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Abstract

Robotic systems sharing their workspace with humans must be able to interact and cooperate
with human partners. As such a cooperation often involves physical contact or at least close
interaction, it is essential to ensure that the robot poses no threat to the human. It does,
however, not suffice to avoid potentially harmful collisions. In addition, the human needs to
feel comfortable and relaxed during the cooperation. Otherwise the readiness to use assistive
robots such as mobility aids, household assistants or rehabilitation devices will be low. A
robot that meets both the physical and psychological demands of human-robot collaboration
is considered safe. The desired safety defines several requirements a control scheme must
fulfill to qualify for implementation on robots engaging in human-robot interaction. On
the one hand, it needs to be capable of generating motions that satisfy any constraints on
position or velocity imposed by interacting humans or the environment. These motions have
to be generated under real-time conditions to enable a reaction to dynamic changes and they
need to account for potential uncertainties in the constraint description. On the other hand,
the control scheme should generate a behavior that feel natural to human partners and that
may be extended to multiple interacting robots.

This thesis investigates some of the major challenges originating from close and phys-
ical human-robot interaction. It addresses the question how the satisfaction of dynamic
constraints may be guaranteed under real-time conditions as well as how the least possible
interference with the unconstrained task objective may be achieved and how the resulting
dynamic behavior may be adjusted to feel comfortable for interacting humans. Furthermore,
we aim at finding solutions to the challenges introduced by uncertain constraint parameters
and by multiple interacting agents.

The main contribution of this thesis is a novel control framework combining a task-oriented
control law with a constraint-enforcing control input, which is designed to satisfy dynamic
and uncertain constraints under real-time conditions, while distributing the necessary ac-
tions between involved agents, if possible. For this purpose, we present two interchangeable
feedback-linearization-based control approaches, namely invariance control and control bar-
rier function-based control, that are implemented as an add-on to existing control loops.
Both approaches formally guarantee constraint satisfaction while allowing to follow the task
objective at a distance from the constraints. By introducing an augmentation to the system
dynamics, the interaction behavior may be shaped to fulfill human expectations. Further-
more, robust and probabilistic satisfaction guarantees for constraints with uncertain param-
eters are presented and a novel prioritization scheme is established, which is the basis for
distributing necessary actions for constraint satisfaction between multiple agents. Deriving
the control action from a convex optimization allows finding a solution in real-time by ap-
plying efficient solvers. All presented approaches are designed to yield a similar structure,
which enables arbitrary combinations allowing for more flexibility in the implementation.
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Zusammenfassung

Robotersysteme, die sich ihren Arbeitsraum mit Menschen teilen, bendtigen die Fahigkeit mit
ihren menschlichen Partnern zu interagieren und kooperieren. Da solche Kooperationen oft in
enger Zusammenarbeit und in direktem Kontakt stattfinden, muss unbedingt sichergestellt
werden, dass der Roboter keine Bedrohung darstellt. Allerdings reicht es nicht aus nur
potenziell gefahrliche Kollisionen zu vermeiden. Der Mensch muss sich wahrenddessen auch
wohl fithlen. Ansonsten wire wohl kaum jemand bereit Roboter als Fortbewegungshilfen,
Haushaltshilfen oder Trainer in der Rehabilitation zu akzeptieren. Ein Roboter, der sowohl
die physischen als auch die psychologischen Anforderungen der Mensch-Roboter Interaktion
erfiillt, wird als sicher bezeichnet. Die gewiinschten Sicherheitsaspekte definieren mehrere
Kriterien, die erfiillt sein miissen, damit sich ein Regelkonzept fiir die Mensch-Roboter In-
teraktion eignet. Einerseits muss es Bewegungen generieren, die, durch den Menschen oder
durch die Umgebung bedingte, Positions- und Geschwindigkeitsbeschrankungen einhalten.
Diese Bewegungen miissen in Echtzeit berechenbar sein, um eine Reaktion auf dynamische
Anderungen der Beschrinkungen zu erlauben und sollten eventuelle Unsicherheiten in der
Beschrankungsdefinition beriicksichtigen. Andererseits sollte sich das resultierende Verhalten
fiir den interagierenden Menschen natiirlich anfiihlen und auf mehrere Roboter erweiterbar
sein.

Diese Doktorarbeit untersucht einige der grofiten Herausforderungen, die durch die Zusam-
menarbeit von Menschen und Robotern entstehen. Wir widmen uns den Fragen, wie garantiert
werden kann, dass dynamische Beschrankungen unter Echtzeitbedingungen eingehalten wer-
den, wie das zielorientierte Sollverhalten so wenig wie moglich beeinflusst wird und wie die
resultierende Dynamik an die Erwartungen des Interaktionspartners angepasst werden kann.
AuBlerdem sollen Losungsansitze fiur die Handhabung von Beschrankungen mit unsicheren
Parametern und fiir die Regelung von multiplen Agenten entwickelt werden.

Der wichtigste Beitrag dieser Arbeit ist ein neuartiges Regelkonzept, das ein zielorien-
tiertes mit einem beschrankungsorientierten Regelgesetz kombiniert, das die Einhaltung dy-
namischer und unsicherer Beschrénkungen unter realen Bedingungen garantiert, wahrend es,
falls moglich, den noétigen Aufwand auf mehrere Agenten verteilt. Zu diesem Zweck stellen
wir mit Invarianzregelung und Regelung mit Barrierefunktionen zwei Regelansétze vor, die
auf Eingangs- Ausgangs-Linearisierung basieren und in bestehende Regelstrukturen eingefiigt
werden. Beide Methoden geben eine formale Garantie fiir die Einhaltung der Beschrankun-
gen und erlauben das Verfolgen des Regelziels in gewisser Entfernung zu den Grenzen. Eine
Erweiterung der Systemdynamik erlaubt das Verhalten wahrend der Interaktion an die men-
schlichen Erwartungen anzupassen. Auflerdem werden robuste und wahrscheinlichkeitstheo-
retische Garantien fiir Beschrankungen mit unsicheren Parametern entwickelt und ein neuar-
tiges Priorisierungskonzept vorgestellt, worauf basierend die notwendigen Aktionen fiir die
Einhaltung der Grenzen auf mehrere Agenten verteilt werden kénnen. Da der Systemein-
gang iiber eine konvexe Optimierung bestimmt wird, ist es moglich effiziente Algorithmen
zu benutzen, die das Problem in Echtzeit 16sen. Alle vorgestellten Ansétze fithren zu einer
ahnlichen Struktur, wodurch beliebige Kombinationen moglich sind und das Konzept flexibel
einsetzbar ist.
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Notation

In this work, explicit function dependencies are omitted whenever clear from the context in
order to improve readability.

Acronyms

I/0 input/output

PD proportional-derivative

PID proportional-integral-derivative
ISS input-to-state stable

SISO single-input single-output

MIMO multi-input multi-output

MPC model-predictive control

CBF control barrier function

LP linear program

QP quadratic program

CARE collision avoidance in real-time environments

Mathematical Conventions

Sets
A H, X sets
0A boundary of the set A
Int(.A) interior of the set .4
-A inverse set of A

vii



Notation

AUuB
ANB
Ck

N={1,2,3,...}
R
R-ﬁ-

union of sets A and B
intersection of sets A and B

set of k times continuously differentiable func-
tions h: R* — R

set of natural numbers
set of real numbers

set of positive real numbers

Scalars, Vectors, Matrices and Functions

a, h, x

a h,x

A H X

I, e R™*"

0, € R"™™ 0,,x, € R™*"
a’ € R AT ¢ Rx™

Al e R
AT = AT(AAT)" € Roxm

a; X a

Ag=la;Ties=lai, . .. a’i|15|]T € RIBIxn
by = [blies = [bi, . .. by T € RIS
lall, = VaTa

rank(A)
ker(A)
ai 0 O
diag(a) = | 0 0
0O 0 a,
In(a)
1 a>0

sign(a) =40 a=0
-1 a<0

viii

scalars (small letters)

column vectors (bold small letters)
matrices (bold capital letters)

identity matrix

zero matrix

transpose of @ € R" or A € R™*"

inverse of A € R AA™'=A1A=1,

Moore-Penrose pseudo inverse of A € R™*™
where m < n, rank(A) = m, AA" = I, (right
inverse)

element-wise inquality of a;, a, € R”
concatenation of indexed vectors a; € R"
concatenation of indexed scalars b; € R"
Euclidean vector norm (2-norm) of a € R"
rank of A € R™*" rank(A) < min(m,n)

kernel of A € R"™*" Ax = 0, if © € ker(A)

diagonal matrix with entries defined by the vec-
tora =/a;...a,]T € R"

natural logarithm of a positive scalar a € R*

signum of a



Notation

[a]

Derivatives

ox orn 77 Ozn

L) — e

dtr

Lih(z) = 242

ox

- a&g*—lh(m)
"%fh<w> = f@m f

Lah(x) = | Ly, - Ly, | hix)
Probabilities

P(A)

P(-A) =1 - P(A)

2AB) = ZAND) %2)3 )
Subscripts

0

f

()
()
(+)des
()m
(+)ret
()a
()
()
()

C

no

smallest integer greater than or equal to a € R

total derivative
partial derivative
low order time derivatives

time derivative of order r

first order Lie derivative of h(x) w.r.t. f € R”
with @ € R" (directional derivative)

r-th order Lie derivative of h(x) w.r.t. f

first order Lie derivative of h(x) w.r.t. the ma-

trix G =[g1 ...gm) € R"™ with x € R”

probability of A

probability of the inverse set of A

conditional probability of A given B

initial value

final value

desired value considering constraints

measured value

reference value without consideration of constraints
associated with augmented control

associated with control barrier functions

associated with invariance control

associated with nominal control

X



Notation

Variables

al € R™

Aa c Rmxm
Ai

bi

b, c R

B, : R" x RUmaxthny _, R+
B

Bt

B,

B act

B,

Bic act

Brob

Biob,act

B

c;j € RT

cji € RY

Cmax € RT
Cy(g,4)g € R™
d;

D, C R™

D C R™(rmax+t1)

e, € R™

input/output-linearizing input transformation, mul-
tiplicative component

input/output-linearizing input transformation of the
augmentation, multiplicative component

set of active agents for constraint @

input/output linearizing input transformation, ad-
ditive component

input/output-linearizing input transformation of the
augmentation, additive component

control barrier function for constraint ¢
set of constraints

set of active constraints

set of chance constraints

set of active chance constraints

set of scenario constraints

set of active scenario constraints

set of robust constraints

set of active robust constraints

set of constraints included in the optimization for
control actions

priority of agent j

criterion coefficient for priority assignment of agent
j and criterion 7

maximum priority value
generalized Coriolis and centripetal forces

right hand side of the optimization condition derived
from constraint ¢

set of all possible values of the parameters n

set of all possible instances of the uncertainties in
the parameter state x,

input error



Notation

e, € R"

&

f:R* - R"”

fr: R?M — R
fp i R — R

for ER™

gq : R — RM

g; : R" - R"”

G :R" —» R™™
Gpg : R? — R2maXnq
g
h.:R" x R™ — R
hg : R" x R™ — R

h,.: : R" — R?
H

J : R"™ = R™*"q
Ji

[

m

my

M, : R" — R

tracking error of state x

emergency community

system vector field, control affine form
robot vector field, control affine form
forward kinematics, robotic system
external forces acting on a robotic system
generalized gravitational torques
columns of system matrix field G
system matrix field, control affine form
robot matrix field, control affine form
invariant set

artificial constraint output function

artificial constraint output function for CBF-based

control, hg = —h,

natural system output function
admissible set

Jacobian matrix

set of inactive agents for constraint ¢
number of constraints

dimension of system input

input dimension of agent ¢

generalized mass matrix

set of admissible control inputs for invariance control

dimension of the system state
number of agents
number of priority criteria

state dimension of agent ¢

dimension of the uncertain constraint parameters

dimension of the system output
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Notation

nnat,i

Tmax

Ty

u e R™
Uy, € R™
u. € R™
Uexs € R™
u. € R™

v
Wi 5 (RJr)nag — R*

wji € RT

x € R"

TR = [qT’ q‘T]T c R2n
x, € R (rmax+1)ny

y. € R’

yp € R

Ynat € RY

neR™

Xii

output dimension of agent ¢

dimension of the generalized coordinates of the
robotic system

dimension of the task space coordinates

number or scenarios required for scenario-based sat-
isfaction of constraint ¢

set of controlled agents

task space coordinates of the robotic system

j-th agent priority community

minimal agent priority community of constraint ¢
generalized coordinates of the robotic system
relative degree in input/output (I/O)-linearization
maximum relative degree for multiple outputs
sampling time

system input

nominal control input

corrective control input

external measurable input disturbance

external unmeasurable input disturbance

degree of augmentation

weight for distributing the evasive control action for
constraint ¢ to agent j

weight corresponding to the criterion coefficient ¢; ;
system state

state of the robotic system

state of the constraint dynamics

artificial constraint output

barrier constraint output, negative of y,

natural system output

constraint parameter vector
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Introduction

Recent advances in robotics research and development have opened up a variety of appli-
cation fields. Increased computational capabilities, the development of dexterous grippers,
mobile platforms and strong manipulators enable the execution of complex tasks, the employ-
ment in highly dynamic environments and allow intelligent robots to enter human-centered
environments.

While the use of robotic manipulators is already common in industrial manufacturing,
these systems are still strictly separated from the humans’ workspace for safety reasons.
There is, however, an effort to join the workspaces of humans and robots and to exploit
the advantages of physical human-robot interaction, which aims at employing strong ma-
nipulators to take over the main load and strenuous tasks while the human partner adopts
a guiding role [MLK+12]. This close interaction of humans and robots operating poten-
tially dangerous tools create a need to identify safety hazards [VB13] and to specify safety
requirements [ISO14; ISO16] for such robotic systems.

An even closer interaction is found in the health care sector, where there is a growing
interest in assistive robotic systems. While tele-operated manipulators are instrumental in
minimal invasive surgery [MLO+03], wearable devices such as exoskeletons are designed to
help patients with motor disorders [Pon10], intelligent systems are used in rehabilitation for
training the patients through kinesthetic interaction [RPH-+05] and mobile robots serve as
mobility assistant for elderly and physically impaired people [GP14].

Robots have entered our homes to clean and efforts are made to introduce robotic as-
sistants helping with everyday chores [Kha99; JG12]. These robotic helpers may even be
trained to assist in the transport and manipulation of bulky object such as, for example,
furniture [SKK03; MLM+11].

Meanwhile, even cars show similarities to intelligent robots as they park and by now even
drive autonomously. The control design of such vehicles faces similar challenges to human-
robot interaction as it requires reliable path planning, an estimation of traffic [ASB09] and
especially of the behavior and intention of human road users [SCC+13].

1.1 Challenges in Close Human-Robot Interaction

The presented exemplary applications involve a close or even physical interaction of humans
and robots. The success of physical human-robot interaction, which is characterized by
a physical coupling of human and robot either directly or indirectly through an object,



1 Introduction

depends on compliance, performance, dependability under real-time conditions and safety of
the developed control scheme [DSD+-08]. Safe interaction is characterized by physical and
psychological factors. It does not suffice to ensure the integrity of the human partner but the
interaction also needs to be comfortable and stress-free [LFS17]. Therefore, it is desirable
for the robot to carry out predictable motions which allow human co-workers to assess the
consequences of actions [SR11].

Challenge 1. Is it possible to design the control input such that the resulting interaction
feels natural to human partners?

Nevertheless, guaranteeing the integrity of any humans in the vicinity, the environment and
the robotic system itself is essential. This imposes restrictions on the robot as it introduces

bounds on velocities, interaction forces and configurations as the avoidance of potentially
harmful collisions has to be avoided [ISO14; ISO16].

Challenge 2. How may the satisfaction of arbitrarily high numbers of constraints be guar-
anteed in real-time applications even in the presence of interaction forces?

Naturally, there is generally the potential for undesired collisions due to modeling or
measurement errors, which may be resolved by designing the compliance such that forces
occurring due to undesired collisions are minimized [HAD+08]. Ideally, however, the goal
is to avoid collisions altogether by designing a control approach that anticipates imminent
collisions and avoids them by constraining the robotic system to a virtual safe region using
constraints. If it is possible to combine such a method with active compliance control [Hog85;
AOF+03] or PD tracking control [MLS94] in a single framework, this allows to design the
behavior to facilitate successful human-robot interaction. As there are applications which
require the use of learning-based approaches such as reinforcement learning [WSB90; BBS06],
the control framework should be able to handle implicit goal descriptions.

Challenge 3. How may little interference with arbitrary goals and tasks be achieved in the
presence of constraints?

As humans move and everyday environments may change dynamically, the imposed con-
straints vary over time. Being able to satisfy the imposed dynamic constraints creates the
need for accurate methods to estimate human motion [CJP+16], for example by exploiting
knowledge about the underlying dynamics such as the minimum jerk property of human
motion [FH85]. Such a motion model is also helpful in creating a behavior that improves
the perceived safety [LFS17]. However, estimations are generally afflicted with errors, which
means that a constraint enforcing control scheme has to handle the resulting uncertainties,
for example by using knowledge about the related distribution or by using samples.

Challenge 4. How may uncertainties in measurements and estimations of constraint defi-
nitions be included in the constraint description?

If these uncertainties are widespread, the admissible space available may be highly re-
stricted. This is also true for narrow environments or applications including multiple closely
interacting robots and/or humans. In this case, each agent should be able to use as much
of the unconstrained space as possible for achieving the task objective. Furthermore, if the
robots are able to share the effort necessary for constraint satisfaction, this has two effects:



1.2 Control for Constraint Satisfaction

individual agents experience less limitations and prioritization of tasks is enabled. As, for
example, the rescue of an injured person is probably more important than scouting the en-
vironment and reaching the docking station for low energy takes priority over a cleaning
task, the possibility of task prioritization is useful for applications including multiple agents
carrying out tasks of different importance.

Challenge 5. Is there a way to share the effort for constraint satisfaction between multiple
agents?

Addressing these challenges is key to a successful interaction. The present thesis studies the
design of control schemes for safe human-robot interaction, concentrating on the presented
challenges.

1.2 Control for Constraint Satisfaction

There is a variety of control approaches to choose from to achieve the satisfaction of con-
straints required for safe human-robot interaction.

Potential fields, for example, are applied in collision-free navigation and obstacle avoid-
ance [Kha85; RK92|. Using repulsive potentials allows to artificially limit the workspace
of a robotic system to a safe region [DKW+14]. The functions may even be designed to
handle geometric uncertainties [NRL94|, which addresses Challenge 4. As the control input
is determined analytically, the use in fast real-time systems is straightforward. However, it
is not straightforward to explicitly take the system dynamics into account. As these are not
negligible especially for high inertias or high accelerations, potential fields are not able to
provide the satisfaction guarantee requested in Challenge 2.

In the area of virtual reality, haptic feedback is provided by virtual wall rendering, where
the stiffness switches from low to high values at a wall [GC96]. Similarly, virtual fixtures,
which originate from tele-operation [Ros93], provide an overlaid haptic feedback, for example
for improved performance in robot-aided surgery but also for guiding robots [MLO+03] and
robot-assisted manipulation [AMOOQ7|. The approach is designed to reject any motion into
forbidden regions and aims at guidance for improved performance. However, as both virtual
walls and virtual fixtures do not include the system dynamics, they are not able to address
Challenge 2 and do not guarantee the constraint satisfaction required for safe human-robot
interaction.

The dynamic window approach [FBT97; LAW+11] is used to generate safe platform tra-
jectories. It restricts the available velocity inputs to safe values by predicting the system
trajectory thus achieving obstacle avoidance. The approach is designed for velocity inputs
and hence lacks flexibility as it may not be applied to the torque controlled manipulators
that are required to generate the desired compliance in physical human-robot interaction.

Shared control provides a trade-off between a human-generated input and a stabilizing
input [GG04; KBS+06; SCC+13] or an input designed for constraint satisfaction [JA14].
The result may however be suboptimal in a way that the system does not necessarily use
the safe space to all extent, which is disadvantageous in narrow environments.

The probably most well-known approach, model-predictive control (MPC) [MRR+-00],
originates from constrained control and allows for input, output and state constraints. A
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control input is derived by joining task objectives and constraints in a constrained opti-
mization problem. MPC may be combined with barrier certificates for the strict satis-
faction of constraints [WHO04]. Furthermore, there are robust MPC [BM99] and scenario
MPC [SM15; GZM+16], which enable handling uncertain constraints. Note that while
robust approaches guarantee constraint satisfaction, scenario-based MPC provides a satis-
faction probability [CCO05]. However, even though there exist implementations designed for
fast real-time applications [ITO+11], in general, the cost of solving the optimization prob-
lem may prevent finding a solution in real-time especially for high-dimensional and nonlinear
systems subject to a high number of constraints.

Set-based control approaches with examples including reference governors [GK02|, com-
mand governors [AM99], invariant and reachable sets [Bla99] rely on deriving a set solely
containing admissible actions or states. If the control input keeps the state within such a
set, constraint satisfaction is guaranteed. Deriving robust sets [FAC10] allows accounting
for uncertainties in the constraint description. Furthermore, reachable sets are also demon-
strated to be suitable for safe learning [AFG+14]. Even though there exist the so-called fast
reference governors [VKS07], the computation of these sets is costly especially for complex
system dynamics, which renders them unsuitable for applications with high sampling times.

Barrier certificates [PRO7] are another approach that allows including constraints in control
loops. They are used as control barrier functions (CBFs) in combination with feedback-
linearization [AGT14; RKH16; Xul8| similar to invariance control [MBS00; WB04; SWBO0S].
Both methods combine characteristics from optimization-based and set-based approaches.
They apply feedback linearization to simplify the derivation of an invariant safe set of states
and control inputs. They choose a suitable control input by solving a convex optimization
problem, which allows for the use of efficient solvers and enables the application in real-
time addressing Challenge 2. However, only preliminary results are available for invariance
control in the presence of uncertainties [BG10; MB99], an issue that has not been addressed
to date for CBFs to the best of our knowledge. Furthermore, an approach for distributing
the control action in multi-agent systems using the linearization-based approaches is missing
to date.

Addressing Challenge 5, there exist some approaches especially designed to satisfy con-
straints in multi-agent systems. In [Ros96; FSRO1; FRO03], collision avoidance in real-time
environments (CARE) is introduced for multi-agent systems. CARE is, however, not able to
provide guarantees for constraint satisfaction as the approach only achieves an approximate
reaction especially for complex shapes or structures. Another approach handles multi-agent
collision avoidance by stopping the lower priority agents [CYZ+07], which may result in
agents blocking the path. Alternatively, task allocation models [LJX15; MBH+15] dis-
tribute evasive actions and schedule tasks on the basis of existing priorities, but do not allow
re-scheduling in case of changing priorities.

1.3 Main Contributions and Outline

This thesis aims at developing a control framework, which efficiently determines a control
input for constraint satisfaction as well as task execution in real time, which is safe in
human-robot interaction and applicable in case of uncertain constraints and for multiple
agents, hence addressing the challenges discussed in Sec. 1.1.

Chapter 2 introduces the general setting consisting of system, task-oriented control and
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constraints. Based on the system characteristics, Chapter 3 introduces two control ap-
proaches for guaranteed constraint satisfaction suitable for close and physical human-robot
interaction. Chapter 4 examines the effect of uncertainties on the constraints and provides
extensions to the previously introduced approaches. Chapter 5 develops a strategy allowing
the introduced control methods to share the control effort between multiple agents. All
derivations are supported by experiments and examples. Conclusions and potential future
directions are presented in Chapter 6 and the proofs supporting the formal results are pro-
vided in the appendix.

At the beginning of each chapter, a brief review of the relevant related work and the
open problems is provided. The major contributions of this thesis addressing the presented
challenges are outlined in the remainder of this section.

Chapter 3: Control Methods for Guaranteed Constraint Satisfaction

This chapter addresses Challenge 1-3. We show that the input/output (I/O)-linearization-
based control approaches, invariance control and CBF-based control, may be added to arbi-
trary task-oriented control laws while guaranteeing the satisfaction of dynamic constraints.
We address the implementation in sampled real-time systems and present augmented invari-
ance control as an approach allowing for more adaptability in the dynamics of the controlled
system, thus being able to design a behavior suitable for close and physical human-robot
interaction. The results presented in this chapter have partially been published in [KH14;
KH15; KH16; RKH16; KJH16; KH17].

Chapter 4: Satisfaction of Constraints with Uncertain Parameters

This chapter addresses Challenge 4. Extending the control approaches presented in Chap-
ter 3 to allow for the satisfaction of constraints with uncertain parameters, we present control
for robust, probabilistic and scenario-based constraint satisfaction. Preserving the charac-
teristics of the original control methods, the control types guarantee robust or probabilistic
constraint satisfaction and are interchangeable to allow for a combination of the different
constraint types. The results presented in this chapter have been partially submitted for
publication in [KPHed].

Chapter 5: Sharing Control in Multi-Agent Systems

This chapter addresses Challenge 5. Extending the control approaches presented in Chap-
ter 3, we introduce shared constraint enforcement. Using weights, which are determined from
agent priorities, the control effort is divided between the agents to allow for improved task
execution and a distributed implementation. We further introduce a two-stage prioritization
scheme that avoids blocking situations and distributes priorities according to a variety of
criteria. The results presented in this chapter have been partially submitted for publication
in [KPW+ed].






Problem Setting

The choice of control scheme for achieving safe and task-oriented control of a dynamical
system depends on various factors: number and shape of constraints, desired behavior in
the admissible space, behavior in case of constraint violations, size and characteristics of the
system such as linear or nonlinear, control-affine, discrete, sampled or continuous. These
factors strongly influence whether a certain constraint-enforcing control approach may be
considered or not and thus need to be examined carefully. In addition, to allow for wide
applicability, the constraint enforcement should be compatible with any type of desired
behavior. This is the case if the constraint-enforcing control scheme (corrective control) may
be added to any existing control loop of system and task-oriented control (nominal control)
as depicted in Fig. 2.1. This structure allows nominal control to be designed according
to task specifications such as stability, tracking behavior and compliance to forces without
any considerations of the constraints. The corrective control part should then combine the
nominal control signal with knowledge of constraints and system and adapt the control input,
if necessary, to ensure adherence to the constraints.

This chapter establishes the prerequisites for developing such control schemes. First, the
requirements for general stand-alone systems based on [WB04; AGT14] and multi agent
systems according to [KPW-+ed] are introduced. The subsequent definition of constraints
with static [MBS00] and dynamic [KH15; KH17] parameters includes both constraints with
exactly known and constraints with uncertain parameters [KPHed]. Finally, the problem
setting is completed by discussing the requirements that a task-oriented control scheme has
to meet and by introducing well-known control laws for robotic applications.

constraints:
definition & parameters

desired v
behavior, task-orienlted constraint-enforcing input | controlled system: U
> (nomicr?ar}tzgntrol) - (Correggc(:rglmtrd) | dynamics & output |state
A A

Figure 2.1.: Desired control structure with the constraint-enforcing controller added to the
control loop in between the system and the task-oriented controller.
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2.1 System

Let a stand-alone control affine nonlinear system be given in a time-continuous
control affine form

= f(x)+ G(x)u
Ynat = Pnat(T) (2.1)
.’,U(to) = X

with state € R", input w € R™ and output y,,, € R"*. The dynamics are determined
by the locally Lipschitz vector fields f : R” — R" and g, : R" — R™ with ¢ € {1,...,m},
which make up the matrix vector field G = [g; ... g,,] : R" — R"*"™.
In a setup of multiple control affine nonlinear systems, the dynamics of each
agent i € N,g, where
Nog={i €N 1< i<yt (2.2)

is the set of agents, are given by
&; = fi(x;) + Gi(xi)u,
Yuat,i — hnatﬂ(a"i) (23)
x;(ty) = xip

with state ; € R™, input w € R™ and output y,,,; € R™=. Hence, the concate-

nated state * = [z{...z] |7 € R", input w = [u]...w] |7 € R™ and natural sys-
tem output Y. = [Yhae1 - - Yhatnae)! € R™2 of the multi-agent system have the dimen-
sions n = Yienn, Nis M = YieN,, Mi and Ny = D i€ Ny Mmati- Locally Lipschitz vector

fields f; : R" — R™ and g, ; : R — R™, j € {1,...,m;} determine the dynamics and the
matrix vector field G; = [g; ; ... g;,,,] : R — R™>ms,

The control approaches proposed in this work rely on input/output (I/O)-linearization of
the system using an artificial output representing the constraint. In order to allow for the
linearization, the following assumption concerning the system properties is necessary.

Assumption 2.1. The (matriz) vector fields f(x), G(x) for stand-alone systems (2.1)
and f,(x;), Gi(x;) for each agent i in a multi-agent system (2.3) are sufficiently smooth to
allow for 1/0O-linearization.

As 1/O-linearization involves partial derivation of the vector fields, sufficiently smooth
means that these derivatives are defined and continuous [Kha96, p.508]. The system prop-
erties are illustrated in the following example.

Example 2.1 (Generalized dynamics of robotic systems). As an example, we consider
a robotic system with the dynamics

My(q)G+ Cqlq.d)d +9,(q) =T (2.4)

and the generalized coordinates ¢ € R™. The dynamic behavior is influenced by the
mass matrix M,(q) € R™*"¢  the Coriolis and centripetal forces Cy(q, g)g € R", the
gravitational torques g,(q) € R" and the torque input 7 € R". By defining zr =
[q7, ¢T]T € R?" as the state, the robot dynamics (2.4) are transformed into the control
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affine form
SR SR [ 0
B =M, (q)(Cqlq, 4)d + g,(q)) M, '(q) '
Fr(zR) GRr(zR)

This system may be I/O-linearized with respect to any output function depending on g, ¢
or the entire state g as shown in [KH17] and thus fulfills Assumption 2.1.

2.2 Constraints

Wide applicability of a constraint enforcing control scheme is given if it allows for different
types of constraints: convex and non-convex, static and dynamic, exactly known and with
uncertain parameters. Each constraint on the system state x is defined as artificial output
function which fulfills the following conditions.

Definition 2.1. A constraint (output) function y. is an analytic function depending
on the state £ € R" and parameters n € D, C R" and fulfills

< 0 if  adheres to the constraint for n,
Yo = he(x,m)< =0 if x lies on the constraint for 7,

> (0 if x violates the constraint for 7.
Each such function represents a single state constraint.

Note that even though Def. 2.1 addresses state constraints, the concept may straightfor-
wardly extended to output constraints.

Remark 2.1 (Output constraints). A constraint on the output y,,, is represented by

<0 ify,,, adheres to the constraint for n,
Yo = he(Ypat,m) § =0 if y,,, lies on the constraint for 7,

>0 if y,,, violates the constraint for 7.

Using the dependence of the output y,,, = hn.t(x) on the state @, the constraint function
may be expressed as a state constraint similar to Def. 2.1. Hence, output constraints are
merely a special case of state constraints. This type of constraints is therefore not addressed
explicitly in the remainder of this work as the introduced concepts for state constraints hold,
by extension, also for output constraints.

Two types of state constraints, namely linear and spherical constraints, are often used in
control applications. Upper or lower limits are best described by linear functions, whereas
more complex objects or humans may be encased in multiple spherical constraints [DAO+07].
Linear and spherical constraints are discussed in the following two examples.

Example 2.2 (Linear constraints). The most straightforward type of constraints are
linear constraints. In their most general form

he(z,m) =nlx —ny , with n = [nl, n)T (2.6)
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they are, for example, useful to model environmental constraints such as walls or limit
the state space of the controlled systems. Two special cases of these constraints provide
the means to model lower limits

hC(CL', 77) = Thow — i , with N = Now (27)

and upper limits on any state x;

hC(CL', 77) =T; — MNup , with N = Tup - (28)

An illustration of how upper and lower limits define constraint admissible state values is
provided in Fig. 2.2a. Each constraint cuts the state space in an admissible (h.(z,n) < 0)
and an inadmissible (h.(x,n) > 0) half-plane. If an upper and a lower limit are combined,
the admissible half-planes of the two constraints need to overlap, i.e. Now < Nup, as
depicted in the figure for admissible states to exist.

Example 2.3 (Spherical constraints). Another useful constraint type are spherical lim-
its. They either render all states outside of the spherical constraint admissible

hc(.’B, 77) =TMr — H.’E - "7m”2 ) n= ["ﬂmﬁr]T (29)

or all states inside the spherical constraint admissible

hC(IB,’TI) = H.’B - nm”Q —Nr s n= ["ﬂmﬁr]T . (210)

The first type allows the definition of restricted areas in the state space as required for
obstacles. Different shapes are achieved by a combination of multiple spherical con-
straints. For the second type, the restriction of the state space is more severe as this
constraint renders only the states inside the spherical constraint admissible. Both types
of spherical constraints in two-dimensional space are illustrated in Fig. 2.2b and 2.2c.
The admissible states (h.(x,m) < 0) of the first type in Fig. 2.2b lie outside the sphere,
while states within the sphere are inadmissible (h.(x,n) > 0). Contrary to that, the
admissible states (h.(x,m) < 0) of the second type in Fig. 2.2¢ lie within the sphere,
while inadmissible states (h.(x,n) > 0) are on the outside.

Naturally, many applications require the definition of more than one constraint. In order
to define arbitrarily many constraints, the individual constraint functions are concatenated

in a vector
h0,1<w7 "7)

Yo = he(x,n) = : , (2.11)
h’C,l(wa "7)
where the indices of the constraints are taken from the set of constraints

B={ieN|1<i<I}. (2.12)

Based on the constraint functions, it is possible to identify a constraint admissible subset of
the state space.

10
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s/ ] . 7 ; >
H 2 nm L ] x]_ o," : " 3:1
77|OW 77'.1 p % 777"“~~ s
Mow — L5 S 0 g™
B v <0 = |le—n,l, <0 e — 1,y — 7, < 0
(a) (b) ©

Figure 2.2.: Illustration of admissible state values, i.e. he(x,n) < 0, for (a) upper and lower
bounds on a state x;, (b) a spherical constraint, where the outside of the sphere
is admissible, for € R? and (c) a spherical constraint, where the inside of the
sphere is admissible, for € R2.

