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Abstract

This thesis presents a numerical approach for the prediction of vibrational energy flow in
structures. Thereby, the sound transmission across junctions of cross laminated timber
(CLT) plates is determined. The thesis is part of the joint research project "Vibroacoustics
in the planning process for timber constructions".

In order to predict the sound transmission, various modeling aspects, which additionally vary
within the building acoustics frequency range, have to be taken into account: The spatial
variation of the response, the uncertainty of material properties and loading positions, the
adequate modeling of boundary and coupling conditions, as well as the numerous wave types
which occur in an orthotropic, layered material including through-thickness effects. These
lead to requirements which exceed the capability of a single, classical method.

In the low frequency range, the Finite Element Method (FEM) is a well-established tool.
The applicability of the classical FEM is limited since the sensitivity of the results increases
with frequency. For higher frequencies and thus shorter wave lengths, the plates adjacent to
a junction can be considered as semi-infinite if reflections occur with a significantly smaller
amplitude or incoherently to the excitation. This structural behavior enables the use of
statistical methods like the Statistical Energy Analysis (SEA). It delivers averaged results
and thus copes with their sensitivity. In structural dynamics, the SEA is typically limited to
the wave transmission between plate-like structures. For wood, the elastic modulus perpen-
dicular to the fiber direction is about one thirtieth of the one in fiber direction. Therefore,
the thickness modes occur at comparatively low frequencies. Using the FEM, solid elements
are able to represent these through-thickness effects. As the FEM and the SEA have a re-
stricted validity regarding the frequency range, averaging techniques of the SEA are applied
in the post-processing of the FEM to obtain an adapted hybrid approach, the Energy Flow
Analysis (EFA).

This thesis begins with the fundamental theory related to CLT, wave types in orthotropic
plates and the SEA. Then, the numerical implementation of the EFA as well as different
evaluation techniques and output quantities are introduced. In practice, the structure-borne
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sound transmission is described by means of the vibration reduction index according to DIN
EN ISO 12354. This prediction model is not applicable for structures made of CLT since it
is based on a simplified version of the SEA assuming thin, semi-infinite plates which only
contain bending waves. Afterwards, several investigations at L-, T- and X-junctions are
presented where physical properties of the components, the type of the connection and the
way of loading are varied. The sensitivity of the energy flow prediction with respect to
the varied parameters is discussed in dependency on the frequency range showing that the
results are subject to a considerable variability. Moreover, the obtained results are compared
to analytical solutions of the SEA. The investigations indicate that it is convenient to divide
the frequency domain into three ranges which offer distinct methods, modeling techniques
and evaluation quantities. A web-based, interactive application "Vibroacoustics of Plates"
has been made available for the identification of the frequency range limits as a function of
the physical properties of the structure of interest.

http://go.tum.de/632541
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1 Introduction

1.1 Motivation

Within the context of efficient and sustainable design of buildings, a trend towards light-
weight timber structures is recognizable. Jointly responsible for this trend is the commercial
launch of cross laminated timber (CLT) which is a composite, plate-like timber product.
Apart from the low weight, it allows a high degree of prefabrication. Compared to timber
frame constructions, building structures made of CLT open up the possibility of a lower air
permeability combined with a distinctive specific storage capacity for humidity and thermal
energy [Brandner et al 2016].

Constructing multistory buildings made of CLT necessitates the ability to predict service-
ability and comfort including the building acoustical behavior in order to fulfill vibroacoustic
requirements. To develop reliable prediction methods, the transfer of energy between build-
ing components has to be investigated. Therefore, a detailed understanding of the modeling
of building components, e.g. walls or ceilings, is compulsory. For CLT, the cross-wise layup
of timber board layers and the low elastic modulus perpendicular to the fiber has to be taken
into account.

Depending on the frequency range, the prediction of the structure-borne sound transmis-
sion is linked to different requirements, models and methods. Therefore, the hybrid method
called Energy Flow Analysis (EFA) is proposed, which is applicable to the entire extended
frequency range of building acoustics. In the low to mid frequency range, the EFA takes
advantage of the versatility of the Finite Element Method (FEM), which enables an exact
modeling of heterogeneous materials, complex geometries and connections between compo-
nents. Moreover, the EFA uses averaging techniques based on the Statistical Energy Analysis
(SEA) and thus, copes with sensitivity issues in the results which become relevant for higher
frequencies [Mace and Shorter 2000]. As shown in the subsequent chapters, the EFA is also
able to consider through-thickness effects using a solid element model [Winter et al 2017b]
and can thus be applied above the limit of the Mindlin wave approximation [Mindlin 1951].
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The EFA offers various evaluation quantities with different benefits. The energy influence
coefficients describe the energy flow into adjacent components over the entire frequency range
for any connection strength. Inverting the energy influence coefficients matrix, damping and
coupling loss factors can be determined. If the SEA requirements are fulfilled, loss factors
can serve as input data for an SEA model or for computing the vibration reduction index
to predict the sound transmission according to DIN EN ISO 12354-1 [2017]. Beside the
investigation of the parameters related to the structural model, the EFA enables the analysis
of the influence of loading parameters, such as position, direction and phase shift.

1.2 State of the Art

For vibroacoustic predictions of sound transmission, various methods exist which all have
their limitations concerning their applicability in the frequency range.

At low frequencies, numerical, element-based methods like the FEM are well-established
for predictions of the vibroacoustic behavior. In the context of timber structures, Finite
Element (FE) models have been used in various research projects, e.g. to predict the sound
radiation of several types of ceilings [Kohrmann 2017].

The FEM results are accurate only if the fineness of the mesh complies with the minimum
wavelength of the propagating waves, which depends on the upper limit of the frequency
range. Therefore, the numerical effort increases with the investigated frequency. In addition,
the sensitivity of the results due to uncertainties of model and input data like geometry
and material rises with higher frequencies. Fulfilling the necessary requirements, such as
a sufficient number of modes per frequency band [Culla and Sestieri 2006], energy-based
methods like the SEA allow an appropriate prediction in terms of averaged quantities and
thereby, they reduce effects linked with uncertainties.

Hence, the so-called mid frequency gap arises when neither the SEA assumptions like uncor-
related reflected waves at the boundaries are fulfilled nor pure deterministic, element-based
approaches can reduce the uncertainty or the increased numerical effort. The current ap-
proaches to close the mid frequency gap can be classified into analytically-based methods, like
the SEA, which aim at decreasing the lower limit, or numerical, deterministic approaches,
like the FEM, which try to increase the upper frequency limit [Mace et al 2013]. More-
over, there are stochastic approaches or extensions of the foresaid methods, which include
uncertainties in different manners.
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By introducing more details, the lower limit of the SEA can be reduced leading to an hybrid
application of the SEA. Langley [2008] gives a good overview over various related approaches.
The hybrid approach of Shorter and Langley [2005] differs between big size, plate-like com-
ponents which are modeled as SEA subsystems and comparatively small joining elements
which are discretized by the FEM. This approach takes into account that within a certain
frequency range the vibrational behavior of single components can be described differently,
either with averaged quantities or with a deterministic resolution in space and frequency,
depending on their geometry, density and stiffness. In frequency ranges where large, soft
structures already exhibit a high modal density and therefore a big number of modes per
frequency band, the eigenfrequencies of small and stiff components can still be well-separated
or not even the first eigenfrequency is excited at resonance. This constellation is more com-
mon in automotive and aerospace structures [Peiffer et al 2011, 2013], whereas for typical
geometries and junctions of buildings, this combination of large plates and small joining
elements is less frequent.

Cicirello and Langley [2013] augmented this hybrid approach, which contains a non-
parametric uncertainty in the SEA part, by a parametric model of uncertainty within the
FE components. Ben Souf et al [2013] examine the effect of uncertainties of coupled struc-
tures. Therefore, a random variable is introduced at the junction. However, this does not
correspond to an overall statistical approach since the single components are modeled deter-
ministically by the Wave Finite Element (WFE) method.

Another method which implicates comparatively low numerical cost is the Dynamical Energy
Analysis (DEA) since there, the mesh has only to resolve the components. Moreover, it is
able to build on FE meshes and the diffuse field assumption known from the SEA has not
to be fulfilled. Since the DEA states a cross-over of the SEA and Ray Tracing, the DEA
is not suitable for low frequencies as resonances are not identified by the coarse meshing.
This makes the approach rather insensitive to uncertainties which would lead to a shift
of resonances in the response. Thus, the DEA is appropriate for big structures and high
frequencies. [Tanner 2009; Chappell et al 2014]

For a similar field of application, such as big ships, the Energy FEM (EFEM) presented
by Stritzelberger and von Estorff [2014] is appropriate. The high frequency range allows
to work with the energy density of single wave types as state variables instead of using
sound pressure and velocity. The EFEM enables a coarse, frequency-independent meshing
and leads to spatial and time averaged results. The energy exchange between wave types
of plate-like structures is introduced by analytically derived transmission coefficients [Lan-
gley and Heron 1990]. Nishino and Honda [2006] extended the calculation of transmission



4 1 Introduction

coefficients to junctions between thick plates and applied it to the Wave Intensity Analysis
(WIA). The WIA leads to direction-dependent wave intensities, which are also suitable for
low frequencies, whereas the SEA has to comply with the requirement of the diffuse field
assumption.

By contrast, Renno and Mace [2013] developed reflection and transmission coefficients for
joints of structural components using FE within the scope of the hybrid Finite Element/Wave
Finite Element (FE/WFE) approach. Since the adjacent components are described as wave-
guides by the WFE method, the components must have constant physical properties along
the waveguide axis. To receive the wave properties, a small segment, which can be of arbi-
trary complexity, is modeled with FE and post-processed. Mitrou et al [2017] extended the
FE/WFE approach to isotropic, two-dimensional structures. Further authors, like Finnve-
den [2004], Chazot et al [2013], Vergote et al [2013], Deckers et al [2014] as well as Kreutz
and Müller [2014] use wave-based solutions for an efficient description of the system response
which especially works for homogeneous beams, plates and cavities. These wave-based meth-
ods are also known as Trefftz methods because they develop approximate solutions on the
basis of deterministic approaches using the exact solution as shape function. They have in
common, that they benefit from their low numerical effort and thus they reach a higher fre-
quency range compared to conventional element-based approaches, whereby the increasing
sensitivity of the results is ignored.

Souza Lenzi et al [2013] chose Padé approximations to solve big matrices. Thereby, an
initially coarse frequency resolution of direct solutions is augmented and refined by extrap-
olating intermediate frequencies.

Flodén et al [2014] compared various reduction methods at a wooden floor structure at low
frequencies and concluded that realistic boundary conditions are decisive for the accuracy.

The EFA corresponds to a numerical implementation of the Power Injection Method
(PIM), which aims to experimentally determine the coupling loss factors for an SEA model
[de Langhe and Sas 1996]. Fredö [1997] shows that by means of the EFA also non-resonant
transmissions can be considered. Mace and Shorter [2000] derived the EFA based on a com-
ponent mode synthesis which is quite efficient for deterministic investigations of plate-like
systems having a limited number of modes. By Thite and Mace [2007], the procedure is
augmented to estimate ensemble average values of coupling loss factors as well as further
statistical properties.
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1.3 Research Project "Vibroacoustics"

This thesis forms part of the joint research project "Vibroacoustics in the planning process
for timber constructions" which aims at improving and simplifying the planning process
of buildings using Building Information Modeling. Starting with the architects’ plan of a
multistory timber building, information can be added step by step in the different planning
phases and modifications by one partner are directly updated to the others.

To be able to predict the sound transmission in the planning phase, one goal was the gener-
ation of the corresponding input data especially for timber structures. Therefore, extensive
measurements were performed by Mecking et al [2017a] and Châteauvieux-Hellwig et al [2017]
as well as data was collected from other institutes [Timpte 2016] in order to catalog them in
a web-based data base (https://www.vabdat.de) which can be linked to a Building In-
formation Model. Thereby, mainly vibration reduction indices were measured on the basis of
the vibration level difference for different types of junctions according to the recommendation
of DIN EN ISO 12354-1 [2017] (cf. subsection 3.2.4).

Selected measurements were performed applying PIM and thus measuring additionally the
input power. Therefore, the procedure of the EFA, which is introduced in chapter 3, was also
applied to measurements estimating the total energy by means of measured surface velocities
perpendicular to the plate [Winter et al 2014, 2015; Mecking et al 2017a]. Thereby, damp-
ing and coupling loss factors of a real structure can be determined, whereas by measuring
exclusively the vibration level difference, only coupling properties can be estimated.

Since parametric, numerical models open up the possibility to easily modify physical prop-
erties of the subsystems and of the junctions as well as to apply specific loadings, further
studies have been performed numerically [Winter and Müller 2017].

Therefore, the focus of this thesis lies on the numerical prediction of the structure-borne
sound transmission behavior within CLT structures accompanied by an extensive parametric
study.

1.4 Outline

The goal of this thesis is the numerical description and thus prediction of the structure-borne
sound transmission by means of the EFA. Thereby, the focus lies on multistory buildings

https://www.vabdat.de
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made of CLT plates where different junction geometries are extracted, like an L-, a T- or an
X-junction, to describe the energy flow across the junction.

In chapter 2, CLT is introduced and a procedure to homogenize its material properties
across the thickness is presented. This leads to an orthotropic plate which is afterwards
characterized by the inherent wave types including their phase and group velocities. Finally,
a short introduction to the SEA, which can be derived by wave types of plate like structures,
is given. Moreover, assumptions of the SEA as well as quantities to check these assumptions
are presented.

Chapter 3 explains the application of the EFA on the basis of a harmonic analysis with the
FEM including the evaluation of energy and input power. Then, the computation of various
evaluation quantities like the energy influence coefficients is introduced. Thereby, it is pos-
sible to describe the energy flow within the structure. The averaging with respect to time,
space, frequency and realization is assigned to the corresponding step in the post-processing
of the EFA. Moreover, the averaging over realizations is augmented by its statistical prop-
erties and by a procedure to compute robust energy influence coefficients if a structure with
unknown loading position is investigated.

In chapter 4, the EFA is applied to a variety of junctions consisting of either thin, isotropic
or thick, orthotropic plates. By means of different evaluation techniques and corresponding
quantities as well as by comparisons to the SEA, the energy flow behavior is analyzed in
dependency of the frequency. Thereby, the sensitivity of the energy flow with respect to
geometry and loading is investigated. Moreover, the influence of the connection strength as
well as the effect of the number of connected subsystems is examined.

Chapter 5 summarizes the investigations of chapter 4 and assigns it to three different fre-
quency ranges. Thereby, each of the frequency ranges is characterized by a specific vibroa-
coustic behavior linked to convenient methods, models as well as evaluation techniques and
quantities. The assignment of a specific structure of interest to a convenient frequency range
can be done in the pre-processing by means of the web-based application "Vibroacoustics of
plates" which opens up the possibility to estimate the limits of the different frequency ranges
analytically.
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2 Fundamental Theory

This chapter provides fundamental theories on selected topics linked to the EFA of massive
timber constructions. As the investigated structures in this contribution consist of CLT
plates, section 2.1 presents the corresponding linear and orthotropic material law. Moreover,
it offers a homogenization of the material constants through the thickness of the CLT plates.
In section 2.2 the different wave types occurring in an orthotropic plate are introduced. They
constitute the basis for one of the two approaches within the SEA. Since the EFA applies
the averaging concept of the SEA, an overview of the SEA is given in section 2.3.

2.1 Cross Laminated Timber

CLT plates unify two functions building supporting structures as well as creating and sep-
arating rooms. Hence, entire buildings can be constructed using CLT for walls and ceilings
[Gülzow 2008]. In chapter 4, the vibrational energy flow in between these components is
investigated on the basis of an FE model.

CLT contains several layers which are arranged perpendicular to each other. Figure 2.1
shows that each layer consists of timber boards placed side-by-side [Brandner et al 2016].
The boards themselves are purified from branch zones which would reduce the stiffness. In
order to manufacture plates of any length, the boards are glued together in longitudinal
direction by v-shaped tines, which interlock perfectly [Schickhofer et al 2010].

Figure 2.1: Manufacturing of CLT [Schickhofer et al 2010].
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longitudinal
L =̂ x =̂ 1

radial
R =̂ z =̂ 3

tangential
T =̂ y =̂ 2

Figure 2.2: Orthogonal principal directions in wood [Gülzow 2008].

In this section, wood as an orthotropic material is introduced in subsection 2.1.1 followed by
possible simplifications considering construction timber in subsection 2.1.2. To simplify the
handling of CLT a homogenized material model is presented in subsection 2.1.3. Moreover,
the hysteretic damping model chosen for CLT is explained in subsection 2.1.4.

2.1.1 Wood as Orthotropic Material

The fiber direction and the annular rings dominate the anatomy of wood and thus its elastic
properties. Hence, three directions can be distinguished in Fig. 2.2: The first one is oriented
parallel to the fiber and is named longitudinal (L), whereas the second and the third one
lie tangential (T) and radial (R) to the annular rings in the cross-section plane of a trunk.
These can be approximately associated with the three principal directions in the cartesian
coordinates system x, y and z. [Gülzow 2008]

Looking at the micro structure, wood shows an inhomogeneous behavior, whereas on the
macro level the cell bond can be described by smeared material properties. Thus, wood is
assumed to be homogeneous per direction and to behave linear elastically up to a certain
stress or strain limit showing only small deformations [Ranz 2007]. The relation between
the second order tensors of the 2nd Piola-Kirchhoff stresses σij and the Green-Langrangian
strains εkl is defined for linear elastic, anisotropic material according to Hooke’s law by the
general constitutive equation:

σij = Ckl
ij εkl (2.1)
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It can be solved using Einstein summation convention for i,j,k,l = 1,2,3 denoting cartesian
coordinates. Ckl

ij states the fourth order stiffness tensor, which can be simplified by making
use of the symmetry characteristics of stress and strain matrices as well as of stiffness and
compliance matrices according to [Bodig and Jayne 1993; Müller 2015]. In the case of general,
linear elastic and anisotropic material, the number of independent entries can be reduced
from 34 = 81 to 21 leading to the following stiffness matrix in Voigt notation:




σ11

σ22

σ33

σ23

σ13

σ12




=




C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

sym C55 C56

C66







ε11

ε22

ε33

2ε23

2ε13

2ε12




(2.2)

As the material behavior of wood depends on its direction, it is anisotropic. Due to the
orthogonality of the principal directions, it can be described as orthogonal isotropic, also
known as orthotropic, which is a special case of anisotropy with three symmetry planes. No
coupling occurs between longitudinal and shear strains which is indicated by the zero values
of Cij for i = 1 to 3 and j = 4 to 6 [Grimsel 1999]. Moreover, the lower half of the stiffness
matrix is diagonal implying that shear strains are not coupled, whereas normal strains are
linked to each other by the passive strain transversal to the applied stress. This leads to
nine independent entries for the orthotropic stiffness matrix [C] in Eq. (2.3). Engineering
strains result from a geometrical linearization assuming small strains. Unlike tensor strains,
these can be measured. Hence, it is convenient to establish the physically linear relationship
between the six independent stresses and the six independent engineering strains according
to Hooke’s law. The tensor shear strain εij is replaced by the engineering shear strain
γij = εij + εji = 2εij as εij = εji [Bodig and Jayne 1993; Müller 2015]. Furthermore, the two
identical indices of normal strains and stresses are reduced to one and the shear stresses are
represented by τij = σij.




σ11

σ22

σ33

τ23

τ13

τ12




=




C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

sym C55 0
C66







ε11

ε22

ε33

γ23

γ13

γ12




(2.3)
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Inverting the stiffness matrix [C] results in the compliance matrix [S]:



ε11

ε22

ε33

γ23

γ13

γ12




=




S11 S12 S13 0 0 0
S22 S23 0 0 0

S33 0 0 0
S44 0 0

sym S55 0
S66







σ11

σ22

σ33

τ23

τ13

τ12




(2.4)

The compliance matrix [S] is useful for introducing the engineering elastic parameters. The
six elastic moduli of orthotropic material are divided into two types: First, the three moduli
of elasticity Ei state the ratios of normal stress σi to normal strain εi in the principal
directions. Secondly, the three shear moduli Gij denote the ratio of shear stress τij to the
shear strain γij in the orthotropic planes. Thus, they represent the slope of the corresponding
stress-strain curve and their reciprocals constitute the main diagonal of the compliance
matrix [Bodig and Jayne 1993]:




εx

εy

εz

γyz

γxz

γxy




=




1
Ex

−νyx
Ey
−νzx

Ez
0 0 0

−νxy
Ex

1
Ey

−νzy
Ez

0 0 0
−νxz

Ex
−νyz

Ey
1
Ez

0 0 0
0 0 0 1

Gyz
0 0

0 0 0 0 1
Gxz

0
0 0 0 0 0 1

Gxy







σx

σy

σz

τyz

τxz

τxy




(2.5)

The Poisson’s ratio νij relates the transverse, passive strain εj to the axial, active strain εi
as a result of an uniaxial stress σi:

νij = −εj
εi

(2.6)

Thus, the coupling of the normal strains is described representing the off-diagonal entries in
the compliance matrix. As the matrix is symmetric (Sij = Sji for i 6= j), the minor Poisson’s
ratios νji are related to the major ones νij. Considering size indications, Ei > Ej is assumed.

−νij
Ei

= −νji
Ej
→ νij = νji

Ei
Ej

(2.7)

Hence, the major Poisson’s ratios can be expressed by the minor ones which leads to nine
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independent engineering parameters for orthotropic materials. Looking at the stiffness ma-
trix [C] in Eq. (2.8), the first three entries on the main diagonal represent the stiffness moduli
of an infinite solid and thus take into account the obstruction of transverse deformations:

[C] =




1−νyzνzy
D

Ex
νxzνzy+νxy

D
Ey

νxyνyz+νxz
D

Ez 0 0 0
νyzνzx+νyx

D
Ex

1−νxzνzx
D

Ey
νyxνxz+νyz

D
Ez 0 0 0

νzyνyx+νzx
D

Ex
νzxνxy+νzy

D
Ey

1−νxyνyx
D

Ez 0 0 0
0 0 0 Gyz 0 0
0 0 0 0 Gxz 0
0 0 0 0 0 Gxy




(2.8)

with D = 1− νxyνyx − νxzνzx − νyzνzy − 2νxyνyzνzx

Since the elastic potential Πiv, which is the internally stored energy per volume - also known
as strain energy density - has to be positive [Müller 2015], stiffness and compliance matrices
have to be positive definite.

Πiv = 1
2σ

klεkl = 1
2C

klijεijεkl (2.9)

This leads to the following conditions for stiffness and compliance matrices: The elements
on the main diagonal have to be positive as the material has to elongate into direction of the
applied tension. Moreover, the determinant of [C] and [S] must be positive which indicates
compression under pressure. Hence, the engineering elastic parameters have to fulfill certain
stability criteria [Altenbach et al 1996]:

Ei, Gij > 0 (2.10)
D > 0 (2.11)

1− νijνji > 0 (2.12)

2.1.2 Construction Timber

The two directions in the cross section plane are unified and named perpendicular to the
fiber (⊥), as manufactures do not distinguish whether planks have been cut out of the trunk
in radial or tangential direction (cf. Fig. 2.3). This also holds for the selection of the plank
for fabricating CLT [Gülzow 2008]. Hence, the description of construction timber can be
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a
b
c

T
R R

R
T T

L L L

a b c

plain sawn board rift sawn board

Figure 2.3: Sawing a trunk delivers different types of planks [Gülzow 2008].

simplified to six independent constants:

E‖ = Ex E⊥ = Ez = Ey (2.13)
G‖⊥ = Gxy = Gxz G⊥⊥ = Gyz (2.14)
ν‖⊥ = νxy = νxz ν⊥⊥ = νyz (2.15)

The longitudinal direction is called parallel to the fiber (‖). The material model is not
simplified to transverse isotropy since the following inequality applies to timber [Kohrmann
2017]:

G⊥⊥ 6=
E⊥

2(1 + ν⊥⊥) (2.16)

Especially in the case of CLT plates, the rolling shear modulus G⊥⊥ of the layers perpendicu-
lar to the main span direction plays an important role. This influences the effective bending
stiffness of the plate [Aicher and Dill-Langer 2000].

2.1.3 Homogenized Model of Cross Laminated Timber

CLT plates show a biaxial, plate-like load-bearing behavior with minimized swelling and
shrinkage rates on the one hand and varying material properties across the thickness on
the other hand. The need to consider each layer individually can be avoided by treating
CLT plates as homogeneous through thickness. This simplifies the modeling and meshing
inside the FEM and it enables the use of shell elements as well as it facilitates the char-
acterization by analytical estimations and measurements. To receive homogenized material
parameters the engineering elastic parameters of the individual timber layers are weighted
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Figure 2.4: Sketch of a CLT plate with five layers and a symmetric layup with respect to the middle plane.
hl with l = 1,2,3 states the thickness of the individual layers and dl the distance between their
center and the one of the composite with the total thickness h.

by their proportionate height according to the rule of mixtures [Bodig and Jayne 1993]. The
homogenization through thickness presupposes an odd number of layers and a symmetric
layup with respect to the middle plane of the CLT plates like the ones depicted in Fig. 2.1
and 2.4. As the symmetry planes of the layers and the composite coincide or are parallel, no
coupling between normal stress σ and shear strain γ or normal strain ε and shear stress τ
has to be considered. Hence, the homogenized composite resulting from orthotropic layers
can be described by the orthotropic material law. The composite stiffness can be idealized
by connecting springs which represent individual layers. The effects of glue related to the
wooden cell structure are assumed to be negligible. The elastic properties of the out-of-plane
direction are calculated by a series connection, whereas the in-plane directions are modeled
by a parallel connection.

Firstly, a uniform stress, which is equal for all layers, is applied perpendicular to the plate.
By postulating that the total displacement corresponds to the sum of the layer displacements,
the geometric compatibility is fulfilled. This applies for the calculation of the homogenized
material parameters G∗xz and G∗yz:

G∗xz = h
∑
‖
hl
Gxz

+∑
⊥
hl
Gyz

G∗yz = h
∑
‖
hl
Gyz

+∑
⊥
hl
Gxz

(2.17)
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In the case of G∗xz, the layers oriented parallel to the main span axes (‖) contribute with
Gxz, whereas the ones perpendicular to it (⊥) are characterized by Gyz. They are weighted
by their individual layer thickness hl with respect to the total thickness h.

Secondly, a uniform strain is applied in-plane, which is assumed to be equal for all layers due
to the rigid bonding. Establishing the equilibrium, the sum of layer forces have to deliver the
composite force. Thus, E∗x, E∗y , G∗xy and the Poisson’s ratios ν∗ij can be calculated. G∗xy is not
concerned by the cross-wise layering, as the components along the edges of an infinitesimal
cut element are equal due to equilibrium:

G∗xy = Gxy = Gyx (2.18)

The homogenized Poisson’s ratios ν∗ij result in:

ν∗xy =
∑
‖ νxyhl +∑

⊥ νyxhl

h
ν∗yx =

∑
‖ νyxhl +∑

⊥ νxyhl

h
(2.19)

ν∗xz =
∑
‖ νxzhl +∑

⊥ νyzhl

h
ν∗zx =

∑
‖ νzxhl +∑

⊥ νzyhl

h
(2.20)

ν∗yz =
∑
‖ νyzhl +∑

⊥ νxzhl

h
ν∗zy =

∑
‖ νzyhl +∑

⊥ νzxhl

h
(2.21)

In the case of elastic moduli, this approach would be appropriate for pure in-plane tension
but not for bending dominated problems. Therefore, the homogenized values are derived
from the effective bending stiffness according to the elastic compound theory [Gülzow 2008;
Blaß and Görlacher 2002; Bodig and Jayne 1993]. The bending stiffness of the individual
layers are summed up complying with Steiner’s theorem assuming rigid bonding and linear
elastic strain through thickness. Hence, the distance between the center of the composite
and of the individual layer dl is introduced (cf. Fig. 2.4):

E∗x =
∑
‖Ex(h3

l + h d2
l ) +∑

⊥Ey(h3
l + h d2

l )
h3 (2.22)

E∗y =
∑
‖Ey(h3

l + h d2
l ) +∑

⊥Ex(h3
l + h d2

l )
h3 (2.23)

This leads to a stronger weighting of the outer layers and thus to a higher elastic modulus in
the principal span axis compared to the thickness weighted average value according to the
uniform strain approach. Due to the modified calculation of the elastic moduli, the relation
between minor and major Poisson’s ratios of expression (2.7) is violated. Thus, the Poisson’s
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ratios are averaged according to Gülzow [2008] to fulfill the orthotropic material law.

ν∗ij = 1
2

(
ν∗ij + ν∗ji

E∗i
E∗j

)
= ν∗ji

E∗i
E∗j

(2.24)

This leads to nine independent material parameters. Below, homogenized material parame-
ters are not explicitly marked by an asterisk.

The presented procedure has been validated performing modal analyses of a single-axis
spanned ceiling as well as of an L-junction consisting of a wall and a ceiling. Moreover,
the energy flow is compared at an L-junction. In both investigations, a model considering
each timber layer separately is compared to a model with homogenized parameters using
the same mesh and quadratic shape functions. The mentioned examples are summarized
in subsection 4.1.2. They demonstrate that the differences on the eigenfrequencies and
eigenmodes of these two variations turned out to be negligible at low frequencies and that
the overall characteristic behavior corresponds also for higher frequencies.

2.1.4 Hysteretic Damping

The damping properties of CLT are approximated by hysteretic damping as it is convenient
for materials like timber or metal [Petersen 2000]. The damping is described by a loss
factor η which is assumed to be independent of frequency. On the basis of measurements at
free-hanging plates in a reverberation room, Haut et al [2017] indicate that this assumption
can be justified for orthotropic, layered timber plates up to their direction dependent critical
frequencies. For higher frequencies, the losses due to radiation slightly start to matter. Their
consideration would lead to a frequency dependent loss factor.

The loss factor is related to the damping ratio D by η = 2D. To perform a harmonic
analysis, the hysteretic damping is considered in the equation of motion (3.6) by means of
the complex elastic modulus leading to the complex stiffness matrix:

E (1 + iη)→ [K] (1 + iη) (2.25)

As the hysteretic damping is set proportional to the stiffness matrix [K], the damping can
be verified comparing the time-averaged input power P and potential energy Epot of the
total system for any angular frequency of excitation Ω [Pavic 2005]:

η = P

2Epot Ω (2.26)
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Figure 2.5: The damping loss factor of a single plate is calculated by the EFA using E11 = E11,kin +
E11,pot (−) according to subsection 3.2.2. If 2E11,pot (−−) is used in the EFA procedure, it
corresponds to the hysteretic damping of the FE model of η = 0.024 (· · · ) which demonstrates
Eq. (2.26). The damping loss factors coincide at resonance where Epot = Ekin.

Calculating the damping loss factor ηii by means of the EFA, both the potential and the
kinetic energy, are taken into account as explained in subsection 3.2.2. Fig. 2.5 demonstrates
that the stiffness proportional loss factor η does not coincide with the damping loss factor ηii
determined by the EFA unless the system oscillates at resonance leading to Epot = Ekin.

2.2 Wave Types in Isotropic and Orthotropic Plates

In the following passages, the wave propagation in orthotropic plates is presented which
applies to the homogenized model of CLT of subsection 2.1.3. The explanations also include
the simple, isotropic case with identical material properties in all directions. Therefore, a
cartesian coordinate system is defined whereby the x- and y-direction span the plane of the
plate and the z-axis points in the out-of-plane direction.

Whereas only longitudinal waves propagate in air (cf. subsection 2.2.1), shear waves addi-
tionally occur in a solid (cf. subsection 2.2.2). Moreover, bending waves arise in the case of
beams or plates which are characterized by a finite thickness (cf. subsection 2.2.3). Subsec-
tion 2.2.4 explains that they exhibit different phase and group velocities. Figure 2.6 shows
wave velocities in an exemplary orthotropic plate made of CLT. These velocities depend
on the wave type and the direction. Furthermore, cross-over frequencies are indicated by
vertical lines to distinguish between thin and thick plates. To margin the plate-like be-
havior, the first simple thickness resonance frequencies are shown which are introduced in
subsection 2.2.5.
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Figure 2.6: Velocities of the different wave types in an orthotropic plate including cross-over frequencies
and the first simple thickness resonances.

2.2.1 Longitudinal Waves

Figure 2.7 shows that the direction of propagation and the resulting displacement in the
medium are identical for longitudinal waves. They are also called primary waves since they
propagate the fastest compared to other wave types as indicated by Fig. 2.6. Their velocity
cL,i in the direction i = x, y or z depends on the corresponding stiffness modulus ES,i and the
density ρ. The stiffness modulus corresponds to the main diagonal entry Cii of the stiffness
matrix in Eq. (2.3) or (2.8). In contrast to the elastic modulus, the stiffness modulus includes
the influence of the transverse strain.

cL,i =
√
ES,i
ρ

=
√
Cii
ρ

(2.27)

Only if the wavelength is small compared to the dimensions perpendicular to the direction
of propagation, a pure longitudinal wave propagates. Otherwise, in the case of plates or rods
a transverse motion of the particles is additionally enabled. This reduces the velocity and
leads to quasi-longitudinal waves along the axis of the rod

cLR =
√
E

ρ
(2.28)

or in the plane of the plate

cLP,i =
√

Ei
ρ (1− νijνji)

(2.29)



18 2 Fundamental Theory

z

x

y

Figure 2.7: Propagation of a quasi-longitudinal wave in x-direction of a plate.

where the indices i and j correspond to the x or the y direction. Taking the geometric
mean, the in-plane waves of an orthotropic plate can be summarized to an effective quasi-
longitudinal velocity.

cLP = √cLP,x cLP,y (2.30)

This opens up the possibility to approximate an orthotropic plate by an isotropic one [Hop-
kins 2007]. In the case of isotropic material, the indices can be omitted as the properties are
equal for all directions.

2.2.2 Shear Waves

Unlike fluids, solids are able to resist shear deformation. Shear waves belong to transversal
waves as they oscillate perpendicular to their direction of propagation. They move slower
than longitudinal ones and thus shear waves are additionally called secondary waves.

cS,ij =
√
Gij

ρ
(2.31)

Plane transversal waves only occur in solids which are large compared to the wave length in
all three dimensions or in plates if the free surface is parallel to the directions of propagation
and displacement. Thus, the free surface does not influence the so-called in-plane shear
waves, which are depicted in Fig. 2.8 [Cremer 1967].

