the kth robot is a neighbor of the human. So bfms is the direct
representation of Nh as a vector as the k-entry of bfms is 1
if k ∈ Nh. Hence, the desired position xk of the kth robot is
directly influenced by uh. We assume the following for bfms.

Assumption 4: The vector bfms 6= 0 i.e. at least one robotic
manipulators has access to the human’s input uh.

Yet as there is no direct physical contact between the human
and the robot team, the human only imposes movements on
the robot-formation by his/her arm movement. From a control
theoretic perspective the human has only a directed influence on
the states of the robot team. The opposite direction is not true
as the team of cooperating robots has no direct influence on the
human operator. Due to that the dynamics of the human motion
(44) represented by ẋh = (bᵀfms⊗ I3)xp +(γ ⊗ I3)xh and q̇h =
1
2U (qh)(b

ᵀ
fms⊗ I4)qd + 1

2U (qh)(γ ⊗ I4)qh must be neglected.
We obtain the leader-follower dynamics describing the human-
to-robots interaction. The dynamical system representing the
human influence on the set-points is given by

ẋp = (Afms⊗ I3)xp +(bfms⊗ I3)xh (47a)

ẋq =
1
2
U (xq)((Afms⊗ I4)xq +(bfms⊗ I4)qh), (47b)

where U (xq) is defined similar to Ū (xq,qh) and can be sim-
plified using (4a) as U (xq) = diag(I4−xq

1xq
1
ᵀ
, . . . , I4−xq

Nxq
N
ᵀ
).

Remark 4: Some readers might now wonder what the advan-
tage of using the dynamics (47) for generating the set-points
pd

i = xp+dih and qd
i = xq

i over using the differential kinematics
vd

i = Gi(dih)
ᵀvh described by the grasp matrix in (11) is, where

vh is the time-derivative of uh. Note here that dih represents
the measured grasp geometry. Any error in dih accumulates
over time in pd

i as the time-integral of vd
i = Gi(dih)

ᵀvh. Hence,
internal forces (32) increase unboundedly. In the presented
formation-based approach the grasp geometry is decomposed
from the dynamics as a constant offset in (40) yielding a
constant internal force.
For illustration we present an example now.

Example 3: Assume now three equal robots defined in
Example 1 and 2. For this example we have N1 = {2,3,h},
N2 = {1,3}, N3 = {1,2,h}, and Nh = {1,3}. The set-points
x1,x2,x3 are generated by (47) which yields

ẋ =

 −3 1 1
1 −2 1
1 1 −3

 x1
x2
x3

+

 1
0
1

xh. (48)

At this point we are ready to convey the main message of
this section depicted in Fig. 4 by linking the concepts and
equations introduced throughout this section with the high
conceptual level from the beginning. By moving his/her arm
the human operator produces an input uh which corresponds e.g.
to the pose of his/her palm. The human input uh is measured
externally and communicated to the robots. Based on uh the
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set-points ξ
d are computed by (47) in accordance with the set

points of the other robots. The robots share their set-points over
network. The particular set-points ξ

d
i of the concatenated vector

ξ
d induce a motion ξ i of the locally impedance-controlled

manipulators (1). Since the manipulators rigidly grasp the
object, the constraints (9) hold and a motion ξ o is also induced
on the object (7). By using Gauss’ principle of least constraint
the object motion ξ o, which is induced by the set-points ξ

d
i ,

is characterized by the dynamics (22).

III. STABILITY

In this work we investigate the Lyapunov stability of the
overall system from a constant human input uh to the output of
the multi-robot cooperative manipulation task ξ o. The equilibria
of (47) and (22) are discussed separately since the equilibria of
the human-guided set-point generator (47) and their stability are
independent of (22). By doing so we can directly observe if the
equilibria are in line with the constraints in a cooperative manip-
ulation task. The equilibria of the impedance-based multi-robot
dynamics (22) and their stability are then discussed both gener-
ally for any set-points and then in particular for the set-points
equilibria generated by the human input in (47). Consequently,
the separate equilibria discussion does not only produces a
more intelligible result but also provides us with more insights.

A. Equilibria and stability of the set-point generation
Given a specific human input uh we are at first interested

what the resultant desired set-points ξ
d are. In other words

we are ready to derive the equilibiria of the set-point
generator (47) and their stability properties. The stability of
the set-point generator (47) for a constant human input uh is
analyzed in this section. Please note here at this stage that
due to the use of quaternions qd

i = qh and qd
i =−qh stands for

the same physical rotation. Hence, there are exist two possible
equilibria for the set-point generator which is formally stated
in Proposition 1. In Proposition 2 we subsequently show that
qd

i = qh is the only stable equilibrium.
Proposition 1: Under Assumptions 3 and 4 the human-

guided set-point generator (47) has the following two equilibria
for all robotic manipulator i

ξ
d
i =

(
pd

i
qd

i

)
=

(
xh +dih

qh

)
and (49)

ξ
d
i =

(
pd

i
qd

i

)
=

(
xh +dih
−qh

)
. (50)

Proof: The equilibria of (47) are determined by ẋp = 0
and ẋq = 0. We start with the set-point generator for the desired
robot orientations (47b) here as

0 =
1
2
U (xq)((Afms⊗ I4)xq +(bfms⊗ I4)qh) , (51)

where we substitute (46) for bfms and employ (Afms1⊗ I4) =
(Afms⊗ I4)(1⊗1) to rewrite (51) as

0 =
1
2
U (xq)(Afms⊗ I4)(xq− (1⊗qh)) . (52)

It is obvious that the trivial solution qd = (1⊗ qh) satisfies
(52). Note here that (Afms⊗ I4) is full-rank and the Afms matrix

has only integer entries. Hence, a solution of (52) can also lie
in the null-space of the matrix U (xq) which is given by (4b).
Due to that and the fact that the null-space must be an integer
combination of xq

i and qh the solution of (52) is xq
i = ±qh.