Definition 2.2. The admissible set of states contains the states which adhere to all
constraints and is defined as

H(n) ={x | hc(x,n) <0 VieB}.

In order to guarantee adherence to all limits, the used control law should keep the states of
the system (2.1) or (2.3) within the admissible set for all times. The control approaches pro-
posed in this work rely on I/O-linearization to find an appropriate control action, generating
a necessity for the following assumption.

Assumption 2.2. For alli € B, there exist constants r; € N such that each of the following
conditions is fulfilled:

(i) hei(x,m) is r; times differentiable with respect to time and for a continuous input

hei(x,m) € C" holds ¥ i € B,
(7t) each he;(x,m) fulfillsV n e D,

»?;G%l}hc,i(w,"?) =01xm VO<k<r—1,
%G%?ilhc,xwa 77) 7£ 01><m

(1it) each n;, 1 < j < ny is rmax + 1 times differentiable with respect to time and n; € C'™ex
with
P = WX (1)

() each nj, 1 < j < n, and its ryax derivatives are measurable and bounded,

(v) H(n) is non-empty, i.e. H(n) # 0.

11
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The necessity for conditions (i)—(iii) follows directly from the requirements of I/O-linearization.
By designing the constraint output accordingly, it is ensured that the condition holds. In
view of the application, the constraints have to be designed such that the admissible set does
not include any singularities as these lead to a loss of manipulability and unsafe behavior.
Without any singularities in the admissible set, controllability is achieved and intuitively,
this means that it is possible to apply inputs which result in a motion away from the con-
straint. In addition, condition (v) is natural, since it would be impossible for the controlled
system to adhere to all constraints if no admissible states exist.

Remark 2.2. The admissible set may also consist of multiple disjoint admissible sets
H=H,U...UH,, ,

where each set H;, 1 € {1,...,ly} is defined by a set of constraints according to Definition 2.2.
In order to achieve constraint adherence in this case, the set H,;, which contains the initial
state, has to fulfill condition (v).

The restrictions, which (iii) and (iv) impose on the parameter dynamics, are owed to
the requirements of I/O-linearization used for the control derivation. Parameter dynamics
generated by jerk controlled systems, such as human motion [FH85], fulfill these requirements
for rpax < 2. If the conditions on the parameters do not hold naturally, the parameter
variation has to be represented by a sufficiently smooth approximation. If it is not possible
to measure 7, an estimation, e.g. using an observer, of the parameters has to be included.

In this work, the dynamics generating the parameters n € R™ are modeled by

17 0., I., ... 0, n 0.,
TZ _ : : : : - 4 . uTI ’ .’Bn(to) — wn,O (213)
’l(’]( ma:—)l) Onn e Onn Inn 77( (max )1) Onn
77 max 077/77 Onn 077/77 77 max ‘[n?7
———— ~————
2 Tn
fn(xn)

with the state x, € Rrmaxtmn - the input u, € R™ and with 7y, according to Assump-
tion 2.2. This may seem rather restrictive at first, however, any parameter dynamics fulfilling
Assumption 2.2 may be transformed into the above form using I/O-linearization with the
output n and the input u,, = nrm=+l),

Remark 2.3. Static constraints are modeled using constant parameters 17, which is achieved
by choosing @, o = [n7,01xn,; - - -, 01xn,|T and u, = 0, 1 in (2.13).

2.2.1 Input/Output-linearization

For constraints fulfilling Assumption 2.2, it is possible to perform an I/O-linearization of
system (2.1) with respect to the outputs given by the constraints (2.11). This allows the
determination of the influence of the system input « on the change of the constraint functions.
I/O-linearization is achieved by deriving each element of (2.11) with respect to time until u

12
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appears explicitly. The linearizing input transformation is then given by

s =yl = al(x.n)u+ be(a,x,) | (2.14)
with al (x,n) = %G%}i_lym ;
beilm, @) = (Ly+Z, 1) Yes

which is determined by deriving each constraint function r; times, where r; is the so-called
relative degree. Note that with Assumption 2.2, a;(x,n) # 0,,x1 holds, which is re-
quired for a well-defined relative degree r; and hence a valid 1/O-linearization [Kha96; SS12,
p.508fL.].

For the vectorial output (2.11), the individual transformations (3.1) are concatenated into
matrix-vector notation

z=A.p(x,n)u+ bz, x,) , (2.15)
alq(x,n)
with Acs(x, ) = [al (T, N)]ics = : ;
al,z(mm)
bes(x, x,) = [bei(x, x,)ic = [bc,l(:c,wn) bql(w,wn)]T :
Such a vectorial output is associated with a vector relative degree » = [r; ... r]T. A

necessary and sufficient condition for the existence of a I/O-linearizing transformation for a
vectorial output is a well-defined vector relative degree [Isi95].

Definition 2.3. The control affine system (2.1) has a well-defined vector relative degree
given by » = [r; ... 7|7 on a subset X of the state space if the following conditions are
fulfilled for all z € X C R", x,, € R{rmaxthnn;

1. L6 ZL5Yei =01xm VO <k <r;—1,1<i <,
2. the decoupling matrix A.p € R™™ has full row rank.

zG%;lilyc,l

rank(Ag(x,n)) = rank =1

«iﬁa«%?ilygz

The first condition is straightforwardly fulfilled by Assumption 2.2. However, if the number
of constraints is larger than the input dimension [ > m, the second condition is not fulfilled.
In addition, I/O-linearization may result in potentially unstable internal dynamics if the
system is not fully linearized. The existence of internal dynamics is indicted by the total
relative degree.

Definition 2.4. The total relative degree r corresponding to an output with a well-
defined vector relative degree r = [ry ... 1] is given by the sum of the elements of the
vector relative degree.

l
r=>yr (2.16)
=1

13
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Note that for scalar outputs, the total relative degree is equal to the relative degree. Then,
if the total relative is smaller than the number of states in the system, internal dynamics are
present [Kha96, p.508ff.].

The control schemes derived in this thesis, do, however, not rely on an exact 1/O-linearization
of the system and stability properties are analyzed separately. As the linearizing transfor-
mation (2.15) is solely a means to determine the influence of the input on the output, it is no
problem if internal dynamics occur or if the number of constraints is larger than the input
dimension even though the vector relative degree is not well-defined in this case.

Up to this point, we implicitly assume that the constraint parameters are exactly known.
In some applications, however, this may not be the case.

2.2.2 Uncertain Parameters

If the constraint parameters are subject to uncertainties, either due to a smooth estimation
of the parameter dynamics, due to stochastic uncertainties in measurements or because the
model is not exactly known, this introduces the need to model constraints with uncertain
parameters. These uncertainties are represented in the following way.

Assumption 2.3. The uncertain parameters x, are given by

n 9y
_ . 7 9;
x,=%,+4,, T, = : : A, = : (2.17)
ﬁ(rmBX) 5n(rmax)

where the elements of &, are smooth trajectories and A, represents the stochastically dis-
tributed variations of the parameter values from the trajectories.

This parameter model splits the parameters into a continuous part Z,, which models
the general trend of the parameter variation, and a stochastic part, which differs for each
instance of the uncertainty according to the underlying uncertainty distribution. A fitting
representation for &, is, for example, the expected value of the parameter distribution,
but other definitions may be considered as well. Furthermore, we introduce the set of
uncertainties D C R™("maxt1) wwhich contains all possible instances of A, ie.

P(A, D)= P(D)=1. (2.18)

For now, we do not make any assumptions on this set or the underlying probabilistic distri-
bution.

2.3 Task-oriented Control

In addition to the system dynamics, the constraint definition and a constraint enforcing
control law, the envisioned control loop in Fig. 2.1 includes a task-oriented control law also
called nominal control. Using a desired behavior, for example a desired state trajectory, the
state and/or output of the system, this control law yields an input wu,,, which is designed
without taking any constraints into account, solely according to task specifications and the
performance goal. In this work, we assume that nominal control exhibits the following
stability property.

14
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| measurable disturbance i
v | Uext i
b _ . I . v ;| state
nominal |%no | corrective [Uc Oeu input controlled || = _
Py control control : control 9 > system |
o T I ue :
desired behavior : . | unknown disturbance |4 :
L des : | constraints I
| . i
inner control loop !
L - - - T - 4

Figure 2.3.: Structure of a system with external disturbances (measurable and unmeasur-
able) controlled by two cascaded control loops and add-on constraint-enforcing
corrective control.

Assumption 2.4. Nominal control globally stabilizes the tracking error €, = Tges — T N
the sense of Lyapunov, where x4 is a sufficiently smooth desired trajectory, if no external
disturbances occur.

With this assumption, stable tracking is guaranteed if nominal control is applied and no
disturbances are present. As stability is the most basic design goal, the assumption is gener-
ally fulfilled for control schemes derived from explicit goal descriptions. If goal descriptions
are given implicitly as for example in learning-based approaches, stability properties are not
immediately clear. This issue may be resolved by restricting the set of control laws, which
makes up the basis for the learning process, to solely stabilizing control laws.

Remark 2.4. Assumption 2.4 is required for the stability investigation of the controlled
system in the following chapters. It may, however, be disregarded if stability is a subordinate
goal as constraint adherence will be independent from any stability properties. This allows
the use of other stability notions.

Extending the framework of Fig. 2.1, some applications involve cascaded control schemes
and external disturbances as depicted in Fig. 2.3. Here, direct application of the control
input generated by the serial connection of nominal control u,, € R™ and corrective con-
trol u. € R™ to the system does not result in the desired behavior. Both the measurable
disturbances ., such as for example forces and torques occurring in physical interaction
of robots with humans and the environment, and the unmeasurable disturbances u,, result-
ing from measurement errors and unmodeled dynamics, lead to a distortion of the input.
Therefore, an inner control loop is included which stabilizes the error between the control
input from the outer loop u, and the system input w

ey =U.— U . (2.19)
As the goal is to achieve u = u. € R™, we make the following assumption on the control
law in the inner control loop.

15
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Assumption 2.5. The inner loop is input-to-state stable (ISS) with respect to bounded

INPULS Uezy and W, i.e.
uext(s)
U(S)

with a class KL function o and a class KC function 5 holds for any initial error e, (ty) and
all t Z to.

lea(®) < allleu(to)ll,t —to) + 8 ( sup

to<s<t

The condition imposed by the assumption is met by choosing an appropriate control law
for input control. However, after the addition of the inner control loop in between corrective
control and the system, it is not immediately clear, whether the requirements introduced
in Section 2.1 are still fulfilled. Regarding the inner control loop as the new system, the
structure reminds of Fig. 2.1. The system represented by the inner control loop has the
dynamics

& = f(2) + G(@)(uc — e) (2.20)

and is therefore control affine with respect to the new input wu., thus fulfilling the system
requirements. From this formulation, it is clear that knowledge of the input error e, € R™
is required for a full system description.

Assumption 2.6. The input error e, from (2.19) is known and bounded.

As e, is used for input control, it is safe to assume that it is generally available. This
also explains the positioning of corrective control in between nominal control and input
control instead of between input control and system. The second option would require
exact knowledge of all disturbances for a full system model, which is not available as some
disturbances are assumed to be unmeasurable and therefore unavailable in contrast to e,
which is available. In view of the application to robotic systems, consider the following
remark.

Remark 2.5. For torque-controlled robotic systems, the previous considerations are directly
applicable [KH17] and by adapting the control law accordingly, it is applicable to position-
controlled robots as well. In that case, the corrective control law needs to be included in the
generation of the desired position.

In the following, we will give some examples for well-known control laws that are commonly
used in the control of robotic systems.

Example 2.4 (Example 2.1 continued). In torque controlled robotic systems, the control
structure is often similar to Fig. 2.3, where the inner control loop is the torque control
loop for the input w = 7 of the robotic system (2.5). Apart from measurement and
modeling errors, these systems are subject to external forces and torques caused by
physical interaction or collision with the environment or with humans. In order to
eliminate the effects of the disturbances on the task execution, the inner torque control
loop may be designed using the concept of passivity, which leads to a proportional-
derivative (PD) control law [AEG+08].

In general, the control goal of the outer loop is given in task coordinates p € R"»,
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which are a function f, : R™ — R" of the generalized coordinates q € R"
p=f,(a). (2.21)

The Jacobian matrix J(q) = g—z € R"»*"a relates the task and generalized velocities as
well as the forces/torques f, € R"™ in task space and the generalized torques 7oy € R™

to each other

p=J(q)q (2.22)
Text = J (@) Foxt - (2.23)

Examples for the control law of the outer control loop generating the nominal in-
put T,, € R" range from motion control such as proportional-integral-derivative (PID),
tracking or computed torque control [SK08, Ch. 6] to force control with stiffness and
impedance control [SK08, Ch. 7]. Stiffness and impedance control are especially helpful,
if compliance to external forces and torques is required. By imitating spring damper be-
havior, these approaches achieve compliance while tracking a desired trajectory. Hence,
any desired motion may be actively changed by the application of forces by a cooperating
human. Depending on the control goal, implementation in task coordinates [AOF+03] or
in joint coordinates [OAK+08] may be chosen. In task space, for example, the impedance
control law is given by

Tno = J(q)T(fext+Mpﬁdes + Dp(pdes - p) + Kp(pdes - p))+Cq(q, Q)q+gq(Q) (224)

with M, € R"*" K, € R"*" and D, € R"™*" being the positive definite Cartesian
mass, stiffness and damping matrices, respectively. The desired trajectory py. € R" is
assumed to be sufficiently smooth to allow for two time derivations and (2.23) relates the
external forces/torques f.., to the corresponding generalized torque Toy. The stiffness
and damping matrices are chosen to fit the task requirements and may be adapted on-
line, if necessary [BT04].
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Control Methods
for Guaranteed Constraint Satisfaction

Guaranteeing the satisfaction of possibly dynamic constraints while successfully completing
the control goal is at the same time challenging and essential in safety-critical control ap-
plications. The used control scheme needs to be able to handle high numbers of constraints
in real-time even for fast sampling times. Furthermore, especially in scenarios involving
the physical interaction with humans, the constraint satisfaction should not deteriorate the
quality of the interaction experience. Hence, ideally the robotic system adjusts its dynamics
to mimic human-human interaction and to meet the human’s expectations.

Related Work and Open Problems

Methods from collision avoidance such as potential fields [RK92] or virtual fixtures [Ros93]
are designed to achieve collision-free motions in real-time. They are, however, unable to
guarantee constraint satisfaction for all manipulator dynamics. Control approaches such
as MPC [MRR~+00], reference governors [GK02] and those based on reachable [Gill3] or
invariant sets [Bla99] are the most well-known approaches for guaranteeing constraint sat-
isfaction. They are able to handle state and output constraints. However, as they involve
costly optimizations or set calculations, finding a solution in real-time might prove hard if
not impossible.

This chapter introduces how input/output (I/O)-linearization may be used to design con-
trol schemes for the satisfaction of state and/or output constraints. Invariance control [KH15;
KH16; KH17] and control barrier function (CBF)-based control [RKH16] are added to ar-
bitrary nominal control laws to be able to satisfy dynamic constraints while executing the
imposed task. Both control schemes may be implemented as an add-on to nominal control
thus leading to the structure of the control loop being similar to the envisioned structure
in Fig. 2.1. As the switching control law of invariance control is prone to chattering at
boundaries, which may deteriorate the performance and the quality of the outcome, we
additionally introduce a method for chattering reduction from [KH14] and augmented in-
variance control [KJH16], which allows for more adaptability in the behavior of the controlled
system.
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3 Control Methods for Guaranteed Constraint Satisfaction

3.1 Invariance Control

In the following, we will give a thorough introduction and analysis of invariance control with
dynamic constraints. Invariance control usually assumes an undisturbed system. External
disturbances such as forces in human-robot interaction, however, lead at least temporarily
to an input error e, different from zero. Therefore, we will explicitly include the effects of an
input error in the control scheme. Invariance control is introduced for MIMO systems with
state constraints and input disturbances but application to systems with single input and/or
single output with output constraints or without input disturbances is straightforward.

In this section, invariance control is developed for systems controlled in continuous time.
Based on the system equations with input disturbances (2.20) and the constraint description
according to Def. 2.1 and (2.11), we determine a corrective control input, which achieves
constraint satisfaction in the presence of external disturbances caused for example by model
and measurement uncertainties. The control derivation relies on determining the influence
of an input signal on the value of the constraint function.

3.1.1 Input/Output-linearization

Feedback linearization with respect to the constraint functions (2.11) determines the influ-
ence of the input w on the change of the constraint function. The input transformation is
determined analog to (2.14). Including the input error, it is given by

Zp = y((:j;‘i)
with al;(x,n) = Ze m;iilyc,i ;

bei(@, T €4) = (Ls+ L, 1) vei + aly(@,m)ey .

= al,i(wan)u+bc,i(wamnaeu) ) (31)

While the output remains the constraint function y.;, the input is replaced by the new
pseudo input z;, output and input now being connected by a time-invariant integrator chain
with r; integrators [PK97].

Example 3.1 (Example 2.1 continued). In robotic systems (2.5), relative degrees one or
two are the most relevant as they correspond to joint, task space and velocity constraints.
In this example, we assume that no input disturbances are present, i.e. €, = 0,,%1. Since
the type of constraint function determines the relative degree, we distinguish two cases:
velocity constraint functions y.; = he (2, n) depending on joint velocities and optionally
on the joint positions and position constraint functions y.; = hci(q,n) depending solely
on the joint positions.

Velocity constraint function: The constraint functions y.; = h;(x,n) represent
for example joint velocity limits or task space velocity limits. If the velocity constraint is
on joint level, the output function only depends on the joint velocities g, whereas if the
constraint is on task space level, the output function depends on the joint velocities ¢
as well as on the joints q due to the transformation (2.22). Differentiation with respect
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3.1 Invariance Control

to time in combination with the system equation (2.5) yields

Ohei.. Ohe;. Ohey

Ohe.s Ohe.s Ohe: . Ohe.
_ c,szl . c,szl C . C,i o @ o
9g Ma ™~ 55 M (Cyd + 9q) + aq‘” o "

As the system input 7 appears already in the first time-derivative, ; = 1 holds and the
I/O-linearizing transformation (3.1) is determined by

ali(@m) = My (3.2)
ahci _ 9 ahcz 0 ahcz 0
bei(x, @) = 9 M, (Cod +9gq) + 3q 4T on 1 (3.3)

Position constraint function: The constraint functions y.; = hci(q,n) may rep-
resent, for example, joint limits or bounds in task space. As task space limits may
be transformed into joint space using (2.21), the functions depend solely on the joint
positions g and differentiation with respect to time yields

. . ahc,i .+ahc,i.

yC,Z_ aqq 877777

o acz acz acz acz
Yei = Polg g Doty ey 4 O

9q dq on on

ahci — ahc,i — .
= aq’ Mq 17-_ aq Mq 1(qu+ng)

+ 3 ahc,i . . + 23 ahc,i . . + 2 ahc,i . . + ahc,i .
Bq quq an aqqn an 8777777 87777'

Here, the system input 7 appears in the second time-derivative, i.e. r; = 2 holds and the
[/O-linearizing transformation (3.1) is determined by

Ohe i

al,(x,n) = 9q M, ", (3.4)
ahci — o a ahcz o o ahcz 0o
bc,i(mamn) = - 3q7 M, ! (qu +gq) + 3_q ( 8q7 Q> + 3777 n
a ahcz 9 ahcz a a
— (2 : : . .
+8n< g 4F aﬂn)n (3.5)

Note that although both velocity and position constraint functions are defined in
the generalized coordinates g, task space constraints may be implemented as well. Us-
ing the forward kinematics (2.21) of the robotic system and the corresponding velocity
transformation (2.22), it is possible to express task space constraints in the generalized
coordinates, i.e. hi(p) = hi(f,(q)), hi(P) = hi(J(q)q), and the I/O-linearization and
the relative degree are determined by either (3.2)—(3.3) or (3.4)—(3.5).
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3 Control Methods for Guaranteed Constraint Satisfaction

3.1.2 Prediction of the Constraint Output

As the goal of invariance control is to avoid constraint violations, it is necessary to determine
whether a certain input value will eventually lead to a positive constraint function value, i.e.
a future constraint violation. The prediction of the constraint output value is enabled by
the integrator chains resulting from I/O-linearization which allow the analytic derivation of
how the output is influenced by the input. Note that these derivations would become much
harder, if not impossible, to solve without the use of the linearizing transformation.

Making use of the integrator chain with the input z;(¢) corresponding to constraint 4, it
is possible to predict the behavior of the output y.,(t + At) for any future time ¢ + At
with At > 0 by integration.

At
yiT o+ A =27 0 + [ 5+ ) (3.6)
0
At
YIT A = g0 + [y (4 0dx
0
At X
- g%w+/(%f%>+/%@+m¢0dx
0 0

= o 2 () + Aty () + / ( / z(t+ X)dX) dy (3.7)

0

At
eall + A1) = yealt) + [ et + X)x
0
At

= rf%yﬁ?(t) +//X.../Xzi(t+x)dx” (3.8)

k=0 0
If the pseudo input z; is constant, the future output value is given by [WB04]

At K PANA L
Yei(t + At) = ( Ti!) Zi + kz%%yékz)(t) (3.9)

These results may be used to calculate the instant of time, when a switch to a corrective
action for constraint satisfaction is required.

3.1.3 Invariance Functions and Invariant Set

As a result of (3.6)—(3.8), setting the pseudo input z; to a negative value v; < 0 eventually
leads to a decrease in the constraint outputs and their derivatives, which constitute the
states of the integrator chains. This means that for z; = v; < 0, there exists a maximum
value for the constraint output function, which it takes before starting to decrease [WB04].

Definition 3.1. The invariance function ®;(x,x,, ;) analytically determines the max-
imum future value, the constraint output function will take in case of a constant pseudo
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3.1 Invariance Control

input z; = ; < 0. It is given by

(@, @, %) = max p; (®, xy, i, At) (3.10)
Aty (A
T’i! =0 ]{Z'

W (x, @) . (3.11)

The invariance function allows for the continuous evaluation of the future maximum con-
straint function value. It combines the constraint function with the dynamics of the system
and the relative degree to predict constraint violations. If it is negative, no violation is
about to occur in the future as the constraint function remains negative and hence, no cor-
rective action is required. For an invariance function value of zero, the corrective pseudo
input z.; = 7, suffices to keep the system within the admissible set as in this case, the maxi-
mum future constraint function value is zero. For a positive invariance function, a constraint
violation will probably occur in the future as the corrective pseudo input z,; = ; does not
suffice to keep the future constraint function value non-positive.

Example 3.2 (Invariance function for r; = 1). For r; = 1, the integrator chain has a
single state. The polynomial (3.11) is given by

pi(@, Ty, i, Al) = Aty; + hei(@, ) -
Deriving the function with respect to At

8]92(1', m’r]a Vis At) A
OAt -

shows that the constraint function is constant for 7; = 0 and decreasing for v; < 0. As
a result, the current value h;(x,n) is the maximum value the function will ever take
for 7; < 0 and the invariance function is hence given by

(I)i(wa wn77i> = hc,i("Ea 77) . (312)

Example 3.3 (Invariance function for r; = 2). For r; = 2, the integrator chain has two
states. The polynomial (3.11) is given by

At? :
pi(m> mm Vi, At) = T% + At hc,i($> mn) + hc,i(m> 77) .

Deriving the function with respect to At > 0

api(ma mm Vi, At)
9JAN

= Atyz + hc,i(wv mn)
shows that two cases need to be distinguished when determining the invariance function.

If hc,i(ac, x,) < 0 holds, the expression is negative for v < 0 and hence the constraint
function is decreasing from the maximum value h;(x,n). If he;(x,x,) > 0 holds, the
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3 Control Methods for Guaranteed Constraint Satisfaction

constraint function is at an extreme value for

A _hcﬂ-(az, x,)
Vi
which is a maximum due to
82]92‘(33, mrp Vi, At)
OAt?

=7 <0.
Inserting the expression for At into p;(x, x,, v, At) yields the invariance function

hc,i<w7 77) hc,i(wa wn) S O

(I)i r, Ty, Vi) = hci 2 o 3.13
@2 2 o)~ P2 5 0 o
Vi

Similar to the way how the constraint functions define the admissible set, the invariance
functions define the invariant set.

Definition 3.2. The invariant set contains the states for which all invariance functions
take a non-positive value and is defined as

G(xy, ) ={z| iz, zy,7%) <0 Vie B} (3.14)
with Y= [717 s 77l]T < Orx1-

The invariant set describes the set of states, for which no constraint is violated and for
which no constraint will be violated in the future if the pseudo input z; = ~; is applied
whenever an invariance function reaches zero. In addition, it exhibits a useful property for
achieving constraint satisfaction.

Lemma 3.1. The invariant set G(x,,vy) according to Def. 3.2 is a subset of the admissible
set H(n) according to Def. 2.2, i.e.

G(x,,v) € H(n) .

The proof is provided in the appendix. Note that for a constraint with relative degree
one, the admissible and the invariant set are equal as the invariance function is equal to the
output function as derived in Example 3.2. For constraints with a higher relative degree,
e.g. position constraints on torque-controlled manipulators, consider the following illustrating
example.

Example 3.4. Let the system be a double integrator {j = u with the states y, y and the
input u, which is constrained to y < 0. I/O-linearization yields a relative degree r = 2
and the input transformation v = z. Fig. 3.1 depicts the constraint and the correspond-
ing admissible set composed of the entire left half-plane.

First, we consider y > 0, i.e. the right half-plane. Here, the constraint is violated due
to the positive value of the output and corrective action is required, which is illustrated
by the the states being within the inadmissible set indicated by the red coloring.

For y < 0 and y < 0, i.e. the bottom left quadrant, the negative value of y causes the
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‘o A g
T g - - constraint
‘0. y - 0
d >0
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admissible set
y <0

Sy

invariant set
d <0

Figure 3.1.: Illustration of admissible and invariant set for r = 2.

output y to decrease. This means that while the states remain within the bottom left
quadrant, no violation of the constraint occurs, independently from the current input.
No corrective action is necessary and the entire quadrant belongs to the admissible set
as well as to the invariant set.

For y > 0 and y < 0, consider the example y > 0 and y = 0, for which the positive
derivative will increase the output value y independently from the input, thus causing
an immediate violation. Similarly, there are more values of y, 9, for which no corrective
action exists which keeps the state within the admissible set. This is illustrated by the
fact that the corresponding part of the upper left quadrant is solely within the admissible
set but not within the invariant set, whereas the remainder is in both sets.

The invariance function from (3.13) divides the two parts. The values left of the
invariance functions are the state values within the invariant set, for which the negative
corrective pseudo input v just suffices to reduce ¢ to zero when the output reaches y = 0.

The example illustrates that the invariant set is a proper subset of the admissible set for
a relative degree of two. Similar relations hold for higher relative degrees, i.e. dynamics of
higher order.

3.1.4 Corrective Control for the Input/Output-linearized System

Since the invariant set is a subset of the admissible set by Lemma 3.1, the goal of constraint
satisfaction is achieved if the control law is designed to keep the state within the invariant
set. This motivates the introduction of the notion of positive invariance.

Definition 3.3. A set G is positively invariant from time ¢t onwards if it fulfills

x(t)eg = z(t+At) e GV At >0
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3 Control Methods for Guaranteed Constraint Satisfaction

Therefore, if the corrective control input renders the invariant set positively invariant,
constraint satisfaction is guaranteed as soon as the invariant set is entered the first time.

In order to find such a control input, we first investigate the linearized system, i.e. the
integrator chains resulting from the I/O-linearization. In the absence of constraints, the
system is controlled by nominal control w,,. The corresponding input for the linearized
system is derived using (3.1). Hence the nominal pseudo input is given by

Zno,i (T, Ty) = @l (T, M) Tho + bei(T, X1, €4) (3.15)

A corrective pseudo input should on the one hand pass the nominal pseudo input whenever
possible to ensure task execution and on the other hand initiate corrective action if the state
is about to violate a constraint, i.e. if the invariance function is non-negative. The switching
design of the corrective pseudo input

v ift e (Nai() UNwi()

)

2i =140 ifte (Noi(ys) UNz(7) (3.16)

)

Zno,i  else.

with v; < 0 and the sets

Nosl3) = (] @@, 5) > 0A Jim (py(a.2,,0.A0) > 0) (3.17)
Mi() = A{t | ®i(x, x,,v) = 0A Di(x, ,,0) > 0} (3.18)
NCJ(’Yi) - {t | q)l(w wn77@) =0A CI)Z-(CE,iL‘n,O) S 0} (319)
Nai(vi) = {t | ®i(x, x,,7:) > 0A AltiLn (pi(z, z,, 0, At)) < 0} (3.20)

fulfills the requirements and with v; < 0, the corrective pseudo input achieves a motion
towards the invariant set for ®;(x, x,, v;) > 0 as the states of the integrator chain eventually
decrease for a negative input.

Example 3.5 (Corrective pseudo input for ; = 1 and r; = 2). Using (3.16)—(3.20), it
is possible to derive the corrective pseudo inputs for constraints with relative degree one
or two

i ift e /\/’1a7i(%)

ri=1:2.,=10 if t € Meci(7i) (3.21)
Znosi  €lse.
v ift € (Maai(yi) U Nawi (1))

Ti=2:2,;=10 if t € (Nac,i(7i) UNaai(7:)) (3.22)
Giey  SEE
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3.1 Invariance Control

with v; < 0 and the sets

Muai(vi) = {t | hi(x,n) > 0} (3.23)
Nici(vi) = {t| hi(z,m) = 0} (3.24)
Noai(i) = {t | hei(x,m) > %j}"y A hi(a:, x,) > 0} (3.25)
Ny () = {t | hes(a,m) = %f"y A hy(z, z,) > 0} (3.26)
Noci(vi) = {t| hi(z,m) = 0 A hy(x, x,) = 0} (3.27)
deﬂ'(*yi) = {t | hZ(CL', ’l’]) >0A hl(a:, a:n) < 0} . (328)

Note that for 7; = 1, there is a reduction to two sets since p;(x, x,, 0, At) is equal to the
constraint function and therefore also equal to the invariance function. For r; = 2, the
limit is related to the derivative of the constraint function and is therefore replaced in
the sets.

Using the previous results, it is possible to show that the proposed corrective pseudo inputs
achieve invariance.

Lemma 3.2 (Invariance in the linearized system). Let an integrator chain with r; states
resulting from the 1/0-linearization with respect to y.; (3.1) be given. Then any pseudo
input z; < Z;, with z.; from (3.16) and ~; < 0 renders the invariant set (3.14) positively
imovariant.

The proof is provided in the appendix. Lemma 3.2 shows that the states of the linearized
system remain within the invariant set. The behavior on approaching the bound is influenced
by the parameter ;.

Remark 3.1. The magnitude of 7; may be chosen arbitrarily. A large magnitude of ~;
reduces the time, during which corrective control is applied, since it is able to change the
output value faster. As a result, it increases the size of the invariant set and the magnitude
of the required corrective control input. Equivalently, a small magnitude of ; increases
the duration of using corrective control and decreases the size of the invariant set and the
magnitude of the control input.

Remark 3.2. Due to the switching input, invariance controlled systems are prone to chat-
tering in a sampled data implementation. This issue is addressed in the following section.

The results from the linearized system are the basis for deriving a constraint enforcing
control input for the nonlinear system.

3.1.5 Corrective Control

Before determining a corrective control input, it is necessary to identify the constraints,
which require corrective action. Therefore, the notion of active constraints is introduced.

Definition 3.4. A constraint ¢ € B is active if its invariance function is non-negative,
i.e. @i(m,mn,vi) > 0.
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3 Control Methods for Guaranteed Constraint Satisfaction

Definition 3.5. The set of active constraints B, consists of all active constraints.
Baci(, 0, v) = {i € B | ®;(x, x,,7;) > 0} (3.29)

An active constraint is already or about to be violated and therefore requires corrective
action [SWBO08]. For the constraints, which are not active, the application of nominal control
suffices. Note that the definition of active constraints is in accordance with the corrective
pseudo input (3.21)—(3.22), which passes the nominal pseudo input if the constraint is inac-
tive. With the results from Lemma 3.2 and the I/O-linearization (3.1), we receive conditions
on the control input

zi=al (. nu+b.(x, @), e,) < zei Vi€ Ba - 3.30
C, s n s

In order to improve readability, the explicit dependency on x, =, and e, is omitted for the
vectors al ;(x,n) and b ;(x, x,, €,) in the following.

Using the conditions (3.30), a corrective control input may be derived by solving the
constrained minimization

u. = argmin C (u, Uy,) (3.31)
s.t. a;iu +bei < zei Vi€ Bt '

where
o C(u,Uy) : R™ x R™ — R is strictly convex in u and
e the minimum of the unconstrained minimization is u. = u,,, i.e.

argmin C (u, Uno) = Uy, -
u

Note that this optimization generates a switching control law as the solution may change
abruptly whenever a constraint becomes active or inactive. Furthermore, the formulation
provides a useful property for the control derivation.

Lemma 3.3. If the cost function C (w, Wy,) is strictly convez in w, the minimization (3.31)
is strictly convexr and any local minimum is the unique global minimum.

The proof is provided in the appendix. Due to the convexity, the optimization may be
solved in a computationally efficient manner [Boy04, p.8], which is ideal for control in real-
time with high sampling rates. In addition, the fact that any local minimum is the unique
global minimum ensures in combination with the second condition on C' (u, u,,) that nominal
control u,, is applied if it fulfills the optimization conditions, since it is a minimum.

The most commonly used cost function is the Euclidean norm of the input difference

2
C(u, Uno) = |lu = unolf; , (3.32)
which turns the optimization into a quadratic program (QP). This cost function is strictly

convex as its Hessian is the identity matrix, which is positive definite. Using this func-
tion, (3.31) minimizes the difference between the elements of the control inputs. Sometimes,
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Figure 3.2.: Illustration of Assumption 3.1: In (a), an evasive motion & may be derived as a
linear combination of @, @z, whereas in (b) this is not possible. In (c) an evasive
motion is only defined if the constraint corresponding to ag moves towards the
state, otherwise the situation is similar to (b).

however, a more differentiated influence on the outcome of the constraint optimization is de-
sired, e.g. to change how the effort is split between the actuators. In this case, an invertible
weighting matrix W € R"™*™ is introduced in the cost function [SWB07]

2

C(u, Uyo) = HW‘l(u — Uno)

) (3.33)
Note that in order to preserve the strict convexity of the cost function, W has to be defined
such that (WWT)™! is positive definite.

