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Chapter I

Introduction
Supernovae (SN) are the spectacularly bright events that accompany the violent deaths of
stars. The name is derived from the Latin word “nova” for “new”. It was coined to refer to
the appearance of bright but transient events, which may seem like new stars spontaneously
flashing up in the sky. In extension, a supernova is an exceedingly bright nova, often outshining
their host galaxy for weeks or months. Supernovae, as we understand them today, are spawned
by two very different mechanisms and origins.

Type Ia supernovae are thermonuclear explosions of degenerate white dwarfs that existed
as old remnants of long-dead stars, “revived” by mass transfer from a companion star. The
energy release is caused by the explosive fusion of the degenerate stellar material into iron that
releases about 1051 erg (=1 bethe [B]) in total energy. Nearly all of this energy is contained in
the expanding stellar gas in the form of internal and kinetic energy. Type 1a supernovae will,
however, not be a part of this thesis since the effects we wish to investigate do not play a role in
these events.

Core-collapse supernovae (CCSNe) occur when the central iron core that forms in massive
stars during the last stage of their lives undergoes a gravitational collapse to a neutron star.
The resulting shock wave propagates through the surrounding star and unbinds the stellar
envelope. These events release up to a few 100 bethe in total energy, of which the major part
is released in the form of neutrino radiation. In contrast to observable photons, which are
released when the shock has passed the outer stellar layers and the stellar debris expands to
transparency, neutrinos can escape the surrounding stellar shells on much shorter timescales
as they are much more weakly interacting particles. In the case of the most famous recent
supernova, SN 1987A, the visible signal of this event only reached Earth three hours after the
first few neutrinos were detected. While the stellar medium around the neutron star is nearly
transparent to neutrinos, the absorption of only a few percent of the energy carried by neutrinos
can explain the observed canonical 1 B of kinetic energy contained in the expanding stellar gas.

The long-standing problem of CCSN theory is, to clarify the mechanism by which neutrinos
can efficiently deposit such a large amount of energy despite their small interaction cross
sections. In this thesis, we will try to shed light on some previously neglected components of
the explosion mechanism that may prove beneficial to its success. The following introduction is
mostly founded on the works of Refs. [5, 37, 15, 57, 103, 91], with a special emphasis on Ref. [91]
in Sec. 1.1.3, and Ref. [103] in Sec. 1.2.

1.1 Core-collapse supernova paradigm

1.1.1 Road to collapse

The progenitors of core-collapse supernovae are massive stars, heavier than eight times our
sun’s mass (M�), at the end of their lives. These stars have evolved through a sequence of
burning stages in their struggle for an energy source that helps them maintain pressure support
against their own tremendous gravitational attraction. The initial main-sequence phase of
hydrogen core burning can last for millions of years. The initially inert helium fusion product
concentrates in the center of the star and eventually becomes compact and hot enough to itself
initiate fusion, replacing the energy source of central hydrogen core burning. The surrounding
hydrogen then forms a burning shell around the new helium core. This cycle continues through
carbon, neon, oxygen and silicon burning. Each of these successive burning stages produces
less and less energy per reaction, requiring many more individual reactions to maintain similar
power output, rapidly depleting the fuel supply. While the initial main-sequence phase may

1



1.1 Core-collapse supernova paradigm

have lasted millions of years, the duration of the last burning stage can be measured in days to
hours.

Shortly before the collapse, the star has formed a nearly spherically symmetric concentric
shell structure of active burning shells and an electron-degenerate hot iron core in the center. In
contrast to a similarly degenerate white dwarf, thermal pressure provides additional support,
raising the maximum sustainable core mass above the cold Chandrasekhar mass¬ of Mch ∝
1.45727M� ·

(
2Ye
)2. Eventually, the iron core becomes unstable to gravitational collapse due

to electron capture onto iron group­ nuclei and photodisintegration of iron group nuclei into
alpha particles. The electron captures reduce the pressure support by degenerate electrons,
as they are converted into electron neutrinos that immediately escape. As soon as the core
density exceeds ρ ∼ 1012 g/cm3, neutrino scattering on nuclei becomes frequent enough that
the outward diffusion of neutrinos becomes slower than the infall of the collapsing core, and
neutrinos begin to be advected with the fluid. This marks the onset of neutrino trapping
and prevents further deleptonization of the inner core, i.e., the number of leptons per baryon
Y` = Ye + Yνe becomes effectively conserved inside the trapping radius.

The infall of the collapsing core is abruptly stopped when the nuclear saturation density
of ρ ∼ 2.7 · 1014 g/cm3 is reached. At this point, all nuclei have dissolved, and repulsive
strong forces between the free nucleons lead to a sudden stiffening of the equation of state.
The remaining kinetic energy of the still infalling core slightly overcompresses the forming
protoneutron star during the bounce. The rebounding neutron star then rams against the outer
collapsing core and launches a shock wave. This shock wave, however, is quickly drained
of energy as the infalling iron nuclei are disintegrated into free nucleons at the shock front,
and initially trapped neutrinos begin to escape, leading the shock to stall after only a few
milliseconds of propagation. The emission of a so-called νe breakout burst at the moment the
shock reaches low-density, neutrino-transparent layers is a universal feature of CCSNe and
signals the moment when the shock turns into an accretion shock, where the postshock matter
is nearly hydrostatic® and allowed to settle onto the protoneutron star by neutrino emission.
As the nascent neutron star, the protoneutron star (PNS), grows in mass and size, the neutrinos
can escape from the lower-density material behind the shock, carrying away a part of the lepton
number and liberated gravitational binding energy.

1.1.2 Neutrino-driven mechanism

The currently favored mechanism to revive the stalled shock is the neutrino-driven mechanism,
first proposed in Refs. [22, 6]. This mechanism is based on estimates that a significant amount of
the neutrino energy lost from the PNS can be reabsorbed in the matter between the PNS surface
and the shock front. Even though neutrinos have an average mean free path on the order of
hundreds of kilometers in the pre-shock stellar gas, the density and abundance of free nucleons
in the post-shock gas allows a fraction of around 5%-10% of the νe and νe to deposit some or all
of their energy, via scattering or absorption reactions, back into the gas. The most important
neutrino interactions for this mechanism are the charged current beta-absorption processes on
nucleons, νe + n � p + e− and νe + p � n + e+, which have the largest interaction opacity and
can transfer all of the neutrino energy in a single interaction.

¬Known as the maximum mass of an object purely supported against Newtonian gravity by the pressure of
ultrarelativistic degenerate electrons .

­Iron group refers to elements from chromium to nickel.
®The gravitational force is perfectly balanced by the pressure gradient force.

2



1.1 Core-collapse supernova paradigm

The layer behind the shock and around the PNS surface, where accreted matter is settling on
the higher-density inner core interior to the neutrinosphere¬ and cooled by neutrino emission,
is called the cooling layer. The cooling layer has an energy loss rate that declines roughly
proportional to the radius, scaling withQ−E ∝ T

6 ∝ r−6, whereas the rate of neutrino heating has
an energy gain rate decreasing withQ+

E ∝ r
−2, cf. Ref. [57]. These radial distance dependencies

imply a natural crossing point where heating just balances cooling, and exterior to which heating
by neutrino absorption dominates. This point is called the gain radius; it demarcates the interior
cooling layer from the exterior gain layer. The gain layer is the region where the majority of the
neutrino heating takes place and extends up to the shock radius.

The neutrino energy deposition is given in terms of energy per second, implying that a
mass element will receive more neutrino heating the longer it takes to pass through the gain
layer. Ways to increase this so-called dwell time are, for example, to increase the effective path
length via lateral turbulent motions and convective updrafts, which requires breaking the initial
spherical symmetry of the progenitor. Another mechanism to aid in moving the shock outwards,
increasing the gain layer volume, is by hydrodynamical instabilities like the standing accretion
shock instability (SASI) (Ref. [8]). The SASI­ is an advective-acoustic cycle of entropy and
vorticity perturbations being advected towards the PNS surface, where they trigger aspherical
pressure waves that rise back up towards the shock surface. These aspherical pressure waves
in turn lead to oblique deformations of the shock front that cause larger transverse velocities in
the postshock flow, thereby completing the feedback cycle (Refs. [36, 8]). This instability shows
the fastest growth in the dipolar and quadrupolar modes, which take the form of a “sloshing”
motion® along an axis or a spiral motion (Ref. [7]) around an axis.

1.1.3 Status of numerical simulations

The complexity of the radiation transport, the necessary range of length scales and the di-
versity of additional effects like magnetic fields, progenitor rotation, general relativity, and
potentially dynamically relevant neutrino flavor oscillations, make the core-collapse super-
nova an incredibly challenging topic. Compounding on this complexity, the strong feedback
between all components may obfuscate or suppress expected results, or enable unexpected
results. Initially, simulations were only performed in spherical symmetry (1D), fitting the initial
conditions provided by stellar evolution models. While adequate and efficient during phases
where non-radial motions are small, for example during the initial iron core collapse or during
the neutrino cooling evolution of the PNS left behind by the explosion, 1D alone cannot capture
the dynamics between the shock front and the PNS surface in the critical phase of the stalled
shock. The region between the PNS and shock can contain a gas moving at significant fractions
of the sound speed in a turbulent and chaotic way. These non-radial motions and associated
shock deformations are impossible in 1D, and the neutrino-driven mechanism is not successful
except for particular low-mass progenitors with extreme density gradients between the central
degenerate core and the outer layers (see e.g., Refs. [53, 84, 35, 88]).

The move to axisymmetric (2D) simulations has alleviated this constraint, allowing lateral
motions but introducing a new artificial constraint in the form of the reflecting symmetry axis.
The reflective boundary condition tends to channel lateral fluid flows hitting the boundary
into channeled radial inflows or outflows. Correspondingly, the shock surface tends to be
distorted into cigar or hourglass-like shapes around the axis with strong SASI sloshing modes

¬The neutrinosphere is equivalent to the photosphere of a star, the radius where neutrinos on average interact a
last time before they escape.

­See Ref. [37] for an experimental shallow water analogue of SASI (SWASI).
®Axisymmetric (2D) numerical simulations constrain the sloshing motion to the symmetry axis, while the

sloshing and spiraling can happen in any direction in full 3D.
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1.2 Uncertainties in neutron star structure

along the axis. Another shortcoming is the inverse energy cascade of turbulence in 2D that
channels turbulent kinetic energy from small to large scales (Ref. [66]), opposite to the 3D
case. The artificial effects of the symmetry axis and inverse energy cascade may have led
to overly favorable conditions for explosions in 2D simulations compared to recent full 3D
results (cf. Refs. [39, 40, 71, 83, 130]). Nonetheless, the move to 2D was a first necessary step in
demonstrating the viability of the neutrino-driven mechanism, and the number of successful
2D explosion models is growing steadily, (e.g., Refs. [14, 12, 99, 127, 27, 105, 93, 90]).

1.2 Uncertainties in neutron star structure

Cold neutron stars and their nascent version, the protoneutron stars, are manifestations of the
most extreme conditions in the universe not hidden behind an event horizon. Cold neutron stars
can reach extremely high densities several times the saturation density, while hot protoneutron
stars reach extremely high temperatures and densities a few¬ times the saturation density. NSs
and PNSs also contain highly isospin asymmetric matter, i.e., a very high neutron to proton
ratio, that is not stable at low densities. These conditions keep a detailed knowledge of the
state of nuclear matter inside neutron stars still out of reach of experiments on Earth, as often
only isolated aspects in isolated domains can be probed at once. The full range of density,
temperature and isospin asymmetry can not be probed by experimental means, leaving only
theoretical approaches for discussing the state of neutron star matter (cf. Ref. [49]).

1.2.1 Particle degrees of freedom

The equation of state (EOS) of matter above nuclear saturation density is highly uncertain,
not only because of our incomplete knowledge of the forces between nucleons, but also with
respect to its composition. It is useful here to introduce the concept of particle degrees of freedom.
The basic degrees are the fundamental classical particles of neutrons, protons, electrons, and
photons. These form the backbone of all EOS applicable to hot and dense matter; most available
general-purpose EOS are limited to them. Additional particles added on top of this set tend to
decrease the maximum pressure support a fluid can provide, as long as they do not themselves
introduce a new stronger repulsive force. EOS containing additional particle degrees of freedom
routinely come in conflict with the observational constraint of the heaviest currently measured
pulsar PSRJ0348+0432 (Ref. [3]) being above 2.01M� ± 0.04M�.

In an ideal Fermi gas dominated by degeneracy pressure and at vanishing temperature, the
more degrees of freedom introduced into a system, the lower the maximum pressure it can
provide (e.g., Ref. [102]). Instead of paying the increasing energy penalty for compressing the
degenerate matter even further, the system can instead prefer to convert fermion degeneracy
energy of lighter particles into pure rest mass of alternative heavier particles. For example, the
energy density of a gas composed of nonrelativistic degenerate light fermions scales according
toE1 ∝ n1 ·

(
n

2/3
1 /m1 +m1

)
, whereas a nondegenerate gas composed of heavier fermions only

scales with E2 ∝ n2 ·m2. This is valid as long as both particles remain nonrelativistic and n1,2

andm1,2 are their respective number densities and masses. There exists a natural crossing point,
depending on the ratio between m1 and m2, after which the heavier particle is energetically
favorable. For baryonic degrees of freedom, i.e., neutrons and protons, this point lies at several
multiples of the saturation density, after which they could convert into their corresponding
nondegenerate hyperon, i.e., their strange quark bearing equivalents. The simplified approach
of an ideal gas is, however, not directly applicable to the hadronic­ sector, as the strong force
cannot be neglected and the exact nature of the governing many-body interactions in dense

¬Few here means the densities can still reach multiples of saturation density but less than in fully cold neutron
stars.

­Composite particles made up of quarks, interacting via the strong force. Grouped into baryons and mesons.
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1.2 Uncertainties in neutron star structure

environments is even more poorly constrained for hyperons than for nucleons (cf. Ref. [101]).
The appearance of hyperons and the associated softening of the EOS remains a conundrum
to nuclear physicists, coined the “hyperon puzzle” (Ref. [76]), and is especially problematic
for cold neutron stars. As we do not investigate hadronic degrees of freedom in this thesis,
we leave the detailed discussion on this involved topic to the review paper of Ref. [103] and
references therein.

1.2.2 Muons in neutron stars

A related process is an increase of the leptonic degrees of freedom. Degenerate electrons may
then convert into heavier, nondegenerate muons. In contrast to the nucleon case, however, the
electron chemical potential is already above the muon rest mass immediately after the birth of
the neutron star, and the electron and muon gases behave like ideal Fermi gases. Increasing
the leptonic degrees of freedom is accordingly not burdened by an uncertainty in the possible
interactions between the particles.

A naive interpretation of muonization¬ would therefore expect the immediate conversion
of a large proportion of degenerate electrons into nondegenerate muons. Looking at Fig. 1.1,
this would result in the disappearance of the large electron chemical potential bump inside
10 km, until both electron and muon chemical potential have reached equilibrium, i.e., µe = µµ ,
probably close to the muon rest mass. This is equivalent to the system having reached neutrino-
less beta-equilibrium, in which the net neutrino flavor number is assumed to be zero at all times.
This is equivalent to the demand that neutrinos are not trapped and can effortlessly leave the
PNS, which would result in the electron and muon chemical potentials being a strict function
of the neutron and proton chemical potential difference, i.e., µe = µµ = µn − µp . The naive
assumption of beta-equilibrium is however only applicable to the study of cold mature neutron
stars that are transparent to neutrinos. This has allowed muons to be an accepted standard
component of equations of state tailored to cold neutron stars.

The muonization of a PNS from birth becomes considerably more complicated when neutri-
nos are trapped and present in abundant numbers. The weak interactions, which e.g., produce
muons and let electrons decay, conserve lepton flavor number, i.e., the net electron flavor num-
berLe = L

e−−Le+ +Lνe−Lνe and net muon flavor numberLµ = L
µ
−−Lµ+ +Lνµ−Lνµ cannot

change by weak interactions alone. The evolution of the lepton numbers is now governed by
separate conservation equations for the individual flavors, with diffusive fluxes of neutrinos as
sourceterms, which need to be evolved forward in time. The diffusive losses are small in the
domain of the PNS where neutrinos are trapped, and the system will quickly reach chemical
equilibrium with the neutrinos. Chemical equilibrium means that the number densities of all
involved particles are set by the relations µe + µp = µn + µνe and µµ + µp = µn + µνµ , with
µ` = −µ` (` ∈ [e, µ, τ ]). The initial conditions of νe and νµ are vastly different however. νe and
e− are already highly degenerate (i.e., a large Le = L

e− + Lνe), whereas νµ and µ− are initially
not present (i.e., Lµ = 0). This means the PNS will have to “de-electronize” by the diffusive
loss of νe number, whereas it will muonize by the loss of νµ number.

The less dense outer domain of the PNS, where neutrino trapping generally does not hold,
will quickly reach the aforementioned beta-equilibrium, and µe = µµ holds to very good ap-
proximation. The muon production and muon decay rates may be out of equilibrium between
the trapped and nontrapped domains of the PNS, and the muon number is a dynamically
evolved quantity that depends sensitively on the microphysics governing the interactions be-
tween neutrinos and medium. The diffusion timescale of neutrinos, from the trapped domain to
the nontrapped domain, sets the timescale for the complete de-electronization and muonization

¬The production of an abundant net muon number in a NS.
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Figure 1.1: Typical conditions inside a protoneutron star 400 ms after bounce using the SFHo
equation of state (Ref. [123]). The data is displayed as a function of the enclosed mass coordinate.
An additional x-axis on top displays radius coordinates corresponding to the enclosed mass. The
mean neutrino energy is given in terms of a Boltzmann gas in local thermodynamic equilibrium
(LTE), being 〈E〉min

ν = 3T , which sets the lower bound of the mean particle energy of a fermionic
gas at arbitrary degeneracy.

of the PNS and is on the order of several seconds, but may vary depending on the accretion
history of the PNS.

The evolution of the neutrino component is a crucial ingredient to the muonization of PNSs
and is sensitively coupled to the evolution of density, temperature and lepton fractions of the
PNS. The assumption of true beta-equilibrium is only rarely fulfilled and may only become
applicable when the fate of the supernova has already long been decided. Investigating the
implications of a muonic component in the EOS, from neutrino-rich conditions at birth of the
PNS to full beta-equilibrium in the cold NS, therefore adds another degree of freedom that
requires careful implementation into the neutrino sector. In this thesis, we have implemented
the first fully self-consistent first-principles description of muons at arbitrary chemical potential
as well as a fully consistent treatment of all six neutrino flavors with full coupling to electrons
and muons.

1.3 Possible effects of muons in core-collapse supernovae

The common expectation among most researchers in the core-collapse supernova field was that,
while muons may be present in cold neutron stars and slightly affect their cooling evolution
(see e.g., Refs. [124, 2, 4]), they would be dynamically irrelevant in the first few seconds of
a supernova or during black hole formation. This assumption was, however, formed at a
time when the favored equations of state where still overly incompressible compared to recent
developments. Current experimental bounds on the compressibility of nuclear matter favor
relatively compact and dense neutron stars that may develop a high temperature already
early after PNS formation, as shown in Fig. 1.1. The mean thermal energy of neutrinos can
become larger than the muon rest mass after 100–200 ms, depending on the compactness¬ of
the progenitor (cf. Ref. [100]). The combined conditions of high neutrino energy and high

¬A high compactness at bounce implies large accretion rates.
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1.4 Outline of this thesis

electron chemical potential allow muons to be produced not only in the dense inner core, where
the electron degeneracy is largest, but also in the extended hot mantle between 1012 g/cm3 <

ρ < 1014 g/cm3. Here, muons may lead to a significant softening of the EOS, as the strong
nuclear force effects are not yet dominant, and thermal and degeneracy pressure of nucleons
and electrons determines the compression behavior. Muons may affect both of these pressure
components, as the creation of muons taps both thermal energy and degeneracy energy and
converts them into inert muon rest mass. This may happen by the combination of direct
absorption processes, e.g., νµ+n � p+µ−; electron conversion processes, e.g., νµ+e− � νe+µ−;
or thermal pair production, e.g., γ + γ � µ− + µ+. The result can be a faster contraction of the
PNS mantle and a more compact PNS, as it can loose pressure support not only by neutrino
emission but also by muon creation. Depending on the progenitor structure, muon creation
could even be a more efficient channel of “pressure-loss” than neutrinos radiating away lepton
number and thermal energy.

More compact PNS are found to be beneficial for the neutrino-driven mechanism, as both
the neutrino luminosity as well as the mean neutrino energy are increased because of higher
neutrinosphere temperatures (cf. Ref. [79]). More compressible EOS, however, may come into
conflict with the lower bound of the TOV limit¬ being 2.01M�±0.04M� (Ref. [3]), as modifying
the strength of the strong interaction has a direct consequence on the stability of cold neutron
stars. By introducing another leptonic degree of freedom that is most relevant in the early hot
protoneutron star phase and smaller in cold neutron stars, muons can have an important effect
during the phase most crucial to shock-revival, but do not reduce the TOV limit of cold NS
significantly. Other possible scenarios involving hot compact objects, such as NS – NS mergers
and PNS→BH collapse events might also be strongly modified since the metastability of these
compact objects is aided by thermal pressure support. Muons might then sensitively affect
the collapse timescale of hypermassive NS – NS merger remnants and metastable PNSs, by the
aforementioned mechanisms. The influence of muons could therefore affect the neutrino and
gravitational wave signals that can be detected from such events, as proven to be possible by
the recent first measurement of gravitational waves from the NS – NS merger event GW170817
(Ref. [1]).

Muons may not only increase the luminosity and mean energy of all neutrinos but also
imprint characteristic spectral differences on the emitted neutrinos, as both electron-flavor
and µ-flavor neutrinos now also interact with the charged muons in the medium via weak
interactions. µ-flavor neutrinos will experience the largest change as the ability to participate
in charged current beta-reactions greatly change their diffusion properties. This not only has
consequences for the neutrino-driven mechanism but may also affect for the detectability of
these neutrinos on Earth in future galactic supernovae. Neutrinos, due to their finite mass,
may undergo flavor oscillations that mix the different neutrino flavors. The possible relevance
of muons for neutrino oscillations, however, requires a more complete understanding of the
behavior of neutrino-flavor oscillations in the presence of dense neutrino background fields as
present in and around protoneutron stars (see e.g., Ref. [88] for an overview). Since we do not
treat neutrino oscillations in this thesis, we leave such an analysis to future work.

1.4 Outline of this thesis

Muons have up to now only been approximately integrated into evolution codes for neutron
star cooling simulations that operate on the timescale of millions of years (e.g., Ref. [4]). The
treatment of muons in the CCSN context has up to now been very limited, with at most some
excursions into static modified equations of state with a muon beta-equilibrium contribution

¬Tolman–Oppenheimer–Volkoff mass limit for the stability of cold, nonrotating neutron stars in general relativity.
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(e.g., Refs. [109, 101]). We wish to alleviate this shortcoming and perform the first fully self-
consistent and dynamic simulations of muon number formation in protoneutron stars; from the
moment of birth to the transition to a warm¬ neutron star, including a full coupling between
charged leptons and neutrinos of all flavors.

To achieve this goal, we first need to establish the basic framework of the thermodynamics
of a muon gas, analogously to the standard electron gas component, in Chapter II. We can easily
extend any publicly available general-purpose high-density equation of state for protoneutron
stars with this noninteracting Fermi gas component.

The radiation-hydrodynamics simulation code Prometheus-Vertex, in which we will im-
plement our changes, is introduced in Chapter III. The possible creation of net muon number
is mediated by the interaction between neutrinos and the matter particles, which requires the
calculation of both canonical production processes common to electron neutrinos and of the
new production processes associated with the presence of muons. The theoretical framework
for these processes is introduced in Chapter IV, mostly based on the work of Ref. [75]. As these
processes require complex calculations for hundreds of thousands of discrete time evolution
steps, they must be implemented as efficiently as possible, which is described in Chapter V. Ad-
ditionally, the specifics of the flavor coupling needed for the implementation into the neutrino
transport solver is discussed and relevant cross sections are presented.

Having established and implemented the necessary physical processes into our transport
code, we will numerically simulate the classical core-collapse supernova scenario in spherical
symmetry (1D) and axisymmetry (2D) in Chapter VI. To present a reference case for a standard
scenario to the CCSN community, a 1D simulation of the accretion phase of a frequently used
stellar progenitor is performed and further continued into the Kelvin-Helmholtz phase­ in
Sec. 11, after an artificial explosion trigger is applied. These 1D simulations will facilitate
comparison and verification of the new muon physics in our models and their influence on
the protoneutron star evolution. To evaluate a possible effect of the early onset of muonization
on the self-consistent development of a supernova explosion, axisymmetric 2D simulations are
performed in Sec. 12 for two different high-density equations of state to avoid a possible bias
by specific high-density properties of a single selected EOS. As black hole formation might
be especially sensitive to additional degrees of freedom in the equation of state as seen in
previous simulations (cf. Refs. [56, 101, 107]), we investigate the consequences of abundant
muon production on the collapse timescale of thermally stabilized metastable protoneutron
stars.

The results of these studies provide a comprehensive assessment of the macroscopic influ-
ence of the early onset muonization on the protoneutron star and refute the default assumption
of muons being irrelevant for the neutrino-driven explosion mechanism of CCSNe.

¬Our simulations terminate when neutrino cooling becomes too inefficient to continue. These neutron stars still
have temperatures of T ∼ 3MeV, but the neutron star structures are already close to their cold configuration.

­The cooling of the hot PNS by emission of energy and lepton number after a successful explosion.
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2 FUNDAMENTALS

Chapter II

Muonic equation of state
In this chapter, we will establish the underlying theoretical framework needed to calculate
any noninteracting quantum statistical ideal gas, and demonstrate its application to an ideal
gas of arbitrarily relativistic electrons and muons at an arbitrary state of degeneracy. The
necessary calculations are based on the work of Refs. [59, 132], with which we calculate the
tabulated leptonic quantities needed for the implementation into any general-purpose high-
density equation of state. Furthermore, the high-density equations of state used in this thesis
and their modifications are introduced, and the viability of these modified EOS in the CCSN
context with respect to observational constraints is discussed.

2 Fundamentals

Charged lepton Mass [MeV] Neutrino

electron (e−)
0.511

νe

positron (e+) νe

muon (µ−)
105.66

νµ

antimuon
(
µ+
)

νµ

tauon (τ−)
1776.82

ντ

antitauon
(
τ+
)

ντ

Table 2.1: Lepton species and masses (Ref. [89]).

The equation of state (EOS) for any noninteracting particle obeying Fermi-Dirac statistics
can be fully described by various forms of Fermi-Dirac integrals over the particle phase-space
volume

nFD ∝
∫ ∞

0

d3~p

exp ((E − µ) /T ) + 1
, (2.1)

which depending on the definition of the energy E can be used to calculate strictly nonrela-
tivistic (NR), arbitrarily relativistic (AR) or ultrarelativistic (UR) particles. The general energy
dispersion relation for an arbitrarily relativistic gas is the well-known

EAR =

√
p2 +m2 , (2.2)

which is valid for all conditions but can complicate some calculations due to the appearance
of the square root. For this reason, often the two limiting cases of an ultrarelativistic gas or a
strictly nonrelativistic gas are used. If one, for example, wants to calculate the EOS of neutrinos
then the small neutrino rest mass can be safely ignored, and

EUR =

√
p2 +m2

ν −−−→
p�m

p (2.3)

gives the correct energy dispersion relation. For more massive fermionic particles like nucleons
or hyperons, the large rest mass dominates the relativistic energy, and the momentum of the
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3 IDEAL FERMI GAS EOS OF LEPTONS

particle is only a small correction on top. This gives the classical nonrelativistic picture of the
energy dispersion relation that can be derived from the relativistic energy spectrum by a simple
series expansion around p = 0, resulting in

ENR =

√
p2 +m2 −−−→

p�m

p2

2m
+m. (2.4)

The nonrelativistic picture is the method of choice for the baryonic matter at low-temperatures
and sub-nuclear saturation density prevailing in pre-collapse stellar structure and can, with ac-
ceptable results, still be used above nuclear saturation density. A popular nonrelativistic EOS,
for example, is the Lattimer&Swesty equation of state of Ref. [70]. In contrast to neutrinos
and nucleons, the charged lepton energy dispersion relation cannot be assumed to be either
strictly ultrarelativistic or nonrelativistic. Electrons, being the lowest mass charged lepton, can
relatively safely be considered to be ultrarelativistic inside protoneutron stars. Outside the pro-
toneutron star they can, however, become arbitrarily relativistic, and even nonrelativistic farther
from the stellar core. Muons, being roughly 200 times heavier than electrons, never become ul-
trarelativistic, but are mildly relativistic inside the protoneutron star and nonrelativistic outside
the protoneutron star. Tauons, being the most massive lepton at nearly twice the nucleon rest
mass, can safely be assumed to be nonrelativistic everywhere inside a neutron star. Their high
rest mass itself strongly suppresses their thermal production, and even in highly degenerate
conditions the chemical potential of any particle never becomes large enough to trigger any
abundant production. Tauons are accordingly neglected in all previous works including this
one and, barring possible extreme conditions such as transient phases at the moment of collapse
to a black hole, are unlikely to be present.

As we are in this work specifically interested in the equation of state of muons, we will
employ the arbitrarily relativistic formulation of the Fermi gas in thermal and chemical equi-
librium with the surrounding matter. This approach is valid since all possible electromagnetic
muon reactions are sufficiently fast, and the muon spectrum can be defined by a single common
chemical potential and temperature.

3 Ideal Fermi gas EOS of leptons

The calculation of an electron EOS at various degrees of degeneracy and relativity is a common
problem for all so-called general-purpose stellar equations of state and many authors have
explored multiple methods to formulate the Fermi-Dirac integrals in their most convenient
form. For a small overview, we refer to Ref. [132] and references therein. The formulation we
use in the calculation of our leptonic EOS allows for simple variation of the lepton rest mass
and degeneracy.

The formula to calculate the number density of a fermion is given by the phase-space volume
integral of the Fermi-Dirac function

n` =
g

(hc)3

∫ ∞
0

d3~p

exp (E/T − η) + 1
, (3.1)

where η = µ
T is the dimensionless degeneracy parameter, and g is the spin degeneracy of the

fermion. The charged leptons have a spin degeneracy of g = 2, as a spin-up and a spin-down
lepton can populate each phase-space volume. In contrast, neutrinos due to their chirality, i.e.,
left-handed neutrinos and right-handed antineutrinos, only have a spin degeneracy of g = 1,
as only either a neutrino or an antineutrino can exclusively populate each phase-space volume.
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3 IDEAL FERMI GAS EOS OF LEPTONS

The phase-space volume integral
∫

d3~p can be expressed by
∫

d3~p = 4π
∫

dp p2, and the final
form of the number density is

n` =
8π

(hc)3

∫ ∞
0

dp
p2

exp (E/T − η) + 1
. (3.2)

While this form could already be directly numerically integrated, it is helpful to rewrite the
formula in terms of the generalized Fermi-Dirac integrals, using following substitutions:

p =

√
E2 −m2 { dp =

E√
E2 −m2

dE , (3.3)

n` =
8π

(hc)3

∫ ∞
m`

dE
E
√
E2 −m2

exp (E/T − η) + 1
. (3.4)

The rest mass appearing in the lower limit of the integral can further be removed by the
substitution

x =
E

T
+ β` { E = Tx+m` { dE = Tdx , (3.5)

leading to

n` =
8π

(hc)3T
3
∫ ∞

0
dx

(
x+ β`

) √
x
(
x+ 2β`

)
exp

(
x+ β` − η

)
+ 1

. (3.6)

By introducing the “kinetic” degeneracy parameter

ζ
`
∓ = η

`
∓ − β` , (3.7)

we arrive at the final form of the number density of

n
`
− =

8π

(hc)3T
3
∫ ∞

0
dx

(x+ β`)
√
x
(
x+ 2β`

)
exp

(
x− ζ

`
−
)

+ 1
, (3.8)

for the negatively charged lepton, and

n
`
+ =

8π

(hc)3T
3
∫ ∞

0
dx

(x+ β`)
√
x
(
x+ 2β`

)
exp

(
x− ζ

`
+

)
+ 1

, (3.9)

for the positively charged antilepton, where the parameter

ζ
`
+ = −ζ

`
− − 2m` = −η

`
− −m` ,

is the corresponding kinetic degeneracy of the antiparticle.
The parameter

β` =
m`

T
, (3.10)
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can be interpreted as a measure of the relevance of relativistic effects, where β � 1 implies the
nonrelativistic regime. The dimensionless parameter

ζ
`
∓ = ±

µ
`
−

T
− β` , (3.11)

can be interpreted as a measure for the degeneracy of the particle, where ζ � 1 implies the
degenerate regime.

The total density of leptons and antileptons, necessary to later account for the rest mass
contained in the gas, is given by

ntot = n
`
− + n

`
+ . (3.12)

The net number of leptons, given by

nnet = n
`
− − n

`
+ , (3.13)

is an important quantity in charge-neutral stars, where the positive charge of free or bound pro-
tons is perfectly balanced by the net negative charge. The net number of a gas is fully determined
by the chemical potential, as a vanishing chemical potential implies that only perfect pairs of
leptons and antileptons exist. One has to invert the lepton net number density numerically to
determine any nonzero chemical potential fulfilling the charge-neutrality constraint. Typically,
one uses bisection- and Newton-Raphson iterations to find the fitting chemical potential. Once
it has been found, all further thermodynamic properties can be derived from it.

The internal energy density of the gas is simply the number density times the internal energy
of each particle:

eint
`
− =

8π

(hc)3T
4
∫ ∞

0
dx

x(x+ β`)
√
x
(
x+ 2β`

)
exp

(
x− ζ

`
−
)

+ 1
, (3.14)

eint
`
+ =

8π

(hc)3T
4
∫ ∞

0
dx

x(x+ β`)
√
x
(
x+ 2β`

)
exp

(
x− ζ

`
+

)
+ 1

. (3.15)

Note that this internal energy density does not yet contain the lepton rest mass and still needs
to be corrected for the mass of thermally produced lepton pairs that are an intrinsic component
of the gas.

As all antileptons of a positive net number density gas are created by the thermal component
of the gas, the total number density of paired up leptons is simply twice the antilepton density,

etot,pairs = eint
`
− + eint

`
+ + 2m`n`+ . (3.16)

The kinetic pressure of the gas is the relativistic velocity v(p) = p/E of the gas times the
momentum times the number density

P =
8π

3 (hc)3

∫ ∞
0

dp
v(p) · p · p2

exp (E/T − η) + 1
=

8π

3 (hc)3

∫ ∞
0

dp
p4/E

exp (E/T − η) + 1
, (3.17)
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3 IDEAL FERMI GAS EOS OF LEPTONS 3.1 Regimes of the EOS

where a factor of 1/3 is introduced to account for the isotropy of the gas. After applying the
substitutions of Eqs. (3.3 – 3.7), we arrive at the final form of the Fermi pressure for leptons and
antileptons:

P
`
− =

8π

3 (hc)3T
4
∫ ∞

0
dx

√
x
(
x+ 2β`

)3
exp

(
x− ζ

`
−
)

+ 1
, (3.18)

P
`
+ =

8π

3 (hc)3T
4
∫ ∞

0
dx

√
x
(
x+ 2β`

)3
exp

(
x− ζ

`
+

)
+ 1

. (3.19)

The entropy of the gas can be determined using the thermodynamic potentials to be:

s
`
− =

(
eint
`
− + P

`
−
)
/T − n

`
−ξ

`
− , (3.20)

s
`
+ =

(
eint
`
+ + P

`
+

)
/T − n

`
+ξ

`
+ . (3.21)

The final thermodynamic values of the equation of state are then simply the sum over all
leptons and antileptons:

etot = eint
`
− + eint

`
+ +m`n

tot = etot,pairs +m`n
net , (3.22)

P tot = P
`
− + P

`
+ , (3.23)

stot = s
`
− + s

`
+ . (3.24)

3.1 Regimes of the EOS

Depending on the lepton mass, temperature and density of leptons one can separate the equation
of state into five separate regimes.

1. The nondegenerate, nonrelativistic regime at low densities and low temperatures

2. The nondegenerate, ultrarelativistic regime at low densities and high temperatures

3. The degenerate, nonrelativistic regime at high densities and generally low temperatures

4. The degenerate, ultrarelativistic regime at high densities and generally high temperatures

5. The intermediate regime where none of the above apply
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Note that a degenerate gas can become ultrarelativistic even at low temperatures if the internal
energy at the Fermi-surface is sufficiently larger than the lepton rest mass. The electron and
muon EOS features all of these regimes, but the substantial difference in rest mass between
both leptons will lead to significant shifts of the regime locations. A large rest mass, e.g.,
baryons and nuclei, will typically lead to the nonrelativistic regime being accurate in most
conditions encountered in core-collapse supernovae. On the other hand, a vanishing rest
mass, e.g., neutrinos and photons, will lead to these particles being ultrarelativistic in all
conditions. For protoneutron star conditions, the ultrarelativistic regime with varying degrees
of degeneracy is typically fulfilled for electrons. Muons, due to their 200 times larger rest
mass, are however mostly either nonrelativistic or at most intermediate relativistic at no or
intermediate degeneracy. In Fig. 3.1, we compare the above given regime locations for electrons,
outlined in continuous lines, and for muons, outlined in dashed lines. We can immediately see
that the regimes are qualitatively similar but shifted to higher densities and temperatures for
the muon gas, and none of the approximations apply to typical hot neutron star conditions. This
problem has further consequences for the treatment of the muon gas in the opacity calculations
that will be discussed further in Chapter IV.
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Figure 3.1: Regimes of the leptonic equation of state for electrons (solid) and muons (dashed).
The regimes of the electron gas are labeled by the numbers.

The extended region of validity of the nondegenerate nonrelativistic approximation of the
muon gas, however, allows us to efficiently and accurately extend the muon EOS down to
lower temperatures and densities than tabulated using the analytic formulae for pressure,
energy density, and entropy of a Boltzmann gas. Additionally, the chemical potential of muons
can be inverted directly from the net number density, as we are still well below pair formation
temperatures. This property is helpful to accurately track the decay of any present muon
number, which requires an accurate chemical potential down to vanishing densities.
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3.2 Thermodynamic quantities

The energy, pressure, and entropy per baryon of the muon equation of state are compared
in the following figures to the corresponding quantities of the electron EOS. Note that the
energy does not contain the net lepton rest mass contribution and is, therefore, the quantity
etot,pairs [MeV/by].

