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Abstract—GoldRusher is a dynamic analysis tool primarily
meant to aid reverse engineers with analyzing malware. Based
on the fact that hidden code segments rarely execute, the tool
is able to rapidly highlight functions and basic blocks that are
potentially hidden, and identify the trigger conditions that control
their executions.

Index Terms—Reverse Engineering;
Code; Code Coverage; Malware

Obfuscation; Hidden

I. INTRODUCTION

Code obfuscation is a common technique adopted by soft-
ware vendors to protect their products from piracy, trampering,
and reverse engineering [4]. Malware authors also utilize
obfuscation to build malware that is (a) resilient against
static analysis techniques, and (b) unintelligible for malware
analysts attempting to manually study its behavior (e.g., to
generate signatures for databases of antivirual software) [20].
To complement static analysis techniques, malware analysts
and reverse engineers have been adopting dynamic methods
that study the runtime behavior of malicious applications [11]
[22]. In this context, malware authors started to adopt novel
techniques that obfuscate—in addition to their appearance and
structure—the runtime behavior of the malicious applications
they implement [14]. We refer to those techniques as behav-
ioral obfuscation techniques throughout this paper. Behavioral
obfuscation can be categorized into two categories. On one
hand, in what is usually refered to as mimicry attack [17], a
malware instance can be implemented to seize the execution
of its malicious payload, and mimic the behavior of benign
applications. On the other hand, malicious applications can
opt not to masquerade as benign ones, but rather surround
their malicious behaviors with noise (e.g., via grafting their
source code with irrelevant, bogus operations) [7] [13].

Techniques in either category can be further enhanced via
triggers. In essence, triggers are conditional statements that
control whether a malware is to execute its malicious code
(i.e., payload). These conditional statements usually rely on
a system property (e.g., current date and time), and vary ac-
cording to the malware instance’s purpose [12]. For example,
in order to hinder dynamic analysis, some malware instances
check for the nature of the underlying architecture (i.e., virtual
or physical), prior to executing their behavior. Effectively, the
malicious payload is hidden.

Finding hidden code segments and their corresponding
triggers is, in theory, an undecidable problem [15] [18]. For
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instance, consider a trigger that fires whenever the program is
about to halt. In fact, a recently discovered malware instance
hijacks the shut down process of an Android device to trick
the user into thinking the device is powered off, whilst spying
on them using the camera [3]. Thus, using dynamic analysis
tools to automatically find hidden code segments and their
corresponding triggers can be reduced to the halting problem.

Given that manually attempting to find hidden code within
malware instances cannot cope with the rates of malware
release and discovery, there is a need for semi-automatic tools
that can assist malware analysts rapidly find potentially hidden
code and identify its triggers based on reliable empirical
assumptions. The current tools that attempt to retrieve hidden
code suffer from a number of limitations, though. Firstly, some
tools require access to the source code of the application
under test, which is difficult to acquire upon testing malicious
applications. Secondly, to the best of our knowledge, the
majority of hidden code extraction tools, such Renovo [16]
and PolyUnpack [19], focus on one definition of hidden code
(i.e., packed and encrypted code segments). Lastly, hidden
extraction tools do not support the retrieval of triggers that
control the execution of hidden code.

In this paper, we present GoldRusher', a semi-automatic
reconnaissance tool agnostic to specific definitions of hiding
code that quickly highlights code segments (i.e., functions
and basic blocks), that scarcely execute and, thus, could be
deliberately hidden. We argue that the outputs reported by
GoldRusher can significantly shorten the analysis period by
pointing analysts to suspicious code segments.

II. HIDDEN CODE AND TRIGGERS

We define hidden code as code segments wrapped with
boolean conditions that scarcely evaluate to the condition (i.e.,
true or false), that would execute the aforementioned code
segments. The primary purpose of hiding code is to trick
users into considering some code segments as non-existent.
Code segments that infrequently execute (e.g., code to update
a program), do not qualify as hidden code, because they are
not deliberately hidden. We argue that deliberately hiding code
segments rarely serves any normal, benign usecase and, thus,
usually indicates malice. For example, it is difficult to picture
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a usecase in which a legitimate program executes a segment
of code only on April 15¢ at 12:00.