In order to check whether the minimization (3.31) has a solution, it is necessary to inspect
the optimization conditions. The set over which the minimization is carried out determines
whether a solution exists.

Definition 3.6. The set of admissible control inputs M is given by the intersection
of the single optimization conditions.

M(x, 2,7, Baet) = {0 | @l +bei — 20 <O Vi € Bat } (3.34)

If no constraints are active, the set M contains all possible input values. In this case, a
solution exists and is given by u. = u,,. Otherwise, a solution to the minimization problem
only exists, if the set (3.34) is non-empty. Therefore, we make the following assumption.

Assumption 3.1. The set of admissible control values M(x,x,,~, Baet), defined by the
active constraints, is non-empty, M(x, @,,y, Boet) # 0.

Figure 3.2 illustrates the meaning of Assumption 3.1. This assumption seems a little
restrictive, since obviously in Fig. 3.2b and 3.2c¢ there exist admissible state trajectories.
However, cases like in Fig. 3.2b and 3.2c rarely occur in reality. This would require an exact
positioning of the limits with respect to the state such that the determined actions for the
evasion of two or more constraints exactly oppose one another.

By analyzing the characteristics of M more closely, it is possible to determine an analytic
solution to the minimization (3.31) with the cost function (3.32) or (3.33).
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3 Control Methods for Guaranteed Constraint Satisfaction

Analytic Solution

Before deriving the analytic solution, it is necessary to analyze how the set M influences the
solution of the optimization. The minimization problem (3.31) has a unique global minimum
by Lemma 3.3. Therefore, if u,, is not contained within the set, the solution u, lies on the
boundary of M, i.e. some of the active constraints hold with equality

Meq(@, @), Y, Bact) = {1 € Baet | @jte +bei = 2c} (3.35)
and some with strict inequality
Min(ma mna'Ya Bact) = {Z S Bact | ag—uc + bc,i < Zc,i} - Bact \ Meq . (336)

The equality constraints in M., define a sub-manifold of the input space, in which the
solution lies. Not all of these constraints are necessarily required to define the sub-manifold.
Instead, there exists a maximum subset of linearly independent constraints, which span the
sub-manifold indicated by (3.35).
In the following, this maximum subset will be used to derive the analytic solution of (3.31)
with the cost function (3.32) or (3.33). Therefore, let the subset
T = {i € My | rank(Acz) = |Z] Arank(A.z) = rank(Ac pm.,)} (3.37)
with Acz = [a;licz and Ay, = [al;]iem.,, describe such a maximum subset of the
constraints in Meq with linearly independent a/;. It is in general not uniquely defined, but
any such set spans the sub-manifold M,,. The remaining constraints M, \Z are determined
by a linear combination of the constraints in Z. As the constraints in Z span a subspace
in the input space and u, € R™, |Z| < m holds. If Z is empty, this means that either no
constraints are active or all constraints hold with strict inequality, i.e. the nominal control
signal is the minimum solution of (3.31). Hence, assuming a set Z has been determined,

the solution to the minimization problem (3.31) with the cost function (3.33) is determined
similar to [SWBO07] and given by

Uno ifZ=10
U, = (3.38)
W(AC,IW)-F(ZC,I — bc,I) -+ (I — W(AC,IW)+AC7I)’LLHO else

with the Moore-Penrose right pseudo inverse (A.zW')". The matrix and vectors are deter-
mined by Acz = [a@l;]iez, bez = [beilier and zcz = [zc)ie-

The cost function (3.32) may be derived from (3.33) by setting the weight matrix W to
the identity matrix I,,. Therefore, the analytic solution to the minimization problem (3.31)
with the cost function (3.32) is determined by substituting W = I, in (3.38). It remains to
show whether the corrective control laws (3.31) and (3.38) are able to guarantee constraint
satisfaction.

3.1.6 Control Properties

With corrective control being calculated using the minimization (3.31), it is necessary to
determine whether the resulting input exhibits the desired control properties: constraint
satisfaction and stability.
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3.1 Invariance Control

Invariance

Corrective control achieves constraint satisfaction if it is able to render the invariant set (3.14)
positively invariant. Lemma 3.2 indicates the invariance of the linearized system under the
corrective pseudo input z.,. However, as control is applied to the nonlinear system, it is
necessary to investigate whether the control input, which is generated by the minimiza-
tion (3.31), provides the required invariance.

Theorem 3.1. Let the nonlinear system be given by (2.1) and the outputs describing the
constraints by (2.11). Let the linearizing input be determined by (3.1) and the elements of
the corrective pseudo input by (3.16). Let Assumptions 2.1, 2.2, 2.5, 2.6 and 3.1 hold. Then,
if the system states are within the invariant set at some time t = ty, i.e. (to) € G(x,,7),
the corrective control input determined by (3.31) renders the invariant set (3.14) positively
invariant for all t > t.

The proof is provided in the appendix. Once the state of the nonlinear system enters the
invariant set, Theorem 3.1 guarantees that it stays within this set for all future times as it is
positive invariant. Since the invariant set is a subset of the admissible set, invariance control
ensures constraint satisfaction. As the system does not necessarily start within the invariant
set, it remains to show that the system will eventually enter the invariant set.

Theorem 3.2. Let the nonlinear system be given by (2.1) and the outputs describing the
constraints by (2.11). Let the linearizing input be determined by (3.1) and the elements of
the corrective pseudo input by (3.21)—(3.22), depending on the relative degree. Let Assump-
tions 2.1, 2.2, 2.5, 2.6 and 3.1 hold. Then, if the system states lie outside of the invariant
set at some instant of time t = tg, i.e. (ty) ¢ G(x,,7y), the corrective control input deter-
mined by (3.31) guarantees that there exists a finite time interval T such that the system
state enters and stays within the invariant set (3.14) for allt >ty +T.

The proof is provided in the appendix. Theorem 3.2 shows that for invariance control, the
initial state is not required to lie within the admissible set. Instead the control is such that
after a finite time interval, the state becomes (and remains) admissible. By extension, this
applies if additional constraints have to be included during runtime, e.g. when new obstacles
appear.

Remark 3.3. The results on the invariance of the controlled system are independent from
nominal control. This means that whichever nominal control scheme is chosen, whether it
is learned or explicitly defined, stable or unstable, the use in combination with invariance
control results in constraint satisfaction.

Nevertheless, the investigation of stability is essential for ensuring that the state does
not grow unbounded and that the controlled system does not exhibit unexpected unstable
behavior, which is especially important for safe interaction with humans.

Boundedness

Naturally, good task performance of a nonlinear system under invariance control is only
possible if constraint enforcement does not result in unboundedness of the tracking error.
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3 Control Methods for Guaranteed Constraint Satisfaction

Theorem 3.3. Let the nonlinear system be given by (2.1) and the outputs describing the
constraints by (2.11). Let the linearizing input be determined by (3.1) and the elements of the
corrective pseudo input z. by (3.16). Let a sufficiently smooth and bounded desired motion be
given by T q.s € R™ and let the initial state values be within the invariant set x(ty) € G(x,, ).
Let further Assumptions 2.1, 2.2, 2.4-2.6 and 3.1 hold and let V(e) be a Lyapunov function
showing global stability of the nominally controlled system. Then, if

v-{s

with A.p,,, = [al,]icB,., is bounded, there exist constants a, Vinax > 0 for which

lg‘c/l(?acs(wv n)
—5e &)

dt >ty : rank

] =rank(A.z,.,(x,n)) }

2

(3.39)

U, = argmin HW‘l(u — Up,) )
u

s.t. aLi’u, + bc,i S Zeji Vie Bact

PN (s~ £(a) ~ Glaw) < By

with By = max(a(Vimax — V(€)), Vio(e, €éno)) ,
Vno(ea éno) - 8;26) (m.des - .f(m) - G(m)’u’no)

yields a uniquely defined corrective control input w. and a tracking error € = x 4.5 —  that
is at least bounded.

The proof is provided in the appendix. Theorem 3.3 extends the minimization (3.31) by an
additional condition to bound the tracking error within the isoline V(e) = max(Viax, V(e(ty))).

Remark 3.4. The goal of invariance control is to guarantee constraint enforcement also
in cases when the desired trajectory leaves the admissible set, which is only possible if
the tracking error is allowed to increase for such cases. Therefore it is natural that only
boundedness of the tracking error is achieved.

Remark 3.5. Even if the initial state is not within the invariant set, the error is eventually
bounded within max(Viax, V(€(tiny))), where ti,, is the instant of time when the state enters
the admissible set, with ¢;,, < oo by Theorem 3.2.

Remark 3.6. In general, it is not trivial to determine whether the set V is bounded. If,
however, the set of states itself only takes values from a bounded set X C R", i.e. x € X, the
set V is also bounded as V C X holds. Since robotic systems are usually subject to joint and
velocity limits, the set of states is bounded thus fulfilling the requirement of Theorem 3.3.

For a more intuitive understanding of Theorem 3.3 consider the following explanations and
examples. Bounding the tracking error while satisfying all constraints is only possible if the
interior of V(e) = Vjax contains constraint admissible states for all instances of the desired
trajectory and the constraint parameters. In order to determine such a V., the behavior
of the state on active constraints is examined. If there are active constraints, the derivative
of the tracking error may be divided into a tangential and normal component with respect
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3.1 Invariance Control

to these constraints. While the normal component is dictated by the constraint avoidance
and possibly increases V', the tangential component may be chosen freely to achieve V' < 0.
If however, the state is in a local minimum of the Lyapunov function on the constraints, i.e.

V(e) = Viin = min(V (e)

h’CaBaCt :O‘Bact‘ x1 ) ’

further reduction of V' via the tangential component is no longer possible. In that case the
system needs to be able to follow the constraint motion for constraint satisfaction by allowing
a positive V', which is achieved by choosing V.« such that

Vinax > min(v(e)‘hc,sacﬁo\sw\m)
is fulfilled for all these minima and all possible combinations of active constraints and

bounded parameters. The parameter « is then determined by the maximum increase in
the Lyapunov function that is required for constraint satisfaction in the local minima.

a(Vinax — Vinin)) > max(V

hc,BaCtZO\Bact\lev(e):‘/min) V Vinin

Remark 3.7. If the values of V,,.x and « are chosen too small, the optimization determining
corrective control may be rendered infeasible. In view of the application, this issue is solved
by increasing the values until a solution exists. However, on changing these values one needs
to keep in mind that while a may be increased arbitrarily without deteriorating the task
performance, an increase of V., far beyond the minimally required value may lead to an
increase in the bound on the tracking error.

The following examples illustrate the implications of Theorem 3.3.

Example 3.6. Consider the system of decoupled integrators & = w with the state =
[z1, 2|7, the initial state x(ty) = [11, —85]T, the input w = [u;, us]T and the nominal
control law w = [—0.1z1, 21 —0.125]7. The control law globally asymptotically stabilizes
the system in the origin, which is validated using the Lyapunov function V(x) = 7Pz
with the positive definite matrix

51 5
Sl

The system is constrained by the output function h.(x,n) = 9+n— x; with the bounded
parameter 7 = cos(27t). Derivation yields r = 1 and z = +[—1, 0Ju. As the Lyapunov
function

V(x) = 5123 + 102129 + T2

and the constraint are convex, there exists exactly one minimum on the constraint, which
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3 Control Methods for Guaranteed Constraint Satisfaction

is determined by

V() h=o = V(z2) = 51(9+n)* +10(9 +n)xs + 25 as x; =9 +n for he =0
aV(.’B) he=0
—— =10(9 2
Bz, (9+n) + 2z,
aV(.’B) he=0
s g = —5(9
s = o (9+n)

Vinin = min(V)|n.=o = V()| 2z __o = 26(9 +1)” .
This minimum Lyapunov function value reaches its maximum for n = max(n) = 1.
max(Vipin) = min(V)|p.—0,n=1 = 2600

By choosing Vi > 2600, it is assured that the isoline V(&) = Vix always contains
admissible states. If the state is in a minimum of the Lyapunov function V,,;, on the
constraint, uy = £; = 1 and 9 = —5x; hold and the derivative

V= [102:(:1 + 10z, 102y + 2:(:2} t
Uz

maximally increases with the rate
Vom0 Vs = 5271 0] [ﬂ — 52217 < 52- 10 - 21 ~ 3268 .
2

If V,.x and a are then chosen to fulfill
Vhe—ovi < 3268 < o Vinax — max (Vi)

e.g. Viax = 2700 and o = 35, the optimization from Theorem 3.3 is feasible and the
tracking error is bounded. Fig. 3.3a depicts the state trajectories of the unconstrained
system behavior in comparison to the constrained system controlled with corrective
control from (3.31) with the cost function (3.32) and the approach introduced in The-
orem 3.3. It is observed that while the unconstrained system approaches the origin
asymptotically, both constrained trajectories remain at state values with z; > 8 due to
the added constraint and the achieved invariance. The oscillation in the trajectories is
due to the dynamic constraint. However, the state trajectory of the system controlled
by (3.31) exhibits a growth in x5, while the trajectory with control from Theorem 3.3
eventually ends up in a bounded limit cycle close to V() = Vijax.

Example 3.7. Consider the same system and constraint as in the previous example but
with nominal control w = [—0.1x7, —0.125]T. The nominally controlled system is again
globally asymptotically stable, which may be shown using the Lyapunov function

Vizg)=xTx .
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3.2 Extensions of Invariance Control

Figure 3.3.: State trajectories of (a) Example 3.6 and (b) Example 3.7 for sole applica-

tion of nominal control, - corrective control from (3.31) and ---- corrective
control according to Theorem 3.3. The constraint moves within the shaded
area and —— are the isolines of the Lyapunov function, where —— represents
V(x) = Vinax-

The same values of V.« and « as in the previous example are used. Fig. 3.3b de-
picts the state trajectories of the unconstrained system behavior in comparison to the
constrained system controlled with corrective control from (3.31) with the cost func-
tion (3.32) and Theorem 3.3. Consistent with the previous example, the unconstrained
system approaches the origin asymptotically but both constrained trajectories remain
at state values with x; > 8. Here, however, the state trajectories of both constrained
systems are equivalent and are both bounded. This is due to the fact that in this case,
the projection of nominal control onto the constraint results in a behavior that does not
increase the Lyapunov function thus automatically fulfilling the additional condition of
Theorem 3.3.

Both examples show that the proposed invariance control approach successfully achieves
the desired constraint satisfaction while keeping the tracking error bounded. It is, how-
ever, not yet clear, how the control method performs in sampled time implementations and
whether the dynamic behavior at the bounds is suitable in applications that include physical
interaction with humans. These questions are addressed in the following section.

3.2 Extensions of Invariance Control

The invariance control scheme for continuous time, developed in the previous section, guar-
antees constraint satisfaction by introducing a constraint admissible set that is rendered
positively invariant. Due to the switching control input, however, the resulting state tra-
jectory may not be as smooth as required for some applications. In physical human-robot
interaction, for example, the human interaction partner may expect a certain dynamic behav-
ior and smoothness of the interaction, which the switching invariance control is not able to
provide. Introducing augmented invariance control [KJH16] allows designing the smoothness
characteristics of the state to address the requirements of the respective application.
Furthermore, in real applications, control is usually executed in sampled time. The in-
troduced constraint satisfaction guarantee does, however, not transfer directly to sampled
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Figure 3.4.: Invariance controlled integrator chain &1 = x5, £3 = u with the constraint xy <0
and the nominal control u,, = —(z; — 1). Depicted are the normalized signals
------- 21 /1078, ---- 25 /1074, u/1 and --=-= uy,/1.

time implementations, as the switch to corrective control may be delayed, thus leading to
constraint violations. This issue is resolved by the chattering reduction method from [KH14].

3.2.1 Augmented Invariance Control

Although the control law (3.31) guarantees constraint enforcement, the switching caused by
constraints becoming active or inactive leads to input discontinuities. This becomes obvious
in sampled time implementations, where the input switches from nominal to corrective con-
trol and vice versa every couple of time steps, when the state is at a constraint. Figure 3.4
shows an example for a constrained double integrator. The switching input exhibits dis-
continuities, stresses the system unnecessarily and causes a continuous but not continuously
differentiable state x(t) € C°, which is evident from the inflection points in zp. This is,
however, unwanted in applications requiring a smoother state x(t) € C¥, v € N such as, for
example, human-in-the-loop control design.

Smoothness Design by Augmentation

Whenever a certain dynamic behavior of the constraint enforcing input and the states is de-
sired, standard invariance control is unsuitable due to the switching characteristics. There-
fore, we introduce augmented invariance control [KJH16], which moves the switching to a
higher order time derivative of the control input thus leading to a smoother state. The basic
idea is to augment the system dynamics (2.1) by an additional dynamic structure adjusting
the input dynamics. The desired control structure is illustrated in Fig. 3.5. The structure
corresponds to the envisioned control structure in Fig. 2.1. In addition to system, nomi-
nal control and corrective invariance control, here, augmented dynamics are introduced in
between invariance control and system, thus augmenting the system. If these dynamics ful-
fill certain requirements, this allows to design invariance control using the steps introduced
in Section 3.1. However, the augmentation poses some challenges on the nominal control
design since using the original nominal control as control input of the augmented system,
i.e. system and augmentation, does in general not result in the desired nominal behavior.
Therefore, the augmented version of nominal control has to be designed such that in the un-
constrained case, the augmented system displays a similar behavior to the original dynamics
without augmentation under nominal control. For this purpose an inverse augmentation
is introduced in between nominal control and invariance control. Naturally, the design of
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augmented invariance control
) Ldes
Uno,a Inverse Uno| nominal
augmentation | - control
X
l—» system
invariance |%a | augmented | u | 5 _ (5 |@] | OUIPUL | Ynar
—{ control dynamics h(x)
— +G(x)u
constraints

Y h.(x)

Figure 3.5.: Nonlinear dynamical system controlled by augmented invariance control, which
combines nominal control with constraint enforcing control and desired input
dynamics encoded in the augmentation.

nominal control depends on the augmented dynamics.
Note that for the sake of clarity, we assume the input error to equal zero in this section.

Assumption 3.2. The input error e, is equal to zero.

€y = 0m><1

Naturally, the following deductions may be applied in the presence of input errors. This
would, however, require additional assumptions on the smoothness of the input error.

Augmented Dynamics

We define the augmentation in the following way.

Definition 3.7. The augmented dynamics are given by a nonlinear, control affine system

X = f.x)+Ga(x)ua
u = hc,a(x>7 (340)

with the constant degree of augmentation v € N, with x € R™" being the state, u € R™
being the control input of (2.1), w, € R™ being the input of the augmentation and the
vector and matrix vector fields f, : R™" — R™" and G, : R™" — R™"*™ being sufficiently
smooth to allow for I/O-linearization.

The goal of the augmentation is an increased smoothness of the state such that it ful-

fills € C? instead of & € C°. Therefore, we make the following assumption on the design
of the augmented dynamics.
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Assumption 3.3. [/O-linearization of (3.40) with respect to each element of the out-
put ug;, 1 < i < m and the input u, yields a well-defined relative degree v € N, i.e.
det(%ga%l};lhcm(x)) #0 V1 <i<m and
«%Ga«%l}ahc,a(X) =0, for0<k<v-—1.

This assumption imposes little restriction on the augmented dynamics as they may be
chosen freely. As the I/O-linearization of (3.40) yields the input transformation

u® = L6, LY hea(X)ta + LY hea(X)
= A, (X)u. + ba(X) - (3.41)

with A,(x) € R™™ being non-singular due to Assumption 3.3, the augmentation has a well-
defined vector relative degree [v ... v]T according to Def. 2.3 and the augmented dynamics
are fully linearized by the I/O-linearization.

Nevertheless, it is also possible to choose different dynamics (3.40) with more than muv
states and outputs with relative degrees greater then v that do not fulfill Assumption 3.3.
In this case, the total relative degree is smaller than the number of states, which means that
the dynamics introduce additional internal dynamics which may affect the stability of the
controlled system. In contrast, by choosing (3.40) according to Assumption 3.3, the total
relative degree according to Def. 2.4 is

m
v=mu ,
—

7

which avoids introducing internal dynamics.

Example 3.8 (Augmentation by a single integrator). Augmentation by v = 1 is achieved
by a single integrator in each element of the input

X=U,, U=X. (3.42)
The relative degree of each element is v = 1. The vector relative degree [1 ... 1]T yields
the total relative degree m, which is equal to the number of states in (3.42) and the
I/O-linearization results in A, = I,,, and b, = 0,,%;1.

Combining (2.1) with (3.40) defines the augmented system.
Definition 3.8. The augmented system is given by
= f(&) +G@)u, (3.43)

2o [f@) + G@hea(X)] Ao _ [ On
1) = falx) ]  G8) = lGa(x)] 34

with the augmented state & = [T, xT|T € R,
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Augmented Corrective Control

Based on the augmented system (3.43)—(3.44) and the constraint functions (2.11), invariance
control determines a constraint enforcing input u, for the augmented system using the meth-
ods from Sec. 3.1. As before, this requires 1/O-linearization with respect to each constraint
function. As the goal is to increase the smoothness of the state, which is achieved by in-
creasing the relative degree, additional smoothness assumptions on the constraint parameters
extending Assumption 2.2 are required.

Assumption 3.4. The constraint parameters ) are such that for a constant v € N
(i) eachn;, 1 < j < mny, is rmax + v+ 1 times differentiable w.r.t. time and n; € C™=>*" |
(it) each n;, 1 < j < n, and its rm.x + v derivatives are measurable and bounded,
The dynamics of the parameters are modeled by (2.13) with the state x,, € R (rmax-tv+)ng
Note that if the conditions on the parameters do not hold naturally, the parameter variation

has to be represented by a sufficiently smooth approximation. Then, the input transforma-
tion of the augmented system derived from I/O-linearization is determined by

yr = al(&, @) u + bi(E, @, (3.45)
with a’;r(ja mn) = Zé%?ﬁiilyc,i ) Bz(ja mn) = %?’iygi

with the augmented relative degree r,; € N.

Definition 3.9. The augmented relative degree r,; is the relative degree resulting from
the I/O-linearization of each constraint output i € B with respect to the the input w, of the
augmented system.

The augmented relative degree depends on the original relative degree r; and on the degree
of augmentation v.

Lemma 3.4. Let Assumptions 2.2, 3.2 and 3.3 hold. Then the I/O-linearization of the
augmented system (3.43)—(3.44) with respect to each constraint function y.; = hc(x,n)
from (2.11) and the control input u, yields aj(%,x,) = a;;A, and has a well-defined aug-
mented relative degree rq; = 1; + v.

The proof is provided in the appendix. The corresponding invariance functions are then
defined by (3.10) using the relative degree r,; = 7; + v. They determine the invariant
set (3.14) and the set of active constraints (3.29). Constraint enforcing control is then
derived from the minimization problem

Ue = argmin C' (Uy, Upo a) (3.46)

Ua,

s.t. aI’iAauaL +b < Zeai Vi€ Bact

where u., € R™ is the corrective input of the augmented system, w,,, € R™ represents
nominal control for the augmented system, the cost function C (w,, Uno,) fulfills the same
conditions as in (3.31) and z,; is determined according to (3.16) with the nominal pseudo
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INput znoa; = @l ;Aatnoa + b; instead of Znoi- As (3.46) represents invariance control being
applied to enforce constraints with relative degree r; +v, Theorems 3.1 and 3.2 apply which
means that constraint satisfaction is guaranteed. Note that if guaranteed boundedness of the
tracking error is required as well, the additional boundedness condition has to be included
in the control derivation (3.46) in accordance with Theorem 3.3.

This leaves the question of how the augmented nominal control w,, , has to be designed to
ensure that the augmented system is able to reach the nominal control goal if no constraints
are present.

Augmented Nominal Control

Using Unoa = Uno does, in general, not result in the desired nominal behavior due to the
added dynamics that are not considered in the design of u,,. In addition, the augmentation
prevents an instantaneous switch to nominal control. Therefore, an inverse augmentation
needs to be added to the control loop as depicted in Fig. 3.5 in order to compensate for the
augmentation. We propose designing a feedback control law for the nominal control input
such that if no constraints are active, the input w approaches original nominal control w,,
for t — oo, which is achieved by the control design

v—1
o = A=1(x) (uff;’ b S w) (3.47)
7=0

with eld) = u® —uld), ul) = L% he.(x), the design parameters k; € R and the in-
verse A, '(x), which exists if Assumption 3.3 holds. The control law (3.47) requires ,, to
be v times differentiable.

Assumption 3.5. The nominal control input w,, is v times continuously differentiable,
i.e. Up, € C¥, where v is the degree of augmentation.

As u,, is a function of the desired trajectory @qes(t) and @, which is at least v times
continuously differentiable due to the augmentation, Assumption 3.5 is equal to the condi-
tion @ges(t) € CV. If @qes(t) & C¥, i€ uyo ¢ C, a different control law has to replace (3.47).
In that case, however, it is questionable whether it is sensible to introduce the augmentation
at all, as then the state might never be able to sufficiently track the desired trajectory due
to difference in smoothness.

Whether the control law (3.47) is able to achieve the desired nominal behavior depends
on the choice of the design parameters k; € R.

Lemma 3.5. Let (3.40) be controlled by w, = Upn,, from (3.47). Let Assumptions 3.3
and 3.5 hold. Then, if
v—1
d(s) =s"+ Z k:jsj
j=0
is Hurwitz, the control error e,, = u — W, is uniformly exponentially stable with respect
to €,, = 0,,%1-

The proof is provided in the appendix. As k;, j € {1,2,...,v — 1} are design parameters,
they may be chosen arbitrarily to satisfy the Routh-Hurwitz criterion [Hur95]. Using these
results, the characteristics of the augmented system (3.43)—(3.44) under nominal control are
shown.

40



3.2 Extensions of Invariance Control

Theorem 3.4. Let Assumptions 2.1,3.2, 3.3 and 3.5 hold. Then, if w,, stabilizes the tracking
error €, = X ges(t) —x(t) of (2.1) uniformly exponentially in e, = 0,1, the tracking error of
the augmented system (3.43)—(3.44) controlled by (3.47) is uniformly asymptotically stabilized
m €, = On><1-

The proof is provided in the appendix. Theorem 3.4 establishes the asymptotic stability
of the nominally controlled system. As wu,, is reached asymptotically, other performance
specifications are fulfilled asymptotically. Note that, compliance control [SK08, Ch. 7]
does generally not fulfill the requirement of exponentially stable tracking. This issue is
addressed in [JH17] where uniform asymptotic stability in the sense of Lyapunov is shown
for augmented systems, which are nominally under impedance control.

Numerical Evaluation

In this section, the characteristics of augmented invariance control are illustrated using the
model of an inverted pendulum with a velocity constraint.

Simulation Setup We consider the nonlinear control affine single-input single-output
(SISO) system

& = f(2)+g(@)u

g
; St l(msin2(z1)+ M)

)
f(IE) = (1‘1) . m cos(z1) sin(z1) (x5 +g cos(z1))
cos(x1)

g(x) = [O l(msin2($1)+M)‘|T ’

Ye = T2 — emax

with the angle to the upright position z, the angular velocity x5, the length [, the gravity
constant ¢, the masses of the pendulum and the cart m and M and a constant velocity
bound Omax. The nominal control goal of keeping the pendulum upright is achieved by
the PD control law

Uno = —kfpl‘l — ]{?DI‘Q

with the proportional and differential gains kp € RT and kp € R*. In order to achieve a
continuous control input, the augmentation by a single integrator from Example 3.8 is used.
As the above control law is continuously differentiable, augmented nominal control is
given by

Uno = ino — Ko (1 — tno)

according to (3.47) with ky € RT to fulfill the stability criterion from Lemma 3.5. Derivation

of the constraint function y. yields a well-defined augmented relative degree r, = 2 for
states fulfilling x; # £5 + &, k € Z and

cos(x1)
[(msin®(zy) + M)’

2 (- L o) (8 (o) ).

a
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Table 3.1.: Model parameters for the numerical evaluation of augmented invariance control.

Sampling time Tx 1-107%s
System parameters x(0) (5155 rad , Orad/s|T
l; g 0.2m; 9.81 m/s?
m; M 0.1kg; 1kg
Constraint émax,l 11gp rad/s
Omax,2 1.54g5 rad/s
Nominal control kp; kp 10N; 1Ns
Invariance from Sec. 3.1 0 -0.11/s
Augmented invariance vy -101/s?
ko lorb

The invariance function is defined according to (3.13)

Ye for yc < 0
d(x,v) = )2
() e +y. else
27y
and corrective control is then determined by

Unoa  for ®(&,v) <0

T 3.48
b for ®(&,v) >0 (3.48)

a

with z. from (3.22).

Implementation The model is implemented in Matlab/Simulink using the parameters in
Table 3.1. The forward Euler method determines the solution with a step size of 1-107%s.
The constraint parameter émax is switched from 9max,1 to QmaX,Q at t = 1s. Augmented
invariance control with two different values of kq is compared to standard invariance control
from Sec. 3.1.

Results The results generated by standard and augmented invariance control using ky = 1
and kg = 5 in the augmented nominal control law (3.47) are depicted in Fig. 3.6. Apart from
some tiny chattering effects, the invariance function in Fig. 3.6a has a non-positive value and
the angular velocity in Fig. 3.6b lies below the constraint for all times, thus showing that both
the standard and the augmented invariance control enforce the constraints. In addition, all
control schemes are able to stabilize the angular position, which approaches the desired value
zero as depicted in Fig. 3.6¢c. The difference between the approaches is visible in the control
input in Fig. 3.6d. Whenever a constraint is active, i.e. ®(x,~y) > 0, the input u generated
by invariance control according to Sec. 3.1 is fast and discontinuously switching between
nominal and corrective control, whereas augmented invariance control provides a continuous
input. Furthermore, whenever the constraint is inactive, i.e. ®(x,~) < 0, standard invariance
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Figure 3.6.: Results for the pendulum with
invariance control for
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(d) Control input.

standard invariance control and augmented
k(] =1and---- ]{ZO = 9.

control immediately applies the nominal control input u,,, which is why this control scheme
reaches the constraints and the goal angle fastest as depicted in Fig. 3.6a-3.6¢. It may further
be noted that
improves and

Concluding, it may be noted that augmented invariance control is successful in increasing
the smoothness of the state while guaranteeing constraint satisfaction in continuous time
implementations. It does, however, not remove chattering effects occurring in sampled time

with increasing values of kg, the tracking of the augmented invariance control
approaches the performance of standard invariance control.
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Figure 3.7.: Chattering and boundary violations resulting from continuous invariance
control executed in sampled time for —— a state tracking ------ a desired tra-
jectory while satisfying ---- a constraint restricting the state to non-positive
values.

implementations, as it merely moves the switching input to a higher order derivative.

3.2.2 Control in Sampled Time

In sampled time implementations of invariance control the invariance function is no longer
continuously evaluated. The resulting effects are illustrated in Fig. 3.7 for a constraint
with relative degree two. There, the state is controlled to track a desired trajectory while
invariance control is employed to restrict the state to non-positive values. It may be ob-
served that the state trajectory does not smoothly follow the constraint but instead shows
a high-frequency oscillation along the bound, known as chattering. This effect is caused
by corrective control being applied for an entire sampling interval instead of the exactly
necessary duration, which results in over-actuation. Furthermore, the reversal point when
the motion towards inadmissible states changes into a motion towards admissible states is
often within the inadmissible set, i.e. at state values corresponding to positive invariance
functions. This is due to the fact that the switch to corrective control is not executed at
the required instant of time when the invariance function equals zero. Instead, the switch is
executed at the next sampling instant when the invariance function already takes a positive
value.

As we consider a sampled time implementation in the following, we introduce the notation

xlk] = x(ty) = x(k - Ta)

for the value at the k-th sampling instant with 74 € R* being the sampling time.

Causes for Chattering and Constraint Violations

In order to find a solution how to remove the chattering and constraint violations in sampled
time implementations, it is necessary to understand the two causes responsible for these
effects:

e a switch from corrective control to nominal control and vice versa is only possible at
the sampling instants,
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3.2 Extensions of Invariance Control

e the input w is constant during each sampling interval, i.e.

u(t) =ulk] Vi€ [ty,tpy] with ulk] = w(ty) .

Naturally, if a switch from corrective to nominal control is carried out later than necessary,
this is not ideal as the control goal is not followed during that time but it is not safety-critical.
If, however, the switch from nominal to corrective control occurs later than required, the
invariance function increases further during that time and violations occur. In order to
handle this issue, it is therefore essential to predict the system behavior one step into the
future and to start applying corrective control early if a violation during the next step is
detected.

When determining corrective control, the second issue needs to be kept in mind. Invariance
is guaranteed if (3.30) holds at all times. As a; and b.; change over time depending on
state and parameter values, it does not suffice to determine corrective control solely based on
their values at the sampling instant as then the invariance condition (3.30) may be violated
during the time interval when u. remains constant and a;i and b.; change.

Therefore, in order to reduce chattering and remove the constraint violations we pro-
pose combining the knowledge about the system behavior with the sampling time to adapt
corrective control accordingly.

Adaptation of the Controller Parameter

The idea of invariance control with chattering reduction [KH14] is to adapt the corrective
pseudo inputs z; depending on the current and predicted future value of the constraint and
invariance functions. The goal is to avoid the overshoots and reduce the oscillations at the
boundaries.

The output functions (2.11) and the corresponding invariance functions (3.10) at the k-th
sampling instant are given by

i(@(t), n(tr)) (3.49)

yC,i[k] = M,
(k] = (1), a(t1),7) - (3.50)

o, [k]

As it is only possible to change the input at the sampling instants, a corrective control input
has to be determined which keeps the invariance function at a non-positive value for the
entire sampling interval, i.e.