Consequently, we obtain the equilibria of the translational set-
point generator (47a) by setting ẋp = 0 as 0 = (Afms⊗ I3)xp +
(bfms⊗ I3)xh and the equilibria of (47a) are

xp = (−A−1
fmsbfms⊗ I3)xh = 1⊗ xh, (53)

where we use (40) and (41) to see that

pd
i = xh +dih, (54)

which concludes our proof.
We now define a set of manipulator set-points which only

excludes the equilibrium (50) given by

Ωfms = {ξ d
i =

(
pd

i
qd

i

)
|pd

i ∈ R3,qd
i ∈ SO(3)∩qd

i 6=−qh}

We are now ready to state the stability of the set-point generator.
Proposition 2: Let Assumptions 3 and 4 hold and let the

initial states ξ
d
i (to) ∈Ωfms. Then the equilibrium (49) of the

set-point generator (47) is asymptotically stable.
Proof: To show stability of set-point generator (47) we

employ the following Lyapunov function candidate

Vfms =
1
2

x̄ᵀ(L̄⊗ I7)x̄ (55)

where the human-extended Laplacian matrix L̄ is defined in (45).
Note here that Vfms is positive definite and radially unbounded
with respect to xi− x j and xi− uh for all i ∈ N and j ∈ Ni.
Using the fact that u̇h = 0 the time-derivative of V is given by

V̇ fms = x̄ᵀ(L̄⊗ I7) ˙̄x

=
[
xpᵀ,xᵀh

]
(L̄⊗ I3)

[
˙̄xp

0

]
+
[
xqᵀ,qᵀh

]
(L̄⊗ I4)

[
˙̄xq

0

]
=−ẋpᵀẋp− ẋqᵀẋq ≤ 0, (56)

where we employ (45) for the human-extended Laplacian L̄.
Referring to Proposition 1 the set-point generator has two
possible equilibria given by (49) and (50). Using (55) it is
shown that the equilibrium (49) represents the minimum energy
and any perturbation from (49) drives the system to (49). The
proof is concluded by stating that ξ

d
i (t) is bounded and the

equilibrium (49) is the only point in Ωfms where V̇fms = 0.
Hence, due to LaSalles invariance principle Ωfms is the region
of attraction in which the equilibrium (49) is asymptotically
stable. Hence, (50) is unstable.

B. Equilibria and stability of the interaction dynamics
Given distributed manipulator set-points ξ

d we are now
interested in the resultant object pose ξ o which are the
equilibria of the interaction dynamics (22) and their stability
properties. The stability of the impedance-based interaction
dynamics (22) is analyzed by first deriving the equilibria.
We conclude this section by showing asymptotic stability of
the interaction dynamics (22) under the proposed set-point
generator (47) . Yet before stating the equilibria of (22) we
outline the potential solutions of a quaternion error given by

U(qi)
ᵀq j = eo

i j, (57)
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where qi and eo
i j are known and q j is unknown. The solution

q j = q∗j is given by

q∗j = q̄ j +αqi, (58)

where q̄ j is any solution of the underdetermined system of linear
equations (57). In general there are infinitely many solutions.
Yet the solution q∗j must be a unit quaternion. Then, the scalar
weight α is given by

α =−qᵀi q̄ j±
√

qᵀi q̄ jq
ᵀ
i q̄ j +(1− q̄ᵀj q̄ j). (59)

Hence, the solution set of (57) denoted by q∗j consists of two
unit quaternions.

Proposition 3: Let Assumptions 1 and 2 hold. Then the
impedance-based multi-robot dynamics (22) have the equilibria(

vᵀo , pᵀo ,q
ᵀ
o
)ᵀ

=
(

0, 1
N ∑i pd

i
ᵀ
+ 1

Nk f̃ ᵀo ,q
∗
o
ᵀ
)ᵀ

, (60)

where qo = q∗o is a unit quaternion which solves

U(∑
i

qd
i )

ᵀqo =
1
κi

τ̃o +
ki

κi
∑

i
S(ri)pd

i . (61)

Proof: The potential equilibria of (22) obviously satisfy
vo = 0 and v̇o = 0 which yields

Koξ o = ∑
i

Kiξ
d
i + h̃o, (62)

and implies the equilibria of the positions and orientations as

∑
i

ki po = ∑
i

ki pd
i + f̃ o (63a)

0 = ∑
i

kiS(ri)pd
i +∑

i
κiU(qo)

ᵀqd
i + τ̃o (63b)

Solving (63) for po,qo and employing Assumptions 1 and 2
yields (60). Due to (58) there are two rotational equilibria.

Proposition 4: Let Assumptions 1 and 2 hold and assume
that there is no force disturbance f̃ o = 0. Then the equilibria of
the interaction dynamics (22) driven by the distributed set-point
generator (47) are(

vᵀo , pᵀo ,q
ᵀ
o
)ᵀ

=
(

0,xᵀh +
1
N ∑i dᵀ

ih,q
ᵀ
h

)ᵀ and (64)(
vᵀo , pᵀo ,q

ᵀ
o
)ᵀ

=
(

0ᵀ,xᵀh +
1
N ∑i dᵀ

ih,−qᵀh
)ᵀ

. (65)

Proof: The proof is the straightforward application of
Propositions 1 and 3. We set f̃ o = 0 and replace the particular
set-points pd

i in (60) by (49). Note here that ∑i kiS(ri)
ᵀ(xh +

dih) = 0 due to Assumption 1 and dih = ri− rh.
We now define a set of object poses which only excludes the
equilibrium (65) given by

Ωimp = {
(

vᵀo , pᵀo ,q
ᵀ
o
)ᵀ |vo ∈ R6, po ∈ R3,qo ∈ SO(3)

∩qo 6=−qh} (66)

Proposition 5: Let Assumptions 1 and 2 hold. Further, let
f̃ o = 0 and the initial state

(
vᵀo , pᵀo ,q

ᵀ
o
)ᵀ ∈ Ωimp. Then the

equilibrium (64) is asymptotically stable. .
Proof: To show stability of the interaction dynamics (22)

we employ the following Lyapunov function candidate

Vimp =
1
2

vᵀoM vo +(ξ o−ξ
d
o)

ᵀ
[ 1

2 kI3 0
0 2κI4

]
(ξ o−ξ

d
o),

which is positive definite and radially unbounded with respect
to vo and (ξ o − ξ

d
o). Due to the usage of the set-point

generator (47) the desired object pose ξ
d
o is given by

ξ
d
o =

(
xh +

1
N ∑i dih
qh

)
(67)

Using (2), (22), (5) the time-derivative of Vimp is given by

V̇imp =
1
2

vᵀoṀ vo + vᵀoM v̇o + ξ̇
ᵀ
o

[
kI3 0
0 κI4

]
(ξ o−ξ

d
o)

=
1
2

vᵀo(Ṁ −2Co)vo− vᵀoDvo

+ vᵀo

([
kI3 0
0 2κU(qo)

ᵀ

]
ξ o−hκ

o (ξ o,ξ
d
o).