The energy per baryon in Fig. 3.2 shows the onset of pair gas formation by the sudden
increase in line density, as the energy contained in the gas becomes uncoupled from any net
lepton number. At nearly vanishing net electron density the pair gas already starts forming at
0.015 MeV, whereas the muon gas requires at least 2 MeV. These are 3% and 2% of the respective
lepton rest mass, showing that the thermal tail already contains sufficient energy for abundant
pair production. As the thermal pair number is only significant at large temperature and very
small chemical potential, the energy per baryon will naturally decrease as the matter density
grows. At high density, the energy contained in the net muon gas becomes larger than in the
muon pair gas, as the rising chemical potential suppresses pair formation.
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Figure 3.2: Logarithmic energy per baryon including pair rest masses etot,pairs/nB. The electron
energy is on the left side; the muon energy is on the right side.

The pressure will naturally follow the energy as they are linked by a relation of P = 1
3e

int

for relativistic particles and P = 2
3e

int for nonrelativistic particles. There are only some slight
differences as the pressure is a function of the pure internal energy without the pair rest masses,
as seen in Fig. 3.3.

The entropy per baryon in Fig. 3.4 links the energy and pressure to the chemical potential.
As a degenerate Fermi-Dirac gas is a highly ordered system and all energy levels are filled up to
the Fermi-energy, the entropy will naturally decrease at high densities and low temperatures.
The slope change of the isentropes, which happens at higher temperatures and densities in the
muon gas, indicates the transition of a nonrelativistic to an ultrarelativistic gas as expected.

The chemical potential of the Fermi-Dirac gases approaches zero when the thermal lepton
pairs (produced by photons with zero-chemical potential or by leptons with a summed chemical
potential of zero) become abundant. As the chemical potential in Eq. 3.6 and µ` = −µ` deter-
mines the number densities at identical temperatures, equal number densities automatically
imply that the only possible chemical potential to fulfill this is µ` = 0. The chemical potentials
depicted in Fig. 3.5 are plotted as the relativistic chemical potential for electrons including rest
mass and the nonrelativistic (kinetic) chemical potential for muons. Motivation for this is the
large muon rest mass introducing a constant offset that would otherwise make the transition
to a degenerate gas less visible. In the electron case, the transition begins at ρYe ∼ 107 g/cm3,
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Figure 3.3: Logarithmic pressure per baryon P tot/nB. The electron pressure is on the left side;
the muon pressure is on the right side.
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Figure 3.4: Logarithmic entropy per baryon stot/nB. The electron entropy is on the left side; the
muon entropy is on the right side.

equivalent to a net electron number density of ne = ρYe/mB ∼ 6× 1030 1/cm3. The muons only
transition to the degenerate regime later at ρYµ ∼ 1011 g/cm3, equivalent to a muon density
of nµ ∼ 6 × 1034 1/cm3. At a realistic muon fraction of Yµ ∼ 0.01, this requires a minimum
matter density of ρ ∼ 1013 g/cm3. The transition to a pure muon pair gas is also further spread
out compared to electrons, with some muon pairs starting to appear already at T ∼ 0.1 MeV,
signified by the nonrelativistic chemical potential becoming negative. The point of a pure muon
pair gas is reached when the nonrelativistic chemical potential is equal the negative rest mass
µNR
µ = −mµ { µR

µ = 0.
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Figure 3.5: Logarithmic relativistic chemical potential including electron rest mass µR
e on the left

side and logarithmic nonrelativistic chemical potential without muon rest mass µNR
µ = µR

µ−mµ

on the right side. Note that the plotted muon chemical potential is logarithmized according
to the formula µ

plotted
µ = sign(µNR

µ ) log10

(
max

(
|µNR
µ |, 1

))
, whereas the electron chemical

potential is simply µplotted
e = log10

(
µR

e

)
.
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)
s,Y`

. The electron index is on the left side the; the muon

index is on the right side.

The adiabatic index Γs =
(
∂ lnP
∂ ln ρ

)
s,Y`

in Fig. 3.6, in combination with the pressure, gives

the bulk modulus K = ΓP , which is a measure of the resistance of the gas to compression.

Furthermore, the sound speed is equal to vc =
√

K

(etot
+p)/c2

, which converges towards vR
c = c√

3

in an ultrarelativistic gas. The deep blue areas, with Γs → 1, are where the lepton–antilepton
pair-instability begins. The formation of lepton pairs then consumes any additional temperature
increase. In the electron gas, this happens at relatively low temperatures that are, however, still
only reached in the cores of hyper-massive stars and lead to the pair-instability supernovae.
A similar region also exists for muons but lies at significantly higher temperatures. These
temperatures can only possibly be reached transiently in the short-lived remnants of NS – NS
mergers, and during PNS→BH collapse.
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4 HIGH DENSITY EQUATION OF STATE

4 High density equation of state

Densities far below nuclear saturation density, where the mean distance of the constituent parti-
cles is still large and the short-range nuclear interaction effects are dynamically insignificant, are
easily modeled by treating the plasma as simple additive formally independent components.
Baryonic particles only contribute by their statistical thermal motion and can be included as an
ideal Maxwell-Boltzmann gas. Nuclear fusion and fission may happen if temperatures are high
enough that nuclei can form and dissolve based on burning rate equations. The leptonic and
photonic contributions further exist in the form of ideal Fermi and Bose gases, and are again
independent contributions. As temperatures rise, nuclear burning can become fast enough that
the forward and back-reactions reach the point of nuclear statistical equilibrium (NSE) and the
baryonic composition becomes entirely determined by the Saha-equations. The approximation
of ideal gases, however, breaks down as densities increase and particles begin to interact via
strong forces. After this point, the nucleons and nuclei start to “feel” the other particles and
corrections start to appear. The treatment of these corrections differ between the two EOS we
employ in this thesis and can be separated into two categories.

1. Skyrme type zero-range interactions and the single nucleus approximation (SNA) as
employed in the LS220 EOS of Ref. [70].

Here the nucleons and nuclei are described by a Skyrme parametrization of the nuclear
interaction in the mean field approximation and give the energy of the strongly interact-
ing nucleons either contained inside nuclei at saturation density or outside nuclei as free
nucleons. Additional corrections exist for the deformed shape of interacting nuclei to
minimize their surface energy, as well as excluded volume effects. The treatment of the
nuclear shape and binding energies follows the liquid drop model of Bethe-Weizsäcker.
The single representative nucleus exists as a bubble of bound nucleons of a mean neutron
and proton number determined by a minimization of the free energy and breakup occurs
when it is energetically favorable to do so. This breakup typically happens at the point
where the outside density of the unbound nucleons exceeds the nuclear saturation den-
sity or when the matter temperature is above the nucleus binding energy. The Skyrme
parameters, which describe the strong nuclear interaction as an expansion around satu-
ration density, can be directly fixed by experimentally determined values for symmetric
matter. The chosen parameters of the LS220 EOS used in this thesis are the binding energy
B0 = 16 MeV, incompressibility K0 = 220 MeV, symmetry energy J = 29.3 MeV and a
saturation density of 0.155 fm−3.

2. Relativistic mean field calculation for free nucleons and an excluded-volume nuclear
statistical equilibrium for nuclei as employed in the SFHo EOS of Ref. [123]

In the relativistic mean field approach, the nuclear interactions are treated using the
quantum field theory, in which a mean field of mesons, described by the Klein-Gordon
equations, surround the nucleons, described by the Dirac-equations. The interaction be-
tween nucleons is modeled by their coupling to the surrounding mean meson field. Mean
field here means that the interactions are not calculated explicitly between nucleons. In-
stead, nucleons only feel the presence of surrounding nucleons by the expectation value
of their meson field. The meson coupling constants and masses are some of the free pa-
rameters in the model and are still poorly constrained. The coupling constants and meson
masses contained in the SFHo model are fitted to reproduce the experimental constraints
of measured nuclei, as well as measured observational constraints on neutron star radii
and masses of Ref. [25]. The resulting nuclear properties at saturation density fit the
experimental constraints well, with a nuclear saturation density of 0.1583 fm−3, a binding
energy ofB0 = 16.19 MeV, an incompressibilityK0 = 245.4 MeV, and a symmetry energy
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4 HIGH DENSITY EQUATION OF STATE

J = 31.57 MeV. The nuclei contained in the matter are treated by a formally noninteract-
ing NSE approach of many thousands of individual nuclei, with an individual treatment
of their measured binding energy and shell effects where available. The excluded volume
by the surrounding nuclei and nucleons provide a hard-body repulsion term, leading to
their smooth dissolve when nuclear saturation density is reached. The exact prescription
for the excluded-volume NSE is given in Ref. [44].

The equation of state of matter at supra-nuclear densities is still uncertain, and there exist many
different approaches to try and tackle the issue. An excellent and exhaustive review on this
topic is given in Ref. [103], and we will skip a discussion of this highly involved field as we
do not modify the baryonic part of the EOS. The leptonic contribution remains in all cases an
independent contribution which can be freely replaced or changed at will.

To see where changing the leptonic contribution actually can influence the EOS we refer to
Fig. 4.1, where the relative proportion of gas pressure supplied by electrons to total gas pressure
is shown. For this plot, the electron fraction was set to beta-equilibrium according to µνe = 0
and µe = µn − µp . The blue areas are where the baryonic part of the EOS supplies nearly all
of the pressure, and the system will exhibit barely any effect by a modification of the leptonic
component. This area typically comprises the high-density part above nuclear saturation
density, where the strong force and nuclear degeneracy pressure always dominates, as well as
the relatively low density and temperature part, where the equilibrium net electron fraction and
electron pair pressure is insignificant. The green and yellow areas, however, are representative
of conditions in the extended protoneutron star mantle, where the freshly accreted matter slowly
settles onto the protoneutron star and loses energy via neutrino radiation. Here, a change in the
leptonic sector can affect the total behavior of the system by up to 30% percent, and is where we
expect the appearance of muons to have the most significant dynamical effect. Furthermore,
as the leptonic sector has practically no influence on cold matter, we do not expect extensive
changes to the cold neutron star structure in accordance with previous studies in Ref. [4], who
analyzed the effect of muons on the megayear timescale of cooling superfluid neutron stars.
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Figure 4.1: The relative contribution of the electron gas pressure to total gas pressure at an
electron fraction Ye set by beta-equilibrium of the SFHo EOS. Colors are set to the fraction
Pe/Ptotal.

As the leptonic sector is only relevant in a hot protoneutron star and the minimum bound
on the neutron star gravitational mass of Ref. [25] only constrains the cold neutron star mass
our modified general-purpose finite-temperature EOS still fulfill the observational constraints
as shown in the TOV solutions in Fig. 4.2. The LS220 EOS exhibits some sensitivity to the
appearance of muons due to a shift in the weak equilibrium proton fraction, but the maximum
mass is barely affected on the order of ∆mTOV ∼ 0.01M�. Both our employed EOS and all of
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4 HIGH DENSITY EQUATION OF STATE

the other available EOS, which fulfill the constraints in Ref. [25], will remain viable even after
the inclusion of muons. Further constraints on hot neutron star properties might be available
in the future using gravitational wave observations of NS – NS merger remnants as predicted
in Ref. [80].
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Figure 4.2: Mass-radius TOV solutions of hydrostatic cold neutrons stars with the SFHo EOS in
black and the LS220 EOS in red. The TOV solutions without muons are solid lines, the solutions
with muons are the dashed lines. The observational constraints of Ref. [25] are given by the
two dotted lines at a 1σ confidence level.

20



Chapter III

Prometheus-Vertex
The radiation hydrodynamics equations at the core of every CCNS simulation require sophis-
ticated tools to evolve all quantities forward in time from the given initial conditions. The
neutrino transport solver currently used in the Garching Max-Planck CCSN group is the Ver-
tex

¬ fully implicit transport solver, in combination with the Prometheus explicit Newtonian
hydrodynamics solver of Ref. [38], further upgraded and adapted to supernova physics in
Ref. [62] and Ref. [64]. Prometheus is a direct Eulerian, time-explicit Godunov-type solver
implementation of the Piecewise Parabolic Method (PPM) of Ref. [21].

The Vertex component has been developed in Ref. [114] initially for spherically symmetric
(1D) geometry and has further been extended to axisymmetric (2D) in Ref. [14] and later to fully
three-dimensional (3D) geometry in Ref. [41]. Additional work to implement a special axis-free
“Yin-Yang” grid for the 3D version was done in Ref. [85], an improved effective GR gravitational
potential of case A in Ref. [77], as well as an extension to CFC GR and improvements to numerical
methods in Ref. [93].

5.1 Neutrino transport

As neutrinos are purely weakly interacting leptonic neutral particles, they can not a priori be
assumed to be in equilibrium with the surrounding matter. This differentiates them from their
charged lepton “cousins”, the electron, muon, and tauon which interact via the significantly
stronger electromagnetic force and have short interaction mean free paths. Equilibration can,
therefore, be assumed to be instantaneous at temperatures and densities common in the stellar
interior. Neutrinos, on the other hand, can have mean free paths which range from centimeters
to millions of kilometers which defies a conventional treatment. The Euler equations for mass,
momentum and energy conservation, which are valid for isotropic local equilibrium states, are
sufficient for the stellar plasma surrounding the neutrinos, but the neutrinos themselves require
the direct treatment of conservation equations applicable to nonequilibrium states.

The Boltzmann transport equation (BTE) is used to transport a statistical ensemble of quasi-
massless neutrinos distributed in a phase-space volume of d3~r d3~p by a particle distribution
function f (~x, ~p, t). In the case of neutrino transport this is the Fermi-Dirac distribution. In
the related case of photon transport, it would be the Bose-Einstein distribution. The natural
coordinates of stellar transport are spherical coordinates. These coordinates result in the 7-
dimensional problem of evolving f (r,Θ,Φ, E, θ, ϕ, t), where the large Greek letters are the
space coordinates and the small Greek letters are the angle coordinates relatively to the radial
direction of propagation ~n, which is the surface normal on the area dA spanned by the solid
angle dΩ. In our transport, only a “ray-by-ray” transport solution is solved, which separates the
distribution function into a set of independent “spherically symmetric” 1D radial solutions for
each combination of Θ and Φ. Even if the transport solution might vary in angle, the deviation
from symmetry is assumed to be small enough that lateral or azimuthal fluxes will not develop.
The neutrino distribution function is therefore assumed to be cylindrically symmetric around
each rays axis of propagation ~n, and the ϕ angle disappears. In this ray-by-ray transport,
the phase-space distribution function reduces to a 4-dimensional form f(r, E, θ, t), in which
the angular distribution θ around the propagation vector still needs to be evolved. Note that
even in multi-dimensional simulations using Prometheus-Vertex, angular coupling between
different propagation vectors is formally neglected and only approximately included via the
“ray-by-ray plus” approximation detailed in Ref. [14]. The “plus” here refers to approximated

¬Variable Eddington factor Radiative Transfer for supernova Explosions
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5.1 Neutrino transport

angular neutrino momentum transfer in trapped conditions and angular advection with the
fluid.

The traditional quantity evolved in radiation transport is the specific monochromatic inten-
sity I that is related to the distribution function by

I (r, E, µ, t) =
c

(2π~c)3 f (r, E, θ, t) , (5.1)

where µ is the angle cosine µ = cos θ. The Boltzmann radiative transfer equation for the
evolution of this specific intensity is given in the comoving frame of the fluid but at fixed
Eulerian space coordinates. The comoving frame introduces relativistic Doppler effects as well
as advective transport, treated accurate to O (β), where β = (v/c) is the local fluid velocity
divided by the speed of light, sufficient for our Newtonian hydrodynamics. The Boltzmann
transport equation is then (see Ref. [114]),
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I = C (I) . (5.2)

The left-hand side expresses the conservation equation of neutrino transport, while the right-
hand side are the neutrino source terms contained in the “collision integral”. The collision
integral prescribes how many neutrinos are created, annihilated or redistributed in phase-space
via scattering reactions and depends on the monochromatic intensities but also on the energy
and angle-integrated intensities of its own or possibly multiple other neutrino species. This
makes the Boltzmann transport equation an integro-differential equation that is computationally
expensive and converges very slowly. This equation can still be solved directly via so-called Sn
discrete ordinate methods that calculate the angular bins on discrete Gaussian spaced points and
require complex angular coupling as the neutrino propagates. This method is for example used
in 1D in Ref. [72] and in 2D genuinely multi-dimensional transport in Ref. [126]. An alternative
approach is to evolve the angular moment representation of the BTE and only approximate the
exact angular distribution. Angular moments of the BTE are a series expansion of the radiation
intensity in increasing orders of angular integrations over the radiation intensity in the form of

I(i) (r, E, t) =
1

2

∫ +1

−1
dµµiI (r, E, µ, t) , (5.3)

where the I(i) are the angular moments of order (i). The full series expansion, if continued
to infinite order, encodes all information of the angular distribution of the radiation intensity.
However, in practice, the moment equations are truncated after the second order, the so-
called two-moment transport method. A caveat of the moment equation is however that these
moments always require a closure, i.e., the next higher moment. In other words, if one wishes
to solve the first angular moment of the BTE it needs to be closed by a gradient over the second
moment and ad infinitum to higher and higher moments. These closures can be prescribed
by an analytical expression of the most likely phase-space distribution given by the first two
moments, the commonly called M1 neutrino transport, see for example Refs. [99, 61]. An
alternative method is to solve a simplified formal solution of a model-Boltzmann equation that
solves the monochromatic radiation intensity forgoing conservative neutrino energy and species
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5.1 Neutrino transport

coupling. Utilizing the tangent-ray angular discretization (see Ref. [87]) also angular coupling
between different radii is automatically included, and the model-BTE formally becomes a set
of independently evolved tangent-rays that are ideally suited to handle a central luminosity
source even at large radii.

Vertex employs the moment formalism in combination with the tangent-ray discretization
to apply the Variable Eddington factor method, where the right-hand side collision integral of
Eq. 5.2 is supplemented by energy integrated angular moments, thereby taming the integro-
differential nature. The closures required for the moment equations are itself computed from
the solution of the model-Boltzmann equation. The coupled set of BTE and moment equation
is then iterated against each other toward convergence.

The evolved moment equations in Vertex are the first and second moment, whereas the
third and fourth moment only appear as normalized moments of the model-BTE. The four
evolved moments are

JBTE (r, E, t) =
1

2

∫ 1

−1
dµµ0I (r, E, µ, t) =

c

4π
E (r, E, t) , (5.4)

HBTE (r, E, t) =
1

2

∫ 1

−1
dµµ1I (r, E, µ, t) =

1

4π
F (r, E, t) , (5.5)

KBTE (r, E, t) =
1

2

∫ 1

−1
dµµ2I (r, E, µ, t) =

c

4π
P (r, E, t) , (5.6)

LBTE (r, E, t) =
1

2

∫ 1

−1
dµµ3I (r, E, µ, t) . (5.7)

The first moment can be identified to be equivalent to the neutrino energy densityE; the second
moment is equivalent to the neutrino energy flux density F . Both of these moments are evolved
by the detailed moment equations of Eqs. 5.10 and 5.11 in a conservative fully energy-bin and
species coupled way. The third moment can be identified to be the neutrino pressure tensor in
the radial direction, i.e., P rr, whereas the fourth moment does not have a traditional analogue
quantity and only enters the neutrino energy flux equation via the velocity terms. The third
and fourth moment are computed from the normalized results of the model-BTE and return the
eponymous Variable Eddington factor

fK =
KBTE

JBTE , (5.8)

and the fourth closure factor

fL =
LBTE

JBTE . (5.9)

The first and second moment equation for a spherically symmetric background are calcu-
lated by integrating the BTE using the definitions of Eqs. 5.4 and 5.5 to be(
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The higher moments are already implemented using the closure factors of Eqs. 5.8 and 5.9, and
C(i) are the angular moments of the collision integral

C (I) = BAE (I) +BS (I) +BIS (I) +BTP (I) . (5.12)

Here,

BAE (I) = j (E) (1− I (r, E, µ, t))− κ (E) I (r, E, µ, t) (5.13)

are absorption and emission reactions which are pure neutrino creation and annihilation oper-
ators.

BS (I) = 2π (1− I (r, E1, µ1, t))

∫ 1

−1
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∫ ∞
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out
S (E1, E3, µ13) (1− I (r, E3, µ3, t)) (5.14)

are any general scattering reaction which redistributes neutrinos in energy and angle.

BIS (I) = 2πE2 (1− I (r, E, µ1, t))
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IS (E,µ13) (1− I (r, E, µ3, t)) (5.15)

is a subset of scattering which only changes neutrino momentum but not energy resulting in
only an angular redistribution.

BTP (I) = 2π (1− I (r, E1, µ1, t))
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is a pair production reaction which couples different neutrino species in energy, angle and
neutrino number.

The collision integral is the interface between the hydrodynamics and radiation transport
part to maintain energy, momentum and lepton flavor number conservation. As only the mo-
ment equations are directly coupled to the hydrodynamics, the neutrino source terms entering
the hydro solver are energy-integrated and summed angular moments of the collision integral.

QE = −4π

∫ ∞
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5.2 Hydrodynamics

where QE is the internal energy source term, QM is the momentum source term and QN is
the electron number source term, C (E) = C (E) /E and mB is the baryonic mass in gram. As
an observer is interested in lab-frame (or inertial frame) quantities the comoving quantities
evolved in our code need to be transformed O (β) accurate following Ref. [87]:

Elab = E + 2βF/c , (5.20)

F lab = F + cβ (J +K) . (5.21)

Note however that these transformations are only valid for energy-integrated quantities, i.e.,
the total energy,flux and pressure density.

5.2 Hydrodynamics

The equation of hydrodynamics in the stellar interior can be described by the compressible
Euler equations for an ideal, inviscid fluid in an equilibrium state which is characterized by a
mass density ρ, a velocity vector ~v and a specific total energy density ε = e + 1

2~v
2. Just as in

the radiation transport equations a closure is needed for the Euler equations, which is the gas
pressure p. As the fluid is in thermodynamic equilibrium and all particles are isotropic and
fully described by the respective distribution function, the gas pressure p is fully determined
by the density, temperature and particle composition by the equation of state and is usually
supplied in tabulated or analytical form. The Euler equations are

∂tρ+∇ · (ρ~v) = 0 , (5.22)

∂t (ρvk) +∇ · (ρ~v ⊗ ~v) +∇P = − ρ∇Φ + ~QM , (5.23)

∂t (ρε) +∇ [(ρε+ P )~v] = − ρ~v · ∇Φ +QE + ~v · ~QM , (5.24)

where the first equation is the mass conservation equation, the second is the momentum
conservation equation and the third is the energy conservation equation.

Additional conservation equations are solved for the electron fraction Ye =
n

e−
−n

e+

nB

∂ρYe

∂t
+∇ ·

(
ρYe~v

)
= QNe

, (5.25)

and individual nuclear species if the system is not in nuclear statistical equilibrium

∂ρXi

∂t
+∇ · (ρXi~v) = QNi

, (5.26)

whereXi are the nuclear mass fractions. Note thatQNi
is here a nuclear source term by nuclear

burning reactions, i.e., fusion or fission of nuclei, and is not the neutrino lepton number source
term. As required by our goal to track muonization in the CCSN context, the electron fraction
source terms and conservation equations were complemented by the corresponding muon
fraction equations,

∂ρYµ
∂t

+∇ ·
(
ρYµ~v

)
= QNµ

, (5.27)

which will be further detailed in the following sections.

25



5.3 Low-density equation of state

5.3 Low-density equation of state

The low-density equation of state in Prometheus-Vertex is an analytical ideal Maxwell-Boltzmann
gas using a tabulated nuclear statistical equilibrium (NSE) composition and supplemented by a
tabulated electron ideal Fermi-Dirac gas with photon contributions. The assumption of an ideal
gas without interactions, except by a simple Coulomb lattice correction, allows an independent
superposition of all individual components without the intricacies of hot matter close to nuclear
density. The thermodynamic variables of an ideal Boltzmann gas are a simple function of gas
temperature and density, where

PB =
∑
i

niT , (5.28)

eB =
∑
i

3

2
niT , (5.29)

sB =
∑
i

ni

(
5

2
− µi

)
, (5.30)

are the pressure density, internal energy density and entropy density respectively. The sums
are performed over the number densities of individual nucleons and nuclei ni as given by the
composition and mass number. The total thermodynamic variables of the low-density EOS are
then a simple combination of all individual components

PLD
(
ρ, T,Xi, Ye , Yµ

)
=PB + Pe + Pµ + PCoulomb + Pγ , (5.31)

eLD
(
ρ, T,Xi, Ye , Yµ

)
= enorm + eB + ee + eµ + eCoulomb + eγ , (5.32)

sLD
(
ρ, T,Xi, Ye , Yµ

)
= sB + se + sµ + sCoulomb + sγ . (5.33)

As the muon fraction is initially zero a negative net muon fraction cannot be excluded as for
the case of electrons. The pressure, energy density and entropy of the muon gas not depending
on the actual sign of the net fraction makes it possible to access the tabulated muon gas EOS
using the absolute value of the net muon fraction. Only the sign of the resulting muon chemical
potential then needs to be switched using µµ

(
ρ, T, Yµ

)
= µµ

(
ρ, T, |Yµ |

)
sign

(
Yµ
)
. Note also

that enorm is a rest mass normalization term as used in the L&S EOS and is given by

enorm = nimi +
ρ

mB

(
Yeme + Yµmµ

)
+

ρ

mB

(
−mn + E0

)
, (5.34)

where E0 is a constant offset typically chosen to be the binding energy of 56Fe. The calculation
of the leptonic contributions is given in Sec. 3 for the muon and electron gas and will not be
repeated here. In hydrodynamical simulations, one is usually interested in an inversion of the
energy density with respect to temperature, to calculate the new hydrodynamic state after all
source terms have been taken care of. For this purpose, the low-density EOS first performs
bisection iterations to roughly bracket the total energy density eLD, followed by Newton-
Raphson iterations to converge quickly onto the correct temperature for given ρ, eLD, Ye , Yµ .

The following steps can roughly characterize the procedure.

1. The nuclear composition is set by the tabulated NSE table using a bisection iteration
in the energy density, and final linear interpolation between the bracketing tabulated
points with density ρ and total proton fraction Yp = Ye + Yµ kept constant. If the final
tabulated temperature is above the critical temperature where we assume NSE holds then
the nuclear composition is replaced by the current NSE composition for given ρ, T, Yp .

2. Initial bisection iterations of the Boltzmann gas starting from the lowest and highest tem-
perature of the tabulated electron EOS, as it spans the entire temperature range typically
encountered in the cores of massive stars. The bracketing energy densities are calculated
using Eq. 5.32 and the iteration is continued for a set number of times.

26



5.3 Low-density equation of state

3. Final Newton-Raphson iterations using analytical derivatives for the baryonic and Coulomb
component and numerical derivatives for the leptonic and photonic component until the
desired accuracy has been reached.

4. After convergence of the Newton-Raphson method onto the final temperature, all thermo-
dynamic state variables are output and fed back into the hydro calculation. To calculate
the sound speed for the current gas mixture, the adiabatic index ΓS for constant entropy
is calculated via the following formula

Γs =

[
PB
∂ lnPB

∂ ln ρ
+ Pe

∂ lnPe

∂ ln ρ
+ Pµ

∂ lnPµ
∂ ln ρ

+ PCoulomb
∂ lnPCoulomb

∂ ln ρ

+

(
PB
∂ lnPB

∂ lnT
+ Pe

∂ lnPe

∂ lnT
+ Pµ

∂ lnPµ
∂ lnT

+ Pγ
∂ lnPγ
∂ lnT

)2

/

(
eB
∂ ln eB

∂ ln ρ
+ ee

∂ ln ee

∂ lnT
+ eµ

∂ ln eµ
∂ lnT

+ eγ
∂ ln eγ
∂ lnT

)]
/

(
PB + Pe + Pµ + PCoulomb + Pγ

)
. (5.35)
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5.4 High-density equation of state

The high-density equations of state used in Prometheus-Vertex are any publicly available gen-
eral purpose equation of state for hot and dense matter. When approaching nuclear saturation
density the simple Maxwell-Boltzmann gas approach breaks down and interactions between
nucleons as well as nuclei come into play. The computational complexity of the required cal-
culations then requires tabulated equations of state that are typically calculated on a fixed grid
in ρ, T, Ye parameter space and then interpolated using trilinear interpolation. As the tabu-
lated high-density EOS, the tabulated electron EOS, and the tabulated muon EOS are generally
calculated on varying grids in ρ, T, Ye and Yµ , a simple linear interpolation between the two
bracketing total energy densities cannot be performed. Additionally, there might be several
grid points of the leptonic EOS tables inside one high-density EOS table bracket with possibly
varying derivatives. Nonetheless, the respective thermodynamic variables of the high-density
region are given by

PHD
(
ρ, T,Xi, Ye , Yµ

)
=PB + Pe + Pµ + Pγ , (5.36)

eHD
(
ρ, T,Xi, Ye , Yµ

)
= eB + ee + eµ + eγ , (5.37)

sHD
(
ρ, T,Xi, Ye , Yµ

)
= sB + se + sµ + sγ . (5.38)

Note that PB, eB and sB are now the tabulated values of the high-density equation for the
purely baryonic case, either by subtracting the electronic and photonic component of the gas
from the tabulated values, or by using a version of the tabulated EOS that is already provided
for the purely baryonic case from the authors. The resulting table is now tabulated in ρ, T, Yp
where the proton fraction is again set by charge balance to be Yp = Ye + Yµ .

The method to converge onto the final temperature is similar to the low-density case.

1. Initial bisection iteration on the lowest and highest temperature of the high-density EOS
using Eq. 5.37 to get the corresponding energy densities.

2. Once the bracketing high-density grid points are found, a final Newton-Raphson iteration
inside left and right temperature grid points is performed using the constant numerical
derivative of the tabulated HD-EOS, and the possibly varying numerical derivatives of
the electron EOS and the muon EOS until the iteration has converged onto the final
temperature.

3. Calculate the new adiabatic index using the same procedure as in Eq. 5.35.
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Chapter IV

Muonic opacities
The collision integral of Eq. 5.12 contains the following opacities, whose implementation are
described in Refs. [114, 13, 14] and this work.

Interactions Reference

β-Processes

νe + n 
 e− + p
[10, 86, 18]

νe + p 
 e+ + n
νe + AZ 
 e− + AZ-1 [10, 86, 68]
νµ + n � µ− + p [75, 18], this work
νµ + p � µ+ + n [75, 18], this work

Leptonic absorption

νµ + e− � νe + µ− [75], this work
νµ + e+ � νe + µ+ [75], this work
νe + e− � νµ + µ− [75], this work
νe + e+ � νµ + µ+ [75], this work

Particle decay

νe + e− + νµ � µ− [75], this work
νe + e+ + νµ � µ+ [75], this work

Scattering

ν + A
 ν + A [46, 11]
ν + A
 ν ′ + A′ [69]
ν + N
 ν ′ + N′ [10, 86, 17]
ν + e∓ 
 ν ′ + e∓

′
[86, 20]

νµ,τ + νe 
 ν ′µ,τ + νe
′ [13]

ν + µ∓ � ν ′ + µ∓
′

[75, 86, 20], this work

Pair production

ν + ν 
 e− + e+ [10, 108]
νµ,τ + νµ,τ 
 νe + νe [13]

Bremsstrahlung

ν + ν + N + N
 N′ + N′ [42]

Table 5.1: Overview of all neutrino interactions as included in our current numerical simula-
tions. Symbols used in the table are ν to represent {νe, νe, νµ, νµ, ντ , ντ}, N for free nucleons,
A for heavy nuclei. Numerical implementation of the nonmuonic neutrino interaction rates is
described in detail in Refs. [114, 13, 14].
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6 Purely leptonic opacities

Purely leptonic opacities are defined as interaction rates that only involve leptons in the initial
as well as the final state of the interaction vertex. These are interactions that can happen either
via the neutral current channel by the exchange of a neutral Z0-boson, the charged current
channel by the exchange of a charged W∓-boson or a combination of both.

The neutral current Z0-boson can only exchange energy and momentum between particles
in the case of scattering or decay into a charge-neutral lepton pair in the case of pair production.
An exchange of charge between particles is forbidden in the neutral current channel, but it has
the advantage that all neutrino flavors can participate equally. Purely neutral current reactions
between leptons relevant in the CCSN context include the classical case of µ/τ neutrino scatter-
ing on electrons or positrons (e.g., Ref. [133]) as well as the case of electron-positron annihilation
into a µ/τ neutrino and antineutrino pair (e.g., Ref. [26]). These are supplemented by the related
purely neutrinic reactions of electron neutrino pair annihilation into a µ/τ neutrino pair as well
as a µ/τ (anti-)neutrino scattering on an electron (anti-)neutrino (Ref. [13]). These four reac-
tions in combination with pair production of µ/τ neutrino pairs by nucleonic bremsstrahlung
(Ref. [42]) form the dominant energy exchange and production channels of heavy-lepton flavor
neutrinos currently included in simulation codes.

The charged current channel can in addition to energy and momentum also exchange charge
between particles, which, in the leptonic case, transforms neutrinos into charged leptons and
vice versa. Charged current channels between leptons in the current CCSN context are however
only open to electron-flavor neutrinos, which act in addition to the neutral current channels
and increase their respective cross-sections.

The inclusion of muons into the CCSN context opens additional charged current channels,
which allow both net number generation of electrons and muons by neutrino absorption on
charged leptons and decay of (anti-)muons into electrons/positrons, as well as a charged current
scattering channel of µ (anti-)neutrinos on (anti-)muons. This increases the ability of electron
and µ neutrinos to stay in chemical equilibrium even when final state blocking of nucleons
or large interaction potential differences suppress the more traditional beta-reaction channels.
Here we will first reiterate a general leptonic scattering kernel for arbitrary lepton mass that
allows for neutral current and charged current pure scattering reactions on electrons and muons
based on the work of Refs. [75, 86]. Note that we do not, as of yet, take muon-antimuon pair
annihilation into account, even though it might be an additional production source of high
energyµ neutrino pairs. As the production emissivities of bremsstrahlung and electron-positron
pair annihilation are however already sufficiently large for µ neutrinos in these regions, and
muon pairs are not abundant at the neutrinosphere, we do not expect a significant additional
effect from including a new muon pair process and neglect it for now.
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6.1 General leptonic scattering kernel

ν + e∓ � ν ′ + e∓
′

ν + e± � ν ′ + e±
′

ν + µ∓ � ν ′ + µ∓
′

ν + µ± � ν ′ + µ±
′

Table 6.1: Pure leptonic scattering reactions.

The angle-dependent scattering kernel for a general reaction ν1+`2 → ν3+`4 of an incoming
neutrino ν1 (E1) scattering on any charged lepton `2 resulting in an outgoing neutrino ν3 (E3)
and an outgoing charged lepton `4 is

Rout
NLS

(
E1,E3, θ13

)
=

G2
F

2π2 [α1R1 (E1, E3, θ13) + α2R2 (E1, E3, θ13) + α3R3 (E1, E3, θ13)] , (6.1)

with α1 = (CV + CA) 2, α2 = (CV − CA) 2, α3 = C2
A − C

2
V being the combination of coupling

constants for the considered neutrino-lepton pair and the functionsR1,2,3 (E1, E3, θ13) being the
angle- and energy-dependent kinematic integrals of Ref. [75]. The out-direction of the kernel
Rout

NLS(E1, E3, θ13) implies that a neutrino is scattered out of the respective (E1, µ1) phase-space
into (E3, µ3). Conversely, the in-direction Rin

NLS(E1, E3, θ13) implies that a neutrino is scattered
into the (E1, µ1) phase-space from (E3, µ3). The scattering angle cos θ13 is the cosine of the angle
between initial angle cosine µ1 and final angle cosine µ3.

The individual kinematic integrals are

R1 (E1, E3, θ13) =

∫
d3~p2 d3~p4

(~p1 · ~p2) (~p3 · ~p4)

E1E2E3E4
δ4 (~p1 + ~p2 − ~p3 − ~p4) f2 (E2) [1− f4(E4)] ,

(6.2)

R2 (E1, E3, θ13) =

∫
d3~p2 d3~p4

(~p1 · ~p4) (~p2 · ~p3)

E1E2E3E4
δ4 (~p1 + ~p2 − ~p3 − ~p4) f2 (E2) [1− f4(E4)] ,

(6.3)

R3 (E1, E3, θ13) =

∫
d3~p2 d3~p4

(~p1 · ~p3)

E1E2E3E4
δ4 (~p1 + ~p2 − ~p3 − ~p4) f2 (E2) [1− f4(E4)] , (6.4)

where ~pi are the particle four-momenta. These kinematic integrals have already been solved
analytically up to a remaining integration over E2 in Refs. [75, 86] and we repeat their results
here.

R1 (E1, E3, θ13) =
2π

∆5

(
Ã1I2 + B̃1I1 + C̃1I0

)
, (6.5)

with the coefficients Ã1, B̃1, C̃1 being given by

Ã1 = E1E3 (1− cos θ13) 2
[
E2

1 + E1E3 (3 + cos θ13) + E2
3

]
, (6.6)

B̃1 = E2
1E3 (1− cos θ13)2

[
2E2

1 + E1E3 (3− cos θ13)− E2
3 (1 + 3 cos θ13)

]
, (6.7)

C̃1 = E3
1E3 (1− cos θ13)2

[
E2

1 − 2E1E3 cos θ13 + E2
3

(
−1

2
+

3

2
cos2 θ13

)]
(6.8)

+
1

2
E1E3

(
1− cos2 θ13

)
∆2m2

2 .
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R2 (E1, E3, θ13) =
2π

∆5

(
Ã2I2 + B̃2I1 + C̃2I0

)
, (6.9)

with the coefficients Ã2, B̃2, C̃2 being given by

Ã2 = E1E3 (1− cos θ13) 2
[
E2

1 + E1E3 (3 + cos θ13) + E2
3

]
, (6.10)

B̃2 = E1E
2
3 (1− cos θ13)2

[
E2

1 (1 + 3 cos θ13) + E1E3 (−3 + cos θ13)− 2E2
3

]
, (6.11)

C̃2 = E1E
3
3 (1− cos θ13)2

[
E2

1

(
−1

2
+

3

2
cos2 θ13

)
− 2E1E3 cos θ13 + E2

3

]
(6.12)

+
1

2
E1E3

(
1− cos2 θ13

)
∆2m2

2 .