Contrary to infinite solids, the velocity of shear waves leading to displacements perpendicular
to the beam axis or the plane of a plate (cf. Fig. 2.9) depends on the shape of the cross
section. Moreover, they typically occur combined with bending waves which are introduced
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Figure 2.8: The depicted in-plane shear wave propagates in x-direction and oscillates in y-direction of the
plate.
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Figure 2.9: The depicted out-of-plane pure shear wave propagates in x-direction and oscillates in z-
direction of the plate [Hopkins 2007].

in subsection 2.2.3. The first-order shear deformation theory of Mindlin [1951] contains a
linear approach for longitudinal displacements which results in a constant shear strain. In
order to achieve more accurate results, a parabolic shear stress distribution through thickness
can be considered by the shear correction factor κ, as shown in Eq. (2.32). For rectangular
cross sections, κ is equal to 5

6 [Hambric et al 2016].

cSκ,iz =
√
κGiz

ρ
(2.32)

The directional dependent out-of-plane shear wave velocities of an orthotropic plate can
be combined calculating the geometric mean analogously to the effective quasi-longitudinal
velocity:

cSκ = √cSκ,xz cSκ,yz (2.33)

The validity of this simplification depends on the distinctness of the two directions.
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2.2.3 Bending Waves

Thin and thick beams or plates have to be distinguished for the description of bending
waves. The partial differential equation for a thin beam is based on the Euler-Bernoulli
beam theory being extended to the Kirchhoff-Love plate theory assuming pure bending
waves. Considering higher frequencies and smaller wavelenghts, the differential equations
have been extended for the one-dimensional case by Timoshenko [1922] and for two dimen-
sions by Mindlin [1951] representing effective bending waves. In the case of deformations,
all mentioned theories assume that the cross sections remain plane.

Pure Bending Waves - Thin Plates

Pure bending waves occur if the bending wave length λB is large compared to the thick-
ness h of the beam or the plate which are then referred to as thin. Bending waves oscillate
perpendicular to their direction of propagation. Contrary to pure shear, Fig. 2.10 shows a
rotation of the cross section related to the neutral axis. In case of pure bending, the cross
sections remain perpendicular to the axis of the beam or plate. As the phase velocity of
bending waves depends on the frequency, they are dispersive [Cremer and Heckl 1996]:

cB = 4

√
B ω2

µ
(2.34)

For plates, the areal mass reads µ = ρh and the bending stiffness is given by B = Eh3

12 (1−ν2) .
According to Heckl [1960] in the case of orthotropic material the bending stiffness can be
approximated by:

B =

√
ExEyh

3

12 (1− νxyνyx)
(2.35)

Effective Bending Waves - Thick Plates

The bending wave lenghts become shorter with increasing frequency approaching the order
of magnitude of the thickness of the plate. Hence, from a dynamic point of view the plate
is considered to be thick. In this case, the shear deformation and the rotatory inertia have
to be taken into account because they influence the bending waves. Cremer [1967] defines a



2.2 Wave Types in Isotropic and Orthotropic Plates 21

z

x

y

Figure 2.10: The depicted pure bending wave propagates in x-direction of a thin plate [Wilhelm 2017].

limit for thin plates by the following relation of thickness h and pure bending wave length
λB = cB

f
:

λB,limit = 6h (2.36)

For smaller λB, the deviation between the velocity of pure bending waves and of so-called
effective bending waves exceeds 10 %. Thereby, Cremer [1967] assumed an isotropic plate
with ν = 0.3. Effective bending waves represent a combination of bending and out-of-plane
shear waves and approach the out-of-plane shear waves with increasing frequency. These are
additionally characterized by the shear correction factor in Eq. (2.32) [Hambric et al 2016].

The transition between thin and thick plates depends on the investigated quantity. As
shown in the subsections 2.2.4 and 2.3.2, the phase velocity, the group velocity and the
modal density are affected differently [Meier 2000]. Therefore, a cross-over frequency fs is
proposed on the basis of [Rindel 1994] for cB = cSκ:

fs = c2
Sκ

1
2 π

√
µ

B
(2.37)

The group velocity (cf. subsection 2.2.4) and thus the energy transport is influenced already
at the frequency fs

4 by the shear deformation as the condition cg = 2 cB = cSκ is fulfilled.
Thus, fs

4 is named energetic thin plate limit within this thesis. Exceeding the frequency
fs
2 , the modal density shows a frequency dependent behavior according to Eq. (2.65) [Meier
2000]. The effective bending wave velocity is derived from the wave equation of a Mindlin
plate considering shear deformation and rotatory inertia [Mindlin 1951; Cremer and Heckl
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1996]:

cB,eff =




1
2

(
ρ h3

12B + ρ

κG

)
+ 1

2

√√√√
(
ρ h3

12B + ρ

κG

)2

+ 4 ρ h

B ω2 − 4 ρ2 h3

12BκG




− 1
2

(2.38)

According to the Mindlin wave approximation, sections normal to the surface remain plane
due to the deflection of the plate, but not perpendicular as for pure bending waves. Ap-
proaching pure shear waves, the rotation of the cross section becomes smaller [Pedersen
1995]. Equation (2.38) can be approximated e.g. on the basis of [Rindel 1994; Meier 2000]:

cB,eff = cSκ
f

fs

√√√√√−1
2 + 1

2

√√√√1 +
(

2 · fs
f

)2

(2.39)

Depending on the literature source, the aspired velocity of the effective bending waves varies.
In the expressions (2.37) and (2.39), either the shear correction factor within cSκ is omitted
[Rindel 1994; Pedersen 1995] or instead of cSκ the velocity of the Rayleigh waves cR is used
which is almost identical to cSκ. For isotropic materials, the relation can be simplified to
cSκ =

√
κ cS =

√
5
6 cS ≈ 0.9 cS ≈ cR [Cremer 1967; Meier 2000]. As Rayleigh waves are pure

surface waves, they arise if the structure is much thicker than λB
6 or if the frequency is much

higher than fs.

2.2.4 Group Velocity

The group velocity constitutes the velocity of propagation of the envelope of a superposition
of waves with different amplitudes and wave lengths. It describes the velocity by which
energy is transported [Cremer 1967].

For the simple case of two waves with identical amplitudes but different angular frequen-
cies ω1 and ω2 as well as wave numbers k1 and k2, the group wave velocity yields:

cg = ω1 − ω2

k1 − k2
(2.40)

In the limit case, the frequencies and wave numbers are arbitrarily close to each other. This
leads to the mathematical description by means of the differential quotient:

cg = dω

dk
(2.41)
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Hence, the group velocity of longitudinal and shear waves equals their respective phase
velocity. Inserting the expression c = ω

k
into Eq. (2.34), the group velocity of bending waves

can be derived. It corresponds to two times the phase velocity [Cremer 1967]:

cg = 2 cB (2.42)

Exceeding the energetic thin plate limit fs
4 for cg = cSκ, the group velocity of effective

bending waves can be described by [Rindel 1994; Meier 2000]:

cg,eff =
c3
B,eff

c2
Sκ

√√√√1 +
(

2 fs
f

)2

(2.43)

2.2.5 Simple Thickness Modes

A structure containing plate-like components can be modeled by shell or solid elements.
While shell elements lead to lower computation times, they cannot factor in through-
thickness effects. As soon as thickness modes might be excited inside a plate, solid ele-
ments must be used to build up its dynamic behavior correctly. By means of the following
expressions the resonance frequencies of the thickness modes can be identified:

fTM,n = n cL/S
2h (2.44)

In Eq. (2.44) cL/S represents the longitudinal wave velocity cL,z =
√

ES,z
ρ

(Eq. (2.27)) of the

thickness-stretch modes or the shear wave velocity cS,zi =
√

Gzi
ρ

(Eq. (2.31)) of the thickness-
shear modes. The nth simple thickness resonance frequency fTM,n depends on the stiffness
modulus perpendicular to the plate ES,z, which considers the constraint of the lateral in-
plane strain, or the shear modulus Gzi (with i = x or y), respectively. As the two types
of thickness modes are uncoupled for isotropic and orthotropic materials, thickness-stretch
modes cause displacements normal to the faces of the plate, whereas the thickness-shear
modes lead to displacements parallel to it as depicted in Fig. 2.11. Their mode shapes can
be described by sin

(
nπ z
h

)
and cos

(
nπ z
h

)
with n as even or odd integer, respectively.

As the modes of a finite plate cannot be described in closed form, approximations for limited
frequency ranges of applications have been made by means of the solution for an infinite
plate. In contrast to the full space, reflections occur in an infinite plate with traction-free
faces. Therefore, longitudinal and shear waves couple to an infinite number of uncoupled
symmetric and antisymmetric modes with respect to the middle plane of a plate.
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Figure 2.11: The first three thickness-strech modes (left) and thickness-shear modes (right) [Mindlin and

Yang 2006].

The simple thickness resonances are defined to behave independently of the location in the
plane of the plate. Hence, as this corresponds to a wave-number equal to zero, they represent
the lower limiting frequencies of the symmetric and antisymmetric vibration modes occurring
at high frequencies. For n = 1 and the minimum shear modulus, Eq. (2.44) delivers the upper
limit of the applicability of shell elements based on the Mindlin wave approximation. Here,
the first antisymmetric thickness-shear mode vibrates at resonance. Especially for wood,
this upper limit already occurs at comparatively low frequencies as the elastic modulus
perpendicular to the fiber direction is about one thirtieth of the one in fiber direction. Thus,
a conflict between applicability and efficiency of FE models occurs. [Mindlin 1951; Mindlin
and Yang 2006; Yu 1996; DIN EN 338 2016]

Airborne sound is able to excite the longitudinal wave motion through the thickness of a plate
which leads to an efficient radiation from the backside of the plate at the thickness-stretch
resonance frequencies. Therefore, they have practical relevance for the sound reduction index
of a plate. Whereas the sound reduction increases with frequency, this behaviour changes
significantly at the thickness resonances above the critical frequency. They lead to dips
which can be estimated by a plateau. In the case of thick plates with a comparatively low
stiffness perpendicular to the plate (like e.g. CLT), the thickness resonances occur below
5 kHz and thus inside the relevant frequency range for building acoustics. [Ljunggren 1991;
Hopkins 2007]

2.3 Statistical Energy Analysis

The SEA enables the prediction of the energy flow within complex systems under certain
restrictions. These are mainly linked to large uncertainties of the response values which can
be handled by suitable averaging techniques. By contrast and as shown in chapter 3, the
EFA uses a deterministic FE model without the requirement of an a priori focus on averaged
quantities like e.g. mean energies. As the sensitivity of the results increases with frequency,
averaging techniques of the SEA are applied in the post-processing of the EFA. Therefore,
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the basic procedure of the SEA and its assumptions are introduced in this section in order
to be able to refer to them in the subsequent chapters.

In the case of the SEA, the structure is divided into subsystems which can be characterized
by two physical explanations: Firstly, in the case of the modal approach, the subsystems
are grouped by similar resonant modes per frequency band. Secondly, the wave approach
classifies a subsystem as a diffuse field consisting in a single wave type. The two methods are
linked as a mode can be described as a superposition of waves and a wave can be interpreted
as a sum of modes [Lyon and DeJong 1995].

A decisive parameter regarding the applicability of the SEA is the number of resonant
modes within the investigated frequency band. Together with the modal overlap factor,
which additionally considers the damping of the subsystem, the applicability of the SEA
is attempted to be estimated as explained in subsection 2.3.2. In subsection 2.3.1, the
basic SEA procedure is presented. Further assumptions of the SEA are complemented in
subsection 2.3.3.

2.3.1 Power Balance Equation

The excitation of a system is modeled by injecting power into a part of the system. Depend-
ing on its physical properties, this excited part belongs to one or more subsystems of the
SEA model. The input power flows between the individual subsystems due to the coupling
and is dissipated according to the damping of the subsystems. As each of the subsystems
can be described as groups of resonant modes, the power flow between them is proportional
to the difference of their average modal energies Ei within the frequency band ∆ω. It is
hereby assumed that the energy is distributed equivalently on the modes. The number of
modes Ni in a frequency band with the bandwidth ∆ω leads to the modal energy:

Ei = Ei
Ni

(2.45)

Firstly, the SEA model in Fig. 2.12 consisting of two coupled subsystems is observed. Each
subsystem i is characterized by a number of modes Ni and a total energy Ei within the
frequency band ∆ω. Subsystem 1 is excited and, thus, the input power P1 is injected. Due
to damping, the power Pi,diss is dissipated by the subsystem i depending on the corresponding
energy Ei, the angular frequency ω and the damping loss factor ηii:

Pi,diss = ω ηiiEi (2.46)
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Figure 2.12: SEA model of two coupled subsystems.

The SEA investigates the steady state and, thus, an equilibrium can be set up. Inside a
frequency band, all modes of a subsystem are assumed to couple equivalently strong with
the ones of another subsystem, whereas no coupling is admitted within the modes of one
subsystem. If the modal energies differ (E1 6= E2), there is a proportional power flow between
the two subsystems. This is known as coupling power proportionality and can be described
by P1→2 and P2→1 for each direction separately. They can be balanced to the net flow P12

or P21 dependent on the direction:

P1 = P1,diss + P1→2 − P2→1 = P1,diss + P12 (2.47)
0 = P2,diss + P2→1 − P1→2 = P2,diss + P21 (2.48)

The net flow P12 can be calculated by Eq. (2.49) on the basis of the modal coupling factor
β12. The factor β12 exclusively depends on the physical properties of the subsystems and
scales the flow from the subsystem with the higher average modal energy to the subsystem
with the lower one. Thereby, the number of modes Ni in a frequency band ∆ω is expressed
by the average modal frequency spacing δfi = ∆ω

2πNi .

P12 = ∆ωβ12(E1 − E2) = ∆ωβ12

(
E1

N1
− E2

N2

)
= 2π β12

(
E1 δf1 − E2 δf2

)
(2.49)

Analogously to the damping loss factor in Eq. (2.46), a coupling loss factor ηij is introduced
describing the losses due to the coupling of the subsystems:

P12 = ω(E1η12 − E2η21) = −P21 (2.50)
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The coupling loss factor denotes the amount of energy which is transmitted into the adjacent
subsystem. The wave approach is suitable to derive the coupling loss factor ηij by means
of the transmission coefficient τij characterizing only the junction for a transmission from
one specific wave field to another one. The assumptions of the wave approach are briefly
discussed in subsection 3.2.4. Moreover, it is shown that the coupling loss factor ηij results
from inserting the physical properties of the source subsystem i into Eq. (3.59). Derivations
of τij for different types of junctions, where plates contain bending and optionally in-plane
waves, can be found in [Kihlmann 1967; Craik 2003; Hopkins 2007].

Determining coupling loss factors, PIM constitutes an experimental alternative which can be
applied numerically as shown in subsection 3.2.2. This leads to so-called effective coupling
loss factors because they describe the energy exchange between two structural components
each containing different wave types.

ηji can be derived from ηij by means of the consistency relation:

N1η12 = N2η21 (2.51)

The validity of this expression can be shown by means of the coupling power proportionality
setting the power flow P12 in Eq. (2.50) equal to zero:

P12 =ω(E1η12 − E2η21) != 0 (2.52)

If there is no power flow, the modal energies have to be equal (E1 = E2 = E), which leads
to:

P12 =ω(EN1η12 − EN2η21) = 0 (2.53)

which results in Eq. (2.51). Now the power balance equations (2.47) and (2.48) can be
rewritten as:

P1 = P1,diss + P12 = ω((η1 + η12)E1 − η21E2) (2.54)
0 = P2,diss + P21 = ω((η2 + η21)E2 − η12E1). (2.55)
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For a SEA model with m subsystems the power balance of one subsystem yields:

Pi = Pi,diss +
∑

j

Pi,j (2.56)

Pi = ω


ηiiEi +

∑

j

ηijEi − ηjiEj

 (2.57)

Rewriting this expression for all subsystems the total loss factor matrix results, which char-
acterizes the SEA model and enables the prediction of subsystem energies due to a certain
input power:

ω




η11 + ∑
j 6=1

η1j −η21 · · · −ηm1

−η12 η22 + ∑
j 6=2

η2j · · · −ηm2

... ... . . . ...
−η1m −η2m · · · ηmm + ∑

j 6=m
ηmj







E1

E2
...
Em




=




P1

P2
...
Pm




(2.58)

Usually this matrix is not fully occupied as not all subsystems couple with each other.
Moreover, the sum of the ith column has to be equal ω ηii to fulfill the conservation of
energy. According to [Mace 2003], this is the second necessary criterion of the SEA beside
the coupling power proportionality leading to the consistency relation. These criteria have
to be satisfied in an ensemble average sense by several slightly different systems.

2.3.2 Important Quantities

Unlike the FEM, the SEA does not consider modes individually but as a randomly dis-
tributed set per subsystem and frequency band. Hence, statistical prerequisites have to be
fulfilled: A sufficient number of modes per band belongs to these. According to literature,
a minimum of three [Möser and Kropp 2010] to six [Fasold et al 1984] modes are assumed
to be acceptable. The modal density as well as the average modal frequency spacing can be
derived from the number of modes. These aspects represent the average distance between the
individual eigenfrequencies. The modal overlap factor also takes the damping into consider-
ation. Thereby, the width of the amplification functions is taken into account additionally
to characterize the interaction of the modes.
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Number of Modes

The number of modes Ni in a frequency band ∆ω = 2π(fu − fl) can be expressed either by
the modal density

ni(ω) = dN

dω
in s

rad (2.59)

or by the average modal frequency spacing between the resonance frequencies [Lyon and
DeJong 1995]:

δfi = 1
2 π ni(ω) in Hz (2.60)

The frequency band with the center frequency fm is characterized by the lower and the upper
band limiting frequencies fl and fu. In the case of one-third octave bands, they are linked
by the expression:

fu = 2 1
3fl = 2 1

6fm (2.61)

The number of resonant modes are calculated analytically for a four-sided, simply supported
plate with the area A in Eq. (2.62) to (2.65). At higher frequencies, this serves as an estimate
for a plate with any boundary condition. The following expressions are given by Lyon and
DeJong [1995] and they base upon the wave velocities derived in section 2.2. The in-plane
modes of the plate consist of the longitudinal modes

δfLP = c2
LP

2π f A (2.62)

and the shear modes:

δfS =
c2
S,xy

2π f A (2.63)

The bending modes in the case of thin plates are given by

δfB = 2 c2
B

2π f A = cB cg
2 π f A (2.64)
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Figure 2.13: Modal characteristics of an exemplary orthotropic plate described by quasi-longitudinal, in-
plane shear and effective bending waves compared to FE models.

whereas in the case of thick plates different approximations are offered by literature. In
accordance with subsection 2.2.3, the phase and the group velocity are replaced by the
effective velocities [Meier 2000]:

δfB,eff = cB,eff cg,eff

2π f A (2.65)

Figure 2.13 shows the modal density and the number of modes per one-third octave band
based on the quasi-longitudinal, the in-plane shear and the effective bending wave velocity for
an exemplary orthotropic plate. The sum of the analytically estimated number of modes∑N

is opposed to the number of modes resulting from a modal analysis performed with the FEM.
Figure 2.13b shows a good agreement above the first eigenfrequencies, which strongly depend
on the boundary conditions. From the first thickness resonances on, the number of modes
detected by the solid element model clearly increase whereas the analytical solution and the
shell element model are based on the Mindlin plate theory, which ignores through thickness
effects (cf. subsection 2.2.5).

Modal Overlap Factor

The modal overlap factor relates the width of a resonance to the average modal frequency
spacing δfi. The width of the resonance at a frequency f is described by the modal band-
width ∆fhp = fηii characterized by the half power points of the transfer function. On the
logarithmic scale, these points occur 3 dB down from the resonance peak which corresponds
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Figure 2.14: The half power bandwidth ∆fhp,i of the two transfer functions with equal modal frequency
spacing δfi varies due to a low damping on the left and a high damping on the right
[Weineisen 2014].

to a halving of the power [Zaveri 1984]. This leads to the so-called half power bandwidth
modal overlap factor:

Mhp,i = f ηii

δfi
= ωηiini (2.66)

The so-called noise or energy bandwidth modal overlap factor is common in literature, too.
The energy or noise bandwidth is defined as the theoretical bandwidth of a band-limited
white noise. It contains the same amount of energy as the modal response and its power
spectral density corresponds to the maximum of the modal transfer function: [Woyczynski
2011; Lyon and DeJong 1995].

Men,i = ωηiini
π

2 (2.67)

Within this thesis, the half power bandwidth modal overlap factor will be used exclusively
and thus just named modal overlap factor. Generally, the modal overlap factor depends
on the modal density ni and on the damping loss factor ηii of subsystem i. At resonance,
the shape of the modal response is dominated by the damping. Figure 2.14 shows two
transfer functions with equal modal frequency spacing δfi but different damping values.
Higher damping leads to a smoother spectrum and to a higher modal overlap. For the
application of the SEA, literature recommends a modal overlap factor greater than unity to
guarantee uncorrelated wave transmission between subsystems. Hence, the SEA assumption
that subsystems are diffuse wave fields is fulfilled as the waves which transport energy from
one subsystem to another are assumed to be uncorrelated from those waves which transport
energy in the opposite direction. [Lyon and DeJong 1995; Culla and Sestieri 2006]
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2.3.3 Further Assumptions and Postulations

Several basic postulations of the SEA are mentioned in subsection 2.3.1, where the power
balance equation is derived, and in subsection 2.3.2. In the following, further assumptions
on which the SEA is based are emphasized. Moreover, these assumptions and their validity
are discussed in the context of the EFA in subsection 3.2.3.

Conservative Coupling The coupling between subsystems is characterized through coupling
loss factors leading to energy exchange in between them but not to dissipation. This
occurs only inside the subsystems and is described by the damping loss factors.

Weak Coupling Based on the hypothesis of weak coupling, the energy of the subsystem
or the modal group coincides with the uncoupled energy. This means the groups of
modes or, respectively, subsystems are treated separately. The participation of various
subsystems at a so-called global mode cannot be modeled. Modes should be localized
in such a way that most or all of its energy excites one subsystem [Finnveden 2011].
Indirect couplings with the subsystem after the next subsystem are not possible in the
classical SEA [Culla and Sestieri 2006]. This leads to the so-called Smith criterion:
ηij � ηii. Finnveden [2011] compares this to further measures in order to estimate the
strength of coupling and thereby to verify the weak coupling assumption.

Hence, only in the case of weakly coupled subsystems, Eq. (2.49) and (2.50) hold for
a system containing more than two subsystems [Mace 1994]. Otherwise, the transmis-
sions have to be solved for the whole system which is contrary to the basic concept of
the classical SEA.

Resonant Energy Transfer The classical SEA exclusively treats energy flows between
groups of resonant modes of direct coupled subsystems.

Non-resonant, Stiffness or Mass Dominated Paths A mode can be excited below or above
its resonance frequency in the stiffness or mass dominated region of its amplification
function, respectively. Considering the non-resonant transmission in the SEA, stiffness
or mass dominated paths have to be added to the model. One example is the non-
resonant sound transmission through a wall which separates two rooms. Below the
critical frequency, the air excites the wall above its resonance frequencies since the wave
length of air is greater than the bending wave length of the wall. In this frequency
range, the stiffness and the damping of the wall can be neglected, which means the
energy transmission between two cavities is caused by the inertia of the wall. The
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forced excitation of the wall leads two an indirect coupling of the two cavities. [Fahy
1987; Weineisen 2014]

Uniform Damping All modes of a subsystem in a certain frequency band are characterized
by the same damping.

Subsystem Size Sufficient but not necessary criteria for the lower limit of a subsystem are
given by means of the number of modes and the modal overlap factor presented in
subsection 2.3.2. Due to large damping, the direct field dominates at high frequencies,
which leads to a strong decrease in vibration with increasing distance. Thus, Lyon
and DeJong [1995] recommend the following limit for the maximum dimension l of a
subsystem, since the energy decays with e−ωηii

x
cg , if waves travel across a distance x.

l <
cg
ω ηii

(2.68)

On the other hand, the evaluation of the energy should not be carried out in the direct
field.
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3 Energy Flow Analysis

The objective of the EFA is to predcit the vibrational energy that flows through a structure.
The energy flow is described by the energy influence coefficients A which relate the total,
time-averaged subsystem energy E to a corresponding input power P .

For the application of the EFA, the structure is divided into subsystems according to its
subdivision into components. In contrast to the SEA, the prerequisite of the so-called weak
coupling, which is introduced in subsection 2.3.3, is not imperative for the EFA and the
subsystem definition is independent of wave types. This leads to a greater flexibility for the
subsystem division. Moreover, it facilitates the precise detection and optimization of critical
components with respect to the energy transmission. [Mace and Shorter 2000]

Figure 3.1 shows e.g. the partition of an L-junction into subsystems, i.e. into a wall and
a ceiling. In chapter 4, the L-junction is investigated beside T- and X-junctions. The
subsystems are modeled with FE as the FEM is a convenient tool to predict the vibroacoustic
behavior. Either a continuum model composed of solid elements is chosen or shell elements
allowing shear deformations are applied. The shell elements are based on the Mindlin plate
theory [Mindlin 1951] whereby through-thickness effects which occur particularly at high

Subsystem 2

Sub-
system

1

Figure 3.1: Partition of L-junction into subsystems, loading of subsystem 2.
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frequencies are not considered. For modeling the properties of CLT, section 2.1 introduces
a linear and orthotropic material including the simple case of isotropy.

At a given location and frequency, the sensitivity of the response to small changes in material
or load data increases with frequency. This leads to non robust results if a high resolution
with respect to the spatial distribution and the frequency content is aimed at. Without
appropriate post-processing, the FEM is limited due to the sensitivity of the results at
higher frequencies. Moreover, the physical properties influence the robustness of the results.
For instance, high damping values lead to a large modal overlap which reduces the sensitivity
of the frequency response function varying e.g. the point of observation.

In the mid-frequency range, an adequate number of modes per band and a sufficiently high
modal overlap enable the use of statistical methods like the SEA. It provides averaged results
and thus copes with their sensitivity. But also the wave transmission inside the SEA is
limited to the governing partial differential equation, e.g. the Mindlin plate theory. Adding
the restrictions mentioned in section 2.3, the SEA based on the Mindlin plate theory is
only applicable to the mid-frequency range. Due to a restricted validity of the displacement
solution of the FEM and of the results of the SEA assuming semi-infinite Mindlin plates,
averaging techniques of the SEA are applied in the post-processing of the FEM to obtain
valid and robust results in a wider frequency range. Thus, the EFA can be considered as an
adapted hybrid approach.

The basic approach in section 3.1 comprises the step from the classical FEM to averaged
output quantities. It follows an introduction of various evaluation options for the energy
flow in section 3.2 starting with the primary quantity of the method, the energy influence
coefficients. Section 3.3 presents a procedure to compute robust energy influence coefficients
and to evaluate their statistical properties, if a structure with unknown load position is
investigated.

3.1 Basic Approach

The primary aim of the EFA is to calculate the system response using an FE model as
explained in subsection 3.1.1. Afterwards, input power and energy are derived, which are
treated in subsections 3.1.2 and 3.1.3, respectively. By averaging energy and power, energy
influence coefficients, which are robust with respect to time, space and frequency dependent
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fluctuations, shall be provided:

Ãij =
∫ fu
fl

∫ T
0
∫

Θi Ee (z,t,f) dΘdtdf
∫ fu
fl

∫ T
0
∫
Θj Pe (z,t,f) dΘdtdf

(3.1)

To solve the integrals in Eq. (3.1) over the space Θ, the time t and the frequency f different
techniques are applied. The space average is obtained by using an FE post-processing ap-
proach and by summing up the element quantities marked by the index e. Their cartesian
coordinates are summarized in the vector z = (x,y,z). Assuming a time-harmonic oscilla-
tion, the integral over time can be solved analytically. Initially, energy, power and energy
influence coefficients are calculated for discrete frequency points. Subsection 3.1.4 shows the
integration by means of the composite trapezoidal rule to deliver frequency band averages
which are marked by a tilde.

3.1.1 Displacement Solution of the Equation of Motion

Finite Element Method

The FEM offers to either do a modal analysis which provides eigenfrequencies and -modes
or to undertake a harmonic analysis which results in the response behavior due to a time-
harmonic force. Both applications work in the frequency domain.

By means of numerical methods like the FEM, it is possible to model structures consist-
ing of various components out of different materials with complex boundary and coupling
conditions. By contrast, analytical approaches are restricted to components and boundary
conditions for which a function exists that fulfills the differential equation at the boundaries
and anywhere inside the domain. This is also known as strong formulation of the problem.
Replacing the exact solution by an approximate one leads to a residuum which states the
difference between the two solutions. The differential equation is thus not anymore exactly
fulfilled at any location inside the domain. Introducing a weighting function the error must
vanish on average by integrating over the domain. After rearranging this integral postula-
tion, the so-called weak formulation of the problem results. The basic idea of the FEM is
to approximate the unknown displacement by dividing the whole domain into subdomains,
the Finite Elements. Thereby, the weighting functions use the same shape functions as the
displacements do according to Galerkin. [Merkel and Öchsner 2014]

By means of the FEM, the equation of motion can be solved numerically. Its weak formula-
tion is discretized to obtain a finite number of degrees of freedom. Firstly, the whole domain
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is divided into Finite Elements by a mesh. Secondly, within each element the displacement
is approximated by a linear combination of shape functions and local degrees of freedom.
The assembling of the system matrix out of the element matrices as well as the coordinate
transformation from local to global degrees of freedom leads to the linear system of equations
(cf. Eq. (3.2) and (3.6)). The size of the problem and the accuracy of the solution depend
on both, the mesh and the shape functions. [Cook 1989; Paolini et al 2017]

Modal Analysis

For the interpretation of the energy flow inside a structure and to characterize its dynamical
behavior, it is important to know its eigenfrequencies and eigenmodes. Both quantities are
calculated by a modal analysis. Therein, the structure is not subjected to a load leading to
a homogeneous, differential system of equations:

[K] u + [M ] ü = 0 (3.2)

The unknowns of Eq. 3.2 are the global degrees of freedom u and their second time deriva-
tive ü. They state the nodal displacement and acceleration vector, respectively. [M ] and
[K] denote the mass and the stiffness matrix of the system. The order of damping magni-
tude which is typical in most applications of civil engineering only leads to slight changes
in the eigenfrequencies. As the eigenfrequencies and the eigenmodes are used to discuss the
results of the EFA, damping is neglected. However, damping has to be taken into account
in the case of locally damped structures, e.g. due to elastic interlayers. Assuming time-
harmonic oscillations, the product approach for an unknown displacement vector separates
the spatial Φ and the time domain sin(ωt):

u = Φ sin(ωt) (3.3)

Inserting this expression into the differential equation of motion yields:

(
[K]− ω2 [M ]

)
Φ = 0 (3.4)

A non-trivial solution, i.e. Φ 6= 0, for this matrix eigenvalue problem only exists, if it holds:

det
(
[K]− ω2 [M ]

)
= 0 (3.5)
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Equation (3.5) denotes the characteristic polynomial whose order corresponds to the number
of degrees of freedom of the FE model. This leads to an identical number of roots, which
are the eigenvalues representing the squared angular eigenfrequencies ω2

i = (2πfi)2. The
eigenvectors Φi are the eigenmodes of the structure. They can be obtained by inserting the
corresponding eigenvalues ω2

i into Eq. (3.4). [Müller 2016]

Harmonic Analysis

To calculate the response behavior of a structure due to a time-harmonic excitation, a har-
monic analysis is performed. For this purpose, the consideration of damping is decisive. The
damping is described by the loss factor η. A hysteretic damping is chosen and thus, the
system is damped proportional to the stiffness matrix [K] as introduced in subsection 2.1.4.
Hence, the damping forces are proportional to the displacement u. It results the inhomoge-
neous equation of motion:

[K] (1 + iη) u + [M ] ü = F (3.6)

The force vector F, which excites the structure sinusoidally with the frequency f = Ω
2π ,

contains the loads F having an amplitude F0 and a certain phase shift φ:

F (z,t,f) = F0 cos (2πf t+ φ(z)) (3.7)
= F0 cos(φ) cos(Ωt)− F0 sin(φ) sin(Ωt) (3.8)

After expressing the phase shift by a combination of sine and cosine, for simplicity the
constant parts are summarized to α = F0 cos(φ) and β = F0 sin(φ):

F (z,t,f) = α cos(Ωt)− β sin(Ωt) (3.9)

Applying Euler’s formula, the time-harmonic excitation can also be described in complex
notation, where α denotes the real part and β the imaginary one.

F (z,t,f) = 1
2 (α + i β) eiΩt + 1

2 (α− i β) e−iΩt = <
[
(α + i β)eiΩt

]
(3.10)
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The complex force F = F0 e
iφ = α + i β is marked by an underscore and includes the

amplitude F0 =
√
α2 + β2 and the phase shift φ = arctan

(
β
α

)
:

F (z,t,f) = 1
2F0 e

iφ eiΩt + 1
2F0 e

−iφ e−iΩt = <
(
F0 e

iφ eiΩt
)

(3.11)

= 1
2F e

iΩt + 1
2F
∗ e−iΩt = <

(
F eiΩt

)
(3.12)

The equations (3.10) to (3.12) show that the excitation can also be split into a complex
and a conjugated complex pointer marked by an asterisk which oscillates with the negative
frequency. To solve Eq. (3.6), the excitation may be described using just one component.
Thereby, the same time dependency is assumed for the complex displacement vector u leading
to its second derivative −Ω2 u:

[
[K] (1 + iη)− Ω2 [M ]

]
u eiΩt = F eiΩt (3.13)

eiΩt can be canceled out on both sides of the equation and the particular solution for u can
be obtained.

The total displacement solution is composed of the homogeneous and the particular solu-
tion. The homogeneous solution takes the initial conditions into account and decays for
damped structures during the transient starting phase. Since the homogeneous solution can
be regarded as faded away for typical time and frequency scales in the acoustic domain,
the particular solution, which describes the steady state for a time-harmonic loading, is
exclusively considered:

u =
[
[K] (1 + iη)− Ω2 [M ]

]−1
F (3.14)

The individual material properties of the different subsystems and elastic interlayers are
taken into account on element basis. This is expressed by the following equation representing
the element matrices and their assembling to the complex dynamic stiffness matrix [K(Ω)]:

u =
ne

A
e=1

[
[Ke] (1 + iηe)− Ω2 [Me]

]−1
F (3.15)

u = [K(Ω)]−1 F (3.16)

In the case of a varying, element dependent damping ηe, the system is no longer proportion-
ally damped. The complex dynamic stiffness matrix [K(Ω)] characterizes the whole system
for a certain frequency of excitation. To perform a harmonic analysis, Eq. (3.16) is solved for
each frequency of interest. For the presented approach, this procedure is computationally
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more efficient compared to a modal approach because above the first antisymmetric mode
of thickness-shear (cf. subsection 2.2.5) the number of modes is increasing significantly. For
timber or fiber composite plates, this limit already occurs at comparatively low frequencies
as its elastic modulus perpendicular to the fiber is a fraction of the one in fiber direction.