The functionality of the hidden code segments hinges on the
malware author’s intentions, which are dictated by the malware
type (e.g., Keylogger, Ransomware, Adware, etc). Hence, we
do not discuss the internal structure or possible functionalities
of hidden code, and we only focus on their triggers. Triggers
are conditional statements (e.g., if-statements), whose predi-
cates usually evaluate to one boolean value in favor of the
other. The predicates of those triggers compare values (e.g.,
acquired from user input or the system) with particular values
specified by the author during implementation. Triggers can
be categorized into three major categories according to the
types and sources of the values checked by their predicates
viz., temporal, secret-based, and environment-based triggers.

In temporal triggers, seen in figure la, the predicates
check for temporal values (e.g., date/time). Depending on the
implementation, the hidden code will start executing either
on a particular time and date which is usually hard-coded
into the program itself, or on a more dynamic, yet regular,
condition such as “every second Friday of the month”. This
kind of triggers can be found in, both, malicious and benign
applications. For example, commercial software that offers
trial periods needs to check for the time and date before it
executes code segments that disable some or all features of the
software. Malicious applications utilize temporal triggers to
execute their hidden, malicious code segments on a particular
time/date; those instances are usually referred to as Timebombs
[18].

As depicted in figure 1b, secret-based predicates compare
values retrieved during run time with particular, secret values.
Usually those secret values are stored in the form of a hash
digest in order to prevent reverse engineers from retrieving
them. In fact, Sharif et. al. make use of hash functions in hiding
the value of their trigger conditions in their paper written
to demonstrate the hazardous implications of behavioral code
obfuscation [14].

Finally, environment-based trigger conditions focus on val-
ues describing the environment on which the program is
running. Example values can be the current CPU architecture,
the value of a specific Windows registry key, the type and
version of the operating system, whether the program is
running within a virtual environment, and so forth [12].

III. GOLDRUSHER
A. Overview

The primary goal of our tool, GoldRusher, is to highlight
to reverse engineers code segments that scarcely execute
and, hence, are potentially hidden. Users of GoldRusher are
expected to manually confirm the initial decisions made by the
tool. In other words, we envision GoldRusher as a tool used
within a semi-automatic setting. Moreover, the tool attempts
to highlight the (type of) triggers—in accordance with the
definitions in section II-that govern the execution of the
potentially-hidden code segments.

As seen in figure 2, GoldRusher takes two main inputs
viz., the path to the binary to analyze (i.e., target binary),
and the types of the command-line arguments it expects. The
tool currently supports only C/C++ binaries that have been
compiled for *-nix based operating systems. The first step is
to instrument the target binary with printf statements that
imply whether a function or a basic block has executed. We
use the tool codeCoverage [2] to instrument target binaries.
The second phase of analysis includes executing the target
binary multiple times. If the target binary expects command-
line arguments, GoldRusher enables the user to either specify
certain values that persist across all runs, or randomly generate
values that belong to a certain type (e.g., int). For example, if
a target binary sums two integers, the user can run GoldRusher
with the values five and four, or with int and int. In the
latter case, GoldRusher would generate random integers using
the Python method random. randint. GoldRusher follows
the same process to generate inputs expected by the binary
during execution (e.g., via scanf or stdin: :cin).

The third phase is responsible for parsing the print state-
ments reported by the instrumented binary for every single
execution. Using the information reported from the first three
phases, we can figure out the number of times each func-
tion and basic block in the target binary has executed. The
functions and basic blocks that have executed a number of
times less than a threshold value are considered as hidden
code candidates.

In the fourth phase, we use the tool Iltrace [1] to retrieve
the library calls that can be possibly made by the triggers. The
same inputs used in the second phase are reused to execute the
target binary using ltrace. The ouputs generated by Itrace are
parsed and kept in memory in the fifth phase. Outputs from all
executions are stored in a SQLite database for future reference.
Lastly, outputs from the codeCoverage instrumented binary
and ltrace are augmented to report (a) potentially hidden code
segments, and (b) the triggers that control their execution. In
the next sections we detail how the code segments are deemed
as hidden, and how their triggers can be highlighted.