@i(m,azn,%) <0 Vte [tkatk—I—l] . (351)

The value of the invariance function depends on the output functions, which in turn depend
on the constraint parameters and the states, the change of which is dependent on the input.
The nonlinearity of system and constraint functions renders it hard, if not impossible to
determine the exact change of the constraint and invariance functions. Instead, a maximum
value may be determined by exploiting the continuity of the involved functions.

Lemma 3.6. Let the nonlinear system be given by (2.1) and the outputs describing the
constraints by (2.11). Let Assumptions 2.1, 2.2 and 2.6 hold. Then, there exists an upper
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3 Control Methods for Guaranteed Constraint Satisfaction

bound on the constraint functions, their derivatives and the respective invariance function
during each time interval [ty,tyi1], i.e.

W) (@, @) < BY) (k] K], 2K]) V0 <5 <ri—1, t€ [ty o]
(@, Ty, v:) < QY (@[k], k], 2i[k]) VT € [t trra]

The proof is provided in the appendix. Similarly to the constraint and invariance functions,
there exist bounds on al; and b.;, which determine the condition for invariance (3.30).

Lemma 3.7. Let the nonlinear system be given by (2.1) and the outputs describing the con-
straints by (2.11). Let the linearizing input be determined by (3.1). Let Assumptions 2.1, 2.2
and 2.6 hold. Then, during each time interval [ty,tr+1], al; and b.; from the linearizing

[eX}

transformation are contained within bounded sets S, ;[k] C R™, S;;[k] C R, i.e.

(ILZ- G Sa7i [k]
bm' c ’Sb,i [k}] .

The proof is provided in the appendix. Using Lemma 3.6, we extend the definition of the
the set of active constraints for sampled implementations to include all active constraints
and the constraints that may become active during the next time step.

Bucvcuat (®[K], 2, [k], z[K]) = {i € B| @IS (a[k], @, k], z[k]) > 0} (3.52)

For those active constraints, that do not yet have a positive invariance function, the corrective
pseudo input is extended by an additional case to ensure that during the sampling interval,
the invariance function does not increase to a positive value. It is given by

v ift e (Nai(h) UNoi(i)

o Tk = 0 ift € (Nc,i(%‘) UNdﬂ‘(%))
cilF] 4 ift € Noi(vi, k], k], 2:[k]) (3:53)

Zno,i  e€lse.
with ; < 0, the sets from (3.17)—(3.20),
Nei(vi, wlk], @y [k], zi[K]) = {t | ®i[k] <O A G (K], 2y[k], zi[k]) > O} (3.54)
and the adapted parameter 4; < 0 chosen such that
i i (@[k], zy[k], %) = 0 (3.59)

holds. The adapted value 4; ensures that the invariance function remains at non-positive val-
ues during the following sampling interval. Furthermore, its magnitude is generally smaller
than |v;| thus reducing the corrective effort and the over-actuation. The corrective pseudo
input for sampled system is the basis for determining corrective control for sampled systems

uc[k] = argmin C (u, upy,[k])

s.t. @l + bei < zilk] (3.56)
Y aLi € S‘Li [k‘], bcﬂ‘ € Sb,i [k‘], 1€ Bact,chat(m[k]a mn[k], Z[k’])
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3.2 Extensions of Invariance Control

Algorithm 1 Corrective control in sampled systems.

Set Bax = 0
Set uc[k] = wpo[k]
Set z[k] = zu0[K]
Determine Bt chat (T[k ] [ ] z[k])
Whlle Bact,chat(w[k] SZ Bmax
Set Bmax = Bmax U Bact Chat(m[k]v wn[k] Z[ ])
for i € B,,.« do
Determine z;[k]

Calculate u.[k] using (3.57)
for i € B do
Calculate z[k] = al ;[kluc[k] + b [K]

Determine Bt chat (T[k], 2, (K], 2[k])

— =
= O

,_
»

where the cost function C' (u, u,,[k]) fulfills the same properties as defined in (3.31). It may
be observed that the corrective pseudo input z.; and the set of active constraints Baet chat
both depend on the pseudo input z, which in turn depends on the input w = wu.. As the
determination of the input (3.56), again depends on the corrective pseudo input and the
active constraints.

In order to resolve this issue, we propose determining a maximum set of active con-
straints By.x as shown in Algorithm 1, which allows to define the explicit minimization

u.[k] = argmin C (u, uyo[k])

. u , (3.57)
s.t. CI,C’Z-'U, + bcﬂ' S chi[l{?] W Cl,cﬂ' € Sll,i [l{i], bc,i c Sbﬂ' [l{i], 1€ Bmax .

In Algorithm 1, the set of active constraints is derived by iteratively determining the control
input, the active constraints and adding newly active constraints to a maximum set of active
constraints By, until no new constraints are added. The set B,,.x is guaranteed to converge,
as it maximally contains all constraints, i.e. By.x = B. Using the algorithm, the implicit
dependence in (3.56) is resolved, thus allowing the determination of corrective control.

Theorem 3.5 (Invariance in sampled systems). Let the nonlinear system, which is sam-
pled with a sampling time Ty, be given by (2.1) and the outputs describing the constraints
by (2.11). Let the linearizing input be determined by (3.1) and the elements of the corrective
pseudo input by (3.53). Let Assumptions 2.1, 2.2, 2.5, 2.6 and 3.1 hold. Then, if the system
states are within the invariant set at some sampling instant ty, i.e. (ty) € G(x,,7y), the cor-
rective control input determined by (3.57) and Algorithm 1 renders the invariant set (3.14)
positively invariant for all t > ty.

The proof is provided in the appendix. Using the theorem, invariance control for sampled
systems with arbitrary sampling times T4 may be designed. Determining the necessary
bounds on the invariance function and the sets S,; and S,; may however proof difficult
depending on the application. Furthermore, solving the optimization requires an approach
for solving a minimization with uncertain constraints. This may be resolved by using robust
invariance control, which is introduced in Section 4.1.
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In cases where the following assumption holds, the approach may, however, be simplified
such that robust invariance control is not required.

Assumption 3.6. During one sampling interval, the pseudo control input is constant,
1.€e. Z(t) = Z(tk) Vit € [tk,tk+1).

This relation holds exactly if all al; and b.; are constant or approximately for small
sampling times when the changes are negligible. In this case, (3.6)—(3.9) may be used to
determine the invariance function in the following time step, which replaces the maximum
invariance function. Furthermore, it is no longer necessary to determine the sets S, ; and S ;
as aJ; and b.; are (nearly) constant. The following example illustrates how the corrective
pseudo input for a constraint with relative degree two is determined using Assumption 3.6.

Example 3.9 (Parameter adaptation for relative degree two). The output functions
in the following time step depend on the current pseudo control input z[k]. Using
Assumption 3.6 means that for a system with relative degree r; the derivative y(” 2

changes linearly during one time step

~1) (ri=1) s (ri=1)
gk + 1] = i VK] + D[k dt =yl [k] + Tazilk] . (3.58)
tk H,_/
=z;[K]

Furthermore, a ﬁnlte Taylor series determines the values of the lower order deriva-
tives yc [k + 1], ... ,yCZ [k + 1]

y 1k +1] yer [k (3.59)
where yéz)[k] = z][k].
For r; = 2, this means that
T2
%M+H=%MMJMMM+§MM (3.60)

For a system with relative degree 2, the invariance function is given by (3.13), which
evaluates to

T2
[ ] ya@+ﬂ%M$PfMM %%+H§0( !
Q;[k + 1] = p : 9 3.62
Ye,ilk] + Tayesk] + 7’421[16] _ Beilk] QV‘A/Z k) Yeilk +1]1 >0

in the (k + 1)-th time step. Pseudo corrective control is given by (3.53) and 4; is
determined by setting ®;[k + 1] = 0 and solving the equation for z;[k] = 4;.
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Figure 3.8.: Structure of the simulation model for the evaluation of invariance control in
sampled time.

Numerical Evaluation

In order to illustrate the findings a simulation is carried out in Matlab/Simulink. We compare
the proposed novel method to the standard invariance controller [SWB08] and the chattering
reduction method presented in our earlier work [KLH12] for different sets of boundaries.

Simulation Setup We consider a trajectory following problem for a robotic system. The
simulation model with nominal control, invariance control and system is shown in Fig. 3.8.
The system is a simplified Cartesian robot model

M,p=u, Yout = P (3.63)

where M, € R3**3 is the mass matrix and p € R? the position vector consisting of the
translational Cartesian directions. Nominal control is given by a PD control law

Upo = Dp(ydes - yout) + Kp(ydes - yout) ’ (364)

with the proportional constant K, € R**3 and the damping constant D,, € R**3 enforcing
the desired motion 7.

The reference trajectory of the system vy, is a circular movement starting and ending in
the same point. Three constraints as discussed in Example 2.2 are defined by minimum p;-
and po-values and a maximum p;-value. The fourth constraint is given by a tilted plane.
The simulation is carried out for three different tilted planes. The simulation parameters
and constraint functions corresponding to the tilted planes are provided in Table 3.2.

Note that for the numerical evaluation, the corrective pseudo input (3.53) determined in
Example 3.9 is slightly refined by distinguishing two cases for 4;:

e Determine 4; such that ®;[k] = 0.
e Determine 4; such that ®;[k + 1] <0 for z[k + 1] = 0.

The first case ensures that violations are avoided as ®;[k] = ®;[k + 1] for constant z;. The
second case ensures that a value z,; = 0 suffices to render the system invariant from the
next time step onwards. In order to fulfill both cases, the minimal value is chosen.
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Table 3.2.: Simulation parameters for the numerical evaluation of chattering reduction.

Sampling time Ta 0.001s
Simulation time Tend 60.000s
Cartesian impedance K, Is;-600N/m
Cartesian damping D, I;-80Ns/m
Mass matrix M, I;-15kg
Lower position constraints P1,min 0.57m
P2,min 0.13m
Upper position constraint P1,max 0.70m
Tilted plane constraints Ye,1 Ye,1 = +0.86p1 +p2 — 1.0m
Ye,2 Ye,2 = +0.00p1 +p2 —0.4m
Ye,3 Ye,3 = —2.00p1 +p2 +1.0m
Control parameter 0 —18m/s?
Parameters for [KLH12] aq 0.25
g 0.75
k 50

Results The simulation is carried out three times for each control law, once for every set of
constraints. The results are shown in Fig. 3.9. Fig. 3.9a-3.9¢ depict the complete trajectory
in p;- and pse-coordinates, the corresponding reference trajectory and the boundaries. In
Fig. 3.9d-3.9f, the behavior of the system in the right upper corner of the admissible set is
shown in more detail. In order to illustrate, that the configuration of the boundaries does
not effect the invariance, the constraints are chosen such that three significantly different
angles occur in the upper right corner.

In Fig. 3.9a-3.9¢, the trajectories generated by the three control laws almost coincide. The
figures show that the boundaries are overall followed by each control law. In Fig. 3.9d-3.9f,
we observe the differences between the control schemes. The novel control law eliminates
the chattering effect and the trajectory follows the boundaries almost exactly. It also shows
no violation of the constraints, emphasizing that the system is made controlled invariant as
stated in Theorem 3.5. In contrast, the standard control scheme and the chattering reduction
method from [KLH12|, show chattering effects and do slightly violate the constraints. While
invariance control from Section 3.1 ignores the sampled time implementation of the controller,
in [KLH12], Euler’s explicit method is used to approximate the invariance function in the
following time step, which is overly simplified. The approach proposed in this section, on the
other hand, explicitly considers the effects of the sampled implementation of the controller in
combination with a continuous system, which yields a more accurate solution and achieves
a better control performance.

Naturally, the simplifying Assumption 3.6, which holds for the numerical evaluation, does
not hold for all systems, especially not for larger sampling times or highly nonlinear systems
with quickly changing parameters. Therefore, it may be preferable to use a control method
for constraint enforcement that does not generate a switching control law and hence does not
require chattering reduction. In such cases, modeling the constraints and deriving control
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Figure 3.9.: Simulation results for three different sets of boundaries - - - - for a system follow-
ing the desired position ------ from start o to end point e controlled via contin-
uous invariance control from Section 3.1 -+ , the chattering reduction method
from [KLH12] and the proposed approach ——. Depicted are the view

of the complete trajectory with a) constraint y.;, b) constraint y.o, ¢) con-
straint y.s; and the detailed view of the upper right corner of the admissible
area with a) constraint y. 1, b) constraint y.», ¢) constraint y. 3.

via control barrier functions (CBFs) is an alternative option.

3.3 Control Barrier Function-based Control

There are various ways to include barrier certificates and control barrier functions (CBFs) in
control schemes in order to achieve the satisfaction of output and state constraints [Wil03;
TTH13; WS15; Xul8]. The general idea is to define a CBF as a function of the constraint
and to design a control input that restricts the growth of the CBF such that an invariant
subset of the admissible set is generated within which the state evolves.

In this section, we introduce the feedback linearization based control approach for control
affine systems as suggested for single, static constraints by [AGT14; HXA15]. It allows for
the desired implementation as add-on to an existing control loop of system (2.1) and nominal
control as depicted in Fig. 2.1 [RKH16]. This means that, similar to invariance control, CBF-
based control enables designing nominal control to achieve a desired performance and stable
tracking without accounting for possible constraints. However, CBF-based control does not
rely on invariance functions and a switching control law for constraint satisfaction but instead
introduces CBF's which resemble infinite potentials to derive a continuous corrective control
input.

Note that, in contrast to invariance control, CBF's generally use a constraint description
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3 Control Methods for Guaranteed Constraint Satisfaction

that is defined inversely to Def. 2.2.

3.3.1 Alternative Constraint Definition

In order to be consistent with literature [AGT14; RKH16] on CBFs, we define the constraint
functions hg;(x, x,) with i € B inversely to the functions h;(x, x,) introduced in Def. 2.1.

YB,i = hB,i(ﬂ’/‘, :cn) = _hc,i<w7 :cn) = —Ye,i (3-65>

Note that this definition does not change the admissible set from Def. 2.2 but it allows for
an alternative representation of the set H and its bound OH

H(x,) ={x | hgi(z,z,) >0 VieB} (3.66)
OH(x,) ={zx | hgi(x,x,) >0 VieB AN IjeB: hg;(x,x,) =0} (3.67)

As H remains unchanged, there exist admissible states if Assumption 2.2 holds. The goal
of the following control derivation is to design a control law, which renders a subset of the
admissible set positively invariant according to Def. 3.3.

For CBF-based control, the initial step is to use the functions (3.65) to determine a CBF
for each constraint.

3.3.2 Control Barrier Functions

Essentially, a CBF B, : R” x R(rmaxtUmn 3 R+ s a non-negative function with a small value
for states far from a constraint, which grows to infinity as the state approaches the bound of
the admissible set OH. For a function B; to qualify as a CBF, it has to fulfill the following
properties.

(CBF-p;) A valid CBF is non-negative on H

i ; >0.
ég}f{ Bi(x,x,) >0

(CBF-py) For any x, € R(rmax+1ny the barrier grows to infinity as a solution @ approaches
the constraint from inside the admissible set

milg%l# Bi(x, x,) = oo .

-P3 e (e, T rows with the growth rate
(C’BF )Th CBFB( n)g ith the g h

M

Bi < )
~ Bi(x,x,)

where p; >0 .

With these properties, the CBF may grow quickly, if the state is far away from a constraint
as the right side of CBF-ps takes large values in this case. If, however, the state is close
to the bound, CBF-py ensures that CBF-p3 becomes more restrictive, i.e. the CBF grows
slower and finally stops as the state approaches the constraint and the derivative is restricted
to non-positive values. By enforcing this condition, constraint violation is prevented as it
ensures that the growth of the function stops when the state approaches the constraint.

52



3.3 Control Barrier Function-based Control

Remark 3.8. For guaranteed constraint satisfaction, it is necessary to be able to actively
enforce that CBF-p3 holds. Therefore, it is necessary to design the CBF such that its time
derivative depends on the control input u, i.e. BZ(ZL‘, x,, u). Otherwise constraint satisfaction
may only be achieved if CBF-p3 holds naturally on all boundaries of the admissible set.

For the actual design of CBF B;(x, x,), it is important to realize that it essentially behaves
like the inverse of a so-called class k function [Kha96].

Definition 3.10. A continuous function « : [0,00) — [0,00) belongs to class « if it is
strictly increasing and «(0) = 0.

Combining the properties

1
>0, lim
r—0HT (yB,z‘)

inf

=00
zeM a(yp,;)

of inverse class x functions with the desired properties CBF-p; to CBF-p; yields the definition
of CBFs [AGT14].

Definition 3.11. A control barrier function (CBF) B;(x,x,) corresponding to a con-
straint function yg; = hp,(x, z,) is a locally Lipschitz function, for which there exist class &
functions a1, oy and a constant p; > 0 such that B;(x, z,) fulfills for all € H

1
< Bi(z,x,) < 3.68
ar(ysi) — (@) as(ys,i) (368)
inf | Bi(z, @, u) — ——2—| <0 (3.69)
ueRm T Bi(x,z,) | —
with
Bi(x, x,,u) = ag u+ by (3.70)

ap; = LeBi(x, ©,)
bpi =2, 1,Bi(x, @,) + Ly Bi(x, x,)
and locally Lipschitz Lie derivatives £ s, Bi(x, ), L;Bi(z, ®,), LcBi(x, ;).
This definition is the basis for designing suitable CBFs.
Remark 3.9. If B; fulfills (3.69) independently from wu, it is called a barrier function.

Remark 3.10. By designing the CBFs according to Def. 3.11, I/O-linearization with respect
to a CBF B; always yields a relative degree of one, which may be different to the relative
degree of the constraint function yg ;.

The following example shows how CBFs for constraint functions of relative degree one,
such as velocity constraints on robotic systems, may be derived from a class s function.

Example 3.10. Consider the function
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Figure 3.10.: Tllustration of the control barrier function (CBF) —— from Example 3.10 and

the related admissible set

This function fulfills
f(r)y>0 VreR?t
£(0) = lim f(r) =0
r—0t

lim f(r) — oo

r—00

and has a strictly positive derivative

%Y): <ln (7’—7—1))27“(7”:—1) =0 ek,

which means that it is strictly increasing, thus showing that it is a class x function.
Hence its inverse is a CBF candidate as it fulfills (3.68) naturally due to being an inverse

class x function.

Bi(z,x,) = —In (1 iB;B > with yp; = hp(z, 2,) (3.71)

The time derivative is given by

0 1
ysi(1+ys,) Y8,

and transforms into
Bi = a,TByi'u, -+ bBﬂ‘

with ap; # 0 if the constraint function fulfills Assumption 2.2 with relative degree one
and (yp (1 +yp,))~' > 0. Therefore there exists an input u such that (3.69) is fulfilled
and hence (3.71) is a valid CBF. Figure 3.10 shows the CBF as a function of yg; and
illustrates the positivity of the function and it growth towards infinity on approaching

the bound yg; = 0.

As in torque-controlled robotic systems with the generalized dynamics (2.4), position con-
straints have relative degree two, 95 ; does not depend on the input, which means that (3.71)
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derived in Example 3.10 is not a valid CBF. For such cases, the function

Bi(x,x,) = —1In UBi ) 4 CGL%’? (3.72)
T+ ysy 1+ Cb?/]%ﬂ‘

with positive design parameters (,, ¢, € RT is an admissible CBF, which is shown in [HXA15,
Theorem 2]. The function includes gp; in the CBF and with Assumption 2.2, which ensures
that ZeB;(x, ;) # 01x, holds. Note that small values of the design parameters cause
the system to stop further from the constraints, whereas large values increase the risk of a
violation in the presence of uncertainties, i.e. a reasonable trade-off has to be found depending
on the application.

Remark 3.11. In case of relative degrees r; > 2 a suitable CBF may be derived using the
results from [HXA15] or with a slightly different condition (3.69) the results from [Xul§].

In the following section, we use the characteristics of the CBFs to develop a control
structure, which combines multiple constraints with an arbitrary desired nominal behavior.

3.3.3 Admissible Control Inputs

The property CBF-p3 and the condition (3.69) on the derivative of the CBF provide the
basis for deriving suitable control inputs. By enforcing this condition, constraint violation
is prevented as it ensures that the growth of the function stops when the state approaches
the constraint.

Lemma 3.8. Let the nonlinear system be given by (2.1) and the outputs describing the con-
straints by (2.11). Let Assumptions 2.1 and 2.2 hold. Let B;(x,x,) be a CBF corresponding
to the constraint function yg,;. Then any Lipschitz control input w € Mp,; with

i
M A y M) — e R™ iy b z<
B, (1‘ wn K ) {U, | a’B,zu’ + Bi = Bl(w,wn)}

with ag;, b, from (3.70) renders the interior of the set
Hi(xy) ={z | hpi(x,z,) = 0}
controlled positively invariant.

This lemma states that if there exists a CBF and a control input fulfilling (3.69), constraint
satisfaction of a single constraint is guaranteed. Proof of this result is provided in [AGT14,
Corollary 1].

Extending this concept to multiple constraints yields the set of admissible control val-
ues Mg(x,z,, 1)

g )
Mp(x,x,, 1) = eR” | a}, bp; < ——— Vie By 3.73
(2, 1) {u bt < } (373)
which is derived be combining the individual conditions from (3.69) and where p; > 0 are
design parameters corresponding to each B;. Hence, Mp is the intersection of the set Mp;
from Lemma 3.8 corresponding to the single constraints. For admissible control values to
exist, the following assumption has to hold.
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Assumption 3.7. The set of admissible control values Mp(x, x,, p), defined in (3.73), is
non-empty, i.e. M(x,x,, p) # 0.

This is similar to Assumption 3.1 for invariance control, the implications of which are
illustrated in Fig. 3.2. Combining the properties of H with the set of control values M g and
Lemma 3.8, positive invariance of H is shown.

Theorem 3.6. Let the nonlinear system be given by (2.1) and the outputs describing the
constraints by (2.11). Let Assumptions 2.1, 2.2 and 3.7 hold. Let B;(x,x,) be CBFs corre-
sponding to each constraint function yp;, i € B. Then any control input w € Mp(x,z,, 1)
renders the interior of the admissible set H positively invariant.

The proof is provided in the appendix. Intuitively, Theorem 3.6 shows that by choosing
only control values from the set Mp, the system is forced to stay within the admissible set
of states H for all times, thus guaranteeing constraint satisfaction. Additionally, choosing a
Lipschitz continuous input w avoids large, instantaneous changes in the control value, thus
enabling torque-controlled robotic systems to follow the desired torque and reducing the
overall stress of the system. Based on these results, corrective control is derived to unify any
nominal control with the CBF approach for multiple constraints.

3.3.4 Corrective Control

Enforcing multiple constraints while executing a desired task requires the adjustment of
nominal control to ensure the satisfaction of all constraints. This is achieved by merging the
conditions on the control input for constraint satisfaction given by (3.73) with any stabilizing
nominal control law via a quadratic program (QP)

. 2
U, = argmin ||u — wy,

i — e} -
VieB

T i
s.t. ag,;u + szi < Bi(z,zy)

with ap; and bg; from (3.70).

Similar to invariance control, this formulation yields a convex optimization with a unique
global minimum.

Lemma 3.9. The minimization (3.74) is strictly convex and any local minimum is the unique
global minimum.

The proof is analog to the proof of Lemma 3.3. Hence, the optimization may be solved
in a computationally efficient manner [Boy04, p.8|, which is ideal for control in real-time
with high sampling rates. In addition, the fact that any local minimum is the unique global
minimum ensures that nominal control w,, is applied if it fulfills the optimization conditions,
since it is the minimum.

Theorem 3.7. Let the nonlinear system be given by (2.1) and the outputs describing the
constraints by (2.11). Let a locally Lipschitz nominal control signal w.,, be given. Let further
Assumptions 2.1, 2.2, 2.4-2.6 and 3.7 hold. Let B;(x,x,) be CBFs corresponding to each
constraint function yp,, 1 € B. Then, the control law u. obtained by solving the minimiza-
tion (3.74) is Lipschitz continuous and renders the interior of the admissible set H positively
movariant.
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The proof is provided in the appendix. Theorem 3.7 shows that the CBF-based approach
is applicable to nominally controlled systems with multiple, non-conflicting constraints. By
solving the QP (3.74) the invariance of Int(H) and a minimal error to nominal control are
obtained simultaneously. Thus, the constraints are satisfied and nominal control is executed
whenever the state x is sufficiently far away from the bounds.

Additional characteristics and capabilities of the approach are stated without proof in the
following remarks.

Remark 3.12. Even though Theorem 3.7 solely considers the optimization (3.74) with the
cost function (3.32), introducing a weighting matrix in the cost function as in (3.33) may be
advantageous in some applications to influence the outcome of the optimization. This does
not change the validity of Theorem 3.7 as the weighting matrix does not change the proof.

Remark 3.13. Theorem 3.7 does not require nominal control to be Lyapunov stable to
render Int(?) controlled invariant. However, in order to achieve guaranteed boundedness of
the tracking error, a boundedness condition derived from the Lyapunov function of nominal
control needs to be included in the optimization, similar to invariance control (3.39).

Remark 3.14. The methods introduced for augmented invariance control in Sec. 3.2.1 may
also be used with CBF-based control to increase the relative degree of a constraint function.
Introducing an augmentation of the system requires a change of the used CBF but allows
for more influence on the design of the resulting dynamics.

This concludes the formal introduction of invariance control and CBF-based control for
guaranteed constraint satisfaction. In the following, we provide the results from an ex-
perimental evaluation of both methods before turning to the questions of how to satisfy
constraints with uncertain parameters and constraints on multi-agent systems.

3.4 Experimental Evaluation

In this section, the developed control schemes are verified in experiments on an anthro-
pomorphic manipulator with seven degrees of freedom (n, = 7). For information on the
manipulator, the interested reader is referred to [Sta06].

In general, the goal of introducing a safety control scheme is to avoid damage to the en-
vironment and to keep humans in the vicinity safe. Therefore, both invariance control and
CBF-based control are evaluated on two Cartesian constraint setups: one which requires the
satisfaction of multiple static box constraints representing environmental constraints on the
end effector and one which requires the satisfaction of a single dynamic spherical constraint
on the end effector representing a human moving in the vicinity. In order to include the
effects of physical interaction with humans, a stiffness control law is chosen to represent
nominal control. This enables tracking a desired trajectory while allowing a human partner
to apply interaction forces to adjust the position of the manipulator. Especially the applica-
tion of the previously unknown, external disturbance forces illustrates the advantage of the
proposed control schemes over collision avoidance approaches such as potential fields [RK92].
Even without prior knowledge of the magnitude or the direction of the applied force, both
approaches are able to guarantee constraint satisfaction, whereas potential functions are only
able to give such a guarantee if they are designed to absorb all energy from the dynamics
and the external forces, which would require prior knowledge.
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Figure 3.11.: Control structure for the experiments consisting of a control loop for the gen-
eration of constraint admissible trajectories and the position-controlled robotic
system.

Note that although in the following, constraints are imposed solely on the Cartesian posi-
tion of the end effector, in general, it is also possible to introduce constraints on joint level,
on the entire manipulator or on the respective velocities by defining appropriate constraint
functions.

3.4.1 Setup

The control structure used in the experiments is depicted in Fig. 3.11. The robotic system is
position controlled by PD joint control in combination with inverse kinematics to derive the
desired joint position g4, € R” from a desired Cartesian position p,., € R®. This generates
the input 7, € R7. Note that 7, does not correspond to the input of a torque-controlled
robotic system, which is why it is not possible to use (2.4) to derive corrective control for con-
straint satisfaction. Instead corrective control, i.e. invariance control or CBF-based control,
is included in a preceding control loop, which generates a constraint admissible trajectory
from a desired trajectory p, € R and the applied external forces and torques f., . € R3.
Corrective control is inserted in between a simplified system model, which neglects Coriolis
and gravitational terms as these are compensated by the robotic system, and nominal con-
trol. Note that the input error e, equals zero in this setup as corrective control is included
in the preceding control loop, where the parameters are exactly known.
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3.4 Experimental Evaluation

Figure 3.12.: Positioning of the static Cartesian box constraints ——, which are imposed on
the end effector position  during the first experiment [RKH16].

Nominal Control

The nominal control scheme is impedance control, which achieves the desired compliant
reaction of the manipulator to external forces exerted by the human interaction partner.
Using task space impedance control (2.24) enables the design of the robot compliance in task
space. Note that the use of the simplified robot model without Coriolis and gravitational
terms in the setup results in a simplification of (2.24).

Tho = fext + Mppdes + Dp<pdes - pdes) + Kp<pdes - pdes) (375)

A sensible choice of the parameters achieves the desired behavior. The impedance control
scheme does, however, not enforce the constraints.

Constraints

Constraints as in (2.11) are conveniently defined in Cartesian space, thus limiting the trans-
lational motion of the end effector. In the task at hand, the task space is the translational
Cartesian space with the task coordinates p € R3. Typical shapes, which are used to model
obstacles, are box or spherical constraints as introduced in Examples 2.2 and 2.3. For the
evaluation of the proposed control approaches, we use two sets of constraints.

Static Constraints In a first experiment, the desired Cartesian end effector position py,
is constrained by static box constraints, which are a set of six linear constraints as introduced
in Example 2.2. The constraint functions are given by

Yelow,i = Mi,min — Pi,des (376)
Ye,up,i = Pi,des — Ti,max (377)

where ¢ € {1, 2,3} and 1); min and 7; max are the constant lower and upper bound parameters,
respectively. The positioning of the constraints is illustrated in Fig. 3.12.
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Differentiating (3.76)—(3.77) with respect to time

yc,low,i = _pi,des (378)

yc,up,i = pi,des (379)

yc,low,i = _ﬁi,des (380)

yc,up,i = pi,des (381)
and using the inverted simplified robot model

jjdes = Mp_lT (382)

yields the relative degree r = 2 for each constraint as M, ' is non-singular since it it
invertible.

Dynamic Constraint In a second experiment, a single dynamic spherical constraint is
imposed on the end effector position. This constraint is chosen as an exemplary constraint to
keep the human hand safe from collisions with the end effector. Naturally, more constraints
may be added to account for the entire human body.

The radius 7, € R of the constraint is set to a constant value, while the Cartesian center
position 1,, € R3 varies over time to account for the moving human hand. The constraint
output function is then given by

Ye = hC (pdes7 [ZT‘|> =M — ||pdes - anQ . (383)

Note that the parameters have to be chosen such that the human (or object) that has to be
kept safe is contained entirely. Figure 3.13 depicts the experimental setup with the robot
and the human, while Fig. 3.14 provides a more detailed schematic view.

Differentiating (3.83) with respect to time

(pdes - nm)T(pdes B Cm)

||pdes - anQ
. es mT”es_ém_'_ .es_c.mQ es mT.es_ém 2
jo = _(Pd M) (P ) + [|Pa I3 + ((pa M) (Pa _ ) (3.85)
dees - 'r,m”Q ”pdes - anQ

(pdes _nm)T -1

and using (3.82) yields the relative degree r = 2 if py, # Nm as then e M, is
non-singular.
Corrective control for the satisfaction of the defined static and dynamic constraints is

determined using the constraints, their respective derivative and relative degree.

Invariance Control

Based on the chosen constraint, invariance control derives corrective control according to
Sec. 3.1. As the relative degree equals two, the invariance function is given by (3.13). The
pseudo input depends on the constraints.

60
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Figure 3.13.: A motion tracking system detects the markers on the hand to determine the
center position 7,,, which is defined by the centroid of the marker body [KH15].

Pseudo Input for the Static Constraints Combining (3.80)-(3.81) and (3.82) yields
the pseudo input (3.15) for the box constraints

Zi = Ye = CLIJT + bc,i
al,=—-M, [di,l d; 2 di,s} Y Yelow,i
al; = M, {di,l dz‘,z di,3} V Ye,up,i

c,t

bc,i =0 Vv Ye,low,irs Yeup,i
with ¢ € {1,2,3} and

0 i
d, =0 17 (3.86)
’ 1 ifj=i.

Pseudo Input for the Dynamic Constraint Combining (3.85) and (3.82) yields the
pseudo input (3.15) for the dynamic constraint

z2="9.=alT+ b
- (pdes B 77m)T M -1
||pdes - "7m||2 P
b, — (pdes B nm)Tnm ”15(165 - 77m||§ ((pdes - nm)T(ﬁdes - T’m))2
||pdes - anQ ||pdes - anQ ”pdes - an%

T —
a. =

Corrective Control The corrective pseudo input is determined by (3.22). The corrective
control input is calculated using the minimization (3.31) with the cost function (3.32). Note
that for the first experiment with the static constraints, maximally three constraints are
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Figure 3.14.: The hand position determines the center n,, of the spherical constraint with
the constant radius 7,. The output function h(pg.s, 17) is a measure for the
distance to the end effector [KH15].

active at the same time while the second experiment includes a single constraint. Therefore,
determining the set Z (3.37) is trivial and (3.38) with W = I3 may be used to determine
corrective control. Constraint satisfaction is then guaranteed by Theorem 3.1. Note that the
additional condition for boundedness from Theorem 3.3 is not included in the experimental
evaluation. Similar to Example 3.7, the combination of the constraints with nominal stiffness
control yields a naturally bounded system, which is also true for the CBF-based control.

CBF-based Control

CBF-based control derives corrective control according to Sec. 3.3. Keep in mind that for the
CBF's use an inverse constraint definition yg = —y.. As the relative degree of the constraints
equals two, we use the CBF from (3.72) in the experiments. Note that the parameters (,
and ( related to this CBF may differ for each constraint, i.e. in a setup with multiple
constraints, each constraint may be assigned a different set of parameters.

Set of Admissible Control Values The derivation of the set of admissible control val-
ues (3.73) requires the differentiation of B; with respect to time.