)
=−vᵀoDvo ≤ 0, (68)

where a straightforward calculation shows that 1
2 vᵀo(Ṁ −

2Co)vo = 0 which is a consequence of the Hamilton principle
of conservation of energy. Note here that V̇imp is negative
semi-definite. We observe that the function candidate Vimp
decreases as long as vo 6= 0. To find the equilibrium of (22),
we have V̇imp = 0 and vo = 0 which rigorously shows that
V̇imp = 0 only for (64) and (65). Since

(
vᵀo(t), pᵀo(t),q

ᵀ
o(t)
)ᵀ is

bounded and the equilibrium (64) is the only point in Ωimp
where V̇imp = 0, (64) is asymptotically stable due to LaSalle’s
invariance principle. By investigating the minimum energy of
Vimp it is shown that Ωimp is the region of attraction for (64).
Hence, any perturbation drives the system to (64).

Remark 5: We are ready to pinpoint another advantage
of using the dynamics (38) and (39) for generating the set-
points ξ

d over employing the kinematic relation between the
ith end-effector and the object defined in (11). Here, particular
manipulator set-points can react to each other which allows the
allocation of autonomous capabilities to robots. The presented
approach can be easily extended with a collective collision
avoidance mechanism for obstacles where the robots are forced
to break the formation for safety reasons. When a critical
situation is detected the robots switch to a different interaction
topology and a collision avoidance scheme (cf. obstacle avoid-
ance with artificial potential field as proposed in [32]). Hence,
they initiate a break of the robot formation by opening the rigid
grasp. As soon as the critical situation is passed the robots
re-establish the formation with the original interaction topology
and rigidly re-grasp the object. The stability of this switching
system can be analysed with techniques of hybrid control
theory, which, however, is beyond the scope of the work here.
After establishing the steady-state stability properties of the
set-point generator (47) and the multi-robot dynamics (22)
we are now ready to investigate the transient behavior of the
proposed interaction mechanism.

IV. GUIDANCE BY HUMAN LEADER

The cooperative robots manipulate an object under a
formation-preserving control law while a desired trajectory
for the aggregated team of robots is given to the robots by
the human operator. Hence, when a human operator issues
commands to multiple cooperative robots through the set-point
generator (47), the question arises whether the human state uh
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excites all robots simultaneously satisfying the constraint (43)
or if particular robots are excited independently from each
other violating the constraint (43).

A. Internal force during transient phase
We now have a closer look at if and in which way the

distributed set-point generator (47) can induce an internal
force. There is no internal force induced if the set-points
lie inside the subspace given by (43). If the constraint (43)
holds for all manipulator pairs then all xi are equal. Hence,
the concatenated state x can be compactly written using the
set-builder notation as

{x ∈ R7N |x = [x1
ᵀ, . . . ,xN

ᵀ]ᵀ∧∀(i, j) : xi = x j}=
{x ∈ R7N |x = 1⊗α}, (69)

where 1 ∈ RN denotes that the movement of the robots must
be equal along a particular dimension. Furthermore, α ∈ R7

is the free parameters due to a separate scaling of the robots
in the particular dimensions. Hence, the subspace which does
not induce internal forces by the desired set-points x and their
time-derivatives ẋ is given by

x = 1⊗α, ẋ = 1⊗ α̇, (70)

where the vector α̇ is the time-derivative of α . We can now
substitute (70) into (47) and reorder the system as follows

Θ
[

1⊗ I7 −Afms1⊗ I7
][ α̇

α

]
= Θ [bfms⊗ I7]uh, (71)

where the matrix Θ ∈ R6N×7N is defined as Θ =
diag(I3, . . . , I3,U(xq

1)
ᵀ, . . . ,U(xq

N)
ᵀ). Here we result in a system

of linear equations with unknowns α̇ and α . The question
remains open here whether we can find a solution that satisfies
the system (71) w.r.t. the parameters α̇ and α . Note here that the
solution depends on the matrices Afms and bfms. The solution is
independent from Θ as it appears on both sides (71). There ex-
ists at least one solution since −Afms1⊗ I7 constitutes the same
subspace as bfms⊗ I7 given in (46). We compare the columns
1⊗I7 and −Afms1⊗I7 in comparison with [bfms⊗I7]uh in order
to identify two different cases for the solution of (71) by inspec-
tion: (a) For bfms 6= 1 the subspace formed by the first columns
1⊗ I7 is independent from the subspace bfms⊗ I7. Hence, by in-
spection we identify the solution of (71) to be α̇ = 0 and α = uh.
The interpretation of this result is as follows: For bfms 6= 1 the
operator does not induce an internal force for the static case
α∗ = uh and α̇

∗ = 0. Here, the desired set-points are in steady-
state. However, as soon as the system states converge, i.e.
α̇
∗ 6= 0, an internal force is induced. The states of a dynamical

system converging to a steady state is called transient phase.
Here, we result in a break-up of the formation during the tran-
sient phase of the dynamical system (47). Hence, in the transient
phase the desired positions are not geometrically consistent with
the object geometry any more. (b) For bfms = 1 each column of[

1⊗ I7 bfms⊗ I7
]

can be represented by bfms⊗ I7. Hence,
there exist infinitely many solutions for α̇ and α such that the
human operator does not induce an internal force. We are now
ready to state the final result relating the internal force and Nh.

Proposition 6: Let h ∈ Ni, ∀i ∈ {1, . . .N} in (38) and (39).
Then no internal force (32) is induced through the set-point
generator (47) by uh.