B. Hidden Code Extraction

We base our approach to identify and recover the hidden
code segment on code coverage. Intuitively, hidden code
segments will be executed (i.e., covered) the least number of
times. Thus, if we execute a target binary with all possible
input values it expects—whether the trigger’s predicate is input-
dependent or not-the hidden code segments will still be
covered the least.

Based on this intuition, we can execute a target binary
instrumented using codeCoverage with all possible input com-
binations, and record the code coverage results reported by
the binary. The functions and basic blocks executed the least,
particularly less than a threshold value specified by the user
(e.g., 5%), are considered hidden. Nevertheless, it is infeasible
to run a C/C++ program with all possible input combinations.
For example, the total number of possible value combinations
for a C/C++ program expecting two integers (4 bytes) is
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time_t now = time(0);
tm *Itm = localtime(&now); // some code
// some code
if((Itm->tm_mday == 29) ||
((tm->tm mon+1)% 2 == 0)){
// execute hidden code

input = argv(3];

// more code

std::string secret = ”somesecret”;

if (secret.compare(input) == 0){
// execute hidden code

std::string result = exec(”uname -a”);
if(result.find (" Fedora”)
== std::string::npos)
// some code
else{
// execute hidden code

(a) Temporal trigger

(b) Secret-based trigger

(c) Environment-based trigger

Fig. 1: The three categories of triggers. In figure la, the hidden code is executed if the current system date is February 29¢".
The hidden code, in figure 1b, executes if the fourth command-line argument used to run the program is somesecret. Lastly, in
figure lc, the hidden code will execute if the operating system on which the program is running is not the Linux distribution

Fedora.
GoldRusher
Instrument Run program Parse/Record
Input types/values with |—— with codeCoverage
codeCoverage user inputs output
Hidden functions| Store all Parse/Record Run program
» + recorded  fe—7 ltrace with
orers
TIBEers results output ltrace

Fig. 2: An overview of GoldRusher’s workflow and compo-
nents.

1.844674407 x 109 possibilities. In order to maintain the rapid
aspect of revealing potentially hidden code segments, we need
to sample the set of all possible inputs.

Consider all possible combinations of inputs (hereafter fest
inputs) as our population. If we consider the amount of code
covered by each test case a continuous random variable (C'),
then C is expected to have a normal distribution. We argue that
such normal distribution is a result of the fact that very few
test inputs will cover small amounts of code, and very few test
inputs will cover large amounts of code, perhaps including any
hidden code segments. The majority of test inputs, however,
are expected to cover medium amounts of code. Based on this
assumption, we can be confident that a random sample of size
> 30 is representative of the entire population [6] [9].

In this context, we run the instrumented binary at least 30
times. However, users can opt to run the binary for an arbitrary
number of times. After all runs, the functions and basic blocks
that execute less than the threshold are labeled as potentially
hidden.

C. Displaying Triggers

In section II, we discussed the different categories of trig-
gers we focus on. Those triggers share something in common;
upon realization of the condition that triggers the hidden code,
they all use a variation of the jmp instruction to transfer
control to the entry point of the hidden code. Recall that the
previous phase highlights code segments that are potentially
hidden. So, we can study the jump/branch instructions that

transfer control to those segments. Disassembling the target
binary is the straightforward method of retrieving jmp-like
instructions. Nevertheless, anti-disassembly methods and code
obfuscation can significantly hinder disassembling the code.
Hence, we should rely on dynamically fracing the runtime
behavior of the target binary.

In general, all types of traces are incapable of keeping track
of branching statements, like jmp, because they are translated
into instructions that run directly on the processor (i.e., they
do not trigger any sort of system or library calls). With such
limitation to the dynamic approach, one way to trace trigger
conditions is to heuristically reason about the utilized library
calls in the vicinity of the entry point of what is believed to
be a hidden code segment based on the following facts and
assumptions.

Firstly, triggers, which are essentially jmp statements, usu-
ally execute right before the execution of a hidden code
segment. Secondly, as discussed in section II, triggers rely on
values that need be retrieved, calculated, or compared using
library calls (e.g., strcmp). Upon compilation, such library
calls are expected to be executed prior to the jmp statement
with the results of such calls being stored in some registers
(e.g., $eax). Lastly, unlike the hidden code segments they call,
triggers are expected to be executed on regular basis to check
whether to execute their corresponding hidden segments.