3.1.2 Input Power

First of all, the subsystems are excited one by one by a time-harmonic excitation. Instead
of using nodal loads, pressure is applied on selected elements to be able to build up more
realistically planar excitations like airborne sound pressure and especially to avoid that
singularities affect the resulting input power [Winter and Müller 2017]. The pressure is
considered as a surface load which is transformed to equivalent nodal loads by weighting
it with the shape functions and integrating over the elements. Due to the weighting, the
equivalent nodal loads are referred as consistent. It is assumed that both surface load and
equivalent nodal loads perform the same external virtual work with their corresponding
virtual displacements. Unlike a single nodal load, the equivalent ones do not lead to a mesh
dependent displacement ending up in a singularity. Within the scope of the approximate
solution, the FEM is hereby able to provide correct displacements at the nodes belonging to
loaded elements which are then used to calculate the input power [Müller and Groth 2007;
Werkle 2008]. If realistic loads would be modeled, the deviations linked to the discretization
should be taken into account.

The pressure vector p consists of three entries

px/y/z = F (z,t,f)
Ae(z) (3.17)

in the space directions x, y and z. The pressure components contain the load amplitude F0,
which is evenly distributed on the surface Ae of the selected element and excites the structure
harmonically with a phase shift φ as shown in Eq. (3.7) to (3.12). The time-averaged element
input power is calculated by a double integral over the dot product of the applied pressure p
and the resulting velocity v [Müller 2016; Cremer 1967]:

Pe(f) = 1
T

∫ T

0

∫

(Ae)

p (z,t,f) · v (z,t,f) dAdt (3.18)
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Figure 3.2: The element coordinates ξ and η are related to the global coordinates x and y by the Jacobian
matrix [J ] - here depicted for a shell element with quadratic shape functions [Cook 1989].

For simplicity, a unidirectional loading is assumed and complex expressions of pressure and
velocity are used according to Eq. (3.12).

Pe(f) = 1
T

∫ T

0

∫

(Ae)

1
2
(
p eiΩt + p∗ e−iΩt

) 1
2
(
v eiΩt + v∗ e−iΩt

)
dAdt (3.19)

= 1
T

∫ T

0

∫

(Ae)

1
4
(
pv e2iΩt + p∗v e0 + pv∗ e0 + p∗v∗ e−2iΩt

)
dAdt (3.20)

Due to the integration over one period T = 2π
Ω , the contribution of the reactive power

oscillating with double frequency vanishes.

Pe(f) = 1
2

∫

(Ae)

<
(
p v∗

)
dA (3.21)

To solve the integral in Eq. (3.21), both physical quantities p and v as well as the coordinates
x and y are approximated across the loaded surface of the elements e by the values at the
nodes k and the respective, quadratic shape functions Ne,k. This corresponds to a weighted
sum over nk = 8 nodal values. In the case of the velocity, which results as first time derivative
of the displacement solution applying v = iΩu, this leads to:

ve(ξ, η) =
nk∑

k=1
ve,kNe,k(ξ, η) (3.22)

As the shape functions are expressed in dependency on the element coordinates ξ and η, the
coordinates of the integral have to be transformed from x, y to ξ, η by means of the Jacobian
matrix [J ] [Felippa 2004]. Figure 3.2 visualizes the coordinate transformation for a shell
element having quadratic shape functions.
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∫

(x)

∫

(y)

f(x,y) dy dx =
∫

(s)

∫

(t)

g(ξ, η) det [J ] dξ dη (3.23)

[J ] =




∂x

∂ξ

∂x

∂η
∂y

∂ξ

∂y

∂η


 (3.24)

The integral can be solved analytically in advance and the resulting expression can then
be evaluated element-wise with the corresponding nodal values in the post-processing. This
leads to the time-averaged element input power Pe which is subsequently summed up over
all loaded elements nl in subsystem j. Hence, Eq. (3.25) delivers the injected power into
subsystem j averaged with respect to time and space.

Pj(f) =
nl∑

e

Pe(f) =
nl∑

e

1
2

1∫

−1

1∫

−1

<
(
p
e
v∗e
)

det [J ] dξ dη (3.25)

3.1.3 Subsystem Energy

According to Eq. (2.9), the stored energy in the investigated system due to deformations, i.e.
the potential energy, can be calculated by integrating over the volume of the tensor product
of stress and strain, also known as the elastic potential [Müller 2015].

Πv =
∫

(V )
Πiv(ε)dV =

∫

(V )

1
2σ

klεkldV (3.26)

Within the scope of the FEM, Eq. (3.26) is evaluated element-wise by a Gauß integration.
This leads to the inner sum in Eq. (3.27) whereby wg represents the weighting factor corre-
sponding to the integration point g.

Eij,pot(f) = 1
2
∑

e∈Θi

∑

g

1
2 σ

∗T εwg (3.27)

To calculate the potential element energy by the displacement solution in Eq. (3.16), the
governing equations have to be applied. Firstly, the material law is inserted by the constitu-
tive equation (2.1) and secondly, the resulting strains are expressed through displacements
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by the kinematic equation:




εx

εy

εz

γyz

γxz

γxy




=




∂

∂x
0 0

0 ∂

∂y
0

∂

∂y

∂

∂x
0

∂

∂z
0 ∂

∂x

0 ∂

∂z

∂

∂y







ux

uy

uz


 (3.28)

Discretizing the displacement field by means of the shape functions (cf. Eq. (3.22) and
Fig. 3.2) the potential element energy is computed on the basis of the squared, complex
element degree of freedom vector ue and the element stiffness matrix [Ke] in Eq. (3.29)
[Felippa 2004]. The expressions (3.27) respectively (3.29) and (3.30) state the time and
space average of the potential energy Eij,pot and of the kinetic energy Eij,kin inside the
subsystem i due to loading of subsystem j:

Eij,pot(f) = 1
2
∑

e∈Θi

1
2 u∗Te [Ke] ue (3.29)

As depicted in Eq. (3.30), the time derivative of ue and the element mass matrix [Me] lead
to the kinetic energy in the post-processing of an FE simulation:

Eij,kin(f) = 1
2
∑

e∈Θi

1
2 Ω2 u∗Te [Me] ue (3.30)

The element energies are added for each subsystem according to the sum in Eq. (3.29) and
(3.30), respectively, yielding space averaged energies. Here, Θi describes the set of elements
belonging to subsystem i.

As shown above, both energy types are proportional to the quadratic displacement:

E(t) ∼ u2(t) = u2
0 [cos (Ωt+ ϕ)]2 =

[1
2
(
u eiΩt + u∗e−iΩt

)]2
(3.31)

max(E(t)) = E0 ∼ u2
0 (3.32)
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Averaging of E(t) with respect to time corresponds to the integration over one period of a
quadratic, sinusoidal function in the case of a time-harmonic excitation.

E ∼ 1
2 u

2
0 = 1

T

∫ T

0
u2(t) dt = 1

T

∫ T

0
u2

0 [cos (Ωt+ φu)]2 dt (3.33)

= 1
T

∫ T

0

[1
2
(
u eiΩt + u∗e−iΩt

)]2
dt

Thus, the time-averaged energy E is one-half of the maximum value E0 of the energy over
time E(t):

E = 1
2 E0 (3.34)

For each excited frequency f , the sum over the element energies in Eq. (3.29) and (3.30) is
therefore multiplied by one-half to receive the time and space average of the potential and
the kinetic energy, respectively. Summing them up leads to the total energy per subsystem
and frequency:

Eij(f) = Eij,kin(f) + Eij,pot(f) (3.35)

3.1.4 Resolution and Average in the Frequency Range

To cover the whole frequency range of interest - e.g. the extended one for building acous-
tics from 50 to 5000 Hz - a logarithmically equidistant spacing ∆fk between the excited
frequencies is applied. This leads to an identical number of evaluated frequencies nf for
each one-third octave band. Averaging the time and space averaged input power and sub-
system energies over the frequencies of excitation, the governing equations can be referred
to an averaged ensemble of slightly different, but similar coupled systems in the steady state
presuming a sufficient modal density [Lyon and DeJong 1995].

The frequency average for a frequency band with limits fl and fu is approximated by a
summation over discrete frequencies. For each frequency step, Eq. (3.16) is solved. The
approximation of the continuous frequency curve by the composite rectangle rule would
result in case of the energy E:

1
fu − fl

fu∫

fl

E (f) ≈ 1
fu − fl

nf∑

k

E (fk) ∆fk = fu − fl
fu − fl

nf∑

k

E (fk)wk =
nf∑

k

E (fk)wk (3.36)
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Here, the logarithmically equidistant spacing over frequency ∆fk = fk+1−fk = wk(fu−fl) is
described in dependency on a weighting factor wk with k ∈ {1,2, . . . ,nf}. Inside a band, wk
increases with frequency as the range represented by one discrete frequency becomes wider,
whereas in case of a constant spacing the weighting factor would be wk = 1

nf
= w. Applying

the composite trapezoidal rule instead of the rectangle rule leads to a closer approximation
of the frequency average for the same number of frequency steps per band. Again the
numerical integration, which can be performed identically for the subsystem energy and the
input power, is exemplary shown for the energy E:

1
fu − fl

fu∫

fl

E (f) ≈ 1
fu − fl

nf∑

k

TK(E) = 1
fu − fl

nf∑

k

1
2 (E (fk+1) + E (fk)) ∆fk (3.37)

=
nf∑

k

1
2 (E (fk+1) + E (fk))wk (3.38)

= Ẽ (3.39)

With the presented interpolation techniques as well as with higher order polynomials and
cubic splines, investigations have been performed to identify a suitable number of frequency
steps per one-third octave band. They are summarized in dependency on the frequency
range in subsection 4.1.6 and Tab. 4.5.

3.2 Evaluation Quantities

Having excited each of the m subsystems one by one, the average with respect to time, space
and - optionally - frequency of the input power and of the corresponding total energies per
subsystem can be calculated. Thereby, energy influence coefficients can be derived as shown
in subsection 3.2.1 to describe the energy flow, which is normalized to the input power, inside
the whole system. Fulfilling criteria like e.g. weak coupling which is assumed to be sufficient
but not necessary, the energy influence coefficients matrix can be inverted. As explained in
subsection 3.2.2, coupling loss factors are obtained which are ideally characterized exclusively
by the junction and the source subsystem. In subsection 3.2.3, the condition number of the
energy influence coefficients matrix is introduced. It enables to verify the invertibility and
hereby mathematically the weak coupling condition. Moreover, the validity of coupling loss
factors is discussed.

The European standard [DIN EN ISO 12354-1 2017] uses engineering quantities in order to
perform simplified, approximate predictions which implicates a reduced quality of the results.
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In this regard, the vibration reduction index aims to exclusively characterize the transmission
behavior of the junction itself. This concept bases upon the transmission coefficient, which
can be derived by the wave approach leading to the coupling loss factors known from the
SEA. The limitations and drawbacks of the vibration reduction index as well as a calculation
by means of the coupling loss factors from the EFA are discussed in subsection 3.2.4.

3.2.1 Energy Influence Coefficients

The quadratic energy matrix [E] can be normalized by the diagonal input power matrix
[P ] yielding the matrix [A] of the energy influence coefficients Aij. The column j in the
mentioned matrices corresponds to the excitation of the subsystem j:

[A] = [E] [P ]−1 =




E11 E12 . . . E1m

E21 E22 . . . E2m
... ... . . . ...

Em1 Em2 . . . Emm







P1 0 . . . 0
0 P2 . . . 0
... ... . . . ...
0 0 . . . Pm




−1

(3.40)

=




E11

P1

E12

P2
. . .

E1m

Pm

E21

P1

E22

P2
. . .

E2m

Pm
... ... . . . ...

Em1

P1

Em2

P2
. . .

Emm

Pm




=




A11 A12 . . . A1m

A21 A22 . . . A2m
... ... . . . ...

Am1 Am2 . . . Amm




The matrix entry Aij = Eij
Pj

represents the energy in the subsystem i related to a unit power
which is injected into subsystem j. It describes the energy flow inside the system which
can be calculated for different types of loads by Eq. (3.40). It is convenient to compare
the energy flow by these Aij which refer to the same receiving subsystem i but for different
loaded subsystems j or different types of loads. For a comparison of the normalized energies
in different receiving subsystems due to the same load case, it should be kept in mind that
the energy in a subsystem depends on its physical properties. Therefore, e.g. in case of sub-
systems with different size or stiffness, a rank order among the energy influence coefficients
is not linked directly to the amplitudes of vibration.
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Frequency Averaged Energy Influence Coefficients

To obtain the band averaged energy influence coefficients, the time and space averaged
subsystem energies and the corresponding input power are numerically integrated within
each band according to Eq. (3.38) and inserted into Eq. (3.40). Equation (3.41) shows
the resulting matrix entries, where the average per frequency band is marked by a tilde.
Inverting the resulting matrix leads to the band averaged coupling loss factors according to
subsection 3.2.2. If a structure is characterized by energy influence coefficients, the energy
flow into the different subsystems can be predicted for a certain input power. Hence, this
relation is only valid for band averaged values if the subsystem energies and the input power
are summed separately before computing the energy influence coefficients. This corresponds
to the weighted arithmetic mean of the energy influence coefficient with respect to the input
power:

Ã = Ẽ

P̃
=
∑nf
k

1
2 (E (fk+1) + E (fk))wk∑nf

k
1
2 (P (fk+1) + P (fk))wk

=
∑nf
k Tk(E)

∑nf
k Tk(P )

=
∑nf
k Tk(A)Tk(P )
∑nf
k Tk(P )

(3.41)

The subsystem indices are omitted here for readability.

3.2.2 Loss Factors

As derived in section 2.3, another way to express the relation of the diagonal input power
matrix [P ] with the energy content of the subsystems [E] in the steady state is:

[P ] = Ω
[
η0
]

[E] (3.42)

Equation (3.42) describes the global power balance of the structure in matrix form. Com-
pared to the related Eq. (2.58) of the SEA, the vector of the subsystem energies is replaced
by the matrix [E] containing the response of the system due to the separate excitation of
each subsystem. Exercising the EFA, one subsystem represents an entire component instead
of a single wave type of a component. Moreover, the vector of the input power is replaced
by the diagonal matrix [P ]. [η0] states the total loss factor matrix of the system known from
the SEA. The main diagonal entries η0

ii describe the total losses of subsystem i by adding



48 3 Energy Flow Analysis

the losses due to coupling ηij to the internal one due to damping ηii. It holds:

η0
ii =

m∑

j=1
ηij (3.43)

η0
ij = −ηji, i 6= j (3.44)

If in Eq. (3.42) the input power is substituted by a unit input power and therefore, the
energy is replaced by the normalized one, the following expression results:

[I] = Ω
[
η0
]

[A] = Ω




η0
11 η0

12 . . . η0
1m

η0
21 η22 . . . η0

2m
... ... . . . ...
η0
m1 η0

m2 . . . η0
mm







A11 A12 . . . A1m

A21 A22 . . . A2m
... ... . . . ...

Am1 Am2 . . . Amm




(3.45)

Hence, the total loss factor matrix [η0] can be assessed by inverting [A] and normalizing it
by the angular frequency. The presented approach corresponds to the numerical execution
of the PIM [de Langhe and Sas 1996]. In subsection 3.2.3, criteria of the validity of the
coupling and damping properties, which are predicted by means of the EFA, are discussed.

[
η0
]

= 1
Ω [A]−1 =




η11 + ∑
j 6=1

η1j −η21 . . . −ηm1

−η12 η22 + ∑
j 6=2

η2j . . . −ηm2

... ... . . . ...
−η1m −η2m . . . ηmm + ∑

j 6=m
ηmj




(3.46)

After rearranging the entries of [η0] the loss factor matrix [η] results, which contains the
damping loss factors ηii on the diagonal and the coupling loss factors ηij on the off-diagonals:

[η] =




η11 η21 . . . ηm1

η12 η22 . . . ηm2
... ... . . . ...
η1m η2m . . . ηmm




(3.47)

The EFA considers all the transmission paths, also the non-resonant ones, and all types of
couplings between subsystems, also the indirect ones. The loss factor matrix is therefore
generally fully occupied and not necessarily symmetrical.
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3.2.3 Validity of Coupling Loss Factors

Condition Number of the Energy Influence Coefficient Matrix

The condition number κ of a matrix measures the sensitivity of the solution of a system of
linear equations to variations of the input data. It gives an indication about the accuracy of
the results from matrix inversion.

κ ([A]) = ‖ [A] ‖2 ‖ [A]−1 ‖2 (3.48)

The condition number of a matrix is calculated by a multiplication of the norm of a matrix
with the norm of its inverse. Here, the spectral norm of the matrix is used, which corresponds
to its largest singular value. This can be described as largest possible scaling factor in the
case of a multiplication with a vector of the length one. The reciprocal of the smallest
singular value of a matrix states the spectral norm of its inverse. Hence, the condition
number is the ratio of the largest to the smallest singular value and can be interpreted as the
factor by which the input error might be increased in the worst case. [Råde and Westergren
2000; Zeidler 2013]

As long as the condition number is close to unity, the matrix is called well-conditioned and
can be inverted. This holds for diagonally dominant matrices, which means that in every
row of the matrix, the diagonal entry is larger than the sum of all non-diagonal entries.
Looking at the energy influence coefficients matrix [A], this is the case for weakly coupled
subsystems. For instance, higher damping leads to higher entries on the main diagonal and
therefore to a lower condition number promising a higher accuracy of the results.

Global mode shapes occurring in the low frequency region might deteriorate the results
depending on the structure and the division into subsystems. They lead to strongly coupled
subsystems and high values on the off-diagonals of the energy influence coefficients matrix.
Here, the condition number can be used as a mathematical criterion to identify this physical
behavior and the corresponding frequency region, which then shows comparatively high
values of the condition number especially for non-band-averaged energy influence coefficients.
Hence, strongly coupled subsystems lead to an ill-conditioned energy influence coefficients
matrix whose inverse, the total loss factor matrix [η0], is reduced in accuracy. The loss
factors might no longer indicate a correct physical behavior.

Strong coupling can also lead to negative coupling loss factors ηij which are not necessarily
physically incorrect. As Fredö [1997] explains, exciting a subsystem below its first eigenfre-
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quency may lead to a high energy transmission into the adjacent, non-excited but resonant
subsystem. It results an extremely high coupling loss factor for the energy flow from the
excited subsystem with very little energy to the non-excited subsystem oscillating at reso-
nance. This possibly leads to a negative coupling loss factor between the resonant and the
excited subsystem, because otherwise the power flow across the excited into the resonant
subsystem cannot be justified (cf. Eq. (2.50)).

Independently of the condition number, the energy influence coefficients contain physically
correct information unless there are errors in the input power or in the subsystem energies.
Especially, the assessment of the input power by means of measurements is challenging
[Mecking et al 2017a]. For instance, the determination of the phase shift between force and
velocity at the shaker position is error-prone. Then, the condition number can be used to
detect these errors which might be helpful for both numerical simulations and measurements.
Hence, an ill-conditioned energy influence coefficients matrix is not necessarily an indicator
of strong coupling, which would impede a modeling by the classical SEA.

The condition number is not able to detect other violations of the SEA requirements like e.g.
an indirect coupling or a high variation in coupling strength due to coupling loss factors of
different orders of magnitude. As long as the direct or indirect coupling of two subsystems
is not exceptionally strong, the condition number does not indicate that as exemplified in
subsection 4.4.2.

"SEA-like" vs. Classical SEA

For a single realization, the coupling loss factors based on the EFA are valid over the whole
frequency range including negative values and indirect coupling. To emphasize that they
do not necessarily fulfill the SEA assumptions they are also called apparent coupling loss
factors by Thite and Mace [2007]. The specific loading potentially leads to non-resonant
contributions, especially in the case of large damping since the phase shift between velocity
and force reaches more slowly the asymptotic value of +/− π

2 where the power input equals
to zero (cf. Fig. 3.3). Moreover, the loading might only excite a few modes within a frequency
band which may not represent the modes of the ensemble properly.

A Rain-on-the-Roof excitation, which is presented in subsection 3.3.1, is used to excite
sufficient modes within a frequency band. Furthermore, these mode shapes should be typical
of all the modes characterizing the energy distribution within the system. Here, also the
SEA assumption of uniform damping mentioned in subsection 2.3.2 applies. In this case,
the two necessary SEA conditions - the conservation of energy and the consistency relation,
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Figure 3.3: Excitation of a single eigenmode: The phase shift ∆φ = φv − φF between velocity and force
varies for different values of the damping ratio D.

which are introduced in subsection 2.3.1 - should be fulfilled according to Mace [2003]. This
indicates that only resonant transmission is considered or is at least dominating [Wang and
Lai 2005]. It results a quasi-SEA matrix which can be evaluated by an "SEA-like" analysis.
The quasi-SEA matrix may contain negative or indirect coupling [Mace 2003]. Especially in
case of light damping, the coupling loss factors depend on the damping and on the global
properties of the structure rather than on the local ones.

Finnveden [2011] presents and relates various criteria to estimate the strength of coupling
(cf. subsection 2.3.3). However, there is no generally agreed property to determine weak
coupling. Independently of the strength of coupling, the coupling power proportionality,
which is linked to the consistency relation, strictly is only exact for the ensemble average.
The reciprocity relationship is still valid for all power flow paths indicating that only resonant
transmissions, either direct or indirect, are considered. Averaging then over suitable wide
frequency bands with enough typical modes can also be interpreted as an approximation of
an ensemble average over similar, but slightly different systems. [Mace 2003]

Excluding indirect and negative coupling leads to a proper-SEA matrix fulfilling all SEA
assumptions [Mace 2003]. If this is done manually, the loss factor matrix describes a modified
system which can be evaluated using the classical SEA. Then, the coupling loss factors are
assumed to be independent of the damping loss factors and to depend only on the junction
plus the physical properties of the subsystems connected to that junction. Thus, isolating the
subsystems connected to one junction leads to equal coupling loss factors as if the subsystems
form part of a larger structure. Based on this assumption of weakly coupled subsystems,
e.g. an L-, T- or X-junction can be extracted out of a multistory building. In contrast, the
energy influence coefficients implicitly depend on the whole system. [Mace 2003]
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3.2.4 Vibration Reduction Index - Engineering Quantity

The European standard [DIN EN ISO 12354-1 2017] applies engineering quantities which en-
able simplified, approximate predictions implicating a considerably reduced validity. Within
the scope of the subsequent paragraphs, the concept based on approximations is shortly
presented for the impact sound insulation between two rooms. Subsequently, the so-called
vibration reduction index, which aims to characterize the sound transmission behavior of
a junction, is firstly introduced on the basis of the velocity level difference between two
adjacent components, secondly derived from the wave approach and thirdly linked to the
coupling loss factors from the EFA. In this regard, the computation based on surface ve-
locities resulting from a measurement or a simulation is addressed. Moreover, the different
simplifications and drawbacks are contrasted.

The sound transmission between two adjacent rooms consists of various transmission paths.
Beside the direct transmission through the separating component, the flanking transmission
plays an important role for the prediction of structure-borne sound transmission. Thus,
the proof of the suitability of individual components has been augmented towards a proof
of the suitability of buildings in the past decades [Schneider et al 2006]. By means of an
energetic addition, the individual paths, for which the sound transmission is assumed to be
independent, are taken into account.

For the impact sound insulation between two rooms on top of each other, the normalized
impact sound pressure level due to direct transmission Ln,d and the normalized impact sound
pressure levels of each flanking transmission path Ln,ij are summed up [DIN EN ISO 12354-2
2017]:

L
′

n = 10 lg

100.1Ln,d +

np∑

j=1
100.1Ln,ij


 (3.49)

This opens up the need of input data of the acoustic properties of the building elements as
well as of the junction applied.

The European standard DIN EN ISO 12354-1 [2017] describes the structure-borne energy
which is transported across a junction by means of the vibration reduction index Kij on the
basis of the approach from Gerretsen [1979, 1994]. For instance, it is used to approximately
predict the normalized impact level for the flanking transmission path Ln,ij by means of
Eq. (3.50). Thereby, this transmission path consists of the normalized impact level of the
excited ceiling Ln as well as an optional reduction due to a floor covering ∆L, the mean
sound insulation index R of source and receiver component as well as an optional reduction
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due to a lining in front of the receiver component ∆R. Moreover, it comprises the direction-
averaged velocity level difference < Dv,ij > and it is normalized by means of the logarithmic
ratio of the component areas A. The index "situ" represents the quantities which prevail in
factual field situations and < > represents direction-averaged quantities. [DIN EN ISO
12354-2 2017]

Ln,ij =Ln,situ −∆Lsitu + Ri,situ −Rj,situ

2

−∆Rj,situ− < Dv,ij,situ > −5 lg
(
Ai
Aj

)
(3.50)

Velocity Level Difference

While planing a construction project, the idea is that the direction-averaged velocity level
difference can be predicted by means of the direction-averaged vibration reduction index,
the junction length lij as well as the equivalent absorption lengths ai and aj of the respective
adjacent components i and j:

< Dv,ij,situ >=< Kij > −10 lg
(

lij√
ai,situ aj,situ

)
(3.51)

The absorption length ai considers the total loss factor η0
ii of the adjacent component i

(cf. subsection 3.2.2), and is referred to as equivalent because a fictive critical frequency of
fref = 1000 Hz is chosen. Hereby, c0 constitutes the velocity of sound propagating in air and
fm states the band center frequency.

ai = η0
iiAi

π2

c0

√
fmfref (3.52)

The vibration reduction index is an invariant quantity as the direction average of the velocity
level differences Dv,ij and Dv,ji is normalized to the ratio of the junction length and of the
equivalent absorption length of the adjacent components [DIN EN ISO 12354-1 2017].

< Kij >= Dv,ij +Dv,ji

2 + 10 lg
(

lij√
ai aj

)
(3.53)

Dv,ij describes the velocity level difference between component i and j due to excitation of
component i:

Dv,ij = Lv,i − Lv,j (3.54)
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Equation (3.51) contains the so-called "in-situ"-correction to predict the factual direction-
averaged velocity level difference < Dv,ij,situ > by means of the invariant vibration reduction
index: The relation to the fictive critical frequency cancels and it is taken into account that
total loss factor in the factual field situation is higher compared to a free-standing L-, T- or
X-junction in the laboratory.

As shown in the subsequent paragraphs, the idealization of the junction by means of the
vibration reduction index is only valid, if the SEA assumptions are fulfilled. In the frequency
range below, coupling quantities like the vibration reduction index depend on the geometry
of the adjacent components and thus, they cannot be exclusively described by the junction.

Excursus: Measured Velocity Level The international standard DIN EN ISO 10848-1
[2006] defines how to proceed in the case of the corresponding measurement under laboratory
conditions. The velocity level of a single component Lv results from the spatial average of
the velocity levels Lv,k at nmp measurement positions.

Lv = 10 lg
(

1
nmp

nmp∑

k=1
100.1Lv,k

)
with Lv,k = 20 lg



|vz,k|√

2
vref


 (3.55)

Lv,k relates the time-averaged surface velocity perpendicular to the plate |vz,k|√2 to the reference
velocity vref = 10−9. Inserting Lv,k, the energetic mean of the measured velocities results:

Lv = 10 lg




1
nmp v2

ref

nmp∑

k=1

∣∣∣vz,k
∣∣∣
2

2


 (3.56)

Transmission Coefficient and SEA Coupling Loss Factor

According to annex E of DIN EN ISO 12354-1 [2017], the vibration reduction index bases
upon the transmission coefficient τij between bending wave fields. Equation (3.57) contains
the normalization to the critical frequency of the receiver component fc,j and to the fictive
one fref . This corresponds to a normalization of the transmission coefficient regarding the
material and the geometry of the receiver component and leads to the invariant vibration
reduction index. Thus, it is direction independent for pure bending wave transmission as
derived in subsection 4.2.2.

Kij = −10 lg (τij) + 5 lg
(
fc,j
fref

)
= −10 lg (τji) + 5 lg

(
fc,i
fref

)
(3.57)
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Figure 3.4: Incident, reflected and transmitted wave at an L-junction assuming only bending waves.

with the critical frequency

fc =
√
ρ h

B

c2
0

2π (3.58)

The transmission coefficient is defined as ratio of transmitted and incident power at a junc-
tion. Hence, the vibration reduction index is only applicable in the mid-frequency range
where the prerequisites of the wave approach for plate-like structures apply (cf. introduction
of chapter 3). As sketched in Fig. 3.4, this comprises the assumption, that a junction of
two semi-infinite plates is investigated which is fulfilled if the reflections occur with a clearly
smaller amplitude or incoherently to the excitation. Assuming a diffuse field, all angles of
incidence are regarded to have the same probability. Hence, it can be integrated over the an-
gle dependent transmission coefficient. In plates, the diffuse field assumption is first allowed
at higher frequencies compared to the adjacent rooms. Reaching a sufficient modal density,
it has to be taken into account that modes with very slightly differing eigenfrequencies may
arise due to parallel edges and that these eigenfrequencies are not equally distributed over
the frequency range. Here, the anatomy of wood and the different layers of CLT as well as
possible window openings have a positive effect as they lead to additional, rather arbitrary
reflections. Therefore, the modal density is not increased but the modes are spread more
randomly over the frequency range. Applying the SEA, an equipartition of the modal en-
ergy over the frequency range is supposed as introduced in section 2.3. This equipartition
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is accordingly expected over the angles of incidence. Therefore, by means of the angle-
independent transmission coefficient the coupling loss factor ηij between two subsystems can
be calculated [Hopkins 2007]:

ηij = τij cg,i lij
2π2fAi

(3.59)

The energy is transported with the group wave velocity cg,i. Solving Eq. (3.59) regarding
τij and inserting it into Eq. (3.57), the vibration reduction index on the basis of ηij results,
which has been included into the actual draft of DIN EN ISO 12354-1 [2017]:

Kij = −10 lg

ηij

π2Ai
c0 lij

√√√√fc,i
fc,j

√
freff


 (3.60)

Here, thin plate theory is assumed which constitutes another limitation of the vibration
reduction index beside the exclusive transmission between bending wave fields. According
to subsection 2.2.3, the cross-over frequency from thin to thick plates depends on the group
wave velocity for the vibration reduction index. Introducing the group wave velocity of
effective bending waves (cf. Eq. (2.43)) and the corresponding coupling loss factor enables
an extension to thick plates:

Kij = −10 lg
(
ηij 2π2fAi
cg,eff,i lij

)
+ 5 lg

(
fc,j
fref

)
(3.61)

Thus, the vibration reduction index describes the exchange between subsystems of effective
bending waves. Since they consist of bending and out-of-plane shear waves, they represent
the oscillation perpendicular to the plate also at higher frequencies. By contrast, in-plane
wave transmission is not included.

Coupling Loss Factors from the EFA

The energy exchange between every wave field of two adjacent plates is described by the
coupling loss factor computed with the EFA (cf. subsection 3.2.2). In contrast to the SEA, the
EFA enables a prediction for a specific scenario at lower frequencies. Due to the deterministic
procedure, the postulation of a statistical equipartition of modal energies does not apply in
the case of the EFA. The different velocities, by which the energy is transported in the
individual wave fields, is implicitly comprised in the coupling loss factor. Applying (3.61),
the group wave velocity of only one wave type can be considered. Hence, even using coupling
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loss factors from the EFA a limitation to effective bending waves or more precisely to the
frequency range, where the bending wave transmission prevails, results.

To only account for the bending wave transmission already while determining the coupling
loss factors, the bending wave energy is estimated by means of the out-of-plane velocity
averaged over all surface nodes nsn,i of plate i for the excitation of plate j. In the style
of a measurement, the time-averaged, total energy in Eq. (3.40) is replaced by twice the
perpendicular translational part of the time-averaged, kinetic energy depending on the mass
mi.

Eij = 2Eij,kin(vz) = mi

nsn,i

nsn,i∑

k=1

|vz,k|2
2 = mi

2nsn,i

nsn,i∑

k=1
<
(
vz,k

)2
+ =

(
vz,k

)2
(3.62)

Simplified Approach Assuming only Two Subsystems Neglecting the energy flow into
a third or more subsystems, ηij can be approximated by Eq. (3.63) for subsystem i being
excited. To avoid using the EFA in this procedure, the total loss factor η0

j of subsystem j

must be estimated e.g. by empirical expressions from Hopkins [2007] or measuring the
structural reverberation time.

ηij = Eji
Eii

η0
j (3.63)

If the total energies in Eq. (3.63) are replaced by the expression (3.62) before the resulting
ηij is inserted into Eq. (3.60), the direction-averaged vibration reduction index based on the
velocity level difference results as depicted in Eq. (3.53). Due to the averaging over both
transmission directions, the mass of the components is eliminated.

3.3 Robust Estimation of the Energy Influence Coefficients

The EFA offers the possibility to compute either the energy influence coefficients for a specific
load scenario or - in case the load is unknown - for a so-called Rain-on-the-Roof (RotR)
excitation. The latter shall lead to robust energy influence coefficients which are as universal
as possible for various types of loads to be able to generally assess the vibroacoustic behavior
of a junction. Therefore, RotR shall ensure the participation of all modes in the system
response. Furthermore, the excitation shall be statistically independent to avoid a coherent
modal response and to fulfill the SEA assumption of equipartition of modal energy. [Hopkins
2007]
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The concept of RotR is introduced in subsection 3.3.1. Starting with the theoretical concept,
implementations and implications related to SEA assumptions are discussed. Finally the
statistical properties of the presented implementation inside the EFA are derived. To be
able to retrieve robust quantities, an additional averaging over realizations with varying load
sets of RotR is used. In Eq. (3.64), the mathematical problem description from section 3.1
is augmented and explained in detail in subsection 3.3.2.

Aij = 1
nr

nr∑

r

Ãij = 1
nr

nr∑

r

∫ fu
fl

∫ T
0
∫

Θi Ee (x,t,f) dΘdtdf
∫ fu
fl

∫ T
0
∫
Θj Pe (x,t,f) dΘdtdf

(3.64)

In subsection 3.3.3, a concept is presented to estimate the deviation of the sample mean
from the true mean. Moreover, for a desired accuracy the necessary number of realizations
can be predicted.

