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Machine Learning (ML) in Communication Networking TUTI

receives a lot of attention recently, e.g.
= ML for flow classification and anomaly detection
= ML replacing optimization for virtual network embedding, function placement,...

in this talk, we show another application
= ML to preprocess models leaving existing algorithms or optimizers untouched

Boost your network algorithm with ML preprocessing
= Neurovine: Hopfield neural network to preprocess (subgraph extraction) VNE algorithms
= 0‘zapft is: supervised learning to learn from previous solutions of network algorithms



This talk is mainly based on our following work TUTI

= Andreas Blenk, Patrick Kalmbach, Johannes Zerwas, Michael Jarschel, Stefan Schmid, Wolfgang Kellerer:
NeuroVINE: A Neural Preprocessor for Your Virtual Network Embedding Algorithm
IEEE INFOCOM 2018 (main conference), Honolulu, HI, USA, April 15-19, 2018.

= Blenk, Andreas; Kalmbach, Patrick; Schmid, Stefan; Kellerer, Wolfgang:
o'zapft is: Tap Your Network Algorithm's Big Data!
ACM SIGCOMM 2017 Workshop on Big Data Analytics and Machine Learning for Data Communication
Networks (Big-DAMA), 2017.

= Patrick Kalmbach, Andreas Blenk, Markus Kltgel, Wolfgang Kellerer:
Stochastic Block Models for Analysis and Synthetic Generation of Communication Networks
2nd IFIP/IEEE International Workshop on Analytics for Network and Service Management (AnNet), 2017.

... and the Dissertation of Dr. Andreas Blenk: Towards Virtualization of Software-Defined Networks: Analysis,
Modeling, and Optimization (defended March 2, 2018)



Our Use Case: Virtual Network Embedding (VNE)

VN Request 1 Substrate Network & Embedded Requests
50 50

: 20 : 20 20

VN Request 2

NP-hard!
20 20
10 10
20
VN Request (VNR) requires Capacities of the substrate
node and link resources nodes and links are limited

= Challenge: Regularly solving computation hard problems
= Goal: Speed-up and/or improve Virtual Network Embedding



Neurovine:

Hopfield neural network
to preprocess (subgraph extraction)
VNE algorithms

Andreas Blenk, Patrick Kalmbach, Johannes Zerwas, Michael Jarschel, Stefan Schmid, Wolfgang Kellerer:
NeuroVINE: A Neural Preprocessor for Your Virtual Network Embedding Algorithm
IEEE INFOCOM 2018 (main conference), Honolulu, HI, USA, April 15-19, 2018.



Neural Preprocessor for Virtual Network Embedding: NeuroVINE TUTI

VN ¢/¢(GY) Hopt.”leld Network

-

L)

VNE

’ Algorithm
O > ik I
P —--
g gp ,subgraph

Substrate Subgraph Actual embedding

2 |
{J+f%/®(éb O
s

= State-of-the-art: Heuristics judge nodes independently from each other



Heuristics judge nodes independently from each other

Our proposal: HF-GRC

Example: Comparison of node locations for a single VNR between GRC and HF-GRC



Neural Preprocessor for Virtual Network Embedding: NeuroVINE TUTI
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= State-of-the-art: Heuristics judge nodes independently from each other

= [dea: Extract subgraph with physical nodes close to each other and high available capacities



Optimization with Hopfield Neural Networks
Graph Inputs = Neural Network - Solution

Substrate Nodes
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Optimization with Hopfield Neural Networks
Graph Inputs = Neural Network - Solution
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= According to optimization problem:
= |[nput Bias Vector | integrates available node capacities (CPU)
= Weight Matrix T integrates available datarate capacities (DR)
= | and T take care of number of selected nodes (¢) [1]