R3 (E1, E3, θ13) =
2π

∆5 C̃3I0 , (6.13)

with the coefficient C̃3 being given by

C̃3 = (1− cos θ13) ∆4m2
2 . (6.14)

The common coefficient ∆ is given by

∆ =

√
E2

1 − 2E1E3 cos θ13 + E2
3 . (6.15)

The energy integrals Ik =
∫∞
E−

dE2E
k
2f2 (E2) [1− f4 (E2 + E1 − E3)] can be defined in terms

of combinations of ultrarelativistic Fermi-Dirac integrals.

I0 =

∫ ∞
E−

dE2 f2 (E2) [1− f4 (E2 + E1 − E3)] (6.16)

=Tfγ
(
η′ − η

) [
F0

(
η′ − y

)
− F0 (η − y)

]
,

I1 =

∫ ∞
E−

dE2E2f2 (E2) [1− f4 (E2 + E1 − E3)] (6.17)

=T 2fγ
(
η′ − η

){[
F1

(
η′ − y

)
− F1 (η − y)

]
+ y

[
F0

(
η′ − y

)
− F0 (η − y)

]}
,

I2 =

∫ ∞
E−

dE2E
2
2f2 (E2) [1− f4 (E2 + E1 − E3)] (6.18)

=T 3fγ
(
η′ − η

){[
F2

(
η′ − y

)
− F2 (η − y)

]
+ 2y

[
F1

(
η′ − y

)
− F1 (η − y)

]
+ y2 [F0

(
η′ − y

)
− F0 (η − y)

]}
,

with the lower limit of the integral given by

E− =
1

2

(E3 − E1) +

√√√√(E2
1 + E2

3 − 2E1E3 cos θ13

)[
1 +

2m2
2

E1E3 (1− cos θ13)

] . (6.19)
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The coefficients η, η′ and y are defined as

y =
E−
T

,

η =
µ2

T
,

η′ = η − E1 − E3

T
.

The appearing Fermi-Dirac integrals are

Fk (z) =

∫ ∞
0

dx
xk

exp (x− z) + 1
, (6.20)

and the function fγ (z) is given by

fγ (z) =
1

exp (z)− 1
. (6.21)

The Fermi-Dirac integrals can easily be related to polylogarithms to ease computation, which
will be demonstrated in Sec. 8.

In the case of forward scattering with no energy transfer, i.e., E1 → E3, a limiting form of
δE = E3 − E1 → 0 needs to be developed following the results of Ref. [121] by replacing the
integrals of Eqs. (6.16–6.18) with the following

I0 (E1 = E3) = T [F−1 (η − y)] , (6.22)

I1 (E1 = E3) = T 2 [F0 (η − y) + yF−1 (η − y)] , (6.23)

I2 (E1 = E3) = T 3
[
2F1 (η − y) + 2yF0 (η − y) + y2F−1 (η − y)

]
, (6.24)

where

F−1 (z) =
exp(z)

1− exp(z)
. (6.25)

Note that all many-body corrections of interacting leptons as discussed in Ref. [52] are neglected
in the calculations presented in this thesis, as the underlying EOS treats all leptons as perfect
noninteracting ideal Fermi gases. The results of Ref. [52] show that including RPA-corrections
of a correlated lepton gas interacting via the electromagnetic force can reduce the cross-section
of neutrino–lepton scattering by up to an order of magnitude for low-energy neutrinos in a
sufficiently dense plasma. The complexity of relativistic RPA and the sub-dominant opacity of
neutrino–lepton-scattering at very high densities compared to the more tractable nonrelativistic
RPA of neutrino–nucleon-scattering has however precluded their implementation.
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6.2 Neutrino–lepton scattering

Having developed the general leptonic scattering kernel in Sec. 6.1 we can specialize the kernel
to each reaction by appropriately inserting the correct coupling coefficients and lepton masses,
which we will give here for all standard electronic scattering reactions and the new muonic
scattering reactions.

Neutrino-electron scattering Here we present the coupling constants and rest masses to be
used for the case of traditional neutrino–electron scattering ν1 +e− � ν3 +e−

′
withm2 = m4 =

me ≈ 0.511 MeV and the Weinberg angle sin2 θW ≈ 0.23.

ν1,3 CV CA

νe 0.5 + 2 sin2 θW 0.5

νe 0.5 + 2 sin2 θW −0.5

νµ −0.5 + 2 sin2 θW −0.5

νµ −0.5 + 2 sin2 θW 0.5

ντ −0.5 + 2 sin2 θW −0.5

ντ −0.5 + 2 sin2 θW 0.5

Table 6.2: Constants used for neutrino–electron scattering.

Neutrino-positron scattering Here we present the coupling constants and rest masses to be
used for the case of traditional neutrino–positron scattering ν1 +e+ � ν3 +e+′withm2 = m4 =

me ≈ 0.511 MeV and sin2 θW ≈ 0.23.

ν1,3 CV CA

νe 0.5 + 2 sin2 θW −0.5

νe 0.5 + 2 sin2 θW 0.5

νµ −0.5 + 2 sin2 θW 0.5

νµ −0.5 + 2 sin2 θW −0.5

ντ −0.5 + 2 sin2 θW 0.5

ντ −0.5 + 2 sin2 θW −0.5

Table 6.3: Constants used for neutrino–positron scattering.

34



6 PURELY LEPTONIC OPACITIES 6.2 Neutrino–lepton scattering

Neutrino-muon scattering Here we present the coupling constants and rest masses to be used
for the novel case of neutrino–muon scattering ν1 + µ− � ν3 + µ−

′
with m2 = m4 = mµ ≈

105.66 MeV and sin2 θW ≈ 0.23.

ν1,3 CV CA

νe −0.5 + 2 sin2 θW −0.5

νe −0.5 + 2 sin2 θW 0.5

νµ 0.5 + 2 sin2 θW 0.5

νµ 0.5 + 2 sin2 θW −0.5

ντ −0.5 + 2 sin2 θW −0.5

ντ −0.5 + 2 sin2 θW 0.5

Table 6.4: Constants used for neutrino–muon scattering.

Neutrino-antimuon scattering Here we present the coupling constants and rest masses to be
used for the new case of neutrino–antimuon scattering ν1 + µ+ � ν3 + µ+′ with m2 = m4 =

mµ ≈ 105.66 MeV and sin2 θW ≈ 0.23.

ν1,3 CV CA

νe −0.5 + 2 sin2 θW 0.5

νe −0.5 + 2 sin2 θW −0.5

νµ 0.5 + 2 sin2 θW −0.5

νµ 0.5 + 2 sin2 θW 0.5

ντ −0.5 + 2 sin2 θW 0.5

ντ −0.5 + 2 sin2 θW −0.5

Table 6.5: Constants used for neutrino–antimuon scattering.

6.2.1 Reverse reactions

The relation between the out-scattering kernel and the in-scattering kernel is given by the
detailed-balance condition, which is the same for all scattering reactions included here:

Rin
NLS (E1, E3, θ13) = Rout

NLS (E1, E3, θ13) exp [(E3 − E1) /T ] . (6.26)

The additional in/out-transpositional symmetry examined in Ref. [20] allows one to further
reduce the numerical complexity by only calculating down-scattering neutrino energies of
E1 > E3, and then exploiting the following symmetry for up-scattering energies of E3 > E1,

Rout
NLS (E3, E1, θ13) = Rin

NLS
(
E1, E3,θ13

)
. (6.27)
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6.3 Leptonic neutrino absorption reactions

The general leptonic scattering kernel framework of Sec. 6.1 can be reused for reactions, which
are similar to neutral or charged current pure scattering reactions, but now also include different
charged leptons `2 and `4 on opposite sites of the interaction vertex. In addition to the case of
charged current neutrino-electron scattering, where an electron neutrino and an electron can
interact via a W−-boson and exchange charge and identities, similar reactions can take place
which transform electrons to higher mass leptons like muons and tauons and vice versa. The
constraint of charge and flavor number conservation however only allows reactions to take
place, which contain specific combinations of leptons that we will introduce in the following
sections.

6.3.1 Lepton flavor exchange

νµ + e− � νe + µ−

νµ + e+ � νe + µ+

Table 6.6: Lepton flavor exchange reactions.

The novel case of lepton flavor exchange νµ + e− � νe + µ− is introduced in Ref. [75] for
the case of an electron emitting a W−-boson and becoming a neutral electron neutrino, while
the incoming νµ absorbs the emitted W−-boson to itself become a muon. In addition to the
negatively charged case presented in Ref. [75], we also include the positively charged case
νµ + e+ � νe + µ+. As the rest mass of the electron and muon are different, the mass difference
between initial and final state lepton gives an additional contribution to the transition rate that
is taken into account by the additional terms introduced in Ref. [75]. The bolded parts will give
these new terms in the following formulae.

The absorption kernel simplifies from Eq. 6.1 to

Rout
LFE (E1, E3, θ13) =

2π

∆5α1

(
Ã1I2 + B̃1I1 + C̃1I0

)
, (6.28)

where the coefficients Ã1, B̃1, C̃1 of Eqs. (6.6–6.8) are modified to be

Ã1 =E1E3 (1− cos θ13) 2
[
E2

1 + E1E3 (3 + cos θ13) + E2
3

]
, (6.29)

B̃1 =E2
1E3 (1− cos θ13)2

[
2E2

1 + E1E3 (3− cos θ13)− E2
3 (1 + 3 cos θ13)

]
(6.30)

+ Q (1 − cos θ13)
[
E3

1 + E2
1E3 (2 + cos θ13) − E1E

2
3 (2 + cos θ13) − E3

3

]
,

C̃1 =E3
1E3 (1− cos θ13)2

[
E2

1 − 2E1E3 cos θ13 + E2
3

(
−1

2
+

3

2
cos2 θ13

)]
(6.31)

+
1

2
E1E3

(
1− cos2 θ13

)
∆2m2

2

+ QE1 (1 − cos θ13)
[
E3

1 − E2
1E3 cos θ13 + E1E

2
3

(
−2 + cos2 θ13

)
+ E3

3 cos θ13

]
+ Q2

[
E2

1 cos θ13 − E1E3

(
3

2
+

1

2
cos2 θ13

)
+ E2

3 cos θ13

]
,

with

Q=
1

2

(
m2

4 −m2
2

)
. (6.32)
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The lower integral bound E− in Eqs. (6.16–6.18) also needs to be modified;

E− =
1

2

(E3 − E1 (1 + k) +

√√√√(E2
1 + E2

3 − 2E1E3 cos θ13

)[
(1 + k)2 +

2m2
2

E1E3 (1− cos θ13)

] ,

(6.33)

with

k =
Q

E1E3 (1 − cos θ13)
, (6.34)

and

y =
E−
T

,

η =
µ2

T
,

η′ = η − E1 − E3 + µ2 − µ4

T
. (6.35)

Using the amended framework introduced above we can calculate the two types of lepton
flavor exchange via the following variable assignments.

Muon neutrino absorption on electron

ν1 → νe, `2 → e−, ν3 → νµ, `4 → µ−, m2 = me , m4 = mµ , α1 = 4

Table 6.7: Particle assignments of νµ + e− � νe + µ−.

Antimuon neutrino absorption on positron

ν1 → νe, `2 → e+, ν3 → νµ, `4 → µ+, m2 = me , m4 = mµ , α1 = 4

Table 6.8: Particle assignments of νµ + e+ � νe + µ+.
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6.3.2 Lepton flavor conversion

νe + e− � νµ + µ−

νe + e+ � νµ + µ+

Table 6.9: Lepton flavor conversion reactions.

Lepton flavor conversion is a reaction where a charged electron reacts with its opposite antineu-
trino and converts into a second generation lepton pair. This is possible, as the lepton flavor
number on both sides of the interaction vertex is zero and the net charge of ∓1 is conserved.
As the kinematics of the process are slightly different to the lepton flavor exchange reaction,
we need to modify a different portion of the general leptonic scattering kernel. The necessary
modifications to include the rest mass difference between initial and final state charged leptons
are however quite similar. We again include the additional positively charged process to the
already derived negatively charged process from Ref. [75].

The absorption kernel simplifies from Eq. 6.1 to

Rout
LFC (E1, E3, θ13) =

2π

∆5α2

(
Ã2I2 + B̃2I1 + C̃2I0

)
, (6.36)

where the coefficients Ã2, B̃2, C̃2 of Eqs. (6.10–6.12) are modified in bold to be

Ã2 = E1E3 (1− cos θ13) 2
[
E2

1 + E1E3 (3 + cos θ13) + E2
3

]
, (6.37)

B̃2 = E1E
2
3 (1− cos θ13)2

[
E2

1 (1 + 3 cos θ13) + E1E3 (−3 + cos θ13)− 2E2
3

]
(6.38)

+ Q (1 − cos θ13)
[
E3

1 + E2
1E3 (2 + cos θ13) − E1E

2
3 (2 + cos θ13) − E3

3

]
,

C̃2 = E1E
3
3 (1− cos θ13)2

[
E2

1

(
−1

2
+

3

2
cos2 θ13

)
− 2E1E3 cos θ13 + E2

3

]
(6.39)

+
1

2
E1E3

(
1− cos2 θ13

)
∆2m2

2

+ QE3 (1 − cos θ13)
[
E3

1 cos θ13 + E2
1E3

(
−2 + cos2 θ13

)
− E1E

2
3 cos θ13 + E3

3

]
+ Q2

[
E2

1 cos θ13 − E1E3

(
3

2
+

1

2
cos2 θ13

)
+ E2

3 cos θ13

]
,

and E−, Q, k and η′ are the same as in Sec. 6.3.1.

We can again specialize the scattering kernel via the following replacements.

Electron antineutrino absorption on electron

ν1 → νe, `2 → e−, ν3 → νµ, `4 → µ−, m2 = me , m4 = mµ , α2 = 4

Table 6.10: Particle assignments of νe + e− � νµ + µ−.
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Electron neutrino absorption on positron

ν1 → νe, `2 → e+, ν3 → νµ, `4 → µ+, m2 = me , m4 = mµ , α2 = 4

Table 6.11: Particle assignments of νe + e+ � νµ + µ+.

6.3.3 Summary

The results of Secs. 6.3.1 and 6.3.2 can easily be summarized using the definition of Eq. 6.1 with
the above-introduced rest mass modifications to be

ν1 `2 α1 α2 α3

νe e+ 0 4 0

νe e− 0 4 0

νµ e− 4 0 0

νµ e+ 4 0 0

Table 6.12: Coupling constants for leptonic neutrino absorption reactions.

with zero for all other combinations.
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6.3.4 Reverse reactions

The reserve reactions that convert muons back to electrons for lepton flavor exchange from
Sec. 6.3.1 and for lepton favor conversion from Sec. 6.3.2, can again be calculated using the
detailed-balance relations. Note however that the transpositional symmetry described in
Ref. [20] does not link the positive and negative energy transfers anymore, due to the different
initial and final state neutrinos. All combinations of incoming and outgoing neutrino ener-
gies therefore need to be calculated independently. The in/out-invariance Rin (E3, E1, θ13) =
Rout (E1, E3, θ13), arising out of lepton number conservation, however allows us to directly
calculate the out-direction of the reversed rate ν3 +µ∓ → ν1 + e∓ that would otherwise require
a separate calculation in addition to the out-direction of the original rate ν1 + e∓ → ν3 + µ∓.

Lepton flavor exchange

Rout
νe+µ

−→νµ+e−
(
Eνe , Eνµ , θ13

)
= Rout

νµ+e−→νe+µ
−
(
Eνµ , Eνe , θ13

)
× exp

[(
µ
µ
− − µe− + Eνe − Eνµ

)
/T
]

= Rin
νµ+e−→νe+µ

−
(
Eνµ , Eνe , θ13

)
, (6.40)

Rout
νe+µ

+→νµ+e+

(
Eνe , Eνµ , θ13

)
= Rout

νµ+e+→νe+µ
+

(
Eνµ , Eνe , θ13

)
× exp

[(
µ

e− − µµ− + Eνe − Eνµ
)
/T
]

= Rin
νµ+e+→νe+µ

+

(
Eνµ , Eνe , θ13

)
. (6.41)

Lepton flavor conversion

Rout
νµ+µ

−→νe+e−
(
Eνµ , Eνe , θ13

)
= Rout

νe+e−→νµ+µ
−
(
Eνe , Eνµ , θ13

)
× exp

[(
µ
µ
− − µe− + Eνµ − Eνe

)
/T
]

= Rin
νe+e−→νµ+µ

−
(
Eνe , Eνµ , θ13

)
· , (6.42)

Rout
νµ+µ

+→νe+e+

(
Eνµ , Eνµ , θ13

)
= Rout

νe+e+→νµ+µ
+

(
Eνe , Eνµ , θ13

)
× exp

[(
µ

e− − µµ− + Eνµ − Eνe
)
/T
]

= Rin
νe+e+→νµ+µ

+

(
Eνe , Eνµ , θ13

)
. (6.43)
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6.4 Inverse lepton decay reactions

νe + e− + νµ � µ−

νe + e+ + νµ � µ+

Table 6.13: Inverse muon decay reactions.

The case of inverse lepton decay ν1 + `2 + ν3 � `4 has a similar matrix element to the leptonic
scattering reactions introduced above, and most of it can be reused by only changing particle
momenta as in Ref. [75]. They are similar in structure to neutrino pair annihilation kernels, as
one has two neutrinos in the initial state.

The three-body kernel for this reaction is

Rout
ILD (E1, E3, θ13) =

G2
F

2π2α1R1 (E1, E3, θ13) , (6.44)

with θ13 being the angle between the two ingoing neutrinos.

The angle- and energy dependent kinematic integral R1 in Ref. [75] is given by

R1 (E1, E3, θ13) =

∫
d3~p2 d3~p4

(~p1 · ~p2) (~p3 · ~p4)

E1E2E3E4
δ4 (~p1 + ~p2 + ~p3 − ~p4) f2 (E2) [1− f4 (E4)] .

(6.45)

This integral has again been solved analytically up to a remaining integration overE2 in Ref. [75]
and we repeat their formulae here.

R1 (E1, E3, θ13) =
2π

∆5

(
Ã1I2 + B̃1I1 + C̃1I0

)
, (6.46)

with the coefficients Ã1, B̃1, C̃1 being given by

Ã1 =E1E3 (1− cos θ13)2
[
−E2

1 + E1E3 (3 + cos θ13)− E2
3

]
, (6.47)

B̃1 =E2
1E3 (1− cos θ13)2

[
−2E2

1 + E1E3 (3− cos θ13) + E2
3 (1 + 3 cos θ13)

]
(6.48)

+ Q (1− cos θ13)
[
E3

1 − E
2
1E3 (2 + cos θ13)− E1E

2
3 (2 + cos θ13) + E3

3

]
,

C̃1 = − E3
1E3 (1− cos θ13)2

[
E2

1 + 2E1E3 cos θ + E2
3

(
−1

2
+

3

2
cos2 θ13

)]
(6.49)

− 1

2
E1E3

(
1− cos2 θ13

)
∆2m2

2

+ QE1 (1− cos θ13)
[
E3

1 + E2
1E3 cos θ13 + E1E

2
3

(
−2 + cos2 θ13

)
− E3

3 cos θ13

]
+ Q2

[
E2

1 cos θ13 + E1E3

(
3

2
+

1

2
cos2 θ13

)
+ E2

3 cos θ13

]
.

The energy integrals IK =
∫ E+
E−

dE2E
k
2f2 (E2) [1− f4 (E2 + E1 + E3)] Θ (k − 1) can again be

defined in terms of combinations of ultrarelativistic Fermi-Dirac integrals as in Eqs. (6.16–6.18),
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I0 =

∫ E+

E−

dE2 f2 (E2) [1− f4 (E2 + E1 − E3)] Θ (k − 1)

=Tfγ
(
η′ − η

) {[
F0

(
η′ − y−

)
− F0 (η − y−)

]
−
[
F0

(
η′ − y+

)
− F0 (η − y+)

]}
, (6.50)

I1 =

∫ ∞
E−

dE2E2f2 (E2) [1− f4 (E2 + E1 − E3)] Θ (k − 1)

=T 2fγ
(
η′ − η

){[
F1

(
η′ − y−

)
− F1 (η − y−)

]
−
[
F1

(
η′ − y+

)
− F1 (η − y+)

]
+ y−

[
F0

(
η′ − y−

)
− F0 (η − y−)

]
− y+

[
F0

(
η′ − y+

)
− F0 (η − y+)

]}
, (6.51)

I2 =

∫ E+

E−

dE2E
2
2f2 (E2) [1− f4 (E2 + E1 − E3)] Θ (k − 1)

=T 3fγ
(
η′ − η

){[
F2

(
η′ − y−

)
− F2 (η − y−)

]
−
[
F2

(
η′ − y+

)
− F2 (η − y+)

]
+ 2y−

[
F1

(
η′ − y−

)
− F1 (η − y−)

]
− 2y+

[
F1

(
η′ − y+

)
− F1 (η − y+)

]
+ y2

−
[
F0

(
η′ − y−

)
− F0 (η − y−)

]
− y2

+

[
F0

(
η′ − y+

)
− F0 (η − y+)

]}
. (6.52)

The lower and upper integral bounds are given by

E± =
1

2

(E3 + E1) (k − 1)±

√√√√(E2
1 + E2

3 + 2E1E3 cos θ13

)[
(1− k)2 − 2m2

2

E1E3 (1− cos θ13)

] ,
(6.53)

with Q, and k as in Eqs. (6.32 and 6.34) respectively. The upper limit and Heaviside function
are a consequence of kinematic considerations, and especially the Heaviside function prohibits
certain combinations of E1, E3 and cos θ13 that are kinematically forbidden (see Ref. [75]). The
Heaviside function also implies that a particle can not directly decay into a heavier particle, as
that would violate momentum conservation. The Fermi-Dirac integrals Fk are defined as in
Eq. 6.20 and the function fγ is defined in Eq. 6.21.

The appearing coefficients are

y± =
E±
T

, (6.54)

η =
µ2

T
, (6.55)

η′ = η − E1 + E3 + µ2 − µ4

T
. (6.56)
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Inverse muon decay

ν1 → νe, `2 → e−, ν3 → νµ, `4 → µ−, m2 = me , m4 = mµ , α1 = 4

Table 6.14: Particle assignments of νe + e− + νµ � µ−.

Inverse antimuon decay

ν1 → νe, `2 → e+, ν3 → νµ, `4 → µ+, m2 = me , m4 = mµ , α1 = 4

Table 6.15: Particle assignments of νe + e+ + νµ � µ+.

6.4.1 Reverse reactions

The reverse reaction of inverse muon decay and inverse antimuon decay can again be calculated
using detailed balance where

Rin
νe+e−+νµ�µ

−
(
Eνe , Eνµ , θ13

)
= Rout

νe+e−+νµ�µ
−
(
Eνe , Eνµ , θ13

)
exp

(
µ
µ
− − µe− − Eνe − Eνµ

T

)
,

(6.57)

Rin
νe+e+

+νµ�µ
+

(
Eνe , Eνµ , θ13

)
= Rout

νe+e+
+νµ�µ

+

(
Eνe , Eνµ , θ13

)
exp

(
µ

e− − µµ− − Eνe − Eνµ
T

)
.

(6.58)

In addition, the transpositional symmetry of neutrino species for a general inverse lepton decay
reaction in both directions is

Rin/out (E1, E3, θ13) = Rin/out (E3, E1, θ13) . (6.59)
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7 Semileptonic reactions

Semileptonic reactions are the well-known charged current reactions of ν1 + N2 � ν3 + N4

where N2,4 are either a neutron or proton. These reactions are typically called a charged beta
reaction, and for νe and νe form the dominant opacity source in CCSN. These reactions are:

• absorption of electron neutrinos on free neutrons νe + n � e− + p

• absorption of electron antineutrinos on free protons νe + p � e+ + n

• absorption of electron neutrinos on heavy nuclei νe + AZ � e− + AZ+1

We will concern our self only with the nucleonic reactions here, as nuclei do not exist at
temperatures and densities where muons might exist in equilibrium.

The muonic reactions we will introduce here are

• absorption of µ neutrinos on free neutrons νµ + n � µ− + p

• absorption of µ antineutrinos on free protons νµ + p � µ+ + n

The reaction kernel for electron (anti-)neutrino absorption is identical to the case of µ (an-
ti-)neutrinos, and we can reuse the general formalism. However, due to the large rest mass
of the muon, the common approximation of a massless final state ultrarelativistic charged lep-
ton cannot be applied anymore. Instead, as in the purely leptonic reactions, we need to treat
the muons as arbitrarily relativistic particles. Fortunately, the required changes to the inter-
action kernels for absorption reactions on nucleons remain small, as the target particles itself
stay mostly nonrelativistic up to a few times the saturation density to good approximation (cf.
Ref. [115]). The only significant modification is the separation of muon momentum and energy
that introduces a lower limit to the minimum lepton energy, but the nucleonic kinematics can
be retained in full generality.

Here we first introduce a simple modification of the Reddy elastic absorption kernel
(Ref. [115]) for nonrelativistic interacting baryons, where initial and final state nucleon mo-
menta are identical, and it is assumed that all surplus energy is transferred to the final state
charged lepton. Furthermore, we will extend our modifications to the more involved calcu-
lation of inelastic absorption, where energy transfer to the nucleons can take place, and the
energy transfer to the final state lepton becomes a function of the initial and final state nucleon
energies.

7.1 Elastic case

The unmodified form for an ultrarelativistic massless lepton as presented in Ref. [115] in the
elastic nonrelativistic interacting baryon approximation is

1

λ
(E1) =

G2
F

π

(
G2

V + 3G2
A

)
E2

3 (1− f3 (E3))
n2 − n4

1− exp ((µ4 − U4 − µ2 + U2) /T )
, (7.1)

with

E3 = E1 + ∆U +Q , (7.2)

being the energy of the final-state lepton, and quantities with index 2 and 4 being the respective
initial and final state nucleon quantities. The difference of the interaction potentials ∆U =
U2 − U4 is a result of the nonrelativistic dispersion relation

ENR
i =

p2
i

2m∗i
+ Ui , (7.3)
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with the Landau effective masses of the respective nucleons m∗i and the mass difference Q =

m2 −m4. Accounting for a finite lepton mass is an easy task by the replacement of E2
3 → p3E3

and p3 =

√
E2

3 −m
2
3. We will also include the Cabibbo-angle Vud = cos θC = 0.97427 in the

formula for quark flavor changing weak interactions. The final result is then simply

1

λ
(E1) =

G2
FV

2
ud

π

(
G2

V + 3G2
A

) √
E2

3 −m
2
3E3 (1− f3 (E3))

× n2 − n4

1− exp ((µ4 − U4 − µ2 + U2) /T )
Θ(E3 −m3) . (7.4)

Note that for typical CCSN neutrino energies the approximation pe → Ee is reasonable and
reproduces the correct cross section. This, however, does not hold for µ neutrino absorption,
where the large muon rest mass leads to a significantly smaller momentum of the final-state
lepton, as well as setting a strict lower limit on the neutrino energies able to undergo an
absorption reaction.

7.2 Inelastic case

The previous elastic case is calculated for the case of initial and final nucleon momenta being
identical, i.e., pn = pp , where additionally the difference in kinetic energy of neutron and

proton, expressed by En/p =
p
2
n/p

2mn/p
, is neglected and only the rest mass difference is kept. It

is, however, possible to perform an inelastic calculation that takes nucleon thermal motions
as well as neutrino energy and momentum transfer to the nucleons fully into account. In
Vertex-Prometheus the inelastic absorption kernel is derived from the nonrelativistic formulae
of Ref. [18], which include the effect of nucleon-nucleon correlations but assume a single nucleon
mass. We will describe here the modifications required for including a finite lepton mass by
Refs. [74, 75], as well as the effects of nucleon interaction potentials by Refs. [115, 74, 81].

The unmodified absorption opacity for vanishing lepton mass as given in Ref. [18] is

1

λ
(E1) =

G2
F

4π2

∫ E1

−∞
dω

∫ 1

−1
d cos θ13 (E1 − ω)2 1− f3 (E1 − ω)

1− exp (− (ω + µ̂) /T )
Λµν (ω, q)=Wµν (ω, q) ,

(7.5)

with Λµν (ω, q) being the lepton trace; =Wµν (ω, q) being the imaginary part of the baryonic
trace; µ̂ = µ2 − µ4 and E3 = E1 − ω. The momentum transfer is given by

q =

√
E2

1 + (E1 − ω)2 − 2E1 (E1 − ω) cos θ13 , (7.6)

and the energy transfer by

ω = E1 − E3 . (7.7)

The baryonic trace evaluates to

Wij (ω, q) =g2
AWA (ω, q) δij + g2

AWT (ω, q) qiqj , (7.8)
W00 (ω, q) = WV (ω, q) , (7.9)

where the tensor contribution WT was dropped in the following derivation. Convoluting the
lepton trace with the baryonic trace gives the form of the structure-function

S0 (ω, q) = Λµν=Wµν = 2 (1 + cos θ13)=WV (ω, q) + 2 (3− cos θ13) g2
A=WA (ω, q) . (7.10)
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To include correlations in the derivation of the vector and axial components of the polarization
tensor the higher order Feynman diagrams of the potential model are summed over in the ring
approximation (or Random Phase Approximation) (see Refs. [31, 18])

WV (ω, q) =
Π(0) (w, q)

1− 2v1Π(0) (w, q)
, (7.11)

WA (ω, q) =
Π(0) (w, q)

1− 2v2Π(0) (w, q)
, (7.12)

where Π(0) is the polarization function

Π(0) (ω, q) = −2

∫
d3~p

(2π)3

f
(
|p|, µn

)
− f

(
|p+ q|, µp

)
ω + εp − εp+q + iη

, (7.13)

and v1 and v2 are zero-range potential models fitted to the Landau parameters of Fermi liquid
theory as given in Refs. [116, 18].

To now evaluate =WV and =WA both the imaginary and real parts of the polarization
function need to be calculated, which have been provided in Ref. [18],

=Π(0) (ω, q) =
m∗2T

2πq
ln

 1 + exp
(
−Q2

+ + µ2/T
)

1 + exp
(
−Q2

+ + (µ4 − ω) /T
)
 , (7.14)

<Π(0) (ω, q) =
m∗2T

2π2q

∫ ∞
0

ds
s

ln

1 + exp
(
−
(
s+Q+)2 + µ2/T

))
1 + exp

(
− (s−Q+)2 + µ4/T

)
 (7.15)

+ (Q+ → Q−, µ2 → µ4) ,

where

Q± =

√
m∗

2T

(
∓ω
q

+
q

2m∗

)
. (7.16)

The imaginary part of the baryonic trace can now be expressed by combinations of the polar-
ization functions

=WV (ω, q) =
=Π(0) (ω, q)(

1− 2v1<Π(0) (ω, q)
)2

+
(

2v1=Π(0) (ω, q)
)2 , (7.17)

=WA (ω, q) =
=Π(0) (ω, q)(

1− 2v2<Π(0) (ω, q)
)2

+
(

2v2=Π(0) (ω, q)
)2 . (7.18)

By inserting Eqs. (7.17–7.18) into Eq. 7.10 the final inverse mean free path for a correlated
nonrelativistic medium in the formulation of Ref. [18] is now

1

λ
(E1) =

G2
F

2π2

∫ E1

−∞
dω

∫
d cos θ13 (E1 − ω)2 1− f3 (E1 − ω)

1− exp (− (ω + µ̂) /T )

× [(1 + cos θ13)=WV (ω, q) + (3− cos θ13)=WA (ω, q)] . (7.19)
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To include a finite lepton mass and mean-field potential interactions one needs to perform the
following modifications to the kinematic integral by following additions (A. Lohs, personal
communication [74]) printed in bold,

1

λ
(E1) =

G2
FV

2
ud

2π2

∫ E1−m3

−∞
dω

∫ 1

−1
d cos θ13

√
(E1 − ω)2 −m2

3 (E1 − ω)

× 1− f3 (E1 − ω)

1− exp (− (ω + µ̂) /T )
[(1 + v3 cos θ13)=WV (ω, q) + (3− v3 cos θ13)=WA (ω, q)] , (7.20)

where

v3 =
p3

E3
(7.21)

is a measure of the relativistic velocity of the final state lepton, and we have again included the
Cabibbo-angle Vud.

The polarization functions now also include additional terms accounting for the potential
differences of the neutron and proton

=Π(0) (ω, q) =
m∗2T

2πq
ln

 1 + exp
(
−Q2

+ + µ̃2/T
)

1 + exp
(
−Q2

+ + (µ̃4 − ω− ∆U) /T
)
 , (7.22)

<Π(0) (ω, q) =
m∗2T

2π2q

∫ ∞
0

ds
s

ln

1 + exp
(
−
(
s+Q+)2 + µ̃2/T

))
1 + exp

(
−
(
s−Q+

)2
+ µ̃2/T

)
 (7.23)

+
(
Q+ → Q−, µ̃2 → µ̃4

)
,

where

Q± =

√
m∗

2T

(
∓ω
q

+
q

2m∗
∓

∆U

q

)
, (7.24)

and

µ̃2,4 = µ2,4−U2,4 . (7.25)

Charged current absorption of electron (anti-)neutrinos and µ (anti-)neutrinos can then easily
be calculated by setting m3 = me and m3 = mµ respectively. Note that our implementation of
the Burrows&Sawyer ([18]) rates take the neutron/proton mass difference only approximately
into account by again neglecting kinetic energy differences due to different nucleon masses and
modifying the energy transfer to be ω B ω +m2 −m4.

7.3 Weak magnetism corrections

Additional corrections to the absorption cross section due to the effect of weak magnetism
are provided in Ref. [47]. The weak magnetism correction is caused by the parity-violating
interference of the weak magnetic moment of the nucleon which ordinarily cancels out in
nonrelativistic calculations and only has a net contribution in a relativistic calculation where
mixing of the vector-, axial-, and tensor-currents can happen. This energy-dependent correc-
tion increases the cross section for high energy neutrinos and decreases the cross section for
high energy antineutrinos. The available analytic correction factor of Ref. [47] is written for
massless leptons interacting with an initial nucleon at rest. This is an acceptable approximation
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7.4 Reverse reactions 7 SEMILEPTONIC REACTIONS

for the case of electron neutrino absorption at a relatively low density and temperature. It
is however not acceptable for the case of µ neutrino absorption, as the large rest mass of the
final-state muon changes the reaction kinematics dramatically. An improvement of the analytic
weak magnetism is currently in works by A.Lohs (personal communication), however even
there the lepton rest mass is still neglected as an analytic treatment of the appropriate terms is
complex. We, therefore, apply the analytical weak magnetism correction only to the electron
(anti-)neutrino absorption rates and ignore this correction for the µ (anti-)neutrino absorption
rates. A fully relativistic inelastic implementation of weak magnetism into a general interac-
tion kernel is available from Ref. [118], however, as work on nucleon-nucleon correlations in
the relativistic framework is still under progress, we will delay implementation until the full
relativistic correlated rates are available. For an overview of the effects of weak magnetism and
the improvements of the scattering kernel to better include in-medium effects, please refer to
Ref. [118] and references within.

7.4 Reverse reactions

The reverse reaction of neutrino absorption is the absorption of a charged lepton on a nucleon
which can be calculated from the above inverse mean free paths using the detailed-balance
condition given by

j (E1) =
1

λ
(E1) exp

(
µ4 + µ3 − E1 − µ2

T

)
=

1

λ
(E1) exp

(
µ4 + µ3 − E1 − µ2

T

)
=

1

λ
(E1) exp

(
−E1 − µ

eq
1

T

)
, (7.26)

where µeq
1 is the equilibrium chemical potential of the neutrino being absorbed, i.e., µeq

νe =

µ
e− + µp − µn −Q and µeq

νµ
= µ

µ
− + µp − µn −Q.
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8 POLYLOGARITHMS

Chapter V

Numerical implementation
In this chapter we will introduce our implementation of an efficient calculation of the new
opacities introduced in chapter IV, beginning with a required method that sets the basis of our
new muonic opacities and is unique to the calculation of arbitrarily relativistic particles. Having
established this common core of the muonic opacities, we discuss the implementation of the
scattering and absorption kernels into the collision integral of Eq. 5.12 and all required approx-
imations to maintain stable convergence of the Vertex transport solver. The hydrodynamic
source terms governing the creation of net muon number are introduced, and the peculiarities
of the coupling between electrons and muons as well as electron neutrinos and µ neutrinos are
discussed. Finally, the inverse mean free paths of all new opacities are shown at representative
protoneutron star conditions and mean energies.

8 Polylogarithms

The common aspect of all relativistic scattering and absorption rates is the presence of higher
order Fermi-Dirac integrals Fk (z)that can not be solved analytically except for the lowest rank

F0 (z) =

∫ ∞
0

dx
1

exp (x− z) + 1
= ln (1 + exp (z)) , (8.1)

which is sufficient for non-relativistic calculations of suitably heavy target particles like nucle-
ons and nuclei and with some restrictions also muons. However as we aim to solve the rates
in full generality, including all rest mass terms, the need to rapidly calculate the higher rank
Fermi-Dirac integrals F1 (z) and F2 (z) cannot be avoided. One simple solution is to use appro-
priate Gauss-integrals to directly integrate the needed functions numerically. This, however,
is met with limited accuracy and high computational effort to calculate the needed amount of
exponential functions for each integration point. Another alternative approach is to use an
appropriate fit for the values of Fk (z) as given in Ref. [129] that has a sufficiently small error
of less than 2%. As the opacities depend on differences of Fermi-Dirac integrals that are sensi-
tive to numerical cancellation, we instead implement the integrals using their polylogarithmic
representation of Refs. [65, 86] given by

Sn (z) =
(−1)n−1

(n− 2)!

∫ 1

0
dt

lnn−2 (t) ln (1− zt)
t

=
z

(n− 1)!

∫ ∞
0

dt
tn−1

et − z
, (8.2)

Fn (z) = −n!Sn+1 (−ez) , (8.3)
x = −ez .