3.3.1 Rain-on-the-Roof

Theoretical Concept

The pressure p(x,y,t) on the plate due to an ideal RotR excitation is zero mean and uncor-
related as well as homogeneous and stationary in space and time, respectively. Within this
thesis, the characteristics stationary and homogeneous imply second order stationary and
second order homogeneous, respectively. Whereas second order stationary means that the
mean and the variance of a random process are constant within the time domain as well
as the autocorrelation function depends only on the temporal distance between two points,
second order homogeneous denotes the spatial equivalent for a random field [Papaioannou
2016].

The characteristics of any stationary signal can be determined by the mean and the auto-
correlation function. The latter one describes the correlation between two points in time
and space. The autocorrelation of the ideal RotR excitation is characterized by dirac delta
functions δ and a constant amplitude S0:

Rpp(ξx,ξy,τ) = E [p(x,y,t) p(x+ ξx, y + ξy, t+ τ)] = S0 δ(ξx)δ(ξy)δ(τ) (3.65)

It depends only on the vector (ξx,ξy) between the two observation points and the time
interval τ between the two observations. For ξx = ξy = τ = 0 the autocorrelation function
corresponds to the mean square of the signal going to infinity, otherwise it is equal zero.
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Performing a threefold Fourier transformation, the three-dimensional spectral density yields:

Spp(kx,ky,ω) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Rpp(ξx,ξy,τ)e−i(kxξx+kyξy+ωτ)dξxdξydτ = S0 (3.66)

It is constant and therefore independent of frequency as every frequency component is equally
represented which is the definition of white noise. To reproduce it physically, the random
character has to be limited to a certain frequency range. [Nilsson and Liu 2015, 2016]

Applying RotR within the scope of a modal approach, the modal force of mode i with the
corresponding eigenvector Φi is

pi =
∫ b

0

∫ l

0
p(x,y,t) Φi(x,y) dxdy (3.67)

and has the cross-correlation of two modal forces

Rpipj(τ) = E [pi(t)pj(t+ τ)] = S0 δ(τ) δij (3.68)

where δij states the Kronecker delta resulting from the orthonormality of the normalized
eigenmodes. Thus, the modal forces are uncorrelated white noises with the same power
spectral density S0. [Lafont et al 2013]

Implementation and Implications Related to SEA Assumptions

For a strict RotR field, it would be necessary to excite an infinitely large frequency band
by an infinite number of uncorrelated excitation points. Hence, to perform a realizable
RotR excitation, different approaches have been presented in literature. Lafont et al [2013]
compares a point force with a set of random point forces having a constant power spectral
density in a frequency band. They observe the energy at different points on a plate to examine
if the vibration field is diffuse. Another SEA assumption, namely the energy equipartition,
is verified comparing the modal energies. Lafont et al [2013] show that energy equipartition
is a direct consequence of RotR excitation and leads to diffuse field conditions. The converse
is not true as the diffuse field state can either be reached by suitable values of damping (low)
and frequency (high) or forced by a RotR excitation. The RotR excitation is approximated
by increasing the number of forces and it results that a large number is convenient to fulfill
the two mentioned SEA assumptions. At low frequencies where the structure shows modal
behavior, neither equipartition of energy nor a diffuse field occur. The latter can be reached
by RotR excitation. On a highly damped structure, a dominant direct field arises due to a
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single load oscillating with a large excitation frequency. Using RotR instead, equipartition
of energy can be reached and hence the plate is dominated by the diffuse field. In the scope
of the EFA, the influence of the number of loads for RotR and of their locations is discussed
in section 4.5 and subsection 4.3.3.

[Mace 2003] proposes a load vector whose amplitude is proportional to the local mass den-
sity of the corresponding subsystem. Within the scope of a component-mode synthesis, all
subsystem modes are excited by equal modal forces (cf. Eq. (3.67)) such that the direct
wavefield receives a uniform power input. To make the excitation incoherent, it is spatially
delta-correlated [Mace and Shorter 2000].

Statistical Properties of the Implementation inside the EFA

For the EFA, the RotR excitation is realized by a spatially varying phase distribution which is
modeled as a random field. At each location on the plate, the phase has the same distribution.
Therefore, φ(x,y) defines a strictly homogeneous, random field, where the marginal distri-
butions at each point are described by independent uniform distributions U(0,2π) with the
mean equal π. The autocorrelation coefficient function of the phase can be described by dirac
delta correlation functions depending only on the distance between two locations (ξx,ξy):

ρφφ = δ(ξx)δ(ξy) (3.69)

Based on a time-harmonic excitation, the random process p(x,y,t) is generated by the spa-
tially varying phase:

p(x,y,t) = p0 cos (Ωt+ φ(x,y)) (3.70)

Thereby, the random field indicates an individual phase shift for each spatial location.

Subsequently, the autocorrelation function and the three-dimensional spectral density are
compared to the theoretical concept of the RotR excitation introduced in Eq. (3.65) and
(3.66), respectively. Since all locations on the plate are independent and identically dis-
tributed as U(0,2π), the notation ϕ = φ(x,y) is introduced. Firstly, the mean value of the
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excitation p(x,y,t) is computed [Lutes and Sarkani 2004]:

µp(x,y,t) = E[p(x,y,t)] = p0 E [cos (Ωt+ φ(x,y))] (3.71)

= p0

∫ ∞

−∞
fϕ(ϕ) cos (Ωt+ ϕ) dϕ (3.72)

= p0

∫ 2π

0

1
2π cos (Ωt+ ϕ) dϕ = 0 (3.73)

The autocovariance function Kpp corresponds to the autocorrelation function Rpp because
the mean value is equal to zero and therefore, it does not affect Kpp:

Kpp = E [p(x1,y1,t1) p(x2,y2,t2)]− µp(x1,y1,t1)µp(x2,y2,t2) = Rpp (3.74)

The autocorrelation function of p(x,y,t) is derived by means of the subsequent expressions:

Rpp = E [p(x1,y1,t1) p(x2,y2,t2)] (3.75)
= p2

0 E [cos (Ωt1 + φ(x1,y1)) cos (Ωt2 + φ(x2,y2))] (3.76)

To determine the expected value in expression (3.76), two cases have to be distinguished:

Case 1: x1 6= x2 ∨ y1 6= y2

Here, the two random variables at location x1, y1 and x2, y2 are uncorrelated, independent
and identically distributed:

Rpp = p2
0

{∫ ∞

−∞

∫ ∞

−∞
fϕ1(ϕ1)fϕ2(ϕ2) cos (Ωt1 + ϕ1) cos (Ωt2 + ϕ2) dϕ2dϕ1

}

= p2
0

{∫ 2π

0

∫ 2π

0

1
(2π)2 cos (Ωt1 + ϕ1) cos (Ωt2 + ϕ2) dϕ2dϕ1

}
= 0 (3.77)

Case 2: x1 = x2, y1 = y2 → φ(x1,y1) = φ(x2,y2) = ϕ

Now, both locations coincide and thus, the phase shift can be described by the same vari-
able ϕ. The identity cos(α) cos(β)2 = cos(α + β) + cos(α − β) is applied to the expres-
sion (3.76):

Rpp = p2
0

2

{∫ 2π

0

1
2π cos [Ω(t1 + t2) + 2ϕ] + cos [Ω(t2 − t1)] dϕ

}

= p2
0

2 cos [Ω(t2 − t1)] (3.78)
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The resulting expression depends only on the difference between the two points in time τ =
t2−t1. Hence, the excitation possesses stationarity of the mean value and the autocorrelation
function. Therefore, the autocorrelation can be written as:

Rpp(τ) = p2
0

2 cos (Ωτ) (3.79)

Merging both cases, the spatial correlation behavior is expressed by dirac delta correlation
functions depending only on the distance between two locations (ξx,ξy):

Rpp(ξx,ξy,τ) = p2
0

2 cos (Ωτ) δ(ξx)δ(ξy) (3.80)

As the signal is time-harmonic, its autocorrelation function yields a harmonic function with
the same period T = 2π

Ω . With the assumption that the elements are infinitesimal small,
which might be nearly fulfilled at low frequencies relating the element side length to the wave
length, the expression holds for the scenario that all surface elements within a subsystem
are loaded (nl =max.). The effect due to an approximation by a reduced number of loaded
elements is investigated in section 4.5.

Considering the mesh of the FE model, the random field consisting of an infinite number
of random variables is discretized by means of the midpoint rule to one random variable
per surface element φe. Therefore, the number as well as the size of the surface elements
coincides with the stochastic elements. Hence, the RotR concept is expressed by means of
element-wise Heaviside step functions H:

pnl(x,y,t) = p0

nl∑

e

cos (Ωt+ φe) H (x− xe−, xe+ − x)H (y − ye−, ye+ − y) (3.81)

Thereby, the indices + and - represent the edges of the loaded element at a distance of he
2

from the element center xe and ye which is exemplarily demonstrated for the x-direction:

xe− = xe −
he
2 xe+ = xe + he

2 (3.82)

The RotR excitation of the ceiling of an L-junction is illustrated in Fig. 3.5 by different
shades of red for different phases.
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Figure 3.5: RotR: Loading all surface elements of the ceiling of an L-junction. The shades of red indicate
the varying phase.

In the original space (x,y), the power spectral density of the random process p(x,y,t) results
from a Fourier transform of Eq. (3.80) [Nilsson and Liu 2015; Brigham 1988]:

Spp (ξx,ξy,ω) = δ(ξx)δ(ξy)
∫ ∞

−∞
Rpp(τ)e−iωτdτ (3.83)

= δ(ξx)δ(ξy)
p2

0
2

∫ ∞

−∞
cos (Ωτ) e−iωτdτ (3.84)

= δ(ξx)δ(ξy)
π p2

0
2 [δ(ω − Ω) + δ(ω + Ω)] (3.85)

Performing a threefold Fourier transformation, the three-dimensional spectral density yields
in the wave number domain (kx,ky):

Spp(kx,ky,ω) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Rpp(ξx,ξy,τ)e−i(kxξx+kyξy+ωτ)dξxdξydτ (3.86)

= π p2
0

2 [δ(ω − Ω) + δ(ω + Ω)] (3.87)

A stationary process leads to a symmetric correlation function related to τ (cf. Eq. (3.80)).
Hence, it results an even spectral density. Therefore, the physically realizable one-sided
spectral density Gpp can be defined:

Gpp (kx,ky,ω) = 2Spp (kx,ky,ω) = π p2
0 δ(ω − Ω) for ω ≥ 0 (3.88)

Gpp (kx,ky,f) = p2
0

2 δ (f − fk) for f ≥ 0 (3.89)

In the presented approach, the amplitude of the spectral density is independent of the
frequency using the the same pressure amplitude p0 at each frequency of excitation fk.
Unlike white noise, which corresponds to a broad band signal with a constant spectral
density over the whole frequency band, selected frequencies are excited subsequently with
the same spectral density followed by a numerical interpolation as explained in subsection
3.1.4. Compared to the theoretical RotR concept described in Eq. (3.65) and (3.66), the limit
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case of the presented RotR concept, which consists of a harmonic excitation of all elements
having an infinitesimal small side length, is also homogeneous, stationary and uncorrelated
in space, but correlated in time according to Eq. (3.80).

Once, the auto- and cross-spectral densities of the excitation are calculated, the spectral
densities of displacement and velocity can be determined if the frequency response function
is known. Hereby, the time average of the kinetic and potential energy as well as of the input
power can be computed.

As shown for a single degree of freedom system in Nilsson and Liu [2015, 2016], the kinetic
and potential energy are equal for white noise excitation. This holds for harmonic excitation
only at resonance. For white noise, the time average of the total energy is proportional to
the time average of the input power. In the case of harmonic excitation, this relationship
depends on the type of damping. As shown in subsection 2.1.4 for the applied, stiffness
proportional damping, the proportionality holds between the input power and the potential
energy, whereas in case of viscous damping the input power would be proportional to the
kinetic energy.

3.3.2 Averaging over Realizations

As mentioned in subsection 3.1.2, pressure is applied on selected elements to avoid singu-
larities in the presented approach. Loading each element (nl=max.) perpendicular to the
surface with the same pressure and a random phase results in an approximation of a spatially
delta-correlated excitation. Due to loading at the surface and unlike the SEA, a non-resonant
excitation of predominantly thickness modes is induced (cf. subsection 2.2.5). To quantify
the influence of the random phase on the energy influence coefficient, its statistical behavior
is investigated by comparing different realizations of the above mentioned loading. There-
fore, the coefficient of variation cA is used, which is a relative measure as it normalizes the
sample standard deviation sA by the sample mean A (cf. Eq. (3.90) to (3.92)) [Papaioannou
2016]. The band averaged energy influence coefficient Ãrij of one single realization r results
from Eq. (3.41). For readability, its notation is purified to Ar.

E [A] = A = 1
nr

nr∑

r=1
Ar (3.90)

Var [A] = s2
A = 1

nr − 1

nr∑

r=1

(
Ar − A

)2
(3.91)
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cA = sA
A

(3.92)

Contrary to the weighted averaging per frequency band, the average over nr different real-
izations is performed unweighted. The latter technique is chosen due to reasons of simplicity
regarding further statistical evaluations. If the power is used as a weighting factor, this will
lead to an additional correlated random variable like in Eq. (3.41). Equation (3.93) shows
the relationship between the two averaging techniques by an second order Taylor series ex-
pansion, where ρEP denotes the Pearson correlation coefficient between energy and power.
The expression in the inner brackets scaled by cP , the coefficient of variation of the power,
makes the difference. Since cP becomes small with increasing frequency, the two averaging
techniques slightly differ only at low frequencies comparing the standard deviation and the
mean (cf. Fig. 4.50 in subsection 4.5.2).

A = E [A] = E
[
E

P

]
≈ E

P
(1 + cP (cP − ρEP sE)) (3.93)

3.3.3 Confidence Interval of the True Mean - Number of Realizations

The upcoming question is, if the true mean of the energy influence coefficient µA, which
results from an unlimited number of repetitions, can be estimated with a certain precision
by averaging over an affordable number of realizations nr,min. One possible measure is the
confidence interval which potentially includes the true mean. If the execution of nr,min
realizations is repeated, the confidence level describes for how many cases the interval will
include the true mean. A certain confidence level of (1 − α) is related to a confidence
interval I by Pr(µA ∈ I) = 1− α. Hence, the 100 (1− α) % confidence interval for the true
mean results in [Zeidler 2013]

A− t(1−α2 )
sA√
nr

< µA < A+ t(1−α2 )
sA√
nr

(3.94)

whereby the variance of the sample mean A is estimated by:

Var[A] = Var [A]
nr

= s2
A

nr
(3.95)

In Eq. (3.94), t(1−α2 ) describes the (1 − α
2 ) quantile of Student’s t-distribution with nr − 1

degrees of freedom [Zeidler 2013]. Equation (3.94) is based on the assumption that the
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mean value follows a normal distribution with A ∼ N (µA, σA√nr ) [Zeidler 2013]. This holds
accordingly to the central limit theorem as the energy influence coefficient can be considered
as an independent and identically distributed random variable. As the sample standard
deviation is used to replace the true one, the quantile values are taken from the t-distribution
instead of the normal distribution [Zeidler 2013]. Inserting Eq. (3.92) in Eq. (3.94) leads to
the following limits of the confidence interval:

A

(
1∓ t(1−α2 )

cA√
nr

)
(3.96)

There are different possibilities to characterize the uncertainty. As the energy influence
coefficient shows a high variation in magnitude over the entire frequency range, a relative,
logarithmic deviation is chosen as a measure. Hence, the level difference between the sample
and the true mean should be smaller than the relative error D:

|LA − LµA| <D with LA = 10 lg
(
A

Aref

)
and Aref = 10−12 (3.97)

Expression (3.97) can be rewritten as:
∣∣∣∣∣10 lg A

µA

∣∣∣∣∣ <D ⇔ −D < 10 lg A

µA
< D

After some transformations, the following interval arises:

⇔ 10−D10 A < µA < 10D
10 A (3.98)

⇔
(
1− 10D

10
) √nr
cA︸ ︷︷ ︸

tl

<
A− µA

sA√
nr︸ ︷︷ ︸

:=T∼tnr−1

<
(
1− 10−D10

) √nr
cA︸ ︷︷ ︸

tu

(3.99)

If expression (3.97) should be fulfilled with a probability of (1− α), it holds equivalently:

Pr (|LA − LµA| < D) = 1− α
⇔ Pr (tl < T < tu) = 1− α
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Figure 3.6: Number of realizations nr for the deviation D from the true mean µA based on cA = 0.5.

The probability that T lies in the interval of tl and tu can be expressed by evaluating the
cumulative distribution function of the Student’s t-distribution FT at the interval limits
[Zeidler 2013]. These are determined in Eq. (3.99).

⇔ FT (tu)− FT (tl) = 1− α (3.100)

Expression (3.100) either delivers nmin by solving it numerically or is evaluated for explicit
values of nr, D and cA to be depicted in contour plots like in Fig. 3.6. These curves are
calculated on the basis of the coefficient of variation cA = 0.5. For the investigation in
subsection 4.5.1, cA = 0.5 is the worst case if e.g. the frequency range below the first
thickness-stretch resonance (3860Hz) and an excitation with greater or equal five loads is
considered (cf. Fig. 4.49). Choosing e.g. a maximum deviation of D = 1 dB from the
true mean, a simulation consisting of a minimum number of n = 37 realizations has to be
performed that - repeating the simulation several times - in 99 % of the repetitions the true
mean lies within the corresponding confidence interval. In the case, the required number of
realizations becomes small the prerequisites of the presented procedure might be violated.

Having performed the required number of realizations, its logarithmic deviation from the true
mean can be determined by means of Eq. (3.100). Therefore, the corresponding number of
realizations, the resulting coefficient of variation as well as the desired confidence level is
inserted. Equation (3.98) delivers the respective confidence interval of the true mean. The
confidence interval for a confidence level of 99% is shown exemplarily in Fig. 3.7 together
with the sample mean of 37 realizations for a RotR excitation with five loads. According
to the corresponding investigation in subsection 4.5.1, the coefficient of variation varies over
the frequency (cf. Fig. 4.49). Thus, only at 200Hz the deviation reaches 1 dB and above
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Figure 3.7: Sample mean (—) plus 99 % confidence interval (− · −) of energy influence coefficients Aij

based on 37 realizations for nl = 5.

the first thickness-stretch resonance the deviation is greater D = 1 dB resulting in a larger
confidence interval.

The presented procedure opens up the possibility to find a minimum number of realizations
in order to compute energy influence coefficients within a certain confidence interval [Winter
et al 2017c]. Furthermore, it can be applied to other random variables like coupling loss
factors by considering their statistical behavior. In addition, other uncertainties can be
covered like choosing the material data as random input variables.
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4 Investigations by means of the Energy

Flow Analysis

In this chapter, the EFA is applied to various scenarios: On the one hand to show the
possibilities which the EFA offers and on the other hand to describe the frequency depen-
dent transmission behavior of junctions which consist of CLT components. It starts with an
overview of the used configurations together with modeling aspects and comparisons to mea-
surements in section 4.1. Section 4.2 focuses on the wave types and the transmission behavior
of different types of plates starting with a pinned L-junction of thin, isotropic plates and
ending up with a non-pinned L-junction of thick, orthotropic plates. Thereby, the vibration
reduction index is discussed and compared to analytical solutions of the SEA. Section 4.3
continues with thick, orthotropic plates which represent CLT components. Thereby, geome-
try and point of excitation are varied to examine the corresponding sensitivity of the energy
flow in dependency on the frequency range. Moreover, modifications at the junctions are
performed (cf. subsection 4.4): Firstly, an elastic interlayer is inserted between wall and
ceiling to model different types of connections, secondly, a ceiling is connected via a bracket
to a continuous wall and thirdly, from two over three up to four components are connected
leading to a comparison of L-, T- and X-junction. Finally, the effect of the used number
of loads for a RotR excitation is examined comparing 100 realizations and their statistical
properties on each of six different numbers of loads.

4.1 Used Configurations and Modeling Aspects

This section gives a summary over the used configurations and includes necessary modeling
aspects. It starts with an overview over the FE models of the different types of junctions
and their possible modifications (cf. subsection 4.1.1). In subsection 4.1.2, the material and
geometry parameters used within this thesis are introduced on the basis of comparisons with
measurements and referred to the corresponding subsections. Moreover, the modeling and
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possible configurations of an elastic interlayer are presented in subsection 4.1.3. Subsec-
tion 4.1.4 lists shortly the different types of loads to excite the subsystems. The necessary
resolution in the space and the frequency domain have been determined by extensive studies.
Their results are summarized in the corresponding subsections 4.1.5 and 4.1.6 as basis config-
uration for the subsequent investigations. In subsection 4.1.7, the analytical solutions, which
are used for comparisons, are briefly introduced including their boundary conditions.

4.1.1 Models

In this paragraph, the used models are described starting with an short overview:

Plate

L-junction with rigid connection of wall and ceiling

L-junction with elastic interlayer between wall and ceiling

T-junction with rigid connection of the subsystems

T-junction with elastic interlayer between the ceiling and each wall

T-junction with rigid connection of the walls whereby the ceiling is connected via
bracket plus elastic interlayer on top

X-junction with rigid connection of the subsystems

X-junction with rigid connection of the ceilings and elastic interlayer between the
ceilings and each wall

X-junction with separated ceilings and elastic interlayer between the ceilings and each
wall

The models are designed as shell and as solid element models. The corresponding element
types with quadratic shape functions, Shell281 and Solid186, are selected in ANSYS®. The
boundaries opposite to the junction are simply supported. Therefore, the displacement
degrees of freedom are held, whereby for the solid element model, this applies only to the
degrees of freedom in the middle plane in order to allow rotations. The solid element models
contain at least four elements across the thickness to enable shear deformations and through
thickness effects. The shell elements are based on the Mindlin plate theory [Mindlin 1951].
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Figure 4.1: Geometry and subsystem numbering of the solid element models and of one exemplary shell
element model in (d) including elastic interlayers or spring-damper elements, respectively.



72 4 Investigations by means of the Energy Flow Analysis

Table 4.1: Material parameters of timber boards which form the layers of CLT [DIN EN 338 2016; Niemz
and Caduff 2008].

x y z

E 1.1 1010 3.667 108 3.667 108

yx zx zy

G 6.9 108 6.9 108 6.9 107

ν 1.4 10−2 1.4 10−2 3.0 10−1

ρ 450
D 1.2 10−2

Additionally to the axonometry of the plate, a selection of the different junction geometries
is sketched as side elevation in Fig. 4.1. Thereby, the indices of the geometry parameters
are chosen according to the counterclockwise numbering of the subsystems. For clarity, the
geometry of the shell element model is only shown exemplarily for the T-junction in Fig 4.1d.
In the case of shell element models, the elastic interlayer is represented by spring-damper
elements (COMBIN14) [Winter et al 2016]. For each model, the rigid connection results
by setting hij, which represents the thickness of the elastic layer or of the spring-damper
element between subsystem i and j, equal to zero.

The T-junction with a continuous wall due to the rigid connection of both wall subsystems
is only modeled as solid element model. As shown in Fig 4.1e, a bracket with an elastic
interlayer on top is mounted to the wall. Thereby, the elastic interlayer and the ceiling on
top of the elastic interlayer are not connected to the wall.

Pinned Junction Optionally, a simple support can be added at the junction of wall and
ceiling. Since rotations are allowed, the additional simple support shall only admit bending
wave transmission and leads to the denomination pinned L-, T- or X-junction. In the case of
the solid element model, the displacement degrees of freedom in the center of the junction,
which is defined by the intersection of the middle planes of wall and ceiling, are fixed.

4.1.2 Physical Properties of the Subsystems

As explained in section 2.1, CLT consists of several layers of timber boards which are glued
together crosswise. For the individual layers, Tab. 4.1 shows the material properties. As-
suming the strength class C24 for each timber board, values from DIN EN 338 [2016], Niemz
and Caduff [2008] are used within the joint research project showing a reasonable agreement
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Table 4.2: Homogenized material parameters of wall and ceiling in their local coordinate system.

Wall Ceiling / Single plate
x y z x y z

E 1.061 1010 7.605 108 3.667 108 8.243 109 3.123 109 3.667 108

yx zx zy yx zx zy

G 6.9 108 1.725 108 9.857 107 6.9 108 1.725 108 9.857 107

ν 8.5 10−2 6.1 10−2 18.4 10−2 12.9 10−2 6.3 10−2 12.2 10−2

ρ 450
D 1.2 10−2

Table 4.3: Used geometries for junctions consisting of walls and ceilings or for a single plate.

(Sub)section Wall Ceiling Single plate
l b h l b h l b h

2.1.4, 2.2, 2.3.2 2.662 3 0.162
4.1.2 2.5 3 0.081 3.45 3 0.162 2.662 3 0.162
4.1.6, 4.2.4, 4.4.1, 4.5 2.5 3 0.081 3.45 3 0.162
4.3.1 2.5 3/1 0.162/0.081 2.662/3.45 3/1 0.162 2.662 3 0.162
4.3.2 2.5 2/3/4 0.081 2 2/3/4 0.162
4.3.3 2.5 3 0.081 1/2/3/4 3 0.162

4.3.4, 4.3.5, 4.4.2, 4.4.3 2.5 3 0.081 3.45 3 0.162
2.5 3 0.081 3.2 3 0.162

between measured and computed natural frequencies at an L-junction [Mecking et al 2017a;
Paolini et al 2017].

Whereas the wall consists of three layers with the layup 0◦/90◦/0◦, the ceiling contains six
layers with the layup 0◦/90◦/0◦/0◦/90◦/0◦. Thereby, each layer is 0.027 m thick [Deutsches
Institut für Bautechnik 2009, 2014]. Since both layups are symmetric to the middle plane,
the orthotropic material parameters of the layers can be homogenized according to the
procedure explained in subsection 2.1.3. The homogenized material parameters of the CLT
plates depend on their layup and thus, they differ for wall and ceiling (cf. Tab. 4.2). Except
for section 4.5 and introductory examples with isotropic material in subsection 4.2.2 and
4.2.3, all investigations are based on the material parameters in Tab. 4.2, whereby studies at
single plates are performed with the same properties as the ceiling. To complete the applied
physical properties, Tab. 4.3 shows the varying dimensions of the subsystems related to the
corresponding subsections.
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Figure 4.2: Single plate: Model considering each timber layer separately (· · · ) compared to homogenized
material parameters (−); Thickness-stretch resonances of the homogenized material ( ¦ ).

Modeling of Cross Laminated Timber: Layered vs. Homogenized

To investigate the effect of using the material parameters which are homogenized through
the thickness, comparisons at a single-axis spanned ceiling as well as at an L-junction have
been performed. In both investigations, a model considering each timber layer separately is
compared to a model with the homogenized material parameters using the same mesh. To
cope with the shear deformation of the individual timber layers also at high frequencies, two
solid elements are used across the thickness of each layer.

Firstly, the number of modes per one-third octave band of a single plate is opposed. Fig-
ure 4.2a shows a good agreement between the layered and the homogenized model up to
800Hz. Above, less modes arise in the layered model, but both FE models identify the
thickness modes at a similar frequency. This leads to an increase close to the first thickness-
stretch resonance compared to the analytical estimation which uses the homogenized material
parameters.

Secondly, the layered and the homogenized model of the plate are excited at the same 100
locations by RotR. The resulting energy in Fig. 4.2b shows an almost perfect match of the
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(a) 71 Hz (b) 134 Hz (c) 153 Hz (d) 189 Hz
Figure 4.3: Mode shapes of a single-axis spanned plate whose model considers each timber layer sepa-

rately; Colors indicate vector sum of displacements.
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Figure 4.4: Frequency averaged energy influence coefficients of an L-junction: Model considering each
timber layer separately (· · · ) compared to homogenized material parameters (−).

resonances at 41, 45 and 134Hz, whereas the resonances at 71, 154 and 189Hz are shifted to
higher frequencies for the homogenized model. The corresponding mode shapes in Fig. 4.3
indicate that the homogenized elastic modulus perpendicular to the principal span axis of
the plate, Ey, is overestimated by Eq. (2.23). Applying the homogenization, an equivalent,
static bending stiffness is assumed for both principal axis of the CLT plate. For mid and
high frequencies, the characteristic behavior of both models is similar. For the homogenized
model, the higher number of modes per one-third octave band results in a higher energy
level above 1000Hz. Both energy curves escalate for the resonant excitation of the first and
the second thickness modes. The layered model exhibits a comparatively sharp peak shortly
before the first thickness-stretch resonance, fTM,1(cL,z), which is analytically estimated by
means of the homogenized material assuming an infinite plate (cf. Eq. (2.44)).

Thirdly, the frequency averaged energy influence coefficients of an L-junction are compared
in Fig 4.4 for a RotR excitation. The energy flow into the adjacent components, which is
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described by the off-diagonal entries Ãij of the energy influence coefficient matrix, shows
a good agreement in the frequency range up to 50Hz, where the first eigenfrequencies are
relevant. Whereas the influence of the eigenfrequencies, which are moved due to the homog-
enization, becomes visible in the frequency range between 63Hz and 250Hz, the high modal
density leads to similar curves above 250Hz up to 2000Hz. Above 2000Hz, the homogenized
model underestimates the energy flow compared to the layered model.

The further investigations within this thesis are performed by homogenized material param-
eters neglecting the peculiarities of the layered model. The homogenized material simplifies
the modeling and meshing inside the FEM and it enables the use of shell elements. Moreover,
it facilitates comparisons to analytical computations by means of the SEA.

Comparison to Measurements

Figures 4.5 and 4.6 show the energy influence coefficients of two different L-junctions on the
basis of measurements and simulations, which are both evaluated by the EFA. A flexible
(screwed) junction as well as a junction with a damped, elastic interlayer (Sylodyn ND)
have been constructed and measured in the laboratory [Mecking et al 2017a]. Both types of
junctions are introduced more detailed in subsection 4.1.3.

In the measurement, each component is excited successively at two different positions by
an electro-dynamic shaker. The force and acceleration at the shaker position is determined
by means of an impedance head. It has a limited accuracy of +/ − 5◦ determining the
phase shift between force and acceleration [PCB Piezotronics 2017] and thus leads to un-
certainties determining the input power particularly for non-resonant contributions. The
subsystem energies are approximated by the surface velocities perpendicular to the plate
applying Eq. (3.62). They are measured by accelerometers at 54 and 81 positions arranged
in an irregular grid on the wall and the ceiling, respectively [Mecking et al 2017a]. Above
300Hz, the chosen grid becomes too rough to resolve the bending waves [Mecking 2014].
It does not fulfill the Shannon-Nyquist criterion in the space domain [Winter 2012]. For
higher frequencies and thus a sufficiently large modal overlap, the spatial variation of the
amplitudes might be small enough in order to neglect the Shannon-Nyquist criterion for the
evaluation of space averaged energies [Mecking et al 2017b]. The evaluation of the energy in-
fluence coefficients resulting from two different shaker positions per component is performed
by means of Eq. (3.64).

Within the scope of the simulation, it is theoretically possible to use the same excitation
and observation positions as in the measurement. However, the results are prone to be
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(b) Excitation of subsystem 2
Figure 4.5: Frequency averaged energy influence coefficients Ãij of an L-junction with a damped, elastic

interlayer (Sylodyn ND): Calculated by the EFA on the basis of (−) measurements (excitation
with an electro-dynamic shaker successively at two positions per component, evaluation of se-
lected surface velocities perpendicular to the plate) or (−−) numerical simulations (excitation
by RotR with 100 loads perpendicular to the plate, evaluation of potential and kinetic energy).

quite sensitive due to the very specific excitation scenario and the low resolution in space
for the evaluation of surface velocities. This means, small errors in the model assumptions
have an high impact on the results. Therefore, the aim of the simulations is to classify the
junctions preferably universally. Thus, both L-junctions are excited by RotR consisting of
100 loads which are randomly distributed and act perpendicular to the plates. Moreover,
the subsystem energy is determined exactly by summing up the potential and the kinetic
energy.

Comparing measurement and simulation, Fig. 4.5 and 4.6 demonstrate that the main diag-
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(b) Excitation of subsystem 2
Figure 4.6: Frequency averaged energy influence coefficients Ãij of an L-junction with a damped, elastic

interlayer (Sylodyn ND): Calculated by the EFA on the basis of (−) measurements (excitation
with an electro-dynamic shaker successively at two positions per component, evaluation of se-
lected surface velocities perpendicular to the plate) or (−−) numerical simulations (excitation
by RotR with 100 loads perpendicular to the plate, evaluation of potential and kinetic energy).

onal entries Aii show a reasonable agreement up to 1600Hz. This indicates an acceptable
choice of the physical properties for the components, which are listed in Tab. 4.2 and 4.3.

Different effects might be responsible for the deviations at high frequencies: Due to the
thickness modes, the subsystem energies are overestimated by evaluating only the surface
velocities as demonstrated in subsection 4.2.4. If the factual stiffness perpendicular to the
grain is about 30% lower than listed for the boards in Tab. 4.1, the stiffness in thickness
direction of the CLT (cf. Tab. 4.2) is reduced correspondingly. Hence, the CLT plates
already start to vibrate at resonance above 1600Hz according to Eq. (2.44). Moreover, the
stinger has its first resonance above 1100Hz which clearly affects the measurement results
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[Mecking 2014]. For instance, the phase shift between force and acceleration shows significant
deviations which yields an incorrect input power.

In the majority of the one-third octave bands below 1000Hz, the off-diagonal entry A12,
which describes the normalized energy in subsystem 1 due to the excitation of subsystem 2,
shows a qualitatively comparable behavior for each of the two different junctions. The
opposite direction is represented by A21 in Fig. 4.5a and 4.6a. Here, the energy transmission
differs up to one order of magnitude between measurement and simulation especially for the
junction with the damped, elastic interlayer. According to Fig. 4.6a, the decoupling effect
of the Sylodyn ND is overestimated in the numerical model predicting the energy flow from
the wall to the ceiling.

At low frequencies, the outliers indicate that the model could be optimized with respect to
the boundary and coupling conditions. Therefore, a model updating regarding force-induced
vibrations of the coupled structure has to be performed since a comparison of well-separated
eigenfrequencies and eigenmodes, like in Paolini et al [2016], does not consider absolute
values. Ideally, the model updating is continued up to high frequencies in order to predict
the energy flow more precisely. However, the modal overlap increases with the investigated
frequency. This requires alternative updating techniques which also cope with a possibly
frequency dependent behavior of the coupling properties.

The high modal spacing at low frequencies might lead to punctually large deviations, since
the assumption Eij = 2Eij,kin(vz) is only fulfilled at resonance. In the frequency range above
the first global bending mode shapes and below the thickness resonances, the normalized
energy of the indirectly excited componentsAij is underestimated if only the surface velocities
perpendicular to the plane are measured. As explained in subsection 4.2.4, the contribution
of the in-plane waves and effects due to the rotatory inertia are neglected. Subsection 4.3.3
illustrates that the different types of loadings excite different modes and thus lead to an
individual energy flow across the junction which might provoke deviations especially at low
and at high frequencies.