Bi - + B = — 7 N Yc + 2 a
Bs YB TR UB yc(l — yc)?/ CaCp

(1+ Cb?)?,)ﬂc

The derivative depends on the constraint functions and their respective derivatives as derived
in (3.76)—(3.85). The set of admissible control values

{’T c R? | aTB7iT+bB,i < % Vi e B}
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is then determined for the static constraints by

yc low,3
al ;= 2Ca€b — -M di, di, dz’, v Ye,low,i
b (1 + Q?ycz,low,i)2 ( p) [ 1 ’ 3:| o

yc,up,i
ap; =20G——"5—M, |diy dio d; V Ye,up,i

—_7'02‘ v 'ci: c,low,iy Yc,up,i
) yc,i<1_yc,i)y7 Ye, Yelow,iy Ye,up,

with 7 € {1,2,3} and d, ; as in (3.86) and for the dynamic constraint by

yC (pdes - nm)T 1)
ah = 2(, . — M.
b= 2GR ( 1Pa =il 7

. Ye
———— Y + 26y
Ye(l — ye) (14 Gy2)?
((pdes B "7m)T77m + ”pdes B "7m”% + ((pdes B nm)T<pdes B nm))2> )
[Paes = Mz [Paes — Mmll2 [Paes — M l3

by =

Corrective Control The corrective control input is calculated using (3.74). Constraint
satisfaction is then guaranteed by Theorem 3.6 and Theorem 3.7.

3.4.2 Implementation

The control structure is implemented on a Linux system with a preemptive real-time ker-
nel using the Matlab/Simulink Real-Time Workshop. The code runs with a sampling rate
of 1kHz. The real time QP solver used in CBF-based control is generated by CVX-
GEN [MB11].

Closed-loop differential inverse kinematics determine the position of the end effector from
joint position encoders with 1024 ticks per motor revolution. Backlash-free interaction is
ensured by Harmonic Drive gears with transmission ratios of 1 : 100 in shoulder and elbow
joints (J1 to J4) and 1 : 160 in the wrist joints (J5 to J7). The external forces f.y,, applied
to the end effector by the interacting human, are measured by a JRS3 sensor, which senses
forces and torques with 6 degrees of freedom.

The center position of the dynamic constraint is determined by the position of the human
hand, which requires the tracking of human body parts, e.g. by a vision-based perception
system. Here, for the sake of demonstration, we employ our marker-based Qualisys Motion
Tracking System to track and avoid the collision with a human hand. The hand is marked
with a rigid body, the centroid of which defines the center position 7, of the spherical
constraint (3.83). The value of 0, and its time derivatives up to the second order are
derived in real-time from the data collected using the motion tracking system. The constant
radius 7, of the spherical constraint is chosen such that the sphere encloses the human’s
hand. The system and control parameters are provided in Tab. 3.3.
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Table 3.3.: Model and control parameters in the experimental evaluation of invariance and
CBF-based control for constraint satisfaction.

General

Sampling time Ts 0.001 s

Robot mass M, [10 10 10} kg

Desired position (dynamic constraints) Ddes [0.635 ,0.133 , —0.441]Tm

Nominal control

Cartesian stiffness (CBF) K, 200-Is N/m
Cartesian stiffness (invariance) K, 600 - I's N/m
Cartesian damping D, 80 I3 Ns/m
Static constraints
Upper bounds Mimax [0.70 0.40 —0.35]T m
Lower bounds Mmin [0.57 0.13 — 0.50]T m
Dynamic constraint
Radius (CBF) s 0.25 m
Radius (invariance) My 0.4 m
Invariance control
Control parameter 0 —18m/s?
CBF-based control
Static constraints o 10 1/s

Ca 100

G 10
Dynamic constraint 7 10 1/s

Ca 1

Cb 1

3.4.3 Results

This section presents the experimental results generated by invariance control with static
box constraints [Kim1l; KLH12] and a dynamic constraint [KH15; KH17] as well as the
results generated by CBF-based control with static and dynamic constraints [RKH16].

Static Constraints

In the first experiments with the static constraints, the end effector is controlled to track a
reference trajectory while a human applies forces of random direction and magnitude to the
end effector that lead to a deviation from the reference trajectory. The corrective control
schemes ensure that even though the reference trajectory may violate the constraints and
even though the forces might push the end effector towards the bounds, the end effector does
not violate any constraints.
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(b) Measured external forces fo = [fext,p1 fext,p2 fextp3|T applied in each Cartesian direction.

Figure 3.15.: Experimental evaluation of invariance control with static bounds: (a) Cartesian
end effector trajectories with the respective bounds and (b) external forces
applied by the human in each Cartesian direction during the experiment.

Invariance Control Figure 3.15a depicts the generated desired trajectory and the mea-
sured trajectory of the end effector in all three Cartesian directions. It may be observed
that the desired trajectory is always compliant with the boundaries even though the original
reference violates the constraints as e.g. in po for t € [25,38]s, which confirms Theorem 3.1.
The forces depicted in Fig. 3.15b cause deviations from the reference trajectory in the di-
rection of the force as e.g. in p; for ¢ € [80,82]s but do not cause the desired trajectory to
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violate the constraints. It should, however, be noted that the measured position of the end
effector does violate the constraints, especially in the ps-coordinate at ¢ € [5,18]s. This is
due to the fact that the counterforces generated by the manipulator may not be arbitrarily
high. Therefore, if the force, as shown in Fig. 3.15b, reaches a high magnitude, the end
effector is not able to follow the desired trajectory and violates the constraint. However, a
reduction of the force immediately leads to a return of the measured end effector position
into the admissible set as e.g. at ¢ = 18s. It may further be observed, that the measured end
effector position exactly follows the reference trajectory whenever it satisfies the constraints
and no forces are applied, which is due to the nominal stiffness control.

CBF-based Control Figure 3.16 depicts the Cartesian position of the end effector and
the measured external forces during the first experiment with six static constraints and
CBF-based control. During the first few seconds, the desired position follows the reference
trajectory as the end effector is away from the bounds and no forces are applied. If the end
effector is at a distance from the constraint and an external force is applied, as in p3 for
t € [25,45] s, or if the system is close to a constraint and the force is directed away from the
limit, as in p3 for ¢t € [5,10]s, the end effector gives way to the external force. This shows
the effect of the nominal impedance control law.

Figure 3.16a also shows that the desired trajectory never violates a constraint even though
the reference trajectory does not satisfy the constraints, as in p; for ¢ € [3,9]s. In addition,
when the trajectory is close to a boundary and forces are applied pushing the end effector
towards the limit, as in p; and ps for t € [15,25] s, no violation occurs. Hence the controller
enforces the constraints in the presence of external forces and even if the reference leaves the
admissible set of states, which illustrates Theorems 3.6 and 3.7.

It may further be observed that the measured position of the end effector p, almost
exactly coincides with the desired position. However, the measured position shows some
minor violations (< 1mm) of the constraint, similar to the experiments with invariance
control due to the actuators not being able to generate high enough counterforces. Note
that the violations are smaller for this experiment in comparison to the experiment with
invariance control as the applied external forces depicted in Fig. 3.16b are smaller than in
the previous experiment, see Fig. 3.15b. The slight violations do, however, not challenge the
general feasibility of both approaches as they are solely due to hardware limitations.

Dynamic Constraint

In the second experiment with the dynamic constraint, the end effector tries to hold a static
end effector position p, and there is no physical contact between human and robot, i.e. no
external forces. The marked hand then approaches the end effector until an evading motion
is carried out by the robot. For invariance control, a second trial is executed, in which
a physical coupling between a human and the end effector is introduced, meaning that a
second human firmly grasps the end effector and exerts forces to move the end effector in
arbitrary directions. The end effector reacts compliantly to exerted forces due to the nominal
impedance control law, while still satisfying the constraint.

Note that since the control law only depends on the motion measurements but not on
any model of the human movements, the results for different human subjects resemble one
another apart from different humans choosing different trajectories. Therefore, we only show
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(b) Measured external forces fo = [fext,p1 fext,p2 fextp3|T applied in each Cartesian direction.

Figure 3.16.: Experimental evaluation of CBF-based control with static bounds: (a) Carte-
sian end effector trajectories with the respective bounds and (b) external forces
applied by the human in each Cartesian direction during the experiment.

the results generated with one human.

Invariance Control The experimental data is evaluated with respect to constraint satis-
faction, i.e. invariance, and boundedness of the tracking error. The results obtained without
external forces are illustrated in Fig. 3.17. The figure shows the value of the invariance
function as well as the deviation of the end effector position from the reference position p, .
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Figure 3.17.: Evaluation of the - --- invariance function and the —— deviation ||p,.s — Pu 2

from the reference position p,; without external forces.

It may be observed that a bounded deviation from the desired position occurs when the
invariance function is reduced to zero, i.e. for ¢ € [5,13]s. Since the invariance function by
definition equals zero when the system approaches the constraint, it is clear that a deviation
has to occur in order to avoid a violation of the constraint. Apart from a slight chatter-
ing effect at zero, which results from the sampled time implementation of the continuous
control scheme from Sec. 3.1, the invariance function is never positive, which illustrates the
invariance of the controlled system according to Theorem 3.1. It may further by observed
for ¢ > 13 s that a removal of the constraint, i.e. a motion of the human away from the end
effector, allows the end effector to return to the reference position.

Then, the physical contact with a human is established which results in external forces
different from zero. Figure 3.18a shows the fraction of the applied force, which is directed
towards the constraint. The bounded deviation of the end effector from p,; as shown in
Fig. 3.18b is caused by the applied forces as well as by the approaching constraint. During
the first 10s, the distance between the end effector and the constraint is large and the
invariance function ® is negative, i.e. the deviation is solely caused by the force. Naturally,
the forces affect the value of @, since the output function (3.83) and ® depend on the end
effector position. The figure shows that & solely takes non-positive values, meaning that
even in the presence of external forces, the robotic system is kept invariant by the control
scheme and the constraint is not violated. For & = 0, the system is at the boundary of
the invariant set and the constraint is directly at the end effector, which is illustrated by
the fact that the lines of the deviation and the relative constraint position coincide. It may
further by observed that at this point the system reacts on the one hand compliantly to
forces directed away from the constraint as for example at ¢ = 25s, which decrease the value
of ® and move the end effector away from the constraint. On the other hand, forces directed
towards the constraint do not lead to a violation of the constraint or a positive value of ®.
In this case, the system is stiff and ® keeps its value of zero as for example at ¢t = 15s. This
emphasizes the fact, that invariance control achieves invariance and constraint satisfaction
as stated in Theorem 3.1. Note that since the applied forces and the constraint motion are
bounded, the deviation of the end effector from the reference position is bounded throughout
the experiment.

CBF-based Control Figure 3.19 shows the results of CBF-based control with a dynamic
constraint, a static reference position and no external forces. During the first few seconds,
the constraint is at a distance from the end effector and the end effector holds the desired
position, i.e. there is no deviation as depicted in the figure. However, if the constraint moves
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Figure 3.18.: Influence of (a) the magnitude of the applied external forces in direction of the
constraint (positive for application in direction of the constraint) on (b) the
deviation from the reference position, the relative position of the constraint
with respect to the end effector and the value of the invariance function ®.

towards the end effector as for ¢t € [2,4]s, this means that —||p.¢ — Poll2 — ye decreases
in value and a deviation from the reference position occurs as the system has to move
to avoid a violation of the constraint. The almost coinciding lines corresponding to the
deviation and the relative distance show that the end effector only deviates as much from the
desired position as necessary to avoid a violation. This is also emphasized by the constraint
function approaching zero, which corresponds to the distance between the end effector and
the constraint. It may further be observed that the barrier constraint function yg always has
a positive value, which shows constraint satisfaction and illustrates the invariance stated in
Theorems 3.6 and 3.7. Note that the constraint function never reaches zero but remains at
positive values. This is caused by the characteristic of the CBF approaching infinity towards
the constraints, resembling the behavior of potential functions, which absorb the energy of
the system until it comes to a rest at a small distance from the bound.

3.5 Discussion

Concluding this chapter, we provide a short summary of the capabilities of the developed
[/O-linearization-based control approaches for constraint satisfaction.

Both invariance control and CBF-based control combine corrective control with nominal
control using convex minimization
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Figure 3.19.: Reaction of the end effector to the moving constraint with —— the negative

deviation of the end effector from the reference position — ||p,, — Pyetlly,
the relative distance between the surface of the sphere and the reference po-
sition —||Pref — Pullz — e and ---- the barrier constraint function yg = —ve.

u. = argmin ||u, — uno||§

Lo o (3.87)
st.alu+b;,<d;, VieB

with a; = ac,;, b; = b.; from (3.1), B = B, and d; = 2, for invariance control according
to Sec. 3.1 and a; = ap,, b; = by, from (3.70), B = B and d; = B_(I;Tn) for CBF-based
control from Sec. 3.3.

This allows the system to follow the given task at a distance from the constraints, while
satisfying any static and dynamic constraints in joint or work space. The approaches are
designed to render a subset of the admissible set controlled positively invariant thus being
able to guarantee constraint satisfaction.

Remark 3.15. Since both invariance control and CBF-based control generate similar con-
ditions on the control input, the approches may be combined, i.e. some constraints may be
enforced using invariance control while the others are enforced using CBFs.

The differences between invariance control and CBF-based control lie in the way how
corrective control is determined. Invariance control relies on switching between nominal
and corrective control whenever the invariance function, which is designed based on the
constraint dynamics, indicates the necessity of corrective action for constraint satisfaction.
The invariance function and the generated optimization conditions are defined in the entire
state space. This leads to a control input that allows the state to re-enter the admissible set
in case of constraint violations, which may for example occur if new constraints are added
during runtime. In sampled implementations, however, the switching induces chattering
effects which may lead to a decreased performance. This effect is reduced by using the
approaches presented in Sec. 3.2.

CBF-based control, on the other hand, avoids any discontinuities in the control input by
generating a Lipschitz-continuous control law. However, as the CBFs only have a defined
function value within the set of admissible states by Def. 3.11, CBF-based control is not
able to resolve constraint violations, caused by inadmissible initial state values or new con-
straints added during runtime. In addition, invariance control stops the state directly at the
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constraint, while CBF-based control stops it at a small distance when the entire energy is
absorbed, which means that it is not able to exploit the entire admissible set.

Further note that both approaches assume the system to be able to handle arbitrarily
high input values. Even though input constraints may be added to the minimization, this
is not recommended as it may lead to infeasibility of the minimization (3.87). Instead, it is
preferable to adjust the control parameters v and p to reduce the required control input.

The characteristics and capabilities of the proposed control approaches are illustrated in
the conducted experiments. The presented results encourage the application of the presented
[/O-linearization-based control approaches to robotic systems in scenarios involving humans
and physical interaction with humans. Note that the proposed control schemes may also
be applied to enforce constraints on the orientation as demonstrated for invariance control
in [KLH12].

However, as both control approaches introduced in this chapter rely on I/O-linearization
to determine the influence of the input on the constraints, they require an exact model of
system and constraints, which means they are susceptible to uncertainties in the constraint
parameters 1. The following chapter deals with this issue and presents robust and proba-
bilistic approaches which enable the satisfaction of constraints with uncertain parameters.
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Satisfaction of Constraints with
Uncertain Parameters

The reliable enforcement of the restrictions imposed on robots by closely interacting humans
depends strongly on the accurate estimation of the human pose, motion and intent. However,
any variability in the human motion causes uncertainties, especially in combination with an
inexact model and any offsets in measurements. This is also true if the [/O-linearization is de-
rived by using learning-based methods [UBK+17]. These uncertainties need to be accounted
for when designing a control scheme, that aims at guaranteeing constraint satisfaction.

Related Work and Open Problems

Optimization-based control schemes such as MPC [MRR+00] handle uncertain constraints
by adjusting the constrained optimization. While robust approaches guarantee constraint
satisfaction for every instance of the uncertainty, both chance-constrained and scenario-based
approaches provide a satisfaction probability [CCO05]. Including uncertainties in set-based
control approaches [Bla99; AFG+14] is possible by computing robust sets [FAC10]. As the
introduction of uncertainties may however lead to an increased computational effort, the
solution of the optimization for MPC and the computation of the invariant sets may become
too costly for real-time applications with high sampling rates. In [BG10; MB99], preliminary
steps towards invariance control with uncertain parameters are taken, but only for SISO-
systems and without offering a systematic approach to choosing the invariant set and the
control input for robust and probabilistic guarantees.

This chapter introduces 1/O-linearization-based control approaches for the satisfaction of
constraints with uncertain parameters based on the results for invariance control as pre-
sented in [KPHed]. If the uncertainty distribution is continuous, there are infinitely many
instances of the uncertainty. This means that the optimization problem (3.87) is subject to
infinitely many optimization constraints as each instance of the uncertainty generates one
condition on the input. As a result, directly solving the optimization in real-time is hard
if not impossible [CC05]. In order to resolve this issue, we present three alternative con-
trol methods: robust, probabilistic and scenario-based constraint satisfaction. Note that the
methods preserve the characteristic of the derived control law being implemented in addition
to any nominal control scheme. Furthermore the control types are shown to formally guar-
antee robust or probabilistic constraint satisfaction and are interchangeable, thus allowing
for different constraint types to be straightforwardly combined.
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4 Satisfaction of Constraints with Uncertain Parameters

Remark 4.1. With each method, we associate a set containing the indices of the constraints
which are desired to be modeled in such a way: B, contains the constraints for robust
constraint satisfaction, B, those for probabilistic constraint satisfaction and B, those for
the scenario-based approach.

4.1 Robust Constraint Satisfaction

For the sake of being able to achieve robust constraint satisfaction, we make the following
assumption in this section.

Assumption 4.1. The set D from (2.18) is bounded, i.e. A,, is bounded with A,, € D = D,y
and the bounded set D,,, C R™rmaxtD) - Fyrthermore, the bounds are known.

If the uncertainties are bounded and guaranteed satisfaction of constraints ¢ € B,,, C B
is desired, the control goal should be to include every instance of the uncertainty in the
determination of the corrective control input in order to achieve robust satisfaction.

Definition 4.1. A control scheme achieves robust satisfaction of constraints with uncer-
tain parameters, if constraint violation is avoided for any value of the uncertainty, i.e. if the
state remains in the robust admissible set.

Heob(Zy) = {x € R" | hei(x, @y + A)) <0, Vi€ Biop, Ay € Dioh}

Examining the effect of the bounded uncertainty on the constraint functions (2.11) and
their derivatives yields

Yei = hc,i(w7 .an) =
yc,i - hc,i(ma m’l]) =

vei = (al (@, @) + AL (2,8, Ap)u + be(@, By) + Ay (@, Fp, A,) (43

N

with al,i = [ac,it1,- -, Gcim) and
Ahc,i(m’ QT?]’ AT]) - hC7i(m7 Ty + An) - hc,i(ma aTn)
Ahc’i(:c,w_n, A,) = hei(x, Ty + Ay) — hei(z, )
ALC.'L (ID, w_nv An) = al—,i<w7 w_n + An) - CLI,i(IE, w_n) (46)

Abc,i (.’B, w_n, ATI) = bC,i<w7 w_’fl + ATI) - bC,i<w7 w_n)

for the I/O-linearization of the constraint outputs required for invariance control. Similarly,
the control barrier functions (CBFs) and their respective derivatives may be written as

Bi(z,xy) = Bi(z, Ty) + Ap,(z, Ty, Ay) (4.8)
Bi(ma Ln; u) - (a’g,i(wv m_n) + ALB’Z,(ZE, :ITn, AU))U + bBJ(mv :IT?]) + AbB,i(w7 m_n’ An)
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4.1 Robust Constraint Satisfaction

with af; = [aB1,- -, aBim| and
Ap,(x, &y, Ay) = Bi(z, T, + A,) — Bi(w, Ty) (4.10)
AEBJ’ (IE, .’B_n, AW) = a’TB,i<w7 w_ﬂ + An) - a’TB,i<w7 w_77> (411>
Apy (@, Ty, Ayy) = bp (2, Ty + Ay) — bpi(2, Ty) - (4.12)

Analyzing the expressions shows that under Assumption 4.1, the uncertainties Ay (x, Z,), A,)
in these functions are bounded as well.

Lemma 4.1. Let the system and constraints be given by (2.1) and (2.11), respectively. Let
Assumptions 2.1-2.3, 4.1 hold. Then, the uncertainties Ay(x, Ty, A,) with

i (r-1)
kefheihei....h Qcity s QeimyDeis Bis @ity QBim, bpi}

X

from (4.4)—(4.12) are bounded at each instant of time.

The proof is provided in the appendix. As a result of Lemma 4.1, (4.4)—(4.7) and (4.8)—
(4.9) are subject to a uniform bound independent from the value of A,

AL (2, T) < A, Ty Ay) < AL (2, T) (4.13)
where Ak Prob (:E, :IT?]) - Anig’lgmbAk(w’ CE_n, An)
AkmaX'Drob (x,Z;) = sup Ax(x, Z, Ay)

A’V]EDI‘Ob

. j (r—1) :
with £ € {hc,ia hcﬂ', e h y Qe -+ s Qeimy bcﬂ', BZ', AB,i,1y - -+ ABi,m; bBﬂ'}. With these re-

c,t
sults, it is possible to derive invariance control and CBF-based control for robust constraint
satisfaction.

4.1.1 Robust Invariance Control

Based on Def. 4.1 and Assumption 4.1, the notion of a robust invariant set is defined.

Definition 4.2. The robust invariant set is a subset of the state space, in which all
invariance functions (3.10) are non-positive for all possible instances of the uncertainty A,,.

grob<w_nu,Drob7'7) = {w S R" ‘ q)z<w7w_n + An,%') S 0 Vi S Broba An S Drob}

If a control scheme is able to render this set controlled positively invariant, the constraints
are robustly satisfied for all possible instances of the uncertainty. This requires the determi-
nation of a robust invariance function, which determines when a switch to corrective control
is necessary to achieve the desired positive invariance.
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4 Satisfaction of Constraints with Uncertain Parameters

Theorem 4.1. Let the system and constraints be given by (2.1) and (2.11), respectively. Let
Assumptions 2.1-2.3, 4.1 hold. Then, the robust invariance function

q)mbﬂ(w’ w_TN Dmlw 72) = glti)é p;nax<w7 .’,C_n, Dmb; Vi, At) (414)

with the polynomial

r;—1 j
. K At max _ _
P (x, Ty, Dyos, Vis A) = Z TAh(j)D‘*Ob(:c, Z,) + pi(x, Ty, v, At) (4.15)
]:0 . c,t
and p;(x, Ty, vi, At) from (3.11) fulfills
(I)Z'<IE, Ty, ’)/Z) < (I)mb,z(w, .’E_n, Drob; "}/Z) VAn c Drob (416)

with the invariance function ®;(x, z,,v;) from (3.10) and x,, = T, + A,,.

The proof is provided in the appendix. This theorem provides a robust invariance function
that takes a non-negative value if for any instance of the uncertainty, the invariance func-
tion (3.10) is non-negative. As corrective action should be taken if there is only the slightest
chance of a constraint violation, the set of active robust constraints is introduced based on
the robust invariance function (4.14) to indicate constraints requiring corrective action.

Definition 4.3. The set of active robust constraints contains the indices of all con-
straints requiring robust satisfaction for which the corresponding robust invariance func-
tion (4.14) is non-negative.

Brob,act(ma a‘:_’m Drob7 7) - {'L S Brob | (I)rob,i(ma az_’m Drob7 ,YZ) Z O}

For the determination of corrective control, the following theorem generalizes Theorem 3.1
to the case when bounded uncertainties influence the constraints.

Theorem 4.2. Let the system and constraints be given by (2.1) and (2.11). Let Assump-
tions 2.1-2.6, 4.1 hold. Then, if the optimization problem

u, = argmin ||u — u,,|/; (4.17)
u

maxp

s.t. ag;(x,Ty)u+ (‘Aac,i

b\ T _ maxp .
" ) [u| +bei(x, By) + A, " < 200 Vi € Brobac

yields a solution for allt > to, where z.; is determined from (3.16) using the robust invariance
function and the elements of ’Aac’i’max%’b fulfill

maxp,

k

minp

b maxp
’Aac,i = max (’A“c,i,kmb Aag ™

)

with 1 < k < m, the control input w = wu,. renders the robust invariant set G,,, controlled
positively invariant and achieves robust satisfaction of the constraints i € Biyp.

)

The proof is provided in the appendix. With this theorem, it is possible to find a control
input, which achieves the satisfaction of the constraints without having to consider the
infinite range of uncertainties but only a single robust condition per constraint. In addition,
the optimization problem (4.17) from Theorem 4.2 has the following property.
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4.2 Probabilistic Constraint Satisfaction

Corollary 4.2.1. The optimization problem (4.17) is convex and any local minimum is a
global minimum.

The proof is provided in the appendix. As computationally efficient methods exist to solve
such convex optimization problems, this enables the determination of a control input in real
time.

4.1.2 Robust CBF-based Control

Using Lemma 4.1 and (4.13), CBFs may be used to achieve robust constraint satisfaction.

Theorem 4.3. Let the nonlinear system be given by (2.1) and the outputs describing the
constraints by (2.11). Let further Assumptions 2.1-2.6 and 4.1 hold. Let B;(x,x,) be CBFs
corresponding to each constraint function yg;, © € By. Then, the control input u = u.
obtained by solving the minimization

w, = argmin ||u — wp,||; (4.18)

maxp max
& DTO

b

s.t. ap,(x,Ty)u + (}A

TO T EE—
ap; b) |u‘ + bB,i<w7 wn) + Ab3,¢

Hi .
max v 1 E B’I”O J
BZ(,’,C7 w_n) _'_ ABl Drob b

<

TP il

where the elements of ‘Aam

maxp,

B,

b minfD‘mb
= max OAQBM

AmaXD‘r‘Ob
ap;k

)

with 1 < k < m, renders the interior of the robust admissible set H,,, positively invariant
and achieves robust satisfaction of the constraints i € B,yp.

aB,'L )

The proof is provided in the appendix. As robust CBF-based control renders the robust
admissible set invariant by Theorem 4.3, the approach is able to guarantee robust constraint
satisfaction. In addition, the optimization problem (4.18) is convex, which allows the em-
ployment of computationally efficient methods to solve the minimization in real time.

Corollary 4.3.1. The optimization problem (4.18) is strictly conver and any local minimum
s a global minimum.

The proof is analogous to the proof of Corollary 4.2.1. Both robust invariance control
and robust CBF-based control are able to enforce constraints with bounded uncertainties. If
the uncertainty distribution is not bounded or if the uncertainty distribution is known and
probabilistic constraint satisfaction suffices, a probabilistic approach may be beneficial and
lead to less conservative results.

4.2 Probabilistic Constraint Satisfaction

Probabilistic constraint satisfaction aims at providing a minimum probability p; of satisfying
each constraint ¢ € B,,. This requires the derivation of probabilistic uncertainty bounds
which fulfill the following assumption.
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4 Satisfaction of Constraints with Uncertain Parameters

Assumption 4.2. The uncertainty A, € D with D from (2.18) is with probability p; < 1
within the known bounded set D,, C D, i.e. Z(D,,) = p;.

If such a set D,, and its bounds are not known, knowledge of the underlying probabilistic
distribution of D is required to be able to determine D,,. The goal is to map the paramet-
ric uncertainty to the constraints to enforce them with a certain probabilistic satisfaction
guarantee.

Definition 4.4 (p;-satisfaction). A control scheme achieves p;-satisfaction to a con-
straint ¢ € B, with uncertain parameters, if the probability of violating that constraint
is at most 1 — p;.

Similar to the robust constraint satisfaction, we use the formulations (4.1)—(4.12) to model
the uncertainty in the constraints, the CBF's and their derivatives. Based on this description
and Assumption 4.2 it is possible to derive probabilistic bounds on the respective uncertain-
ties.

Lemma 4.2. Let the system and constraints be given by (2.1) and (2.11), respectively. Let
Assumptions 2.1-2.3, 4.2 hold. Let

minDp, maxp,,
1 1

Dulw, 5. Dy) = { Ay € D A" 2,3) < Mulw, 5. 8) < A (2, 37) |

minp,_ . o . o
where A, (x, X)) = A,I,Ie%piAk(m’ T, Ay)
ma; . . .
Ay Pr; (x, @) = sup Ay(z, Ty, Ay)
A, €Dy,

with k € {h.,, ilc,z, . hg{l), Qeily s QeimsDeis Bis @ity -, apim,bpi and Ay from (4.4)-
(4.12). Then,

P(Dy) > pi (4.19)
holds at each instant of time.

The proof is provided in the appendix. This means that, similar to the robust case, there
exist bounds within which the function uncertainties Ay lie with a certain probability.

4.2.1 Probabilistic Invariance Control

With the previous results, a probabilistic invariance function is derived.

Theorem 4.4. Let the system and constraints be given by (2.1) and (2.11), respectively. Let
Assumptions 2.1-2.3, 4.2 hold. Then, the p;-invariance function

(I)pr,i<w7 w_'rp me 72) = glta;}é p;nax<w7 :c_,,, Dpﬂ Yis At) (420>

with p*™*(x, Z,, Dy, Vi, At) from (4.15) fulfills
with T; = {A,, € D| ®,.i(x, Xy, Dp,, Vi) < 0} , (4.22)
Vi={A, € D|®(x,xy,v) >0} , (4.23)

the invariance function ®;(x, x,,7;) from (3.10) and x,, = &, + A, for all instances of the
uncertainty A,.
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4.2 Probabilistic Constraint Satisfaction

The proof is provided in the appendix. An interpretation of this theorem is that the
probability of unsafe behavior, i.e. a constraint violation due to undetected danger because
of a wrong negative value of the probabilistic invariance function, is at most 1 — p;. The
derived p;-invariance function is used to define the set of active probabilistic constraints.

Definition 4.5. The set of active probabilistic constraints contains the indices of all
constraints requiring p;-satisfaction for which the corresponding p;-invariance function (4.20)
is non-negative.

By act (€, By, Dp,,¥) = {1 € By | P i(@, Ty, Dy, 7i) > 0}

Using these considerations, a corrective control input, which achieves p;-satisfaction of
each constraint, is determined.

Theorem 4.5. Let the system and constraints be given by (2.1) and (2.11), respectively. Let
Assumptions 2.1-2.6, 4.2 hold. Then, if the optimization problem

w, = argmin ||u — wp,||; (4.24)

ma.

T . .
) |’U,| + bc,i(wa m_n) + AI)CJ.XDPZ < Zesi Vie Bpr,act

maxp,,.
1

s.t. al;(x,Ty)u + (’Aam

yields a solution for all t > ty, where z.; is determined from (3.16) using the p;-invariance

. maxp,,
function and the elements of ‘Aam‘ P fulfill
maxp,,. minpp ) maxp,,
‘ acily ' = max (‘Aac,i,k ‘1 Aac,i,k ‘ > )

for1 <k <m, the input u = u, achieves at least p;-satisfaction of each constraint i € By,.

The proof is provided in the appendix. With this theorem, the control input achieves p;-
satisfaction of the constraints without having to consider the infinite range of uncertainties
but only a single condition per constraint. In addition, the optimization problem (4.24) from
Theorem 4.5 has the following property.

Corollary 4.5.1. The optimization problem (4.24) is strictly conver and any local minimum
s a global minimum.

The proof is analogous to the proof of Corollary 4.2.1. Hence, similar to robust invariance
control, this enables the determination of a control input in real time.

4.2.2 Probabilistic CBF-based Control

Using Lemma 4.2 allows for CBF's being used to achieve probabilistic constraint satisfaction.

Theorem 4.6. Let the nonlinear system be given by (2.1) and the outputs describing the
constraints by (2.11). Let further Assumptions 2.1-2.6 and 4.2 hold. Let B;(x,x,) be CBFs
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4 Satisfaction of Constraints with Uncertain Parameters

corresponding to each constraint function yg;, © € B,.. Then, the control input u = wu,
obtained by solving the minimization

w, = argmin ||u — wp,||; (4.25)
u
. maxp, \ T o maxp,, .
s.t. agi(m,mn)u + (‘Aam Dpl) |u| + bpi(x, &) + Aba,i Dp,
Mg )
< - VieB
B+ g
. maxp,, ,
with the elements of ‘Aam  fulfilling
’AGB,i :aXDp ! = max <‘A?§ipl , A?Z):zpl ) ,

for 1 <k < m, achieves at least p;-satisfaction of each constraint i € B,,.

The proof is provided in the appendix. Similar to probabilistic invariance control, the con-
trol input proposed in this theorem achieves p;-satisfaction of the constraints without having
to consider the infinite range of uncertainties but only a single condition per constraint. In
addition, the optimization is convex, which allows the employment of computationally effi-
cient methods to solve the minimization in real time.

Corollary 4.6.1. The optimization problem (4.25) is strictly convex and any local minimum
is a global minimum.

The proof is analogous to the proof of Corollary 4.2.1. The presented probabilistic control
approaches are able to enforce uncertain constraints, if the uncertainty distribution is known.
Otherwise, a sampling-based approach may be advantageous.

4.3 Scenario-based Constraint Satisfaction

The control approach presented in this section is based on the principles of scenario-based
optimization [CC05; CGO8]. This method provides means to enforce constraints with un-
certain parameters in convex optimization problems. In order to make the problem feasible,
scenario optimization reduces the number of constraints by drawing samples of the uncer-
tainty at the cost of only satisfying them up to a predefined probability. By using measured
data to generate the optimization scenarios, the approach does not require knowledge about
the underlying distribution of the uncertainties. The minimal number of required samples
is provided in [CGO8].

Theorem 4.7 (Theorem 1 in [CGP09]). Consider the following optimization problem

u* = argmin J(u)
u€eR™

s.t. fopt(u,(sl-)g() VZ:L,N

where cost function J(uw) and constraint fo(w,d;) are both conver in w. Let dy,...,0y
be samples of & € D, extracted independently from D according to the same probability
distribution. Let N be chosen to fulfill

=)
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4.3 Scenario-based Constraint Satisfaction

with the desired mazimum violation probability € € (0,1) and the confidence 5 € (0,1) that
this probability is achieved. Then, the minimizer u*, satisfies fopi(u*,8) <0 for all 6 € D
except for a fraction of probability smaller than or equal to € with confidence 1 — [3.