To speed up computation and maintain machine precision for all values of x, we implement
several limiting cases in x via an expansion of the polylogarithm around specific points, in
addition to a general purpose accelerated expansion of the polylogarithm for any other value.
The primary goal is to avoid an excessive amount of transcendental calculations that otherwise
would take up a significant amount of computation time.

In general, any series expansion of polylogarithms is limited to a convergence region of
−1 ≤ x ≤ 1, requiring that we first apply the inversion formulas of Ref. [65] to represent any
value of x outside the bounded region given above.

{
S2 (x) = S2 (x) , −1 ≤ x ≤ 1

S2 (x) = −S2

(
1
x

)
− 1

2z
2 − π

2

6 , else
(8.4)
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{
S3 (x) = S3 (x) , −1 ≤ x ≤ 1

S3 (x) = S3

(
1
x

)
− 1

6z
3 − π

2

6 z . else
(8.5)

Once the function value has been rescaled to be between −1 and 1, we can start to solve
the polylogarithms using the following cases based on series expansions performed using
Mathemetica.


S1 (x) = x , |x| ≤ 4× 10−16

S1 (x) = x+ x
2

2 + x
3

3 + x
4

4 , 4× 10−16 < |x| ≤ 1× 10−4

S1 (x) = − ln (1− x) . |x| > 1× 10−4

(8.6)

Here a series expansion is performed even for the simple logarithm as the difference in mag-
nitude between 1 and x can lead to a loss of precision that propagates into the higher ranked
polylogarithms. This implementation maintains an exact representation of the logarithm in
double precision, identical to truncated arbitrary precision calculations, for all values of x.

The dilogarithm and trilogarithm are a bit more complicated but otherwise follow the same
procedure. Here x̂ is either x or x−1, depending on the case of Eqs. 8.4 and 8.5.



S2 (x̂) = x̂ , |x̂| ≤ 4× 10−16

S2 (x̂) = x̂+ x̂
2

4 + x̂
3

9 + x̂
4

16 , 4× 10−16 < |x̂| ≤ 1× 10−4

S2 (x̂) = ζ (2)− x̂− (S1 (x̂) + 1)− x̂2
−

(
S1(x̂)

2 + 1
4

)
− x̂3

−

(
S1(x̂)

3 + 1
9

)
, 0.99 ≤ x̂ ≤ 1

S2 (x̂) = − ζ(2)
2 + x̂+ ln (2) +

x̂
2
+

4 (ln (4)− 1) + x̂3
+

(
ln(2)

3 − 5
24

)
, −1 ≤ x̂ ≤ −0.99

S2 (x̂)→ use series iteration , else
(8.7)



S3 (x̂) = x̂ , |x̂| ≤ 4× 10−16

S3 (x̂) = x̂+ x̂
2

8 + x̂
3

27 + x̂
4

64 , 4× 10−16 < |x̂| ≤ 1× 10−4

S3 (x̂) = ζ (3)− ζ(2)x̂− +
x̂
2
−

12

(
6S1 (x̂)− π2 + 9

)
+
x̂
3
−

36

(
18S1 (x̂)− 2π2 + 21

)
, 0.99 ≤ x̂ ≤ 1

S3 (x̂) = −3ζ(3)
4 +

ζ(2)x̂+
2 +

x̂
2
+

24

(
π2 − 12 ln (2)

)
+
x̂
3
+

36

(
3 + π2 − 18 ln (2)

)
, −1 ≤ x̂ ≤ −0.99

S3 (x̂)→ use series iteration , else

(8.8)

where x̂− = 1 − x̂ and x̂+ = 1 + x̂; ζ is the Riemann zeta function with values ζ (2) = π
2

6 and
ζ (3) ≈ 1.2020569031595943.

For the general case in x̂ we use an accelerated series expansion of the polylogarithm based
on Bernoulli numbers Bj introduced in Ref. [134] which we truncate once the desired accuracy
has been reached.

S2 (x̂) =
∞∑
j=0

Bj
(j + 1)!

S1 (x̂)j+1 , (8.9)

S3 (x̂) =
∞∑
j=0

C3 (j)

(j + 1)!
S1 (x̂)j+1 , (8.10)
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where

C3 (j) =

j∑
k=0

(
j

k

)
Bj−k
k + 1

Bk . (8.11)

To speed up the calculation of the coefficients, we precompute them in quad precision via their
recursive definition

Bj = −
j−1∑
k=0

(
j

k

)
Bk

n− k + 1
, (8.12)

with B1 = 1 and every uneven Bj≥3 = 0.

Using this accelerated general expansion, in combination with the series expansions, allows
a high-speed and highly accurate computation of the Fermi-integrals needed for the scattering
and absorption kernels in the following sections, and can further be used for the relativistic
neutrino-nucleon rates in Refs. [115, 116, 118].

51



9 NEUTRINO OPACITIES

9 Neutrino opacities

9.1 Neutrino–lepton scattering

The inelastic neutrino–lepton scattering rate is implemented into the collision integral as de-
scribed in Ref. [114],

BS (E1, µ) = 2π

∫ ∞
0

dE3E
2
3

{(
1− fν (E1, µ)

) ∞∑
l=0

(2l + 1)Pl (µ)φin
l (E1, E3)Ll (E3)

− fν (E1, µ)

∞∑
l=0

(2l + 1)Pl (µ)φout
l (E1, E3)

(
δl,0 − Ll (E3)

)}
, (9.1)

and its angular moments

B
(0)
S (E1) = 2π

∫ ∞
0

dE3E
2
3

{ ∞∑
l=0

(2l + 1)
(
δl,0 − Ll (E1)φin

l (E1, E3)Ll (E3)
)

−
∞∑
l=0

(2l + 1)Ll (E1)φout
l (E1, E3)

(
δl,0 − Ll (E3)

)}
, (9.2)

B
(1)
S (E1) = 2π

∫ ∞
0

dE3E
2
3

{ ∞∑
l=0

[
δl,1 − (l + 1)Ll+1 (E1)− lLl−1 (E1)

]
φin
l (E1, E3)Ll (E3)

−
∞∑
l=0

[(l + 1)Ll+1 (E1) + lLl−1 (E1)]φout
l (E1, E3)

(
δl,0 − Ll (E3)

)}
, (9.3)

where the Legendre moments Ll (E) = 1
2

∫ 1
−1 dµPl (µ) f (E,µ) of the neutrino distribution

function are used. These Legendre moments can be written as linear combinations of the
angular moments of the neutrino distribution function I(i) (E) = 1

2

∫ 1
−1 dµµif (E,µ) that are

evolved in the moment equations. The Legendre moments of the scattering kernel itself are
defined as φin/out

l (E1, E3) = 1
2

∫ 1
−1 d cos θ13 Pl (cos θ13)Rin/out (E1, E3, θ13), where the scattering

kernels of the in- and out-direction can be related using Eq. 6.26. In Ref. [122] it is shown that

the cosine of the angle θ13 can be written as cos θ13 = µµ′ +

√(
1− µ2

)(
1− µ′2

)
cos
(
φ− φ′

)
,

and the addition theorem for Legendre polynomials implies

Pl (cos θ13) = Pl (µ)Pl
(
µ′
)

+ 2
l∑

m=1

(l −m)!

(l +m)!
Pml (µ)Pml

(
µ′
)

cos
[
m
(
φ− φ′

)]
,

which means integration over the θ and φ direction can be performed independently. For
completeness, we list here the first four Legendre polynomials

P0 (µ) = µ0 ,

P1 (µ) = µ1 ,

P2 (µ) =
1

2

(
3µ2 − 1

)
,

P3 (µ) =
1

2

(
5µ3 − 3µ

)
.
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9 NEUTRINO OPACITIES 9.1 Neutrino–lepton scattering

Note that, as we assume azimuthal symmetry of the neutrino distribution function around
the radial propagation vector, the integral over φ can be performed analytically to result in
the 2π factor seen above. In these pure scattering reactions the transpositional symmetry of
φin
l (E1, E3) = φout

l (E3, E1) (see Ref. [20]) as well as detailed balance, allows one to quickly
verify that the neutrino number density

∫∞
0 dE1E

2
1B

(0)
S (E1) = 0 is conserved. The neutrino

energy density
∫∞

0 dE1E
3
1B

(0)
S (E1) , 0 is however not conserved, and neutrinos can exchange

energy with matter.

Reference [114] gives the source terms that enter the right-hand side of the moment equation
and Boltzmann equation.

CNLS (E1, µ) =
c

(2π~c)3E
3
1BNLS (E1, µ) , (9.4)

C
(0)
E,NLS (E1) =

c

(2π~c)3E
3
1B

(0)
NLS (E1) , (9.5)

C
(0)
N,NLS (E1) =

c

(2π~c)3E
2
1B

(0)
NLS (E1) , (9.6)

C
(1)
E,NLS (E1) =

c

(2π~c)3E
3
1B

(1)
NLS (E1) , (9.7)

C
(1)
N,NLS (E1) =

c

(2π~c)3E
2
1B

(1)
NLS (E1) . (9.8)

9.1.1 Neutrino–electron scattering

Neutrino–electron scattering as implemented in Prometheus-Vertex is based on the Legendre
moments of the energy-dependent scattering rate as given in Ref. [139] and implement as in
Ref. [114]. This implementation performs the angular integrals in the scattering rate analytically
exact, with the caveat that the electron phase-space integration is calculated numerically only
for the ultrarelativistic case pe = Ee using Gaussian quadrature. The neglection of the electron
rest mass can lead to errors in conditions where electrons become non-relativistic, which we
will explore further in App. A. Additionally this simplification rules out the application of the
Yueh&Buchler scattering kernel ([139]) to the case of neutrino–muon scattering which we will
demonstrate in Sec. 9.1.2.

Our new implementation of the neutrino–electron scattering rate of Sec. 6.1 has the ad-
vantage that it includes all terms of the lepton rest mass and calculates the lepton phase-space
numerically exact using the polylogarithms of Sec. 8. The new implementation however has the
caveat that it requires numerical integration over the scattering angle using Gaussian quadra-
ture which introduces the complication that the width of this angle is a strong function of the
matter temperature and initial lepton momentum. In the case of a target lepton at rest, the
scattering angle effectively reduces to a δ-function for each energy transfer ω = E1 −E3 that in
theory would require an infinite number of Gaussian quadrature points to integrate accurately.
In Fig. 9.1a one can see that the scattering angle quickly converges towards a single value in
cos θ13 that needs to be resolved by at least a few Gaussian points. In practice, we limit the
number of Gaussian points in cos θ13 = [−1 . . . 1] to 24 points, which gives sufficiently accurate
results even for non-relativistic but warm electrons as shown in Fig. 9.1b. In combination with
precalculated values of the coefficients Ãi, B̃i and C̃i of Eqs. (6.6 – 6.14), the quick calculation
of the polylogarithms of Sec. 8 allows our new implementation of the scattering kernel to rival
the performance of the NES scattering kernel of Refs. [114, 139].
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Figure 9.1: νe – e− scattering at E1 = 15 MeV, E3 = 1 MeV and µ
e− = me at different tempera-

tures.

9.1.2 Neutrino–Muon scattering

Analogously to the case of neutrino–electron scattering, neutrino–muon scattering can become
an additional important contribution to the scattering opacity as well as energy exchange for
neutrinos. Due to flavor conservation, µ neutrinos cannot undergo a charged current scattering
interaction when scattering on electrons, resulting in a smaller vector current coupling constant
of CV,NES = −0.5 + 2 sin2 θW = −0.04. This, in combination with CA,NES = −0.5, leads to
combined interaction coefficients of

αNES
1 =

(
C
νµ
V,NES + C

νµ
A,NES

)2
= (−0.04− 0.5)2 ≈ 0.29 ,

αNES
2 =

(
C
νµ
V,NES − C

νµ
A,NES

)2
= (−0.04 + 0.5)2 ≈ 0.21 ,

αNES
3 =

(
C
νµ2

A,NES − C
νµ2

V,NES

)
= (−0.5)2 − (−0.04)2≈ 0.25 ,

where α3 is typically neglected as it is proportional to m2
e . Including the neutrino–muon

scattering channel now adds a charged current channel on muons that allows for significantly
larger interaction coefficients albeit with fewer target leptons to scatter on. As we will see,
however, the increase in the individual cross section on each muon can compensate for the
different abundances of electrons and muons. For µ neutrino-muon scattering the vector
current coupling constant becomesC

νµ
V,NMS = 0.5+2 sin2 θW = 0.96 and the axial vector coupling

constant becomes C
νµ
A,NMS = 0.5. The individual combined interaction coefficients then become

αNMS
1 = (0.96 + 0.5)2 ≈ 2.13, αNMS

2 = (0.96− 0.5)2 ≈ 0.21 and αNMS
3 = 0.52 − 0.962 ≈ −0.67. A

comparison with the interaction coefficients of µ neutrino–electron scattering shows a factor of
∼ 7 difference in the α1 coefficient, which is sufficient to compensate for the relative muon to
electron abundance difference. In contrast to neutrino–electron scattering the α3 term can also
not be neglected anymore, as the squared muon rest mass m2

µ ≈ 105.662 MeV2 is of a similar
energy scale as the incoming and outgoing neutrino energies. The influence of the large muon
rest mass additionally complicates the problems mentioned in Sec. A as the factorβ =

mµ
T � 1 at

all times during core-collapse and the ultrarelativistic approximation is inapplicable. Similarly,
the muon rest mass, being only roughly 11% of the nucleon rest mass, is not sufficient for the
nonrelativistic approximation to be applicable either. Neutrino–muon scattering can therefore
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9 NEUTRINO OPACITIES 9.1 Neutrino–lepton scattering

only be calculated using an arbitrarily relativistic formulation as shown in Eq. 6.1 during all
stages of core-collapse supernovae.

The comparatively large rest mass of the muon also influences the energy transfer between
a scattering neutrino and a muon as it roughly scales according to a factor of

E3 =
E1

1 + E1/mµ (1− cos θ13)
, (9.9)

similar to the simple analytical energy scaling relation of Ref. [47] on neutrons. A neutrino
of energy E1 = 30 MeV will therefore only transfer around 5 – 10 MeV to the medium in each
scattering event, as also shown in Fig. 9.2 for other energies. As one can see, the increased rest
mass of the muon leads to an energy transfer that is peaked at lower energies compared to the
case of neutrino–electron scattering. The inclusion of neutrino–muon scattering for typical µ
neutrino energies therefore mainly increases the transport opacity, as can be seen in Fig. 9.3
for µ neutrinos, without a large effect on thermalization. In contrast to neutrino–nucleon
scattering, neutrino–muon scattering does not benefit from an extended scattering atmosphere
at low temperatures, as muons are only abundant in the hot PNS mantle. We, therefore, expect
neutrino-muon scattering to have no significant bearing on the neutrino–medium coupling.

An additional interesting property of Fig. 9.3 is that νµ scattering opacity on muons and
antimuons is suppressed by about a factor of two compared to νµ scattering on muons and
antimuons. This can again be explained by the same observation as in Ref. [133] for scattering
on electrons. Helicity considerations reduce the scattering opacity of νµ on muons to be one-
third of the scattering opacity on antimuons, as long as the muons are not degenerate or the
incoming neutrino energy is not significantly larger than the muon chemical potential.
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Figure 9.2: Normalized energy transfer of incoming neutrinos on muons (NMS) and electrons
(NES) for T = 5 MeV, µ

µ
− = mµ and µ

e− = me .
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Figure 9.3: Opacity comparison between νµ –µ∓ (NMS) and νµ – e∓ (NES) scattering for ρ =

2× 1014 g/cm3, T = 46 MeV, Ye = 0.2 and Yµ = 0.05 using SFHo EOS.

9.2 Neutrino–lepton absorption

Neutrino–lepton absorption is implemented on the same principles as used for neutrino–lepton
scattering, except that the final state neutrino ν3 of energy E3 is not of the same neutrino flavor
as the initial state neutrino ν1 of energy E1. The implementation into the collision integral is

B
ν1
NLA (E1, µ) = 2π

∫ ∞
0

dE3E
2
3

{(
1− fν1 (E1, µ)

) ∞∑
l=0

(2l + 1)Pl (µ)φin
l (E1, E3)L

ν3
l (E3)

− fν1 (E1, µ)

∞∑
l=0

(2l + 1)Pl (µ)φout
l (E1, E3)

(
δl,0 − L

ν3
l (E3)

)}
, (9.10)

and its angular moments

B
ν1(0)
NLA (E1) = 2π

∫ ∞
0

dE3E
2
3

{ ∞∑
l=0

(2l + 1)
(
δl,0 − L

ν1
l (E1)φin

l (E1, E3)L
ν3
l (E3)

)
−
∞∑
l=0

(2l + 1)L
ν1
l (E1)φout

l (E1, E3)
(
δl,0 − L

ν3
l (E3)

)}
, (9.11)

B
ν1(1)
NLA (E1) = 2π

∫ ∞
0

dE3E
2
3

{ ∞∑
l=0

[
δl,1 − (l + 1)L

ν1
l+1 (E1)− lLν1l−1 (E1)

]
φin
l (E1, E3)L

ν3
l (E3)

−
∞∑
l=0

[
(l + 1)L

ν1
l+1 (E1) + lL

ν1
l−1 (E1)

]
φout
l (E1, E3)

(
δl,0 − L

ν3
l (E3)

)}
, (9.12)

with the Legendre moments defined in Sec. 9.1, except now for different neutrino species.
Note that the transpositional symmetry of Ref. [20] does not hold anymore and the in/out-

Legendre moments are now only coupled by the detailed-balance condition of φin
l (E1, E3) =

φout
l (E1, E3) exp [(µ4 − µ2 + E1 − E3) /T ] , where µ4 and µ2 are the chemical potential of the

respective final and initial state charged lepton. This means that the neutrino number density of
a single species is not conserved anymore by the absorption reaction, and in extension that also
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the net neutrino number density is changed. Lepton flavor number conservation, therefore,
requires that the net electron or net muon number also has to change in corresponding amounts,

QN,4 = −4πmB

∫ ∞
0

dE1
c

(2π~c)3E
2
1B

ν1(0)
NLA (E1) = −QN,2 , (9.13)

where mB is the baryon mass in gram. Note however that the charge is conserved in this
reaction and so the sum Ye + Yµ of the net lepton number densities remains unchanged. As the
number of charged leptons remains unchanged, lepton number conservation then also requires

∫ ∞
0

dE1E
2
1B

ν1(0)
NLA (E1) = −

∫ ∞
0

dE3E
2
3B

ν3(0)
NLA (E3) . (9.14)

Note also that the net fluid energy source term

QE =
∑
ν

−4π

∫ ∞
0

dE1
c

(2π~c)3E
3
1B

ν1(0)
NLA (E1) (9.15)

now contains a significant amount of net lepton rest mass being created or destroyed. For
example, a reaction of type νµ + e− → νe + µ− with neutrino energies of Eνµ = 150 MeV and
Eνe = 45 MeV does not result in a net internal energy gain of Qrelativistic,heat = Eνµ − Eνe =
105 MeV but instead in Qinternal,heat = Eνµ − Eνe + µe − µµ ≈ 0 MeV, if the chemical potentials
are at their respective rest mass energies. Reactions that create muons are therefore mostly
a net sink of neutrino energy that converts internal energy of the neutrino gas into rest mass
energy. Conversely, muons transported to the PNS surface by convection, and then decay
or are converted to an electron, release their stored rest mass energy in the form of high
energy neutrinos. These might deposit a fraction of their energy in the gain layer, in addition
to the highly energetic electrons which may thermalize and increase the temperature at the
neutrinosphere.

As we are mostly interested in muon production at high temperatures and densities we can
use the full formalism of Sec. 6.3.1 including the rest mass and chemical potential difference
terms with a relatively low number of angular Gauss integration points in θ13 = [−1 . . . 1]
of only 8 points. The appearance of the rest mass and chemical potential difference terms
allows both to compensate each other. This means the absorption kernel can tap the electron
chemical potential to aid in the creation of a muon. To illustrate this effect we plot in Fig. 9.4 the
normalized energy transfer of the νµ + e− → νe + µ− reaction for highly degenerate electrons.
One can see that there is a significant amount of positive energy transfer to the final state
neutrino even when nominally the incoming neutrino does not have sufficient energy to create
a muon first. This means that for low energy incoming neutrinosE1 a large amount of the freed
electron chemical potential is transferred to the final state neutrino of E3 > E1. In combination
with the necessary energy trapped in the muon rest mass, this causes a big net energy loss of
this reaction if the final state neutrino can escape freely. Increasing incoming neutrino energies
shift the curve slightly to the right, but a significant negative energy transfer always remains.
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Figure 9.4: Normalized energy transfer spectrum of νµ + e− → νe + µ− at T = 15 MeV,
µ

e− = 250 MeV and µ
µ
− = 0 MeV for different incoming neutrino energies E1.

9.2.1 Implementation into the transport solver

As the initial and final state neutrino is not of the same species, the numerical coupling of the
neutrino species in the transport solver needs to be extended from the typical neutrino pairs
ν + ν , necessary for e− – e+ pair annihilation, to a fully coupled transport in which neutrinos
can freely transform between any individual combinations. This requires not only significant
computational overhead, as the matrix, in general, grows at least quadratically with the number
of neutrinos species, but also numerical stability and speed of convergence are reduced as the
necessary Jacobian drastically increases in size and complexity. To avoid these complications
in this first implementation of the muonic rates, we focus our efforts on the most interesting
regime where muons might play a role deep inside the protoneutron star. At sufficiently
high densities and temperatures, the neutrino distribution functions can be assumed to be in
chemical and thermal equilibrium with the surrounding fluid. The angle integrated neutrino
spectrum can therefore be described very accurately by the equilibrium chemical potentials
µ

eq
νe = µ

e− + µp − µn − Q and µ
eq
νµ

= µ
µ
− + µp − µn − Q in perfect isotropy. Inserting these

equilibrium chemical potentials into the collision integrals of Eqs. (9.10 – 9.12) allows one to
perform the integral over final state energies analytically, which reduces to
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B
ν1,eq
NLA (E1, µ) = 2π

∫ ∞
0

dE3E
2
3

[(
1− fν1 (E1, µ)

)
φin

0 (E1, E3) f
eq
ν3

(E3)

− fν1 (E1, µ)φout
0 (E1, E3)

(
1− f eq

ν3
(E3)

)]
=
(

1− fν1 (E1, µ)
)
j (E1)− fν1 (E1, µ)κ (E1) , (9.16)

B
ν1,eq(0)
NLA (E1) = 2π

∫ ∞
0

dE3E
2
3

[(
1− Lν10 (E1)φin

0 (E1, E3) f
eq
ν3

(E3)
)

− L
ν1
0 (E1)φout

0 (E1, E3)
(

1− f eq
ν3

(E3)
)]

=
(

1− Lν10 (E1)
)
j (E1)− Lν10 (E1)κ (E1) , (9.17)

B
ν1,eq(1)
NLA (E1) = 2π

∫ ∞
0

dE3E
2
3

[
−Lν11 (E1)φin

0 (E1, E3) f
eq
ν3

(E3)

− L
ν1
1 (E1)φout

0 (E1, E3)
(

1− f eq
ν3

(E3)
)]

= − Lν11 (E1) [j (E1) + κ (E1)] . (9.18)

Note that all higher orders of Lν3l are zero as the equilibrium distribution is strictly isotropic.

The structure of these collision integral terms is identical to the terms for absorption and
emission processes on nucleons. This can be easily understood as in our approximation, for
example, ν1 + `2 � ν3 + `4 is similar in structure to the reaction νe + n � e− + p, if one
assumes that all particles except ν1 are described by their equilibrium distribution. Similarly,
the detailed balance condition linking the in/out-scattering moments given by

φin
0 (E1, E3) = φout

0 (E1, E3) exp [(µ4 − µ2 + E1 − E3) /T ] , (9.19)

reduces to

φin
0 (E1) = φout

0 (E1) exp [(E1 + µ4 − µ2 − µ3) /T ] = φout
0 (E1) exp

[(
E1 − µ

eq
ν

)]
. (9.20)

This allows us to describe the neutrino absorption on leptons collision integral in the form of a
stimulated opacity, following the same implementation as in Sec. A1.1 of Ref. [114].

The collision integral term

B
ν1,eq
NLA (E1) =

(
1− fν1 (E1, µ)

)
j (E1)− fν1 (E1, µ)κ (E1)

can be given in terms of a stimulated opacity

κ∗NLA (E1) B
1

1− f eq
ν1

(E1)
κ (E1) = j (E1) + κ (E1) , (9.21)

resulting in

B
ν1,eq
NLA (E1, µ) = κ∗NLA (E1)

(
f

eq
ν1

(E1)− f (E1, µ)
)
, (9.22)

B
ν1,eq(0)
NLA (E1) = κ∗NLA (E1)

(
Lν1

eq (E1)− Lν10 (E1)
)
, (9.23)

B
ν1,eq(1)
NLA (E1) = −κ∗NLA (E1)L

ν1
1 (E1) . (9.24)
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Identical to the case of neutrino absorption and emission on nucleons, the similar case
of neutrino absorption and emission on leptons results in neutrino source terms that drive
the neutrino distribution function towards its equilibrium value and towards isotropy. One
complication not present in the nucleonic rates is that the change of the neutrino distribution
function of ν3 by the reverse reaction ν3 + `4 � ν1 + `2 is not automatically accounted for
by the forward reaction. In contrast to electrons, the neutrino distribution function of ν3 is
independently evolved in phase-space in the next transport solver step, and correct spectral
lepton number density conservation is not possible to uphold perfectly by a single integrated
quantity. Instead we account for the reaction ν3 + `4 � ν1 + `2 by utilizing detailed-balance
and express the out-direction kernel φout

l,ν3+`4�ν1+`2
(E3, E1) by

φout
l,ν3+`4�ν1+`2

(E3, E1) = φin
l,ν1+`2�ν3+`4

(E1, E3)

= φout
l,ν1+`2�ν3+`4

(E1, E3) exp [(E1 − E3 + µ4 − µ2) /T ] , (9.25)

and

φin
l,ν3+`4�ν1+`2

(E3, E1) = φout
l,ν1+`2�ν3+`4

(E1, E3) . (9.26)

The collision integral, assuming an equilibrium distribution for ν1, becomes

B
ν3,eq
NLA (E3, µ) = 2π

∫ ∞
0

dE1E
2
1

[(
1− fν3 (E3, µ)

)
φin

0 (E3, E1) f
eq
ν1

(E1)

−fν3 (E3, µ)φout
0 (E3, E1)

(
1− f eq

ν1
(E1)

)]
=

(
1− fν3 (E3, µ)

)
j (E3)− fν3 (E3, µ)κ (E3) , (9.27)

B
ν3,eq(0)
NLA (E3) = 2π

∫ ∞
0

dE1E
2
1

[(
1− Lν30 (E3)φin

0 (E3, E1) f
eq
ν1

(E1)
)

−Lν30 (E3)φout
0 (E3, E1)

(
1− f eq

ν1
(E1)

)]
=

(
1− Lν30 (E3)

)
j (E3)− Lν3

0 (E3)κ (E3) , (9.28)

B
ν3,eq(1)
NLA (E3) = 2π

∫ ∞
0

dE1E
2
1

[
−Lν31 (E3)φin

0 (E3, E1) f
eq
ν1

(E1)−

−Lν31 (E3)φout
0 (E3, E1)

(
1− f eq

ν1
(E1)

)]
= −Lν31 (E3) [j (E3) + κ (E3)] . (9.29)

As an example, we demonstrate this for the case of electron neutrinos, where the net change
of the neutrino distribution function is given by a combination of the reaction νe + e+ �
νµ + µ+ and νe + µ− � νµ + e−. Of the two, only the first reaction is explicitly calculated
by Eqs. (9.16 – 9.18), whereas the second reaction, with a significantly larger rate of change,
is implicitly calculated by the reaction νµ + e− � νe + µ− using Eqs. (9.25 – 9.29). The final
absorption opacity can then again be transformed to a stimulated opacity via Eqs. 9.21 ff. Note
that not directly coupling all involved neutrino species during the transport solve, and instead
assuming equilibrium distributions for the final state neutrino, does not strictly conserve total
lepton number if the neutrinos are not in equilibrium. This leads to non-convergence of the
transport solver if the fluid lepton number source terms are always strictly implemented as in
Eq. 9.13,

QN,4 = −4πmB

∫ ∞
0

dE1
c

(2π~c)3E
2
1B

ν1(0)
NLA (E1) . (9.30)
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As the Prometheus-Vertex neutrino transport solver only couples neutrino flavor pairs in
a flavor block, i.e., νe + νe, νµ + νµ and ντ + ντ , assigning a charged lepton source term to
a neutrino that does not belong to that particular charged lepton’s flavor group, e.g., QN,µ =

−4πmB
∫∞

0 dE1
c

(2π~c)
3E

2
1B

νe(0)
NLA (E1) in the case of νe +e− � νµ+µ−, will lead to an instability as

this reaction will not maintain flavor number using our equilibrium assumption. An increase in
net Yνe due to the reduction of Yνe , is not balanced equally by a reduction in net Ye . Subsequently
during the operator-split νµ + νµ transport step the reaction νµ +µ− � νe + e− does not balance
net Yνµ and net Yµ . To circumvent this problem we instead always assign any change to net Ye
to an opposite change in net Yνe , as well as any change to net Yµ to an opposite change in
net Yνµ , no matter which side of the vertex the respective neutrino or charged lepton is located
on. This is equivalent to either choosing QN,2 or QN,4 of Eq. 9.13 and conserving the respective
net lepton flavor number of that particular neutrino flavor block, but possibly violating total
lepton number conservation overall.

To limit our muonic reactions to conditions where neutrinos might be considered in equi-
librium, we use a simple density and temperature dependent suppression factor

φin/out
l,effective = φin/out

l,unmodified
1

1 + (1010 g/cm3/ρ)5

1

1 + (2.5 MeV/T )6 . (9.31)

The density and temperature cut-offs are phenomenologically set values specifically chosen
to exclude regions outside of the protoneutron star during both the earliest bounce phase
using the temperature suppression and the density suppression during later phases. The exact
structure of these suppression factors is not particularly critical, as muonic reactions become
dynamically insignificant outside the protoneutron star, and accurately evolving the vanishing
muon number becomes numerically unfeasible anyway.
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9.2.2 Lepton flavor exchange

The Lepton flavor exchange (LFE) reaction νµ + e− � νe + µ−, as well as the corresponding
reaction νµ + e+ � νe + µ+ for the positively charged leptons, is implemented following the
formulae introduced in Sec. 6.3.1 by Ref. [75]. This reaction is, next to the charged beta-
reactions, the main production channel of net muon number inside the protoneutron star, and
can even exceed the opacity of beta-reactions for incoming neutrino energies E1 of lower than
the muon rest mass. This is explainable by the reaction being able to tap the additional energy
supplied by the electron chemical potential of order µe ∼ 200 MeV. The electron chemical
potential can readily exceed the additional energy of ∆U ∼ 40 MeV, the interaction potential
difference between neutron and proton in dense matter (cf. Ref. [32]). A caveat is however that
a large electron chemical potential is usually correlated with a large electron neutrino chemical
potential, as µνe = µe + µp − µn ∼ 100 MeV, which increases final state Pauli-blocking of the
produced νe, This effect is absent in the beta reaction channel νµ + n → p + µ−, where both
final state particles are nondegenerate during the pre-explosion phase. Furthermore, the large
number of trapped electron neutrinos will lead to a significant backreaction νe + µ− → νµ + e−

that suppresses muon production, and prevents the rapid conversion of degenerate electrons
into nondegenerate muons one might expect in a naive first expectation.

The production of muons is stopped once an equilibrium distribution of both νµ and νe is
reached, identical to the beta-reaction equilibrium condition, and can therefore not lead to an
increased muon number than the beta-reaction νµ + n → p + µ− by itself can produce. The
benefit of this reaction is however an increased speed of chemical equilibration of µ neutrino
energies lower than the muon rest mass at relatively low temperatures. From the moment of
bounce up to several seconds postbounce before full deleptonization, this reaction surpasses
the opacity of the beta-reaction close to the neutrinosphere as well as in the highly degenerate
but cold PNS inner core up to 10km radius. This reaction, in combination with the inverse
lepton decay reaction of Sec. 9.3, keeps the µ neutrinos very close to chemical equilibrium up to
and slightly exceeding the neutrinosphere. The backreaction νe + µ− → νµ + e− is for electron
neutrinos, however, only subdominant to the beta reaction νe + n � p + e−.

In the following, we will plot initial energy differential opacities of the neutrinos on both
sides of the interaction vertex, for their respective forward opacity and stimulated opacity at a
few select parameters ρ, T, Ye , Yµ . The opacity of the forward reaction νe + µ− → νµ + e− is
calculated using the in/out-invariance and detailed balance conditions from Sec. 6.3.4, where
for example

1

λνe+µ
−→νµ+e−

(Eνe) = 2π

∫
dEνµ E

2
νµ
φout
νµ+e−→νe+µ

−
(
Eνµ , Eνe

)
× exp

[(
µ
µ
− − µe− + Eνe − Eνµ

)
/T
]

= 2π

∫
dEνµ E

2
νµ
φin
νµ+e−→νe+µ

−
(
Eνµ , Eνe

)
. (9.32)

The corresponding stimulated absorption rates are calculated following Eq. 9.21 to be

κ∗
νµ+e−→νe+µ

−
(
Eνµ

)
=
(

1 + exp
[
−
(
Eνµ − µνµ

)])
× 2π

∫
dEνe E

2
νeφ

out
νµ+e−→νe+µ

−
(
Eνµ , Eνe

) (
1− f eq

νe

(
Eνe
))
, (9.33)
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κ∗
νe+µ

−→νµ+e−
(
Eνe
)

=
(
1 + exp

[
−
(
Eνe − µνe

)])
× 2π

∫
dE2

νµ
φin
νµ+e−→νe+µ

−
(
Eνµ , Eνe

)(
1− f eq

νµ

(
Eνµ

))
. (9.34)
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Figure 9.5: Lepton flavor exchange opacities for five select PNS conditions. The thermodynamic
state used for each row is given in the first column, and the required chemical potentials are
calculated using the SFHo EOS for the nucleonic part and our tables for the electron and muon
chemical potentials. The y-axis of each plot is given in terms of either the inverse mean free
path [1/cm] in black or the stimulated opacity [1/cm] in red and is unique in range to each plot.
Note that the red lines contain blocking factors assuming a neutrino equilibrium distribution
in the final state, whereas the black lines assume a free final state.
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Figure 9.6: Energy transfer spectrum for a set of incoming νµ energies E1 as given in the plot
at fixed Temperature T = 15 MeV and two fixed electron chemical potentials of µe = 25 MeV
and µe = 250 MeV of process νµ + e− � νe + µ−. Chemical potential of the muon is set to
µµ = 0 MeV and final state blocking of νe is neglected.
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initial and final state neutrino energy for E1 = 15MeV.
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(b) Energy transfer in terms of the difference between
initial and final state neutrino energy for E1 = 150MeV.

Figure 9.7: Energy transfer spectrum for a set of electron chemical potentials µe as given in the
plot at fixed Temperature T = 15 MeV and two fixed incoming νµ energies of E1 = 15 MeV
and E1 = 150 MeV of process νµ + e− � νe + µ−. Chemical potential of the muon is set to
µµ = 0 MeV and final state blocking of νe is neglected.
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(a) Opacity for an incoming νµ energy of E1 = 15MeV.
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(b) Opacity for an incoming νµ energy of E1 = 150MeV.

Figure 9.8: Opacity depending on electron chemical potential µe at fixed Temperature T =
15 MeV and two fixed incoming νµ energies of E1 = 15 MeV and E1 = 150 MeV of process
νµ+ e− � νe +µ−. Chemical potential of the muon is set to µµ = 0 MeV and final state blocking
of νe is neglected.
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(a) Opacity for an electron chemical potential
µe = 25MeV.
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(b) Opacity for an electron chemical potential
µe = 250MeV.

Figure 9.9: Opacity depending on incoming νµ energy E1 at fixed Temperature T = 15 MeV
and two fixed electron chemical potentials of µe = 25 MeV and µe = 250 MeV of process
νµ+ e− � νe +µ−. Chemical potential of the muon is set to µµ = 0 MeV and final state blocking
of νe is neglected.
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9.2.3 Lepton flavor conversion

Lepton flavor conversion (LFC) is the reaction νe + e− � νµ + µ−, as well as the positively
charged reaction νe + e+ � νµ + µ+. It is a similar reaction to lepton flavor exchange of
Sec. 9.2.2, except for slightly changed kinematics. This reaction has the advantage, compared
to lepton flavor exchange, that none of the final state particles are degenerate and therefore
final phase space will usually be nearly completely unblocked. This comes with the downside
that the initial state neutrino, the νe, is strongly suppressed inside the densest part of the
PNS core, as the degenerate electrons and trapped νe force vanishing number densities of νe.
Similarly, large number densities of νe in the case of the positively charged reaction imply
vanishingly small positron densities. This limits the ability of the lepton flavor conversion
reaction to produce muon number rapidly, and therefore, as in the case of LFE, can not rapidly
convert degenerate electrons into nondegenerate muons. LFE can however still be important
for the νe transport opacity. The traditionally dominant νe opacity, the beta-reaction on protons
νe+p � n+e+, has large final state blocking of the produced neutrons, a large energy penalty of
the interaction potential ∆U , as well as additional suppression due to weak magnetism. Lepton
flavor conversion has none of these disadvantages, but is still of similar overall strength as the
beta-reactions, allowing the LFC reaction to become the dominant opacity source at conditions
above nuclear saturation density. This can affect the neutrino-driven wind phase during PNS
cooling when the accretion component has subsided and core luminosity takes over, as the
neutrinospheres start to recede to higher densities.