Performing measurements over such a wide frequency range is challenging and thus, a com-
parison to simulations is linked to various uncertainties. As a result, the comparison shows
that the numerical model opens up the possibility to demonstrate the qualitative overall
behavior of two different, real L-junctions. The numerical models with the applied physical
properties serve as basis for various studies and variations in the subsequent sections. Thus,
reaching an optimal match of the coupling behavior in each one-third octave band is not
central within the scope of this comparison.
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4.1.3 Elastic Interlayer

The elastic interlayer consists of four layers of solid elements through thickness to enable
shear deformations within the interlayer (cf. Fig. 4.7). In order to comply with a maximum
element aspect ratio of 1:4, these solid elements have much smaller edge lengths compared
to the adjacent elements of the components. To attach the elements of the interlayer to the
components, constrained equations between the nodes at the interface are used in the same
manner as in Kohrmann [2017]. They open up the possibility of a rigid contact by interpo-
lating the nodal displacements and thus, of an economic meshing of the whole structure.

The material properties in the left column of Tab. 4.4 are used to represent the flexible
behavior of a screwed connection. The density of the interlayer corresponds to the one of the
CLT components. The elastic modulus and the Poisson’s ratio result from a model updating
at low frequencies in comparison with measured natural frequencies of an L-junction [Paolini
et al 2017]. As screws were used in reality, the impedance difference occurs at the interface
between the two CLT plates. In the FE model, the reduced force and moment transmission
compared to a perfectly rigid junction is also taken into account by the interlayer. Thereby,
the soft material enables a decoupling of the movement of the connected plates.

For all modifications, the interlayer modeled with solid elements is 12.5mm thick according
to the factual thickness of the specific elastomer Sylodyn ND [Getzner Werkstoffe GmbH
2012]. This product was used in the measurement setup. For modeling an elastomer with
solid elements, its material properties are recalculated by Negreira et al [2014] and Paolini
et al [2017] since in the manufacturer’s data sheet they are determined based on a compression
test not taking into account the obstruction of transverse deformations. For that calculation,
the manufacturer Getzner Werkstoffe GmbH provided the static shear modulus and the
density. At low frequencies, a comparison with measured natural frequencies of an L-junction
showed that the screwed junction with elastomer can be represented by an elastic interlayer
with the recalculated elastomer properties [Paolini et al 2017]. Investigating the energy
flow over a wide frequency range, the frequency dependent behavior of the elastic modulus
becomes additionally relevant. Due to a lack of data, the elastic modulus is extrapolated for
frequencies above 1000 Hz on the basis of the manufacturer’s data sheet [Getzner Werkstoffe
GmbH 2012].

Moreover, the damping properties of the elastic interlayer are decisive for the energy flow into
the adjacent component. In contrast to the SEA, the EFA is able to model non-conservative
couplings. Therefore, the frequency dependent damping behavior of the elastomer is taken
into account and thus also extrapolated for frequencies f > 1000 Hz. The used material
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Figure 4.7: Detail of FE model:
Elastic interlayer between
wall and ceiling.

Table 4.4: Material and geometry properties of the elastic in-
terlayer to model different types of junctions.

Flexible (screwed) Elastic interlayer (Sylodyn ND)
E 1.18 107 cf. Tab. A.2
ν 0 0.386
ρ 450 700
D 0 0 or cf. Tab. A.2
h 0.0125

properties to model the elastomer Sylodyn ND are given in Tab. 4.4 whereby the frequency
dependent parameters are listed in Tab. A.2.

4.1.4 Types of Loading

As introduced in subsection 3.1.2, loads are realized by means of pressure on selected ele-
ments. By contrast to nodal loads, singularities and thus a dependency on the mesh grid
can be avoided as shown in Winter and Müller [2017]. The EFA opens up the possibility to
apply any number of loads with individual directions, phase shifts and locations.

The loads act mostly perpendicular to the plates, apart from subsection 4.3.4 where out-
of-plane and in-plane loading is compared at a T-junction. This is especially relevant for
machinery induced vibration. Generally, two standard configurations are used: Either a
single load positioned in the center of the plates or a RotR excitation with randomly se-
lected locations is chosen (cf. subsection 3.3.1). RotR is principally performed using 100
loads whereby a comparison between different numbers of loads for RotR is demonstrated
in section 4.5 also including the limit case where all surface elements of a subsystem are
loaded (cf. Fig. 3.5). Since RotR excites nearly every mode, its application shall lead to
an energy flow within the structure which is as representative as possible. This serves for
a general prediction independently of the loading. By contrast, the single load describes a
specific scenario. Since the single load acts in the node of a set of mode shapes, they do not
contribute to this individual energy flow. Independently of the number of loads, the total
force is always 1 N and thus the resulting energies are normalized to an input force of 1 N.

Shell element models ignore through thickness effects. Solid element models behave compa-
rably if a load is applied which is equally distributed across the thickness (cf. subsection 4.3.1
and Fig. 4.17). By comparisons with loads at different locations across the thickness of a
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plate, thickness resonances are identified. This study serves to select the appropriate element
type depending on the loading and the frequency range.

4.1.5 Resolution in Space: Meshing

The meshing of the FE model is oriented at the maximum frequency since there, the min-
imum wave length occurs. This corresponds to the effective bending wave length which is
calculated by means of the effective bending wave velocity given in Eq. (2.38) or approxi-
mated in Eq. (2.39):

λB,eff = cB,eff

f
(4.1)

The effective bending wave length has to be discretized by at least four elements with
quadratic shape functions marking the maximum element side length. This relation was
heuristically determined on the basis of an extensive study at a plate with varying boundary
conditions and loading directions as well as at an L-junction with varying densities. The
investigations are presented in detail by Winter and Müller [2017] and show that in the case
of frequency averaged quantities per one-third octave band, only three elements per wave-
length can be used. This coincides with the results of Thompson and Pinsky [1994], which
recommend three elements per wavelength in the case of quadratic shape functions. Beside
a maximum element side length, the element side ratio should also be taken into account. In
the present studies, it does not exceed a ratio of 1:2 except for the elastic interlayers whose
elements are limited to 1:4.

4.1.6 Resolution in Frequency: Numerical Interpolation

Different techniques are compared for the numerical interpolation and integration of energy
and power leading to frequency averaged energy influence coefficients per one-third octave
bands according to Eq. (3.41): The composite rectangle rule (cf. Eq. (3.36)), the composite
trapezoidal rule (cf. Eq. (3.38)), polynomial interpolation of order two and five as well as
a cubic spline interpolation. Using higher order polynomials does not lead to a better
approximation as they are not appropriate to describe the sharp peaks at the resonances
and they tend to oscillations especially at the borders [Zeidler 2013]. This can be avoided by
splines. Choosing cubic splines, they are defined piece-wisely by polynomials of order three
and twice continuously differentiable. Thus, they have their maximum curvature at the
discrete frequency points, whereas in between they are as smooth as possible. To evaluate as
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Table 4.5: Number of necessary frequency steps per one-third octave band for a deviation below 5 % from
the reference solution evaluated for energy influence coefficients Aij , subsystem energies Eij

and input power Pj [Meisinger 2017].

Center frequency fm: ≤ 1000Hz > 1000Hz
Number of necessary frequency steps

for a deviation < 5 %:
Interpolation method average maximum average maximum

Aij

Rectangle 15 60 6 10
Trapezoidal 8 12 5 8
Polynomial p = 2 8 15 5 10
Polynomial p = 5 10 15 5 10
Cubic spline 8 12 4 8

Eij

Rectangle 30 120 20 30
Trapezoidal 10 15 5 8
Polynomial p = 2 10 20 5 8
Polynomial p = 5 12 20 5 10
Cubic spline 10 15 5 8

Pj

Rectangle 20 60 15 24
Trapezoidal 8 15 2 6
Polynomial p = 2 12 15 2 6
Polynomial p = 5 12 20 2 6
Cubic spline 10 15 2 6

few discrete frequency points as possible, the composite trapezoidal rule, which is introduced
in subsection 3.1.4, results to be the most efficient together with the spline interpolation
(cf. Tab. 4.5).

The investigations are performed at an L-junction, whose material and geometry data is given
in Tab. 4.2 and 4.3. A reference solution is computed with 120 discrete frequency points
per one-third octave band. Generally, a logarithmically equidistant spacing over frequency is
used, which is introduced in subsection 3.1.4. As a result of the comparison with the reference
solution, the necessary number of frequency points per one-third octave band decreases for
higher frequency bands. With increasing frequency, the modal density as well as the modal
overlap factor increase, which has a smoothing effect on the curves of power, energy and
energy influence coefficients. This influence is verified and confirmed by a parametric study
whereby single material and geometry parameters are varied systematically. Reducing the
material damping increases significantly the number of necessary frequency steps as the
curves become sharper. The variation of the density has nearly no effect, which would also
be valid for the variation of the stiffness, since it provokes just a shift of the eigenfrequencies
in the frequency range.

Especially at low frequencies, where the modal behavior dominates, taking the quotient of
subsystem energy and input power to receive the energy influence coefficients leads to a
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slight reduction of the necessary number of steps per one-third octave band as common
peaks due to resonances cancel each other or at least lead to a reduced peak. Generally, the
energy or the energy influence coefficient of the non-excited subsystem is decisive since these
quantities contain the modal contributions of the excited subsystem and of the non-excited
subsystem.

Since the necessary number of frequency points per one-third octave band decreases with
increasing frequency, the frequency range can be partitioned into different ranges. At low
frequencies, a higher number of discrete frequencies is evaluated using a coarser mesh for
the FE model. At high frequencies, the mesh must be refined according to subsection 4.1.5
and the number of frequency steps can be reduced. Table 4.5 offers a division above the
one-third octave band of 1000Hz (fu = 1223 Hz) close by the first thickness mode of the
system, which is the thickness shear resonance of the ceiling at 1445Hz. Alternatively, a
division above the one-third octave band of 2000Hz would lead to only six frequency steps
for the upper frequency range using the trapezoidal rule.

For the subsequent investigations, the resolution in the frequency range is chosen to twelve
steps per one-third octave band. Using the composite trapezoidal rule, this leads to a
maximum error of 5% for the frequency averaged values of the energy influence coefficients
according to Tab. 4.5 using the physical properties given in Tab. 4.2 and 4.3. Within this
thesis, the frequency average is always performed over one-third octave bands. This holds
also for analytical quantities like the number of modes which are summed up per one-third
octave band.

4.1.7 Analytical Solutions

As a first check of the FE model, the first four eigenfrequencies of an four-sided simply sup-
ported, orthotropic Kirchhoff plate can be calculated which are given in the appendix A.2.
For comparisons of the energy transmission, analytical, wave-based solutions are calculated.
In the case of isotropic material, an in-house GUI (Graphical User Interface) of the Chair
of Structural Mechanics is used [Panagiotopoulos et al 2015]. It is based on MATLAB® and
can be accessed via https://github.com/ChairOfStructuralMechanicsTUM/

SEA-Matlab-GUI. The GUI offers both approaches: Either the bending only approach
with the pinned junction or the bending and in-plane waves approach where the junction is
free to rotate and to undergo displacements [Hopkins 2007; Craik 2003]. The later boundary

https://github.com/ChairOfStructuralMechanicsTUM/SEA-Matlab-GUI
https://github.com/ChairOfStructuralMechanicsTUM/SEA-Matlab-GUI
https://github.com/ChairOfStructuralMechanicsTUM/SEA-Matlab-GUI
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conditions as well as the thick plate theory are implemented inside the commercial soft-
ware VAOne® which is applied for comparisons with junctions between thick plates out of
orthotropic material.

4.2 Plates Forming an L-Junction: Thin, Isotropic vs. Thick,

Orthotropic

Firstly, two different approaches to define a thin plate limit are opposed for isotropic and
orthotropic plates in subsection 4.2.1. In the the subsequent two subsection, an L-junction
consisting of thin, isotropic plates is investigated. Thereby, the wave types occurring in thin
plates are identified by estimating the translational parts of the energy. It is shown, that
transmission behavior changes due to a simple support at the junction in subsection 4.2.2
compared to a junction without support in subsection 4.2.3. The results are compared to the
wave approach, which constitutes a basis for the SEA. Moreover, subsection 4.2.2 explains
exemplarily how the transmission behavior of strongly coupled structures can be described
more robustly by a RotR excitation.

In subsection 4.2.4, the material is changed to orthotropic and the thickness is increased,
which is appropriate for CLT. The changed properties lead to a thick plate already at low
frequencies and the low elastic modulus perpendicular to the plane of the plate leads to
thickness modes in the frequency range of building acoustics. The behavior and restrictions
of thick plates compared to thin ones is described and depicted.

4.2.1 Thin Plate Limit of Isotropic and Orthotropic Plates

If the quotient of the elastic modulus and the density is large combined with a small thick-
ness, the thin plate limit occurs at high frequencies according to expression (2.36) which is
solved for the frequency in Eq. (4.2). To emphasize the proportionality between the limit-
ing frequency and the physical properties of the plate, the Poisson’s ratio is assumed to be
negligible for the expression on the right hand side:

fh=λ
6

= 1
36
√

3
1
h

√
E

ρ (1− ν2) ∼ 1
h

√
E

ρ
(4.2)
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The cross-over frequency of Eq. (2.37) considers additionally the shear stiffness which results
in a different proportionality relationship:

fs = κ

2π
G

h

√
1 + ν2

Eρ
∼ G

h

√
1
Eρ

(4.3)

In the case of isotropic material the identity G = E
2(1+ν) leads to the same proportionality as

in Eq. (4.2):

fs = κ

4π
1

h (1 + ν)

√
E(1 + ν2)

ρ
∼ 1
h

√
E

ρ
(4.4)

The thin plate limit of an orthotropic plate is preferbly calculated by the cross-over fre-
quency fs in Eq. (2.37) or (4.3) since the individual shear stiffness is included. As men-
tioned in section 2.2, the following approximations can be used for orthotropic material:
E =

√
ExEy, G =

√
GxzGyz and ν2 = νxyνyx. As introduced in subsection 2.2.3, fs refers to

the phase velocity, whereas for the subsequent, energetic considerations, the energetic thin
plate limit fs

4 applies on the basis of the group velocity.

4.2.2 Thin, Isotropic Plates: Bending Waves Only

The two models of the L-junction examined in this subsection and in the subsequent sub-
section 4.2.3 differ in an additional simple support at the junction of wall and ceiling. The
additional simply support shall only admit bending wave transmission and leads to the de-
nomination pinned L-junction. Generally, the calculations base on a solid element model
(cf. Fig. 4.1b). For comparisons, a shell element model is used which is then explicitly men-
tioned. A single, perpendicular load is applied in the center of both plates to excite the same
type of mode shapes in each subsystem. Several mode shapes have a node in the center of
the plate and therefore, they are not excited. In a second step, a RotR excitation is applied
consisting of 100 loads which are distributed randomly over the surface of the plate in order
to excite almost every mode - ideally in equal measure.

Table 4.6 shows the isotropic material properties and the dimensions of the investigated
L-junction. The large area of the plates leads to a high modal density (cf. subsection 2.3.2)
which moves the SEA limit related to a sufficient number of modes per band to the low
frequency range. As depicted in Fig. 4.8b, more than five modes per band are available in
both subsystems above 160 Hz to contribute to the energy transport. The modal overlap
factor (cf. Eq. (2.66)) is greater than unity from 315 Hz on. As shown in Fig. 4.8a, the thin
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Figure 4.8: Dynamic properties of the thin, isotropic plates listed in Tab. 4.6.

Table 4.6: L-junction: Material and geometry properties of the thin, isotropic plates.

E 8.243 1010

ν 12.9 10−2

ρ 450
D 1.2 10−2

Wall l1 × b× h1 5.8× 3.55× 0.05
Ceiling l2 × b× h2 4.5× 3.55× 0.05

plate theory covers almost the entire, investigated frequency range up to the energetic thin
plate limit fs

4 = 4318 Hz, where the bending group wave velocity equals to the corrected
out-of-plane shear wave velocity. Hence, a wide frequency range remains to apply the SEA
in a simplified manner where the bending wave subsystem represents the entire dynamic
behavior of a plate-like component. This coincides with the assumptions for the vibration
reduction index derived in subsection 3.2.4.

Modal Behavior The simple support at the junction of wall and ceiling shall omit a trans-
lation of the junction line which would lead to in-plane waves within the components. The
support takes up the horizontal and vertical forces, whereas moments are transmitted due
to the rigid connection of the components. A modal analysis confirms that even at high
frequencies almost only bending modes occur.
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(a) 45 Hz (b) 46 Hz (c) 58 Hz (d) 469 Hz
Figure 4.9: Mode shapes of the pinned L-junction consisting of isotropic, thin plates; Colors indicate vector

sum of displacements.

Figure 4.9 illustrates mode shapes by means of the vector sum of the displacements. The
modes in Fig. 4.9a, b and c result from bending waves which propagate in one (a) or in
two plate directions (b,c). The mode shapes in Fig. 4.9a and c show a global behavior
as the total structure vibrates whereby the colors of the mode shape in Fig. 4.9a indicate
higher amplitudes in the ceiling. Figure 4.9b presents a mode shape which is localized in the
ceiling.

Since in-plane modes, like the one at 469Hz in Fig. 4.9d, have no relevant displacement
perpendicular to the plate, they are hardly excitable by a load perpendicular to the plate.
Consequently, only bending waves shall be excited and transmitted.

Excursus: Strong Coupling at Low Frequencies – Single Load vs. RotR

By means of the current example, the influence of the loading on strongly coupled structures
is discussed. The definitions of strong and weak coupling are introduced in subsection 3.2.3
and 2.3.3, respectively. From the first to the fourth row, Fig. 4.10 shows subsystem energies,
energy influence coefficients, loss factors and condition numbers. On the left, they are
collocated for the excitation by the single load in the center of each subsystem and on the
right for the RotR excitation using 100 randomly distributed loads. At certain frequencies,
one off-diagonal entry Aij of the energy influence coefficients matrix rises above one main
diagonal entry Aii. This happens up to 250Hz for RotR and up to 350Hz for the single load,
which demonstrates Fig. 4.10 up to 100Hz. Up to 80Hz, Aij results sometimes even higher
than both main diagonal entries using the single load. This indicates strong coupling, which
is confirmed by high values of the condition number as explained in subsection 3.2.3. Thus,
the coupling loss factors have either values which are much higher than the damping loss
factors [Cremer and Heckl 1996] or they are negative depending on the modal behavior.
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In the first case, global mode shapes like the ones in Fig. 4.9a or 4.9c are excited. They
are indicated by the frequency of intersection of main and off-diagonal entries of the energy
influence coefficients matrix and include the fact that not all diagonal entries Aii are bigger
than any off-diagonal entry Aij. In the second case, modes which are localized in one
subsystem, like the one depicted in Fig. 4.9b, are excited more easily by a unit power
injected into the other subsystem. As described in subsection 3.2.3, a negative back-flow of
modal energy results to fulfill the energy balance. This happens at frequencies where one
off-diagonal term Aij is bigger than any main diagonal entry Aii. Due to the logarithmic
scale, the coupling loss factors are not depicted if they are negative.

In the following paragraphs, both cases are explained at distinct frequencies, which are
marked by vertical dots in Fig. 4.10, on the basis of selected mode shapes, which are depicted
in Fig. 4.9. The results due to the single load are compared to the ones due to RotR.
Both loadings act perpendicular to the wall (subsystem 1) and the ceiling (subsystem 2),
respectively. In the case of the energy Eij or the energy influence coefficient Aij, the first
index i represents the observed subsystem and the second index j the excited subsystem as
introduced in subsection 3.1.3 and 3.2.1. The coupling loss factor ηij describes the portion of
the energy in the subsystem i which is transmitted to the subsystem j (cf. subsection 3.2.2).

Global Modes: High Coupling Loss Factors The single load is able to excite the global
mode shape at 45Hz in the center of the ceiling but not in the center of the wall since the
load acts in the node of the mode shape. There, the mode shows no displacement which
is indicated by the blue color in Fig. 4.9a. Therefore, the energies due to excitation of the
wall, Ei1, are smaller than due to excitation of the ceiling, Ei2. As the mode shape oscillates
globally, the different subsystem energies due to one load case j are almost of the same
size (E1j ≈ E2j). Using a RotR excitation instead of the single load, the mode shape can
be excited in both subsystems leading to subsystem energies of similar size for both load
cases and subsystems as depicted in the upper right graph of Fig. 4.10. For a single load,
the energy flow into subsystem i appears to be independent of the excited subsystem as
Ai1 = Ai2. For RotR, the energy influence coefficients are not equal but of similar size and
thus still indicating strong coupling. For both types of excitation, the coupling loss factors
are bigger than the damping loss factors as shown in the third row of Fig. 4.10. For the single
load, the damping loss factors deviate significantly from the hysteretic material damping at
45Hz.
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Figure 4.10: Pinned L-junction out of isotropic, thin plates: On the left, excited in the center of each
subsystem by a single load (−) and on the right for RotR excitation (−−); Investigated
frequencies (:).
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Indirect Excitation of Localized Mode: Negative Coupling Loss Factors The single load
is not able to excite the mode shape at 46Hz in the center of the ceiling as it acts in the
node according to Fig. 4.9b. Thus, the adjacent global mode at 45Hz is excited (E12 = E22)
and its off-resonant contribution still dominates the energy distribution at 46Hz (Ei2 > Ei1,
P2 > P1). Loading the wall, most of the energy flows into the ceiling due to the indirect
excitation of the mode shape localized in the ceiling (E21 > E11). In the upper left graph
of Fig. 4.10, the curves of the subsystem energies are depicted for single load excitation.
Normalizing the subsystem energies by the corresponding input power, the energy influence
coefficients result in the order A21 > A22 = A12 > A11 as P2 > P1. As one off-diagonal
entry Aij of the energy influence coefficients matrix [A] is bigger than any diagonal entry
Aii, negative coupling loss factors result describing the non-resonant energy back flow.

Using RotR, the mode shape localized in the ceiling is directly excited and thus the energy in
the ceiling is dominating for both load cases (E2j >> E1j). The energy influence coefficients
have the order A22 > A21 >> A11 > A12. As not all diagonal entries Aii are bigger than any
off-diagonal entry Aij, strong coupling still occurs. Thus, coupling loss factors are bigger
than the damping loss factors. The different quantities for RotR excitation are depicted in
the graphs on the right of Fig. 4.10.

As the single load excites only few of the available modes directly, the combination of indirect
excitation and slight vibration in the directly excited subsystem leads to non-resonant energy
back flows and thus to negative coupling loss factors. For the investigated structure, this can
be avoided by RotR since all modes are excited also directly. In addition, RotR provokes
the more universal coupling behavior.

If the single load acts on both plates in the node of a global mode shape, the strong coupling
behavior cannot be identified which is the case for the mode shape at 58Hz in Fig. 4.9c.
However, the coupling loss factors are bigger than the damping loss factors if RotR is applied,
which excites the global mode shape in both plates.

Translational Parts of the Kinetic Energy

To estimate the contribution of excited and transmitted bending waves, the perpendicular
translational part of the kinetic energy Ẽkin,i1(vz) (cf. Eq. (3.62)), which is based on the
oscillations perpendicular to the plate, is evaluated. Moreover, Ẽkin,i1(vz) is opposed to the
the total translational energy Ẽkin,i1(vx,vy,vz), which is based on the sum of the squared
nodal velocities of all three spatial directions. Compared to the kinetic energy, the rotatory



92 4 Investigations by means of the Energy Flow Analysis

31.5 63 125 250 500 1000 2000 4000 8000

−80

−60

−40

−20

0

Frequency in Hz

D
ev

ia
tio

n
in

%

11
21

(a) Pinned L-junction: Only bending waves

31.5 63 125 250 500 1000 2000 4000 8000

−80

−60

−40

−20

0

Frequency in Hz

D
ev

ia
tio

n
in

%

11
21

(b) L-junction: Bending and in-plane waves

Figure 4.11: Comparison of solid (−−) and shell (· · · ) element model: Deviation of the perpendicular
part Ẽkin,i1(vz) from the total translational energy Ẽkin,i1(vx,vy,vz). The frequency averaged
energies of both subsystems i are compared for a perpendicular excitation of subsystem 1;
Five modes per band ( ¦ ); Energetic thin plate limit (:).

inertia is neglected, which becomes relevant at higher frequencies as the bending wave length
decreases and thus the curvature of the plates increases.

Summing up the squared nodal velocities leads, within the scope of the numerical integration,
to an error which increases with frequency. Integrating the nodal velocities by means of
the element shape functions, the translational part of the kinetic energy can be computed
exactly in the framework of the approximate solution of FE. As a post-processing, this
involves a extensive numerical effort which was only used at particular frequencies to verify
the results.

Figure 4.11a represents the pinned L-junction and Fig. 4.11b the non-pinned one, which
is examined more in detail in subsection 4.2.3. Both graphs confront the solid element
model with the shell element model using frequency averaged values per one-third octave
band. Loading subsystem 1, energy 11 represents the energy in the excited subsystem and
energy 21 the energy in the adjacent subsystem. The total translational energy and the
perpendicular part of the translational energy are almost identical up to 1000Hz for all four
variants presented in Fig. 4.11.

As the L-junction is pinned, mainly bending waves are excited and transmitted also above
the thin plate limit in the case of the shell element model (cf. Fig. 4.11a). The in-plane
velocities vx and vy do not contribute to the subsystem energy - neither in the directly
excited subsystem (11) nor in the indirectly excited subsystem (21). For the shell element
model, the pinned junction results in an ideal, pure bending wave transmission since here
Ekin(vz) = Ekin(vx,vy,vz).
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In the case of the solid element model, the nodal velocities are evaluated at the middle plane
of the plates. At the surface, the in-plane velocities, which can be assumed linearly across the
cross section in bending, are maximal and lead to an overestimation of the total translational
energy. According to Fig. 4.11a, bending to in-plane wave transmission is admitted above
1000Hz since in the case of the solid element model, the simple support at the junction is
not able to impede any translation over the whole cross section of the adjacent plates.

In contrast, the transmission behavior of the non-pinned junction in Fig. 4.11b is completely
different. As shown in Fig. 4.11b, the deviation of Ekin(vz) has an outlier for both solid and
shell element model in the one-third octave bands of 200Hz and 250Hz. This behavior is
confirmed by a modal analysis, which considers the factual boundary conditions, showing
an in-plane mode of the ceiling at 223Hz (cf. Fig. 4.13), whereas the analytical estimation
in Fig. 4.8b firstly predicts one in-plane mode in the one-third octave band of 500Hz. From
500Hz on, the deviation of Ekin(vz) increases continously with frequency, whereby in the
case of the shell element model, the portion of transmitted bending waves drops down faster
above 1000Hz.

Loss Factors The energy influence coefficients Aij,vz and Aij result from normalizing the
corresponding energies 2Ekin,ij(vz) and Eij by the input power. 2Ekin,ij(vz) states twice the
perpendicular translational part of the kinetic energy. It is based on the sum of the squared
nodal surface velocities perpendicular to the plate as the energy would be derived from the
oscillations in the case of a measurement (cf. Eq. (3.62)). Eij represents the total subsystem
energy, which consists of the sum of kinetic and potential element energies (cf. Eq. (3.35)).
For resonant oscillations, it holds Ekin,ij = Epot,ij. Moreover, a thin plate dominated by
bending waves allows the simplification Ekin,ij = Ekin,ij(vz). Hence, 2Ekin,ij(vz) accords with
Eij only for resonant oscillations.

To calculate the coupling loss factors, the energy influence coefficients matrix has to be
inverted. This is exemplarily performed for the two subsystem case:

[
η0
]

= 1
Ω [A]−1 (4.5)


η11 + η12 −η21

−η12 η22 + η21


 = 1

Ω det [A]


 A22 −A12

−A21 A11


 (4.6)

= 1
Ω (A11A22 − A12A21)


 A22 −A12

−A21 A11


 (4.7)
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If weak coupling is assumed, the product of A12A21 becomes very small compared to A11A22

and is therefore neglected. Because the deviations between Aij,vz and Aij are higher for
the off-diagonal entries as for the main diagonal entries of the energy influence coefficients
matrix, the coupling loss factors are affected less:


η11 + η12 −η21

−η12 η22 + η21


 ≈ 1

Ω




1
A11

−A12
A11A22

−A21
A11A22

1
A22


 (4.8)

The small deviation between ηij,vz and ηij can also be identified comparing the corresponding
values of the vibration reduction index in Fig. 4.12a, which is discussed in the subsequent
paragraph.

Vibration Reduction Index Figure 4.12 shows the direction and frequency averaged vi-
bration reduction index based on different methods. As explained in subsection 3.2.4, the
vibration reduction index can be calculated analytically by means of the transmission coef-
ficient τij which results from the wave approach. For the case of pure bending, the vibration
reduction index based on τij is identical for both transmission directions due to the correction
by the critical frequency fc,j (cf. Eq. (3.57)):

K(τij) = K(τji) =< K(τij) >= −10 lg (τij) + 5 lg
(
fc,j
fref

)
(4.9)

τij and τji are linked by the consistency relation (cf. Eq. (2.51)) between two SEA subsystems,
which is introduced in subsection 2.3.1:

ηijni = ηjinj (4.10)

The modal density of a bending wave subsystem is expressed by physical properties inserting
Eq. (2.60) and (2.64). Equation (3.59) contributes the relation between τij and ηij:

τij lij
2π2cB,i

fAi cg,i
fAi cg,i

= τji lij
2π2cB,j

fAj cg,j
fAj cg,j

(4.11)

The dependency on the direction is linked to elastic modulus, thickness and density of both
plates. Solving for τij, this can be expressed by the ratio of the bending wave velocities or
of the critical frequencies:

τij = τji
cB,j
cB,i

= τji

√√√√fc,i
fc,j

(4.12)
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The calculation based on τij is opposed to the direction averaged vibration reduction index
computed by means of the EFA. In doing so, either the coupling loss factor ηij, which is based
on the total energy, or ηij,vz , which is estimated by the perpendicular translational part of
the kinetic energy, is inserted into Eq. (3.61). According to Fig. 4.12, the two curves are
almost identical above the frequency limit of five modes per one-third octave band and below
the energetic thin plate limit of fs

4 = 4318 Hz. In this range, kinetic and potential energy
nearly coincide and the plates can considered to be thin. Due to the perpendicular excitation
of the thin plate, mainly bending waves are excited and due to the pinned junction mainly
bending waves are transmitted. Since τij considers only bending to bending transmission,
this leads to a acceptable accordance between the EFA and the analytical calculation in
the frequency range where the SEA requirements and the thin plate theory are fulfilled.
Here, also the vibration reduction indices based on the EFA are almost identical for the two
different directions using the single load. For RotR, deviations up to 4 dB occur between the
different transmission directions since the loading is not symmetric. The direction dependent
vibration reduction indices are not depicted.

The simplified option of the vibration reduction index K(Dv,ij) bases upon the velocity level
difference Dv,ij (cf. Eq. (3.53)). Analogously to the calculation by ηij,vz , only the surface
velocity perpendicular to the plate is used. Both calculations are identical if the system
consists of only two subsystems and the total loss factor in Eq. (3.52) is taken from the EFA.
The neglect of in-plane energy contributions and of possibly further adjacent subsystems
constitute key assumptions for the simplified computation of the vibration reduction index by
means of Dv,ij according to DIN EN ISO 12354-1 [2017] based on the approach of Gerretsen
[1979].

The idea of the vibration reduction index reaches its limits: An evaluation for negative
coupling loss factors, where the power flow is only marginally determined by the adjacent
components (cf. subsection 3.2.3), contradicts the basic assumptions of the vibration re-
duction index. Moreover, the vibration reduction index cannot be evaluated at frequencies,
where the coupling loss factors are negative, since it is a logarithmic measure. Including these
frequencies in terms of one-third octave band averages leads to physically wrong results. For
the single load, the vibration reduction index must not be interpreted in the one-third octave
band of 40, 50 and 80Hz according to Fig. 4.10. The single load in the center of the plate
draws a worst case scenario since very few modes are excited.

According to Fig. 4.10 and 4.12a, the RotR excitation takes effect already at low frequencies
as the vibration reduction index can be evaluated through the entire frequency range having
only small oscillations. At higher frequencies, the vibration reduction index tends to be
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Figure 4.12: Pinned L-junction: Direction and frequency averaged vibration reduction index < K̃12 > for
single load (−) and RotR excitation (−−) compared to the wave approach (−·−); Five modes
per band ( ¦ ); Energetic thin plate limit (:).

slightly smaller compared to the one for the single load as more modes are excited which
contribute to an increased energy exchange between the two subsystems.

By contrast with the solid element model in Fig. 4.12a, the shell element model in Fig. 4.12b
shows a slightly better agreement with the analytical solution. This is not astonishing since
both are based on the Mindlin plate theory. As discussed above, in the shell element model
any displacement of the junction is impeded which conincides with the boundary conditions
of the chosen analytical solution to only transmit bending waves.
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(a) Vector sum
of displace-
ments

(b) Lateral
view

Figure 4.13: Mode shape at 223 Hz of the non-pinned L-junction consisting of isotropic, thin plates.

4.2.3 Thin, Isotropic Plates: Bending and In-plane Waves

The two models of the L-junction (cf. Tab. 4.6) examined in this subsection and in the
previous subsection 4.2.2 differ in an optional simple support at the junction between wall
and ceiling. Without the simple support, the junction is able to perform translational move-
ments additionally to the rotational ones. This opens up the possibility to transmit in-plane
waves as shown in the foregoing subsection 4.2.2 by means of the in-plane and out-of-plane
components of the translational energy.

Modal Behavior Figure 4.13 visualizes exemplarily the behavior of the non-pinned L-
junction. The mode shape consists of bending waves in the wall and longitudinal in-plane
waves in the ceiling since the junction is able to displace. The colors in Fig. 4.13a illustrate
the vector sum of the displacements and indicate that the in-plane displacement of the ceiling
decreases from the junction towards the simply supported end. Figure 4.13b shows clearly
the horizontal displacement of the junction compared to the undeformed structure in the
background.