The *-nix tool Iltrace reports the library calls issued by a
binary during runtime. It can keep track of the current value
of the program counter during a call to a library function,
as well. Using this information, we can display the names,
arguments, and frequency of execution of the library functions
next to their memory locations in the target binary. The user
of GoldRusher can reason about the relation of such function
calls to the code segments previously-highlighted as hidden
based on, for instance, their proximity to such segments.

D. Display and Storage

The last phase of the analysis comprises displaying to
the user the results gathered from codeCoverage, ltrace, and
GoldRusher and storing them in a database for future study.
The exact format of display and storage can be found in the
tool’s video demonstration. GoldRusher’s output highlights the
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functions and basic blocks that execute the least, particularly a
number of times less than or equal to a threshold specified by
the user. The list of all functions and basic blocks retrieved by
codeCoverage is displayed in green, and only the suspicious
ones are displayed in red. Next to function names, we display
the number of times they have been executed. The exact same
is replicated for basic blocks and their instructions. In addition,
we display the library calls made by such instructions during
runtime, if applicable.

In the database, we store information about the target binary,
such as its hash which can be matched against malware
databases, its name, and the number of times it has been
executed. We also store the functions retrieved from the target
binary.For every single test input, we store the types and
values of the arguments used to run the instrumented target
binary along with the codeCoverage reports generated by the
instrumented binary. Lastly, we store the path to the report
displayed to the user at the end of analysis.

IV. EVALUATION
A. Experiments

GoldRusher is built to enable reverse engineers to quickly
reveal points of interest in binaries that might comprise de-
liberately hidden code. In this context, we evaluated the tool
to assess (a) the reliability of its method and outputs, and (b)
its efficiency. Unfortunately, it is difficult to acquire binaries
(malicious or benign) that comprise hidden code segments.
Thus, we used Tigress’s [10] RandomFuns option to generate
100 random programs that contain temporal and secret-based
triggers.

Unlike temporal and secret-based triggers, environment-
based triggers cannot be randomly generated, because they
depend on values retrieved via specific commands/statements
(e.g., uname -a). Furthermore, Tigress does not support
this type of triggers. Consequently, we could not evaluate
environment-based triggers in this set of experiments.

To test GoldRusher’s performance against obfuscated code,
we randomly obfuscated 50 of such programs using the Virtu-
alization, Just-in-Time compilation, Control-Flow Flattening,
and Function Splitting techniques.

The first experiment focuses on whether GoldRusher man-
aged to highlight the hidden code segments embedded within a
program. Within this context, a hidden code segment is a basic
block that does not execute because its trigger never evaluates
to true (e.g., because the provided password is incorrect).
The second experiment solely focuses on the performance
of GoldRusher, particularly the amount of time needed to
complete testing an application.

B. Results

The results of the first experiment are depicted in table
I. Using the Tigress-generated programs, we observed that
GoldRusher could correctly highlight all the hidden code
segments protected by temporal triggers along with their
corresponding trigger conditions. Nevertheless, the tool’s
performance is lower against secret-based triggers. We argue

that the tool is incapable of recognizing triggers that do not
utilize library calls. For example, some programs may trigger
hidden code segments if the sum of two integer inputs equals
a specific number. Against such triggers, GoldRusher can
only manage to highlight potentially hidden code segments.

TABLE I: GoldRusher’s ability to reveal hidden code and
triggers (30 test inputs per program, 5% threshold)

Hidden Code Retrieval
100%
100%

Trigger Retrieval
100%
=~ 68%

Temporal Trigger

Secret-based Trigger

As part of experiment 1, we generated another set of 100
programs using Tigress, 50 of which are obfuscated. However,
this second set of programs did not include any checks or
triggers, rather dummy loops that generate random integers.
We ran GoldRusher against those programs to test whether it
would mistakenly point out hidden code segments (i.e., false
positives). We noticed that GoldRusher highlighted some basic
blocks as potentially hidden. Upon manually inspecting them,
we found out that such basic blocks checked whether the
binary was executed with the correct amount of command-
line arguments.