Identical to the case of lepton flavor exchange, the forward direction of the backreaction
νµ + µ− → νe + e− needs to be calculated via the in/out-invariance relation of Sec. 6.3.4, where

1

λνµ+µ
−→νe+e−

(Eνµ) = 2π

∫
dEνe E

2
νeφ

out
νe+e−→νµ+µ

−
(
Eνe , Eνµ

)
exp

[(
µ
µ
− − µe− + Eνe − Eνµ

)
/T
]

= 2π

∫
dEνe E

2
νeφ

in
νe+e−→νµ+µ

−
(
Eνe , Eνµ

)
. (9.35)

The corresponding stimulated absorption rates are calculated following Eq. 9.21 to be

κ∗
νe+e−→νµ+µ

−
(
Eνe
)

=
(
1 + exp

[
−
(
Eνe + µνe

)])
× 2π

∫
dEνµ E

2
νµ
φout
νe+e−→νµ+µ

−
(
Eνe , Eνµ

)(
1− f eq

νµ

(
Eνµ

))
, (9.36)

κ∗
νµ+µ

−→νe+e−
(
Eνµ

)
=
(

1 + exp
[
−
(
Eνµ + µνµ

)])
× 2π

∫
dEνe E

2
νe φ

in
νe+e−→νµ+µ

−
(
Eνe , Eνµ

)(
1− f eq

νe

(
Eνe
))

, (9.37)

and repeated analogously for the positively charged channel.
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Figure 9.10: Lepton flavor conversion opacities for five select PNS conditions. The thermody-
namic state used for each row is given in the first column, and the required chemical potentials
are calculated using the SFHo EOS for the nucleonic part and our tables for the electron and
muon chemical potentials. The y-axis of each plot is given in terms of either the inverse mean
free path [1/cm]in black or the stimulated opacity [1/cm] in red and is unique in range to
each plot. Note that the red lines contain blocking factors assuming a neutrino equilibrium
distribution in the final state whereas the black lines assume a free final state.
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(b) Energy transfer in terms of the difference between
initial and final state neutrino energy for µe = 250MeV.

Figure 9.11: Energy transfer spectrum for a set of incoming νe energies E1 as given in the plot
at fixed Temperature T = 15 MeV and two fixed electron chemical potentials of µe = 25 MeV
and µe = 250 MeV of process νe + e− � νµ + µ−. Chemical potential of the muon is set to
µµ = 0 MeV and final state blocking of νµ is neglected.
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(a) Energy transfer in terms of the difference between
initial and final state neutrino energy for E1 = 15MeV.
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(b) Energy transfer in terms of the difference between
initial and final state neutrino energy for E1 = 150MeV.

Figure 9.12: Energy transfer spectrum for a set of electron chemical potentials µe as given in
the plot at fixed Temperature T = 15 MeV and two fixed incoming νe energies of E1 = 15 MeV
and E1 = 150 MeV of process νe + e− � νµ + µ−. Chemical potential of the muon is set to
µµ = 0 MeV and final state blocking of νµ is neglected.
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(a) Opacity for an incoming νe energy of E1 = 15MeV.
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(b) Opacity for an incoming νe energy of E1 = 150MeV.

Figure 9.13: Opacity depending on electron chemical potential µe at fixed Temperature T =
15 MeV and two fixed incoming νe energies of E1 = 15 MeV and E1 = 150 MeV of process
νe + e− � νµ+µ−. Chemical potential of the muon is set to µµ = 0 MeV and final state blocking
of νµ is neglected.
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(a) Opacity for an electron chemical potential
µe = 25MeV.
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(b) Opacity for an electron chemical potential
µe = 250MeV.

Figure 9.14: Opacity depending on incoming νe energy E1 at fixed Temperature T = 15 MeV
and two fixed electron chemical potentials of µe = 25 MeV and µe = 250 MeV of process
νe + e− � νµ+µ−. Chemical potential of the muon is set to µµ = 0 MeV and final state blocking
of νµ is neglected.
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9.3 Inverse lepton decay

Inverse lepton decay and here in its particular form of inverse muon decay (IMD) νe +e−+νµ �

µ−, is the inverse direction of the standard muon decay channel by which free muons can freely
decay to a lighter electron and, due to flavor conservation, also into an additional νe and a νµ,
µ− → e− + νe + νµ. It is therefore also the standard decay channel by which muons, advected
closer to the PNS surface by convection, decay. The inverse direction, which produces net
muon number, is weak, but has a nearly flat opacity spectrum that sets a new baseline opacity
at very low neutrino energies. Additionally, as there are no neutrinos in the final phase-space
and only nondegenerate muons, this reaction can proceed at a nearly constant opacity over a
broad range of conditions regardless of the incident neutrino spectrum.

As it has two neutrinos in the initial state, this reaction is very similar to the case of thermal
bremsstrahlung and pair annihilation kernels, and therefore the known collision integral terms
can be reused. The collision integrals for pair annihilation kernels for a reaction as given in
Ref. [108] for particles ν1 + `2 + ν3 � `4 read

B
ν1
IMD (E1, µ) = 2π

∫ ∞
0

dE3E
2
3

{(
1− fν1 (E1, µ)

)
φ

p
0 (E1, E3)

−
∞∑
l=0

(2l + 1)Pl (µ)φ
p
l (E1, E3)L

ν3
l (E3)

+ fν1 (E1, µ)

∞∑
l=0

(2l + 1)Pl (µ) φ̂a
l (E1, E3)L

ν3
l (E3)

}
, (9.38)

and its angular moments

B
ν1(0)
IMD (E1) = 2π

∫ ∞
0

dE3E
2
3

{
φ

p
0 (E1, E3)

(
1− Lν10 (E1)− Lν30 (E3)

)
+

∞∑
l=0

(2l + 1) φ̂a
l (E1, E3)L

ν1
l (E1)L

ν3
l (E3)

}
, (9.39)

B
ν1(1)
IMD (E1) = 2π

∫ ∞
0

dE3E
2
3

{
−φp

0 (E1, E3)L
ν1
1 (E1)− φp

1 (E1, E3)L
ν3
1 (E3)

+

∞∑
l=0

(2l + 1) φ̂a
l (E1, E3)L

ν1
l+1 (E1)L

ν3
l (E3)

}
, (9.40)

with the Legendre moments defined in Sec. 9.1 and φ̂al (E1, E3) = φ
p
l (E1, E3) − φa

l (E1, E3),
where φa

l is the absorption kernel, and φp
l is the production kernel. Pairwise symmetry implies

φ
ν1,a/p
l (E3, E1) = φ

ν1,a/p
l (E1, E3), and so we only need to calculate half the necessary energy

bin couplings directly. The absorption kernel and production kernel are Legendre moments of
the IMD kernel of Eq. 6.44 using the procedure in Sec. 9.1,

φ
a/p
l =

1

2

∫ 1

−1
d cos θ13 Pl (cos θ13)Rin/out

IMD (E1, E3, θ13) , (9.41)

and the angular integration is performed via a numerical Gauss-Legendre integration using 6
Gaussian points in θ13 =

[
θmin

13 . . . 1
]
. As the Heaviside-Theta function appearing in the inverse
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muon decay kernel can set a lower bound of the relative neutrino angle for each combination
of neutrino energies due to

Θ (k − 1) = Θ

(
Q

E1E3 (1− cos θ13)
− 1

)
, (9.42)

we can focus our Gauss integration onto the active angular region and maximize the resolution
afforded by our limited number of points. The lower bound is then set to

−1 ≤ 1− Q

E1E3
= θmin

13 < 1 . (9.43)

As in the neutrino-lepton absorption reactions of Sec. 9.2, the net change in electron and
muon number requires a corresponding change in net neutrino number where

QN,4 = −4πmB

∫ ∞
0

dE1
c

(2π~c)3E
2
1B

ν1(0)
IMD (E1)

= −4πmB

∫ ∞
0

dE3
c

(2π~c)3E
2
3B

ν3(0)
IMD (E3) = −QN,2 , (9.44)

and mB is the baryon mass. As this is a pairwise reaction, the energy integrated neutrino
number of both involved neutrinos must change by an identical amount and sign,

∫ ∞
0

dE1E
2
1B

ν1(0)
IMD (E1) =

∫ ∞
0

dE3E
2
3B

ν3(0)
IMD (E3) . (9.45)

As neutrinos with different spectra can interact with each other, this, however, does not mean
that the integrated neutrino energy density also has to change by the same amount. The net
fluid energy source term is then

QE =
∑
ν

−4π

∫ ∞
0

dE1
c

(2π~c)3E
3
1B

ν
IMD (E1) . (9.46)

9.3.1 Implementation into the transport solver

As in Sec. 9.2.1, a fully consistent implementation of inverse muon decay requires full flavor
coupling between νe, νe, νµ, and νµ. Otherwise the equality in Eq. 9.44 and Eq. 9.45 is not
automatically fulfilled, and each neutrino does not know its partner neutrino spectrum. For
this reason, we are again introducing an equilibrium assumption that all involved neutrinos
can be sufficiently well described inside the PNS by an isotropic equilibrium distribution, given
by the degeneracy factor η = µ

eq
ν /T . By this assumption, we can forego the explicit flavor

coupling and keep the simpler pairwise-coupling between ν – ν pairs. The Legendre moments
of the distribution function in the collision integral can now be replaced by

L
νe3,eq
0 (E3) =

1

2

∫ 1

−1
dµ f eq

ν3
(E3) =

1

2

∫ 1

−1
dµ

1

exp
((
E3 − µ

eq
ν3

)
/T
)

+ 1
, (9.47)

and

L
ν3,eq
l=1,...,∞ = 0 . (9.48)

The collision integral reduces to
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B
ν1, eq
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and its angular moments

B
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0 (E3)
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, (9.51)

where we have kept the production and absorption kernels separate instead of applying the
effective absorption kernel φ̂a

0 ≡ φ
p
0 − φ

a
0.

Using the definitions

j (E1) =

∫ ∞
0

dE3E
2
3φ

p
0 (E1, E3)

(
1− Lν3,eq

0 (E3)
)

(9.52)

and

κ (E1) =

∫ ∞
0

dE3E
2
3φ

a
0 (E1, E3)L

ν3,eq
0 (E3) , (9.53)

we arrive at

B
ν1,eq
IMD (E1, µ) = 2π

{
j (E1)

(
1− fν1 (E1, µ)

)
− κ (E1) fν1 (E1, µ)

}
, (9.54)

B
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− κ (E1)L
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}
, (9.55)

B
ν1(1),eq
IMD (E1) = 2π

{
−Lν11 [j (E1) + κ (E1)]

}
. (9.56)

As in the neutrino-lepton absorption process, we can express the emissivity and opacity by
a combined stimulated opacity form of

κ
ν1∗
IMD (E1) =

1

1− fν1eq (E1)
κ (E1) = j (E1) + κ (E1) , (9.57)

and the collision integrals again reduce to a form that directly enforces an equilibrium spectrum
of the incoming neutrino

B
ν1,eq
IMD

(
E1,µ

)
= κ

ν1∗
IMD (E1)

[
f
ν1
eq (E1)− fν1 (E1, µ)

]
, (9.58)

B
ν1,eq(0)
IMD (E1) = κ

ν1∗
IMD (E1)

[
L
ν1,eq
0 (E1)− Lν10 (E1)

]
, (9.59)

B
ν1,eq(1)
IMD (E1) = −κν1∗IMD (E1)L

ν1
1 (E1) , (9.60)
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and vanishes once the neutrino distribution has arrived at its isotropic equilibrium distribution.
This is repeated for the partner neutrino ν3, where one assumes the neutrino ν1 to be in equi-
librium. A caveat of this treatment is that any deviation of each neutrino from its equilibrium
spectrum results in a mismatch of the distribution function source terms and breaks neutrino
number conservation. The condition of Eq. 9.45 is not necessarily upheld, as∫ ∞

0
dE1E

2
1κ

ν1∗
IMD (E1)

[
L
ν1,eq
0 (E1)− Lν10 (E1)

]
,

∫ ∞
0

dE3E
2
3κ

ν3∗
IMD

(
E

3

) [
L
ν3,eq
0 (E3)− L

ν
3

0 (E1)
]
,

and the equilibrium spectrum of the partner neutrino does not necessarily mirror the actual
distribution function. This also removes the natural quenching of the inverse muon decay
absorption rate, as both neutrino distribution functions would become strongly forward peaked
in the free streaming region and the transverse component would become small. To alleviate
this, we suppress this rate using the suppression factor as used for the NLA rate of Eq. 9.31,
which switches off the rate outside the PNS or at very low temperatures. The caveat of this
method is that the production rate by muon decay to electrons and neutrinos is also actively
suppressed. In practice, the muon number outside the protoneutron star has, however, already
been reduced enough that any further decay is dynamically insignificant.
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Figure 9.15: Inverse muon decay opacities for five select PNS conditions. The thermodynamic
state used for each row is given in the first column, and the required chemical potentials are
calculated using the SFHo EOS for the nucleonic part and our tables for the electron and muon
chemical potentials. Note that the right column switches ν1 and ν3. The y-axis of each plot
is given in terms of either opacity [1/cm] in black, the stimulated opacity [1/cm] in red or the
emissivity [1/cm] in blue. Note that the red and black lines assume that the partner neutrino is
in an equilibrium distribution while the blue line is assuming no blocking.
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9.4 Beta-reactions

The muonic charged beta-reactions νµ+n � µ−+p, as well as νµ+p � µ++n are implemented
exactly as in the standard case of electron (anti-)neutrino charged absorption, and we refer
here to the discussion in Refs. [14, 114] about the exact prescription. The collision integral
of the absorption and emission process is originally of the same structure as the scattering
processes. The assumption that the final state lepton, in this case, the muon, is in perfect
chemical equilibrium is, however, automatically upheld, and we can directly formulate the
collision integral via the emissivity j (E1) and opacity κ (E1) without any loss of accuracy,

B
ν1
AE (E1, µ) = j (E1)

[(
1− fν1

)
(E1, µ)− f (E1, µ)κ (E1)

]
. (9.61)

Using the stimulated opacity κ∗, defined as in the preceding sections, the collision integral can
be simplified to be

B
ν1
AE (E1, µ)κ∗ (E1)

[
f
ν1
eq (E1)− fν1 (E1, µ)

]
, (9.62)

with the angular moments

B
ν1(0)
AE (E1) = κ∗ (E1)

[
L
ν1,eq
0 (E1)− Lν10 (E1)

]
, (9.63)

B
ν1(1)
AE (E1) = −κ∗ (E1)L

ν1
1 (E1) . (9.64)

As for the case of electron neutrinos, the interaction potential difference of neutron and proton
can strongly influence the absorption rate. In the case of νµ absorption, a positive interaction
potential difference allows neutrinos well below the muon rest mass energy to be absorbed
onto a neutron and produce a muon and a proton. Additionally, as we use a fully inelastic
absorption kernel, the thermal energy and chemical potential of the neutron can be used to
increase the energy available to the muon. This practically removes the usual hard energy

cutoff of E1 + ∆U + ∆Q
!
≥ mµ if one were to do an elastic calculation for high densities and

temperatures.
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Figure 9.16: Beta-process opacities for five select PNS conditions. The thermodynamic state
used for each row is given in the first column, and the required chemical potentials are calculated
using the SFHo EOS for the nucleonic part and our tables for the electron and muon chemical
potentials. The y-axis of each plot is given in terms of either opacity [1/cm] in black, the
stimulated opacity [1/cm] in red or the emissivity [1/cm] in blue. As a comparison, the opacity
for correlated νe and νe absorption with e∓ in the final state are the dotted lines. The solid lines
and dotted lines are including the effects of nucleon-nucleon correlations; the dashed lines are
for uncorrelated matter. The noisy behavior, seen at low νµ energies and high densities, is due
to resonances in the correlated medium, and is a physical feature of the RPA.
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Chapter VI

Simulations

10 Common numerical Setup

The simulations to be explored in this chapter are calculated using a 20M� ZAMS (zero-age
main sequence) progenitor of solar metallicity evolved in spherical symmetry in Ref. [136].
This progenitor does not include any asphericities induced by possible rotation as explored
in Refs. [128, 67, 131, 96] nor by multidimensional first principle convection during the last
burning stages before iron core collapse (see for example Refs. [24, 23, 92, 95, 94]). The set of
progenitors by Woosley & Heger (2007) spanning the mass range from 12M� – 40M� has been
vigorously explored in the community in 1D, 2D and 3D by various groups (see for example
Refs. [12, 127, 99, 27, 105, 88, 83, 90]). The 20M� progenitor in particular has been in the
focus of different groups and has shown itself to be sensitive to variations in microphysics
(see in particular Ref. [83]). Due to this sensitivity, we can more visibly quantify the effects
that small changes might have on the result, with explosion or nonexplosion being the most
extreme differentiator. However, even slight changes can shift the onset of shock expansion by
several hundred milliseconds. For this reason, we try to keep changes between different sets of
microphysics to the minimum and explore the impact of each variation in isolation.

The common base of our test runs is called “standard” and implements the microphysics on
the level of sophistication as described in Refs. [114, 14], but extended to account for nucleon
potential effects. For the case of tabulated equations of state including a light cluster component,
we have extended our base set of opacities to approximately treat the contained light clusters
by a quasi-unbound nucleon approximation. For this, the individual nucleons contained in the
light clusters are treated as if they are unbound in the iso-energetic kinematics, but the energy
required to unbind them is first subtracted from the final state lepton energy. This gives similar
results as in Ref. [33] but with a slightly exaggerated cross section as the correlated state of the
lightly bound nucleons is not consistently taken into account.

The case “muons” builds upon the “standard” set of opacities as described above but
modified to include all muonic neutrino reactions as described in this thesis plus the muonic
EOS component. These two setups form the basis of our comparisons and remain unchanged
during all 1D and 2D simulations. The common neutrino energy grid spans the range of
0 MeV – 380 MeV divided into 15 geometrically spaced bins. The radial hydro and transport
grid extend out to 10000 km and is initially divided into respectively 400 and 233 zones. As the
protoneutron star gravitationally contracts due to continued accretion and energy loss in the
neutrino channel, the continually steepening density gradient at the PNS surface is tracked via
periodic radial remapping onto finer grids. The goal is to maintain a radial density resolution of
about 20 points per density decade at all times and ending with a finest grid resolution of about
40m per cell around the PNS surface. To increase the angular resolution in the 2D simulations,
we employ the static mesh refinement method (SMR) of Ref. [85], which allows us to increase
the angular resolution of the hydrodynamic part by a factor of two above the gain radius. The
minimum angular resolution of all our 2D runs is 1.125° in θ in both transport and hydro,
and increases to 0.5625° above the gain radius in the hydro grid. Having different angular
resolutions of the hydro and transport grid is an acceptable compromise, as the neutrino mean
free path above the gain radius is significantly longer than the length scale of any small-scale
hydro fluctuation. As a result, the thermodynamic variables can safely be interpolated from the
high-resolution hydro grid onto the lower resolution transport grid without loss of accuracy. As
the hydrodynamic component is comparatively less time intensive to compute, this allows us
to track the turbulent energy down to smaller length scales (cf. Refs. [112, 110]), while keeping
the computationally expensive neutrino transport part unchanged.
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11 1D simulations

Muons are a component of the stellar gas that only exists stably and in abundant number in
the densest and hottest regions of the protoneutron star. In this environment, uniquely multi-
dimensional effects due to turbulence are only of low importance, and we can perform a first
study of PNS muonization in spherical symmetry, i.e., 1D, without loss of generality. The
dominant effect of muonization is a secular reduction of thermal and degenerate pressure in
the PNS mantle, which can be examined in 1D with great ease and accuracy.

1D simulations can serve as excellent verification of our implementation of muons into
Prometheus-Vertex in a quasi-steady state accretion situation without genuinely multi-dimensional
effects and instabilities like neutrino-driven convection or the standing accretion shock insta-
bility (SASI) superimposing strong time-dependent fluctuations onto the neutrino signal. The
steady-state PNS convection can, if required, be approximated to high accuracy using mixing-
length theory (MLT) as described in Refs. [55, 88]. The Ledoux-criterion (cf. Ref. [63]) describes
the convectively unstable region well, allowing us to take the slower contraction of the PNS and
enhanced neutrino luminosity into account. Note however that due to the multi-component
nature of our mixed electron and muon gas and the variable degree of neutrino trapping, the
error in our mixing-length theory increases and MLT calculations including muons will need to
be recalibrated against 2D simulations in future work. The MLT long-time cooling calculations
presented in this section are therefore not the final result and might change slightly once the
MLT mechanism has been finalized. The discussion of PNS contraction including convection
will consequently only be discussed in the 2D simulation section.

11.1 Steady-state accretion

Spherical simulations of CCSN, except in special cases of progenitors with very steep density
profiles like the 9.6M� ZAMS zero-metallicity progenitor discussed in Refs. [84, 111] or oxygen-
neon-magnesium progenitors undergoing an electron-capture supernova (ECSN) as discussed
in Refs. [53, 35, 111], do not explode and enter a steady-state accretion phase after the collapse,
bounce and subsequent stalling of the shock. This phase will not end until the simulation has
been ended or the continued accretion leads to further collapse to a black hole after several
seconds. As the time-variability of the accretion is very low, this allows us to get an unam-
biguous and stable neutrino signal from the superimposed diffusion flux escaping from the
protoneutron star and the mainly electron-flavor neutrino accretion component created from
the infalling deleptonizing shocked matter. As we want to observe variations of the neutrino
diffusion component from the PNS in this scenario, it is beneficial to not have “hydrodynamic
noise” from time-variable turbulent accretion obfuscating the possibly small effects we wish to
observe.

For this reason, we will evolve the s20.0 progenitor of Ref. [136] from initial collapse through
bounce into the steady-state accretion phase for up to several hundred milliseconds postbounce
using the SFHo RMF EOS of Ref. [123] and our standard numerical setup. We will simulate
first the standard physics case without muons, called s20.0-SFHo-standard, using four neutrino
species ν ∈ [νe, νe, νx, νx]. Then a second simulation called s20.0-SFHo-muons in which we
switch on muons at the moment of bounce, defined as the point of time when the post-shock
entropy has reached 3.2 kB, as well as include all six neutrino species ν ∈

[
νe, νe, νµ, νµ, ντ , ντ

]
.

Note that we neglect the effects of PNS convection in these particular simulations. In the
following, we will discuss snapshots of protoneutron star profiles at select times to analyze the
effects of muons in the EOS, as well as the influence of muonic opacities on the location of the
neutrinospheres.
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Pre-collapse profiles

The initial profiles of the progenitor at the beginning of our simulation are shown in Fig. 11.1.
The most relevant plot here is the relation of the different pressure contributions. Initially,
the inner 10000 km are mainly supported by the degenerate relativistic electron pressure with
photonic pressure taking over in the still active burning layers above the inert iron core. The
noninteracting baryonic pressure is unimportant everywhere. Note that the tabulated SFHo
EOS is applied during the collapse phase at densities above 108 g/cm3, and the analytic Maxwell-
Boltzmann EOS is applied at densities below that. As the conserved energy density is mapped
onto the grid via an inversion of the density, electron fraction and pressure, the original pres-
sure profile as supplied by the stellar evolution calculation is maintained without perturbations.
Temperature, entropy, energy density and other composition dependent variables, however,
might be affected by variations in the EOS employed and a small discontinuity at the interface
between the high- and low-density EOS remains. This can be explained by the different treat-
ment of the nuclear statistical equilibrium (NSE) composition, which in the case of the SFHo
EOS is applied down to temperatures of 0.1 MeV using thousands of nuclei. Our Maxwell-
Boltzmann-EOS, however, requires a minimum temperature of 0.5 MeV for NSE, includes only
23 nuclei, and uses the original progenitor composition below this temperature.

11.1.1 Snapshots

Iron-core collapse As the phase of iron-core collapse is already well analyzed in many of its
dependencies in exhaustive detail, for example, in Ref. [125], we will skip a detailed treatise
on this phase. This is motivated by us not introducing any new physics before bounce and we
instead only give a brief overview of the major effects. The degenerate iron core is susceptible
to electron capture onto nuclei in addition to being further weakened by photodisintegration
of iron nuclei into alpha particles, and the collapse is already underway at the start of our
simulation. The core initially only slowly deleptonizes via electron capture and starts a slow
subsonic collapse. The produced neutrinos can still escape freely from the core, and the total
lepton number is free to change. As continued deleptonization leads to reduced pressure
support, which leads to further contraction, ending up with more deleptonization, this is a
self-reinforcing cycle that speeds up towards the last few tens of milliseconds before collapse.
Eventually, the collapsing core splits up into a supersonic outer infalling part and a subsonic
inner infalling part.

As soon as a density of ρ ∼ 1012 g/cm3 has been exceeded, the electron neutrinos start
becoming trapped due to frequent scattering on nuclei, after which the total lepton number
becomes conserved and neutrinos are dragged with the medium. This neutrino trapping
already during collapse leads to the substantial electron fraction remaining in the protoneutron
star, and is the quantity that needs to leak out before one can speak of the protoneutron
star as having deleptonized. Electrons and electron neutrinos are in chemical equilibrium in
these conditions, and can freely convert between each other to maintain equilibrium as the
core collapses further. The increasing degeneracy of the trapped electron neutrinos, however,
prevents a total conversion of electrons into neutrinos. This degenerate electron neutrino gas
will in the later stages after the bounce also suppress muon formation in the innermost core,
but at this moment muons are yet to appear in the gas in any relevant amount. This allows us
to keep muons switched off during the collapse and our two simulations are identical during
the collapse phase.

The collapse is followed up to a critical maximum central density of ρ = 1.4×1014 g/cm3 after
which the next phase of our simulation begins and strong interactions between the nucleons
lead to a prompt stiffening of the gas, signifying the birth of a protoneutron star.
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Pre-bounce At the beginning of the bounce phase when the matter at the center enters its bulk
nuclear matter phase, we switch from evolving only the electron neutrino transport to evolving
the full set of neutrino species we wish to evolve for the remainder of the simulation.

In the case of the standard physics simulation this means evolving the neutrinos νe, νe, νx
and νx, where νx and νx represent the indistinguishable set of heavy lepton neutrino νµ, ντ
and antineutrino νµ, ντ . As we neglect heavy-lepton charged current opacities in the standard
physics set and neutral currents do not distinguish between neutrino flavors, the transport prop-
erties of νµ and ντ are identical and we can treat both flavors by a single representative neutrino.
Due to the effects of weak magnetism and lepton helicity, the heavy-lepton neutrinos, however,
have a different transport opacity than antineutrinos even in the absence of charged currents.
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Figure 11.1: Initial profiles of the s20.0 progenitor mapped onto our numerical grid as a function
of enclosed baryonic mass. Shown are the density, temperature, electron fraction, entropy per
baryon, pressure per baryon, chemical potentials, and the location of each enclosed mass shell.
The pressure has been further subdivided into its individual components.
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Different spectra for neutrinos and antineutrinos will then develop, as already described in
Ref. [47].

In the case of the muon physics simulation, we switch to evolving all six neutrino flavors
νe, νe, νµ, νµ, ντ , ντ individually, as the spectra of νµ and νµ will now be significantly changed
by the presence of muons and the single heavy-lepton neutrino approximation breaks down.
Every neutrino flavor will, therefore, have its own flux and spectrum. Up to the postbounce
stage, we will however still neglect muons, as the EOS enters a complicated phase-transition
bridged by a Maxwell construction in which the pressure cannot easily be disentangled into
its components. Previous tests, where muons were already switched on before the bounce,
however, have shown that the postbounce phase is not sensitive to any pre-bounce muon
presence. As the infalling matter continues to accrete onto the forming protoneutron star at
the center, the kinetic energy is transformed into internal energy and the PNS heats up. The
increased heat leads to abundant pair production of νx and νx by the thermal pair processes
of bremsstrahlung and electron-positron pair annihilation, making the heavy-lepton neutrinos
rapidly achieve thermal equilibrium. As all neutrinos are, however, still trapped in the PNS,
they cannot escape from their production sites. The continuously infalling supersonic matter
leads to a slight overcompression of the forming PNS which begins to rebound like a spring. This
bounce has sufficient kinetic energy to launch a shock-wave that begins to propagate outwards.
The exact moment of bounce is defined as the time when the entropy at the shock front exceeds
3.2 kB per baryon. In our case, the bounce happens at tb = 328.1 ms, after which we normalize
our time coordinate to the so-called postbounce time tpb = t− tb so that tpb = 0 ms B tb.

The moment of bounce is when our two simulations will begin to diverge, and the last
identical profiles of both simulations are given in Fig. 11.2. The temperature in the nascent PNS
has reached 10 – 15 MeV, and the pressure shows a sharp increase in the baryonic component
as strong interactions resist further compression. The electronic pressure is still substantial at
roughly equal proportion to the baryonic pressure, but the situation will change quickly as the
trapped lepton number escapes the PNS and the densities increase to multiples of the saturation
density. The chemical potentials show degenerate electrons and electron neutrinos as expected
and the nucleons remain nondegenerate for now. Note however that the nucleon chemical
potential contains a contribution by the respective interaction potentials that are attractive
around saturation density and therefore reduce the apparent chemical potentials. The trapped
net neutrino fraction in the plot has been defined as

net Y trapped
ν =

4π

c

{[∫
dE Jν (E)

]
−
[∫

dEHν (E)

]}
− 4π

c

{[∫
dE Jν (E)

]
−
[∫

dEHν (E)

]}
, (11.1)

where J = J/E is the respective number density and H = H/E is the respective number flux
density, following the definitions of Eqs. 5.10 and 5.11.
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Postbounce At the beginning of the postbounce phase we continue evolving the standard
physics case without changes, except a remapping of the Lagrangian comoving grid-coordinates
to a fixed Eulerian grid with optimized resolution. We perform the same for the muon physics
case, except we additionally switch on the treatment of muons and all additional muonic
opacities, thereby beginning the different evolution track for both simulations. As visible in
Fig. 11.2, the muons and µ neutrinos quickly achieve chemical equilibrium within a few nu-
merical time-steps, showing that muon production is quick and very efficient at high densities.
The system enters beta-equilibrium in respect to muons, i.e., µνµ ≈ 0 MeV, everywhere inside
the nascent PNS, as shown by the blue chemical potential. The equilibrium muon fraction
at the current temperatures is still tiny at a maximum value of Yµ ≈ 0.0004 and the muon
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Figure 11.2: Last common profiles at the moment of bounce at tb = 328.1 ms. Plot contents are
mostly identical to Fig. 11.1, except now the lepton fraction has been further subdivided into
its components and the total conserved lepton fraction in the trapping region. The enclosed
baryonic mass vs. radius plot has also been changed to a logarithmic axis to provide more
information in the critical area around the PNS.
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fraction profile closely tracks the temperature profile. The negligible muon fraction does not
affect the hydrodynamics at this time, but the production of muons has already resulted in a
corresponding negative net µ neutrino fraction. As there were no initial muons present, any
muons produced must result in a surplus of νµ as fixed by the conserved muon lepton number
Y`µ (tpb = 0) = 0 = net Yµ + net Yνµ for trapped conditions. As µ neutrinos start to diffuse out-
wards and inwards from their main production regions, the net µ lepton fraction can become
nonzero, resulting in the final net muon number already predicted in Ref. [51].
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Figure 11.3: Profiles of case s20.0-SFHo-muons in solid lines and s20.0-SFHo-standard in dashed
lines at tpb = 0.15 ms and tpb = 0.16 ms respectively. The plots are now all displayed as a
function of the logarithmic radial coordinate from 0 km to 1000 km to capture both the PNS as
well as the gain layer and pre-shock region. In enclosed mass plots the gain layer would not
be visible due to the small contained mass, but Fig. 11.2 can be referred to, to relate radius and
enclosed mass if necessary. As we have switched muons on, we now additionally track the
muonic pressure contribution, additional net lepton fractions, and chemical potentials. Note
that the net muon, net µ neutrino and net τ neutrino fraction have been multiplied 100-fold to
make them visible. The representative heavy-lepton neutrino of case s20.0-SFHo-standard has
been given the same cyan color as the τ neutrinos from case s20.0-SFHo-muons.

In Fig. 11.4 we show the densities at which the effective optical depth of each interaction
and neutrino energy becomes smaller than 2/3 at the time of tpb = 0.15 ms. The effective optical
depth at every radius for each opacity is defined following Ref. [113] to be

τeff,i (r, E1) =

∫ ∞
r

dr′

√√√√ 1

λi
(
r′, E1

) [ 1

λT
(
r′, E1

) +
1

λi
(
r′, E1

)] , (11.2)
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whereλi is the mean free path of each rate i, andλT is the transport mean free path of the summed
nearly elastic scattering mean free path on nucleons and nuclei. The motivation behind the
introduction of an effective optical depth lies in the forced random walk by successive rapid
scattering events that increase the effective total distance a neutrino has to travel as it diffuses out
of the PNS. Neglecting the transport opacity would otherwise assume that neutrino trapping
conditions do not exist. The radius where τeff,i for each neutrino energy becomes smaller than
2/3 is then the radius where neutrinos of this energy will stop interacting via the specified
interaction. Following the definitions of Ref. [113] this allows us to define radii where certain
kinds of interactions cease to be effective. These are the

1. Number sphere until where neutrino number can be created and destroyed via thermal
pair annihilation and bremsstrahlung reactions; net neutrino number via charged current
beta-reactions and the new muonic reactions. In the s20.0-SFHo-standard case, only νe
and νe can participate in the net neutrino number creating reactions, whereas in the s20.0-
SFHo-muons case, also νµ and νµ can participate. In contrast, the thermal pair annihilation
and bremsstrahlung reactions are open to all neutrinos, but can only create ν – ν pairs that
leave net number unchanged. The interesting issue will now be to see, whether the new
muonic reactions can become the dominant production reactions for νµ and νµ compared
to the traditional pair reactions.

2. Energy sphere until where neutrinos can thermalize with the surrounding matter via en-
ergy exchanging scattering reactions like neutrino–electron scattering, neutrino–neutrino
scattering and to some extent neutrino–nucleon scattering. As scattering on nucleons
can only transfer a small amount of energy in each single scattering event, this opacity
operates akin to a continuous neutrino flux in energy-space rather than by discrete large-
magnitude events. Here we wish to see whether neutrino–muon scattering can become
relevant for νµ and νµ.

3. Scattering sphere until where neutrinos can still scatter on nucleons or nuclei with or
without energy exchange. This typically leaves the spectrum unchanged in each scattering
reaction, but can still lead to a changed flux spectrum measured at the decoupling region
due to energy dependent transport effects. Weak magnetism, for example, can lead to
different ν and ν flux spectra by affecting the scattering opacity of each neutrino energy
with opposite sign.

Note that this simple separation into three discrete spheres is only possible for the case of ντ
and ντ , where typically the number sphere lies before the energy sphere, which is followed by
the scattering sphere. In the case of νe and νe, this is considerably more difficult, as charged
current beta-reactions have the largest cross section and are typically the last reaction by which
an electron-flavor neutrino interacts. The number sphere therefore effectively becomes the last
active sphere and the effects cannot be disentangled as easily. Here we will try to identify
whether this is now also the case for νµ and νµ, where the large muon rest mass will create a
strongly energy dependent number sphere radius. Low energy νµ and νµ might behave more
like ντ and ντ , whereas high energy neutrinos might act more like νe and νe. Looking at Fig. 11.4
we can see that the addition of muonic interactions lead to no effective change for νe, as charged-
current absorption on neutrons remains the dominant effect at all neutrino energies. For νe,
inverse muon decay can provide some slight additional net number producing opacity at very
low neutrino energies and therefore slightly extends the number sphere radius. Thermal pair
production by e− – e+ annihilation, however, remains, next to charged current absorption on
nucleons, the primary production process for most energies. For νµ and νµ, the muonic opacities
already show an effect immediately after the bounce and can compete with the thermal pair
processes. Especially inverse muon decay is active down to very low energies and absorption
on nucleons is active out to the energy sphere for neutrino energies above the muon rest mass.
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The mean energy sphere however still remains unaffected, as shown by the similar behavior
of νµ and ντ mean energies. The addition of the new muonic processes, however, allow the
νµ to be in perfect chemical equilibrium inside the nascent PNS already immediately after the
bounce. For νµ the muonic opacities are still too small to have an effect, as antimuons are not yet
present. Note that the ντ and ντ serve as an excellent proxy for the s20.0-SFHo-standard case
representative heavy-lepton neutrino, as the only new neutral-current opacity, neutrino–muon
scattering, is weak at best.
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Figure 11.4: Density spheres of last interaction for all neutrinos of case s20.0-SFHo-muons at
tpb = 0.15 ms. The plots are displayed as a function of density and neutrino energy. The line
colors and styles shown in the legend are the densities where the optical depth of the specified
interaction becomes smaller than τeff = 2

3 . Neutrino energies above each line still readily
interact via the process, whereas below the line the matter has become transparent. Diagnostic
quantities are the ratio of the energy integrated number density J eq

ν /Jν × 100 in solid purple;
the mean energy of chemical equilibrium in dashed purple; the actual neutrino mean energy in
solid cyan. These quantities provide an estimate where the neutrinos leave the local chemical
or thermal equilibrium. The termination of an interaction sphere can be determined by the
crossing point of the neutrino mean energy and the last active opacity of that sphere.
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50 ms postbounce After 50 ms postbounce the two simulations start to diverge in PNS radius
and the effects of muonization start to become apparent. The hydrodynamic profiles in Fig. 11.2
are mostly identical, as the muon fraction is still low at only Yµ ≈ 0.005, and temperatures are
not high enough to create a sizable thermal muon pair gas. Some of the negative net µ neutrino
fraction has already leaked out but it remains negative throughout. The unmodified net τ
neutrino fraction has begun developing a sizable positive net number due to weak magnetism
as predicted in Ref. [51]. As ντ have a reduced scattering cross section on nucleons compared
to ντ they can diffuse out of the PNS faster, leaving a temporary surplus of ντ localized at the
temperature peak. Note, however, that the increased diffusion velocity of ντ inside the PNS
also leads to a buildup of negative net τ neutrino number on the denser side of the temperature
peak towards smaller radii. The enormous rest mass of tauons, however, prevents production
of a charged net tauon number and the surplus ντ will eventually diffuse out once the neutrino
energy gradients have equalized. νµ in contrast will preferentially diffuse out from the core,
as the developing substantial negative µ neutrino chemical potential leads to a large negative
νµ energy density gradient, while νµ will tend to flow inwards or be immediately absorbed
and converted into muons. The muons are still, to good approximation, in weak chemical
equilibrium with µ neutrinos at µνµ ≈ 0 throughout most of the PNS, and the muon chemical
potential additionally is in weak chemical equilibrium with electrons at µµ ≈ µe towards the
neutrinosphere of the PNS.
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Figure 11.5: Profiles of case s20.0-SFHo-muons in solid lines and s20.0-SFHo-standard in dashed
lines at tpb = 50 ms. Identical plot content as in Fig. 11.2, except muon fraction and net µ and
net τ neutrino fractions are only scaled by a factor of 10.
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The spheres of last interaction at tpb = 50 ms are shown in Fig. 11.6 with an extended
protoneutron star of approximately 70 km radius. No change is visible for νe as absorption on
nucleons remains the dominant opacity and the number sphere extends out to the PNS surface
for all neutrino energies. The muonic opacities are unimportant everywhere and only add a
miniscule additional opacity contribution. The νe situation is slightly different, as muonic opac-
ities have become competitive with thermal pair processes and inverse muon decay becomes
the last number producing opacity for E1 ≤ 5 MeV. νµ is in good chemical equilibrium up
to ρ ∼ 3 – 4 × 1012 g/cm3 due to the new opacities with a clear hierarchy of the beta-reaction
freezing out first, followed by the absorption on electrons/antimuons and inverse muon decay
being the last active opacity. The beneficial effect of nucleon interaction potentials has not been
able to increase the opacity of low energy νµ yet, but energies of E1 ≈ mµ can stay in chemical
equilibrium up the PNS surface. Correspondingly, the deviation of the νµ number from equilib-
rium is only slowly increasing. The picture for νµ is quite similar, however here the hierarchy is
beta-reactions to inverse antimuon decay to absorption on positrons/muons. Thermal pair pro-
duction of νµ remain the most significant number producing source, and chemical equilibrium
is not maintained significantly better than in the case of ντ . For both νµ and νµ, the traditional
ordering of number sphere to energy sphere to scattering sphere remains unchanged at this
early time.
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Figure 11.6: Density spheres of last interaction for all neutrinos of case s20.0-SFHo-muons at
tpb = 50 ms. The figure content is identical to Fig. 11.4.
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250 ms postbounce 250 ms postbounce, the effects of muonization have become fully appar-
ent as shown in Fig. 11.7. The density stratification of the inner core has remained mostly
unchanged. The hot extended mantle and cooling layer, however, show a steeper density gra-
dient and are located at smaller radii. The protoneutron star radius shows a reduction of 2 km,
from 34.6 km to 32.2 km. As the PNS contracts faster, some gravitational potential energy is
converted into additional thermal energy, causing the temperature peak to heat up an additional
2 MeV. Note that this increase in temperature would have been larger if a considerable amount
of energy had not already been transformed into muon rest mass energy. The net muon fraction
around the temperature peak has risen to Yµ = 0.042, with a slight negative net νµ fraction
and a positive net ντ fraction. The net νe and net e− fraction only show a small reduction,
being mostly just compressed into smaller radii. The net lepton fraction, and by extension the
proton fraction Yp = Ye + Yµ , show a large increase, as degenerate neutrons can be converted
to nondegenerate protons more readily by νµ absorption than in the Pauli-blocked electronic
case. The effect of the increased proton fraction in a muonized PNS compared to the purely
electronic case proves to be generic and is maintained during all further phases.