Vibration Reduction Index As the junction is free to rotate and to undergo displacements,
the analytical wave approach also accounts for in-plane waves. For each plate-like component,
it considers subsystems for shear and for quasi-longitudinal waves beside the bending wave
subsystem. Thus, the number of transmissions paths and transmission coefficients increases.
Whereas the wave approach for only bending waves yields transmission coefficients that
are independent of frequency (cf. K(τ12) in Fig. 4.12), the wave approach for bending and
in-plane waves gives transmission coefficients that vary with frequency (cf. Fig. 4.14). To
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Figure 4.14: L-junction: Direction and frequency averaged vibration reduction index < K̃12 > for single
load (−) and RotR excitation (−−) compared to the wave approach (− · −); Five modes per
band ( ¦ ); Energetic thin plate limit (:).

distinguish the transmission between bending, shear, longitudinal and the sum of all three
wave fields, the corresponding initials are used in the index of τ .

Firstly, the vibration reduction index is calculated on the basis of τB1B2 which corresponds
to the approach of DIN EN ISO 12354-1 [2017]. As K(τB1B2) considers only the transmission
between the two bending wave subsystems, the analytical solution is compared to K(η12,vz)
from the EFA.K(η12,vz) uses only the surface velocities perpendicular to the plate to estimate
the bending wave energy and is identical to K(Dv,12) for the two subsystem case as η0

j in
Eq. (3.63) is taken from the EFA. Figure 4.14a shows a good agreement of the qualitative
behavior for both single load and RotR with the analytical solution from 630Hz on.

Secondly, the vibration reduction index K(ηij) shall consider the entire transmission across



4.2 Plates Forming an L-Junction: Thin, Isotropic vs. Thick, Orthotropic 99

the junction. Thereby, also in-plane waves in the excited subsystem which lead to bending
waves in the non-excited, radiating subsystem are considered. Therefore, the coupling loss
factors from the EFA are used which take into account the total subsystem energy and thus
all wave types. Dividing the coupling loss factor by the group velocity of the effective bending
waves, cg,eff , according to Eq. (3.61) leads to an inconsistent vibration reduction index as
the longitudinal waves propagate faster (cf. Fig. 4.8a). Hence, the concept of the vibration
reduction index reaches its limits. For the analytical calculation, the transmission coefficients
are used which give a consistent solution for the vibration reduction index. Assuming an
excitation of the bending wave subsystem in the source plate, the transmission into all three
subsystems of the receiver plate is summed up:

τB1A2 = τB1B2 + τB1S2 + τB1L2 (4.13)

Above 630Hz, the corresponding vibration reduction index K(τB1A2) coincides qualitatively
with K(ηij) for a perpendicular excitation. Thereby, the contribution of the in-plane waves
leads to a clearly smaller vibration reduction index.

In the one-third octave band of 630Hz, the first in-plane mode and a total of 20 modes
arise. Moreover, the modal overlap factor is greater than two according to the analytical
estimation.

Below 630Hz, the analytical solution seems to give just a lower limit for the vibration
reduction index. Wilhelm [2017] confirms the results of this comparison at an L-junction
with two identical plates having the same properties as the current ceiling. Due to the
symmetric structure, which has double eigenvalues, strong coupling is fortified and thus
almost no results are obtained for the vibration reduction index below the SEA limit of
five modes per band at 160Hz. Above, the analytical solution is approximated from below
showing accordance above 800Hz.

Figure 4.14b shows the vibration reduction index based on a shell element model compared to
the analytical solution. Especially above 630Hz, the shell element model leads to increased
vibration reduction indices. This means, less energy is transmitted across the junction.
Looking at the bending wave transmission, the shell element model leads to a clearly higher
vibration reduction index compared to the analytical solution. At the energetic thin plate
limit, the difference is about 2 dB.

Comparing the FE models with the analytical solution in Fig. 4.14, the shell element model
leads to a vibration reduction index, which is higher or equal compared to the analytical
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solution, whereas the solid element model leads to values which are equal or smaller for high
frequencies.

4.2.4 Thick, Orthotropic Plates

Choosing thicknesses which are within a realistic range for CLT plates, the thin plate theory
is only valid to model the energy flow at low frequencies. The limiting frequency equals
fs
4 = 60 and 155Hz for the subsystems 2 and 1, respectively. Their geometric dimensions
and their orthotropic material properties are given in Tab. 4.3. The thick plate theory and
thus, the shell element model are limited to the first thickness-shear resonance of the thickest
component. At 1445 Hz, the first thickness-shear mode of the ceiling might be excited which
can only identified by means of solid elements. Since the wall is half as thick as the ceiling,
the first thickness-shear resonance of the wall is located at 2289Hz and is therefore not
decisive for the element choice. The influence of the thickness modes is shown in detail in
subsection 4.3.1.

Modal Behavior, Energy Influence Coefficients and Loss Factors RotR with 100 ran-
domly distributed single loads is chosen. The perpendicular load mainly excites bending
waves. Therefore, the main diagonal entries A22 and A22,vz in Fig. 4.16a differ only slightly
below the first thickness resonances. Above, the subsystem energies and thus the energy
influence coefficients are clearly overestimated on the basis of vz, which is the surface veloc-
ity perpendicular to the plate, because at the surface the thickness-stretch resonances have
their maximum displacements as sketched in Fig. 2.11. Hence, also the resulting coupling
and damping loss factors should not be interpreted above the first thickness-shear resonance:
According to Fig. 4.16c, the damping loss factor of the ceiling η22,vz is significantly underes-
timated compared to η22 above of the first thickness-shear resonance (1445Hz). In this high
range, the first thickness-stretch resonance (3267Hz) occurs. Figure 4.15d represents a cou-
pled mode shape which is dominated by thickness-shear and thickness-stretch oscillations.

Already at low frequencies, the curves ofA12 are separated fromA12,vz according to Fig. 4.16a.
This indicates in-plane wave transmission as the junction is not pinned (cf. Fig. 4.15b) and
the increasing relevance of the rotatory inertia since the plate is subject to the thick plate
theory. Thereby, the shear deformation allows an additional rotation of the cross section
as depicted in Fig. 4.15c for the mode shape at 448Hz. In contrast, Fig. 4.15a shows the
first mode shape at 26Hz fulfilling the thin plate assumption since the cross section remains
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(a) Pure bending at 26 Hz (b) Bending (wall) and longitudinal
(ceiling) at 201 Hz

(c) Bending and shear at 448 Hz (d) Thickness-shear and thickness-
stretch at 2199 Hz

Figure 4.15: Lateral view: Mode shapes of the L-junction consisting of orthotropic plates.

perpendicular to the middle plane. Thus, it holds A12 = A12,vz and only bending waves are
transmitted.

Strong coupling Below 125Hz, the off-diagonal entry A12 is crossing the main diagonal
entry A22 at several frequencies which indicates strong coupling. Between 100 and 125Hz,
global bending modes occur, which lead to almost identical values of Aij and Aij,vz . High
values of the condition number arise together with high coupling loss factors according to
Fig. 4.16b and 4.16c. In the one-third octave band of 31.5Hz, negative coupling loss factors
show up as modes which are localized in one subsystem are excited more easily by a load
in the other one. Thus, one off-diagonal entry is larger than all other entries of the energy
influence coefficients matrix. Strong coupling is introduced in subsection 3.2.3 and explained
more in detail at an example in subsection 4.2.2. Due to negative values, the frequency
averaged coupling loss factors contain physically wrong results in the one-third octave band
of 31.5Hz. These negative values indicate that the coupling loss factors do not fulfill the
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requirements of a proper-SEA matrix. Therefore, also derived quantities like the vibration
reduction index reach its limits.

Vibration Reduction Index K(ηij,vz) and the approximation K(Dv,ij) are identical be-
cause the structure consists of two subsystems and for K(Dv,ij), η0

j is taken from the EFA
(cf. Eq. (3.63)). K(ηij) starts to differ from K(ηij,vz) at low frequencies as Aij deviates from
Aij,vz due to the contribution of in-plane waves and rotary inertia. As long as K(ηij) and
K(ηij,vz) are identical, the transmission behavior can be described by means of the vibration
reduction index. Above this frequency range, the calculation based on ηij considering all
wave types and cg,eff representing only bending waves is inconsistent. As also analytically
shown in subsection 4.2.3, the contribution of the in-plane waves leads to a clearly smaller
vibration reduction index. This effect, which is neglected by the approach of Gerretsen
[1979], is also demonstrated by Hopkins [2007, 2014] and Hopkins et al [2016] for heavy
weight masonry constructions.

The formulas in DIN EN ISO 12354-1 [2017] are based on cg, whereas cg,eff , which is used
within this thesis, opens up the possibility that K(ηij,vz) represents the bending wave trans-
mission between two subsystems also at higher frequencies. Above the first thickness reso-
nance, the surface velocity perpendicular to the plate overestimates the perpendicular trans-
lational energy and thereby the transmission behavior. Thus, K(ηij,vz) is decreasing above
1000Hz. Using K(ηij,vz), e.g. in-plane waves in the excited subsystem leading to bending
waves in the non-excited, radiating subsystem are not considered.

The limitations of the vibration reduction index depend on the way it is computed. As shown
within this section, there are different options proposed by the DIN EN ISO 12354-1 [2017].
Their validity can be augmented in the frequency range using the effective group velocity of
bending waves. Only in the case of pure bending wave transmission and fulfilling the SEA
criteria, the vibration reduction index characterizes the energy transfer comprehensively.
This is the case as long as < K̃(ηij) > and < K̃(ηij,vz) > are identical.
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(d) Direction and frequency averaged vibration reduction index < K̃12 > based on EFA

Figure 4.16: L-junction out of orthotropic, thick plates excited by RotR; EFA based on total energy Eij (−)
or on perpendicular translatoric part 2Ekin,ij(vz) (· · · ); Energetic thin plate limit of subsystem
2 and 1 (:); Five modes per band ( ¦ ); First thickness-shear mode of subsystem 2 (|).
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4.3 Variation of Geometry and Excitation

Geometry and point of excitation will be varied in the subsequent subsections to investigate
the corresponding sensitivity of the energy flow.

Subsection 4.3.1 investigates the influence of the thickness modes by varying the excitation
across the thickness. Comparing the energy flow with and without the excitation of thickness
modes, their effect on the structure-borne sound transmission especially at high frequencies
is shown. In the subsections 4.3.2 and 4.3.3, the frequency range is split by means of the
number of modes, the modal overlap factor and the first thickness resonance. Each range is
characterized differently by the impact of the width, the length and the point of excitation
on the energy flow and on the input power.

Beside the location of the excitation across the thickness and across the plane of a plate, the
direction plays an important role. In subsection 4.3.4, the results caused by a RotR excitation
of 100 in-plane loads are compared to the results due to an out-of-plane excitation at the
same 100 locations. The effect of the random phase of RotR is examined in subsection 4.3.5
performing a comparison with a phase-conform excitation at these 100 locations.

4.3.1 Thickness Modes in Orthotropic Plates

To identify and separate the effects of the thickness modes harmonic analyses with different
load cases are investigated. All load cases are shown in Fig. 4.17. They have in common
that the load acts in the center of the plate on the area of one element. First the plates are
excited with a distributed pressure across the thickness to have a generalized load equal to
zero for the simple thickness modes. Then, the pressure acts on the surface of the plate which
corresponds to a more realistic scenario. If the pressure is applied in the middle plane of the
plate the generalized load of the first thickness resonances is zero (cf. Fig. 2.11). As a start,
a single, two-sided simply supported plate is examined followed by an L-junction consisting
of a wall and a ceiling. For comparability, the wall has here the same material properties as
given for the ceiling and single plate in Tab. 4.2. This leads to identical through-thickness
resonances for the initial dimensions which are depicted in Tab. 4.3.
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Figure 4.17: Variation of the load distribution through the thickness to excite or ignore thickness modes.

Numerical Investigation of a Single Plate

Fig. 4.18a shows a significant jump of the energy due the surface load at high frequencies.
The curve reaches a plateau close by the first thickness-stretch mode at 3269 Hz. For the
middle plane load the big jump moves towards the second thickness resonances as it acts
in the node of the first eigenmodes. The distributed load across the thickness of a plate
seems to be a rather non-realistic load case. However, as shown in Fig. 4.18b the response
behavior is almost identical even for high frequencies performing a harmonic analysis of a
plate modeled by shell elements.

Comparing the energies in Fig. 4.18a the surface load even leads at low frequencies to a
small non-resonant contribution of potential energy Epot, because the excitation occurs in
the stiffness controlled region of the thickness modes. Figure 4.19 shows that the input power
P perceives the same increase as Epot in between resonance frequencies due to the stiffness
proportional damping as explained in subsection 2.1.4. Hence, below the thickness resonances
the mechanical behavior can be visualized by an additional complex, energy dissipating
spring where the surface or middle plane load is acting on. In the mid-frequency range,
the increased modal overlap of the thickness resonances leads to a negative plateau of the
deviation of A11 due to the surface or middle plane load, either compared to the shell element
model in Fig. 4.18b or compared to the distributed load in Fig. 4.19. Comparing surface
and middle plane load, Fig. 4.18b shows that the closer the non-resonant excited thickness
mode is to the observed frequency, the higher is its modal contribution and therefore the
additional energy dissipation. If the plate is excited at resonance, it occurs a steady energy
exchange between kinetic and potential energy. So averaged over one period, both energy
types are of the same size yielding A11 = 2Epot,11

P1
. Due to the stiffness proportional damping

(cf. Eq. (2.25)) almost no deviation with respect to the shell element model occurs for clearly
separated eigenmodes in Fig. 4.18b. These very small differences of max. 2.5 % result from
slightly mismatching eigenfrequencies comparing the solid and the shell element model. This
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(b) Deviation of the energy influence coefficients A11 with respect to the shell element model

Figure 4.18: Plate out of solid elements excited at different locations: On the Surface (−), in the middle
plane (− · −) and distributed through the thickness (−−); Thickness-stretch resonances ( : )
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Figure 4.19: Deviation between surface and distributed load; Thickness-stretch resonances ( : )

confirms Fig. 4.19 showing the deviation of surface and distributed load applied at the same
solid element model.

Numerical Investigation of an L-junction

The L-junction, whose geometry is sketched in Fig. 4.1b, is simply supported at the bottom of
the wall (subsystem 1) and at the edge of the ceiling (subsystem 2) opposite the connection.
First an energy flow analysis is performed for both load cases mentioned above: the surface
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(b) Variation of junction: − initial (rigid),
−− plus damped, elastic interlayer

Figure 4.20: Deviation of Ãij between surface and distributed load for different setups; Initial model:
Rigidly connected, geometrically symmetric L-junction; Thickness-stretch resonances ( : ).

load and the distributed load. The first one leads to an – at high frequencies significant
– increase of energy. This growth also holds for the energy in the adjacent plate. Hence,
the subsystem energy generally depends on the location across the thickness where the total
force of 1 N is applied to the plate.

Another question is how the additional energy is spread over the different subsystems. There-
fore, the energies in the excited plate and in the adjacent one are normalized with respect to
the input power which results in the energy influence coefficients Aij. By varying geometry,
material and the junction extensive studies have been performed. As a result, the deviation
of Aij between surface and distributed load is mainly reliant on the thickness of the excited
subsystem j. This indicate Eq. (2.44) and Fig. 4.20a which are interpreted in the subsequent
paragraphs: For instance, halving the thickness of the wall doubles the frequency of its first
thickness resonances (e.g. fTM,1(cL,z) = 6538 Hz). Thus, the onset of the deviation of A21

between the two loadings moves also to the doubled frequency compared to the initial ge-
ometry, which consists of a geometrically symmetric L-junction. In contrast, changing the
length of the ceiling leads to an identical deviation for A21 and a similar one for A12. Also
reducing the width of the whole L-junction from 3 to 1m leads to similar deviations.

Whereas the surface load leads always to an increase of the energy Eij also in the adjacent
subsystem, the sign of the deviation of Aij principally depends on the type of the junction
of the two subsystems. It plays a role which degrees of freedom of each plate are coupled,
its stiffness in direction of the load and if there is an elastic layer in between. As depicted in
Fig. 4.1b, the edge of the wall is connected to the bottom face of the ceiling which leads to a
dominant energy transfer path from wall to ceiling at high frequencies. For the distributed
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Figure 4.21: Rigidly connected L-junction with h1 = 0.5h2: Ãij of surface (−) and distributed load (−−);
Thickness-stretch resonances ( : )

load on the wall the coupled nodes at the bottom face of the ceiling are excited in phase,
whereas by choosing the surface load just an additional (anti-)symmetric vibration pattern
is superposed. This contains almost no effective displacement and leads only to a small
increase of the energy E21 ending up in a negative deviation of A21 as depicted in Fig. 4.20a.
The energy flow A21 (from wall to ceiling) related to a unit input power is halved using the
surface load above the first thickness-stretch resonance of the wall. In contrast, the energy
transfer from the ceiling to the wall A12 is comparatively low at high frequencies for the
distributed load. The surface load is responsible for higher displacements of the faces of the
ceiling and leads to a big increase of the transferred energy E12. Hence, A12 is doubled above
the first thickness-stretch resonance of the ceiling.

Figure 4.21 shows the absolute values of the energy influence coefficients for both, surface
and distributed load. Thereby the increase of A12 and the decrease of A21 close to the first
simple thickness-stretch resonance of the excited subsystem 2 respectively 1 can be identified.
The main diagonal entries are not depicted because they are not affected.

A damped, elastic interlayer with the frequency dependent properties given in Tab. 4.4 and
A.2 is modeled by inserting a thin layer of solid elements between wall and ceiling. This
reduces the energy flow across the junction as shown in subsection 4.4.1. Moreover, it can be
shown that the distribution of the additional energy due to the surface load strongly depends
on the properties of the junction. In this case, Fig. 4.20b illustrates a change of sign for the
deviation of A21. To sum it up, by decoupling the two components significantly less energy
flows across the junction. Here, using a surface load instead of a distributed load leads to
an increase in both directions.
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Thickness Modes - Conclusion

The resonance frequencies of thickness modes depend on the thickness of the plate, on
the density and on the stiffness ES,z or the shear modulus Gzi, respectively. CLT has a
comparatively low stiffness perpendicular to the plate and therefore the thickness resonances
might occur inside the relevant frequency range for building acoustics - i.e. below 5 kHz. The
thickness-stretch resonances lead to dips in the sound reduction of a plate. Moreover, the
energy flow across junctions of orthotropic plates changes if thickness resonances are taken
into account. Hence, they influence airborne as well as structure-borne sound transmission
especially in the high frequency range. An adequate amount of layers of solid elements
can build up physical behavior of a plate correctly which already results at low frequencies
in slight changes of the energy due to the consideration of non-resonant contribution of
the thickness modes. Whereas a model out of shell elements based on the Mindlin wave
approximation does not consider effects related to the thickness direction of a plate. [Winter
et al 2017b]

4.3.2 Variation of System Width

The width of an L-junction has been varied from 2 over 3 up to 4m. A complete description
of geometry and material parameters shows Tab 4.3. The two orthotropic plates are excited
in the center by a single, perpendicular load. The influence of the width depends on the
frequency which can be divided into three ranges. In the first range, the dynamic behavior
is dominated by well-separated modes whereby the width has an effect on a big part of their
resonance frequencies. With increasing number of modes and a higher modal overlap, the
influence of the width becomes already less decisive for the modal behavior. For the compared
structures, the second range starts at 630Hz where the smallest subsystem also has ten modes
per one-third octave band and its modal overlap factor is above one (cf. Fig. 4.22b). The third
range starts at the first thickness-stretch resonance of the affected subsystem: This applies
to the excited subsystem in the case of the input power (cf. Fig. 4.22a), whereas in the case
of the energy influence coefficients, it is related to the observed subsystem (cf. Fig. 4.22c).
In this high frequency range, the dynamic behavior is dominated by thickness modes which
are independent of the width of the structure.

Table 4.7 sums up the influence of the width on the frequency averaged input power and
on the frequency averaged energy influence coefficients for these three ranges. According
to Fig. 4.22a, the impact of the width on the input power is decreasing with increasing
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(a) Frequency averaged input power into subsystem 1 and 2
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(b) Modal overlap factor of subsystem 1 and 2
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(c) Frequency averaged energy influence coefficients compared to the SEA (− · −)

Figure 4.22: Comparison of L-junctions with different widths: 2 m (−), 3 m (−−) and 4 m (· · · );N ≥ 10 and
M ≥ 1 for each subsystem ( ¦ ); First thickness-stretch resonance of subsystem 2 and 1 (:).
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Table 4.7: Influence of the variation of the width of an L-junction: The deviation of the frequency averaged
quantities P̃i and Ãij is classified by the number of modes per one-third octave band N and
the modal overlap factor M of the smallest subsystem as well as by the first thickness-stretch
resonance fT M,1,i(cL,z) of subsystem i: Large > 20 %, small ≤ 20 %, very small ≤ 5 % [Müller
2017].

M < 1, N < 10 M > 1, N > 10 f > fT M,1,i(cL,z)
P̃i large small very small
Ãii small very small; The wider b, the bigger Aii no
Ãij large small; The wider b, the smaller Aij small

frequency. In the second range, the deviation is less than 10%. The off-diagonal entries
of the energy influence coefficients matrix show a similar dependency on the width and
the frequency, whereas the main diagonal entries behave even more robust as depicted in
Fig. 4.22c. Since in the second frequency range the systems of different width show a similar
modal behavior but still slightly depend on the width, the following relation is found. For a
wider system, more energy remains in the excited subsystem and less energy is transmitted
to the adjacent subsystems.

Predicting the energy flow by means of an SEA model with a line junction between wall
and ceiling, neither the width nor the point of excitation matters. The SEA predicts the
maximum possible, resonant energy transmission since it assumes that all resonant modes
are excited, whereas in this case, the EFA tends to predict the minimum possible energy
transmission since it uses a single load in the center of each plate. Thereby, many modes
cannot be excited. At low and high frequencies, the deviations between the SEA and the
EFA are at most, since the SEA model is restricted to plate-like structures with a sufficient
modal density (cf. subsection 4.5.3).

4.3.3 Variation of Ceiling Length and Excitation Point

Constructing multistory timber buildings, the different stories have often a standardized
height leading to a constant height of the walls. Due to different types of rooms and related
space requirements, the length of the ceilings changes.

Comparing different L-junctions with varying length of the ceiling (cf. Tab. 4.3), the influ-
ence on the frequency averaged input power and the frequency averaged energy influence
coefficients is examined. By contrast to subsection 4.3.2, where all subsystems are affected
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Table 4.8: Influence of the variation of the length of subsystem 2: The deviation of the frequency averaged
quantities P̃i and Ãij is classified by the number of modes per one-third octave band N and
the modal overlap factor M of the smallest subsystem as well as by the first thickness-stretch
resonance fT M,1(cL,z) of subsystem 2: Large > 20 %, small ≤ 20 %, very small ≤ 5 % [Müller
2017].

M < 1, N < 10 M > 1, N > 10 f > fT M,1(cL,z)
P̃1 small very small no
P̃2 large small very small
Ã11 small very small no

Ã12 large
large large

The longer l2, the smaller A12.
For RotR: A12 ∼ 1

l2

Ã21 large large very small

Ã22 large small very small
The longer l2, the bigger A22.

equivalently by changing the width of the junction, it has to be distinguished between var-
ied (2) and non-varied subsystem (1) interpreting the deviation of the frequency averaged
quantities in Tab. 4.8.

Firstly, the length of the ceiling is varied from 1 to 4m by 1m and always excited in the center.
Secondly, the load is located always at 0.5m from the junction for the four different ceiling
lengths. Thirdly, the distance of the load from the junction is step-wise increased, whereas
the length of the ceiling is constant. Fourthly, the four different ceilings are excited by RotR.
These four steps help to separate the influence of the ceiling length and of the location of
the load on the energy flow. Whereas the ceiling length influences the reverberant field, the
location of the load influences the direct field contribution at the junction.

Single Load in the Center of Ceilings of Different Length

For the first investigation, the length of the ceiling is increased from 1m up to 4m by
1m steps. A single, perpendicular load is acting in the center of the ceiling and the wall,
respectively. Whereas the power injected into the wall is almost unaffected by the variation
of the length of the ceiling (cf. Fig. 4.23a), the input power due to the excitation of the
ceiling strongly depends on its length as the eigenfrequencies of the ceiling do. As shown
in Fig. 4.23b, the dependency is reduced for higher frequencies and it is negligible above
the first thickness-stretch resonance of the ceiling. The frequency averaged energy influence
coefficients which are related to either an excitation or an observation of subsystem 2 also
show large deviations at low frequencies according to Fig. 4.23c and 4.23d. Due to an
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(c) Frequency averaged energy influence coefficients
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(d) Deviation of frequency averaged input energy influence coefficients with respect to l2 = 1 m
Figure 4.23: L-junction excited in the center of each subsystem. Comparison between different lengths

of the ceiling: 1 m (− · −), 2 m (−), 3 m (−−) and 4 m (· · · ); N ≥ 10 and M ≥ 1 for each
subsystem ( ¦ ); First thickness-stretch resonance of the ceiling (:).
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(a) 1 m (b) l2 = 2 m (c) l2 = 3 m (d) l2 = 4 m

max(Ee)

min(Ee)

Figure 4.24: Energy distribution at 3299 Hz due to single load in the center of ceilings of different length l2.

increased number of modes per one-third octave band, the different ceilings show a similar
modal behavior and therefore a similar excitability above 700Hz. This demonstrates the
low deviation of Ã22 for different ceiling lengths l2 related to Ã22 for l2 = 1 m in Fig. 4.23d.
A relationship between the length of the ceiling and the energy influence coefficients due to
excitation of the ceiling, Ãi2, can be recognized. The longer the ceiling, the bigger is Ã22

and the smaller is Ã12 and also η̃21, which is not depicted. This relation fits to the analytical
dependency from the SEA between li and ηij according to Eq. (3.59). Thereby, the width
of the subsystems b corresponds to the length of the junction lij and thus can be canceled.
Since all remaining parameters are independent of the length of subsystem i, the following
proportionality can be derived:

ηij = τij cg,i lij
2π2fli b

→ ηij ∼
1
li

(4.14)

As the wall remains constant, Ã11 is only slightly affected at low frequencies as illustrated
in Fig. 4.23c. Ã21 describes the energy in the ceiling normalized by the input power into
the wall and demonstrates that the amount of transmitted energy strongly depends on the
length of the receiving ceiling up to its first thickness-stretch resonance. Then, the energy
flow is dominated by the thickness modes which behave independently of the subsystem
length.

By means of the top view, Fig. 4.24 displays the time-averaged energy distribution in the
ceilings of different length excited in their center. The single load oscillates at f = 3299Hz
which is slightly above the first thickness-stretch resonance at 3269 Hz. The colors illustrate
that the energy quickly decays from the point of excitation towards the boundaries. The
shorter the ceiling, the more energy is reflected and the more energy seems to arrive at the
junction, which is at the left edge of the plates in Fig. 4.24. The first four element rows of
the ceiling are on top of the wall. Their coloring visualizes that a large amount of the energy
is reflected due to the geometrical discontinuity. This effect is demonstrated most clearly by
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Figure 4.25: L-junction: Frequency averaged energy influence coefficients due to excitation of the ceiling
at 0.5 m from the junction: Comparison between different lengths of the ceiling: 1 m (− · −),
2 m (−), 3 m (−−) and 4 m (· · · ); N ≥ 10 and M ≥ 1 for each subsystem ( ¦ ); First thickness-
stretch resonance of the ceiling (:).
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Figure 4.26: Energy distribution at 3299 Hz due to single load at 0.5 m from the junction for ceilings of
different length l2.

the ceiling of 1m length in Fig. 4.24a. For the ceilings of 3m and 4m length, the direct field
of the single load seems to be mostly faded away before reaching the junction.

Single Load at a Fixed Distance to the Junction on Ceilings of Different Length

According to Fig. 4.24, the location of the load or more precisely its distance to the junction
influences the energy flow beside the length of the excited subsystem especially at higher
frequencies. To separate the two effects, the load acts at a fixed distance of 0.5 m from the
junction for different lengths of the ceiling. The position is close to the center of the ceiling of
1m length and is not changed for longer ceilings. For the load in the center of the plate, Ã12

deviates up to 100% between the ceilings of 1m and 4m also at high frequencies in Fig. 4.23d.
For the fixed position, Ã12 converges with increasing frequency according to Fig. 4.25. The
curves of 3m and 4m behave almost identical above 1000Hz and the curve of 2m joins above
4000Hz. Only the ceiling of 1m length leads to an higher energy flow into the wall also at
high frequencies due to the short distance between point of excitation, reflecting boundary
and junction. For longer ceilings, the distance between load and junction is the same but the
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Figure 4.27: L-junction: Frequency averaged energy influence coefficients Ã12 due to excitation of the
ceiling which is 3 m long and excited at increasing distance from the junction: 0.5 m (−−),
1.0 m (· · · ), 1.5 m (− · −), 2.1 m (−) and 2.6 m (− + −); N ≥ 10 and M ≥ 1 for each
subsystem ( ¦ ); First thickness-stretch resonance of the ceiling (:).

energy is able to decay towards the other boundaries of the plate almost without reflections
according to Fig. 4.26. This leads to the conclusion that the higher the frequency the less
decisive is the length of the ceiling. The energy flow starts to become exclusively dependent
on the location of the excitation which will be examined in the following paragraph.

Fixed Length of the Ceiling: Variation of the Point of Excitation

Figure 4.27 shows the energy flow into the wall for different points of excitation on the
ceiling. The ceiling is 3m long and is excited firstly at a distance of 0.5 m from the junction.
The distance is subsequently increased by approximately 0.5 m. Thereby, the dashed curve
of Ã12 in Fig. 4.25 and 4.27 can be used as a reference curve for comparisons as it represents
the same configuration (ceiling length 3m, distance of load to junction 0.5m). For the fixed
location of the excitation, the curves for different lengths of ceiling converge with increasing
frequency as already shown in Fig. 4.25. For the fixed ceiling length, the different points of
excitation lead to a divergence above the first thickness-stretch resonance which is ordered
by the distance to the junction (cf. Fig. 4.27). Hence, the further away the load is, the
less energy is transmitted into the adjacent component. Comparing the two furthest load
positions, they show an almost identical behavior in the high frequency range. This indicates
that the direct field is decayed within the distance of approximately 2m and thus mostly
reverberant energy flows across the junction for farther excitation points.

The statistical investigations in section 4.5 confirm this diverging behavior of the energy
flow at high frequencies and also indicate a dependency on the locations where the sending
subsystem is excited: Above the first thickness-stretch resonance, the coefficient of variation
of Ã12 increases significantly using RotR with less or equal ten loads comparing 100 different
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Figure 4.28: Frequency averaged energy influence coefficients of an L-junction excited by RotR with nl =
100: Comparison between different lengths of the ceiling: 1 m (−·−), 2 m (−), 3 m (−−) and
4 m (· · · ); N ≥ 10 and M ≥ 1 for each subsystem ( ¦ ); First thickness-stretch resonance of
the ceiling (:).
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Figure 4.29: Ratio of Ã12 between different lengths of ceiling for RotR: r1 = Ã12(l2=2)
Ã12(l2=1) , r2 = Ã12(l2=4)

Ã12(l2=2)

and r3 = Ã12(l2=3)
Ã12(l2=1) ; N ≥ 10 and M ≥ 1 for each subsystem ( ¦ ); First thickness-stretch

resonance of the ceiling (:).

realizations as shown in Fig. 4.49. For 50 and 100 loads, only a small increase of the coefficient
of variation happens, whereas it is not affected by the first thickness-stretch resonance if all
elements on the surface are excited and thus only the random phase shift of each loaded
element is varied between the different realizations.

RotR on Ceilings of Different Length

Now, RotR consisting of 100 loads is used to excite the L-junction. Thereby, the length of
the ceiling is varied from 1m up to 4m by 1m steps. For each length, the 100 loads are
randomly distributed on the plate. At first glance, RotR in Fig. 4.28 and the single load
excitation in Fig. 4.23c lead to similar frequency averaged energy influence coefficients and
show a comparable influence of the length of ceiling as mentioned in Tab. 4.8. But beside
the fact that RotR is able to excite more modes at low frequencies, the different curves of
Ã12 seem to be parallel above the first thickness-stretch resonance. As Fig. 4.28 is depicted



118 4 Investigations by means of the Energy Flow Analysis

in logarithmic scale, the different ceilings are related by a constant factor which is illustrated
in Fig. 4.29. It results an indirect proportionality between ceiling length and the energy
transmission into the wall above the first thickness-stretch resonance:

A12 ∼
1
l2

(4.15)

It demonstrates that the random distribution of the loads on the ceiling results in an equal
distribution for a sufficient number of loads. Thus, the average load density decreases for
larger plates and also the energy which is contributed by the direct field is reduced at the
junction. Counting the number of loaded elements in the first three rows next to the junction,
they are halved for the doubled ceiling length in the presented calculations.

4.3.4 In-plane vs. Out-of-plane Loading at a T-Junction

Inside the EFA, the energy is normalized with respect to the input power leading to energy
influence coefficients. The time-averaged power, which is injected into the structure at the
point z = (x,y,z), is linked to the admittance of the structure Y or to its reciprocal, the
impedance Z [Cremer 1988]:

Pp(z,f) = 1
2 < (F ∗ v) = 1

2 <
(
FF ∗

v

F

)
= 1

2 |F |
2 < (Y ) = 1

2 |F |
2 <

( 1
Z

)
(4.16)

Applying a load of 1N in in-plane direction instead of perpendicular to the plate, e.g. to
model a machinery induced vibration, a smaller input power results as the driving-point
impedance Z is higher. Figure 4.30 shows the input power exciting the lower wall of a
T-junction. Its geometry and the counterclockwise numbering of the rigidly connected sub-
systems are illustrated in Fig. 4.1c. The loads point either perpendicular to the plane or in
randomly chosen directions in the plane of the plate. In both cases, the pressure is applied
on the same 100 elements whereby each is oscillating with a random phase shift. Whereas
the input power due to the out-of-plane load shows a jump right before the first thickness-
stretch resonance of the wall, the in-plane load excites the thickness-shear modes. Close by
the thickness-shear resonances which lead to a displacement in y-direction - parallel to the
junction line, a big jump occurs. The thickness-shear modes oscillating in x-direction can
be identified by small peaks.

Figure 4.32a shows, that the energy flow into the adjacent subsystems is high compared to
the case of a loading perpendicular to the plate, whereas the energy flow into the directly
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Figure 4.30: Input power exciting subsystem 1 with 100 loads (RotR) in in-plane (−) or in out-of-plane
direction (−−); Simple thickness resonances oscillating in in-plane or out-of-plane direction:
fT M (cS,zy) (:), fT M (cS,zx) ( ¦ ), fT M (cS,z) (|).

excited subsystem is smaller. At high frequencies, the two types of excitation differ less as
the plate-like behavior of the subsystems gives more and more way to modal couplings with
through thickness resonances. The energy transmission into the ceiling dominates for both
excitations as in the case of the investigated T-junction, the lower and the upper wall are
separated by the ceiling.