In other words, by choosing sufficiently many samples of the uncertainty, the probability of
the actual uncertainty being covered is at least 1 —e. However, as the samples are generated
randomly, either from the known probability distribution or from measurement data, there
is a chance that they are chosen badly, thus covering less than the expected amount of
uncertainty values. The probability of this happening is at most (3.

Remark 4.2. In [CGO08]|, convex optimization problems with the cost function J(u) = c'u
are considered. However, Theorem 4.7 holds for any convex cost function J(w) which can
be reduced to a linear form by means of an epigraphic reformulation.

Based on the results, which scenario optimization is able to achieve, we define the following
notion of probabilistic constraint satisfaction.

Definition 4.6. A control scheme achieves (p;, 5;)-satisfaction to a constraint with un-
certain parameters, if p;-satisfaction of that constraint is achieved with at least a probability

Scenario-based constraint satisfaction aims at achieving (p;, 5;)-satisfaction for all con-
straints ¢ € Bs.. In order to allow for this, we make the following assumption.

Assumption 4.3. The set of uncertainty samples
D, ={xy, € D]z, =x,, ,s <€ {1...N}}

with D from (2.18) contains sufficiently many scenarios of the parameters x, = T, + A,,
i.e. N > N; holds for all i € By., where N; is the number of scenarios required for enforcing
constraint 1.

Inserting the scenarios @, into the output functions (2.11), the CBFs defined in Def. 3.11,
the derivatives and the linearization (2.14) yields the scenario constraints he;(x, ®,,), the

scenario CBFs B;(x, @), their derivatives hﬁrz)(m, x,, ) with r € {1...7;}, Bi(x, x, ,u) and
the linearization scenarios ag,;(x, x,,), bei(T, Ty,), ap (T, Ty,), bpi(x, T,,).

4.3.1 Scenario Invariance Control

Using the scenario constraints, the scenario invariance functions ®;(x,x,,_,7;) are derived
from (3.10) and the set of active scenario constraints is defined.

Definition 4.7. The set of active scenario constraints consists of the tuples of those
constraints ¢ and uncertainty samples s, for which the scenario invariance function has a
non-negative value.

Bsc,act(mapscaﬁ)/) = {('L, 3) | (I)i(m,mns,’}/i) >0, Vse {]_ .. NZ},’L € BSC}

Based on the set of active constraints and the scenarios of the linearization al;(x, ;)
and be;(x, x,,), corrective control is determined.
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4 Satisfaction of Constraints with Uncertain Parameters

Theorem 4.8. Let the system and constraints be given by (2.1) and (2.11), respectively. Let
Assumptions 2.1-2.6, 4.3 hold. Then, the optimization problem

w, = argmin ||u — |3 (4.26)
st ag(x, Ty )u+bei(x, @y,) < 205 V(i,8) € Bacaet

where z.; is determined from (3.16) using ®;(x, x,,v;) and

%= [ (n (3) )]

is convex and if it yields a solution for all t > tqy, the control input u = w. achieves at least
(pi, Bi)-satisfaction of each constraint i € Bie.

The proof is provided in the appendix.

4.3.2 Scenario CBF-based Control

Based on the scenarios of the CBFs B;(x, ©,,) and the I/O-linearization, corrective control
is determined.

Theorem 4.9. Let the system and constraints be given by (2.1) and (2.11), respectively.
Let Assumptions 2.1-2.6, 4.8 hold. Let Bi(x,x,,) be CBFs corresponding to each constraint
function yp;, © € Bse. Then, the optimization problem

U, = argmin ||u — w,,||; (4.27)
s.t. ap (@, Ty )u+ bpi(x, Ty,) < BK%;%) V(i,s) € Bse x {1...N;}

with

25 o))

is convex and, if it yields a solution for all t > ty, the control input uw = w. achieves at least
(pi, Bi)-satisfaction of each constraint i € Bie.

The proof is provided in the appendix. Both scenario invariance control and scenario
CBF-based control determine a control input, which gives probabilistic guarantees for con-
straint enforcement by generating enough samples of the uncertainties. This means that the
approaches may even be applied if the uncertainty distribution is not explicitly known but
measurement data is available.

4.4 Combination of Approaches

Sometimes it may be necessary or desired to combine robust, probabilistic and scenario-based
approaches, either because the constraint does not meet the requirements for one approach
or another approach yields more advantageous result for the specific constraint. In that case,
the following theorem applies.
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4.4 Combination of Approaches

Theorem 4.10. Let the system and constraints be given by (2.1) and (2.11), respectively.
Let Bi(x, z4,) be CBFs corresponding to each constraint function yp; if the goal is CBF-based
control. Let the related parameter uncertainties be such that for constraints i € By, J €
B, and k € By, the uncertainties fulfill Assumption 4.1, 4.2 and 4.3, respectively. Let
Assumptions 2.1-2.6 hold. Let the optimization problem

u, = argmin ||u — wp,||; (4.28)

subject to

maxp

n’laXD,mb>T ‘u‘ _'_ bl<w’w—n> + Abl rob S dz v Z c B~1”0b ,
T ] 4+ by, 7) + A, <dy W jEB,
al(x, @, )u+by(z, z,,) < d Y (k,s)€ By

al (@, %) + (A,

7

aj(x,T,)u + (’Aaj

y

y

where

bey , dp =2z withre{i,j,k}

)

a, = Qg, , br =
Brob = Brob,act 5 Bpr = Ppract » Bsc = Bsc,act

with z., according to (3.16) for invariance control and

a,=ap,, b =bg, withre {i,jk}
228 . .
d, = A with r € {1,
Br<w7w_,r’> +ABT D‘rob { .]}
Hk
dy = ———

Brow = Brob »  Bpr =By, B = B x {1... Ny}

for CBF-based control be given. Let the elements of \Aar\;naXDR be given by

minDR

|Ag, [ PR = max (’Aar,q

,A?f:DRD , 1<qg<m

with the sets Dr = Doy for v =1, Dp = D, forr = j and let the number of scenarios be

e () )

Then the optimization is convex and, if it yields a solution for all t > ty, the minimizing
input u = u. achieves robust satisfaction of the constraints i € By, at least p;-satisfaction
of each constraint j € By, and at least (pg, Br)-satisfaction of each constraint k € Bs..

The proof is provided in the appendix. The possibility of combining the different control
approaches allows the application in a variety of setups and environments. The choice
depends on the required properties of the outcome und depends on the characteristics of
the different methods, which are illustrated in the following numerical example. Note that
since invariance control and CBF-based control result in similar optimization conditions, the
approaches may even be combined as mentioned in Remark 3.15.
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4 Satisfaction of Constraints with Uncertain Parameters

Remark 4.3. In Theorems 4.2-4.10, the cost function ||u — wy, |3 is used to derive corrective
control. Nevertheless, as the proofs showing constraint adherence are independent from the
choice of cost function C'(u, u,,), any convex function may be chosen as long as C(u, uy,)
fulfills the requirements introduced in (3.31) and Remark 4.2.

Finally, note that the boundedness of the controlled system state is not influenced by
uncertainties in the constraint.

Remark 4.4. As the guaranteed boundedness of the controlled system does not depend
on the number of constraints but on adding a Lyapunov-based boundedness condition as
proposed in Theorem 3.3, the added uncertainties do not change the general behavior as
they solely increase the number of optimization constraints.

4.5 Numerical Example

The numerical example is designed such that it illustrates the characteristics of the three
introduced approaches for the satisfaction of uncertain constraints. The calculations are
executed for invariance control and the setup is kept simple enough so the probability bounds
are analytically deducible to verify the outcome.

4.5.1 System and Constraints

We consider a system of the form

Pp=u
with p, u € R?, the state £ = [pT p'|T € R? and nominal PD tracking control

Uno = I‘)‘des + KP(pdes — p) + KD(pdes — p) )

with the positive definite matrices Kp, Kp € R?*2, which achieves stable tracking of the
desired trajectory pqes(t) € R% Two constraints are introduced and both system and con-
straints are modeled by spheres resulting in the following constraint descriptions

hei= (ro+m)—|lp—cll, i€1,2 (4.29)

where r, and r;, i € {1,2} are the radii of system and constraints, respectively. The center
positions of the constraints ¢; € R? are stochastically distributed around an undisturbed
position ¢; € R?

ci=C¢C + A, . (4.30)
The distribution of the constant uncertainty A., € R? is given by
A, = A, [50) (4.31)
o = B¢ Lgin(p) |
Ao =AY Tax , A €[0,1],p€[0,27] . (4.32)

The parameters p and A, are uniformly distributed, whereas o € N and 7., € Rt are
constants. Since A, is uniformly distributed between 0 and 1,

DA, <¢€)=c¢
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4.5 Numerical Example

for € € [0, 1] holds, which implies
P(AF <€)= P(A, < e) = e
With A, = Afryax and 7p, = €rpax,
P(De < 1) = V= D (4.33)
holds and therefore with probability p,,, the position uncertainty lies within a circle of radius
Tpr = PprTmax - (4.34)
Note that Assumptions 4.1 and 4.2 hold, since A,, = [A, , p|T fulfills
A, € Doy , Dyop = {Ar €0,1],p € [0,2%[}

P(Dr) < P s Doy = {0 € 0.1, p € (0.2 A < 1y}

4.5.2 Control Derivation

In order to determine the constraint enforcing control, the output functions (4.29) are derived
with respect to time.

) — e )T
s =~ B - &) = ali (- &) (4.35)
o P—c)’ (4.36)
“ e —ally
b (p—ci)T s Ip — &l ((p—c)'(p—¢))
“odp—al, e el lp — <ill;
_ gt 1P Gilly  (ali(®—&))? (4.37)
T p =il Ip— cill,

For robust and probabilistic invariance control, it is necessary to explicitly determine the
function uncertainties (4.4)-(4.7). The uncertainty bounds of the constraints are given by

|Ahc,i

=lllp=cl,—lp-c - Al <llp—c —(p—-C—Ac)l, = Al = Ac .

For A; ., A, ; and Ay
which means that

a geometric approach is taken. As a.; from (4.36) is a unit vector,

c,t)

”ac,i”Q = ”a'c,i”z =1 (4.38)

holds, an uncertainty in the constraint position ¢; does not change the length but only the
orientation. Therefore a.; may be represented as a.; rotated by ¢(A,,)

 [eos(@(An)) —sin(é(A))] -
%i = |sin(¢(An)  cos(d(A)) (4.39)

ac,i

85



4 Satisfaction of Constraints with Uncertain Parameters

Figure 4.1.: Change in I/O-linearizing vector a.; from its mean value a.; = a;(p, ¢;) caused
by a bounded disturbance A.,.

and A,_; is given by

g o |eos(0(Ag)) =1 —sin(d(Ay)) | -

Bocs = Ges ~ Bei = [ sin(@(A,))  cos(@(A,) — 1] et

The maximum change in orientation occurs if the direction of the displacement is perpen-
dicular to a.; as depicted in Fig. 4.1. Due to the symmetry in both directions, the change
in orientation ¢(A,,) for a given A, fulfills

AC' max
l6(A.,)] < asin (M) = " (A,,) - (4.40)

Hence, the bounds on A,_; are given by

A, < [Cojfféﬁgi); : C(jsf;ﬁfﬁ;;”l] Nl = /201~ cos{9(B)

< \/2(1 = cos(pm(A,,)))
Al =1 0] Au <[ 0], A, < V201 = cos(@m(A,)) = A, [™(A,)
Aol = [0 1] aa] < [0 1], A, < V201 = cos(@m(A,)) = A, . ["(A,).

Furthermore, using (4.38), (4.39) and the fact that A, is constant, i.e. ¢ = ¢ and & = ¢,
yields

8| = Jes = hes| = |(al, =T — &) < | A, |5 ,
< /2(1 = cos(om(A,,)) [p— ¢, =[] (A
|-, |-, ) |-,
beil < el oz = aal, T Tp-a = aal, <19k " 2z, - A,
. S lp-al, .
Ap,; = bei—bei < |bei| —bei < |G|l +2 —bei = Ay (A)

2 p—cill, - A
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4.5 Numerical Example

with Bw- = b..(p, P, C, é). Hence, the function bounds required for robust invariance control
are

AmaXDrob — Tmax
C,t
A;lné;,xDrob — | . maX(TmaX)
C,i C,7
e [ = )
ac; 1 - Qci,1 max
’A Maxp, ., _ |A |max(,r, )
Qc 2 Qc,i,2 max

maxp

Abc,i b= Abc,i (TmaX)

whereas the bounds for probabilistic invariance control are

maxpy, . —
C,t - 'pr
maxp.
Ahm Ppr _ ‘Ahc,i|max<rpr>
‘ Qc,i rlnaXDppr = ‘Aacml max(,rpr)
max
D [17 = Ay ()
max:
Abc,i Dppr = Abc,i (Tpr) .

Corrective control is then determined using Theorem 4.2 or Theorem 4.5.

For scenario invariance control, the required amount of instances of the uncertainty are
randomly generated according to the probability distribution of the uncertainties A, and p
in (4.32). Each instance is used to generate one constraint and corrective control is then
determined using Theorem 4.8.

4.5.3 Implementation

The simulation model is implemented in Matlab/Simulink. The elements of the ideal and
undisturbed trajectories py.s(t), €1(t), €2(t) € R? are splines, which are determined using

q(t) = (1 —ds)q; + dsqy + (d3 - d?,) (dy (1 — d3) + daods)

di = trgo — (ar — @) , dy = —trds + (ar — q0) d3 = -
with ¢ € {pges, C1, C2}, the duration of the motion ¢z and 0, f indicating initial and final
values, respectively. The results are generated using the parameters in Table 4.1. With the
chosen parameters, scenario invariance control generates N; = 87 conditions per constraint
to derive corrective control according to Theorem 4.8.

Each control scheme is tested for two values of the distribution parameter a and for 1000 dif-
ferent randomly generated constraint trajectories for each constraint. In order to verify the
confidence parameter [ for scenario invariance control, 200 different sets of scenarios are
randomly generated and each is tested with the 1000 constraint trajectories.
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4 Satisfaction of Constraints with Uncertain Parameters

Table 4.1.: Model and control parameters for the numerical evaluation of invariance control
with uncertain constraints.

General
Step size Tx 0.001s
Simulation time tend 50s

Nominal control

Stiffness Kp 100 - I - 1/s?
Damping Kp 20-Ip- 1/s
System
Size n, m 4, 2
Radius Ty 1m
Initial, final position Do, Pf [0, 0]Tm, [10, 10]Tm
Initial, final velocity Do, Py [0, 0]Tm/s, [0, 0]Tm/s
Constraints
Radius r1, T 1m, 1m
Initial position €10, €20 [5, —1]Tm, [10, 2]Tm
Final position Cif, Caf [0, 10]Tm, [6, 10]T m
Initial velocity €10, C20 [0, 0]Tm/s, [0, 0]Tm/s
Final velocity C1f, Caf [0, 0]Tm/s, [0, 0]Tm/s
Motion duration tr 40s
Position uncertainty T'max 0.5m

« lorb

Invariance control

Parameters Y15 V2 —50- 1/s%, =50 1/s?
Satisfaction probability Dpr 0.9
Confidence parameter I3 0.1

4.5.4 Results

The computation times of the individual approaches implemented in Matlab/Simulink and
executed on a single core of a commercially available laptop computer with an Intel core
i5 processor and 8.00 GB RAM are provided in Table 4.2. For all three approaches, the
computation time is less than the simulation time t.,q, hence the real-time requirement is
met. In addition it may be noticed that robust and probabilistic invariance control have
considerably shorter computation times than scenario invariance control. This is owed to
the fact that the scenario-based approach with the chosen parameters includes NV; times more
constraints than the other two approaches.

The configuration of system and constraints at t = 12.5s is depicted in Fig. 4.2. While,
for comparison, Fig. 4.2a shows the behavior of system and constraints in the absence of un-
certainties, i.e. if it is possible to apply invariance control from Section 3.1, Fig. 4.2b depicts
the result of robust invariance control, where the systems avoids the violation of constraints
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4.5 Numerical Example

Table 4.2.: Computation time.

Robust < b5s
Probabilistic < b5s
Scenario < 40s

8 ‘ 8 8 *
E "",' '/." 4 “.“ E """_" ,.""‘"“' ‘;“.“—~ \ E‘ "." ) ) a" A g
=Y -I ) Sy \ ) S 7N
() ‘ O} ' O &
0 % 0 C &= 0 \9’
% kS % 4
0 4 8 0 4 8 0 4 8 ° p1 [m] °
p1 [m] p1 [m] p1 [m] 0 o
(a) Disturbance-free (b) Robust (c) Setup with pp,- (d) Setup W 1t
SCenarlOS ------ g e .
setup. setup. bounds -+ y e .

Figure 4.2.: Setup of system —— and random constraint trajectories (constraint 1 —— and
constraint 2 —) for & = 5 at t = 12.5 s with the respective undisturbed center
positions x, undisturbed trajectories ------ and maximum displacements (robust
bound) ==---, ----.

for all possible uncertainty values. This means it stays out of the sphere containing all pos-
sible constraints depicted by the dashed lines. In Fig. 4.2c and Fig. 4.2d, the behavior for
probabilistic and scenario invariance control is illustrated including the probabilistic bound
containing 90% of the uncertain constraints and the scenarios used for control derivation. It
may be observed that these approaches do not cover all possible uncertainties and therefore
may lead to violations but also to a less restrictive behavior.

Table 4.3 provides an insight into the results generated by the different control schemes.
It shows the percentage of positive output functions, i.e. violated constraints, and positive
invariance functions for 1000 random constraint trajectories for robust, probabilistic and
scenario invariance control. As scenario invariance control is evaluated with 200 different
sets of scenarios, minimum, maximum and average violation percentages are provided. Note
that the percentage of violations of the invariance function ®; may be slightly higher than
that for the output function h;. This is due to the fact that, by design, the set of states for
which h.; <0 holds is a subset of ®; < 0 with ®; according to (3.10).

For robust invariance control, no violations of the constraints are expected, i.e. all output
functions should keep non-positive values, since all instances of the uncertainty are consid-
ered. For a = 1, these expectations are fulfilled. However, there is a single trial for @ = 5,
in which h.s and ®, take positive values. As the theory is derived for continuous systems
and the simulation is carried out with small but discrete time steps, chattering occurs. In
this specific trial, the constraint is generated with almost the maximum possible uncertainty
thus being close to the robust bound. As a result, it is affected by chattering which leads to
negligible violations of less than 1 mm. This effect may be avoided by applying the chatter-
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4 Satisfaction of Constraints with Uncertain Parameters

Table 4.3.: Percentage of positive outputs (4.29) and positive invariance functions (3.10) for
robust and probabilistic constraint satisfaction with 1000 constraint trajectories.

hc71>0 d; >0 hc72>0 Py >0
Robust
a=1 0.0 % 0.0 % 0.0 % 0.0 %
a=25 0.0 % 0.0 % 0.1 % 0.1 %
Probabilistic
a=1 6.2 % 6.3 % 4.9 % 4.9 %
a=25 5.3 % 5.3 % 5.3 % 5.3 %
Scenario
a=1 minimum 3.0 % 3.0% 3.2 % 3.3 %
maximum 145 % 14.5 % 14.4 % 14.4 %
average 7.6 % 7.6 % 6.7 % 6.7 %
a=25 minimum 0.6 % 0.6 % 1.6 % 1.6 %
maximum 10.0 % 10.0 % 112 % 11.2 %
average 3.8 % 3.8 % 4.4 % 4.4 %

ing reduction method proposed in Sec. 3.2.2 or by slightly increasing the boundary values of
the disturbance for robust invariance control.

For probabilistic invariance control, less than 10% of the constraints are violated, i.e.
satisfaction is achieved in more than 90% of the cases, which corresponds to the chosen
satisfaction probability p, = 0.9 for both constraints.

These results are supported by Fig. 4.3, which depicts the output and invariance function of
an enlarged constraint with center position ¢; and radius 7,1, = 7 4+ "'max OF 7 = 1 41, With
rpr from (4.34). Due to the design of the constraints and the uncertainty, all instances of the
uncertain constraint lie within the radius 7,,, and with probability p,, within the radius r,.
Since the output and constraint functions in Fig. 4.3 take non-positive values, except for small
violations < 1 mm, which are not visible in the figure and are due to the previously mentioned
chattering, the desired robust and probabilistic satisfaction properties are achieved. It is also
noticeable that for probabilistic invariance, the functions take smaller values for increasing «,
which is caused by the decrease in the radius r,. For robust invariance, the values do not
change with « since the radius 7., is independent from the actual distribution, but solely
depends on the bounds thus being more restrictive than probabilistic invariance control.

For scenario invariance control, the minimum and average violation percentages in Tab. 4.3
are less than 10%, which fits the chosen satisfaction probability p,, = 0.9 for both constraints.
However, some of the maximum violation percentages are higher than 10%. In these cases,
the randomly generated scenario is not representative enough to avoid violations to the
desired extent. This is covered by the confidence parameter 3, i.e. the probability of gener-
ating such bad scenarios, which should be less than 5. The evaluation of all 200 scenarios
in Tab. 4.4 shows that the percentage of scenarios, for which more than 10% of the out-
put or invariance functions are violated, is less than 10% thus corresponding to 8 = 0.1.
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20 25 30 35 40 45 50
time ¢ [s]
(a) Output function.

20 25 . 30 35 40 45 50
time ¢ [s]

(b) Invariance function.

Figure 4.3.: Value of the (a) constraint outputs and (b) invariance functions for —— robust
satisfaction of h.;, —— robust satisfaction of h.s, ---- py-satisfaction of hc,
with a = 1, ppr-satisfaction of heo with v = 1, --eee- ppr-satisfaction of A,
with o = 5 and -+ ppr-satisfaction of h. o with a = 5.

Table 4.4.: Percentage of scenarios violating the desired satisfaction probability p, with
scenario invariance control for 1000 constraint trajectories and 200 scenarios.

‘@(hc7i>0)>1_ppr or «@((I)i>0)>1—ppr

he 1 g} he 2 D)
a=1 2.7 % 2.7 % 0.4 % 0.4 %
a=2>5 0.0 % 0.0 % 0.1 % 0.1 %

Hence, (pr, 5)-satisfaction is achieved for both constraints and both a-distributions.

4.6 Discussion

Concluding this chapter, we provide a short summary of the capabilities of the proposed
control approaches for the satisfaction of constraints with uncertain parameters. Robust,
probabilistic and scenario-based constraint satisfaction may be achieved by using both in-
variance control or CBF-based control. As the methods may be combined, this enables
the choice of a different satisfaction and control type for each constraint, which makes it
applicable in a variety of applications.

Each of the three methods has its individual requirements and advantages. Therefore, the
choice of the satisfaction type for each constraint depends on the application, the desired
outcome, the available knowledge about the uncertainties and the available computational
power to solve the optimization. While robust constraint satisfaction enforces the constraints
for all possible uncertainties, it may turn out to be rather conservative for flat distributions.
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4 Satisfaction of Constraints with Uncertain Parameters

Table 4.5.: Characteristics of the three satisfaction types for [ uncertain state constraints.

Robust Probabilistic Scenario
Guaranteed constraint satisfaction robust Di (pi, B)
Restrictiveness for flat uncertainty high (conserva- medium (overes- medium - low (depending
distributions tiveness) timation) on scenario configuration)
Knowledge of uncertainty distribution max/min values required helpful (data available) /

required (no data)

Usage with unbounded distributions no yes yes
Data-driven control no guarantees no guarantees possible

Preliminary computations

Number of optimization conditions...
.. scales with m
.. scales with p;

.. scales with f;

min/max of Ay
(Lemma 4.1)

at most [
no
no

no

min/max of Ay
(Lemma 4.2)

at most [
no
no

no

scenarios, if derived from
probability distribution

S>'_ N; (Theorem 4.8)
linearly

linearly with 1/(1 — p;)
logarithmically with 1/3;

Here the probabilistic approaches have an advantage as they provide narrower bounds, then
of course with probabilistic guarantees only. Note that as probabilistic constraint satisfaction
is based on an estimation of probabilistic function bounds, the resulting behavior may,
depending on the form of the uncertainties, still be more conservative than the results from
the scenario approach. On the other hand the number of samples required for scenario-based
constraint satisfaction depends strongly on the choice of probabilities, while the robust and
probabilistic approaches do not change the number of constraints. A detailed comparison of
the characteristics of the individual approaches is provided in Table 4.5.
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Sharing Control in Multi-Agent Systems

The simultaneous employment of multiple robotic systems to relieve and aid humans proves
challenging as each robot is simultaneously required to execute a task that is connected with
a certain role while limiting its influence on other robots and ensuring the safe interaction
with other robots, humans, and the environment. As the tasks carried out by the agents
may be of different importance, a prioritization scheme for multiple agents should be applied
to share evasive actions between agents.

Related Work and Open Problems

Using established methods such as MPC by [MRR+00] or the methods introduced in Chap-
ter 3 to enforce constraints on multi-agent systems, generally, do not consider the option of
sharing evasive actions between agents in multi-agent systems according to given priorities.
Approaches designed specifically for collision avoidance in multi-agent systems such as pre-
sented in [Ros96; CYZ+07; LIX15], are either unable to guarantee constraint satisfaction,
do not allow for a dynamic prioritization of the agents or may result in agents blocking the
path.

The required priorities may, for example, be determined by a heuristic approach, which
changes the priorities according to the circumstances and aims at mimicking human be-
havior [BCL16]. Other prioritization schemes are found in traffic management [AMP+11]
and message scheduling for multi-agent systems [HPS+09], where the priorities are derived
from the message importance and throughput. If the goal is to grant the agents access to
a shared resource, the possibilities range from deterministic weighted round robin schedul-
ing [KSCI1] to probabilistic approaches like the lottery approach [TCG16]. However, these
methods do not ensure a prioritization which guarantees constraint satisfaction and avoids
trapping agents with low priorities.

Based on the findings on shared invariance control [KPW+ed], this chapter introduces
shared constraint enforcement for the I/O-linearization-based control approaches from Chap-
ter 3. Using priority-based weightings in the minimization (3.87) to divide the control effort
between the agents allows for a distributed implementation by generating independent opti-
mization problems. The agent priorities are determined by a two-stage prioritization scheme,
which allots the priorities such that trap situations are resolved and a variety of factors may
be included in the prioritization. The approach enables agents with high priorities to carry
on undisturbed from other agents, while agents with low priority never end up in a situation
where they are trapped by other agents, unable to avoid constraint violations.
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5 Sharing Control in Multi-Agent Systems

5.1 Shared Constraint Satisfaction

Naturally, the control schemes introduced in Chapter 3 may be implemented on multiple
agents simultaneously to enforce environmental and inter-agent constraints by using a dy-
namic model of the other agents in the constraint parametrization. This approach leads,
however, to a rather conservative behavior of the agents as each one tries to avoid constraint
violations at any cost which is especially disadvantageous for robots in narrow environments.
Alternatively, the constraint may be enforced only by a subset of the involved agents, which
may lead to the optimization being infeasible if the evading agent is unable to act, e.g. due
to being trapped between constraints.

These drawbacks are resolved in this section by introducing a control approach for multi-
agent systems based on the following assumption.

Assumption 5.1. The I/O-linearization of each constraint y.;, i € B from (2.11) with
respect to the input w; of each agent j € Ny, yields the same relative degree r; for all
agents 7j.

This assumption is imposed for convenience of notation and poses no additional restrictions
on the systems, since the relative degree may be increased, if necessary, by augmented
invariance control as introduced in Sec. 3.2.1. This also applies to CBF-based control as
discussed in Remark 3.14. Note that for robotic systems with position constraints, for
example, the assumption is naturally fulfilled as the relative degree equals two for all agents.

Building on the naturally shared actions achieved by a centralized implementation, shared
constraint satisfaction allows for a distributed implementation based on given priorities.

5.1.1 Centralized Implementation

Concatenating states and inputs of the n,, systems with the respective dynamics given
in (2.3) yields the centralized system description

z=f(x)+G(x)u

in accordance with the dynamics of a single system (2.1), where

T u; fi(x1)
mnag unag fnag (mnag)
G1<IE1) On1 Xma o 0n1 XMnag
G(z) = diag (Gi(x)lv iens, ) = | "™ _ . (5.1)
: ’ Mnag —1 X Mnag
On"ag Xmi e Onnag anag—l Gnag (mnag)

Thus, the centralized system may be considered as a single agent, allowing control to be
derived using invariance control or CBF-based control as introduced in Chapter 3. This
requires the involved agents to be controlled by a single, centralized controller, which has
access to the agent states, dynamic information and constraint parameters. The structure
for two agents is illustrated in Fig. 5.1. The control input is generated using (3.87) and
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central
control

Figure 5.1.: Centralized control architecture for inter-agent constraints of two agents.

the centralized system description. The control action is automatically shared between the
agents as the left side of the optimization condition

T
;o (151

alu+b=| Dol b= ) of juy 4 b, ) (5.2)

T JENag

ai,nag

Up,,

and a; and b; as defined in (3.87) includes the input u; of each agent system affected by
the constraint due to Assumption 5.1. Hence, all agents react to the constraint, the evasive
effort is partitioned based on the agent dynamics and constraint satisfaction is guaranteed
by Theorem 3.1 or Theorem 3.7.

In this rather straightforward approach, the agents have to be controlled by a common
central control instance even if no inter-agent constraints are active. For more independence
of the agents, a distributed implementation is preferable. Furthermore, any prioritization of
the agents is lost in the centralized implementation, since the priorities have no influence on
the allocation of the evasive effort.

5.1.2 Distributed Implementation

Introducing shared constraint satisfaction, we aim at a distributed implementation as de-
picted for two agents in Fig. 5.2, where each agent has its own control loop of system dynamics
and control law. Each agent is assumed to have knowledge of the constraint parameters x,
and the dynamic information of the other agents either through explicit communication or
via observation. In addition each agent is assigned a priority.

Definition 5.1. The priority ¢; of an agent i € N,, fulfills
& S ]0, Cmax]
with a maximum priority value cp.x € RT.

A framework how to assign such priorities is introduced in the following section. For now,
the priorities are assumed to be given.

The goal of shared constraint satisfaction is to share the evasive control action between
the agents according to their priorities, i.e. high effort for low-priority agents and low or
no effort for high-priority agents. This is achieved by partitioning the agents into different
groups based on their priority.
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agent 1 agent 2

Figure 5.2.: Distributed control architecture of shared constraint satisfaction for inter-agent
constraints of two agents.

Definition 5.2. An agent priority community P, consists of the agents, whose priori-
ties ¢; fulfill s; < ¢; < s;41 with positive constants s;, s;11 > 0 and is defined as

Pj = {’l € Nag | S5 <G < Sj+1, Sj;Sj+1 > 0}

Note that the agent priority communities have to be chosen such that each agent belongs to
exactly one community. As only the agents with the lowest priority should actively enforce
the constraints and share the effort, it is necessary to find these agents and the related
priority community.

Definition 5.3. The minimal active priority community Py, ; for constraint ¢ denotes
the lowest priority community, which contains agents that are affected by the constraint. The
community Puin; = Pj,.,, fulfills the following two properties.
35 € Painsi 0 ] 7 Otsem;
V l{? <jmin7 j c Pk . al] = lemj .

Using the minimal agent priority community, it is possible to find those agents, which
should actively pursue constraint enforcement, i.e. those agents with the lowest priorities,
which are affected by a constraint.

Definition 5.4. The set of active agents A; for constraint ¢ denotes those agents in the
minimal agent priority community, which are affected by the constraint

Ai = {j S 7Dmimi | al] 7é lemj} .

The remaining agents, which are not in the set of active agents, are either not affected by
the constraint at all or have high priorities and should therefore not carry out any evasive
action. These agents are collected in the set of inactive agents.
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5.1 Shared Constraint Satisfaction

Definition 5.5. The set of inactive agents J; for constraint ¢ denotes the complimentary
set to the set of active agents

Z:Nag\/li-

Using these considerations, it is possible to introduce shared constraint satisfaction for
multi-agent systems.

Theorem 5.1. Let the agent dynamics and constraints be given by (2.3) and (2.11), respec-
tively. Let Assumptions 2.1, 2.2, 2.6, 5.1 hold. Let B;(x,x,) be CBFs corresponding to each
constraint function yp,;, 1 € B. Then, if the optimization

U.; = argmin ||u; — un07j||§ (5.3)
u;

s.t. a{juj + wm(c) (Z (a;kuk) + bl> < wm(c) dz Vie [;), j € .AZ (54)
keJ;

with o ; according to (5.2), b;, d;, B as in (3.87), the priorities ¢ = [c1, ..., Cng,|T and
weights w; j(€) : [0, cmax]™ — [0, 1] fulfilling

> wii(e) =1 (5.5)

JEA;

yields a solution for each agent j € Ny, and all t > ty, the control inputs u; = wu.; avoid
any constraint violation.

The proof is provided in the appendix. The theorem provides means to share the evasive
control actions between the lowest priority agents. A solution exists if the constraints on
each agent are non-contradicting. Furthermore, for robotic systems it is essential to avoid
singularities as they result in a loss of controllability. Both conditions may be ensured by
including these criteria in the determination of priorities.

Remark 5.1. The way of dividing the optimization condition between the agents is not
unique. In general the optimization conditions may be arbitrarily shared among the agents
as long as the the weighted conditions (5.4) sum up to the centralized condition (5.2). This
is especially useful to reduce the communication between agents if the condition is divided
such that parts of the dynamics do not need to be known by the other agents.

As the control actions of the agents just suffice to fulfill the optimization condition, this
avoids overly restrictive reactions to the constraints, which would occur if the constraints
are fully enforced by all agents. Therefore, the approach lends itself to the implementation
on robotic systems acting in narrow environments.

Remark 5.2. As environmental constraints act on each agent separately, each agent is
always the sole active agent for an environmental constraint. Therefore, it carries out the
entire evasive action and the satisfaction is not affected by the shared implementation.
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5 Sharing Control in Multi-Agent Systems

Theorem 5.1 does not give any indication as to how the weighting factors w; ;(c) are
determined as a function of the priority vector ¢ = [c1, ..., ¢p,,|T. The most straightforward
definition of the weight function is given by

1

jE iCj

By inverting the priorities the agents with the lowest priority in the set of active agents
are allocated the highest weighting factor, which means that they are affected most by
the constraint. Normalizing the inverted priority ensures that condition (5.5) is fulfilled.
Naturally, other weighting functions, possibly with a saturation may be used as well. Note
that shared constraint satisfaction exhibits some useful properties.