Mistakenly highlighting blocks as hidden is, unfortunately,
inevitable. We argue that semit-automatically reverse engineer-
ing a binary is usually performed in stages, during which
the reverse engineer is expected to tune the utilized tool
(e.g., its inputs), to further discover segments of the binary.
To conclude, the tool did not have any false positives on
this sample dataset of programs. Needless to say, further
experiments need to be conducted on larger datasets of real-
world programs to further reinforce this conclusion.

Table II contains the time taken (in seconds) to run the
Tigress-generated programs. The tool can complete the
analysis including displaying and saving test inputs and
coverage reports within 5 seconds. Needless to say, the
generated programs are small in size with an average size of
68KB for clear, non-obfuscated programs and 71KB for their
obfuscated counterparts. We reckon that malware instances
are usually designed to be of small size as well to avoid
raising suspicions. However, we plan on running GoldRusher
on larger binaries in the future.

TABLE 1II: Time taken by GoldRusher to process Tigress-
generated programs (30 test inputs per program, 5% threshold)

Obfuscated Code | Clear Code
Temporal Trigger 5.264 (sec) 4.476 (sec)
Secret-based Trigger 5.361 (sec) 4.795 (sec)
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V. RELATED WORK

Previous efforts that attempt to retrieve hidden code focus on
a particular definition of code hiding viz., packing. Packing, is
a classic technique that transforms the code into a compressed,
scrambled form. The transformation can range from a simple
compression algorithm to using a public, or even proprietary,
encryption algorithm [5].

Royal et. al. developed a tool, called PolyUnpack [19] that
targets this particular breed of hidden code. The tool is based
on a mixture of static and dynamic analyses of an application.
Firstly, a reference control flow graph (CFG) of the application
is statically generated. Such CFG is used by the dynamic
analysis module of PolyUnpack to observe whether any of
the code segments in the control flow graph are not executed.

The problem with the previous approach is that it heavily
relies on the existence of a control flow graph of the analyzed
code, which is generated based on a disassembled version of
the program binaries. This leaves it vulnerable to obfuscation
techniques that thwart static analysis. One of such techniques
has been introduced by Linn et. al. [21].

To counter such problem, Renovo [16] drops the static
aspect and adopts a fully-dynamic approach to the problem. It
solely hinges on instrumenting memory writes during runtime
assuming that instructions loaded into memory during runtime
correspond to hidden segments of code. Renovo presumes that
the packed code always dwells in the .data segment, and is
unpacked, loaded, and executed during runtime. Nevertheless,
as discussed earlier, hidden code can reside in within the
.code segment, as well, as also demonstrated in [14].

Our tool, GoldRusher, shares some similarities with both
tools. Similar to PolyUnpack, GoldRusher highlights functions
and basic blocks that have not been executed during runtime,
unlike Renovo which is concerned with highlighting hidden
code segment upon being dynamically loaded. The tool, how-
ever, shares a similarity with Renovo in that it adopts a fully-
dynamic approach to analyzing the program.

Unlike both tools, GoldRusher is agnostic to a specific code
hiding technique, and attempts to highlight any potentially
hidden code segments regardless of the technique used to hide
them. Furthermore, the tool attempts to reveal any potential
triggers that control the execution of such hidden code seg-
ments.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present GoldRusher, a tool meant to
primarily aid reverse engineers semi-automatically analyze
binaries to rapidly unveil deliberately hidden code segments.
Given that GoldRusher is agnostic to specific definitions of
code hiding and does not make presumptions about the inten-
tions of the programs under test (i.e., malicious or benign),
it can also be utilized by test engineers as a smarter tool for
code coverage.

Our evaluation of the tool on a small dataset of randomly-
generated, obfuscated programs shows potential of the tool
being a helpful addition to a reverse engineer’s toolset. How-
ever, we plan on evaluating the tool against larger datasets

of (malicious) binaries. Evaluating the tool’s performance on
environment-based triggers, and thoroughly studying the false
positives it reports is one of our priorities. Furthermore, we
plan on enhancing the tool to be able to recognize triggers
that do not rely on library calls. We also intend to link
identified triggers with blocks they branch to. Lastly, we plan
on releasing tutorials that demonstrate how GoldRusher can
be used to reverse engineer real world (malicious) binaries.
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