Proof: If h ∈ Ni, ∀i ∈ {1, . . .N} in (38) and (39), then
the human input uh is made accessible to all robots. If the
human state can be accessed by all robots, we have bfms = 1.
As discussed before for bfms = 1 the constraint for cooperative
manipulation (43) is satisfied in both steady-state and transient
phase. If there is no divergence of the desired trajectories, i.e.
(43) is satisfied, then there is no internal force acting on the
object (32) which is caused by the input uh.
The subspace, which is independently influenced by the human
operator, is closely related to the controllability of a system.
As previously commented for (71) the controllability question
is the same for both translational and rotational movements.
Due to that we restrict ourselves to the analysis of the matrix
pair Afms and bfms in the following.

Remark 6: At first sight the consequence of Proposition 6
is unexpected from a formation-based perspective as it is only
relevant that the human state information can be accessed
by by all robots i.e. h ∈ Ni, ∀i ∈ {1, . . .N} in (38) and (39).
No information exchange between the robots is relevant in
order to permanently satisfy the constraints in the cooperative
manipulation task. From cooperative manipulation perspective
the result is not surprising. Usually a virtual frame ξ o is
attached to the object. The grasp matrix G defined in (13)
describes the kinematics. G generates desired end-effector
velocities v̇ based on the desired object velocity v̇o given by
v̇ = Gᵀv̇o. Here, Gᵀ is a mapping from ξ o to all ξ i. If we
now interpret ξ o as the leader then the grasp matrix defines
a special case of the proposed set-point generator where the
leader directly commands all followers and the system matrices
are given by Afms =−IN and bfms = 1.

B. Human shared control
The influence of the human input on particular set-points

plays a major role here and from a system theoretical per-
spective the influence of inputs on system states is defined as
a controllability. Although our leader-follower system (47) is
defined for six dimensions in space, we investigate here only the
controllability of one dimension. As discussed earlier for (71)
the controllable subspace of the set-point generator (47) only
depends on the matrix pair (Afms,bfms) and not on the matrix Θ.
As the matrix Θ only maps the input onto the subspace of
quaternions and is always rank 3N we can neglect this matrix
in the following analysis. Hence, our system dynamics of (47)
simplifies as

ẋ = Afmsx+bfmsu, (72)

where x is one state of xp or xq along one direction in space
and u is the human input in that direction. Without loosing
any insight this argumentation simplifies our analysis.

In the controllability discussion we employ methods such
as Kalman decomposition and eigenvalue analysis to interpret
our results. The controllability matrix Qfms of the matrix pair
(Afms,bfms) is defined as:

Qfms =
[
bfms Afmsbfms . . . AN−1

fms bfms
]
. (73)

Here we focus on the analysis of the rank of Qfms which
characterizes the number of independently controllable states
of xp or xq along one direction in space. If Qfms is rank
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deficient the cooperating multi-robot system (72) can be
decomposed into its controllable and uncontrollable part by
the Kalman decomposition- The similarity transformation of
the Kalman decomposition is given by T =

[
Q‖fms | Q⊥fms

]
,

where Q‖fms = span(Qfms) ∈ RN×rankQfms indicates the range of
the controllable subspace and Q⊥fms = null(Qfms) the range of
the uncontrollable subspace. Due to this eigencomposition the
similarity transformation results in

T ᵀAfmsT =

[
Ac

fms 0
0 Ac̄

fms

]
, T ᵀbfms =

[
bc

fms
0

]
,

and
[

x̃c

x̃c̄

]
= T ᵀx̃, (74)

where c and c̄ correspond to the controllable and uncontrollable
parts of the robotic system and result in two decoupled subsys-
tems. Due to the similarity transformation T the eigenvalues
denoted as spectrum {λ Afms

i } of Afms and of T ᵀAfmsT are the

same. The spectrum of Afms is {λ Afms
i } = {λ Ac

fms
i }∪ {λ Ac̄

fms
i }

where λ
Ac

fms
i is the spectra of Ac

fms ∈ RrankQfms×rankQfms and

λ
Ac̄

fms
i is the spectra of Ac̄

fms =∈ RN−rankQfms×N−rankQfms .
The derivation of the constraint (43) for x in (72) yields x≡ 1.

It is transformed into the space of controllable and uncontrol-
lable states using the similarity transformation (74) as

T ᵀ1 =

[
Q‖fms

ᵀ

Q⊥fms
ᵀ

]
1 =

[
vk
0

]
(75)

where the constraint-satisfying vector for the controllable
subspace is given by vk = Q‖fms

ᵀ
1 ∈ Rrank(Qfms). Note that

for the uncontrollable subspace Q⊥fms
ᵀ1 is always 0 due to

the relation (46) between Afms and bfms which results in
1 =−A−1

fmsbfms. The inverse A−1
fms can be expressed using the

Cayley-Hamilton theorem as

A−1
fms =

(−1)N−1

detAfms
(AN−1

fms + cN−1AN−2
fms + . . .+ c1IN), (76)

where ck are the coefficients of the characteristic polynomial.
As A−1

fms is a linear combination of the matrices I3, . . .AN−1
fms ,

−A−1
fmsb it forms the same subspace as the controllability matrix

Qfms and its span Q‖fms derived in (73). By definition Q⊥fms is
orthogonal Q‖fms and so −Q⊥fmsA

−1
fmsb = 0.

The meaning of the controllable subspace in case of a
multi-robot formation remains unanswered until now. i.e.
what is the resulting state after applying the transformation
T =

[
Q‖fms | Q⊥fms

]
. In general, one has to analytically apply

this similarity transformation to derive the controllable states
xc based on the robot state x. In the following we interpret the
decomposition (74) from a shared control perspective where
the uncontrollable subsystem is the autonomous robotic task
and the controllable subsystem is the human task.
1) Autonomous robotic task

By means of shared control the uncontrollable subsystem

ẋc̄ = Ac̄
fmsx

c̄ (77)

can be interpreted as the autonomous sub-task of the overall
robotic system. Uncontrollability means that the human has

no influence on states xc̄, i.e. the movement of the human
hand has no effect on the transformed robot states. Since the
human has no influence on the uncontrollable subsystem, the
eigenmodes {λ Ac̄

fms
i } ⊂ {λ Afms

i } are masked from the human.
The uncontrollable subsystem ẋc̄ = Ac̄

fmsx
c̄ is known [31] to

be asymptotically stable, i.e. lim
t→∞

xc̄ = 0. As the system is
asymptotically stable and as the initial condition can be freely
chosen as xc̄(t0) = 0 we always have

xc̄ = 0. (78)

We conclude that the uncontrollable states xc̄ are always zero
as defined in (78) and come up with the formal statement.