TLUT

Input Bias Vector |

Weight Matrix T

= Executing means solving: dU(t) - _M L TV(t) + |
THF

dt

[1] G Tagliarini, J Christ, and E Page.
“Optimization using neural networks".
In: IEEE Trans. Comp. 40.12 (Dec.
1991), pp. 1347-1358.
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Efficiency on Real Network Topologies TUT
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= VNE algorithms (GRC, DVINE, RVINE) vs. Hopfield variants (HF-GRC, HF-DVINE, HF-RVINE)
= NeuroVINE accepts more networks with less costs
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o‘zapft Is:

supervised learning
to learn from previous solutions (the data)
of (general) network algorithms

Blenk, Andreas; Kalmbach, Patrick; Schmid, Stefan; Kellerer, Wolfgang:
o'zapft is: Tap Your Network Algorithm's Big Data!
ACM SIGCOMM 2017 Workshop on Big Data Analytics and Machine Learning for Data Communication Networks (Big-DAMA), 2017.



network algorithms: Fire and Forget

The Limitation of today’s

o,
i . i

Algorithms repeatedly solve similar problems from scratch. This is not only boring for the
algorithm but also a waste of information and resources

The Opportunity — Tap into your Algorithm’s Big Data

0:4
Place Cache @ Place Cache @

Place Cache @
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Traditional vs. Proposed System TUTI

produce
Problem
. Solutions

Traditional System ‘

o

Prapien

learn from (offline)

I Problem . Solution Optimization produce ‘
nstances Learning | Information 1 Algorithm
Solutions

o’zapft is

= State-of-the-art: Neglects produced data!
= |dea: Use problem/solution data generated by algorithms regularly solving problems

Data Available at: Patrick Kalmbach, Johannes Zerwas, Michael Manhart, Andreas Blenk, Stefan Schmid, and Wolfgang Kellerer. 2017. Data on "o’zapft is: Tap 14
Your Network Algorithm’s Big Data!". (2017). https://doi.org/10.14459/2017md1361589




Potentials

= Potentials: (a) Reduce search space and

(a) Search Space Reduction/Initial Solutions

Objective
w
(=]
o

(b) Predict problem outcome

500 1 —— Prediction
95% confidence interval

X1 X2 X3 Xa Xs X6
Feature Space

(b) Predict Value of Objective Function
—> admission control
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Use Cases T|.|T|

Virtual Network Embedding (VNE) — Predict Embedding Costs

B f E Problem: Given a VNR and Substrate,
(2] 9 H 2
3 1 o what will the cost be*

VNR1 VNR2 VNR3 VNR4 VNR5 \}NRS

Facility Location (Controller Placement) — Guess Initial solutions
2 :
Problem: Given a network and a number
? of controllers, where to place the

. !
° » 5 controllers?
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Case Study I: Virtual Network Embedding Cost TUTI
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Substrate Substrate & embedded VNR

= Learn and predict the embedding cost of a VNR

= Embedding cost = total length of the virtual links interconnecting the requested virtual nodes
= Supervised learning: regressors predict the cost of to-be-embedded virtual networks

= Offline training!
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Methodology

Optimization Algorithms

Greedy [20]

GRC (Global Resource Capacity) [8]

SDP (optimal, Mixed Integer Program (MIP))
Strawman (SM) (“WNR#nodes&links - cost”)

Substrates
* Erdds-Rényi (ER) 40 nodes
» Barabasi-Albert (BA) [2] 40 nodes

Topology Zoo [1]: Kentucky Data Link (KDL) 734 nodes
6-ary Fat Tree (DC-FT)
BCube2 (DC-BC)

Objective:
Minimize embedding cost

5 runs with 2500 VRs of each combination

[1] Knight et al., The Internet Topology Zoo. IEEE J. on Sel. Areas in Communications 29, 9 (2011)
[2] Saino et al., A Toolchain for Simplifying Network Simulation Setup, in Procs. SIMUTOOLS '13, Cannes, France, March 2013

[3] Picture taken from http://graphstream-project.org/media/img/generator_overview_ barabasi_albert.png

Barabasi-Albert Graph [3]