Corollary 5.1.1. The optimization (5.3) is strictly convex.

The proof is provided in the appendix. Due to the convexity of the optimization problem,
efficient solvers may be used thus allowing the application on real-time systems with fast
sampling times.

Corollary 5.1.2. Let the state values of all agents and the inputs of the agents in the set
of inactive agents j € J; be known to the active agents j € A;. Then, the constrained
optimization problems (5.3) for shared constraint satisfaction may be solved in a distributed
manner.

The proof is provided in the appendix. As the optimization may be solved in distributed
fashion, this allows for the desired control structure illustrated in Fig. 5.2, where each agent
determines the control input based on its priority.

5.2 Agent Prioritization

Theorem 5.1 does not ensure that the constrained optimization (5.3) is feasible for all agents.
Therefore, the prioritization scheme has to be designed to account for the feasibility, since
there might occur situations in which the agents trap each other leading to infeasibility.
Figure 5.3 shows an exemplary situation with four spherical agents with fixed priorities in
two dimensional space, which may represent mobile robotic systems. The innermost agent
holds a static position, while the outer agents move in the directions indicated by the solid
arrows. In order to avoid collisions, each pair of agents defines one inter-agent constraint.
Since they are in different agent priority communities, the lower prioritized agent takes the
entire evasive action as indicated by the dotted arrows. The inner agent is in the lowest
priority community and has to avoid collisions with all other agents. However, the outer
agents leave no space to escape this trap situation which eventually leads to them crashing
into the inner agent.

5.2.1 Two-stage Prioritization Scheme

In order to resolve such trap situations, we propose a prioritization scheme comprised of
two stages as depicted in Fig. 5.4. The first stage assigns a priority community according
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Figure 5.3.: Four agent scenario with different fixed priorities with —— the direction of

motion and -+ > the distribution of the shared inter-agent constraints.
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Figure 5.4.: Two-stage prioritization scheme.

to Def. 5.2. The priority community decides which agents actively enforce constraints. This
stage ensures that the optimization problem (5.3) remains feasible for each agent. Note
that as the situation may change over time, the priority assignment needs to be monitored
constantly. The second stage takes care of the priority fine-tuning. Taking individual factors
into account the priorities of agents within one priority community are assigned to share the
effort accordingly.

5.2.2 Priority Community Assignment

The goal of assigning agents to a priority community is to ensure the feasibility of the opti-
mization in Theorem 5.1. This requires the detection of trap situations leading to infeasibility
and a trap handling scheme to adjust the priorities.

Trap Detection

Before introducing the approach for trap detection, we define the meaning of an agent being
trapped.

Definition 5.6. An agent is trapped if the optimization (5.3) in Theorem 5.1 is infeasible
and free otherwise.

More formally, if the set

Mj = {uj ‘ aiT,j’Ufj < ﬁi,j Vie Bact,ag(j>} ) (57)
with 52‘,]’ = wm(c) (dl - Z a{juj + bz) )
JET:
Bact,ag(j) = {Z | (XS Ba] € Ak} (58)
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5 Sharing Control in Multi-Agent Systems

and B, d;, b; as defined in (3.87), which considers all relevant constraints for agent j, is empty,
the optimization problem is infeasible and the agent is trapped. Stacking the individual
inequations in (5.7) yields the element-wise matrix inequality Aju; < B;, which enables the
use of Farkas’ lemma to determine whether M, = (.

Theorem 5.2 (Farkas’ Lemma [Van01, p.167]). The element-wise inequality Aju; < B; has
no solution if and only if there exists a vector z fulfilling z = 0y, 1 element-wise such that
both Ajz = Op,,, ., x1 and Bz < 0 hold.

act, ag(

The conditions introduced in Farkas’ Lemma may be evaluated by the minimization
AT
min Bjz
s.t. AJZ =015, ()ix1 5 2 7 Omyxt -

This minimization has a solution as z = 0,,;x1 fulfills both minimization conditions. By
applying computationally efficient algorithms from convex linear programming the mini-
mization is solved. If a positive z exists for which the found minimum is negative, the
conditions from Farkas’ Lemma are fulfilled and agent j is trapped. Otherwise, the mini-
mum is 3]z = 0 and the agent is free.

Naturally, trap situations may only be resolved if reducing the number of constraints is
possible, i.e. if they are caused by inter-agent constraints, thus motivating the following
assumption.

Assumption 5.2. The uncontrollable environmental constraints are such that an agent is
at no time trapped solely by the environment.

Trap Handling

Once all trapped agents are identified, the agents taking part in or being close to a trap
situation are determined. For robotic systems with position constraints, this corresponds to
finding all robots that are physically close or moving fast towards the trapped robot. More
generally speaking, the invariance functions provide a measure for evaluating which agents
may be considered close.

Definition 5.7. A nearly active constraint has a non-positive invariance function value
fulfilling
02> (I)i(w7wn77i> > Dy

with a constant negative threshold &y, € R™.

Using the nearly active constraints, an agent graph is established. The agents are nodes
and those affected by the same nearly active constraints are connected via edges.

Definition 5.8. An emergency community £ is a set of agents connected by common
nearly active inter-agent constraints, in which at least one of the agents is trapped.

Emergency communities are determined via graph search starting from trapped agents.
Within an emergency community, priorities are reassigned to reinstate the feasibility of the
optimization (5.3). Naturally, there are various solutions for reassigning priorities to resolve
trap situations. We propose a priority community reassignment based on two criteria:
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5.2 Agent Prioritization

(a) No walls. (b) Single wall. (c) Two walls.

Figure 5.5.: Trap situations of different severity with —— the most trapped agent restricted
by (a) solely free agents ------ , (b) free agents and a single wall — and (c¢) two
walls and other trapped agents ----, which are in turn trapped by free agents
and a single wall.

e the severity of the trapping situation depending on the involved constraints,
e the proximity to free agents.

The sewverity criterion is determined by the number of involved environmental constraints.
In Fig. 5.5 the severity increases from left (solely agents) to right (multiple environmentally
constrained dimensions). The more severely an agent is trapped, the higher should be its
priority community.

The proximity criterion is determined by the distance to free agents. Using the agent
graph of the emergency community and starting at the free agents, which are sorted into
the lowest priority community, the priority community increases for each step along an edge
until all agents are assigned.

The trap situation is then resolved by Algorithm 2. By assigning free agents to low priority
communities, it removes constraints from the other agents, thus freeing more agents. These
are in turn assigned to the higher priority communities, which is repeated until all agents
are free. Assuming that there are no constraints that mutually trap two or more agents,
i.e. that would need to be removed entirely to free the agents, and that an agent is never
trapped solely by environmental constraints, there will always be at least one free agent at
each step, thus leading to convergence of the algorithm. In addition, the algorithm never
needs more steps than there are agents in the emergency community, but in general it needs
considerably less. The process is illustrated in the following example.

Example 5.1. Consider the exemplary trap situation with 8 spherical agents with double
integrator dynamics and one environmental constraint in two-dimensional space depicted
in Fig. 5.6a. Initially, there are two trapped agents as the surrounding agents are in higher
priority communities. Applying Algorithm 2 (lines 1-5), the lowest priority community
containing a trapped agent is P;, meaning that all agents except the one in Py, are
reassigned to P;. As a result, there are now three trapped agents as depicted in Fig. 5.6b.
After finishing the first run of the while-loop, the free agents remain in P;, while the
previously trapped agents are assigned to P, as all are restricted by one environmental
constraint and are one step from a free agent. Consequently, there remains one trapped

101



5 Sharing Control in Multi-Agent Systems

agent as illustrated in Fig. 5.6¢, since it is not able to evade the outer two agents moving
in. After a second run of the while-loop, the outer two agents, which are now free remain
in Py, while the middle agent is reassigned to P3. In this final configuration, shown in
Fig. 5.6d, all agents are free and the priority community assignment for the eight agents
is completed after two steps.

All agents that are not part of an emergency community may be assigned either to arbitrary
priority communities or preferably based on their priority shares.

5.2.3 Priority Share Assignment

In situations, which are not critical for the feasibility of the optimization problem, the
priorities may be assigned freely. In this case, each agent j has a priority ¢; which is calculated
using np. € N priority criteria. The criteria coefficients ¢;; € R* with i € {1,...,npc}
should be determined such that they take high values if the criterion is important or highly
restrictive, such as for example low manipulability of a robotic manipulator, and low values
otherwise. The individual coefficients ¢;; are then weighted depending on which criteria
should be the most influential and combined to the agent priority

Npe

Cj = ij,i . Cj,i (59)
i=1

with non-negative scalar weights w;; € RT.

The proposed priority share calculation framework offers several advantages. It is flexible,
scalable and allows the calculation of the agent priorities in a distributed manner. Further-
more, adding new criteria for priority calculation is trivial.

Algorithm 2 Priority Community (PC) Assignment.

1: Determine all trapped agents

2: Determine emergency community &

3: while 3 trapped agent do

4: Determine P,,: lowest PC containing trapped agent

5 SetagentieP,Viec(ENP,),p>m

6: for trapped agents do

7 Determine Py;, Py, using severity V 7,5 € Py,
8: Determine P, P.; using proximity V i, j € Py,
9: Reassign trapped agents i, j to P, Pp; fulfilling
10: pt > m, pj > m and

11: if st =sj A ci = cj then

12: Pt =pj,

13: else if si > sj then

14: pi > pj,

15: else if si = s5 A ci > ¢j then

16: pi > p7g,

17: else

18: pi < pj

19: Determine all trapped agents
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(a) Initial. (b) Reassign. (c) Loop 1. (d) Loop 2.

Figure 5.6.: Trap situation with -+ free and — trapped agents with the respective priority
communities in different stages of Algorithm 2.

Remark 5.3. While the priority share only depends on the individual agent characteristics
and may therefore be computed in a distributed manner, the priority community assignment
is preferably determined by a central computing unit as otherwise extensive communication
between the agents would be required.

In the following, the capabilities of the proposed prioritization framework are illustrated
in numerical examples and experiments.

5.3 Evaluation

The proposed trap handling and prioritization scheme for shared constraint satisfaction is
tested using invariance control, i.e. shared invariance control, in different scenarios in simu-
lation as well as in experiments on robotic manipulators. For both the numerical examples
and the experiments, control is implemented in Matlab/Simulink.

5.3.1 Agents in Different Priority Communities

Starting with a rather straightforward example, we examine the case of two spherical agents
with radius r,, € RT and double-integrator dynamics in different priority communities. Ini-
tially, the agents are arranged as depicted in Fig. 5.7a. Both agents are nominally controlled
by a PD control law to reach a goal position and the inter-agent constraint is given by

Yo = 2ag — ‘pagl - pag2H2 ; (5.10)
where P, Pago € R? are the positions of the agents. The model parameters are provided in
Table 5.1.

Without the constraint, both agents would follow a straight line towards their desired
position. With the constraint and shared invariance control derived using Theorem 5.1, the
agents adjust their actions to avoid constraint violations. Figure 5.7b depicts the trajectories
of the agents if the second agent is in a higher priority community. As expected, the second
agent follows a straight trajectory towards its desired position whereas the first agent carries
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0.5 0.5
E) —_— =l A
—0.5 | | | 0.5 | | |
-1 0 1 -1 0 1
p1 [m] p1 [m]
(b) Agent 2 with higher priority. (c) Agent 1 with higher priority.

Figure 5.7.: Setup and trajectories for two invariance controlled agents in different priority
communities.

Table 5.1.: Parameters for numerical evaluation of shared constraint satisfaction using in-
variance control.

Sampling time Ta 0.001 s

Agent radii Tag 0.2 m

Initial positions Pag,0 [—1, 0]T m, [1, 0.1]T m
Desired positions Pag,des [1, 0]T m, [-1, 0.1]T m
PD control Kp, Kp 10-I5-1/82,7-I5-1/s
Corrective control vy —20 m/s?

out an evasive motion. If the priority communities are reversed, the first agent approaches
the goal in a straight line while the second agent executes the evasive movement as shown in
Fig. 5.7c. The successful assignment of evasive actions to agents in lower priority communities
is the basis for resolving trap situations.

5.3.2 Evaluation of Trap Handling

For the evaluation of the proposed approach for trap detection and handling, we consider
the two setups illustrated in Fig 5.8. Each setup contains multiple spherical agents with
radius r,, € RT and double-integrator dynamics. The agents are pair-wise constrained
by inter-agent constraints according to (5.10). Nominal control is given by constant ac-
celerations in the directions of the arrows shown in Fig. 5.8. Shared invariance control is
implemented in accordance with Theorem 5.1. The parameters used in the simulations are
provided in Table 5.2.

Figure 5.9a shows what happens in the setup of Fig. 5.8a without trap handling. With the
inner agent being stationary and the outer agents moving towards it, at one point, the inner
agent is trapped. As it is in the lowest priority community, it has to take over all evasive
actions, which is not possible. Being in higher priority communities, the outer agents do not
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(a) Single trapped agent. (b) Multiple trapped agents.

Figure 5.8.: Initialization of different test scenarios with free ------ and trapped — agents
as well as static environmental constraints —— with the arrows indicating the
movement direction of each agent.

2 2
1F 1
—1F -1+
_2 | | | _2 | | |
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p1 [m] p1 [m]
(a) Violations without trap detection. (b) Adherence with trap detection.
Figure 5.9.: Behavior of - free and —— trapped agents (a) without trap detection and

(b) with trap detection in the setup of Fig. 5.8a.

respect the constraint and which leads to violations.

If, on the other hand, trap detection is used the agents form an emergency community
and redistribute their priorities. As a result, the outer agents have to respect the constraints
and violations are avoided as depicted in Fig. 5.9b.

The results of trap handling are further illustrated by the setup introduced in Fig. 5.8b.
In this case, the agents move such that two emergency communities form around the agents
in the opposing corners. Figure 5.10 depicts the final configuration of the agents, when all
agents become stationary as movement in the desired directions is no longer possible. It may
be observed that no constraint violations occur. Furthermore, the agent, which starts in the
middle and moves towards the upper right corner pushes its way in between the two agents
trapping the agent in the corner. This is owed to the fact that this agent is in a higher
priority community, leading to evasive movements of the other two.

With reliable trap detection and handling, we now turn to the experimental evaluation of
shared invariance control.
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Table 5.2.: Simulation parameters for the evaluation of trap handling.

General
Agent radii Tag 0.2m
Threshold [OFN 0.05 m

Setup Fig. 5.8a

Sampling time Ta 0.001 s

Tnitial positions Pago [0, O, [0, 1], [, —0.5]7, 2, —0.5]" m
Accelerations Uno [0, 07, [0, —2]T, [v/3, 1]T, [-V/3, 1]T m/s?
Corrective control = —20 m/s?

Setup Fig. 5.8b

Sampling time Ty 0.0001 s

Initial positions Pago 1.3, 1.3]7, [1.3, 0.9]7, [0.9, 1.3]7, [-1.3, —1.3]7, [-0.9, —0.9]7, [0, O]T m
Accelerations Upo -1, —1]7, [0, 2], [2, O]7, [2, 2], [-1, —1]T, [3, 3]T m/s>

Corrective control ol —10- \/E m / g2

5.3.3 Experimental Evaluation

The experimental evaluation is executed on the same robotic system [Sta06] as the exper-
iments in Chapter 3. The two redundant position-controlled manipulators j € {l,r} are
controlled to follow a desired trajectory while complying to external forces and satisfying
inter-agent constraints for collision avoidance between the end effectors. The same control
structure as shown in Fig. 3.11 is used.

Nominal Control

The trajectory for the position-controlled manipulators is generated by an admittance-type
control law derived from a model of the robotic manipulators and an impedance control
law. The gravity and Coriolis effects are assumed to be compensated leading to the general
joint-dynamics model of the manipulators

ijq(.jj,des =Tj, (511)

with the joint positions q; 4.5 € R, a positive definite mass matrix M;, € R™" and the
input torque 7; € R”. The Cartesian impedance control law as introduced by [AOF+03]

Tjimp = Tjext +J] (Mj,p Djres+ Djp (pj,ref - pj,des) + Kjp (pj,ref - Pj,des)) ;

with the external torques T e = J f; o € R”, derived from the Cartesian forces f; ., € R
using the Jacobian J; € R3*7 the desired Cartesian position Djdes € R?, the Cartesian
reference trajectory p; ¢ € R?, the Cartesian mass matrix M, € R**3 and positive definite
stiffness K, € R**® and damping D, , € R**3 matrices for both manipulators j € {l,r}.
The Cartesian impedance is complemented by the desired null-space behavior

Tin = —K;n (€40 — Ojn) — Dindj
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Figure 5.10.: Two emergency communities with ------- free and —, - - - - trapped agents form-

ing in opposing corners in the setup shown in Fig. 5.8b.

with the desired joint trajectory g,y and the positive definite matrices K;n, D;N € R”.
This leads to the nominal control law

Timo = Tiimp + (Ir = T (7)) 7N
with the generalized inverse J f € R3*3, which achieves the desired force behavior in Carte-
sian task space. Invariance control is included in between nominal control and the dynamics

model (5.11) as shown in Fig. 3.11 thus generating a constraint admissible trajectory for the
actual robotic system.

Constraints

An inter-agent constraint is chosen to model both end effectors being enclosed by spheres
with constant radii, which should never overlap. The constraint function is given by

L+ Topn (5.12)

Ye = — le,des - pr,des

with a constant radius rep, = 7147, € RY, which is the sum of the radii of the spheres around
both end effectors. Additionally, static box constraints similar to Sec. 3.4.1 are implemented.
Naturally, more inter-agent constraints may be added for full-body collision avoidance, but
are omitted for improved clarity of the results.

Corrective Control
Differentiation of (5.12)
ayc 8pl,des . &Uc apr,des . ayc 8yc

yc = es r,des — lq es + Jl“q.r es?
8pl,des aql,des bd 8pr,des 8qr,des . 8pl,des bd 0 r,des .
ayc &gc 8yc ]

c = ] es_'_ ']l".r es_'_ J es+']" es
Y 8pl7des 14) 4 9 s q; 4 ap17des< 141 4 14} 4 )

8yc T

+ ']l"q.r des + Jl"q-r des) -
apr,des ( 7 7 )
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and substitution of §; 4., from (5.11) yields the relative degree r = 2. The optimization
condition is given by (5.4) with

Y. -1 :

Y. . We

b= Z ] quj,des + oD ']jqj,des .
je{l,r} p]7d65 p],des

Corrective control is derived according to Theorem 5.1 with the optimization conditions

corresponding to the static box constraints from Sec. 3.4.1 included in the optimization of
each agent according to Remark 5.2.

Priority Assignment

In the experiment, the agent priorities are assigned according to multiple criteria:
e Fach agent has a static task priority c.
e The number of nearly active constraints according to Def. 5.7 yield the criterion
co =|D|, D={i€B|P > Dy},
which assigns a higher priority to agents with a more constrained environment.

e The external force criterion assigns higher priorities to agents with high external
forces.

e = | Fextll2

e The joint limit criterion

1
min (qmax —q,q— qmin)

Cj1 =

assigns higher priorities if agents are close to a joint limit.

e The manipulability measure as introduced by [Yos85] is based on the Jacobian J
and is used to give a higher priority to agents with lower manipulability in task space.

1
Cj = ——.
T det JJT

A weighted sum with positive weights over the desired criteria derives the final agent prior-
ities.
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Implementation

The derived invariance control law including nominal control and the constraints is imple-
mented in the Real-Time Workshop of Matlab/Simulink. The used solver is a discrete time
Euler solver with the sampling frequency of 1kHz. The Cartesian reference trajectories are
given by

o [o2sin (220 + 3)

Pl = /t 0.1 —0.1sin(Zv) |dv,
|—0.1sin (%w + %)

o [o2sin (2504 3)

Dot = / 01| 0.05sin(Zy) | du.
Y| -0.05sin (£ + 1)

The parameters for the experiments are provided in Tab. 5.3. If not denoted differently, the
parameters for both manipulators are equal.

Results

Shared constraint satisfaction is validated in two experiments. First, solely static pri-
orities are used to illustrate the capabilities in the presence of environmental box con-
straints and external forces, which are measured by a JRS sensor sensing forces and torques
with 6 degrees of freedom. Then, solely the inter-agent constraint is considered and the
static priorities are replaced by a weighted sum of the dynamic priority criteria with the
weights we, wy_, wj, wy € R corresponding to the criteria as provided in Tab. 5.3.
This second experiment evaluates the shared control approach for multi-agent systems with
dynamic priority assignment.

Experiment with Static Priorities In this experiment, the end effectors follow the
desired trajectories while satisfying the inter-agent and box constraints. Additionally, the
external forces depicted in Fig. 5.11 are applied and generate a compliant reaction due to
the used admittance control.

Despite the forces, the box constraints are met as shown in Fig. 5.12. The inter-agent
constraint is satisfied as depicted by Fig. 5.13a which shows that the distance between the
end effector positions is at least 7o, = 0.2m. In addition, the maxima of the invariance
functions corresponding to the box constraints depicted in Fig. 5.13b remain at non-positive
values. The relative position deviation from the trajectory without invariance control

€p,i . .
€reli = et ey with ¢ € {l, r} (5.13)
with e,; = Pp,; — P; is shown in Fig. 5.13c. Note that the high oscillations when no
constraint is active are due to the small position deviations in this case and therefore tiny
changes have a large impact on the relative position deviation. More importantly, however,
if solely the inter-agent constraint is active, e.g. at t € [129,132]s, the relative position
deviation is partitioned according to the weights w; = + and w, = 2 resulting from the static

3 3
priorities and (5.6). Hence, the experimental results validate shared invariance control for
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5 Sharing Control in Multi-Agent Systems

Table 5.3.: Parameters for the experiments to validate shared constraint satisfaction.

General
Sampling time Ta 0.001 s
Initial joint position qo, [0.27,2.22,0,—1.49,1.44,1.32, —0.73] T rad
qo.r [0.61,0.39,0,1.5,0.79,0.93, —1.35] T rad
Initial Cartesian position Pio [0.5,0.15,—0.441]T m
Pro 05 ~015 —0.341]" m
Nominal control
Desired compliance behavior M, 12- I3 kg
K, 200 I3-N/m
D, 80-I3-Ns/m
Desired null-space behavior Kn diag (360 - I4, 180 - I3) Nm/rad
Dy diag (25-I4, 10-I3) Nms/rad
Constraints
Box constraints Pmin [0.3,—-0.3,—0.48] m
Prax [0.57,0.3,—0.28] m
Inter-agent constraint Tsph 0.2m
Shared invariance control
Control parameter vy —1.8 m/s?
Static priorities Ctsk,l, Ctsk,r 2,1
Dynamic priority assignment by, —0.025m
Wo 0.5m
Wi, 0.1 1/N
Wil 0.05 rad
wy 0.4m

multi-agent systems as both manipulators satisfy the static box constraints and share the
evasive effort for the inter-agent constraint according to their priority values.

Experiment with Dynamic Priorities In the second experiment the priorities for shared
invariance control are determined using the dynamic criteria. In this experiment solely the
inter-agent constraint is considered. As the applied external forces, depicted in Fig. 5.14, are
used in the force-based priority assignment criterion cy_, to determine the agent priorities,
they have a direct impact on the priorities, shown in Fig. 5.15b. Instead of being static,
the priority values of the agents now change over time according to the dynamic criteria.
Nevertheless, the manipulators generally satisfy the inter-agent constraint keeping at least
a distance of repp = 0.2m as depicted in Fig. 5.15a. The minor violations are caused by the
sampled time implementation, a small value of v and the system not being able to counter-
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5.4 Discussion

20
Z. 0
3 20
” _40 | | | | J
0 10 20 30 40 50
time ¢ [s]
(a) External forces applied to the end-effector of the left manipulator.
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(b) External forces applied to the end-effector of the right manipulator.
Figure 5.11.: External forces —— £, ext, = £, ext, £, ext in the experiment with static

priorities for the left and right manipulator.

act arbitrarily large external forces. By increasing + and applying methods for chattering
reduction from Sec. 3.2.2, this effect may be overcome.

Since the force sensors are prone to measurement noise, the priorities of the agents as
depicted in Fig. 5.15b and the desired partition in Fig. 5.15¢ are subject to noise as well. It
may, however be observed that the relative position deviation of the manipulators follows the
trend of the desired weights while the constraint is active, which results in the manipulator
with the higher priority experiencing the smaller position deviation. Furthermore, the robotic
system acts like a low-pass filter, smoothing the desired signal. Naturally, if the constraint
is inactive, the weights differ from the desired weight as no evasive action and therefore no
weighting is necessary.

5.4 Discussion

Concluding this chapter, we summarize the capabilities of the proposed control approach for
shared constraint satisfaction and the associated prioritization scheme. Sharing the effort
necessary to ensure constraint satisfaction in multi-agent systems allows for agents with
important tasks to execute them with priority while other agents take the major part in
achieving constraint satisfaction. The control input is generated by a minimization problem
and may be designed using invariance control as well as CBF-based control, such that the
approach which is more advantageous for the respective application may be chosen. As the
approach does not change the general idea of I/O-linearization-based control approaches,
which generate a condition on the input for each constraint, shared constraint satisfaction
is compatible with the approaches introduced in the previous chapters.

The presented prioritization scheme is comprised of two stages. The first stage assigns
the agents to priority communities to ensure that the optimization for the control input
remains feasible for all agents. The second stage then distributes the priorities according to
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5 Sharing Control in Multi-Agent Systems
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(a) p1 component of the Cartesian end-effector positions.
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(¢c) ps component of the Cartesian end-effector positions.

Figure 5.12.: Cartesian position p,,, of both end effectors in the experiment with static pri-
orities and - - - - box constraints for the — left and the right manipulator
with the respective reference pgg), - , without invariance control.

a variety of criteria, thus enabling the agents to share evasive actions required for constraint
satisfaction.

The combination of control and prioritization scheme is validated in numerical examples
and experiments, which encourage the use of shared constraint satisfaction in setups with
multiple agents including physical human-robot interaction with inter-agent constraints as
well as environmental constraints and dynamic priorities.
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(b) Invariance function of - the inter-agent constraint and upper bounds max;c(; . 6)(®;)
on the invariance functions corresponding to the six Cartesian box constraints imposed on

each —— the left manipulator and the right manipulator.
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(c) Relative position deviation for —— the left and the right manipulator with the re-

spective desired values ------ )

Figure 5.13.: Inter-agent constraint, invariance functions and relative position deviation for
the experiment with static priorities emphasizing the time during which

solely the inter-agent constraint is active.
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(a) External forces applied to the end-effector of the left manipulator.
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(b) External forces applied to the end-effector of the right manipulator.
Figure 5.14.: External forces —— £, ext, = fp,ext, fpsext in the experiment with
dynamic priorities for the left and right manipulator.
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(a) Distance between end-effectors and ------ bound imposed by the inter-agent constraint.
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(c) Relative position deviation to the unconstrained position for the left and the

right manipulator with the respective desired values ——, —.

Figure 5.15.: Inter-agent constraint, dynamic priorities and weights for shared invariance
control with dynamic priorities with emphasis on the time during which
the inter-agent constraint is active.
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Conclusion and Future Directions

Robotic systems sharing their workspace with humans need the ability to interact and coop-
erate closely as well as physically with human partners. Examples of such scenarios are found
in industrial manufacturing, health care applications such as robot-aided surgery or rehabili-
tation, elderly care and household assistants. In all these applications, the safe interaction is
an essential and indispensable factor. Safety is characterized by physical and psychological
factors, which means that interacting agents, be it humans or robots, should not be harmed
and any interaction should be comfortable and stress-free. Hence, any control framework
implemented on a robot engaging in human-robot interaction should be dependable and
guarantee safety under real-time conditions.

This thesis aims at developing a control framework that includes the important features
required for a safe human-robot interaction.

Summary of the Contributions

We present invariance control and CBF-based control as promising candidates for safe
human-robot interaction. Both are added to existing control loops with task-oriented nomi-
nal control. The control input is derived by solving a convex minimization, which is subject
to conditions on the input. By designing the control input to render a subset of the state
space positively invariant, adherence to static and dynamic state and output constraints is
guaranteed, resolving the need for the integrity of the human partner. The need for com-
fortable and stress-free interaction is addressed by augmenting the systems, which allows to
adjust the dynamic behavior of the system to fit the requirements.

By analyzing the effect of uncertain parameters on the optimization conditions, robust,
probabilistic and scenario-based constraint satisfaction are derived, thus allowing for safe
interaction even in cases when the dynamics of the constraints are not exactly known, either
due to uncertain measurements or due to the model being generated by a learning-based
approach. The choice of the satisfaction type depends on the desired outcome as for example
robust constraint satisfaction guarantees satisfaction for all possible uncertainties, whereas
probabilistic and scenario-based satisfaction yield probabilistic guarantees.

In addition, both approaches allow for shared satisfaction of constraints in multi-agent sys-
tems. Using priorities derived from a dual-stage prioritization scheme, weights are calculated
and included in the optimization conditions for constraint satisfaction. The prioritization
ensures that the optimization remains feasible even if multiple agents are closely interacting
and the included weights are responsible for sharing control actions between the agents.
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6 Conclusion and Future Directions

Note that both invariance control and CBF-based control generate optimization conditions
with a similar structure. The same holds true for the conditions resulting from uncertain
constraints and the weighted conditions for shared control effort. Hence the approaches and
the different constraint types are compatible, which means they may be combined arbitrarily
allowing to find the best fit to the respective application and constraints.

The presented experimental results encourage the application of invariance control to
robotic systems in scenarios involving humans and physical interaction with humans.

Implications

Revisiting the challenges imposed by physical human-robot interaction as introduced in
Sec. 1.1, we examine the extent to which the proposed control framework is able to answer
these questions.

Challenge 1 is addressed by augmenting the system and applying augmented invariance
control. Even though the approach is introduced for invariance control, the concepts may be
transferred to CBF-based control. There are little restrictions on the choice of augmentation,
which means that it may be used to adjust the resulting dynamics to the expectation of the
human partner. Furthermore, as nominal control may by chosen freely, a human-friendly
design [ZRK+04] may be utilized.

Challenge 2 is met by invariance control as well as CBF-based control. Both approaches
achieve constraint satisfaction in the presence of interaction forces as demonstrated in the
experiments. By applying the presented method for chattering reduction, the switching in-
variance control law also guarantees constraint satisfaction in sampled time, which is achieved
naturally by CBF-based control. Furthermore, the control input is derived from convex op-
timization using efficient existing solvers, which are able to find a solution in real-time even
for high numbers of constraints.

Challenge 3 is addressed by minimizing the deviation of corrective control from nominal
control. This means that the resulting behavior is close to the desired unconstrained behavior
even in the presence of constraints, which is supported by the constraints having little to
no influence on the control input if the state is far from the bounds. It should, however, be
noted, that the control input being close to nominal control does not necessarily mean that
the measured constrained manipulator trajectory is close to the unconstrained trajectory as
neither of the proposed control schemes minimizes the deviation from the desired trajectory.
Minimization in the input space in contrast has the advantage of preserving the haptic
sensation generated by nominal control.

Challenge 4 is concerned with uncertain constraints, an issue that is addressed in Chap-
ter 4. The presented approaches allow the guaranteed satisfaction of constraints subject to
bounded uncertainties and a probabilistic guarantee for known uncertainty distributions or
sufficiently many data samples. Therefore, if some knowledge about the uncertainty char-
acteristics is available, both invariance control and CBF-based control are able to handle
uncertain constraints.
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Challenge 5 is addressed by introducing a prioritization of the agents depending on their
task and the feasibility of the optimization problem for control derivation. Based on the
priorities, each agent takes over most, little or none of the evasive effort required for achieving
safe interaction. The approach avoids agents blocking the path of other agents and allows
for a redistribution of the evasive effort if the priorities of the agents change, for example as
their task becomes more urgent.

Outlook

In this thesis we take a step towards safe physical and close human-robot interaction between
humans and robots in the presence of uncertain constraints. Novel control frameworks are
presented and supported by formal results. Illustrating numerical examples and experiments
on anthropomorphic manipulators verify the theoretical results. Although a number of
relevant issues regarding safe human-robot interaction have been resolved in this thesis,
several open research problems remain to be studied in future works.

Input constraints

Although the presented control approaches satisfy constraints by generating conditions on
the input, both approaches require the available set of input values to be unbounded. As the
conditions artificially constrain the input, additional limits on the available input values may
be included straightforwardly in the optimization but may lead to infeasibility. Changing
the control parameters attenuates that issue but does not change the fact that high input
values may be required occasionally to preserve the satisfaction guarantees. As the inclusion
of bounds on the input corresponds to a saturation in the system model, one idea might be
to assess the feasibility of the approaches with a different class of nonlinear systems.

Uncertain system model

A shortcoming of using I/O-linearization in the control derivation is that an exact model
is required for perfect results. If unmodeled effects are present, the satisfaction guarantees
are lost. This thesis already addresses the effects of uncertain parameters in the constraint
description but assumes the system model to be known. For even wider applicability it will
be useful to extend the presented concepts to systems with uncertain dynamics, i.e. due to
an unknown load or due to learned dynamics [BUH17].

Learning constraints

In addition to learning the system dynamics or the constraint parameters, the possibility to
detect and model constraints during runtime further improves the safety of the interaction.
If the system is capable to automatically generate constraints, the necessity of fully modeling
the environment becomes obsolete and hence unsafe behavior due to unmodeled events may
be avoided. Ideally the system should be able to find an optimal configuration of constraints
during runtime that ensures safety while restricting the robot as little as possible. In such
applications, however, any related uncertainties have to be included.
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6 Conclusion and Future Directions

Sharing control with human partners

Last but not least, it might be interesting to extend the concepts for shared control in multi-
robot systems to teams of robots and humans. Instead of assuming that the robot has to
take over the entire effort for keeping harm from the humans, it might be promising to use
insights into human-human interaction [FGP+09] to predict how much of the evasive effort
will be performed by the human. This would result in less conservative behavior of the robot,
which may be advantageous in some applications.
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Formal Proofs

Proofs from Section 3.1

Proof of Lemma 3.1. For the proof, we define the sets

gz‘(ﬂ?n,%) = {z| (I)i(wvwm%') <0} .