Figure 4.31 demonstrates the energy flow into the different subsystems by means of Ãij and
Ãij,vz , whose energy results exclusively from the surface velocity perpendicular to the plate,
for the in-plane excitation of the lower wall (subsystem 1). The in-plane load leads to a
considerable difference between Ã11 and Ã11,vz which confirms that mainly in-plane waves
are excited in the lower wall. In the ceiling (subsystem 2), which is mounted perpendicular
to the wall, it causes mainly bending waves. Therefore, Ã21 and Ã21,vz show similar values
above 250Hz. Comparing Ã31 and Ã31,vz , they show a big difference in magnitude and thus,
the transmission into the upper wall (subsystem 3) is dominated by in-plane waves.

The coupling between the subsystems is stronger if the excitation is in in-plane direction since
the same amount of input power leads to higher flanking transmission [Wilhelm 2017]. The
stronger coupling is also indicated by higher values of the condition number in Fig. 4.32b and
confirmed by proportions of coupling and damping loss factors in Fig. 4.32c. Above 500Hz,
the damping loss factors become almost identical for the two different excitations indicating
that the damping and coupling loss factors are independent and fulfill the corresponding
SEA assumption.

Counting only the in-plane modes in Fig. 4.33, the walls reach five modes in the one-third
octave band of 1000Hz, whereas five bending modes are already available above 250Hz. In
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Figure 4.31: Energy influence coefficients Ãi1 (−) and Ãi1,vz
(· · · ) due to in-plane excitation.
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(a) Energy influence coefficients Ãi1 due to excitation of subsystem 1
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(c) Loss factors η̃1j quantifying the losses of subsystem 1

Figure 4.32: Exciting a T-junction by RotR with 100 loads pointing in-plane (−) or in out-of-plane (−−)
direction: Frequency averaged quantities.
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Figure 4.33: Modes per one-third octave band.

the case of an out-of-plane load, bending waves are excited in all subsystems. By contrast,
due to an in-plane load only the geometry can lead to a significant contribution of bending
modes e.g. in the case of a transmission from wall to ceiling as shown above in Fig. 4.31
comparing Ãij and Ãij,vz . Hence, for an in-plane excitation the range of applicability of the
SEA is reduced to few one-third octave bands below the first thickness-shear resonance of
the structure which occurs here at 1445Hz in the ceiling.

4.3.5 Effect of the Random Phase of RotR

For the ideal RotR excitation, the entire plate is loaded with loads having different, random
phases as described in subsection 3.3.1. As this is numerically expensive, the effect of a re-
duced number of loads is investigated in section 4.5. Below the first thickness resonances, the
mean of 100 realizations of RotR with a reduced number loads converges to the same values
of the energy influence coefficients compared to RotR with loading all surface elements.

Exciting all elements without phase shift would lead to a generalized load vector of zero and
thus to zero input power for symmetric mode shapes. Using only 100 loaded elements without
phase shift in between them appears to be a rough approximation of a fully correlated load
over the whole surface. Therefore, the effect of the random phase for RotR with a reduced
number of loads is investigated in dependency of the frequency range: 100 loads with random
phases (RotR) are compared to 100 loads at the same locations but without phase shift in
between.

Figures 4.34a b and c present the input power exciting the subsystems 1, 2 and 3 of a T-
junction, which consists of two walls which are separated by the ceiling (cf. Fig. 4.1c). All
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(a) Input power into subsystem 1
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(b) Input power into subsystem 2
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(c) Input power into subsystem 3
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(d) Frequency averaged loss factors η1j quantifying the losses of subsystem 1
Figure 4.34: T-junction excited by 100 loads, either correlated without phase shift (−) or with random

phase as RotR (−−).



4.4 Modifications at the Junction 123

(a) 26 Hz (b) 34 Hz (c) 65 Hz (d) 96 Hz
Figure 4.35: Mode shapes of a T-junction; Colors indicate displacements perpendicular to the ceiling.

components are rigidly connected. The two curves of correlated loads and of the uncorrelated
ones converge towards higher frequencies since there, small wavelengths omit a correlated
behavior. At low frequencies, where between one or two half-waves fit into a side length of
the plate, the correlated loads can on the one hand lead to a dominant excitation of single
resonances and on the other hand, to their cancellation depending on the location of the
100 loads and on the mode shape. The mode shapes in Fig. 4.35a and b correspond to the
first case since all correlated loads act in phase in the same half-wave of the mode shapes.
The high values of the input power around 31.5Hz in Fig. 4.34b confirm the phase-conform
excitation of the mode shapes. In Fig. 4.35c and d, the ceiling contains symmetric mode
shapes with inversely phased regions which would lead to a generalized load vector of zero
exciting the whole surface in-phase. Due to the random spatial distribution of the 100 loads
used in this investigation, the generalized load vector of the mode shape at 65Hz is almost
zero since its contribution to the input power is negligible according to Fig. 4.34b. By
contrast, the resonance at 96Hz is clearly visible but significantly smaller compared to the
uncorrelated RotR excitation at the same locations.

The frequency averaged loss factors in Fig. 4.34d demonstrate that the effect of the phase shift
of the loads decreases with increasing frequency and that an uncorrelated RotR excitation
is important especially at low frequencies. Due to the correlated excitation, the coupling
loss factor η̃13 exceeds the damping loss factor η̃11 around 200Hz and provocates strong
coupling.

4.4 Modifications at the Junction

In subsection 4.4.1 an L-junction is investigated whereby the junction itself is modified. In
the foregoing investigations, the individual components are connected rigidly. To model the
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flexibility of a screwed junction, an elastic interlayer is inserted in the FE model. To sys-
tematically reduce the structure-borne sound transmission over the junction, an impedance
difference is introduced by means of an elastic interlayer with the material properties of an
elastomer. This elastomer is optionally damped. The effect of elastic interlayers depends on
its material properties which is also demonstrated on the basis of measurements by Winter
et al [2015] and Mecking et al [2017a].

In subsection 4.4.2, the wall of a T-junction is not separated in two components and the
ceiling is connected by a steel bracket with an elastic interlayer on top. This leads to strong
coupling of the walls over a wide frequency range. This violation of the SEA assumptions
also leads to negative coupling loss factors.

To characterize the properties of the junction itself, isolated junction geometries, like an L-,
a T- or an X-junction, are cut out of a building assuming that the influence of the remaining
structure is negligible. In subsection 4.4.3, the energy flow within these junction geometries
is compared showing the influence of a third or fourth additional subsystem. In the case of
the X-junction, the two ceilings are optionally completely separated.

Table 4.2 and 4.3 (cf. p. 73) show the material and geometry of the setups used in the subse-
quent subsections. Preliminary investigations were performed within the scope of Wilhelm
[2017] with similar configurations but lower resolution in frequency and space.

4.4.1 Elastic Interlayer: Variation of the Connection Strength

In the FE model, a thin isotropic interlayer is inserted between adjacent components
(cf. Fig. 4.7) to model different types of junctions as described in subsection 4.1.3. De-
pendent on the material properties of the layer (cf. Tab. 4.4), either a flexible connection
or an elastic interlayer is modeled, which can additionally be damped. In the following
passages, four different types of junctions are compared: rigid, flexible (screwed), elastic in-
terlayer (undamped) and damped, elastic interlayer (Sylodyn ND). Therefore, additionally
ALij is evaluated leading to a non-symmetric energy influence coefficients matrix. ALij is
the energy of the layer Li normalized to a unit power input due to loading of subsystem j.
All modifications have in common that they reduce the energy transmission between two
components compared to the rigid junction. The material change at the interface leads to
an impedance difference [Cremer 1967]. The higher the difference is, the lower is the sound
transmission. The reduction of the sound transmission depends thereby on the wave type.
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In Fig. 4.37, the energy influence coefficients represent the normalized energy in the two
subsystems of an L-junction as well as in the elastic interlayer for the excitation of subsys-
tem 1.

Flexible Junction

Figure 4.37a compares the rigid and the flexible (screwed) junction, which is modeled by
an undamped, elastic interlayer of solid elements. In the case of the rigid junction, the
energy influence coefficients of both subsystems are of the same size at 64Hz if subsystem 1
is excited (A11 = A21). This indicates strong coupling (cf. subsection 3.2.3, 4.2.2). A mode
shape localized in subsystem 2 leads mainly to this equal energy distribution. In the case
of the flexible junction, the normalized energy in subsystem 2, A21, is smaller. The elastic
interlayer reduces the coupling as more energy remains in the excited subsystem. Between
160Hz and 500Hz the effect of the elastic interlayer seems to be negligible as the energy flow
into the non-excited subsystem 2, A21, is of similar size for both types of junctions according
to Fig. 4.37a.

From 500Hz on, in-plane waves begin additionally to contribute to the energy flow into the
adjacent subsystem, whereas at low frequencies only bending waves are transmitted. In both
plates, at least one in-plane mode per one-third octave band occurs on average at 500Hz.
Above 500Hz, the energy influence coefficients A21 of the two different junctions start to
deviate. Compared to the rigid junction, the energy flow over the flexible junction is clearly
reduced until the first thickness-shear resonances of the elastic interlayer at 4181Hz. In the
frequency range between 500 and 4181Hz, the flow into the elastic interlayer and the flow
across it into subsystem 2 is of similar size.

The thickness-shear resonances are excited due to the perpendicular load on the wall leading
to horizontal displacements at the interface of the wall and the elastic interlayer. At these
thickness resonances, A21 has similar values compared to the rigid case. There, the trans-
mission reaches a maximum. This effect is analytically shown for two semi-infinite plates
connected by an elastic interlayer by Mees and Vermeir [1993]. According to Eq. (4.17),
the first thickness-shear resonance is at 4181Hz, which corresponds to the first peak above
4000Hz of the normalized energy inside the interlayer, AL11. The shear plane has a short
side, which is the thickness of the wall, and a long side, which is the length of the junc-
tion (cf. Fig. 4.36). To consider the parabolic shear stress distribution due to displacements
along the short side of the elastic interlayer, the shear correction factor κ is applied as
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Figure 4.36: Axonometry of the FE model: Elastic interlayer between wall and ceiling.

explained in subsection 2.2.2:

fTM,1(κG) =
√
κG

ρ

1
2hL1

= 4181 Hz (4.17)

To predict thickness-shear resonances with displacements along the length of junction, the
elastic interlayer is assumed to be infinite and thus Eq. (2.44) is applied. The calculated
thickness-shear resonance is close to the second peak in Fig. 4.37a:

fTM,1(G) =
√
G

ρ

1
2hL1

= 4580 Hz (4.18)

In the presented investigation, the FE model contains an elastic interlayer to represent
the flexible behavior of a screwed junction. The analogous model was determined at low
frequencies (cf. subsection 4.1.3). Thus, the thickness modes within the elastic interlayer are
artefacts of the FE model. As soon as the first thickness-shear mode of the elastic interlayer
vibrates at resonance, the FE model is no longer valid, because this behavior does not
correspond to a screwed connection. The limiting frequency can be estimated by Eq. (4.17).
To increase the validity of the FE model either the mass of the interlayer could be set to zero
or a thinner layer could be used for the model updating which then should be performed up
to high frequencies.

At a T- or X-junction where both walls are flexible connected to the ceiling, the transmission
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(a) Rigid (−) vs. flexible (−−)
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(b) Rigid (−) vs. undamped, elastic interlayer (· · · ) vs. damped, elastic interlayer (−−)

Figure 4.37: Energy influence coefficients of different junctions for the excitation of subsystem 1.
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from lower to upper wall is more reduced compared to the transmission into the ceiling as the
energy has to cross twice an elastic interlayer (cf. subsection 4.4.3). This leads to a change
from excited bending waves in the lower wall to in-plane waves and then back to bending
waves in the upper wall [Wilhelm 2017].

Undamped vs. Damped, Elastic Interlayer: (Non)-Conservative Coupling

In the case, the elastic interlayer is mounted in the real junction, the thickness-shear reso-
nances form part of the dynamic behavior of the junction. If the interlayer is undamped, then
they contribute significantly to the energy distribution inside the structure. In Fig. 4.37b,
AL11 of the undamped interlayer shows its first thickness-shear resonance at 1557Hz which
coincides with Eq. (4.18) if the material properties of Tab. 4.4 and A.2 are inserted. For
higher frequencies, the multiples of this thickness-shear resonance as well as thickness-stretch
resonances can be identified by peak picking. The peaks of AL11 are partly above the nor-
malized energy in the directly excited subsystem A11. In the frequency range of the thickness
resonances of the elastic interlayer, the material damping plays an important role. Neglect-
ing it leads to this - at first glance - non-realistic energy distribution. Then, the thickness
modes of the interlayer occur in a completely undamped material, whereas the subsystems
are slightly damped.

According to Fig. 4.37b, the damping eliminates the effect of the thickness resonances. It
shows, that damped, elastic interlayers, like the modeled Sylodyn ND, are able to reduce the
transmission also in the frequency range of its thickness resonances. Here, the peaks of AL11

are cut since damping is most effective close to the resonance frequencies. This aspect is
explained by simplifying Eq. (3.14) in order to describe the displacement of a single degree
of freedom system:

u(Ω) = F

K − iηK − Ω2M
(4.19)

Equation (4.19) shows that, at resonance for Ω = ω =
√

K
M
, the loss factor is decisive as the

stiffness and the mass term cancel each other out:

K − ω2M = 0 (4.20)



4.4 Modifications at the Junction 129

31.5 63 125 250 500 1000 2000 4000 800010−6

10−5

10−4

10−3

Frequency in Hz

Po
w

er
in

W

(a) Comparison of the input power into the wall

31.5 63 125 250 500 1000 2000 4000 8000

10−4

10−6

10−8

10−10

Frequency in Hz

E
ne

rg
y

in
J

Epot,L11
Ekin,L11
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Figure 4.38: L-junction with undamped (· · · ) or damped (−), elastic interlayer between wall and ceiling.

Thus, the displacement is indirectly proportional to the damping:

u(Ω = ω) = F

−iηK (4.21)

This effect emerges more clearly for the energy as E ∼ u2 (cf. subsection 3.1.3) and flattens
the energy curve in the range of the resonances (cf. Fig. 4.38b).

Figure 4.38a shows the input power into subsystem 1 for an L-junction with an elastic
interlayer. The influence of the damping of the interlayer is especially noticeable at low
frequencies, where the resonances of the system are well-separated: For the input power, the
peaks become smaller, whereas the values in between the resonances become higher. This
indicates that the input power integrated over the entire frequency domain is independent
of damping. For the energy curve, the damping leads only to a flattening in the range of
the resonances as shown above. In the high frequency range, where the thickness modes
of the interlayer vibrate at resonance, this holds also for the energy influence coefficients
(cf. Fig. 4.37b) since the input power is not influenced by the damping due to the high
modal density.

At low frequencies, the bending wave transmission is diminished due to the smaller rotatory
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Figure 4.39: A1, sum of the energy influence coefficients exciting subsystem 1, for different junctions:
− rigid, −− flexible, · · · elastic interlayer, − · − damped, elastic interlayer.

stiffness of the L-junction with elastic interlayer compared to the rigid L-junction. Looking at
the low frequency range of Fig. 4.38b, the potential energy of the elastic interlayer is much
higher than the kinetic energy due to the large deformations resulting in a non-resonant
excitation of the thickness modes in the stiffness dominated region of their amplification
functions. For hysteretic damping, the input power is proportional to the potential energy
of the total system according to Eq. (2.26). Already for the model with the undamped, elastic
interlayer, reduced energy influence coefficients result in comparison to the rigid junction due
to the high potential energy in the elastic interlayer. As the proportionality of the input
power and the potential energy of the total system depends on the loss factor, the damping
of the elastic interlayer leads to an additional increase of the input power. Thus, the energy
influence coefficients have smaller values indicating a reduced energy flow into the adjacent
subsystem, since the energy is normalized by the input power to compute energy influence
coefficients.

Between 315 and 1000Hz, the damping, which is increasing with frequency, has almost no
effect. The kinetic energy of the interlayer approximates the potential energy (cf. Fig. 4.38b).
Comparing the curves of the damped and the undamped case in Fig. 4.37b, A21 and AL11

are similar, respectively. By contrast with the flexible junction, the energy flow into the
adjacent subsystem is still small.

At high frequencies, the peaks in Fig. 4.38b result from the internal, thickness resonances of
the undamped, elastic interlayer, whereas the peaks below 1000Hz result from resonances of
the excited subsystem 1 which confirms the comparison with the corresponding input power
in Fig. 4.38a. To sum it up, the stiffness proportional damping of the interlayer reduces the
energy flow into the adjacent subsystem especially at high frequencies as it eliminates the
thickness resonance peaks of the interlayer and at low frequencies since large deformations
occur in the interlayer which result in a non-resonant excitation of the thickness modes.



4.4 Modifications at the Junction 131

31.5 63 125 250 500 1000 2000 4000 8000

10−1

10−3

10−5

10−7

Frequency in Hz

η i
j

11
12
21
22

Figure 4.40: L-junction with undamped (· · · ) or damped (−−), elastic interlayer between wall and ceiling:
Comparison of the frequency averaged loss factors; Five modes per band and subsystem ( ¦ ).

Summing up the energy influence coefficients over all m subsystems for one load case j, the
total normalized energy Aj results:

Aj =
m∑

i

Aij (4.22)

Equation (4.22) corresponds to the addition of all entries belonging to column j of the en-
ergy influence coefficients matrix (cf. Eq. (3.40)). Compared to the damped interlayer, the
undamped interlayer leads to a higher total normalized energy in Fig. 4.39 which corre-
sponds to a lower damping averaged over the total structure. Whereas below 500Hz, the
damping affects the well-separated Eigenfrequencies of the components, above 1500Hz, this
is especially visibile due to the thickness resonances of the interlayer.

Neglecting the energy dissipated by the damped, elastic interlayer, the quadratic energy in-
fluence coefficients matrix, which represents the normalized energy flow into the subsystems,
remains and can be inverted. Therefore, the resulting damping and coupling loss factors are
affected by the non-conservative coupling. Fahy and de Yuan [1987] demonstrate analytically
for two non-conservatively coupled oscillators that the power flow is not only proportional
to the energy difference of the two oscillators but also to the absolute energy of the sin-
gle oscillators. Moreover, the magnitude of the power flow depends on the direction. Sun
et al [1987] show for continuous structures with a sufficient number of randomly distributed
eigenfrequencies per band that the non-conservative coupling does almost not influence the
exchange between the subsystems whereas it increases the damping loss factors. The damp-
ing loss factors do not only represent the internal losses of the corresponding subsystem but
also losses of the elastic interlayer. Below the thickness resonances of the interlayer, these
analytically gained results can be confirmed by the application of the EFA for more than
five modes per one-third octave band. Exciting the interlayer at resonance, Fig. 4.40 demon-
strates that the damping of the interlayer clearly affects the coupling loss factors, whereas
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the damping loss factors are only slightly influenced because they are significantly higher
than the coupling loss factors.

4.4.2 T-Junction with Continuous Wall and Bracket

As an alternative for the T-junction, the wall is not separated into two components and the
ceiling is connected by a steel bracket with an elastic layer on top (cf. Fig. 4.1e). As the wall
is continuous, strong coupling of subsystem 1 and 3 occurs over a wide frequency range due
to a global modal behavior. The ceiling can be considered as weakly coupled to the wall.
Thus, the energy is easily transmitted within the continuous wall between subsystem 1 and
subsystem 3. The normalized energy in the lower wall is of similar size for an excitation
of the upper or the lower wall as demonstrated in Fig. 4.41. For higher frequencies, Ã13

starts to diverge slowly from Ã11. Since the bending wave length decreases, more energy is
dissipated in the excited subsystem and less is transmitted [Hambric et al 2016].

According to Fig. 4.43, strong coupling occurs up to 500Hz since the coupling loss factors are
partly higher than the damping loss factors (η13, η31 ≥ ηii). The corresponding intersections
of the energy influence coefficients are smoothed using frequency averaged quantities in
Fig. 4.41. Moreover, Fig. 4.42 confirms strong coupling by high values of the condition
number.

Up to 500Hz, the excitation of one of the wall subsystems mostly leads to a lower energy
flow into the ceiling than the other way around (Ã2i < Ãi2 for i = 1,3). Since the load
acts perpendicular to the components, a shear deformation of the elastic interlayer results
due to the excitation of the wall, whereas for the excitation of the ceiling, a combination of
longitudinal and rotational displacements arises. Since the shear stiffness of the interlayer is
low compared to the longitudinal stiffness, the impedance difference for the excitation of the
wall subsystems is higher which yields a more effective decoupling of the two components.
This phenomenon is confirmed by the energy inside the elastic interlayer, which is between
one and two orders of magnitude higher for an excitation of the ceiling (not depicted).

Between 500Hz and the first thickness-shear resonance of the wall at 2889Hz, the exchange
between wall and ceiling is of similar size for both directions (Ã2i ≈ Ãi2 for i = 1,3).
For higher frequencies, the length and width of the plates as well as the corresponding mode
shapes seem to become insignificant for the energy flow due to the domination of the thickness
modes. The coupling strength of the two subsystems forming the continuous wall is reduced
which leads to a weakly coupled structure. Moreover, the exchange with the adjacent ceiling



4.4 Modifications at the Junction 133

31.5 63 125 250 500 1000 2000 4000 8000

10−8

10−6

10−4

10−2

Frequency in Hz

A
ij

in
s

11 12 13
21 22 23
31 32 33

2

3

1

Figure 4.41: Frequency averaged energy influence coefficients of a T-junction with continuous wall; First
thickness-shear resonance of ceiling (:) and wall ( ¦ ).

is almost only dominated by the thickness of the plates and thus, the energy flow is grouped
into excitation of wall and of ceiling (Ã21 = Ã23 < Ã12 = Ã32). This holds also true for the
coupling loss factors (η12 ≈ η32, η21 ≈ η23) in Fig. 4.43.

Negative Coupling Loss Factors in the case of three subsystems

Below the first thickness-shear resonance of the ceiling at 1445Hz, the energy exchange
between ceiling and upper wall is always slightly smaller compared to the exchange with the
lower wall (A23, A32 < A21, A12). Combined with the relatively high energy transmission
between the subsystems of the continuous wall (A13, A31), this leads to negative coupling
loss factors η32 and η23. To be able to clearly identify them and to avoid physically wrong
results, the loss factors are not averaged over the frequency band as depicted in Fig. 4.43.

Since the structure contains couplings of significantly different strength, the energy influence
coefficients can be divided into four groups according to their order of magnitude. This can
lead to negative coupling loss factors. By contrast, the T-junction investigated in subsec-
tion 4.3.4, where the two walls are separated by the ceiling and the components are rigidly
connected, has energy influence coefficients Aij of similar size (cf. Fig. 4.32a) leading to
positive coupling loss factors as the subsystems are weakly coupled for the out-of-plane ex-
citation (cf. Fig. 4.32c). The inversion of the energy influence matrix [A] (cf. Eq. (3.46)) to
compute the coupling loss factor ηij can be mathematically expressed by the subdeterminant
det [Ai,j] whereby [Ai,j] is a submatrix which results by canceling the row i and the column
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Figure 4.42: T-junction with continuous wall: Condition number of [A]; First thickness-shear resonance of
ceiling (:) and wall ( ¦ ).
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Figure 4.43: T-junction with continuous wall: Loss factors quantifying the losses of subsystem 1, 2 and 3
(negative values not depicted due to logarithmic scale); First thickness-shear resonance of
ceiling (:) and wall ( ¦ ).
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j of [A] [Bronštejn et al 2016]:

ηij = −1
Ω det [A]

(
(−1)i+j det [Ai,j]

)
(4.23)

According to Fig. 4.41, the energy influence coefficients matrix is diagonally dominant above
250Hz and thus det [A] is positive. Hence, the subdeterminant det [Ai,j] has to be positive
to receive a positive coupling loss factor ηij. Since A13 is only a little less than A11 due to the
continuous wall and A23 is slightly less than A21, a negative coupling loss factor η32 might
occur:

det [A3,2] = A11A23 − A13A21 > 0 → η32 < 0 (4.24)

Below the first thickness-shear resonance of the ceiling, this is the case at several discrete
frequencies as depicted in Fig. 4.43. Above 500Hz, no strong coupling can be identified
according to the definition in subsection 3.2.3 and 4.2.2 by energy influence coefficients and
loss factors. Also the condition number has comparatively small values. Hence, it serves
mainly to check if all subsystems are weakly coupled. Close by the first thickness-shear
resonance of the ceiling, where no more negative coupling loss factors occur, an additional
decrease of the condition number towards unity can be recognized.

Division into only two subsystems

The wall is divided into two subsystems at the discontinuity due to the connection of the
bracket for the ceiling. The division into three subsystems gives detailed results about
the energy flow into and from different parts of the continuous wall using energy influence
coefficients. This can be useful for the prediction of the sound transmission in multistory
buildings to distinguish between the sound transmission into two different floors.

An alternative abstraction of this T-junction would be a division into two subsystems con-
sidering the continuous wall as one waveguide since the modal behavior of the wall is widely
not affected by the bracket. On the one hand, the higher abstraction leads to less resolu-
tion in space. On the other hand, the matrix is easier to invert which leads to numerically
more robust coupling loss factors with higher precision since by the subsystem division is
accounted for the strong coupling behavior. Thus, no negative coupling loss factors occur
as demonstrated in Fig. 4.44. Exciting either the lower or the upper wall, the location of
the respective 100 loaded elements influences the coupling loss factor η̃12 below the first
thickness-shear resonance of the wall. At higher frequencies, the energy flow depends on the
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Figure 4.44: Frequency averaged loss factors of a T-junction with continuous wall divided into only two
subsystems: Wall (1) and ceiling (2). Excitation of lower (−−) or upper (· · · ) wall; First
thickness-shear resonance of ceiling (:) and wall ( ¦ ).

distance of the loads from the junction as shown in subsection 4.3.3. Since both excitations
lead to a similar load density, a similar η̃12 results.

4.4.3 Comparison of L-, T- and X-Junction

In multistory buildings, three different types of junctions are distinguished. Depending
on the location in the monolithic construction of Fig. 4.45a, either an L-, a T- or an X-
junction (cf. Fig. 4.45b,c,d) is extracted. The transmission behavior of the specific junction is
determined by means of the energy exchange between the adjacent components assuming that
the influence of the remaining structure is negligible. This conforms to the SEA assumption
of weak coupling. This is fulfilled, if the inverted energy influence coefficients matrix of
the entire building is a proper-SEA matrix (cf. subsection 3.2.3). Then, the coupling loss
factors depend only on the junction and its adjacent subsystems, since there is no indirect
coupling.

In this subsection, the influence of additional components which adjoin at one junction is
investigated by comparing an L-, a T- and an X-junction, whose components are connected
flexible. Therefore, an elastic interlayer between wall and ceiling is used, whose properties are
given in Tab. 4.4. In the case of the X-junction, the two subsystems representing the ceiling
are either rigidly connected, which corresponds to a continuous ceiling, or separated. For
comparability, the common subsystems of the four different junctions have the same physical
properties and they are excited at the same locations by a RotR loading with identical phase
shifts.

Figure 4.46a shows the energy flow into the lower wall (subsystem 1) and Fig. 4.46b into
the right ceiling (subsystem 2) for the excitation of each subsystem of the four different
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Figure 4.45: Different junction geometries in multistory buildings.

junctions: L, T, X with continuous ceiling and X with separated ceilings. Generally holds
that the higher the number of subsystems is, the less normalized energy is transmitted into
one subsystem. Due to the elastic interlayers between wall and ceiling, strong coupling does
not occur in the investigated frequency range. Above 2500Hz, the off-diagonal entries of the
energy influence coefficients matrix start to increase with frequency and seem to approach
similar, high values above 4000Hz. There, the thickness resonances of the undamped, elastic
interlayer dominate the transmission behavior (cf. subsection 4.4.1).

In Fig. 4.46a, the energy flow from the ceiling into the lower wall (A12) is similar for the L-
and the T-junction above 800Hz. In the case of the X-junctions, both variants show similar
energy flows into the wall independently of the excited ceiling (A12 ≈ A14). Comparing the
normalized energy inside the lower wall in Fig. 4.46a, the excitation of the upper wall leads
to a smaller energy flow than the excitation of the ceiling (A13 < A12, A14), except in some
one-third octave bands around 250Hz, as the energy has to pass two elastic interlayers.

From 250Hz on, the transmission between the walls (A13) of both X-junctions is quite similar
and clearly smaller compared to the T-junction. At low frequencies, the X-junction with the
connected ceilings leads to the highest energy transfer between the two walls. A11 results to
be almost identical for the different junctions since neither the damping loss factor nor any
other physical property of the subsystem is changed.

Comparing the energy flows into subsystem 2 in Fig. 4.46b, the distinct behavior of A24

attracts attention. The separation of the two ceilings takes effect and leads to a clearly
smaller energy transfer, except in the one-third octave band of 125Hz. Here, the mode
shapes of both X-junctions have in common that the ceiling does either not participate
(cf. Fig. 4.47a and d) or only one of the two ceiling subsystems is involved (cf. Fig. 4.47b
and e) as they have a different length. This means, that independently of a separation of
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Figure 4.46: Frequency averaged energy flow into subsystem 1 and 2, respectively, exciting the subsys-
tems of the following junctions: L (− · −), T (−), X (· · · ) and X with separated ceilings (−−).
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(a) 112 Hz (b) 119 Hz (c) 148 Hz

(d) 112 Hz (e) 116 Hz
Figure 4.47: Mode shapes of the X-junction with continuous ceiling (top row) and with separated ceilings

(bottom row); Colors indicate vector sum of displacements.

the ceiling there are almost no mode shapes to transport the energy horizontally from one
ceiling subsystem to the other (A24). Compared to A24, the transmission from wall to ceiling
(A21, A23) is of similar size for the continuous ceiling or it even dominates in the case of the
separated ceiling. In Fig. 4.47c, the whole ceiling oscillates due to a combination of in-plane
and bending waves. This modal behavior only arises for the X-junction with continuous
ceiling.

The rigid connection of the two ceilings results in an energy influence coefficient A24 which is
less than one order of magnitude smaller than A22 over a wide frequency range. Due to the
high energy transfer into the adjacent ceiling, A22 is slightly reduced compared to the other
junction geometries. The division into two subsystems still makes sense as the connection
of the walls to the ceilings states a discontinuity where the energy is transmitted into the
different components. Furthermore, the two ceiling subsystems are not strongly coupled with
respect to the definition in subsection 3.2.3 and 4.2.2 since their energy influence coefficients
do not coincide above 40Hz. Moreover, the condition number in Fig. 4.48 indicates that the
coupling is stronger compared to the other junctions. Since the lower wall and the upper wall
have identical physical properties, their excitation by 100 loads at different locations leads to
almost identical results above 800Hz (A21 = A23). At lower frequencies, the non-symmetrical
spatial distribution of the loading excites different modes with different intensity.
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Figure 4.48: Condition number of [A] for different junction geometries: L (− ·−), T (−), X (· · · ) and X with
separated ceilings (−−).

4.5 Statistical Examinations - Number of Loads

To predict the energy flow as representative as possible for a structure, in case of an unknown
loading the average over several realizations of a varying RotR loading is taken. Loading
each element at each frequency step leads to a high computational effort which is attempted
to be minimized. Therefore, the number of loads shall be reduced. To be able to quantify
its influence, 100 realizations are performed on each of six different numbers of loads. The
criteria for the RotR excitation are still fulfilled as the forces are statistically independent to
produce an incoherent modal response and subsequently equipartition of modal energy.

In subsection 4.5.1, the influence of the number of loads used for the RotR excitation is
examined by means of the coefficient of variation. Moreover, the relation between input
power and substem energy is compared for individual realizations in subsection 4.5.2. In
subsection 4.5.3 the sample mean values are compared to the ensemble average calculated
by the SEA and the confidence interval is illustrated to predict the true mean with a certain
confidence level. The section is completed by concluding remarks in subsection 4.5.4. The
used material slightly differs from the foregoing sections and is given in Tab. A.1. It is based
on the same measurements at the L-junction within the joint research project [Mecking et al
2017a] whereby the error between selected measured and computed natural frequencies is
minimized by means of an Bayesian updating [Paolini et al 2016]. The geometry is listed in
Tab. 4.3.

4.5.1 Coefficient of Variation

Figure 4.49 shows the coefficient of variation for different numbers of loads. An increasing
number of loads leads to a lower coefficient of variation for the energy influence coefficients
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Figure 4.49: Coefficients of variation of A12 (−−) and A22 (−) based on 100 realizations for different
numbers of loads nl; nl=max. corresponds to loading each element per subsystem surface.

A12 and A22. The single load leads to a significantly higher deviation between the individual
realizations over the entire frequency range. For several loads per realization, the first
thickness-shear resonances of the excited plate 2 at 1370 and 1823 Hz state the lower limit
of different levels according to the number of loads. At the first thickness-stretch resonance
(3860 Hz), the curves are already well separated. At low frequencies, one-third octave bands
with few or none resonant modes might also lead to deviations. The coefficient of variation
of the power P2 decreases with increasing frequency as the locations of the loads become less
decisive for shorter wavelengths. As P2 is fully correlated over the entire frequency range
with the energy in the excited subsystem E22, its coefficient of variation and the one of
A22 behave analogously. Due to a decreasing correlation coefficient ρ12 of P2 and E12 the
variation of A12 behaves differently. It remains in the same magnitude below the thickness
resonances.

4.5.2 Individual Realizations: Input Power vs. Subsystem Energy

Figure 4.50 presents the relationship between the input power and the energy in the excited
and the adjacent subsystem, respectively, for 100 realizations with a varying excitation pat-
tern. Thereby, all elements on the surface of the plate are loaded (nl=max.) as depicted
in Fig. 3.5. Three selected one-third octave bands are depicted. The global modes in the
100 Hz one-third octave band lead to a high correlation of the input power with the energy
in the excited and the indirectly excited subsystem, too. This definite relationship holds for
the higher one-third octave bands only in the excited subsystem. It seems that in the non-
excited one the energy behaves nearly independent of the injected power as the individual
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Figure 4.50: Input power vs. subsystem energy (n=100, nl=max.): A (−), A weighted by power (−−);
from right to left: 100 Hz (ρ12 = 0.99, ρ22 = 1.0), 630 Hz (ρ12 = 0.61, ρ22 = 1.0) and
3150 Hz (ρ12 = 0.25, ρ22 = 1.0).

realizations form a cloud instead of a line. This indicates that the subsystems are weakly
coupled. Compared to the excited subsystem the energetic level is orders of magnitudes
smaller. According to the investigations in subsection 4.3.3, the latter is influenced by the
varying excitation pattern.