Proposition 7: There is no internal force (32) induced by
the uncontrollable system (77).

Proof: As we can freely choose the initial condition
for (47) to be xc̄(t0) = 0 and the uncontrollable subsystem (77)
is asymptotically stable, the uncontrollable states are always 0
which is described in (78). Here, xc̄ = 0 means that the uncon-
trollable states xc̄ lie in the same subspace as the constraint-
satisfying vector derived in (75). As the constraint (43) is satis-
fied, we have x= 1. Due to that there is no internal force (32).
This result is desired as the human has no influence on the
uncontrollable subsystem. However, it remains unanswered
wether the controllable subsystem can cause internal forces.
2) Human guiding sub-task

From a shared control perspective, the controllable subsystem

ẋc = Ac
fmsx

c +bc
fmsu (79)

can be interpreted as the sub-task of the human operator to
the system. Before discussing the influence of the human on
the particular robot states we first introduce a relation between
rank(Qfms) to the human input vector bfms. In particular we
consider the case bfms = 1 which follows from Prop. 6.

Proposition 8: The single-leader dynamics (72) has only
one controllable eigenmode if and only if bfms = 1.

Proof: The proof of sufficiency assumes that bfms = 1.
Since Afms is the principal submatrix of the Laplacian −L (45),
the row sum of Afms is −1. Hence, Afmsbfms = −1. Itera-
tively, one can show that Ak

fmsbfms = (−1)k1. Consequently,
the controllability matrix Qfms =

[
1,−1,1, . . . ,(−1)N−11

]
has

rank(Qfms) = 1. For the proof of necessity, to have a single con-
trollable eigenmode, rank(Qfms) = 1 and so all columns of the
controllability matrix Qfms must be linearly dependent. Hence,
there must exist an input vector bfms such that bfms =αAfmsbfms,
where α ∈ R. By construction we always have −Afms1 = bfms.
Since Afms is always regular [31], α =−1 and bfms = 1. For
A2

fmsbfms, . . . ,AN−1
fms bfms this can be shown iteratively.

For bfms = 1 we have a single controllable mode which is
the only interaction topology that satisfies the constraint (43).
Hence, we propose that the human leader controls a single
eigenmode. We now illustrate the controllability analysis.

Example 4: We continue with the previously defined dy-
namics from Ex. 1, 2 and 3. The controllability matrix Qfms
(73) of the set-point generator (48) from Ex. 3 reads as

Qfms =

 1 −2 6
0 2 −8
1 −2 6

 . (80)
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By inspection we can observe that the first and third row of
Qfms are equal and so rank(Qfms) = 2. We have rank(Qfms)> 1
as Nh 6= {1,2,3} which results in an internal force as derived
in Prop. 6. Let now Nh = {1,2,3} and N2 = {1,3,h} based on
Prop. 6 the set-point generator dynamics are given by

ẋ =

 −3 1 1
1 −3 1
1 1 −3

 x1
x2
x3

+

 1
1
1

xh. (81)

Note here that the difference between (48) and (81) is
highlighted bold. Using (81) as set-point generator there is no
deviation of the set-points x1,x2,x3 during the transient phase
and no internal force f int

i given by (32), which is depicted in
Fig. 5 for the human input xh being a unit step at t = 1s.

0 2 4 6 8 10
0

0.2
0.4
0.6
0.8

1

Transient phasex[
m

] po
x1,x2,x3

0 2 4 6 8 10
−10

0
10
20

f int
i = 0 as Nh = {1,2,3}

t[s]

F[
N

] f int
1 , f int

2 , f int
3

Fig. 5. Object trajectory po resulting from distributedly generated robot
set-points x1,x2,x3. No deviation of the set-points in the transient between
t = 1s and t = 6.5s and so no internal force f int

i = 0.

C. Weighted set-point generators
In this section we present an approach which can significantly

decrease internal stress for any interaction topology by the
introduction of weights. The idea is to increase the convergence
rate of the desired-set points which cause internal forces.
Therefore we rewrite our set-point generating dynamics (72) as:

ẋ = ΓAfmsx+Γbfmsu, (82)

where Γ = diag(γ1, . . . ,γN) is a block-diagonal matrix with the
entries being γi > 0 ∈R are scalar weights in order to allocate
different speeds to different set-points.

Before introducing a formal result which relates the weights
γi to the internal force hint we re-label our set-point genera-
tor (82). This can be done without loss of generality and is
performed here for the sake of exposition. Note here that all
properties of the graph Laplacian remain since a re-labeling is
just an isormophism of a graph. First we collect the states of all
agents i belonging to the set Nh into the state x̃2 ∈R1ᵀbfms where
1ᵀbfms denotes the number of all direct neighbors. Analogously
we put the states of all the remaining robots which are not in
neighborhood Nh of the human into the state x̃1 ∈ RN−1ᵀbfms .
Furthermore, in our setup the weights are only different with
respect to the previously defined two groups, i.e. the state x̃1
evolves with speed γ1 and x̃2 evolves with γ2. Hence, we have
Γ = diag(γ1I1ᵀbfms ,γ2IN−1ᵀbfms). By using that collocation for
notation and by an appropriate decomposition of Afms as

Afms =

[
A f 1 B f 1
Bᵀ

f 1 A f 2

]

we can rewrite (82) as follows:[
˙̃x1
˙̃x2

]
=

[
γ1A f 1 γ1B f 1
γ2Bᵀ

f 1 γ2A f 2

][
x̃1
x̃2

]
+

[
0

γ21

]
u, (83)

where the states x̃1 are not directly influenced by the human
input u. Based on this we can formally state a relation between
the weights γi and the internal force hint.

Theorem 1: Let the weights τ1 in (83) be γ1 → ∞. Then
for any interaction topology the internal force are hint→ 0.