With (2.12), the admissible and invariant set are given by

l l

H(n) = ﬂ Hi(n) g(@'na?’) = ﬂ gz’(af'm%) .

i=1 =1
In addition,
q%(fﬂ, Ly, ’Yz) > hc,i(w7 77)

holds since the invariance function is defined as the future maximum value of the constraint
function. Hence,

hC,l’("Bu "7) < 0
Q;(x,x,,vi) <0

holds, which is equivalent to

and as a result

O

Proof of Lemma 3.2. Invariance is achieved if the invariance function never takes a positive
value. There is only a danger of leaving the invariant set, if the state is at the bound, i.e.
if ®;(x, z,,~;) = 0 holds. Therefore, in order to show invariance, it suffices to show that the
invariance function never increases at this point.

The invariance function ®;(x, «,, ;) represents the maximum future value of the constraint
function for a pseudo input z; = ;. Hence, if ®;(x,x,,v;) = ¢ with any constant ¢ € R
holds at t = ¢, setting z; = 7; results in ®;(x, x,),7;) < c for all t > ¢, by design.
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A Formal Proofs

Applying these considerations to the cases in (3.16) shows that for ®;(x, x,,v;) = 0 there
are two options for the pseudo input. It is either equal to +;, which leads to ®;(x, x,, v;) <
0 for all future times, or it is equal to 0. Since it is equal to zero only if addition-
ally ®;(x, z,,0) <0 holds, extending the previous considerations,

(I)i(ma 3377, %) S (I)z(ma mna O) S 0
holds for all future times, thus leading to invariance. O

Proof of Lemma 3.3. The cost function is assumed to be strictly convex. The constraints
are linear in the optimization variable w and therefore affine and convex in w. As there
are no equality constraints, the optimization is strictly convex and any local minimum is a
global minimum [Boy04, p.136ff.]. O

Proof of Theorem 3.1. Corrective control is determined by the constrained minimization
problem (3.31). The constraint, which has to be fulfilled by the corrective input w., is
given by (3.30). Using (3.1) shows that the left side of the condition is the pseudo input of
the active constraints.

zi = al e + b (A.1)

Therefore, any solution of the minimization fulfills
Zi S Zeji - (A.2)

An input z; < z; for all active constraints renders an integrator chain invariant with respect
to the invariant set by Lemma 3.2. Additionally, the remaining inactive constraints are not
in danger of violating a constraint and stay within the invariant set for any control action.
Therefore, the solution of the constrained minimization problem provides a corrective control
input, which achieves positive invariance of the invariant set. 0

Proof of Theorem 3.2. The system is outside of the invariant set, if at least one invariance
function has a value larger than zero and it enters the invariant set, if the control signal is
such that the invariance functions eventually take non-positive values. Therefore, the system
is guaranteed to enter the invariant set, if the control signal is such that any state trajectory
starting outside of the invariant set is guaranteed to enter the set eventually.

For constraints with relative degree r; = 1, the invariance function is given by (3.12). As
the constraint is active, i.e. initially y; o = vy;(to) > 0, the input z; of the linearized integrator
chain fulfills z; = 2z.; <7; <0, see (3.21), (3.31). As g; = % holds for r;, =1, 9, <, <0
holds as long as the constraint is active, i.e. as long as y; has a positive value. This means,
that y; and therefore also the value of the invariance function decreases until y; = 0 is
reached, at which point the system enters the invariant set of the constraint. Since y; is
strictly less than zero, this will happen in a finite time interval T < %2,

For constraints with relative degree r; = 2, the integrator chain of the linearized system
has two states y; and ¢;. The invariance function is given by (3.13). The areas of the
linearized state space, for which the invariance function has a positive value, are given by

) 1 .
Si(xy,vi) ={x |y <OANY > 0Ny > ﬂy@z}
So(xy) ={z | yi > 0N >0}

Syl@,) = {m | ys > 0\ s < 0}
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We now show that, starting from any arbitrary point in sets S;, Sy or Sz, the system will
eventually enter the invariant set.

First, assume that the initial configuration lies within set S;. In this case, the constraint
is active and §; = 2z; < z.; = 7; < 0 holds, see (3.22), (3.31). Since g; is strictly less than
zero, 1; decreases and reaches zero after a finite time interval 7. During that time, the
output y; increases its value since 3; > 0 holds and may even become positive. If, after the
time interval T, y; < 0 holds, the system is within the invariant set, since y; = 0 holds.
Otherwise, y; = 0 and g; > 0 hold after a time interval At < T}, meaning that the system
enters the set S,.

Now assume that the initial configuration lies within S;. Again, the constraint is active and
in this case, §; = z; < z.; = 7; < 0 holds, see (3.22), (3.31). Similar to the previous case, y;
decreases and will reach a value of zero after a finite time interval 75. During that time, the
output y; further increases its value since g; > 0 holds. After the time interval T5, y; > 0
and ; = 0 holds, while the input is still strictly negative, meaning that the system enters
set Ss.

Finally, assume that the initial configuration lies within S5. The constraint is active and in
this case, §; = z; < z.; = 0, see (3.22), (3.31). The value of y; decreases, since ¢; < 0 within
set 3. With ; < 0, y; either remains constant at its strictly negative value or decreases
further. Therefore, after a finite time interval T3, y; = 0 is reached, while 7; < 0 holds,
meaning that the system enters the invariant set.

Therefore, for constraints with r; = 2, starting from arbitrary states outside of the invari-
ant set, the state trajectory evolves such that the invariant set is entered within a finite time
interval T' < T} 4+ T, + T5. The trajectory may either evolve from &; or &3 directly into the
invariant set, from &; over S and Sz or from Sy over S into the invariant set.

For constraints with higher relative degrees, the consideration is similar. Applying the
pseudo input until all states of the integrator chain are negative, results in entering the
set. The duration may be calculated using (3.6)—(3.8) and is finite since all signals are
bounded. O

Proof of Theorem 3.3. This proof is conducted in two steps: First the existence of parame-
ters Viax and « is shown, for which the optimization has a unique solution and second the
resulting boundedness of the tracking error is proved.

In order to show that the minimization has a solution, it suffices to determine one in-
put u. which fulfills both types of conditions: the invariance conditions derived from 1/0O-
linearization, which ensure constraint satisfaction, and the convergence condition, which
guarantees boundedness. By Assumption 3.1, there exists a solution to (3.31), i.e. the min-
imization problem with solely the invariance conditions. This solution is given by (3.38).
The convergence condition on the other hand defines an upper bound on

_V(e)
 de

Vie,é) (Eges — f(x) — G(x)u) .

=é

For Z = () with Z from (3.37), the invariance conditions have no influence on the solution
and is fulfilled by u, = u,,. In addition, u. = u,, also fulfills the convergence condition
since then

Ve, &) =Vyo(e, én) < By
with the bound By, as defined in Theorem 3.3 holds for any value of V,,.x and «.
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A Formal Proofs

For T # (),
U1 = W(AC,IW)+(ZC,I - bC,I) + (I - W(AC,IW)+AC,I)UHO

from (3.38) solves the minimization (3.31) with only the invariance conditions, i.e. in matrix-
vector notation
AC,BaCtuC,I + bc,Bact < Z¢,Bact

holds. If by adding the convergence condition,

Acvgact
oV (e)
56 C()

rank

] > rank(Acg,..)

is fulfilled, then

ov
3 RBact : RBact E ker(AcyBact)7 RBact ¢ ker <%G(w)> :

The input u. = ucz + Rp,., Up,., ker fulfills the invariance conditions independently from the
value of ug,, ker Since

Acvgactuc _'_ bcygact = AcyBact (ucyz _'_ RBact uBactyker> + bcylgact
= ACyBact uC7I + ACyBact RBact uBact7ker + bCyBact = AC7Bact uC71 + bC7Bact .
—_———

:O‘Bact‘xm

As Rp,,, ¢ ker (a‘g—‘(:)G(:v)), this means that a‘g—‘(f)G'(:v)RBact # 01, holds and there exists

a Up,., ker, such that

oV (e)

De (Tages — f(z) — G(x) (uc,I + RBactuBactyker>> < a(Vinax — V(e))

=Uc

is fulfilled for any choice of Vi and «, which means that the convergence condition holds
with V(e, é) < a(Viax — V(e)) < By,. On the other hand, if

Acvgact
oV (e)
56 C()

holds, the input u. = u. 7 fulfills the invariance conditions as discussed above, whereas the
left hand side of the convergence condition

rank

] = rank(Acs,.,)

aV (e) , .
— Viole.éw) ~ 2o Gla)W (AW (2r b — Acru)
S———— 66
<0
S a‘giée)G(w)W(Ac,IW)-i_(AQIuHO + vaI B zC’I) ’

:=LHS(x,Tdes,Zn)
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and the right hand side of the convergence condition

BV Z a(Vmax - V(e))

:=RHS(e)

are bounded by functions LH S (&, Zges, ;) and RHS(e). The output functions and deriva-
tives are continuous by Assumption 2.2, including A. 7, A:I, and b.7 and the weighting
matrix W is constant. Nominal control is continuous by Assumption 2.4 and G(x) and
the Lyapunov function are continuous as well. Since z,,7 is an additive and multiplicative
concatenation of continuous functions, it is continuous. As the parameters x,, are bounded
by Assumption 2.2 and the desired trajectory x4 is also assumed to be bounded, z,,7 and
as a result z.7 from (3.16) and the functions LHS(x, Z4es, ;) and RHS(e) are bounded
on any bounded set of states . Therefore, if

Vv (e)

V=<
{ 56 C ()

is bounded, the input u. = wu. 7 is only applied on this bounded set of states x and there
exist bounds

AC7Bact (m7 T’)
dt>ty:rank

= rank(A; 5, (T, n)) }

Brus = sgp (LHS(JJ’ Ldes, wn))
Brps = i%f(RHS(e)) = a(Viax —sup(V(e))) .
v

By choosing the parameters V., and a such that they fulfill
sup (LHS(x, Zaes, T5)) < &(Vinax —sup(V(e))) ,
v 12

the convergence condition for u. = u. 7 is met as well since

V(e.6)= iy - f@) - Glaucr)

< LHS(x, Tges, ) < sup (LHS(x, Tges, T))
v

< a(Vinws = sp(V(€)) < a(Vinws = V(€) < By

holds for all @ € V. Hence in all cases, there exists at least one u., which solves the
minimization problem but which is not necessarily the optimal solution. Since, however the
optimization is convex as the cost function is strictly convex and the optimization conditions
are affine in the optimization variable, there exists a unique solution to the problem.

With the existence of a corrective control input established, we turn to the tracking error.
The solution of the minimization fulfills

V(e, &) < max(a(Viax — V(€)), Vio(e, éno)) -
Additionally for V(e) > Viax, the right hand side is non-positive, as a(Vyax — V(e)) < 0
holds and Vi(e, é,,) < 0 by Assumption 2.4. Therefore, V (e, é) < 0 holds, which means
that the Lyapunov function is bounded with V(e) < max(Viax, V(e(tp))). As V(e) is a
Lyapunov function showing global stability of the tracking error, it is continuous and radially
unbounded, meaning that if the norm of e goes to infinity, so will V(e). Therefore by the
converse argument, if V'(e) is bounded, so is e. O
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A Formal Proofs

Proofs from Section 3.2

Proof of Lemma 3.4. With Assumption 2.2, the I/O-linearizing transformation of y.; with
respect to the original input u = he,(x) is given by (3.1). Further derivation of y., yields

(rithi) _ d* . ‘
yc72 dtk (CL ( )+bc,z)

= Qg zh’ca ( ) + Ri,ki<w7 X wn)

which consists of one term depending on the k;-th derivative of h..(x), i.e. u, and a
résidu R, (@, X, x,) depending on the lower order derivatives u"), j € {0,1,....k; — 1}.
As a result from Assumption 3 3, the I/O-linearization of w with respect to u, is given
by (3.41). This means that u(*) and therefore also h r'+v)(m) are the first time derivatives,
which are directly influenced by u,. This yields

yérzﬁv al,i%Ga%vgth,a(X)ua + Rio(z, X, )

where R;,(x, X, ®,) = b;. Assumption 3.3, implies that the matrix A, Zgagvflhca( )
is invertible and Assumption 2.2 ensures that al; has at least one non-zero element There-
fore @] = al;A, holds and has at least one non- 2610 element, thus implying the well-defined
augmented relative degree r,; = r; + v. ]

Proof of Lemma 3.5. Substitution of (3.47) in (3.41) yields

ul® =4l — Zk uld)

and the decoupled error dynamics
v—1 .
=3 kyel) (A.3)
5=0

for i € {1,2,...,m}, which represent linear time-invariant dynamics. By the Routh-Hurwitz
stability criterion, the error dynamics are uniformly exponentially stable if the characteristic
polynomial d(s) = s¥ + Z;f;é k;s? is a Hurwitz polynomial. O

Proof of Theorem 3.4. Asaresult from Lemma 3.5, u = u,,+e,, is fulfilled and lim;_,, e,, =
0,,x1- Insertion into (2.1) yields

T = f(w) + G<w)(uno + eno) )

which is a representation of the nominally controlled dynamics with the additional input e,,.
With [Kha96, Lemma 4.6] and under Assumption 2.1, the nominally controlled system (2.1)
is ISS with respect to the additional input, if its tracking error is uniformly exponentially
stable for €,, = O,,x1. AS €y, is the output of the error dynamics (A.3), which are uniformly
exponentially stable, the tracking error of the cascade connection of the error dynamics
and (2.1) under nominal control is uniformly asymptotically stable according to [Kha96,
Lemma 4.7] if the nominally controlled system is ISS, i.e. if it has an exponentially stable
tracking error. O
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Proof of Lemma 3.6. The proof is based on the continuity of the output functions, their
derivatives and the system stated in Assumptions 2.1 and 2.2. For each instant of time, the
state x, the uncertainties «, and the input error e, have a well-defined, fixed value, which
means that hei(x, z,), hei(z, 2,), . . ., hgf*l)(w, x,) have a well-defined, fixed value as well.
In addition, continuous functions have a bounded output on every bounded input interval.
Therefore, as t € [tg,tr41] is bounded and the input error is bounded by Assumption 2.6,
the constraint output functions and the derivatives are bounded on the time interval and
there exists an upper bound hgji) Z}ax(w[k], x,[k], zi[k]), YO < j <r; — 1, the value of which
depends on the pseudo input zl[kﬁ at the sampling instant as this determines the control in-
put u[k]. Furthermore, the invariance function as defined in (3.10)—(3.11) is a concatenation
of continuous and bounded functions evaluated on a bounded time interval and hence there
exists an upper bound @} (x[k], z,[k], 2;[k]), the value of which depends on the pseudo

input z;[k]. O

Proof of Lemma 3.7. The proof is based on the continuity of the linearization as stated in
Assumptions 2.1 and 2.2. For each instant of time, x, @, and e, have a well-defined, fixed
value, which means that al; and b.; have a well-defined, fixed value as well. In addition,
both the elements of al; and b.; are continuous functions and hence have a bounded output
on every bounded input interval. Therefore, as ¢ € [ty tx.1] is bounded and the input error is

always bounded by Assumption 2.6, the elements of al; and b.; are within bounded sets. [

Proof of Theorem 3.5. Algorithm 1 determines a set By.x of all constraints that are cur-
rently active at t, and all constraints that have the potential of becoming active in the
interval ¢ € [tg, tr+1]. The constraints that are not in By, are not in danger of violation for
the corrective control input determined by Algorithm 1. This means that their respective
invariance functions are currently negative and also the predicted maximum of the invariance
function @i (x[k], 2, [k], zi[k]) is negative.

As each constraint in B, is included in the determination of corrective control, their
respective constraint satisfaction conditions are included in the optimization 3.57. Further-
more the optimization condition considers all possible future values of aJ; and b.;, thus
making sure that the determined corrective control value fulfills the invariance condition for
the entire interval ¢ € [ty, tx11]. Therefore, the control input ensures that the pseudo inputs
corresponding to active constraints fulfill z; < z.; for all t € [ty, tx11] with z.,; from (3.53),
which is designed to keep the associated invariance function at non-positive values.

Therefore, all invariance functions remain non-positive within ¢ € [tg, t541]. As the steps
are repeated for all following time intervals, invariance is achieved by induction. O

Proofs from Section 3.3

Proof of Theorem 3.6. Each constraint yg; with ¢ € B is associated with a CBF B; and
the sets H;, Mp, from Lemma 3.8. By Assumption 2.2, H is not empty and therefore the
constraints do not conflict. In addition, Assumption 2.2 ensures that each constraint has a
well-defined relative degree and therefore the sets Mp, are not empty as ap; # O, x1 if B;
is a CBF.
The set Mp(x, x,, p) is the intersection of the individual Mpg,.
Mp = ﬂ M,

i€eB
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Hence if u lies within Mg(x, ,, p), it lies also within all M pg,. Therefore, by Lemma 3.8, u
renders all Int(#,;), ¢ € B, positively invariant. As H is the intersection of all H;, Int(H) is
rendered invariant by u € Mp(x, x,), ). O

Proof of Theorem 3.7.
The proof is conducted in two steps. First, uniqueness and Lipschitz continuity of the solu-
tion is proved. In a second step the invariance of Int(#) is shown.

Step 1: Uniqueness and Lipschitz continuity:
Let u. be a solution of (3.74) at a point £ = [27, 2]]7. According to [MPA13, Theorem 1],
if the conditions

(7)) w*(&) > 0, where w*(&) is the solution of the linear program

w*(ﬁ) — (u711r;1)13]1§(m+1 w <A4)
st [A©) 1] | <cto) (A5

(i7) A(&) and b(&) are Lipschitz continuous at &,
(797) Uno(&) is Lipschitz continuous at &,

with A(E) = [(IBJ, ey G,BJ]T, C(ﬁ) = [jé—ll — bB71, N %ll — bBJ]T and as;, bBJ‘ from (370)
hold at &, then the solution w. of the QP (3.74) is unique and Lipschitz continuous at &.

Condition (i) is based on the Mangasarian-Fromovitz constraint qualification [MF67]. If
the constraint qualification holds, i.e. if w*(€) > 0 holds, the solution of the QP (3.74) is
unique at £&. Conditions (ii) and (iii) are necessary for the Lipschitz continuity of the solution
of (3.74).

As the optimization 3.74 is stricty convex, there exists a unique solution by Lemma 3.9.
Hence the verification of (i) is redundant. For a formal verification of (i), the interested
reader is referred to [RKH16].

Condition (ii) holds for all € H as local Lipschitz continuity of A and b follows from
Definition 3.11, which demands that a CBF B; and its Lie derivatives £ B, and ZaB;
are locally Lipschitz. As the nominal control signal u,, is assumed to be locally Lipschitz,
Condition (iii) holds as well. Therefore, all three conditions hold for all & € H and the
control value u,. obtained by solving the QP (3.74) is unique and Lipschitz for all € H.

Step 2: Invariance of Int(H):
The optimization condition of (3.74) ensures that wu. lies in Mp. Step I shows that the
solution . is Lipschitz continuous. With Assumptions 2.1, 2.2 and 3.7, Theorem 3.6 is
applicable and u. renders the interior of the set H positively invariant. O

Proofs from Section 4.1

Proof of Lemma 4.1. The proof is based on the continuity of the output functions and their
derivatives from Assumption 2.2. For each instant of time ¢, © and Z,, have a well-defined,
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fixed value, which means due to the assumed continuity he (€, Zy), hei(x, Zy), . . ., al (T, Ty)
and b ;(x, &,) have a well-defined, fixed value as well. Furthermore, B;(x, &, A,), ag ;(z, Z,)
and bp ;(x, ;) are Lipschitz continuous as the CBF's are designed to fulfill Def. 3.11. In ad-
dition, continuous functions have a bounded output on every bounded input interval. As the
parameter variation A, is bounded by Assumption 4.1, he;(x, T, +A,), .. ., bgi(x, T, + A,)
are bounded and therefore the uncertainties described by the differences Ag(x, Z,, A,)) with
k € {hcﬂ‘, hc,ia ceey h(r_l), Qe i1y« s Qeim, bc,ia Bi7 aBi15 -+ ABi,m» bB,i} as defined in (44)*

c,i

(4.12) are bounded. O

Proof of Theorem 4.1. The function p;(x, ,,y;, At) from (3.11), which is used to determine
the invariance function (3.10), is a concatenation of continuous functions and therefore also
continuous. This means that it is bounded on D, for each fixed value of & and the upper
bound is determined by

_ At LAY sy,
pi<w7wn + ATI?V@H At) = 772 =+ Z Thgz)(w7wn + AT))

A j=0

< sup
ALEDob

AT il A4 , o __
( %+ Z T (hﬁjz)(w,:c,,) + Ahijz) (wawnaAn)))

Tt =0

AT[EDYOb j:O

r;—1 j
LAY
= pi(®, &y, i, At) + sup (E T Ah(1?<waw_naAn))

o LAY maxp,
:pi<w7wn77i7At) + Z ,j' Ah(j) <w7wn)
=0 . c,t

1= ;" (@, Ty, Drob, Vi, Al)
and therefore,

‘ ‘ < max (o, .
max pi(x, Ty, Vi, At) < max p; (x, ), Drob, Vi, At) VA, € Digp

holds, which means that the robust invariance function (4.14) fulfills (4.16). O

Proof of Theorem 4.2. The inactive constraints ¢ € By, N —Brob act are automatically satisfied
for any control input as they are not in immediate danger of violation. Their invariance
function is non-positive for any instance of the uncertainty by definition as their robust
invariance function @y, ;(x, Zy, Diob, V:) is non-positive and Theorem 4.1 holds.

The active robust constraints ¢ € Byop act are included in the determination of the corrective
control input. In order to enforce them independently from the current value of the uncer-
tainties, an independent upper bound on the invariance condition (3.30) from Theorem 3.1
is determined. Using Lemma 4.1 yields

maxop.

m m .
AT < |AT w| < ST [Ag ] <30 max (|aalTer] At ]) fux)
k=1 k=1
|Aac,i ‘:aXDrob
= (|aa.["7") - (A.6)
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Combining this result with the bound on A ; from Lemma 4.1 yields an upper bound on
the invariance condition (3.30)

(ac(, ) + Ay Ju+ bei(z, ®y) + A, (A7)

maxp maxp,

<al@ z)u+ (|Aa,| ) (ul + bei(m, T5) + AT,

Enforcing the optimization condition

al (@ @)u + (|Aas |7 ) ]+ bei(m, ) + Ay < 2

c,t

which is an upper bound of all invariance conditions (3.30), results in the invariance condi-
tions holding for all instances of the uncertainties. Therefore, by Theorem 3.1 the system
state is controlled positive invariant w.r.t. all invariant sets G(&, + A,,~y) corresponding
to the uncertainties and as a result also positively invariant w.r.t. the robust invariant
set Grob(Zn, Drob, 7y) from Def. 4.2, which is the intersection of these sets. Similar to the case
of constraints without uncertainties, the robust invariant set is a subset of the robust admissi-
ble set Grob(Zr, Drob, ¥) C Hyob(Zy) and therefore, positive invariance w.r.t. Grob(Zs, Drob, 7Y)
results in robust constraint satisfaction. O

Proof of Corollary 4.2.1. The cost function ||u — uml@ is strictly convex as its Hessian is
the identity matrix. The constraints are a sum of a function which is linear in w and a
function which is linear in |u|. As |u| is a convex function and the sum of convex functions
is convex, the constraints are convex. As there are no equality constraints, the optimization
is strictly convex and any local minimum is a global minimum [Boy04, p.136ff.]. O

Proof of Theorem 4.5. In order to enforce the robust constraints independently from the
current value of the uncertainties, an independent upper bound on the optimization condition
of (3.74) is determined. Using Lemma 4.1 yields

maxp

m m .
AEBJ;U S ’AEBZU‘ S Z ‘AGB,i,k |Uk| S Z max (‘Agl];liirc’b I AaB,i,IcTOb ) |U/k;|
k=1 k=1
‘AGB’,' |:aXDl‘ob
= (|2 7) - (A.8)

Combining this result with the bound on Ay, ; from Lemma 4.1 yields an upper bound on
the condition of (3.74)

(ap (@, @) + Ag, Ju+ bpi(, Ty) + Doy, (A.9)

maxp. maxp,

< af,(@,@;)u+ (|A

ro T —_
ans| ) ] + b (e, ) + A

In addition the right side of the condition of (3.74) is bounded by
Hi Hi

maxDmb

<
Bi(maﬁl)+ABi B BZ-(;B,IIZ_T,) +ABi

Therefore, enforcing the condition

maxp maxp

)l + b (2, F) + A

rob /JLZ
< maxp

ag;(x,Ty)u+ (|Agg, , <
B, ( 77) (} B,i B,i Bl(w,ac_,,) +ABZ~

rob
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results in the condition of (3.74) holding for all instances of the uncertainties. Therefore, by
Theorem 3.7 the interior of all admissible sets H(Z, + A,,) corresponding to the uncertainties
is rendered controlled positively invariant. As a result the interior of the robust admissi-
ble set Hyob(Zy, Dyob) from Def. 4.1, which is the intersection of the individual admissible
sets, is rendered controlled positively invariant as well and hence, robust satisfaction of the
constraints i € B, is achieved. O

Proofs from Section 4.2

Proof of Lemma 4.2. As the functions Ay from (4.4)-(4.12) are continuous in A, by As-
i maxp,,.

sumption 2.2 and by Def. 3.11, AZHHD’” (x,Zy), A, (x,T;) exist and the sets Dy are
bounded by Lemma 4.1. By definition and due to the continuity of the functions k, D,,
and Dy, fulfill

Dm C Dy

and therefore

pi = P(Dy,) < Z(Dy)
with Assumption 4.2. O

Proof of Theorem 4.4. With the sets 7; and V;, the probability of an undetected viola-
tion Z(T; \V;) is expressed using D,, and its inverse =D,,.

P(Ti\NVi) = P(T, A\Vi ANDy,) + P(Ti NV; A =D,,)
= P(TiVi NDy,) P (Vi ADp,) + P(Ti ANVi|=Dp,) P (=Dy,) (A.10)

By Theorem 4.1, ®,, ;(x,Z;,D,,,7;) > 0 holds if there exists at least one A, € D, for
which @;(x, z,,v;) > 0, ie.
Vi A Dpi = _|7;

where —7; is the inverse set of 7;. This translates into the conditional probabilities
P (—TilViND,,) =1 and P(Ti\ViND,,) =0 .
Additionally, Assumption 4.2 provides
P (D,,) = p; and P(—Dy,) =1—p; .

Combining these considerations with (A.10) yields
<1
P(TiNV;) =0- LV ANDy,) + P(T; ANVi| =Dy, ) (1 — pi)
P(TiNV;) <1—p;

which corresponds to (4.21). O

Proof of Theorem 4.5. The set D,, is bounded by Assumption 4.2. Therefore the con-
trol input (4.24) robustly enforces constraints ¢ € By, for all A, € D,, by Theorem 4.2,
ie. @;(x,Z,; + A,,v) <0 for A, € Dy,. This means that

D, = -V, and V;, = D,
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hold with V; from (4.23), which translate into the probabilities
‘@(_'V2|Dpz) =1, ‘@(Vl|ppz) =0
’@(_'Dpz‘vl> =1, ’@<Dpz‘vl> =0

The probability of violating a constraint i is given by &?(V;). With the previous considera-
tions and Assumption 4.2, the violation probability is expressed by

PVi) = P Vi ANDy,) + P (Vi N =Dy,)
= ‘@(V1|Dpz)‘@(ppz) + ‘@(Vl|_'ppz)‘@(_'ppz)
—_——
=0 <1 =1-p;
<1-p

The probability of a non-positive invariance function is determined by the inverse set =V

P(V)=1-2V)21-1—p)=pi .
This means that the probability of the control input u = u. achieving ®;(x, &, +A,,7;) <0
is at least p;. In addition,

Qi(x, Ty + Ay,vi) <0 = hei(x, Ty + Ay) <0

holds which follows from the design of the invariance function (3.10). Therefore, the proba-
bility of satisfying constraint ¢ is given by

P (hei(®, Ty + Ay) <0) =2 P (Vi) 2 pi
meaning that at least p;-satisfaction of each constraint i € By, is achieved. O

Proof of Theorem 4.6. The set D,, is bounded by Assumption 4.2. Therefore the control
input (4.25) robustly enforces constraints ¢ € B, for all A, € D,, by Theorem 4.3. This
means that

D,, = H; and —-H; = D,
hold with H; given by
H, ={A, € D]yp(xz,x,) >0} .
The implications translate into the probabilities
‘gZ(HZ‘ID i)zl ) ’@(_',HZ‘ID i)zo
‘@(_'IDPJ_',HZ') =1, ‘@(DPJ_'IHZ) =0
The probability of violating a constraint 7 is given by & (—H,). With the previous consider-
ations and Assumption 4.2, the violation probability is expressed by
‘@(_',HZ) = ‘@(_'Hl A Dpz’) + ‘@(_'Hl A _'Dpi)
= ‘@(_'HJD 1)'@<Dpz> + ‘gZ<_'Hi|_'Dp¢)gZ<_'DP¢)
—_——
=0 <1 =1-p;
<l-p

The probability of satisfying a constraint is determined by
PMHi)=1-P(~H)) 21— (1—pi) =pi ,

meaning that at least p;-satisfaction of each constraint i € By, is achieved. O
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Proofs from Section 4.3

Proof of Theorem 4.8. The determination of corrective control for scenario invariance con-
trol (4.26) is equivalent to invariance control (3.31) with Iy = Zﬁsf ' N; constraints. By

Theorem 3.1, the solution u = u, of the optimization ensures
@i(w,wns,%) <0 i (Z, S) EBSC X {1NZ}

for all [y constraints and therefore also he;(x, x,,) <0 .

Furthermore, the optimization is convex, as the cost function is convex due to the identity
matrix being the positive definite Hessian and the constraints being linear in w. Therefore
Theorem 4.7 may be applied with § = ; and € = 1 — p;, thus showing that the probability
of the solution u = wu. of the convex optimization not satisfying the optimization condition
related to constraint ¢ with at least probability 1 — e = p;, is at most ;. Hence (p;, 5;)-
satisfaction of the optimization constraints (3.30) is achieved. As each optimization con-
straint corresponds to one invariance function, the same satisfaction probabilities hold for
the invariance functions ®;(x, x,, ;) and since

(I)i<w7wn77i) < 0 = hc,i(wawn + An) < 0 ,

also for the output functions, which means that (p;, 3;)-satisfaction of the constraints is
achieved. 0

Proof of Theorem 4.9. The determination of corrective control for scenario CBF-based con-
trol (4.27) is equivalent to CBF-based control (3.74) with l;. = Z‘iisf‘ N; constraints. By

Theorem 3.7, the solution u = u, of the optimization ensures
hpi(x, xy,) >0 YV (i,8) € Bee x {1...N;}

for all I, constraints.

Furthermore, the optimization is convex, as the cost function is convex due to the identity
matrix being the positive definite Hessian and the constraints being linear in w. Therefore
Theorem 4.7 may be applied with § = §; and € = 1 — p;, thus showing that the probability
of the solution w = wu, of the convex optimization not satisfying the constraint ¢ with at
least probability 1 —e = p;, is at most ;. Hence (p;, 5;)-satisfaction of the optimization con-
straints (3.30) is achieved. As each optimization constraint corresponds to a single constraint,
the same satisfaction probabilities hold for the barrier constraint functions hg ;(z, x,), which
means that (p;, 3;)-satisfaction of the constraints is achieved. O

Proofs from Section 4.4

Proof of Theorem 4.10. The optimization is convex, as the cost function is convex due the
identity matrix being the positive definite Hessian and the constraints being convex as dis-
cussed in the proofs of Corollaries 4.2.1-4.6.1 and Theorems 4.8 and 4.9. The solution u = wu,
of (4.28) fulfills all optimization constraints. Therefore, it is possible to consider the three
constraint types separately. As Theorems 4.2-4.9 all apply, robust satisfaction of the con-
straints ¢ € B,op, at least p;-satisfaction of each individual constraint j € B, and at least
(pk, Bk )-satisfaction of each constraint k € By are achieved. O
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Proofs from Chapter 5

Proof of Theorem 5.1. For the proof, we consider the agents as a single system described
by (2.1) and (5.1). The minimization (5.3) is then re-written as

U, = argmin Z ||u; — Uno,j”%
u:[u{,...,uﬁag]T §ENag

subject to the conditions (5.4), which yields the same result as the decoupled optimization
problems (5.3). Any solution u of the optimization fulfills all optimization conditions, i.e.
the input u; of each agent j € A; fulfills (5.4). Therefore, the inequality also holds for the
sum of the individual inequalities

> (az‘T,juj + w; ;(c) (Z(az‘T,juj) + bz)) < Y wijle) d; .

JEA; JEL; JEA;
Using (5.5) yields

> ofjui+ Y ofu;+b; < d;
JEA; JETL;

JENag

since A; U Z; = Ny, which corresponds to the condition (5.2) of the centralized system.
Hence constraint satisfaction is achieved by Theorem 3.1 for invariance control and by The-
orem 3.7 for CBF-based control. O

Proof of Corollary 5.1.1. The cost function of the optimization is convex as it is a quadratic
function with the positive definite Hessian being the identity matrix. Furthermore, the
constraints are linear in the optimization variables u; and therefore convex. Thus the opti-
mization is strictly convex. UJ

Proof of Corollary 5.1.2. Both the cost function 5.3 and the optimization condition (5.4)
solely depend on one optimization variable u;, meaning that the solution of the optimization
problems for the other agents do not affect the solution. Hence the optimizations may be
solved independently from each other, which allows the implementation in a distributed
manner. 0
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