The additional compression of the PNS has increased the amount of pressure support
generated by the interacting nucleons, as the electronic contribution becomes less significant.
Contrary to the nucleons it remains mostly unchanged, showing that some of the electronic
pressure has been converted into muonic pressure. The muonic pressure itself has grown to
be larger than the photonic pressure contribution. The muon chemical potential has started to
deviate from weak chemical equilibrium and has become strongly negative in the inner core,
and slightly negative around the temperature peak. This is a consequence of the loss of νµ
number or production of νµ not occurring fast enough to allow a production of a sufficient
amount of muons. The influence of the νµ number loss can be readily understood by looking
at the reaction n + µ+ → νµ + p. If there is a surplus of νµ they will be absorbed onto the still
large abundance of protons in the dense core and produce antimuons, decreasing the net muon
number. This is a consequence of the faster inward diffusion of νµ due to weak magnetism
reducing the scattering opacity of high energy antineutrinos. On the other hand, a quicker loss
of νµ will lead to a smaller local antineutrino density than demanded by chemical equilibrium.
The system will then try to produce νµ to restore chemical equilibrium, by converting antimuons
from the thermally producedµ− –µ+ pairs into νµ. As the net muon number is Yµ = X

µ
−−X

µ
+ ,

this naturally leads to an increase.

Naively, one would assume the reduced scattering opacity of νµ by weak magnetism to
lead to a faster loss of νµ number. This is, however, not necessarily true. On the outer side
of the temperature peak, the spectra of neutrinos and antineutrinos, in the absence of muonic
reactions, will adjust themselves to maintain a steady state equilibrium of no net number flux
as shown in Ref. [51]. This leads to a hotter νµ spectrum that increases the rate of absorption.
This picture will have changed by the inclusion of muons, but the presence of an extended
scattering sphere following the number sphere will still lead to a similar effect of the number
flux trying to equilibrate. In effect, the νµ spectrum will be shifted to lower energies while the
νµ spectrum will be boosted to higher energies. As the muon reactions are strongly sensitive to
the high energy tail of the spectrum this can have a detrimental effect and suppress net muon
production.
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Figure 11.7: Profiles of case s20.0-SFHo-muons in solid lines and s20.0-SFHo-standard in dashed
lines at tpb = 250 ms. Identical plot content as in Fig. 11.2 except muon fraction and µ and τ
neutrino fractions are not scaled anymore.

The interaction spheres at tpb = 250 ms are shown in Fig. 11.8. The νe situation remains
mostly unchanged. For νe, inverse muon decay remains essential only for low energy neutrinos
but otherwise has little importance. Thermal effects have become apparent for νµ and νµ, as
beta-reactions on nucleons are now open to all neutrino energies even below the nominally
hard muon rest mass cutoff. In contrast to electron neutrinos, the µ neutrinos can however
still not stay in chemical equilibrium at densities lower than ρ ∼ 1013 g/cm3, followed by an
extensive energy and scattering sphere. Any memory of the muonic reactions is therefore
destroyed, and a spectral shape very close to ντ should be restored. The only effect on the
neutrino spectral shape is consequently purely caused by temperature variations in the mantle
at the energy-dependent neutrinospheres.
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Figure 11.8: Density spheres of last interaction for all neutrinos of case s20.0-SFHo-muons at
tpb = 250 ms. The figure content is identical to Fig. 11.4.
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Figure 11.9: Profiles of case s20.0-SFHo-muons in solid lines and s20.0-SFHo-standard in dashed
lines at tpb = 500 ms. Identical plot content as in Fig. 11.7.

500 ms postbounce At this late stage, the protoneutron star has entered a quasi-steady-state
evolution, where neutrino emission perfectly balances the energy gain by gravitational contrac-
tion, and the maximum temperature will stay roughly the same for the remaining evolution.
The final maximum muon fraction has settled at Yµ ≈ 0.058; the electron fraction shows only a
smaller maximum decrease of about ∆Ye ≈ 0.02, with the result of an increased proton fraction
compared to the standard case. The amount of trapped electron fraction seems to be nearly
unchanged, except shifted to slightly smaller radii. The increased proton fraction leads to a
slight increase in proton chemical potential at the location of the temperature maximum, but
only a mild change in neutron chemical potential.

Note that strong nuclear interactions between the nucleons are attractive around saturation
density and the chemical potentials are influenced by the symmetry energy J via (see Ref. [32])

µn − µp ≈ 4βJ (T, ρ) , (11.3)

where β = 1 − 2Yp is the asymmetry parameter. Additionally, one can expand the binding
energy per baryon at T = 0 MeV around saturation density in a power series (see for example
Ref. [43]) to be

E (x, β) = −E0 +
1

18
Kx2 +O(x3) + β2

(
J +

1

3
Lx+O(x2)

)
+ · · · , (11.4)

where x = nB/n
0
B − 1 is the relative deviation from saturation density, E0 is the binding energy

at saturation density of symmetric matter, K is the bulk incompressibility, J is the symmetry
energy, and L is the slope of the symmetry energy. For values of the used SFHo EOS are

93



11.1 Steady-state accretion 11 1D SIMULATIONS

(see Ref. [32]): E0 = 16.19 MeV, K = 245 MeV, J = 31.57 MeV and L = 47.1 MeV. The
reduction of the asymmetry parameter at the SFHo saturation density of n0

B = 0.1583 fm−3 ≈
2.63×1014 g/cm3, from β = 1−2Ye ≈ 1−2 ·0.253 = 0.495 in the standard case to β = 1−2Yp ≈
1 − 2 · 0.28 = 0.44 in the muonic case, reduces the binding energy per nucleon at saturation
density by ∆E = 1.575 MeV. According to Eq. 11.4, the muonic case would need to increase
density by a factor of xmuons = 0.2645 to maintain the same binding energy as the standard case
has at saturation density, i.e.,

Emuons (xmuons, βmuons) =
K

18
x2

muons + β2
muons

(
J +

L

3
xmuons

)
= β2

standardJ = Estandard (0, βstandard) ,

if we were neglecting any thermal effects.

Looking at the overall increased pressure everywhere in the PNS is not instructive in de-
termining which exact factor is responsible for the decrease in PNS radius, as the hydrostatic
pressure gradient is directly set by gravitational acceleration and density to be

∂P

∂r
= −∂Φ

∂r
ρ . (11.5)

However, the influence of the symmetry energy alone shows that the radius reduction of the
PNS depends on all variables simultaneously. If one were to look at the individual components
of the EOS in isolation, it would be easy to identify a single cause for the radius reduction. For
example, if thermal energy is purely converted into muon pairs at rest, one loses Eγ = 2mµ

of energy and Pγ = 1
3Eγ of pressure, converting it into Erest mass

µ = 2mµ and P
pair
µ = 0 MeV.

The muons would then quickly thermalize with the surrounding matter, which consumes a
further Einternal

µ ≈ 2 · 3
2T to gain P pair

µ ≈ 2Tnew in pressure, at a new reduced temperature Tnew
given by energy conservation. As long as the main pressure contribution does not result from
quasi-temperature independent effects like strong interactions or high degeneracy, a reduced
temperature leads to an overall reduced pressure of all EOS components. Due to hydrostatic
equilibrium, given by Eq. 11.5, this will lead to an increase in central density and a corresponding
reduction in PNS radius. Additionally, increased GR corrections to the gravitational potential
further magnify the effect. Similarly, converting a degenerate electron with chemical potential
µe ∼ 250 MeV into a nondegenerate muon, while neglecting neutrinos, converts initial kinetic
energyEe ≈ 3

4µe with pressurePe ≈ 1
4µe into a partly relativistic muon of energyEµ ≈3

4µe−mµ

and pressure Pµ = 1
4µe − 1

3mµ . The final temperature, after the muon has thermalized and
lost the surplus energy 3

4µe −mµ − 3
2Tneu, is likely to be higher than the initial temperature.

As the degenerate electron gas is not sensitive to temperature variations, this would, however,
still lead to an overall loss of pressure. The PNS will then again contract to restore hydrostatic
equilibrium.

To determine the effect muonization has on the EOS at saturation density and temperatures
of around T = 50 MeV, we will compare temperatures and pressures under the constraint
of energy and charge conservation if a standard gas of only nucleons, nuclei, electrons and
photons is instantaneously supplemented

1. by a gas of pure muon pairs.

2. by the maximum net muon number plus muon pairs we observed in our simulation, via
a direct exchange of electron and muon number.

3. by the maximum net muon number plus muon pairs in addition to the original electron
number, thereby changing the asymmetry parameter β of Eq. 11.4.
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The third column in Table 11.1 shows that adding the pure muon-antimuon gas, equivalent to
µµ = 0, reduces the temperature by 1.45 MeV as thermal energy is converted into muon rest
mass energy. The temperature reduction decreases the pressure of all components, which is
only partly compensated by the pressure of the new muon pairs. The fourth column shows
how releasing electron degeneracy energy can lead to a net gain in temperature as the electron
chemical potential is well above the muon rest mass. The loss of electron pressure is, however,
larger than the gain in muon pressure, and the total pressure is reduced slightly compared to
the unmodified state. The fifth column shows the effect of reducing the asymmetry parameter
β by keeping electron number constant and muon production only happening via absorption
reactions on neutrons. This shows the lowest temperature and pressure out of all considered
variations as the baryonic pressure is significantly reduced and electrons were not able to release
any degeneracy energy.

ρ = 2.63× 1014 g/cm3 T = 50 MeV T = 48.65 MeV T = 50.14 MeV T = 46.20 MeV

Yp = 0.25 Yp = 0.25 Yp = 0.25 Yp = 0.308

Ye = 0.25 Ye = 0.25 Ye = 0.192 Ye = 0.25

Yµ = 0 only µ−-µ+pairs Yµ = 0.058 Yµ = 0.058

Enormalized
total 3.052× 1034 3.050× 1034 3.054× 1034 3.052× 1034

Enormalized
baryonic 1.550× 1034 1.494× 1034 1.557× 1034 1.327× 1034

Eelectronic 1.414× 1034 1.387× 1034 1.068× 1034 1.342× 1034

Emuonic 0 9.057× 1032 3.404× 1033 3.185× 1033

Ephotonic 8.572× 1032 7.685× 1032 8.671× 1032 6.251× 1032

Ptotal 1.759× 1034 1.732× 1034 1.732× 1034 1.673× 1034

Pbaryonic 1.288× 1034 1.248× 1034 1.292× 1034 1.148× 1034

Pelectronic 4.425× 1033 4.366× 1033 3.268× 1033 4.266× 1033

Pmuonic 0 2.147× 1032 8.406× 1032 7.661× 1032

Pphotonic 2.857× 1032 2.563× 1032 2.890× 1032 2.084× 1032

Table 11.1: Energy and pressure of all gas components for the conditions in the top four rows.
All energies and pressures are given in [erg/cm3], and the baryonic and total energy densities
have been normalized by Enormalized = Erelativistic − ρ/mB

(
mn − E0

)
where E0 = 9.2 MeV,

mB = 1.66× 10−24 g and mn = 939.5731 MeV.

For reference, we also show a similar analysis for conditions further out, at a density of
ρ = 5× 1013 g/cm3 and a temperature of T = 15 MeV. Here we see that the temperature is too
low for muon–antimuon pairs alone to have any effect. Only the cases where net muon number
is included show a lower temperature and pressure. One can see that the temperature after
conversion of electrons into muons is lowered, as the electron chemical potential is not large
enough to compensate for the additional muon rest mass. In these conditions, muonization
via net muon number will always lead to a reduction in pressure and temperature and to a
contraction of the protoneutron star to maintain hydrostatic equilibrium.
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ρ = 5× 1013 g/cm3 T = 15 MeV T = 15 MeV T = 14.91 MeV T = 14.77 MeV

Yp = 0.08 Yp = 0.08 Yp = 0.08 Yp = 0.0835

Ye = 0.08 Ye = 0.08 Ye = 0.0765 Ye = 0.8

No muons only µ−-µ+pairs Yµ = 0.0035 Yµ = 0.0035

Enormalized
total 1.569× 1033 1.569× 1033 1.569× 1033 1.569× 1033

Enormalized
baryonic 1.269× 1033 1.269× 1033 1.263× 1033 1.249× 1033

Eelectronic 2.925× 1032 2.925× 1032 2.765× 1033 2.906× 1033

Emuonic 0 4.878× 1029 2.227× 1031 2.223× 1031

Ephotonic 6.952× 1030 6.940× 1030 6.784× 1030 6.529× 1030

Ptotal 6.484× 1032 6.481× 1032 6.413× 1032 6.369× 1032

Pbaryonic 5.508× 1032 5.505× 1032 5.466× 1032 5.374× 1032

Pelectronic 9.515× 1031 9.513× 1031 8.989× 1031 9.466× 1031

Pmuonic 0 5.558× 1028 2.551× 1030 2.527× 1030

Pphotonic 2.317× 1030 2.314× 1030 2.2610× 1030 2.176× 1030

Table 11.2: Energy and pressure of all gas components for the conditions in the top four rows
as in Table 11.1.

In Fig. 11.10 we show all neutrino opacities weighted by the local neutrino energy density
via

1

λweighted
=

∫
dE1 J (E1) 1

λ (E1)∫
dE1J (E1)

, (11.6)

where we neglect final phase-space blocking for the case of scattering reactions but take the
local partner neutrino spectrum into account for pair reactions. Absorption on nucleons and
muonic absorption onto lepton reactions are determined by their respective stimulated opacity
and therefore contain equilibrium final phase-space blocking and local emissivity. As the
interaction spheres are very similar to the situation at tpb = 0.25 s of Fig. 11.8, we instead focus
here on the local opacities rather than the optical depth. This allows us to identify the local
relative importance of the different opacities for the speed of neutrino diffusion, rather than the
neutrino spectra forming radii. For νe we can see that the muonic opacities cannot compete with
the classical opacities anywhere, except in a very localized region around saturation density.
As neutrino absorption on nucleons, however, is magnitudes stronger at all densities this does
not have any impact. The νe show an interesting property in that νe absorption on electrons
outperforms νe absorption on protons above saturation density. This is a consequence of final
phase-space blocking of degenerate neutrons, as well as the interaction potential difference
penalty. This behavior is maintained throughout the deleptonization phase and suppresses the
νe flux from inside the dense core. Inverse muon decay is however unimportant compared to
other opacities. The νµ plot shows νµ absorption on neutrons and νµ absorption on electrons
to be of roughly equal importance around saturation density and stronger than scattering
on nucleons, but they decrease quickly as the local mean neutrino energy becomes too low.
Towards lower densities and approaching the PNS surface, the opacities of muonic processes
are within one or two magnitudes of each other, at roughly the same strength as the pair
processes. Neutrino–muon scattering can also outperform neutrino–electron scattering around
the maximum muon density, but quickly becomes as muons abundance decreases towards
lower densities. The νµ overall show similar behavior as the νµ, except that νµ absorption on
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muons can compete with νµ absorption on protons down to ρ = 1013 g/cm3. This is however only
a consequence of the low proton fraction rather than any particular strength of the absorption
on muons process. Overall, neutrino diffusion is still governed by the nucleonic scattering
process, but muonic processes take over neutrino production. As ντ and ντ remain unmodified,
we skip a discussion of their rates.
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Figure 11.10: Weighted opacities at tpb = 0.5 s according to 1
λweighted =

∫
dE1 J(E1)

∫
dE3 φ

out
0 (E1,E3)∫

dE1 J(E1)
.
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11.1.2 Time evolution

After having analyzed radial profiles at select times, we will now examine the time evolution
of specific quantities.

Radii The radius evolution of the PNS in Fig. 11.11 shows a consistent reduction of the radius
in the muons case compared to the standard case immediately after the bounce, reaching a
maximum contraction of about ∆r ≈ −2.5 km after only 200 ms of cooling. As the PNS mantle
shrinks and baryonic pressure becomes the dominant pressure contribution everywhere in the
PNS, both cases will tend to converge to the same final cold radius.
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Figure 11.11: On the left, the radius evolution of the PNS defined as the radius where density is
equal to ρ = 1011 g/cm3 for cases s20.0-SFHo-standard in black and s20.0-SFHo-muons in red;
on the right, the absolute difference of both radii defined as ∆r = rmuons

PNS − rstandard
PNS .

Concomitant with the reduced PNS radius is a reduction of the PNS surface area that is an
essential quantity for the neutrino emission properties, plotted in Fig. 11.12. As the PNS surface
area is decreased, one would expect a reduction in luminosity of about 15% if the model would
otherwise remain unchanged. Due to different PNS temperatures and emission properties, this
is not necessarily the case as can be seen as we go on.

The shock radius evolution in Fig. 11.13 is mostly determined by the steady-state shock
condition and follows the PNS radius via following relation (see Ref. [57])

Rshock ∝
(
RPNSTν

)8/3
Ṁ2/3M

1/3
PNS

, (11.7)

where RPNS is the current radius of the PNS, Tν is the temperature at the electron neutrino
neutrinosphere, Ṁ is the mass accretion rate onto the shock and MPNS is the PNS gravitational
mass. As 1D simulations generally do not explode since they lack the beneficial effects of
convection and hydrodynamic instabilities, the shock will, except for special cases of progenitors
(e.g., Ref. [84]), always end up in a state of steady-state accretion. As our muonic case does not
modify the denominator in any way and only decreases the PNS radius, this will accordingly
lead to a reduced shock radius that closely tracks the radius evolution in Fig. 11.11. The transient
bump in the shock radius at tpb ≈ 0.25 s is caused by the infall of the silicon-oxygen (Si-O) shell
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interface that leads to a steep drop in mass accretion rate and concomitant transient shock
expansion.
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Figure 11.13: On the left, the evolution of the shock radius for cases s20.0-SFHo-standard in
black and s20.0-SFHo-muons in red; on the right, the absolute difference of both radii defined
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shock − r
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Neutrino heating As there is an additional contribution by the neutrinospheric temperature,
we will also plot as a simple approximation the temperature defined at the PNS surface,
equivalent to r

(
ρ = 1011 g/cm3

)
. As heavy-lepton neutrinos still do not provide significant

additional heating, we can neglect their more complicated neutrinosphere locations for now.
As visible in Fig. 11.14, the addition of muons has increased the temperature at the PNS surface
by up to ∆Tν ≈ 0.4 MeV. This increase is mainly a consequence of the increased PNS contraction
rather than modified heating or cooling by heavy-lepton neutrinos, as all new muonic processes
have already frozen out at the νe neutrinosphere. The increased neutrinospheric temperature
enters the steady-state shock condition and can compensate slightly for the reduced PNS radius.
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Figure 11.14: On the left, the evolution of the neutrinosphere temperature for cases s20.0-SFHo-
standard in black and s20.0-SFHo-muons in red; on the right, the absolute difference of both
temperatures defined as ∆Tν = Tmuons

ν − T standard
ν . For convenience, we use the temperature

at the PNS surface, shown in Fig. 11.11, as our electron neutrino neutrinosphere, which is a
reasonable approximation.

Another vital quantity to be looked at is the gain radius, where the cooling due to energy
loss via neutrino emission of all flavors is balanced precisely by mostly absorption on nucle-
ons by electron neutrinos. This radius demarcates the cooling layer from the gain layer that
extends up to the shock. In Fig. 11.15 we show the gain radius defined by the radius where
the energy deposition source term by neutrinos changes sign from negative, indicating net
cooling, to positive, indicating net heating. This radius strongly correlates with the PNS radius,
temperature profile in the cooling layer, and mass accretion rate settling onto the PNS. As we
can see, the gain radius retreats to smaller radii, as the PNS contracts faster in the muonic case.
As all radii, i.e., PNS radius, gain radius, and shock radius show a contraction compared to
the standard case, it is essential to check whether this is beneficial towards increasing neutrino
heating. A reduced PNS radius will in general lead to a reduced angle-integrated neutrino
luminosity as the neutrino emitting surface decreases. This decrease in PNS radius will need
to be compensated by the increased temperature at the respective neutrinosphere, at which the
neutrino luminosity roughly scales by Lν ∝ R

2
PNST

4
ν in a black-body like fashion.

Furthermore, one needs to compare the volume contained in the gain layer. As the mass
accretion rate is unchanged between both standard and muon cases, this will directly relate
to the mass held inside the gain layer that can be heated by neutrinos. A large contained
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Figure 11.15: On the left, the evolution of the gain radius for cases s20.0-SFHo-standard in
black and s20.0-SFHo-muons in red; on the right, the difference of both radii defined as ∆r =

rmuons
gain − rstandard

gain .

mass increases the chance of the weakly-interacting neutrinos to interact with the matter, and
together with the luminosity and root mean square of the energy is an essential ingredient to
improving the neutrino heating efficiency. The contraction of the gain radius as well as of the
shock radius might lead to a reduction of the gain layer volume, and thereby to a less optimistic
chance of shock revival in the muonic case, if the gain layer volume does not retreat faster than
the shock radius. The gain layer volume is calculated by

Vgain = 4π

∫ rshock

rgain

dr r2 . (11.8)

As can be seen in Figs. 11.16 and 11.17, the muonic case features a 30% reduction of the enclosed
volume in the gain layer and therefore also a reduced gain layer mass by up to 20%. Note that
the gain layer mass is not decreased as much as the volume itself, as the accreting matter is
more compressed inside the gain layer.

The retreating gain radius is directly related to the increased temperature at the PNS surface
in Fig. 11.14 as the cooling rate roughly scales with

Q−E ∝ T
6 (11.9)

(see Ref. [57]), and is therefore extremely sensitive to small temperature variations. As the gain
radius is located at the point where the heating rate can just compensate the cooling rate, it will
be shifted to higher radii if the temperature profile is shallower in the cooling layer.

The increased cooling rate will need to be compensated by an increase in heating rate,
proportional to

Q+
E ∝ Lν〈E

2
ν〉 (11.10)

(see Ref. [57]), where 〈E2
ν〉 is the mean square of the neutrino energy moment. The mean square

reflects the energy scaling behavior of the neutrino cross sections, e.g., the energy source term
for absorption reactions is Q+

E ∝ κLνand κ ∝ peEennuc ≈ E2
νnnuc in the elastic approximation.
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Figure 11.16: On the left, the evolution of the enclosed volume of the gain layer for cases s20.0-
SFHo-standard in black and s20.0-SFHo-muons in red; on the right, the relative difference of

both volumes defined as ∆V =
V

muons
gain −V standard

gain

V
standard

gain
× 100.
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Figure 11.17: On the left, the evolution of the gain layer mass in units of solar mass for cases
s20.0-SFHo-standard in black and s20.0-SFHo-muons in red; on the right, the relative difference

of both masses defined as ∆m = m
muons−mstandard

m
standard × 100.

The mean energy of the emitted neutrinos is set by the temperature at the respective energy-
dependent energy-sphere of each neutrino species, as depicted in the preceding sections for
specific times. As each neutrino decouples at a different radius and temperature, the spectrum
will be distorted and “pinched” as described in Ref. [113]. Our inclusion of inelastic nucleon
scattering will further deplete the high energy tail and may form an extended scattering-sphere
with residual energy transfer.
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The mean energy of an isotropic nondegenerate Fermi-Dirac gas in perfect thermal equilib-
rium with the surrounding gas is given by

〈E〉 =

∫
dE E3fFD (E, η, T )∫
dE E2fFD (E, η, T )

. (11.11)

The appearing integrals of the standard Fermi-Dirac distribution of an ultrarelativistic gas of

fFD (E, η, T ) =
1

exp (E/T − η) + 1
(11.12)

can be solved analytically in the case of vanishing degeneracy, η = 0 (according to Ref. [82]), to
be equal to

Fk (η = 0) =
(

1− 2−k
)

Γ (k + 1) ζ (k + 1) , (11.13)

where
∫

dE E2fFD (E, 0, T ) = F2 (0) and
∫
dE E3fFD (E, 0, T ) = F3 (0). The resulting mean

energy for vanishing neutrino chemical potential is

〈E〉T ≈ 3.1514Tν . (11.14)

This is a valid approximation for the resulting mean energy of the emitted neutrinos, as they
have close to vanishing chemical potential at their respective energy-spheres. An increased
temperature along the mantle, therefore, leads to hotter mean neutrino energies, regardless of
the neutrino species involved. As we wish to evaluate the heating rates over the gain layer, we
need to compute the mean energy and root mean square (RMS) of the neutrino energy moment
as it enters the gain layer. Trying to estimate neutrino heating from quantities measured at the
typical radius of 500 km would lead to an underestimation of the RMS energy present in the
gain layer, as absorption onto post-shock nucleons and residual scattering events would further
suppress the high energy tail.

The mean neutrino energy of all species, measured at the location of the gain radius in the
comoving frame, is shown in Fig. 11.18. The mean neutrino energy is defined as

〈Eν〉 =

∫∞
0 dE Jν (E)∫∞
0 dE Jν (E)

, (11.15)

where Jν (E) is the local neutrino energy density, and Jν (E) is the local neutrino number
density. One could further disentangle the mean energy by separating it into the mean energy
of the neutrino energy density Jν (E) of Eq. 11.15, and the mean energy of the neutrino energy
flux densityHν (E). The first mean energy is relevant for neutrino heating, whereas the second is
relevant for the neutrino transport opacity. At the gain radius, these two quantities will be very
similar, as the flux factor fH (E) = Hν (E) /Jν (E) is close to unity. In Fig. 11.18 we can see that
the mean energy of both νe and νe are increased by ∆〈E〉 ≈ 1 MeV, which correlates well with
the increase of Tν in Fig. 11.14. In combination with Eq. 11.14, an increase of ∆Tν ≈ 0.35 MeV
leads to an increase in mean energy of ∆〈Eν〉 ≈ 3.1514∆Tν ≈ 1.1 MeV. The mean energy of
the νe being larger than 〈E〉Tν ≈ 3.1514Tν ≈ 3.1514 · 6.2 MeV = 19.5 MeV at tpb = 0.5 s of the
muonic case indicates that the temperature difference between muonic and standard case is still
maintained at their earlier decoupling radius. As the µ and τ neutrinos are not particularly
important for neutrino heating, their quantities will be evaluated later as lab-frame quantities.

The RMS energies relevant to the heating rate are an extension of the mean energy by an
increased weighting of the high energy tail by E2 to better reflect the neutrino cross-section
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Figure 11.18: On the left, the evolution of the mean comoving energy of the local neutrino
energy density at the gain radius defined as 〈E〉 =

∫
dE J (E) /

∫
dE J (E) for cases s20.0-

SFHo-standard in black and s20.0-SFHo-muons in red; on the right, the difference of both mean
energies defined as ∆〈E〉 = 〈E〉muons

gain −〈E〉standard
gain . A thermal mean energy computed from the

neutrinosphere temperature of Fig. 11.14, according to 〈E〉T ≈ 3.1514Tν , is plotted as dotted
lines on the left panel.

energy dependence. There are various definitions of the RMS energy being used in that they
typically either measure the RMS energy of the neutrino energy density,

√
〈E2〉E =

√∫
dE E2J (E)∫

dE J(E)
=

√√√√∫ dE E5fν (E)∫
dE E3fν (E)

, (11.16)

or the RMS energy of the neutrino number density,

√
〈E2〉N =

√∫
dE E2J (E)∫

dE J (E)
=

√√√√∫ dE E4fν (E)∫
dE E2fν (E)

. (11.17)

As we are interested in the energy deposition by the electron neutrinos and the cross section

enhancement, we will focus here on
√
〈E2〉E. In Fig. 11.19 one can see that the RMS energy

shows an even larger increase of ∆

√
〈E2〉E ≈ 1.5 MeV. The increased enhancement of the νe

RMS energy indicates a hotter spectrum compared to νe and less pinching. One reason for
this might be weak magnetism corrections to the neutrino–nucleon scattering opacity that have
opposite signs for ν and ν . As the νe number-sphere lies slightly inside the residual scattering
sphere and decouples at higher temperatures, the weakened suppression of the high energy tail
leads to a spectral shift as described in Ref. [47] (Sec. Vb). The thermal RMS energy computed
according to

√
〈E2〉T =

√
F5 (0)

F3 (0)
=

(
1− 2−5

)
Γ (6) ζ (6)(

1− 2−3
)

Γ (4) ζ (4)
≈ 4.5622Tν (11.18)
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compares well to the νe spectrum after tpb = 0.3 s, indicating that the νe spectral shape has
become nearly perfectly thermal. Before this, it shows strong pinching due to absorption onto
nuclei and free nucleons.
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Figure 11.19: On the left, the evolution of the root mean square comoving energy of the local

neutrino energy density at the gain radius defined as
√
〈E2〉E =

√∫
dE E2J (E) /

∫
dE J(E)

for cases s20.0-SFHo-standard in black and s20.0-SFHo-muons in red; on the right, the difference

of both RMS energies defined as ∆

√
〈E2〉E =

√
〈E2〉muons

E,gain −
√
〈E2〉standard

E,gain . A thermal RMS

energy computed from the neutrinosphere temperature of Fig. 11.14, according to
√
〈E2〉T ≈

4.5622Tν , is plotted as dotted lines on the left panel.

The comoving luminosity of electron neutrinos as measured at the gain radius is the other
necessary quantity in Eq. 11.10 to determine the neutrino heating inside the gain layer and is
calculated via

Lν

(
rgain

)
= 4πr2

∫ ∞
0

dE 4πH (E) . (11.19)

In Fig. 11.20 we can see that the luminosity of νe are quite enhanced by about ∆Lνe ≈ 2 – 3 B/s
compared to the standard case, while the νe luminosity remains nearly unchanged and only
increases by up to ∆Lνe ≈ 1 – 2 MeV. Interestingly both Lνe , as well as Lνe , are almost identical
after tpb = 0.25 s.

As we see an increased mean energy of both νe, as well as νe, this must mean that the number
flux has evolved differently, with

Lν
(
rgain

)
= 4πr2

∫ ∞
0

dE 4πH (E) . (11.20)

In Fig. 11.21 we can see that the νe number flux is nearly unchanged. In combination with
the increased mean energy, this explains the heightened νe luminosity. The νe number flux,
however, is reduced, which seems to compensate for the increased mean energy and reproduces
the standard case νe luminosity. We need to remember however that the luminosity is also a
function of the surface of the radiating sphere, where Lν ∝ T

4
νR

2
PNS if the emission approaches

the Stefan-Boltzmann law of a black-body radiating sphere. As the PNS radius in the muonic
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Figure 11.20: On the left, the evolution of the comoving luminosity measured at the gain radius
for cases s20.0-SFHo-standard in black and s20.0-SFHo-muons in red; on the right, the difference
of both luminosities defined as ∆Lν = Lmuons

ν − Lstandard
ν .

case is reduced compared to the standard case, according to Fig. 11.11, this means the muonic
case has an increased neutrino flux density at the PNS surface.

Having analyzed all quantities that enter the integrated gain layer heating rate individually,
we can now look at the combined result. In Fig. 11.22 it is evident that the muonic case and
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Figure 11.21: On the left, the evolution of the comoving number luminosity measured at the
gain radius for cases s20.0-SFHo-standard in black and s20.0-SFHo-muons in red; on the right,
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standard case have nearly identical integrated heating rates according to

Qint
E = 4π

∫ rshock

rgain

dr r2QE (r) . (11.21)

The reduced gain layer volume somewhat counteracts the increased luminosity and RMS
energies of the dominant interacting neutrinos, i.e., νe and νe. In the 1D case, the increased
luminosity and RMS energy are, at early postbounce times, not able to adequately compensate
for the accelerated PNS contraction and the steady-state shock contracting with it. Indeed,
Fig. 11.23 shows that the neutrino heating efficiency,

Qint
eff =

Qint
E

L
gain
νe + L

gain
νe

× 100 (11.22)

giving the percentage of neutrino energy being deposited in the gain layer, is only increased by
up to 5–10% at late times. Note however that this might be improved further if hydrodynamic
instabilities, as well as convective energy transport, can efficiently extend the gain layer volume
via violent shock motion. A more efficient transfer of energy into the gain layer, as seen in the
following 2D section, shows that the muonic case can prove favorable to explosions.
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Neutrino signal The neutrino signal is evaluated in the lab-frame and extracted at a radius
of r = 400 km to prevent excessive smearing of the neutrino signal by numerical diffusion. The
lab-frame measurement represents the signal as it would be measured by an observer located
at an infinite distance and corrected for all Doppler and gravitational redshift effects. The
(v/c)-accurate lab-frame transformed luminosity is defined according to Eq. 5.21 by

Llab
ν (r = 400 km) = 4πr2eΦ (r)

{∫ ∞
0

dE 4πH (r, E) + β (r)

∫
dE 4πJ (r, E) (1 + fK (r, E))

}
,

(11.23)

where eΦ is the gravitational lapse of our effective GR gravitational potential, accounting for
time dilation and gravitational redshift effects. The addition of muons in Fig. 11.24 shows,
just as in the comoving quantities evaluated earlier at the gain radius, that the νe luminosity
is enhanced by the accelerated contraction and increased temperature at the neutrinosphere.
Interestingly the νe luminosity is now practically identical to the νe luminosity after the drop in
mass accretion rate at the point in time when the Si-O shell interface falls through the shock. The
νµ luminosity is considerably enhanced by the decay of antimuons or respectively by antimuon
capture onto neutrons, whereas the νµ luminosity is slightly reduced.

This is a consequence of the muonization of the PNS, where the developing net muon
number needs to produce a corresponding net νµ number flux to maintain lepton flavor number
conservation. This is more directly related to the number luminosity defined as

Llab
ν (r = 400 km) = 4πr2

{∫ ∞
0

dE 4πH (r, E) + β (r)

∫
dE 4πJ (r, E)

}
(11.24)

in Fig. 11.25, which shows that there is a negative net νµ number flux by increased emission
of νµ compared to νµ. This is in contrast to the equal number flux of ντ and ντ that exhibit the
radiating surface reduction in the muonic case . The consequence of differential net νµ number
flux for lepton flavor conservation and checks thereof will be explored in the long-term cooling
simulation. A comparison between νµ and ντ shows that they are very similar to each other
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with not as big a difference as between νµ and ντ . This leads to the conclusion that the build-up
of net muon number is not primarily caused by increased absorption of νµ, which would imply
considerable less number flux than the ντ , but rather by the preferential emission of νµ.
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Figure 11.24: On the left, the evolution of the lab-frame luminosity of νe and νe for cases s20.0-
SFHo-standard in black and s20.0-SFHo-muons in red, in the middle of νµ and νµ and on the
right the same for ντ and ντ . Note that in the standard case νµ = ντ as well as νµ = ντ .
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Figure 11.25: On the left, the evolution of the lab-frame number luminosity of νe and νe for cases
s20.0-SFHo-standard in black and s20.0-SFHo-muons in red, in the middle of νµ and νµ and on
the right the same for ντ and ντ . Note that in the standard case νµ = ντ as well as νµ = ντ .

The lab frame mean energies of all considered neutrinos, calculated by

〈E〉lab =
Llab
ν (r = 400 km)

Llab
ν (r = 400 km)

, (11.25)
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show considerable enhancement caused by the increased neutrinosphere temperature. Note
that the difference of the νe and νe mean energy between muonic and standard case is reduced,
at only ∆Elab

νe |νe ≈ 0.75 MeV, compared to the comoving quantities evaluated at the gain radius
in Fig. 11.18. The reduction is caused by the stronger absorption of the high energy tail in the
muonic case. A similar effect happens for the heavy-lepton neutrinos, where mostly neutrino-
nucleon, as well as neutrino-electron scattering lead to a small energy loss. The mean energy of
νµ is increased by ∆Elab

νµ
≈ 0.6 MeV, that of νµ by ∆Elab

νµ
≈ 0.4 MeV. Note that the µ neutrinos

show a tiny bit higher mean energy than the τ neutrinos, even though they decouple at least
at the same temperature. The exact reason for this, however, cannot be easily determined
and might be an artifact caused by the still slightly tighter bound high energy bins of νµ and
remaining weak magnetism differential transport effects.
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Figure 11.26: On the left, the evolution of the lab-frame mean energy of νe and νefor cases
s20.0-SFHo-standard in black and s20.0-SFHo-muons in red, in the middle of νµ and νµ and on
the right the same for ντ and ντ . Note that in the standard case νµ = ντ as well as νµ = ντ .