Proof: We show now that for γ1 → ∞ we have that
hint→ 0. From (83) we know that we have two interconnected
differential equations given by a dynamical system without
direct influence of the human

˙̃x1 = γ1A f 1x̃1 + γ1B f 1x̃2 (84)

and a system with direct influence

˙̃x2 = γ2A f 2x̃2 + γ2Bᵀ
f 1x̃1 + γ21u. (85)

Note here that this is not a decomposition into controllable and
uncontrollable subspace as u still has indirect influence on x̃2
through x̃1. The equilibrium of (84) where ˙̃x1 = 0 is given by

x̃1(∞) =−A−1
f 1 B f 1x̃2. (86)

An error between the state x̃1 and its equilibrium x̃1(∞) is
defined by e1 = x̃1− x̃1(∞) with which the error dynamics result
in ė1 = γ1A f 1e1. For the error e1 we can say that it converges
with less or equal to the larger eigenvalue λ max

A f 1
of A f 1 as

e1(t) = eγ1A f 1te1(to)≤ e
γ1λ max

A f 1
t
e1(to). (87)

As λ max
A f 1

< 0 and e1(to) is bounded we have

lim
γ1→∞

e1(t) = 0, (88)

due to which we can always express x̃1 by its equilibrium
involving x̃2 as x̃1 = −A−1

f 1 B f 1x̃2. We later show that e1
results in a violation of the constraint (43) and results in an
internal hint. We continue now by substituting the equilibrium
x̃1 =−A−1

f 1 B f 1x̃2 into (85) as

˙̃x2 = γ2(A f 2−Bᵀ
f 1A−1

f 1 B f 1)x̃2 + γ21u (89)

To investigate the accessible subspace in which x̃2 moves we
now look at controllability matrix (73) and the controllable
subspace of (89) defined by

Q =
[

γ21 γ2
2 (A f 2−Bᵀ

f 1A−1
f 1 B f 1)1

]
=[

γ21 γ2
2 (A f 21+Bᵀ

f 11)
]
=
[

γ21 −γ2
2 1)

]
, (90)

where we apply the relationships 1 =−A−1
f 1 B f 11 and A f 21+

Bᵀ
f 11+ 1 = 0. The relationships result from the decomposi-

tion (45) of Afms in L and the fact that L1 = 0. Note here that
the controllable subspace is 1, i.e. all entries of x̃2 are equal. By
having equal entries in x̃2 we know that x̃2 ∈ x̃∗21 where x̃∗2 ∈R is
a scaling factor and due to that we know that all entries of x̃2 are
equal. Hence the constraint (43) is satisfied and no internal force
occurs here. We are now ready to show that e1 6= 0 causes an
internal force by substituting x̃2 ∈ x̃∗21 and x̃1 =−A−1

f 1 B f 1x̃2 into

e1 = x̃1 +A−1
f 1 B f 1x̃2 = x̃1 +A−1

f 1 B f 1x̃∗21 = x̃1− x̃∗21,
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where we can see that if x̃1− x̃∗21 6= 0 we have a difference
between x̃2 and x̃1. Hence, by definition we have a difference
between the states of the direct and indirect followers. Due
to that difference both x̃1 and x̃2 cannot be equal. Hence,
the constraint (43) is violated which causes an internal force.
However due to (88) we know that there is no internal force
hint→ 0 induced by e1 for γ1→ ∞.
For illustration we exemplify the weighted set-point generator.

Example 5: We continue with the previously defined dynam-
ics from Ex. 1, 2 and 3. Nh given in Ex. 3 causes an undesired
internal forces and so we introduce weights as γ1 = 1000 for
the set-points of robot 2 and γ2 = 1 for the set-points of robot
1 and 3 in the set-point generator (83), where γ1 is sufficient
large from a practical point of view. Hence, (83) is given by

ẋ =

 −3 1 1
1000 −2000 1000

1 1 −3

 x1
x2
x3

+

 1
0
1

xh, (91)

where difference between (48) and (91) is highlighted bold.
The resulting internal force f int in (32) is acceptable for a
input xh being a step function at t = 1s as depicted in Fig. 6.

0 2 4 6 8 10
−0.02

0
0.02
0.04

t[s]

F[
N

] f int
1 f int

2 f int
3

Fig. 6. Internal force f int
i 6= 0 caused by a weighted set-point generator.

In this section we introduced weights for the set-point generator
in order to significantly reduce the internal wrench acting on
the object based on a controllability analysis. In the next step
we discuss controllability of the overall system.

V. CONTROLLABILITY

The influence of the human input on particular set-points
gives us fundamental insight in the task. We now extend this
result by investigating the controllability of the impedance-
based interaction dynamics (22) and the controllability of
the overall system in serial connection. Note here that we
follow the argumentation in Section IV-B to discuss the
controllability of (22) in a single direction of space. Calculating
the controllability of (22) with Lie algebra for the translational
and rotational motions yields the same result as the simplified
version addressing only one direction in space.

A. Controllability of the interaction dynamics
The simplified dynamics of the interaction dynamics (22) in

one direction under ζ =
[

po,i, ṗo,i

]ᵀ
∈ R2 results as

ζ̇ =

 0 1

Π
N
∑

i=1
ki Π

N
∑

i=1
di

ζ +

[
0
Π

]
kᵀx

= Aimpζ +bimpkᵀx, (92)

where Π =−(mo +
N
∑

i=1
mi)
−1 and k = [k1, . . . ,kN ]

ᵀ. Once again

we employ (73) to derive the controllability matrix of the

interaction dynamics given by

Qimp =
[

bimp Aimpbimp
]
=

[
0 Π1

Π1 Π2
∑

N
i=1 di,

]
, (93)

where we can directly observe by inspection that rank(Qimp) =
2 if mo <∞,mi <∞. So the interaction dynamics of cooperating
distributed impedances under a rigid grasp are completely
controllable for a single direction in space.