As mentioned in subsection 3.3.2, only at low frequencies it makes a difference if the energy
influence coefficients are averaged unweighted (cf. Eq. (3.90)) or if the input power is used as
a weigthing factor (cf. Eq. (3.41)). Hence, only for the one-third octave band of 100Hz the
two line types corresponding to the two arithmetic averages over the individual realizations
can be distinguished.

4.5.3 Sample Mean, Confidence Interval - Comparison to the SEA

According to Fig. 4.51, the arithmetic sample mean values of the energy influence coefficients,
A22 and A12, show some small deviations for different numbers of loads at low frequencies.
Varying the number of loads leads to different levels of A12 in the high frequency range where
the thickness modes vibrate at resonance. Here, the coefficients of variation of A12 reach
high values especially for a low number of loads as depicted in Fig. 4.49.

Since a high coefficient of variation results in a large confidence interval, Fig. 4.52 demon-
strates that the true mean could be independent of the number of loads also at high fre-
quencies: For the limit cases nl = 1, nl = 100 and nl =max., the sample mean as well as
the 99% confidence interval is illustrated. Since the confidence interval of the true mean for
nl = 100 is part of the confidence interval for nl = 1, it is possible that both cases have a
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Figure 4.51: Sample mean value of A12 (−−) and A22 (−) based on 100 realizations of different numbers
of loads nl compared to ensemble average from the SEA.

common true mean. This also holds for the not depicted confidence intervals of nl = 5, 10
and 50 since each of them is part of all confidence intervals which belong to a lower number
of loads.

By contrast, the true mean of nl =max. is not part of the intersection of nl = 1 and
nl = 100 above the first thickness-stretch resonance (cf. Fig. 4.52). As demonstrated in
subsection 4.3.3, the energy flow depends at high frequencies on the location of the load and
its distance to the junction. Applying different numbers of loads for the RotR excitation
results in differently large load densities, which are equally distributed on the plate and
therefore also at the junction. In summary, the load density and thus the number of loads
of the RotR excitation are responsible for the amount of energy which is transmitted into
the adjacent component at high frequencies as indicated by Fig. 4.51.

Comparison to the SEA

As shown in Fig. 4.51, the energy flow in the L-junction is also investigated by means of
the SEA. In the SEA model, the rigid connection of wall and ceiling is modeled by a line
coupling. Here, only the bending waves are excited by a unit input power for the comparison
with the energy flow in the EFA model, where the plates are excited by a perpendicular RotR
excitation. To compare the normalized energies of each plate, the contributions of bending,
shear and longitudinal waves are summed up in the SEA model .

The excitation of the bending waves in subsystem 2 results in an almost identical ensemble
average for the normalized energy in the excited subsystem (A22) comparing the SEA and the
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Figure 4.52: Sample mean (−) plus 99 % confidence interval (− · −) of energy influence coefficient A12
based on 100 realizations for nl = 1, 100 and max.; Thickness-stretch resonances (:).

EFA model. The normalized energy in the adjacent subsystem A12 is overestimated at low
and high frequencies as the assumptions of the SEA and of the Mindlin wave approximation
are not fulfilled, respectively. In the one-third octave band of 250Hz the decisive subsystem
has five modes per band reaching a modal overlap factor of unity at 315Hz.

4.5.4 Conclusion

In case the load is unknown, a robust estimation of the energy flow is needed for a general
prediction of sound transmission. The SEA delivers an ensemble average within a limited
frequency range. The EFA can also be applied at low frequencies with a small amount of
modes as well as at high frequencies taking thickness modes into account. One realization of
the EFA delivers a prediction for one specific load case. By averaging over randomly varying
load cases, a robust energy flow with respect to the load can be predicted. The resulting
energy influence coefficients are as universal as possible to be able to generally assess the
vibroacoustic behavior of a junction. In subsection 3.3.3, a procedure is shown to find a
minimum number of realizations to compute energy influence coefficients within a certain
confidence interval (cf. Fig. 3.6). As a higher number of loads leads to a lower coefficient
of variation, the number of realizations can be reduced to reach a certain confidence level.
[Winter et al 2017c]
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Depending on the Frequency Range

The investigations of various junctions consisting mostly of CLT plates, which are illustrated
in chapter 4, demonstrate that the frequency range can be partitioned into different ranges.
Thereby, the vibrational behavior of the components, which depends on their physical prop-
erties, defines the basis for the partitioning. A proposal for a division into a low, a mid and
a high frequency range is given. The ranges cover the extended frequency range of building
acoustics. They are distinguished in the subsequent paragraphs.

5.1 Low Frequency Range

The low frequency range is characterized by well separated modes leading to a low modal
density. Here, a deterministic prediction is important since geometric dimensions (cf. sub-
section 4.3.2, 4.3.3) as well as the type of excitation (cf. subsection 4.2.2, 4.3.5) are decisive
for the vibration behavior and for the energy flow into adjacent components. Thereby, RotR
can help to reduce the influence of strong coupling and thus, to avoid negative coupling loss
factors (cf. subsection 4.2.2). In the case of a single load, the influence of the load location
on the frequency-averaged quantities is limited as long as it acts sufficiently outside of the
nodal lines of the mode shapes (cf. subsection 4.3.3).

The prerequisites for analytical solutions like the wave approach, which constitutes a basis for
the SEA, are not fulfilled and their predictions mostly overestimate the energy transmission
(cf. subsection 4.5.3). Using the EFA, a coarse mesh combined with a high resolution in the
frequency range is appropriate for structure-borne sound predictions in the low frequency
range (cf. subsection 4.1.5, 4.1.6).

An evaluation of the energy flow by means of the energy influence coefficients is recom-
mended, whereby an inversion to loss factors is also possible. Their precision can be affected
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by a bad conditioning of the energy influence coefficients matrix. The generation of coupling
loss factors by the EFA for the use in SEA models can lead to difficulties since negative
coupling loss factors tend to occur due to non-resonant transmission or strong coupling.

The engineering measure recommended by DIN EN ISO 12354-1 [2017] is the vibration
reduction index, which characterizes the energy transmission over a junction only in depen-
dency of the properties of the junction itself. Complying with this definition, the vibration
reduction index cannot be determined in the low frequency range since the SEA assumptions
are not fulfilled. By means of the EFA, coupling loss factors and resultant vibration reduc-
tion indices can be calculated with the restriction that they depend on the geometry of the
adjacent components and on the load case. Since mainly bending waves occur, a consistent
computation of the vibration reduction index by means of the coupling loss factor from the
EFA and the group velocity of the effective bending waves is possible (cf. section 4.2).

Compared to the rigid junction, the bending wave transmission of a junction with elastic
interlayer is diminished due to the smaller rotatory stiffness. Especially at low frequen-
cies, large deformations of the interlayer occur resulting in a non-resonant excitation of its
thickness modes. Thereby, the stiffness proportional damping of the interlayer additionally
reduces the energy flow into the adjacent subsystem (cf. subsection 4.4.1).

A single plate can be modeled easily by shell elements, which neglect the small amount
of non-resonant contribution of potential energy due to the disregard of through-thickness
effects (cf. subsection 4.3.1). In contrast, the response of a structure consisting of plate-
like components is sensitive to the element choice. The reduction to the middle plane and
distinct implementations of a junction influence significantly the eigenfrequencies, computed
either by shell or by solid element models. Indeed, the boundary conditions as well as the
ratio between dimension and wave length are decisive for the eigenfrequencies [Winter et al
2017a].

5.2 Mid Frequency Range

Within this thesis, the mid frequency range is defined to start where the SEA gives suitable
predictions. The lower limit can be determined by a sufficient number of modes per one-
third octave band. On the basis of the performed comparisons in section 4.2 and especially
in subsection 4.5.3, five modes per band and a modal overlap factor greater or equal unity
resulted to be convenient since then comparable results are obtained by the EFA and the
SEA. This coincides with established opinions e.g. formulated by Müller [1999], Culla and
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Sestieri [2006] as well as Fahy and Mohammed [1992]. For in-plane excitation, the same rules
apply, which lead to a shift of the frequency limit. In this case, the mid frequency range
begins above five in-plane modes per one-third octave band (cf. subsection 4.3.4).

As the frequency rises, the wave lengths decrease and the number of modes per frequency
band increases. The influence of the boundary conditions on the mode shapes fades. Hence,
the difference between predictions based on shell or solid elements becomes smaller [Winter
et al 2017a]. Whereas the subsystem length and width are decisive for the system response
at low frequencies, the influence of the width cancels inside the mid frequency range (cf. sub-
section 4.3.2, 4.3.3). The frequency averaged quantities behave similarly for different widths
if even the structure with the smallest width contains subsystems with more than ten modes
per one-third octave band and a modal overlap factor greater than unity. Moreover, it be-
comes less decisive in the mid frequency range if a certain number of randomly distributed
loads acts correlated or with a random phase (RotR) on the structure (cf. subsection 4.3.5).

As the prerequisites of the SEA are fulfilled, an evaluation of the structure-borne sound
transmission is possible by means of energy influence coefficients and loss factors. The choice
of the computational approach for the vibration reduction index depends on the objective of
the quantity. Predicting only bending wave transmission, either the transmission coefficient
between two bending wave subsystems or the coupling loss factor ηvz , which is based on the
perpendicular translational part of the kinetic energy, can be used. Thereby, no in-plane
energy is taken into account; neither in the sending subsystem nor in the receiving one. In
the case of CLT plates, the transition from thin to thick plate theory is mostly below the
limit of five modes per band and thus, the in-plane energy contributes significantly to the
transmission behavior in the mid frequency range. To comply with the thick plate theory
for out-of-plane oscillations, the vibration reduction index is computed on the basis of the
effective bending wave velocity.

By contrast, the different computational approaches of DIN EN ISO 12354-1 [2017] are
based on the thin plate theory and only bending transmission as shown in subsection 3.2.4
by converting them. If the contribution of in-plane waves is taken into account, an alter-
native computation of the vibration reduction index is proposed. Either, the transmission
coefficients – e.g. from the excited bending wave subsystem towards all subsystems which
form part of the receiving plate – are summed up on the basis of the wave approach or the
coupling loss factors from the EFA are used which represent the entire energy transmission
between two plates (cf. subsection 4.2.3). In this case, the division of the coupling loss factor
by the group velocity of the effective bending waves, which equals the group velocity of out-
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of-plane shear waves for thick plates, is inconsistent since the energy of longitudinal waves
is transported faster (cf. section 4.2).

The EFA is able to consider specific scenarios of loading across the plate, whereas the SEA is
restricted to inject a certain power into a subsystem of a specific wave type. Moreover, non-
conservative couplings like damped, elastic interlayers can be modeled by the EFA, whereas
the classical SEA is restricted to conservative couplings. For the investigated structures,
the stiffness proportional damping of the elastic interlayer shows the lowest impact on the
energy flow in the mid frequency range. There, kinetic and potential energy converge to
similar values but the thickness modes within the interlayer still do not vibrate at resonance
(cf. subsection 4.4.1).

5.3 High Frequency Range

The first thickness-shear resonance of a plate is chosen as the lower limit of the high fre-
quency range. This corresponds to the upper limit of the Mindlin plate theory since it is not
able to describe through thickness effects. Whereas thickness-shear resonances are clearly
visible by an in-plane excitation (cf. subsection 4.3.4), thickness-stretch resonances are ex-
cited by a common, out-of-plane surface loading. The thickness resonances clearly dominate
the energy distribution in the high frequency range. They slightly change the dynamic be-
havior of a plate in the low frequency range. Their excitation can only be avoided by an
equally distributed loading through the thickness (cf. subsection 4.3.1). Since the thickness
modes lead to a maximum displacement at the top and the bottom plane of the plates, the
kinetic energy is clearly overestimated if it is approximated by means of the surface velocities
(cf. subsection 4.2.4).

Neither the shell elements nor the classical SEA of plate-like structures are able to represent
through-thickness effects. To identify them, solid elements have to be used (cf. subsec-
tion 4.3.1). Thus, simplifications, like the energy estimation by means of surface velocities,
and engineering quantities, like the vibration reduction index, which both were developed
for thin plate-like structures are not suitable at high frequencies (cf. subsection 4.2.4).

The thickness resonances significantly increase the number of modes per one-third octave
band and the modal overlap factor (cf. subsection 2.3.2). Therefore, a reduced resolution in
the frequency range is sufficient, whereas the short effective bending wave length requires a
system discretization with an increased number of degrees of freedom (cf. subsection 4.1.5,
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4.1.6). This can be solved either by refining the mesh or by using higher order polynomials
[Winter and Müller 2017].

Since the thickness resonances are independent of width and length of a subsystem, the width
of a junction has no influence on the energy transmission (cf. subsection 4.3.2). Moreover,
a change of length affects only the energy flow from the modified subsystem to neighboring
subsystems at high frequencies (cf. subsection 4.3.3). For plates of appropriate size, the
energy flow starts to become exclusively dependent on the location of the excitation or
more precisely on the distance of the loading from the junction: If the plate is sufficiently
large, almost no reflections of the direct field occur from other boundaries. Comparing
100 realizations of RotR with less or equal 10 loads, the coefficient of variation increases
significantly for high frequencies since the location matters (cf. subsection 4.5). For a higher
number of loads, they result in an equal distribution on the plate, which indicates the reduced
coefficient of variation. Doubling the length of the ceiling, the load density is halved for a
constant number of loads and thereby, a proportionality can be identified because the energy
flow into the wall is halved as well (cf. subsection 4.3.3).

If the elastic interlayer is used to model a screwed connection, the FE model is no longer
valid as soon as the first thickness mode of the interlayer vibrates at resonance. Being an
artefact of the FE model, this behavior does not correspond to a screwed connection (cf. sub-
section 4.4.1, 4.4.3). In the case of a factual elastic interlayer, the importance of the damping
can be clearly identified as it eliminates the thickness resonance peaks of the interlayer. Ne-
glecting the damping leads to a maximum energy transmission into the adjacent component
(cf. subsection 4.4.1).

As length and width of the plates become subordinated for the energy flow at high fre-
quencies, the corresponding mode shapes also seem to become insignificant. Therefore, the
coupling of the two subsystems forming the continuous wall of a T-junction is reduced and
the exchange with the adjacent ceiling is almost only dominated by the thickness of the
connected components. This leads to a weakly coupled structure (cf. subsection 4.4.2).

5.4 Classification of a Structure

As a result, an appropriate method, the correct model and convenient evaluation quantities
have to be selected depending on the frequency range of interest.
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Table 5.1: Validity of EFA and SEA with respect to the frequency range.

Frequency range
Low M ≈ 1

N ≈ 5
Mid f =

fT M,1(cS,zy)
High

| SEA for plate-like structures |
E FA u s i n g s h e l l e l e m e n t m o d e l s |

E FA u s i n g s o l i d e l e m e n t m o d e l s

Methods and Models Within this thesis, the EFA using a solid or a shell element model
is compared to the SEA based on the wave types of plate-like structures or assuming ex-
clusively bending waves. Based on the investigations in chapter 4, Tab. 5.1 assigns the two
methods and their models to the three different frequency ranges which are introduced in
the sections 5.1 to 5.3. Whereas the EFA is applicable to any frequency range using solid
elements, the shell element model is restricted to plate-like structures. This applies also to
the SEA, which additionally requires about five modes per band indicating the compliance
of the SEA assumptions. If the energetic thin plate limit is above the frequency limit of five
modes per band, therein, the entire energy transmission might be predicted by the simplified
SEA, considering each plate-like component only as a bending wave subsystem. Moreover,
the validity of this assumption depends on the boundary conditions and of the loading. For
typical CLT structures, the thin plate limit occurs below the frequency limit of five modes
per band. This contradicts with the application of the prediction model according to DIN
EN ISO 12354-1 [2017], which is based on the simplified SEA assumption [Gerretsen 1979].

Evaluation Quantities Various evaluation quantities are introduced and compared within
this thesis. Table 5.2 summarizes their applicability related to the low, mid and high fre-
quency range. The quantities based on the surface velocity oscillating perpendicular to the
plate consider only the bending wave transmission. Due to the thickness resonances, they
overestimate the bending wave energy at high frequencies. The coupling loss factors based on
the sum of kinetic and potential energy can be evaluated across the entire frequency range,
such as the energy influence coefficients, which constitute the primary output quantity of the
EFA. For the use of the coupling loss factors as input data in a classical SEA model, they
ideally fulfill the requirements of a proper-SEA matrix. Only in the case of pure bending
wave transmission and fulfilling the SEA criteria, the vibration reduction index represents
the complete energy transfer. This is the case when < K̃(ηij) > and < K̃(ηij,vz) > are
identical. < K̃(ηij) > considers also the in-plane energy transmission. But the faster energy
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Table 5.2: Validity of evaluation quantities with respect to the frequency range.

Frequency range Comment
Low M ≈ 1

N ≈ 5
Mid f =

fT M,1(cS,zy)
High

Aij , ηij including negative ηij

Aij,vz
, ηij,vz

| only bending wave transmission
| η̃ij | as input data for an SEA model
| K(τBiAj) | from SEA of plate-like structures
| K(τBiBj) | from SEA: only bending wave transmission

K̃(ηij) inconsistent above K(ηij) = K(ηij,vz
)

K̃(ηij,vz
) | only bending wave transmission

K̃(Dv,ij) |
|

=K(ηij,vz ) for 2 subsystems using η0 from
EFA

transport by the longitudinal waves is ignored due to the division by the group velocity of
the effective bending waves. This leads to an inconsistent quantity for higher frequencies.

The transmission coefficients enable a consistent computation of the vibration reduction
index for the mid frequency range. To extend its validity to higher frequencies, additional
wave types representing the through-thickness behavior should be considered in the wave
approach.

Identification of Frequency Range Limits The interactive, web-based application "Vi-
broacoustics of plates", which is explained in the appendix A.1, has been made available to
identify the frequency range limits for a specific structure as a function of its physical prop-
erties. In the case of cross-wise layered plates like CLT, the material properties are firstly
homogenized according to the procedure presented in subsection 2.1.3. Afterwards, impor-
tant vibroacoustic properties of the considered plate, such as the velocities of the inherent
wave types, are calculated by means of analytical solutions. Based on the wave velocities,
the thin plate limit, the first thickness resonances, the number of modes per band and the
modal overlap factor are computed among others. With the aid of Tab. 5.1 and 5.2, these
vibroacoustic properties indicate which configuration should be selected to investigate the
specific structure in the frequency range of interest. Additionally, an estimation for an ap-
propriate side length of finite elements with quadratic shape functions is given according to
subsection 4.1.5.

http://go.tum.de/632541
http://go.tum.de/632541
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6 Conclusion and Outlook

6.1 Conclusion

The present thesis presents a numerical, hybrid approach, namely the EFA, for the prediction
of the structure-borne sound transmission in the whole audio-frequency range. A structure
modeled by FE is divided into subsystems according to the division into components. After
exciting each subsystem separately by a time-harmonic surface load applied to single ele-
ments, the displacement solution of an FE model is computed. In the post-processing, input
power and subsystem energy are calculated and averaged with respect to time and space to
cope with the increasing effects of uncertainty and variability for higher frequencies. Op-
tionally, the quantities are additionally averaged per frequency band to gain the governing
equations for an averaged ensemble of coupled systems in the steady state. By taking the
quotient of the subsystem energy and the corresponding input power, the energy influence
coefficients are obtained to describe the normalized energy that flows through a structure.
By inversion, coupling and damping loss factors can be computed. In the case, the SEA
criteria are fulfilled, the loss factors can be used as input data either for an SEA model or
for the computation of vibration reduction indices to perform a prediction according to DIN
EN ISO 12354-1 [2017].

The EFA offers the possibility to compute either the energy influence coefficients for a specific
load scenario or - in case the load is unknown - for a so-called RotR excitation, which is a
spatially uncorrelated loading at randomly chosen locations with the aim to equally excite all
modes. By averaging over different realizations of RotR, a robust energy flow with respect
to the loading can be predicted. A procedure is presented to find a minimum number
of realizations in order to predict energy influence coefficients within a certain confidence
interval. This corresponds to an estimation of the true mean with a certain precision.
It serves for a robust and general prediction of the energy transmission behavior of the
investigated junction independently of the loading.
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Moreover, RotR helps to reduce the influence of strong coupling at low frequencies and
thus, to increase the reliability of the related coupling loss factors, which is indicated by a
lower condition number. The importance of a non-random phase shift of the single loads
decreases with increasing frequency since the spatial modal behavior becomes more and more
uncorrelated.

The EFA is based on an FE model, which is directly solved over a wide frequency range, and
therefore, various modeling aspects have to be taken into account. Recommendations for the
configurations are given either related to the investigated structures or exclusively depending
on physical properties. For the resolution in space, a rule of thumb could be found for the
maximum element size in dependency of the effective bending wave length. Moreover, a
logarithmically equidistant spacing in the frequency range and the numerical interpolation
by the composite trapezoidal rule resulted to be efficient. For a high modal overlap, the
number of frequency steps per band can be clearly reduced, whereas the meshing has to be
refined and the use of solid elements are obligatory as soon as the first thickness-mode is
excited at resonance. For CLT, this occurs at comparatively low frequencies since the elastic
modulus of wood perpendicular to the fiber direction is about one thirtieth of the one in
fiber direction.

The comparisons to analytical, wave-based solutions of the SEA confirm that the classical
SEA is limited to plate-like structures with a sufficient number of about five modes per
frequency band and a modal overlap factor greater unity. For an in-plane excitation, the
range of applicability is even smaller, since only in-plane modes contribute to the energy
transport and thus, the lower frequency limit is shifted to five in-plane modes per band.
In practice, the structure-borne sound transmission is described by means of the vibration
reduction index according to DIN EN ISO 12354-1 [2017]; DIN EN ISO 12354-2 [2017]. This
procedure is based on a simplified version of the SEA assuming thin, semi-infinite plates
which contain only bending waves [Gerretsen 1979]. The assumption of pure bending wave
transmission reduces the upper limit of the applicability, whereas the semi-infinite behavior
is only fulfilled above a certain frequency limit. In the case of CLT, the thick plate theory
applies already at low frequencies. Hence, the range of applicability shrinks or vanishes
completely since the upper limit might occur below the lower one. Therefore, alternative
computation techniques are suggested.

The variation of geometry and loading shows a frequency dependent influence of these char-
acteristics on the energy flow. The influence of the length and especially of the width, which
coincides with the junction length, decreases with increasing frequency. The thickness is
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relevant at low and especially at high frequencies because it is decisive for the cut-on fre-
quencies of the thickness modes. In this high frequency range, the location of the loading
and especially its distance to the junction becomes important. For RotR, a proportionality
can be derived as it leads to an equally distributed load density: The energy flow into the
adjacent component decreases for a decreasing load density on the sending component.

The effect of the connection strength is investigated in different manners. Firstly, an elastic
interlayer is inserted between two components leading to a clearly reduced energy flow in
most one-third octave bands. If the interlayer shall represent the flexible behavior of a
screwed junction, the FE model is no longer valid as soon as the first thickness mode of
the elastic interlayer vibrates at resonance, because this behavior does not correspond to a
screwed connection. These artefacts of the FE model can be avoided setting the mass of the
interlayer to zero. Secondly, the elastic interlayer receives additionally stiffness proportional
damping properties. Thus, the energy flow into the adjacent subsystem is reduced. This
is the case especially at high frequencies as the damping eliminates the thickness resonance
peaks of the interlayer. At low frequencies, large deformations occur inside the interlayer
resulting in a non-resonant excitation of its thickness modes. Then, the damping loss factors
do not only represent the internal damping but also the coupling damping. The coupling
loss factors are not affected above the frequency limit of five modes per band and below
the thickness resonances of the elastic interlayer. Thirdly, strong coupling arises over a
wide frequency range between the subsystems forming the continuous wall of a T-junction.
Therefore, an alternative division leading to only one wall subsystem is presented whereby
the reduced resolution in space leads to more precise and non-negative coupling loss factors.
Fourthly, the separation of the ceiling of an X-junction results in a clear decoupling over
the whole frequency range except of one one-third octave band, even though the ceilings
are indirectly connected via the lower and upper wall. Fifthly it is obvious that the more
components are connected at one junction, the less energy flows into each subsystem.

A detailed summary of the investigations assigned to the different frequency ranges and
related to the corresponding subsections is given in chapter 5. It is suggested to divide the
frequency domain into three different ranges, which offer distinct modeling techniques and
evaluation quantities. The web-based application "Vibroacoustics of Plates" has been made
available for the identification of the frequency range limits as a function of the physical
properties of the structure of interest. The interactive application is primarily designed for
plates which have a symmetric, cross-wise layup like CLT, and applies also to homogeneous,
orthotropic or isotropic plates.

http://go.tum.de/632541
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6.2 Outlook

In chapter 4, the EFA was applied to calculate the energy flow across junctions consisting of
raw CLT plates. One of the aims was to classify the raw junction by means of the vibration
reduction index for the prediction of the sound transmission according to DIN EN ISO
12354-1 [2017]. Afterwards, measures to improve the sound reduction like a floating floor
or a lining in front of the wall can be considered additively, e.g. in the computation of the
normalized impact level for the flanking transmission path Ln,ij according to Eq. (3.50). For
massive constructions, this generally leads to good results. Kohrmann [2017] showed that it
could be necessary to look at coupled timber structures like the construction of a ceiling in its
entirety including e.g. the effect of the air inside a suspended ceiling. Thus, the corresponding
construction of walls and ceilings could be added to the FE model which states the basis for
the EFA. The augmented model opens several opportunities. Firstly, the energy that flows
through the construction could be described by introducing the floating floor or the lining
as additional subsystems leading to a non-symmetric energy influence coefficients matrix
as it is shown within this thesis for elastic interlayers. Secondly, an "integral" vibration
reduction index could be calculated including the measures of improvement. On the one
hand, their effect on the flanking transmission can be examined and on the other hand, the
resulting normalized impact level for the flanking transmission path Ln,ij can be compared
to the additive, standard procedure according to Eq. (3.50). Thirdly, the effect of specific
loadings like a walking person or a tapping machine as well as the impact of building service
equipment could be investigated. Fourthly, a combination with an acoustical evaluation
model based on Integral Transform Methods [Kohrmann 2017] would directly lead to the
radiated sound power in the neighboring room on the basis of the surface velocities. Using
e.g. an X-junction, various scenarios of sound transmission paths could be realized.

To obtain the energy in one component of a multistory building, the prediction model of
DIN EN ISO 12354-1 [2017] usually considers only the energy exchange across the adjacent
junctions. The "in-situ"-correction by the factual total loss factor neglects the energy flowing
back from farther components. To quantify the energy flowing into one component from all
other components necessitates to model the entire building including also longer flanking
paths. These describe the energy which crosses more than one junction from the source
subsystem to the receiving subsystem. The longer flanking paths might be rather relevant
at low frequencies, where the coupling loss factors are comparatively high. In this frequency
range, a shell element model can be used, which implicates a generally justifiable numerical
effort. Hence, the importance of the individual transmission paths can be evaluated by the
EFA with respect to the frequency range.
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For the present investigations, homogenized material parameters of CLT as well as coupling
parameters resulting from a model updating at low frequencies are used. Comparisons to
energy influence coefficients based on measurements show that the input parameters should
be updated over a wider frequency range. This is rather complicated because conventional
updating techniques only cover the low frequency range of well-separated modes. Usually,
a comparison of a modal analysis with measured eigenfrequencies and eigenmodes is per-
formed leading only to the mass and to the stiffness parameters of a thin plate. For higher
frequencies, the out-of-plane shear moduli become more decisive for the vibrational behavior,
which confirms the thick plate theory as well as recent investigations related to CLT plates
[Meisinger 2017; Schneider 2017]. To fit additionally coupling and damping parameters, a
comparison of force-induced vibrations of the coupled structure has to be performed. In
this regard, it should be taken into account that damping of timber clearly varies between
bending and shear modes according to Labonnote [2012].

With increasing frequency, the modal overlap increases. This requires alternative model
updating techniques which also cope with a possibly frequency dependent behavior. In this
context, it is important to mention that the EFA is able to work with frequency dependent
material parameters as shown for the damped, elastic interlayer. Moreover, comparisons
showed that the homogenized model of the CLT parameters has a restricted validity. The
homogenization enables the use of shell elements. It generally facilitates the meshing and
it is a helpful tool for analytical estimations of plate-like structures. By contrast, a layered
FE model of solid elements is able to improve the prediction especially at high frequencies.
In conclusion it is to say that, firstly, updated parameters and secondly, a layered FE model
could be used to increase the reliability of the results.

Since the numerical effort at high frequencies is rather large, the limitation of the classical
SEA to plate-like structures could be omitted by introducing subsystems for the additional
wave types at high frequencies. Alternatively, the EFA could be combined with the FE/WFE
method. According to the presented investigations, the influence of the subsystem width
and length decreases with increasing frequency. Thus, the FE/WFE method, which assumes
semi-infinite plates, could be used for higher frequencies. The FE model of the junction,
possibly together with a small segment of the adjacent plates, could be reused. A small
stripe of the FE model of the plates serves to calculate the wave properties of the plates.
Finally, the reflection and transmission coefficients can be calculated as basis for coupling
loss factors or vibration reduction indices.

The criteria for a division of the frequency range have been gained by means of studies of
the energy flow across junctions of orthotropic and isotropic plates. For the component of



6.2 Outlook 157

interest, these criteria can be determined by means of its physical properties. Thus, the
criteria open up the possibility to choose an appropriate method, the correct model and
convenient evaluation quantities for other applications, too.

Generally, the EFA can be applied to predict the sound transmission between building com-
ponents of any other material beside CLT plates. Moreover, the EFA is an appropriate
method for automotive or aerospace structures and can be augmented by additional subsys-
tems of the cavities introducing a Fluid Structure Interaction.
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A Appendix

A.1 Web Application: Vibroacoustics of Plates

The web-based, interactive application "Vibroacoustics of Plates" is made available on the
website of the Chair of Structural Mechanics (https://www.bm.bgu.tum.de). It can
be also accessed directly via http://go.tum.de/632541. It offers two basic features:

Firstly, the material parameters of plates with orthotropic layers can be homogenized through
the thickness according to subsection 2.1.3. Prerequisite is a symmetric, crosswise layup with
respect to the middle plane as it is the case for CLT plates.

Secondly, dynamic properties of isotropic and orthotropic plates and of their wave types can
be calculated on the basis of section 2.2, subsection 2.3.2 and 4.1.5 as well as appendix A.2:

• Wave velocities of bending, effective bending, in-plane shear, shear with out-of-plane
propagation, shear (corrected) with out-of-plane displacement, quasi-longitudinal (in-
plane) and out-of-plane longitudinal waves as well as group velocities of bending and
effective bending waves.

• Limiting frequencies: Thin plate limit and energetic thin plate limit as well as first
thickness-shear and thickness-stretch resonances.

• First four eigenfrequencies of a four-sided simply supported Kirchhoff plate

• Modes per one-third octave band of effective bending, in-plane shear and quasi-
longitudinal modes.

• Modal density of effective bending, in-plane shear and quasi-longitudinal modes.

• Modal overlap factor of effective bending, in-plane shear and quasi-longitudinal modes.

• Approximation of the maximum element size for quadratic shape functions on the basis
of the effective bending wave length.

http://go.tum.de/632541
https://www.bm.bgu.tum.de
http://go.tum.de/632541
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Figure A.1: Web-based application "Vibroacoustics of Plates": Homogenization of material parameters
and calculation of properties of plates and of their wave types.

http://go.tum.de/632541
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The handling of the application depicted in Fig. A.1 can be classified in two steps:

1. Inserting of physical properties of a homogenous plate or of a single layer on the left
(default values are given) and pressing "Apply".

In the case of a layered plate, the material properties are homogenized through the thickness.
Thus, the input data of the single layer is overwritten by homogenized material parameters
of the plate after pressing "Apply". The input data of the single layer can be checked by
pressing the button "Show Input".

2. On the right, the various results listed above can be studied using e.g. the zoom function
and saved as .png.

Remark

The web-based application "Vibroacoustics of Plates" is designed for experienced engineers.
The application shall simply serve as a computation tool. The theoretical background is
summarized within this thesis including references. It is the duty of the engineer to range the
results and to consider further aspects which are not taken into account by the application.

http://go.tum.de/632541
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A.2 Eigenfrequencies of Orthotropic Kirchhoff Plates

For orthotropic plates, the eigenfrequencies of a four-sided simply supported Kirchhoff plate
can be calculated according to Leissa [1969]:

fmn = π

2l2√µ

√√√√Bxm4 + 2Bxym2n2

(
l

b

)2

+Byn4

(
l

b

)4

(A.1)

with

Bi = Eih
3

12 (1− νxyνyx)
, i ∈ {x,y} Bending stiffness

Bxy = Bxνyx + 2 Gxyh
3

12 Torsional stiffness

µ = ρ h Areal mass
l, b, h Length, width, thickness
m,n Number of half-waves in x-, y-direction

A.3 Material Data

Table A.1: Homogenized material parameters of wall and ceiling used in section 4.5.

Wall Ceiling / Single plate
x y z x y z

E 1.071 1010 7.649 108 6.507 108 8.325 109 3.152 109 6.507 108

yx zx zy yx zx zy

G 6.753 108 1.570 108 8.864 107 6.753 108 1.570 108 8.864 107

ν 0.063 0.043 0.161 0.095 0.045 0.088
ρ 450
D 0.012
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Table A.2: Frequency dependent parameters of the elastic interlayer to model Sylodyn ND [Getzner Werk-
stoffe GmbH 2012], extrapolated above 1000 Hz [Müller 2017].

Frequency
in Hz

Dynamic elastic
modulus in 106 N

m2

Loss
factor η

31.5 2.30 0.120
40 2.33 0.130
50 2.36 0.141
63 2.38 0.153
80 2.41 0.167
100 2.44 0.181
125 2.47 0.197
160 2.50 0.214
200 2.52 0.233
250 2.55 0.253
315 2.58 0.275
400 2.61 0.299
500 2.64 0.325
630 2.68 0.354
800 2.71 0.385
1000 2.74 0.418
1200 2.77 0.455
1600 2.80 0.494
2000 2.83 0.537
2500 2.87 0.584
3150 2.90 0.635
4000 2.94 0.690
5000 2.97 0.751
6300 3.00 0.816
8000 3.04 0.887
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