The mean energy alone is however not sufficient to characterize the spectral shape of the
emitted neutrino signal, as the high-energy tail might be significantly nonthermal. One possible
method to parameterize the shape of the spectrum is to use the so-called alpha-fit (see Ref. [113]).
The alpha parameter here characterizes the width of the spectrum around the mean energy, and
is defined by the ratio between the first and second energy moment of the neutrino spectrum

〈E2〉
〈E〉2

=
2 + α

1 + α
, (11.26)

where the definition of an arbitrary energy moment is

〈En〉 =

∫
dE En+2fFD (E, η, T )∫

dE E2fFD (E, η, T )
. (11.27)

The Fermi-Dirac number spectrum

fN
FD (E, η) =

E2

exp (E/T − η) + 1
(11.28)
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can then be approximated via

fN
FD ≈ fα (E, 〈E〉, α) =

(
E

〈E〉

)α
exp [− (−α+ 1) (E/〈E〉)] . (11.29)

The alpha-fit can represent a broader range of spectral pinching than an “effective degeneracy”
fit can. A Fermi-Dirac spectrum that is purely thermal, i.e., (η = 0), then corresponds toα ≈ 2.3,
a Maxwell-Boltzmann spectrum, i.e., (η = −∞), to α = 2. The direction of spectral pinching is
then given by whetherα is larger or smaller than 2.3. α < 2.3 yields anti-pinched spectra, which
indicates spectra that have a longer high-energy tail than thermal spectra, while α > 2.3 yields
pinched spectra, which mean spectra that have a shortened high-energy tail when compared
to thermal spectra. In Fig. 11.27 the alpha parameter remains nearly unchanged for νe, which
starts out strongly pinched due to absorption on nuclei and nucleons but quickly becomes close
to thermal after the accretion of the Si-O interface at tpb ≈ 0.25 s. Meanwhile, the νe also start
pinched and remain pinched through most of the simulation time, but with the muonic case
coming closest to a purely thermal spectrum. The heavy-lepton neutrinos in both cases start
out somewhat pinched but rapidly approach thermal and even strongly anti-pinched spectra,
with the muonic case showing a considerably extended high-energy tail for both µ and τ
neutrinos. Both νµ and ντ are very similar to each other, as the muonic processes have frozen
out long before the spectrum stops being formed. In this case, energy redistribution via inelastic
scattering events are responsible and lead to identical spectral shapes.
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Figure 11.27: On the left, the evolution of the shape parameter α, defined by Eq. 11.26 of νe and
νe for cases s20.0-SFHo-standard in black and s20.0-SFHo-muons in red, in the middle of νµ and
νµ and on the right the same for ντ and ντ . Note that in the standard case νµ = ντ as well as
νµ = ντ .
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The time-integrated total emitted energy in the form of neutrinos is shown in Fig. 11.28.
There we can see that νe and νµ show the largest enhancement in emitted energy, whereas νµ and
τ neutrinos show reduced luminosity compared to the standard case. As the increased energy
emitted in the νµ channel is compensated by the reduced νµ, ντ and ντ luminosity, the largest
net difference is in the form of νe. The total integrated energy emitted in the form of neutrinos
is nearly identical to the standard case, showing that most of the increased PNS contraction is
not caused by a more efficient neutrino energy loss, but rather by equation of state effects by
muons. Note that the decreased surface area of the PNS, compared to the standard case, should
again lead to a nominally decreased angle-integrated luminosity, and the actual flux densities
are larger at the PNS surface.

0.0 0.2 0.4 0.6 0.8

0

10

20

30

40

0.0 0.2 0.4 0.6 0.8
tpb [s]

0

10

20

30

40

In
te

g
ra

te
d

 L
ν 

[B
]

νe−νe

νµ−νµ

ντ−ντ

0.0 0.2 0.4 0.6 0.8
tpb [s]

0.0

0.2

0.4

0.6

0.8

1.0

∆
∫Σ

L
ν 

[B
]

s20.0−SFHo−muons
s20.0−SFHo−standard

Figure 11.28: On the left, the cumulative time-integrated energy emitted by each neutrino
species for s20.0-SFHo-muons in solid lines and s20.0-SFHo-standard in dashed lines. The
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∑
ν Lν =

∑
ν L

muons
ν −

∑
ν L

standard
ν .
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Muon number The muon quantity contained in the core is a time-dependent evolved quantity
that depends on neutrino transport to conserve the lepton flavor number in the core. Any net
muon flavor number in the PNS must be equaled by a corresponding νµ number flux escaping
from the PNS, as long as one neglects neutrino oscillations. A similar mechanism has already
been analyzed in Ref. [51], who however only evaluated net µ and net τ number generation
inside a PNS due to the weak magnetism correction of opposite sign for ν and ν without
including muons.

In Fig. 11.29 we plot the net muon flavor number inside the PNS, given by

N PNS
µ = 4π

∫ rPNS

0
dr r2

{
ρ (r) /mBYµ (r) +Nνµ (r)−Nνµ (r)

}
, (11.30)

where Nνµ and Nνµ are the local νµ and νµ number density in [1/cm3], defined by Nν =
4π
c

∫∞
0 dE Jν (E). The net muon flavor number reaches about N PNS

µ ≈ 8 × 1055 that is being
compensated for by a net νµ flux calculated by

Lnet,sum
νµ

(r = 500 km) = 4πr2
∫ t

0
dt
{
Lνµ − Lνµ

}
. (11.31)

Even though our purely leptonic muonic reactions are only implemented in an approximate
manner, the lepton flavor number is conserved very well. This is a consequence of the self-
quenching of the muonic reactions, as muon producing reactions freeze out before the neutrinos
leave local thermodynamic equilibrium. In the case of muon decay, the neutrino coupling
only appears as a Pauli blocking term of the partner neutrino that can be neglected when the
nondegenerate neutrinos leave local equilibrium. For comparison, we additionally plot the pure
net µ neutrino number inside the PNS for both the standard case as well as the muonic case.
As there is a surplus of νµ in the muonic case due to the large negative νµ chemical potential,
we plot the net νµ number instead. Even though the standard case does not include muonic
interactions, the PNS still builds up a macroscopic net νµ number following the calculations of
Ref. [51] due to the weak magnetism correction. The effect of weak magnetism alone, however,
is one magnitude smaller than the case including charged muons.
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Figure 11.29: A Plot of the volume integrated net muon flavor number contained in the PNS
in red defined by Nµ = 4π

∫ rPNS
0 dr r2

{
ρ/mBYµ +Nνµ −Nνµ

}
, where Nν are the local neutrino

number densities. To verify the lepton flavor number conservation, the cumulative time-
integrated net νµ number flux = 4πr2 ∫ t

0 dt
{
Lνµ − Lνµ

}
is the black dashed line. The net νµ

number contained in the PNS of the standard case is the blue dashed line.

Neutrinospheres The location of the energy weighted neutrinospheres is computed by com-
bining Eq. 11.2 with Eq. 11.6, according to

τ
weighted
eff = 2/3 =

∫ ∞
rτ

dr′

√√√√ 1

λ
weighted
i

(
r′
) [ 1

λ
weighted
T

(
r′
) +

1

λ
weighted
i

(
r′
)] , (11.32)

where λweighted
i are the summed and weighted opacities of the energy and number sphere, and

λ
weighted
T is the transport opacity given by the processes ν + N� ν ′ + N′ and ν + A� ν + A.

The number sphere contains the processes

• νe + n � e− + p

• νe + p � e+ + n

• ν + AZ � e∓ + A
Z

±1

• νe + e− � νµ + µ−

• νµ + e− � νe + µ−

• νe + e− + νµ � µ−

• e− + e+ � ν + ν

• νe + νe � νµ,τ + νµ,τ

• N′ + N′ � N + N + ν + ν
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The energy sphere contains the processes

• ν + e∓ � ν ′ + e∓
′

• ν + µ∓ � ν ′ + µ∓
′

• νµ,τ + νe � ν ′µ,τ + νe
′

The transport sphere contains the processes

• ν +N�ν’+N’

• ν +A�ν +A

For the sake of brevity, we omit here some corresponding antiparticle processes but still
include them in the calculation. The primed particles indicate an inelastic process which
transferred energy. The resulting neutrinospheres are shown in Fig. 11.30, where we skip the
standard case as the τ neutrinos can act as a proxy for unmodified heavy-lepton neutrinos. The
νe number sphere by absorption on nucleons remains the last sphere of interaction and extends
past the nominal PNS surface. The νe number sphere lies at somewhat higher densities of up
to ρ ∼ 3× 1011 g/cm3. As muonic processes have long frozen out at these densities, we cannot
expect a significant change for the PNS accretion phase. The νµ number sphere by the muonic
processes is now active up to ρ ∼ 1013 g/cm3, while the νµ show a weaker enhancement to
ρ ∼ 2 × 1013 g/cm3 compared to ρ ∼ 3 × 1013 g/cm3 in the ντ case. The energy and transport
sphere for heavy-lepton neutrinos stay unchanged, as no additional process except neutrino-
muon scattering has been added. The muonic scattering process is however too weak at the
energy sphere to influence the decoupling.
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Figure 11.30: On the left, the evolution of the separate neutrinosphere locations of νe and νe
for case s20.0-SFHo-muons, in the middle of νµ and νµ, and on the right of ντ and ντ . The
number sphere is plotted in blue; the energy sphere in orange; the transport sphere in red. The
definition of the transport spheres is given in Par. 11.1.1.
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11.1.3 Summary

The results presented in this section are from the first ever self-consistent calculation of muon
formation and coupling to neutrino transport using a full set of opacities and an up-to-date
neutrino transport method. The effects of muonization on the hydrodynamic evolution of the
protoneutron star and the neutrino signal have been examined during the stalled shock phase
for several hundred milliseconds. The results show that muon production is sufficiently efficient
for µ neutrinos and muons to achieve beta-equilibrium immediately after being switched on at
the beginning of the postbounce phase. The further evolution of the net muon number however
strongly depends on the individual transport of νµ and νµ. As the PNS initially starts with zero
net muon number, the protoneutron star must compensate for any additional net muon number
by a corresponding emission of net νµ number. Analysis of the neutrino signal shows that this
net νµ flux happens not via a reduced number flux of νµ, but rather by increased diffusion of
the degenerate νµ from the muon production sites. While any surplus of νµ is probably being
absorbed as soon as it is produced via thermal pair production, the emitted number flux of νµ
develops at densities where muonic processes have already frozen out. The lack of a diffusion
component, therefore, has little effect on the neutrino signal. This is not the case for the νµ,
who have a large negative potential and are present in weakly degenerate conditions inside
the PNS core. The number flux of νµ is therefore preferentially directed out of the PNS and
already forms at higher densities, so that the diffusion component can overpower the cooling
component from the outer edges of the mantle. Nonetheless, the production of νµ and the loss of
νµ happens too slowly to keep up with the demands of muon production, and beta-equilibrium
is not reached during the accretion phase. Muons become abundant inside the PNS after a
postbounce time of 100 ms, but fail to efficiently grow further in the dense core. Muonization
seems to happen slower in the dense core than a naive interpretation of efficient heavy-lepton
neutrino loss might lead one to believe, with mainly the inner 10 km of the PNS moving ever
farther away from equilibrium as the PNS contracts. The neutron-proton potential difference
increases faster than muon production can keep up.

The muon number, even if not at the theoretical maximum, still has a measurable effect
on the PNS dynamics. The accelerated contraction of the PNS by conversion of degenerate
electrons into nondegenerate muons, as well as the increased proton fraction’s impact on the
asymmetry parameter of the baryonic EOS, leads to a reduction of the PNS radius of up to 2 km
and can maintain this offset for most of the accretion phase. This reduction is caused by a faster
contraction of the hot mantle rather than the inner core. When the mantle contracts it increases
in temperature, while it sinks deeper into the gravitational well. The temperature is further
raised by the conversion of kinetic energy, of the matter striking the surface, into internal energy.
The increase of the temperature by up to 0.4 MeV at the energy spheres and neutrinospheres
of the respective neutrinos, leads to an increased neutrino luminosity of ∆L ∼ 2.5 B/s and
increased mean energy of the emitted neutrinos by ∆〈E〉 ∼ 1 MeV. The increase is partially
counteracted by the reduced emission surface of the shrunken PNS and gain layer region, to
have only a small effect on the heating conditions inside the gain layer.

In a simple spherically symmetric simulation, where there can exist no neutrino-driven
convection or hydrodynamic instabilities, the effect of muonization is compensated by the
system rearranging itself to reach a new steady-state configuration and Mazurek’s¬ law is still
in full force. As shown in Sec. 12, genuinely multi-dimensional effects can however still break
this stalemate and even lead to successful explosions.

The common belief in the core-collapse supernova community that muons can safely be
neglected at conditions present in protoneutron stars has been thoroughly refuted. While the

¬A colloquial law which states that in the CCSN context any small variation of a single aspect is immediately
compensated for by strong feedback effects of the coupled system of EOS, hydrodynamics, weak interactions and
neutrino transport.
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addition of muons indeed is not the solution to the supernova problem, the irrefutable presence
of muons, already widely accepted in cold neutron stars, the unambiguous classical physics
framework, and the measurable dynamical effect of muons, make the common assumption
that muons can safely be neglected hard to defend. The approach to the supernova problem
has evolved to a point where small changes in microphysics can make or break a successful
explosion. A systematic “offset” of the problem by neglecting well-known classical physics can
no longer be afforded.
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11.2 Kelvin-Helmholtz phase cooling simulations

A fraction of CCSN can achieve revitalization of the stalled shock and reach shock runaway.
The expanding shock then drags the surrounding matter with it, quenching the mass accretion
onto the protoneutron star. The still hot and radiating protoneutron star remains in the center
of the expanding void. The neutrinos diffusing out of the PNS are, however, still able to
deposit sufficient energy into the PNS mantle to gravitationally unbind its topmost layers. This
ablated material from the PNS forms the neutrino-driven wind, which fills the void left by
the propagating shock. Only a small fraction of neutrinos is reabsorbed, however, and nearly
all of the energy is lost in the form of neutrino radiation. This marks the beginning of the
Kelvin-Helmholtz phase that can last up to several tens of seconds and can be separated into
two different epochs.

1. The deleptonization stage, in which the trapped electron neutrinos in the dense inner 10 km
of the PNS slowly diffuse outward and heat up the PNS core via Joule-heating (cf. Ref. [16]).
By emitting these excess electron neutrinos, the PNS decreases electron and proton number
and eventually reaches beta-equilibrium. At this point the deleptonization is complete,
and the subsequent evolution of the PNS is thermally dominated.

2. The cooling stage, in which the now uniformly hot protoneutron star cools and decreases
its entropy by emitting neutrinos over its entire volume. Eventually, the PNS becomes
cool enough that the thermal mean energies of the neutrinos are so low that neutrino
transparency sets in. At this point, neutrino cooling has become inefficient on the relatively
short timescale of minutes, and the neutron star will slowly lose energy over the timescale
of years and up to millions of years via modified URCA processes, as shown in Ref. [4]
for the case including muons.

While we cannot track the evolution of the protoneutron star down to very cold conditions, the
quasi-cool conditions of the 3 MeV neutron star we can reach in our simulations already well
approximate the final neutron star structure. As we do not adequately treat the formation of
pasta phases in the crust anyway (cf. Ref. [48]), we accept this as the end of our simulations.

Recent multi-dimensional simulations of the Kelvin-Helmholtz phase show that there
might persist some accretion downflows localized in thin accretion funnels as demonstrated in
Ref. [90]. They were able to simulate a low-mass spherically averaged (1D) protoneutron star
surrounded by an axisymmetric (2D) or fully 3D environment for up to tens of seconds. These
accretion funnels can even temporarily cease all outflow from the protoneutron star surface,
but are fortunately found to be a mostly artificial 2D artifact caused by a suppression of shear
instabilities (cf. Ref. [90]). Nonetheless, the presence of these persistent downflows over several
seconds even in 3D, limit the accuracy of 1D spherical symmetric calculations that by their
nature alone can only model uniform in- or outflow.
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11.2.1 Numerical setup

In the following, we will compare Kelvin-Helmholtz phase PNS cooling simulations using an
identical setup and same progenitor as in Sec. 11.1. The need to accurately track the PNS
cooling down to neutrino transparency, as well as to track the expanding shock, however,
requires some changes to the numerical setup. The neutrino energy binning has been refined
from 15 geometrically spaced bins to 5 linear and 17 geometrically spaced bins. These five
linear bins are specifically chosen to better resolve low neutrino energies, as they may carry a
large part of the spectrum after the PNS cools down sufficiently. Additionally, the upper extent
of the radial grid has been extended from 10000 km to 6× 107 km, which now contains most of
the pre-collapse stellar structure.

Another change is that for this kind of simulation the mixing-length treatment (MLT) of
Ledoux convective instability as described in Ref. [88] is implemented, to take the more rapid
deleptonization by convective transport into account. The importance of treating protoneutron
star convection adequately is also demonstrated in Ref. [119], who use an approach similar to
ours. Note however, that our implementation of the mixing length treatment is made consid-
erably more complicated by the additional inclusion of muons and trapped neutrinos into the
formulae for convective energy and lepton number transport, as well as in the Ledoux criterion
evaluation. Our treatment in the muonic case still somewhat underestimates convective flux
compared to 2D simulations of the same progenitor examined in Sec. 12, and detailed radial
profiles and evolved quantities need to be taken with a grain of salt. The long-time muonic
cooling simulations, therefore, give only a qualitative assessment of convective effects on the
Kelvin-Helmholtz cooling timescale, and will need to be further developed and calibrated
against long-time 2D or 3D self-consistent hydrodynamic simulations. The computational ex-
pense of even standard physics in PNS cooling simulations, however, precludes this at the
moment. The mixing-length treatment in the standard case has, however, been found to be in
excellent agreement with multidimensional cooling simulations, as demonstrated in Ref. [88].

As spherical symmetric simulations do not in general lead to neutrino-driven explosions,
we need to artificially initiate one. This can be achieved by various methods. Reference [119]
for example assigns a mass-cut in their Lagrangian code, after which they remove the pre-
collapse stellar structure, therefore, simulating the cessation of accretion in the case of a perfectly
symmetric instantaneous shock expansion. This cut is chosen in Ref. [119] to be at 1.42M�. This
value reproduces a typical neutron star mass determined by observations, but neither takes
the specific accretion profile into account nor does it allow for variations in the final baryonic
NS mass. Reference [106] applies another method by artificially enhancing heating in the
gain layer by heavy-lepton neutrinos. We follow a method similar to Ref. [119] by artificially
“ripping” away the mass shells after a set amount of postbounce time. This is however not
done instantaneously, but instead simulates a gradual quenching of the accretion flow via a
linearly growing suppression factor for the pre-shock density. This approach might not be
a very physically motivated method to launch an explosion, and the dynamics are certainly
not correct, but it reasonably approximates the neutrino signal of a successful supernova in a
phenomenological way. The postbounce time at which we artificially launch the explosion is
typically chosen to be tpb = 500 ms, but a more accurate way might be to launch an explosion at
either the accretion time of the Si-O interface or by reusing the explosion times of parameterized
calibrated simulations of Ref. [28]. In our case, the standard time of 500 ms fits well with the
results of the 2D simulations in Sec. 12, and no further fine-tuning of the explosion time is
necessary.
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Figure 11.31: Plot of the density before (black) and after (red) scaling to initiate the explosion.
The dashed lines mark the start and the end of the scaling region, in which the density is linearly
reduced by up to a factor of 30.

11.2.2 Time evolution

As our mixing-length treatment for the muonic case is not yet fully calibrated to reproduce
multi-dimensional hydrodynamic calculations, we avoid over-analyzing the early phase when
protoneutron star convection strongly influences the radial profile evolution of the PNS, and
instead focus on later times when convection is a slower less dynamic process. For the first
500 ms we refer to the 2D section, where the early evolution is demonstrated in more detail.
The evolution of the PNS radius in the muonic case in Fig. 11.32 converges quite rapidly
towards the standard case after two seconds, as the previously expanded hot mantle shrinks
and becomes more and more dominated by the baryonic pressure component. After this point,
the temperature maximum has reached the center of the PNS in the standard case, and the
PNS begins to cool over the entirety of its volume. This point in time is plotted in Fig. 11.33,
when the temperature in the center has reached its maximum value of Tstandard ≈ 65 MeV. At
this time, the muonic case shows a slowed “deleptonization wave” (cf. Ref. [119]), caused by a
steeper lepton fraction gradient in the Ledoux criterion of convective instability

Cledoux =

(
∂ρ

∂s

)
P,Y`

ds
dr

+

(
∂ρ

∂Y`

)
P,s

dY`
dr

> 0 .

The decreased diffusion velocity of the νe into the core due to the new muonic purely-leptonic
opacities, as well as the appearance of muons itself, increases the deleptonization timescale. The
steep gradient of Ye and Yνe at the inner boundary of the convective zone cannot be softened as
fast as in the standard case by additional νe diffusion into this boundary region, and in addition,
any decrease in Ye is immediately countered by an increase in Yµ . This feedback delays the
deleptonization by about one second compared to the standard case. Note however, that the size
of this effect might change if our MLT implementation were correctly calibrated for the muonic
case. As the deleptonization wave moves inwards, the trapped lepton fraction is released
and the PNS quickly reaches weak equilibrium in respect to electron neutrinos at the local
temperature, i.e., µνe ≈ 0. It transiently even overshoots weak equilibrium slightly to reach a
marginally negative νe chemical potential. Note however, that reaching weak equilibrium does
not mean that the PNS has reached its minimum lepton fraction, since a hot PNS has a larger
equilibrium Yp than a cold neutron star. Additionally, the PNS does not reach weak equilibrium
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in respect to electron neutrinos and µ neutrinos at the same time, as the equilibration timescale
of µ neutrinos is considerably longer. The µ neutrinos only reach weak equilibrium when
the PNS has practically reached its quasi-cold configuration and efficient neutrino cooling has
ceased. The µ neutrinos remain at a substantial negative chemical potential of about half its
previous value, µdelep

νµ
≈ −40 MeV, even after the deleptonization wave has passed. They are

only in complete weak equilibrium, i.e., µνµ ≈ 0 and µe ≈ µµ , at the outer fringes of the PNS,
where all neutrinos have already decoupled.
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Figure 11.32: On the left, the radius evolution of the PNS defined as the radius where density is
equal to ρ = 1011 g/cm3 for cases s20.0-SFHo-standard in black and s20.0-SFHo-muons in red;
on the right, the absolute difference of both radii defined as ∆r = rmuons
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Figure 11.33: Profiles of case s20.0-SFHo-muons in solid lines and s20.0-SFHo-standard in
dashed lines at tpb = 3.2 s. Identical plot content as in Fig. 11.7.

At tpb = 5 s, the muonic case has also entered the homogeneous cooling phase, and does
not reach as hot a central temperature as the standard case in Fig. 11.34 as a result of decreased
Joule heating (cf. Ref. [16]). Reasons for this are first, that an increased amount of thermal
and degenerate energy is trapped in the abundant newly produced muons; second, the slower
progression of the deleptonization wave gives the PNS more time to radiate energy and lepton
number away in the form of neutrinos. As energy is being temporarily stored in the thermally
produced muon pairs, as well as thermally excited net muons, this delayed form of energy
needs to be radiated away when the PNS has cooled down further. The thermal muon pairs
will recombine at lower temperatures, and muons decay to electrons. This reservoir fuels the
neutrino luminosity at late times and supplies additional internal energy that slows down the
cooling of the PNS. The total maximum energy stored in the muonic gas amounts to 27 bethe as
shown in Fig. 11.35, and is maintained until the deleptonization wave has reached the center.
It then decreases down to 13 bethe in the cold PNS, stored in the form of nearly pure muon rest
mass. The difference needs to be emitted in the form of neutrinos, and the muons act as a kind of
energy “battery”. The concomitant additional gravitational relativistic “weight” of the muons
can be compensated in the cold PNS by a small increase of the central density. At maximum, the
27 bethe correspond to 0.015M�, and the final 13 bethe correspond to 0.007M�, using the well
known relativistic mass E/c2 = m. The profiles in Fig. 11.36 show a uniform muon fraction
of Y muons

µ ≈ 0.035 that, together with the uniform electron fraction of Y muons
e ≈ 0.095, leads to

a proton fraction of Y muons
p ≈ 0.13. This is larger than Y standard

p ≈ 0.105 in the standard case,
and decreases the asymmetry parameter β of Eq. 11.4. Note also that the electron chemical
potential does not feature the same negative overshoot as in the standard case, because the
electron chemical potential can also equilibrate using the additional νµ and νµ channels. The
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muon chemical potential does not seem to benefit in the same way though, as the µ neutrino
chemical potential remains negative throughout.

0 5 10 15

0

10

20

30

40

50

60

70

0 5 10 15
tpb [s]

0

10

20

30

40

50

60

70

T
e

m
p

e
ra

tu
re

 T
 (

r=
2

k
m

) 
[M

e
V

]

0 5 10 15
tpb [s]

2

4

6

8

10

12

D
e

n
s
it
y
 ρ

 (
r=

2
k
m

) 
[1

0
1
4
 g

/c
m

3
]

s20.0−SFHo−muons
s20.0−SFHo−standard

Figure 11.34: On the left, the evolution of the temperature at the PNS center evaluated at
r = 2 km for cases s20.0-SFHo-standard in black and s20.0-SFHo-muons in red; on the right the
evolution of the central density.

0 5 10 15

0

5

10

15

20

25

30

0 5 10 15
tpb [s]

0

5

10

15

20

25

30

In
te

g
ra

te
d

 E
µ
 i
n

 P
N

S
 [

B
]
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Figure 11.36: Profiles of case s20.0-SFHo-muons in solid lines and s20.0-SFHo-standard in
dashed lines at tpb = 5 s. Identical plot content as in Fig. 11.7, except the net ντ fraction is not
plotted.

At tpb = 10 s, the PNS has reached the point of neutrino transparency, as visible by the steep
drop in neutrinosphere locations in Fig. 11.37. The number and energy sphere of all neutrinos
begin to freeze out except νe, which notably stay active throughout most of the PNS during
the entire cooling evolution. At this point, the energy loss via neutrinos slows down, as they
cannot be produced in sufficient numbers anymore. The number sphere has retreated to the
deepest layers of the PNS, indicated by the light gray dotted lines in the plot. Muonic opacities
become relevant in this phase for νe, as shown by the difference between the blue dashed and
blue dot-dashed number sphere location. The dashed line includes muonic opacities by inverse
muon decay and absorption on electrons, whereas the dot-dashed line only comprises standard
opacities. Not directly visible here is also the effect muonic opacities have on νe diffusion inside
the PNS, whose flux consists mostly of low energy neutrinos. Muonic opacities fill the low
energy gap caused by the nucleon interaction potential energy penalty, and diffusion is slowed
considerably. Especially νµ show the extensive modification by muonic opacities as expected,
with the number sphere coming close to or even exceeding the energy sphere. This keeps νµ in
good equilibrium nearly everywhere in the star for up to seven seconds, after which both energy
and number sphere retreat at roughly the same pace. νµ only show a small modification, as
their opacities are dependent on an abundant amount of either muons or antimuons to interact
with.

The evolution of the different lepton and proton fractions at the PNS center, as well as
the maximum (or minimum) value of either sign inside the PNS, are plotted in Fig. 11.38. The
electron and muon fraction in the center are directly related, as the presence of highly degenerate
νe prevents the efficient formation of muons by back-reactions. What is apparent is also the
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Figure 11.37: On the left, the evolution of the separate neutrinosphere locations for νe and νe
for case s20.0-SFHo-muons, in the middle of νµ and νµ, and on the right the same for ντ and ντ
,with definitions as in Fig. 11.30. The light gray lines are from top to bottom, the densities where
the enclosed mass exceeds 99%, 90% and 75% of the total PNS mass at that time. Additionally,
the maximum PNS density is plotted in dark gray to show when an interaction sphere has
completely frozen out.

increased proton fraction when muons are included, as well as the large net νµ fraction while µνµ
is still negative and large in the PNS core. The muon fraction at the temperature peak sets the
maximum number fraction and is moving to higher and higher densities as the deleptonization
wave sweeps through the PNS. The maximum muon fraction eventually becomes identical to
the central muon fraction once the distribution of muons in the PNS becomes homogeneous.
The dip in the muon fraction around nine seconds is related to the system reaching weak
equilibrium with respect to electron neutrinos but still being out of equilibrium with respect to
µ neutrinos. After this point, the electron chemical potential is relatively fixed, and the muons
increase in number until also weak equilibrium in respect to µ neutrinos is reached, and µe = µµ
everywhere in the PNS. In the standard case without muons, the PNS slightly releptonizes after
ten seconds by an increase in electron fraction, whereas in the muonic case the electron fraction
sinks throughout and the muon fraction instead maintains beta equilibrium.

The evolution of the chemical potentials in Fig. 11.39 show this in more detail. The as-
sumption that muon number is describable everywhere by a simple weak equilibrium chemical
potential using µ̂ = µn−µp = µµ is only valid after 13 s. Note that this is only true for the dense
PNS core, where there is still a significant trapped νe number. The weak equilibrium assumption
is acceptable in the outer mantle region, where neutrinos are not trapped and the system can
reach weak equilibrium easily. This means the simple equilibrium assumption could model the
hydrodynamical evolution of the PNS mantle without explicitly needing to incorporate muons
into the neutrino sector. This simplification would, however, have the caveat of breaking lepton
flavor number conservation, shown in Sec. 11.3, and only being valid when the accretion and
hydrodynamic evolution are relatively slow and the mantle is in good steady-state equilibrium
with the neutrino transport.

Neutrino-driven wind The neutrino-driven wind is only weakly affected by the addition of
muons, as the luminosity of νe and νe is nearly unchanged during the cooling phase. The Ye in
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r = 2 km for cases s20.0-SFHo-standard in black and s20.0-SFHo-muons in red. The charged
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the ejecta only shows the influence of the delayed PNS deleptonization by a more smeared out
Ye peak while the deleptonization wave propagates through the PNS. The wind entropy shows
a very slight enhancement at five seconds as a consequence of the colder PNS and the resulting
slower wind velocities. Note that the entropy becomes very noisy at late times as a result of
our mixing-length algorithm identifying the now subsonic weak wind as being convectively
unstable. Furthermore, the wind outflow has reversed at the 12 s mark and turned into fallback,
leading to the plateau phase from then on.
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Figure 11.40: On the left, the evolution of the electron fraction contained in the neutrino-driven
wind for cases s20.0-SFHo-standard in black and s20.0-SFHo-muons in red; on the right, the
evolution of the wind entropy.

Neutron star mass The neutron star mass of both the standard and muonic case are nearly
identical, except for some very minute differences in the evolution. The gravitational mass of
the muonic case is slightly heavier throughout most of the cooling phase, as more energy is
trapped in the PNS in the form of muons that also act gravitationally through their relativistic
energy. The final gravitational and baryonic mass of the muonic case is ever so slightly smaller
than the standard case. This lowered gravitational mass is a result of the raised Yp in the cold NS
due to the decreased asymmetry parameter. This allows the NS to contract more and liberate
a bit more gravitational binding energy. The difference in baryonic mass can be attributed to
uncertainties during the initiation of the artificial explosion and is not an effect of the muonic
gas. The final baryonic masses are mmuons

Bary. = 1.9466M� and mstandard
Bary. = 1.9469M�; the final

gravitational masses are mmuons
Grav. = 1.7312M� and mstandard

Grav. = 1.7321M�.
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Figure 11.41: On the left, the evolution of the baryonic and gravitational PNS mass for cases
s20.0-SFHo-standard in black and s20.0-SFHo-muons in red; on the right, the difference of both
cases defined as ∆mB/G = mmuons

B/G −mstandard
B/G .

Neutrino signal The changes in the total emitted neutrino energy in Fig. 11.42 reflect the
differences in the temperature evolution. When the temperature reduction is slower after
tpb ≈ 5 s in the muonic case, the neutrino emission is reduced and just catches up after tpb ≈ 11 s.
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The final emitted neutrino energy only shows a slight increase by ∆
∫
t

∑
ν Lν ≈ 2.2 B, caused by

the neutron star having found a slightly lower energy configuration. Muon generation reduces
some of the electron degeneracy, and the more compact PNS can liberate some additional
gravitational binding energy. This additional energy seems to be emitted mostly in the form of
νµ.
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Figure 11.42: On the left, the evolution of the time integrated lab-frame luminosity for cases
s20.0-SFHo-standard in dashed and s20.0-SFHo-muons in solid lines; on the right, the dif-
ference of the time-integrated and summed total neutrino emission defined as ∆
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muons
ν −

∫
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∑
ν L

standard
ν . Note that the standard case µ and τ neutrino luminosity are

overlaid on each other.

The total number of muons inside the PNS is shown in Fig. 11.43, indicating excellent
agreement in lepton flavor number conservation. There is a small mismatch during the very
dynamic phase from 2–5 s, while the deleptonization wave sweeps through the protoneutron
star and the neutrino signal is erratic. This erratic signal might cause inaccuracies in the
discrete data points used in the time-integration, in addition to the possible error induced by
the missing strict lepton flavor coupling used in our stimulated opacity implementation. The
error, however, remains well bound and follows the correct trend. The net neutrino number
flux of νµ shows the secular changes in luminosity tracking the muon number evolution.

The luminosity and mean energy of all neutrinos follow the expected behavior and show a
longer tail in the muonic case, as the cooling is delayed compared to the standard case. As the
energy to be radiated is roughly the same, energy conservation implies that less luminosity in
the deleptonization phase from 2–6 s needs to be compensated by increased luminosity in the
cooling phase from 6–18 s.
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s20.0-SFHo-standard in black and s20.0-SFHo-muons in red, in the middle of νµ and νµ, and on
the right of ντ and ντ . Note that in the standard case νµ = ντ as well as νµ = ντ .

The shape parameter α in Fig. 11.46 shows the largest change in the late neutrino signal
with, in general, more pinched spectra compared to the standard case. The spectrum of the
νe shows a sizable modification, as the mean neutrino energy has become small enough that
muonic opacities start to become relevant to νe spectrum generation, visible in Fig. 11.37. The
spectra of νµ and ντ show an interesting difference in that the muonic νµ and νµ spectra only
show a delayed spectral evolution compared to the standard case, whereas the ντ and ντ are
noticeably more pinched compared to the standard case.
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Figure 11.46: On the left, the evolution of the shape parameter α, defined by Eq. 11.26, of νe and
νe for cases s20.0-SFHo-standard in black and s20.0-SFHo-muons in red, in the middle of νµ and
νµ, and on the right of ντ and ντ . Note that in the standard case νµ = ντ as well as νµ = ντ .
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11.2.3 Summary

The present Kelvin-Helmholtz phase cooling simulation is, just as the stalled accretion shock
phase simulation presented in Sec. 11.1, the first of its kind to include all muonic opacities and
muons as an out of beta-equilibrium component in a state-of-the-art transport simulation. We
have simulated a 20M� ZAMS progenitor through the stalled shock phase, and have achieved
shock revival via artificial quenching of the mass inflow after 500 ms postbounce time. The
following Kelvin-Helmholtz phase was tracked up to 18 s using mixing-length convection, to
simulate protoneutron star convective overturn. We have seen that the presence of muons
affects the deleptonization timescale due to decreased diffusive inward transport of νµ number
and a steepening of the trapped lepton gradient that suppresses convectively unstable regions
according to the Ledoux criterion. As soon as trapped electron neutrinos are convectively
transported to the surface, freshly produced muons take the place of the decaying surplus
electrons and prevent a softening of the lepton gradient. In addition to the net muons produced
via weak processes, additional thermal muon pairs are created as the temperature rises steeply
in these now deleptonized areas by Joule heating. A significant amount of this thermal energy is
converted into inert muon rest mass that stores large amounts of energy. This effect reduces the
maximum temperature of the PNS, and muon decay only slowly releases the energy stored in
their rest mass. This reservoir lets the muon gas act similar to an energy “battery” that supplies
additional energy for the very late cooling phase. The produced net muons are however still
far from beta-equilibrium, even when the deleptonization wave has passed and electrons have
already achieved beta-equilibrium. Full equilibration and the PNS entering beta-equilibrium
with respect to both electrons and muons, i.e., µ̂ = µn − µp = µe = µµ is only achieved after
13 s of cooling when the PNS becomes transparent to neutrinos.

The results of this section show that muons can also affect the Kelvin-Helmholtz cooling
phase by the additional degree of leptonic freedom that can store thermal energy and release
it slowly in a delayed manner. This prolongs the effective measurable neutrino signal. Further
effects of muonization on the way to a completely cold NS on the megayear timescale are
explored for example in Refs. [4, 2].
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11.3 Muons in beta-equilibrium

In addition to the self-consistent buildup of muon number we examined in the previous sections,
we will now also shortly address the possibility of treating the muon number as an equilibrium
component of the EOS. This requires a vanishing µ neutrino chemical potential, µνµ = 0,
as well as a fixed muon chemical potential, µµ = µn − µp + Q, where µn and µp are the
nonrelativistic chemical potentials and Q = mn − mp . This approximation is valid under
the assumption that the creation of muons is perfectly efficient, transport of νµ and νµ is
unhindered, and any surplus of µ neutrinos is instantaneously lost. A simple way to assure
that no µ neutrino chemical potential can form is by only simulating the single averaged heavy-
lepton neutrino, as is common in most CCSN simulation codes. This approach however wholly
neglects lepton flavor number conservation and further effects on neutrino spectra, except by
changes in temperature.

11.3.1 EOS generation

As muon number is not an equilibrium component of any publicly available EOS, we modified
the SFHo EOS to contain a beta-equilibrium muon number.

The needed steps are as follows.