B. Controllability of the overall system
In this section we evaluate the controllability of the simplified

versions of the set-point generator (72) and the interaction dy-
namics (92). The overall state z is then labeled as z = [xᵀ,ζ ᵀ]

ᵀ.
To evaluate the controllability of the serial concatenation we
have to first setup the complete system dynamics. For a single
direction in space the series concatenation of the human-
guided set-point generator (72) and the multi-robot interaction
dynamics (92) results as

Atot =

[
Afms 0

bimpkᵀ Aimp

]
, btot =

[
bfms

0

]
(94)

Evaluating the controllability condition (73) of the concatenated
system (94) then results in

Qtot =

[
Q∗1 . . . Q∗i . . . Q∗N+2
Q∗∗1 . . . Q∗∗i . . . Q∗∗N+2

,

]
(95)

where the submatrices Q∗i ,Q
∗∗
i of Qtot are given as

Q∗i = Ai−1
fmsbfms if i = 1, . . . ,N +2 and

Q∗∗i =


0 if i = 1
i−2
∑
j=0

A j
impbimpkᵀAi−2− j

fms bfms if i = 2, ..,N+2

The controllability of serial concatenation of dynamical systems
is a rarely studied problem. In general [33] the number of
controllable states of the complete system is less or equal to
the sum of controllable states of the particular systems:

rank(Qtot)≤ rank(Qfms)+ rank(Qimp). (96)

To avoid internal force acting on the object we stated in
Prop. 6 that the human input u is known by all robots, i.e. bfms =

1. Using Ak
fmsbfms = (−1)k1 and kᵀ1 =

N
∑

i=1
ki, the overall

controllability matrix (95) can then be simplified as

Q =

 1 −1 1 ..

0
N
∑

i=1
kibimp

N
∑

i=1
ki(Aimpbimp−bimp) ..

 (97)

As previously derived for bfms we have rank(Qfms) = 1 and
rank(Qimp) = 2 is always valid. Hence, the rank of the
concatenated system results as rank(Q)≤ 3. In our proposed
scheme, bfms = 1, we can observe that rank(Qtot) = 3 by only
inspecting the first three columns of (97). From a theoretical
perspective the human operator can independently control the
set-point of the multi-robot team x, the velocity ṗo,i, and the
position po,i of the object in one particular direction in space.
We are now ready to experimentally evaluate the proposed
interaction mechanism in the next section.
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VI. EXPERIMENTS

The goal of the experimental evaluation is to experimentally
validate the previously established theoretical findings of the
guidance of a cooperative manipulation task by a single human.
We perform large-scale experiments to assess the behaviour
of the manipulators in different human-robots formations. We
analyze the resulting internal forces, the accuracy, and the
sensitivity of the proposed guidance mechanism. In addition,
we discuss the technical difficulties which we encountered.

A. Experimental setup
The experimental setup consists of three KUKA LWR 4

manipulating a ball-shaped object which are guided by a
human operator, see Fig. 7. The setup is depicted schematically
in Fig. 1. Note that this setup has served as basis in the
Examples 1- 5 so that the reader had the opportunity to
familiarize with the human-guided set-point generator (47) and
the impedance-based multi-robot dynamics (22). All relevant
control and system parameters are summarized in Table I.
A Cartesian impedance control scheme (1) is employed to
ensure end-effector compliance while the control loop runs
at 1000 Hz. For the sake of exposition we only consider
one translational movement denoted by pi and pd

i for the
manipulators i = 1,2,3 in this section without loosing any
experimental insights, i.e. we uniformly set qi = qd

i = const.
Here, k = 3 is the most convenient degree of freedom as the
desired displacements di j,3 = 0 and dih,3 = 0 and so pd

i = xp
i , ∀i.

During the experiments the human operator wears a marker-
equipped handle which determines the input uh for commanding
the robot formation. The Cartesian positions p1, p2, p3 of the
three robots and the Cartesian position uh of the human
operator’s hand is captured by a passive-marker QualiSys
motion capture system at a frequency of 200 Hz. The end-
effectors are designed to obtain a quasi-rigid grasp of a ball-
shaped object. In our experiments the object is a ball with a
diameter of 0.65 m which is maximally inflated to behave like
a quasi-rigid object. In order to evaluate different combinations
of robotic neighbours, the two scenarios are tested:

(a) Human neighbors as Nh = {2,3}, bfms = [0,1,1]ᵀ

(b) Human neighbors as Nh = {1,2,3}, bfms = [1,1,1]ᵀ

The formations (a) and (b) are different with respect to the

Fig. 7. Human operator controls a group of robots which cooperatively
manipulate an object

Eq. Values of Parameters

Impedance parameters (1) M = 10I3, D = 120I3, K = 160I3

Object parameters (7) mo = 1.159

Desired distance

between manipulators (27) d12 = [0.4,0,0] m
d23 = d13 = [0.2,0.615,0] m

Desired distance
between manipulators
and human

(41)
d1h = [1.2,0.35,0] m
d2h = [0.8,0.35,0] m
d3h = [1,0.245,0] m

Cooperation weight be-
tween manipulators

(82) γi = 2.5,∀i

TABLE I
CONTROL PARAMETERS USED IN EXPERIMENTS

number of robots directly influenced by the human operator, i.e.
by the number of controllable subspaces. The differences be-
tween the two formation scenarios are experimentally analyzed
with respect to the manipulator motion and the internal force.

B. Technical discussion
This section is a discussion of technical difficulties which we

experienced during the experiments. The impedance parameters
Mi,Di,Ki of the individual robots are all selected heuristically
since the robotic performance was initially well in the
experiments. However, we can state the following observations:
all impedance parameters are chosen isotropic and homogenous
as discussed in Ass. 1 so that there are no undesired internal
forces. To enable an isotropic parametrization of the impedance,
the orientation of each robotic manipulator in a common
world frame is measured by the Qualisys motion tracking
system. In addition, the damping ratio ζi =

di
2
√

miki
= 1.5 is

chosen to be marginally larger than 1, so that the dynamics
of the particular manipulators is overdamped and the steady
state is reached in adequate time without oscillating.

Until Sec. VI the manipulators are considered to rigidly
grasp the rigid objects while now both the grasp and the
object are only quasi-rigid. Both adaptations are necessary in
the experiments because each LWR manipulator has only a
maximum payload of 7 kg which is relatively low. Note for
large objects usually used in cooperative manipulation this
payload is drastically reduced to about 1−1.5 kg due to large
torques. The exercise ball is bulky and relatively light.

To compare conditions (a) and (b) the human input trajectory
uh is recorded for reproducibility of the experiment: the human
operator moved the worn marker-equipped handle once from
an initial to a final configuration, waited for about 1 second
and then returned to the initial configuration. The duration
of the trajectory uh(t) is about 10s and the covered distance is
about 0.5m. The recorded trajectory uh(t) is replayed to cope
with the conditions (a) and (b) in an equal fashion.