Kentucky Data Link

[8] Long Gong, Yonggang Wen, Zuging Zhu, and Tony Lee. 2014. Toward profitseeking virtual network embedding algorithm via global resource capacity. IEEE INFOCOM 2014
[20] Minlan Yu, Yung Yi, Jennifer Rexford, and Mung Chiang. 2008. Rethinking Virtual Network Embedding: Substrate Support for Path Splitting and Migration. SIGCOMM CCR 38, 2 (3/2008)



Learning embedding cost

Library: Model Training and Selection:

60% Training 20% Validation 20% Testing

» Sci-Kit Learn [1]

Graph features:

* Node degree
e Closeness A4

Measures:

* R’?(goodness of fit for
ML models)

Classifier:
* Linear Regression (LR)

Parameters

v

MNP

\ 4

» Bayesian Ridge Regressor (BRR)
 Random Forest Regressor (RF)
» Support Vector Regression (SVR)

v v
Feature Extraction Feature Extraction F

A 4 A 4

A4 \ 4

Min Max

Training Set Validation
Set

Best

Parameter selection

Parameters

[1] Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.
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How much learning is required? TUTI
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= VNR embedding costs can be estimated well after a short training period
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Which graph features are important for solution learning?
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= Requested Link Capacity is most important
= For SDP the importance is more distributed (larger search space and variation of solutions)

21



Is one feature enough?

IO All Features

E== Low Complex I All Features [E==a Low Complex
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= Trained regressors with features of different complexity: O(n), O(n+m), O(n * log n) [14]
= Already low complexity features provide a high R’ (goodness of fit for ML models)

[14] Geng Li, Murat Semerci, Bilent Yener, and Mohammed J Zaki. 2012. Effective graph classification based on topological and label
attributes. Statistical Analysis and Data Mining 5, 4 (Aug. 2012), 265-283.
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Case Study II: Predicting Acceptance Probabilities of VNE Requests
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Substrate & embedded VNR

= Supervised learning: use data with accepted and rejected requests ! Offline training!
= Recurrent neural network (RNN) for classification
= Filter Infeasible and requests with unacceptable algorithm runtime (No Solution)
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Can we speed-up optimal algorithms using admission control? TUT
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= Efficient Filtering of infeasible and unacceptable requests
= Efficient saving of model creation time
= Saving up to 50% computational resources



Conclusion T|.|T|

Machine Learning can be successfully used to preprocess models
leaving existing algorithms or optimizers untouched

Boost your network algorithm with ML preprocessing — Tap your datal!

= Neurovine: Hopfield neural network to preprocess (subgraph extraction) VNE algorithms
— tailored filtering

= 0‘zapft is: supervised learning to learn from previous solutions of network algorithms
— data-driven networking algorithms
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Important References TUTI

= Andreas Blenk, Patrick Kalmbach, Johannes Zerwas, Michael Jarschel, Stefan Schmid, Wolfgang
Kellerer: NeuroVINE: A Neural Preprocessor for Your Virtual Network Embedding Algorithm
IEEE INFOCOM 2018 (main conference), Honolulu, HI, USA, April 15-19, 2018.

= Blenk, Andreas; Kalmbach, Patrick; Schmid, Stefan; Kellerer, Wolfgang: o'zapft is: Tap Your
Network Algorithm's Big Data! ACM SIGCOMM 2017 Workshop on Big Data Analytics and
Machine Learning for Data Communication Networks (Big-DAMA), 2017.

= Patrick Kalmbach, Andreas Blenk, Markus Klugel, Wolfgang Kellerer:
Stochastic Block Models for Analysis and Synthetic Generation of Communication
Networks2nd IFIP/IEEE International Workshop on Analytics for Network and Service Management
(AnNet), 2017.

= Andreas Blenk: Towards Virtualization of Software-Defined Networks: Analysis, Modeling, and
Optimization. PhD Thesis, Technische Universitat Minchen, Marz 2018.

= Blenk, Andreas; Kalmbach, Patrick; van der Smagt, Patrick; Kellerer, Wolfgang: Boost Online Virtual
Network Embedding: Using Neural Networks for Admission Control. 12th International
Conference on Network and Service Management (CNSM), 2016
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