C. Results and discussion for the set-point generator (47)
The dynamics of the human-guided set-point generator (47)

are compared with the conditions (a) and (b). The conditions
differ in the neighborhood set Nh of the human operator and
so different controllable subspaces between (a) and (b) exist:
by evaluating (74) for condition (a) we observe that there exist
two controllable states xc

1 = pd
1 and xc

2 = 1√
2
(pd

2 + pd
3) with

different eigenvalues: λ
Ac

fms
1 = −3.41 and λ

Ac
fms

2 = −0.5858.
Since there are two independently controllable subspaces for
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Fig. 8. Three manipulator set-points pd
1 , pd

2 , pd
3 are controlled by the identical human input uh under different neighborhoods Nh in condition (a) and (b).

Different neighborhood topologies result in different controllable subspaces. Hence, the set-point pd
i in one direction diverge due to different neighborhood

Nh = {2,3} (top left). For Nh = {1,2,3} (top right) there is no deviation between the set-points. During the motion of the object there is a offset between
human input uh and the set-points pd

i during the transient response of (47). (bottom left for condition (a), bottom right for condition (b))

condition (a) with different eigenvalues of the subspaces, there
can be significant deviation of the trajectory pd

1 compared
to trajectories pd

2 and pd
3 as shown in Fig. 8. As the human

operator has no influence on the uncontrollable subspace xc̄ =
1√
2
(pd

2 − pd
3), both set-point trajectories pd

2 , pd
3 are equal as

depicted on the top left side in Fig. 8.
For condition (b) the locally controllable subspace is the

aggregated state xc = 1√
3
(pd

1 + pd
2 + pd

3). Hence, the operator
has only access to one controllable subsystem of the multi
robot team which moves the desired position pd

1 , pd
2 , pd

3
simultaneously. This is in line with the Prop. 8. Due to that
the set-point trajectories p1, p2, and p3 are equal on the top
right side in Fig. 8 and there is no breakup of the formation of
set-points. By comparing the top left and top right subfigure
in Fig. 8 we observe a significant trajectory deviation of pd

1 ,
pd

2 , and pd
3 based on the neighborhood Nh. Here, we conclude

that the theoretical results from Eq. (71) and the subsequent
Prop. 6 are validated in the experiments.

During the transient phase there is a offset between between
the human input uh and the manipulator set-points pd

i for both
conditions (a) and (b), i.e. the error term uh− pd

i 6= 0 for u̇h 6= 0
as depicted in the bottom left and right side in Fig. 8. For
both conditions (a) and (b) the maximum positive offset is
at approximately t = 4.1s and the maximum negative one is
at t = 6.1s. The offsets can be described with the transient
response of the dynamical system representing the human
influence on desired set-points (47). Note that the the offset is
relative to the settling time and we can tune the settling time
with weights as described in (82). For t > 8s the human input
uh is constant again and the offset converges to zero which
experimentally demonstrates the stability of the system (47).
The stability is theoretically derived in Section III-A.

D. Results and discussion for the multi-robot dynamics (22)
The robotic manipulators grasp the object and the

manipulator set-points are driven by (47) under the conditions
(a) and (b) using the recorded human input uh The effect of
the different conditions (a) and (b) on the object trajectory po
is as follows: by comparing the black and dashed line of the
left and right side in Fig. 9 we observe no significant effect of
the different neighbourhoods Nh on the object trajectory except
that the object trajectory excited by the set-point generator

in condition (b) converges slightly faster. We assume that this
results from the direct influence of the human operator on all
three set-points pd

i simultaneously in condition (b).
Furthermore, we compare for both conditions the measured

trajectory from the experiment (black, dashed line) with
a simulated trajectory (red, solid line) resulting from the
impedance-based multi-robot dynamics (22) which is driven
by the same set-point generator (47). The simulated set-point
generator is excited by the identical recorded human input uh.
There is a slight deviation between the measured and the
simulated trajectory in Fig. 9 which we interpret as a
consequence of deviating impedance parameters in theory and
experiments. The reason for different impedance parameters
can be explained by hardware variations. In total the measured
and the simulated trajectory match well which validates the
system model for a human-guided cooperative manipulation
task, i.e. the series connection modelling of (47) and (22).

Since for condition (a) the deviation of the trajectory of pd
1

is not in compliance with the object geometry an increased
measured internal force is acting on the object for this condition,
see the black and dashed line on the left side in Fig. 10. For
condition (b) with Nh = {1,2,3} all manipulator set-points
move simultaneously and the internal forces acting on the object
are reduced as shown by the black and dashed line on the right
side in Fig. 10. This experimental result is formally stated in
Section IV-A with the main result as Prop. 6. Again we compare
the measured internal force from the experiment (black, dashed
line) with a simulated internal force (red, solid line) resulting
from the dynamics (47) and (26). For both conditions (a) and (b)
the course of measured and simulated internal forces match well.
However, a deviation between simulation and measurement
is always present which is presumably caused by the force
measuring hardware and the deviating impedance parameters
as discussed in the previous paragraph. It is experimentally
validated that the scenario (b), in which the leader controls only
one subspace, results in manipulator motions without consider-
able deviations and the internal force is significantly reduced.

VII. CONCLUSIONS

In this article we propose a control law and a feedback
strategy for a robot team controlled by a human in a cooperative
manipulation task under a formation-based control approach. By
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Fig. 9. The object trajectory po driven by a human input uh resulting from different scenario with condition (a) on the left and condition (b) on the right. For
each condition the measured trajectory from the experiments is compared with a trajectory from a simulation running the models (47) and (22).
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Fig. 10. Internal force acting between manipulator 1 and 3 in direction k = 3 resulting from different scenarios with condition (a) on the left and condition
(b) on the right. The internal force is significantly increased for condition (a) where Nh 6= {1,2,3}. For each condition the measured internal force from the
experiments is compared with an internal force from a simulation running the model (47) and (26).

analyzing the controllability of such a human-robot formation
we deduce that a one-to-all connection is beneficial for the
manipulation task in terms of limiting undesired internal forces.
The effectiveness and quality of the virtual formation for cooper-
ative manipulation is successfully demonstrated in experiments.
For future work, we plan to introduce various autonomous
capabilities to cooperative robots and to equip the human
operator with wearable devices for task-dependent feedback.
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