1. We use the pure baryonic component of the high-density EOS as the base and calculate
for every tabulated grid point in ρ, T, Yp an equilibrium muon number, using the local
muon chemical potential

µµ

(
ρ, T, Yp

)
= µn

(
ρ, T, Yp

)
− µp

(
ρ, T, Yp

)
+Q

as required by beta-equilibrium. Note that here the proton fraction Yp is equivalent to the
positive charge fraction bound in nuclei and as free protons.

2. After inverting the muon chemical potential to get the muon fraction Yµ

(
ρ, T, Yp

)
, we

use the constraint of charge neutrality,

Ye

(
ρ, T, Yp

)
= Yp − Yµ

(
ρ, T, Yp

)
, (11.33)

to determine the still missing electron fraction of each grid point.

3. Calculate the electron and muon gas quantities from the tabulated data created in Chap-
ter II.

4. Add the leptonic components e and µ to the baryonic component B to create the new table
µbeta.

eµbeta
(
ρ, T, Yp

)
= e B

(
ρ, T, Yp

)
+ etot

e

(
T, ρYe

(
ρ, T, Yp

))
+ etot

µ

(
T, ρYµ

(
ρ, T, Yp

))
,

Pµbeta
(
ρ, T, Yp

)
= P B

(
ρ, T, Yp

)
+ P tot

e

(
T, ρYe

(
ρ, T, Yp

))
+ P tot

µ

(
T, ρYµ

(
ρ, T, Yp

))
,

sµbeta
(
ρ, T, Yp

)
= s B

(
ρ, T, Yp

)
+ stot

e

(
T, ρYe

(
ρ, T, Yp

))
+ stot

µ

(
T, ρYµ

(
ρ, T, Yp

))
,

µ
µbeta
e

(
ρ, T, Yp

)
= µe

(
T, ρYe

(
ρ, T, Yp

))
,

µ
µbeta
µ

(
ρ, T, Yp

)
= µn

(
ρ, T, Yp

)
− µp

(
ρ, T, Yp

)
+Q = µµ

(
T, ρYµ

(
ρ, T, Yp

))
,

µ
µbeta
νe

(
ρ, T, Yp

)
= µ

µbeta
e

(
ρ, T, Yp

)
+ µ

µbeta
p

(
ρ, T, Yp

)
− µµbeta

n

(
ρ, T, Yp

)
−Q ,

Y
µbeta

e

(
ρ, T, Yp

)
= Yp − Yµ

(
ρ, T, Yp

)
,

Y
µbeta
µ

(
ρ, T, Yp

)
= Yµ

(
ρ, T, Yp

)
.
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5. Copy the remaining unmodified baryonic quantities over into the new table µbeta.

6. As the table is still tabulated as a function of proton number, i.e.,
(
ρ, T, Yp

)
, we need

to interpolate the table from the fixed ρ, T, Yp grid to a fixed ρ, T, Ye grid. This step is
necessary as the electron fraction and not the proton fraction is the conserved quantity in
our transport.

7. The resulting table has a positive charge fraction that is not equal to the electron fraction,
as in a normal general-purpose EOS table, anymore. The positive charge fraction is now
a function of the conserved electron fraction and the state dependent muon fraction,
resulting in

Y
µbeta

p
(
ρ, T, Ye

)
= Ye + Y

µbeta
µ

(
ρ, T, Ye

)
.

The effect of the muonic negative charge is now captured in the proton and neutron frac-
tion being able to deviate from the electron fraction. This feeds back onto the nucleon
chemical potentials that enter the electron neutrino chemical potential via µµbeta

νe

(
ρ, T, Ye

)
=

µ
µbeta
e

(
ρ, T, Ye

)
+µ

µbeta
p

(
ρ, T, Ye

)
−µµbeta

n
(
ρ, T, Ye

)
−Q, as neutron and proton chemical poten-

tial also depend on Yµ
(
ρ, T, Ye

)
. When ρ, T at constant Ye moves towards a state where muon

number increases, there will be a simultaneous increase in protons and a decrease in neutrons
that shifts the νe chemical potential to a different value, as the left-hand side of

µp − µn = µνe − µe +Q (11.34)

will change accordingly. The electron neutrinos will then try to re-equilibrate to the new
chemical equilibrium, which will reduce or increase electron fraction as a result of our transport
solution. Muonization of the PNS is therefore treated consistently in the electron sector, but is
completely neglected for µ neutrinos. An example plot of how the muon fraction might develop
for a fixed Ye = 0.2 is shown in Fig. 11.47. The corresponding approximate proton fraction can
be found by adding the color encoded muon fraction back onto the constant electron fraction.
Note the large uniform dark red area where the equilibrium muon fraction per baryon can
become very large and lead to nonphysical proton fractions exceeding the maximum original
tabulated value of Yp = 0.6. These areas cause the interpolation to break down, but are in
effect not accessible to the gas, as the energy penalty associated with entering these regions is
excessive and the transport will self-correct back to physical regions beforehand.

11.3.2 Comparisons

The model with the beta equilibrium muon fraction will be called s20.0-SFHo-µbeta and run
with the three neutrino species, νe, νe, and a heavy-lepton neutrino νx. It will be compared to our
full physics muonic case s20.0-SFHo-muons using the same numerical setup as in the accretion
model. We only use the single heavy-lepton neutrino here, as the effect of weak magnetism
would otherwise lead to the buildup of a net heavy-lepton number and a nonzero νµ chemical
potential in the PNS that would be inconsistent with our requirement of µνµ ≡ µx = 0.

The radii and heating rates in the full physics case and our simplified model in Fig. 11.48
show good agreement in all three radii, demonstrating that the radius reduction is as expected
an effect of the muonic component in the EOS. Of course, the manner in which this net muon
number is produced is simplified, but the PNS mantle in our full physics simulations was
already in good muonic beta-equilibrium during most of the accretion phase. Our simplified
model is accordingly suitable to model the PNS mantle evolution. Nonetheless, the heating
rate in case µbeta is slightly reduced due to differences in the neutrino spectra.
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Figure 11.47: A plot of the equilibrium muon fraction Yµ for Ye = 0.2 and variable density and
temperature. The muon fraction is color coded according to the color bar given on the right.

The electron neutrino luminosity of our simplified model in Fig. 11.49 fit well to the full
physics muonic model, but there are of course some variations in theµ and τ neutrino sector. The
assumption of a single heavy-lepton neutrino νx does not allow any differential weak magnetism
effects, species dependent neutrinosphere location or number production variations to change
the neutrino signal, and it only contains an averaged representation of some of these effects.
The νx luminosity, therefore, lies in the middle and slightly above our ντ and ντ luminosity, and
does not exhibit the lepton flavor conservation effects on the νµ and νµ luminosity. Thermal
energy loss of the PNS proceeds less by neutrino emission and more by additional muon rest
mass production. The PNS, therefore, stores more energy at earlier times in the muonic gas
than seen in our full physics simulation. The slightly increased luminosity of the νx compared
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Figure 11.48: On the left, the evolution of the shock radius in dashed, the gain radius in dotted
and the PNS radius in solid lines for cases s20.0-SFHo-muons in black and s20.0-SFHo-µbeta
in red; on the right, the volume integrated heating rate in the gain layer for both models. The
model s20.0-SFHo-standard is shown in gray for reference.
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to our full physics ντ and ντ show that the PNS temperature stratification is different at their
number and energy spheres.
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Figure 11.49: On the left, the evolution of the lab-frame luminosity of νe and νe for cases
s20.0-SFHo-muons in black and s20.0-SFHo-µbeta in red, in the middle of νµ and νµ and on
the right the same for ντ and ντ . Note that in the µbeta case there only exists the averaged
heavy-lepton neutrino νx, serving as a stand-in for both µ/τ neutrinos and antineutrinos. The
model s20.0-SFHo-standard is shown in gray for reference.

Similarly, the mean energies in Fig. 11.50 show good agreement for the νe and νe neutrinos at
early times but become slightly lower at late times. The νx do not exhibit the spectral splitting
caused by weak magnetism, and the νx should sit in the middle of the ντ and ντ mean energy
if the emission conditions were identical. As the mean energy of the νx even passes below the
ντ mean energy, the temperature at the νx energy sphere must be lower than in the full physics
case, which is further proof that more energy is stored in muon rest mass.

The shape parameter α shows that the spectra of all neutrinos are slightly more pinched
than in the full physics muonic case and resemble the standard physics case without muons.
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The largest error of our approximation is seen, as expected, in the net muon number,
which features a relatively constant offset in the beta-equilibrium case in Fig. 11.52. It shows
a significant overproduction of muons in the protoneutron star due to there being no neutrino
back-reactions and neutrino blocking present in the dense PNS core, which would otherwise
suppress muonization. Correspondingly, more energy being stored in muon rest mass results
in less emitted neutrino energy.
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11.3.3 Summary

In this section, we have compared our full physics muonic simulation of Sec. 11.1 with a
simplified model, where muons are assumed to be in perfect beta-equilibrium with vanishing
net νµ number. This was achieved by modifying an existing general-purpose equation of
state table to include muons as an equilibrium component while still maintaining electron
flavor conservation. This allows for easy implementation into existing supernova codes and
for a first estimate of the sensitivity of accretion simulations to muonization. The shortfall
of this approach is that our simulations show that the initial premise of this approximation,
that µ neutrino number can efficiently escape from the PNS, is not assured everywhere. Muons
interior to the mantle region do not reach an equilibrium distribution, and in fact, deviate farther
from equilibrium during the accretion phase, requiring tens of seconds after shock-revival until
achievement of beta-equilibrium. This causes the µbeta case to depart from our full physics
case after a few hundred milliseconds, showing reduced gain layer heating, luminosity and
mean energy of all neutrinos. The hydrodynamic contraction of the PNS is, however, well
reproduced even though the total number muon number is exceeded by ∼ 20%.

In conclusion, a muon weak equilibrium table is a useful tool for exploring the sensitivity
of CCSN to muonization, but a self-consistent calculation is still required to get the full effect.
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12 2D simulations

12.1 Accretion phase and shock revival

In this section we have attached a refereed journal paper submitted to Physical Review Letters
and accepted under reference PRL 119, 242702 (2017) and DOI: 10.1103/PhysRevLett.119.242702.
(Ref. [9]). The 2D simulations published in this letter demonstrate the sensitivity of multi-
dimensional simulations to muonic effects. The problematic 1D shortfalls of steady-state quasi-
hydrostatic post-shock and PNS stratification are avoided, and genuine multidimensional ef-
fects like the standing accretion shock instability and neutrino-driven convection can lift the
shock surface to higher radii. This allows the increased neutrino energies in the muonic case to
deposit sufficient energy to revitalize the stalled shock, leading to shock runaway and explosion.
This is conclusively demonstrated in the case s20.0-SFHo-Muons that achieves shock runaway
while the standard case fails to explode. This demonstrates that muons can, contrary to our
first pessimistic outlook in the 1D case, aid in the neutrino-driven explosion mechanism and
cannot be neglected in first-principle self-consistent calculations of core-collapse supernovae.

12.1.1 Introduction

First state-of-the-art three-dimensional simulations have recently yielded successful supernova
explosions by the neutrino-driven mechanism (see Refs. [130, 83, 84, 71, 58, 117, 91, 94]). But the
explosions turned out to be more delayed than in two-dimensional calculations and sensitive
to neutrino effects even on the 10 – 20% level (cf. Ref. [83]). Accurate physics in the neutrino
and nuclear sectors is therefore demanded to investigate the viability of the neutrino-driven
mechanism by self-consistent, first-principle neutrino-hydrodynamical simulations.

While the presence of muons is well known to play a role in cold neutron stars (NSs; e.g.,
Refs. [124, 2]), it is traditionally ignored in SN matter based on the argument that the high
muon rest mass (mµc

2 ≈ 105.66 MeV) suppresses their formation. This reasoning, however,
is not well justified (cf. Ref. [73]) because the electron chemical potential in newly formed
NSs exceeds the muon rest mass, and the peak temperatures rise above 30 MeV after roughly
100 ms after core bounce, when the thermal distributions of photons and neutrinos reach well
beyond 100 MeV. These conditions enable the production of significant numbers of muons
and anti-muons (µ−, µ+) via electromagnetic interactions such as e− + e+ � µ− + µ+ and
γ + γ � µ− + µ+ (γ denotes high-energy photons), via weak reactions that couple the e-
lepton and µ-lepton sectors, and via beta-processes between nucleons and µ neutrinos and
antineutrinos (νµ, νµ), which are created in the SN core through thermal pair processes.

While the new-born NS loses electron-lepton number by radiating a slight excess of elec-
tron neutrinos (νe) compared to electron antineutrinos (νe), it also gradually builds up net
muon-lepton number (“muonizes”) by emitting more muon antineutrinos than muon neu-
trinos. Electrons and muons thus share the negative charge that compensates the positive
reservoir of protons (and of some e+ and µ+). Here we show that the rearrangements in the
stellar medium and the neutrino emission that are associated with the appearance of muons
have an important impact on the evolution of the proto-NS by accelerating its contraction.
This facilitates the development of SN explosions by the neutrino-driven mechanism. Muons
therefore must be included in self-consistent, first-principle models of the SN phenomenon.

12.1.2 Neutron star formation with muons.

Assuming neutrino-flavor oscillations do not play a role, conservation equations for the lepton
numbers (i.e., the numbers of the charged leptons plus their neutrinos minus those of the
corresponding anti-particles) for all three flavors hold individually. During stellar core collapse
neutrinos get trapped and equilibrate at about one percent of the nuclear saturation density
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(ρ0 ≈ 2.7× 1014 g/cm3 or baryon density n0 ≈ 0.16 fm−3). Subsequently, they diffuse out of the
newly formed NS only over a time scale of several seconds. The NS, which begins to form at
core bounce, thus inherits a large concentration of electron-lepton number from the progenitor
core with an initial electron-flavor lepton fraction of∼ 0.30 electrons plus electron neutrinos per
baryon (see Ref. [78]). The diffusive loss of νe then drives the evolution to the final neutron-rich
state of a cold NS with its small remaining content of protons.

In contrast, the trappedµ and τ -lepton numbers are zero initially. The tauon density remains
extremely small at all times because of the huge rest mass of the tauons (mτ c

2 ≈ 1777 MeV),
which is much bigger than both the temperature and electron chemical potential in the NS.
Therefore the ντ and ντ numbers are initially equal and the chemical potentials µντ = −µντ = 0
with high precision. However, since the cross section for neutral-current scattering on nucleons,
ν+N�ν +N (N = n, p), is somewhat larger for neutrinos than for anti-neutrinos due to weak-
magnetism corrections (of order E/

(
mNc

2
)

with neutrino energy E and nucleon mass mN

(see Ref. [47]), ντ diffuse out faster and the proto-NS is expected to (transiently) develop a
considerable τ -lepton number in the neutrino sector (µντ > 0) even though the formation of
tauons is negligible (see Ref. [51]).

Different from τ neutrinos, but analogously to νe and νe, νµ and νµ participate in beta-
reactions,

ν` +n � p + `− , (12.1)

ν` + p � n + `+ , (12.2)

with their charged leptons, ` (standing for e or µ), when a significant population of thermally
excited µ− and µ+ appears (cf. Ref. [73]). Beta equilibrium for both flavors implies the usual
relation

∆µ ≡ µn − µp = µ` − µν̀ (12.3)

between the chemical potentials (including particle rest-mass energies) of neutrons, protons,
charged leptons, and the corresponding neutrinos. Since the highly degenerate Fermi sea of
e− partially converts to µ−, and since initially the trapped muon number is zero, an excess
of µ− over µ+ is compensated by an opposite excess of νµ over νµ. Therefore the diffusive
flux of νµ will dominate that of νµ, leading to a gradual build-up of muon number. The easier
escape of νµ compared to νµ is aided by the lower neutral-current scattering cross section for νµ
mentioned above and by the higher opacity for beta-reactions of νµ compared to νµ in analogy to
the electron-flavor. The accumulation of net muon number in the proto-NS, i.e., the process of
muonization that leads to an excess of µ− over µ+ in the final NS, is facilitated by the reactions
of Eqs. (12.1 and 12.2). Also other interactions that couple the e-lepton and µ-lepton sectors

ν + µ− � ν ′ + µ−
′

ν + µ+ � ν ′ + µ+

νµ + e− � νe + µ− νµ + e+ � νe + µ+

νµ + νe + e− � µ− νµ + νe + e+ � µ+

νe + e− � νµ + µ− νe + e+ � νµ + µ+

νµ + n � p + µ− νµ + p � n + µ+

Table 12.1: Neutrino reactions with muons.

enhance the muonization rate and thus increase both the νµ and νµ fluxes.
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Figure 12.1: Upper row: Angle-averaged shock radii (solid) and mass-infall rates (at 400 km;
dashed) vs. post-bounce time for our sets of models with SFHo (left) and LS220 EOS (right).
Lower row: Time evolution of NS radii (measured at an average density of 1011 g/cm3; left) and
net heating rate integrated over the gain layer (in 1 B/s = 1051 erg/s; right) for models with SFHo
EOS.

Muonization might play a non-negligible role during all stages of the SN post-bounce (p.b.)
evolution and NS as well as black-hole (BH) formation. In the following we discuss its effects
on the initiation of SN explosions by neutrino-energy deposition.

12.1.3 Numerical modeling

Our SN simulations were performed with the Prometheus-Vertex neutrino-hydrodynamics
code (see Refs. [114, 14]) with an approximate treatment of general relativistic gravity by
the effective gravitational potential of Case A of Ref. [77]. The Prometheus hydrodynamics
module solves the equations of nonrelativistic hydrodynamics (continuity equations for mass,
momentum, energy, lepton number, and nuclear composition) with an explicit, directionally-
split, higher-order Godunov scheme of Ref. [38]. The transport module Vertex integrates the
energy-dependent evolution equations of energy and momentum for all six neutrino species
(νe, νe, νµ, νµ, ντ , ντ ) in the comoving frame of the stellar fluid to order v/c (v is the fluid
velocity, c the speed of light), including corrections due to general relativistic redshift and
time dilation. The closure is provided by an Eddington factor based on the solution of a
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Figure 12.2: Evolution of angle-averaged specific entropy (color; in kB per nucleon vs. post-
bounce time for model s20.0-SFHo-standard (top) and s20.0-SFHo-muons (bottom). The outer
boundary of the light blue-green-yellow region follows the average radius of the SN shock.
The gray lines mark “mass shells” (radii of constant enclosed baryonic mass), the white line
corresponds to an average density of 1011 g/cm3.

model-Boltzmann equation, iterated for convergence with the set of two-moment equations of
Ref. [114]. Neutrino transport in multi-dimensional simulations employs the ray-by-ray plus
approximation of Ref. [14].

We upgraded the Prometheus-Vertex code for including all effects of µ− and µ+ in the
hydrodynamics and equation of state (EOS) of the stellar plasma, the effective relativistic gravity
potential, and in the neutrino transport. This implies the solution of conservation equations for
electron and muon lepton number:

∂ρY`
∂t

+ ~∇
(
ρY`~v

)
= Q` (12.4)

(here, relativistic corrections are omitted for simplicity). Y` = Y
`
− − Y

`
+ is the net number

of charged leptons per nucleon, ρ the baryon-mass density and Q` the source rate that is
associated with all processes emitting and absorbing ν` and ν`. The EOS depends on Ye and Yµ ,
i.e., P = P

(
ρ, T, Ye , Yµ , {Yk}k=1,...,Nnuc

)
and eint = eint (ρ, T, Ye , Yµ , {Yk}k=1,...,Nnuc

)
for pressure

P and specific energy density eint (T is the medium temperature, Nnuc the number of nuclear
species). Analog to e− and e+, µ− and µ+ provide an additive contribution to P and eint and are
treated as ideal Fermi gases of arbitrary degeneracy and arbitrary degree of relativity. In nuclear
statistical equilibrium (NSE) the mass fractions of nuclei and nucleons, Yk, are determined by
the Saha equations and hence Yk = Yk

(
ρ, T, Ye , Yµ

)
holds; otherwise they follow from evolution

equations similar to Eq. 12.4 with Q` being replaced by source terms for nuclear reaction rates.
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With ρ, eint , Ye and Yµ given as solutions of the hydrodynamics and Yk (k = 1, . . . , Nnuc) being
determined either by NSE or Eq. 12.4, T and the chemical potentials µe , µµ , µn , µp , and µk for
all k can be determined under the constraint of charge neutrality,

∑
k ZkYk = Ye + Yµ , with Zk

being the nuclear charge number of species k.

Accounting for the presence of muons and the differences of the ν and ν scattering cross
sections with nucleons due to nucleon-recoil and weak-magnetism of Ref. [47], we generalized
the neutrino-transport module Vertex to an energy-dependent six-species treatment, tracking
νe, νe, νµ, νµ, ντ , and ντ individually. Besides our “standard” set of neutrino reaction rates listed
in table 1 of Ref. [57], we also implemented all relevant neutrino interactions with µ− and µ+ as
listed in Table 12.1. The detailed kinematics (energy and momentum exchange between reaction
partners) were fully taken into account, describing charged leptons as arbitrarily relativistic and
arbitrarily degenerate fermions and nucleons as nonrelativistic fermions. Neutral and charged-
current interactions between neutrinos and nucleons were handled by the formalism of Refs. [17,
18], which includes the effects of nucleon correlations by a random-phase approximation (RPA).
We generalized the treatment to also include corrections due to neutron and proton mean-field
potentials in the beta-processes (see Refs. [115, 81, 120]) and due to the large rest masses
of µ− and µ+. Weak-magnetism corrections according to Ref. [47] were implemented for
all neutral-current neutrino-nucleon scattering reactions (cf. Ref. [14]) but only for charged-
current reactions of νe and νe with nucleons (because lepton-mass dependence was neglected
in Ref. [47]). Neutral and charged-current reactions of neutrinos with nucleons bound in light
nuclei (2H, 3H, 3He) were approximated by using the neutrino-nucleon interactions of Ref. [10],
which slightly overestimates (mainly at low energies) the collective opacity of these reactions
compared to the detailed description in Ref. [33]. When specified, we included in neutrino-
nucleon scatterings virial corrections for the axial response of nuclear matter at low densities
(see Ref. [50]) and/or applied a strangeness-dependent contribution to the axial-vector coupling
coefficient (see Ref. [47]) with a value of gs

A = −0.1, consistent with experimental constraints of
Ref. [45]). The virial corrections were implemented via an effective interaction in the RPA that
was stronger at low densities. This yielded results similar to those in Ref. [50].

Our SN simulations were performed in 2D for a nonrotating 20M� progenitor model of
Ref. [136] with the Lattimer-Swesty EOS (LS220) with nuclear incompressibilityK = 220 MeV of
Ref. [70] and the SFHo EOS of Refs. [43, 123] (models s20.0-LS220 and s20.0-SFHo, respectively).
After bounce, at densities below 1011 g/cm3, we employed a 23-species NSE solver at T >
0.5 MeV for infalling and T > 0.34 MeV for expanding, high-entropy matter, and nuclear
“flashing” (see Ref. [114]) at lower temperatures. For the polar coordinate grid we used a time-
dependent number of 400–650 radial zones and 160 lateral zones with a refinement to 320 lateral
zones outside of the gain radius (i.e., the radius exterior to which neutrino heating dominates),
and for the neutrino transport 15 geometrically distributed energy bins with Emax = 380 MeV.

12.1.4 Results

Besides conducting simulations for the two employed nuclear EOS with our standard set of
neutrino processes (Table 1 in Ref. [57]), we also investigated cases where we included (a) the
virial corrections in ν – N-scattering, (b) all muon effects, (c) both muon and virial effects, and
(d) muons, virial effects, and a strangeness correction in ν – N-scattering. Fig. 12.1 displays the
time evolution of the average shock radii for the models with SFHo (top left) and LS220 EOS
(top right). It is obvious that muon formation enables an explosion for the SFHo model, which
does not explode with standard neutrino physics, and it allows for a clearly earlier onset of the
explosion with the LS220 EOS.

Figure 12.2 compares the evolution of angle-averaged radial profiles of the entropy per
baryon (superimposed in color on mass-shell trajectories) for the two SFHo-models. After the
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Figure 12.3: Neutrino luminosities (upper row) and radiated mean neutrino energies (defined as
ratio of neutrino energy density to number density; lower row) vs. post-bounce time, evaluated
in the laboratory frame at the average gain radius s20.0-SFHo-standard (black) and s20.0-SFHo-
muons (red).

arrival of the interface between silicon-shell and oxygen-rich Si-layer at the shock at tpb ∼
240 ms, the shock radius in the muonic case is considerably larger than in the standard case,
leading to an explosion, despite the inverse order of the shock radii at earlier times (Fig. 12.1).
The lower panels of Fig. 12.1 provide an explanation: with muons the proto-NS contracts
notably faster (left). The creation of µ− and µ+ effectively softens the EOS by conversion
of thermal and degeneracy energy of e− into rest-mass energy of muons. In addition, it
significantly raises the emission of νµ and, on a lower level, also of νµ (Fig. 12.3, middle
panels). The accelerated shrinking of the NS leads to higher temperatures at given densities
and correspondingly increased luminosities and mean energies of the emitted electron- and
τ -flavor neutrinos, which are shown in Fig. 12.3 (left and right panels) at the gain radius, where
νe and νe differences are relevant for the neutrino heating. As a consequence, the neutrino-
heating rate, per baryon as well as integrated over the gain layer (i.e., the region between gain
radius and shock), becomes sizably greater in the model with muons at t & 240 ms (Fig. 12.1,
lower right panel). Muons therefore have a similar overall effect as the strangeness-dependent
reduction of neutrino-nucleon scattering discussed in Ref. [83].

Figure 12.4 documents the appearance of significant charged-muon number (up to Yµ ∼
0.05) (at the expense of e−) correlated with a temperature maximum in the NS between ∼ 7 km
(∼ 4 × 1014 g/cm3) and ∼ 21 km (∼ 2 × 1013 g/cm3). While in the model without muons νµ are
more abundant than νµ, equivalent to the situation for ντ and ντ discussed above, the situation
is reversed when muons are included: Yνµ drops in its peak to about half of the abundance in
the standard case, whereas the number of νµ more than doubles (Y max

νµ
& 0.02).

Including also strangeness corrections in ν – N-scattering leads to even faster explosions
(Fig. 12.1, upper panels), because muon and strangeness effects drive the system in the same
direction, namely a faster contraction of the NS (Fig. 12.1, lower left panel). The situation for
virial effects is ambiguous. While the LS220 model with virial corrections explodes faster than
the standard case and evolves similar to the simulation with muons, virial effects in addition to
muons make little difference (Fig. 12.1, upper right panel). In contrast, an SFHo model including
virial corrections and strangeness gs

A = −0.1 (not shown) explodes only later than 600 ms due
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(red) for three cases with SFHo EOS.

to the strangeness effects, whereas the SFHo model with muons and virial response fails to
explode. For relevant temperatures (T ≈ 5–10 MeV) virial effects lead to a reduction of the
ν–N-scattering opacity compared to RPA results only at densities below ∼ (0.01, . . . , 0.03)ρ0.
This is so low that there is a visible (1–2%) increase of the heavy-lepton neutrino emission
but hardly any correspondingly accelerated contraction of the NS radius (Fig. 12.1, lower left
panel). Virial effects are therefore subtle, because they can extract energy in the νµ and ντ sector
without explosion-favoring consequences for the νe and νe emission.

12.1.5 Conclusion

We have demonstrated by 2D simulations that the appearance of muons in the hot medium
causes enhanced neutrino emission and faster contraction of the proto-NS with supportive
effects on the neutrino-energy deposition behind the stalled shock and the onset of neutrino-
driven explosions. The ongoing muonization of the new-born NS may also lead to stronger
heating of matter that is still accreted and re-ejected after the onset of the explosion (see Ref. [94]
and references therein) and could therefore raise the explosion energy. Muonization mainly
affects more massive and thus hotter NSs and should have less impact on SN explosions of
low-mass progenitors with less massive NSs. Final conclusions about their detailed role in the
explosion will require 3D simulations. Since muon formation effectively softens the NS EOS at
high densities, it also has important implications for the collapse of hot NSs to BHs. Therefore
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muons cannot be ignored in detailed models of the SN explosion mechanism and NS formation.
For a rigorously self-consistent description, this requires —and we have implemented— a full
six-species treatment of neutrino transport, which couples the production of electron- and
muon-flavor neutrinos. Since all six neutrino species differ in their spectra, corresponding
transport results may offer interesting new aspects for neutrino oscillations. Muons may also
have to be included in simulations of NS–NS mergers, because the compactness of the merger
remnant and its time scale for a possible collapse to a BH is sensitive to muon formation in the
hot nuclear medium.
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12.2 Rapid accretion induced collapse

To gauge the effect muonization has in the extreme case of rapid accretion and collapse to a black
hole, we have simulated an ultra-low metallicity 75M� ZAMS progenitor star with a 3M� iron
core from the 2002 model set by Woosley&Heger [138], henceforth called u75.0. The numerical
setup of our muonic case is identical to the common numerical setup established in Sec. 10
and preceding sections, to ensure comparability in cause and effect. The minimum angular
resolution in θ is 1.125°, increasing to 0.5625° in the gain layer as described in Sec. 10. The
numerical setup of the standard case is almost identical to the common numerical setup, except
evolving only three neutrino species ν ∈ [νe, νe, νx], where νx is the averaged heavy-lepton
neutrino as in Sec. 11.3. The employed EOS are the LS220 nonrelativistic liquid-drop EOS by
Ref. [70], and the SFHo relativistic mean field EOS by Ref. [123].

Even though the multi-dimensional collapse to a black hole might ordinarily be expected
to stay mostly spherically symmetric with only marginal neutrino-driven convection in the
gain layer, the presence of hydrodynamic instabilities like SASI may lead to extremely rapid
and violent high-frequency shock oscillation around the PNS. Furthermore, the presence of
violent protoneutron star convection and other genuinely multi-dimensional effects in the PNS
core make two-dimensional simulations worthwhile. However, due to the computational cost
associated with modeling a failed supernova through a long accretion phase of possibly several
seconds to eventual collapse, we have to choose a more tractable model. The extremely short
collapse timescale of the selected u75.0 progenitor of only ca. 200 ms to 300 ms, depending
on the employed EOS, allows quick 2D and even 3D simulations. Similar studies regarding
additional nonbaryonic particle degrees of freedom in the EOS have been undertaken most
recently in Ref. [107], who simulated the collapse of an s40.0 progenitor from Ref. [136] using the
LS220 EOS supplemented by an ideal Bose-Einstein gas of pions and a neutrino leakage scheme.
Additional work on combining hadronic and leptonic degrees of freedom have been undertaken
in Ref. [101], who however only simulated the direct collapse of perturbed unstable muonized
neutron stars to black holes without thermal effects or neutrino transport. Here we aim to
extend on these short excursions by modeling the whole evolutionary track towards black hole
formation. As black hole collapse is a physical manifestation of a strongly GR dominated event,
we need to rely on the accuracy of our effective GR TOV potential, implemented in Ref. [77].
This potential has however been demonstrated in Refs. [55, 88] to be in good agreement with
full GR calculations. As the PNS in our model is nonrotating and there are no large-scale
deviations from spherical symmetry present in the PNS, we expect the gravitational potential
to be dominated by the monopole component and our 2D results to remain as accurate as the
1D results. The analyzed simulations are named u75.0-LS220-standard and u75.0-LS220-muons
for the LS220 EOS case, and u75.0-SFHo-standard and u75.0-SFHo-muons for the SFHo EOS
case

12.2.1 Progenitor

The progenitor u75.0 has an extremely heavy iron-core at its center that is not purely supported
by electron degeneracy pressure alone, but also by photonic pressure. This allows the iron-core
mass to exceed the cold Chandrasekhar mass of 1.45727×

(
2Ye
)2
M� by more than a solar mass.

The extended∼ 2.5M� iron-core already even exceeds the cold TOV mass of both the employed
LS220 EOS and the SFHo EOS. The mapping of the initial progenitor profiles onto our chosen
numerical grid is shown in Fig. 12.5, and the treatment of the thermodynamic quantities is as
in Sec. 11.1.
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Figure 12.5: Initial profiles of the u75.0 progenitor mapped onto our numerical grid as a function
of enclosed baryonic mass using the LS220 EOS. Shown are the density, temperature, electron
fraction, entropy per baryon, pressure per baryon, chemical potentials, and the location of each
enclosed mass shell. The pressure has been further subdivided into its individual components.

12.2.2 Time evolution

Radii The radii evolution of both the LS220 model and SFHo model are depicted in Fig. 12.7,
showing a very rapid shrinking of the PNS radius in both cases. The point of gravitational
instability and collapse to a BH is reached after tmuons

pb,LS220 ≈ 150 ms in the LS220 muonic case,
and tstandard

pb,LS220 ≈ 200 ms in the LS220 standard case. In the LS220 standard case, the final baryonic
mass is 2.520M� and the final gravitational mass is 2.474M�. In the LS220 muonic case, the
final baryonic mass is 2.458M� and the final gravitational mass is 2.416M�. The SFHo shows
a slightly later collapse at tmuons

pb,SFHo ≈ 230 ms in the muonic case, and tstandard
pb,SFHo ≈ 290 ms in the

standard case. In the SFHo standard case, the final baryonic mass is 2.593M� and the final
gravitational mass is 2.532M�. In the SFHo muonic case, the final baryonic mass is 2.542M�
and the final gravitational mass is 2.489M�.
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The spread of collapse time between muonic and standard physics case for both EOS is
roughly around 50-60 ms. The overall longer collapse time for the SFHo case, even though
the maximum cold TOV mass is nearly identical in both EOS, is probably due to differences
in thermal effects on the EOS. The muonic models in both cases show a very rapid decrease
in protoneutron star radius that does not converge towards the nearly constant offset seen in
lighter progenitors. This can be an indication that the formation of muons has reached a region
of instability, where muon production is a self-reinforcing cycle analogous to the electron pair-
instability in hypernovae. In contrast to the muonic models that already collapse before or
immediately after the in-fall of the Si-O interface, the standard case models of LS220 and SFHo
show signs of shock revival shortly before the collapse. Reason being the extreme neutrino
luminosity from the rapidly shrinking protoneutron star being sufficient to revitalize the shock
temporarily, as the Si-O interface arrives and the mass accretion rate slows down to a still
formidable 1M� per second.
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Figure 12.6: On the left, the central temperature of u75.0-LS220-muons in red and u75.0-LS220-
standard in black; on the right, the maximum temperature inside the PNS with the same color
assignments as on the left.

Similar behavior was already seen in Refs. [104, 19], where a solar metallicity 40M� ZAMS
progenitor of the Ref. [136] set showed shock expansion before the final collapse to a black
hole. In both our u75.0 and the s40.0 model in Ref. [104] this shock expansion is however
not fast enough to be counted as a successful explosion. The BH collapse and following
rarefaction of the post-shock region will eventually lead the explosion to fail and the remaining
still gravitationally bound surrounding progenitor to be accreted into the growing black hole,
whereas the results of Ref. [19] indicate a very weak explosion and ejection of the outer hydrogen
envelope. Note however, that a calculation up to the BH singularity is not possible with our
Newtonian hydrodynamics code, and our simulation crashes once the collapsing PNS reaches
the limits of our tabulated EOS. A demonstration of a dynamical simulation of shock failure and
following accretion is therefore not possible to accurately simulate with Prometheus-Vertex.
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Figure 12.7: Plots of u75.0-LS220 and u75.0-SFHo radii evolution and gain layer heating as a
function of time. The top left plot shows the shock radii of the u75.0-LS220-standard case in
black and the u75.0-LS220-muons case in red. The dashed lines are the corresponding mass
accretion rates. On the right, the plot content is identical to the left plot, except the u75.0-SFHo-
standard case in blue and the u75.0-SFHo-muons case in purple is depicted. The lower left plot
shows the PNS radii of the four mentioned models; the right plot shows the volume-integrated
neutrino net energy source term over the gain layer as in Eq. 11.21.
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Muon number The total energy contained in the muonic gas in the PNS of model u75.0-LS220-
muons in Fig. 12.8 shows continuous growth, reaching up to 80 bethe before BH collapse,
equivalent to ∼ 0.045M� in extra gravitational mass. This means there is about as much
energy stored in the muonic gas as has been lost in the form of neutrino radiation up to the
collapse. This can explain the more rapid collapse of the protoneutron star, as thermal energy
is continuously converted into fresh muon pairs and net muons, drastically reducing thermal
pressure support. The PNS, therefore, reaches its last stable configuration much earlier than if
it had to wait for energy loss by neutrinos to reach the same point. The net muon number in
the PNS is in fact produced so fast that the νµ number is not lost fast enough. The net muon
flavor number, i.e., Yµ = Y

µ
− + Yνµ in the PNS is accordingly significantly smaller than the net

muon number, as shown in Fig. 12.9. The net muon number in the star is therefore suppressed
by neutrino back-reactions, and beta-equilibrium is not reached. We would, therefore, expect
our beta-equilibrium comparison run in Sec. 12.3 to exhibit even faster collapse.

It would be instructive in future studies to isolate the effect of loss of thermal pressure
support compared to prolonged accretion, by artificially quenching mass accretion once both
models have exceeded an identical fixed baryonic mass. As the PNS in the u75.0-LS220-standard
case continues to accrete a further 0.05M�, it is not possible to ascertain whether the standard
case could maintain thermal pressure support even longer if the final baryonic mass were
identical to the muonic case.
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Figure 12.8: On the left, the total internal plus rest mass energy contained in the muonic gas
inside the PNS given in bethe for model u75.0-LS220-muons as a function of time; on the right,
the time-integrated and summed neutrino luminosity. The red line on the left plot is the pure
muon rest mass energy; the dashed line on the right is model u75.0-LS220-standard.

Neutrino signal The neutrino signal is obviously cut short by the early onset of collapse,
but the rapid PNS contraction strongly increases both the neutrino luminosity as well as the
mean energy, as shown in Fig. 12.10. The νe luminosity shows an increase of ∼ 10 B/s, while
the νµ and νµ show an increase of ∼ 5 B/s and ∼ 20 B/s respectively. Note that the standard
case only transports a single averaged heavy-lepton neutrino and therefore does not exhibit a
spectral splitting due to weak magnetism effects. A realistic increase, compensating for weak
magnetism, is therefore closer to∼ 10 B/s and∼ 15 B/s respectively. The same holds true for the
ντ and ντ luminosity, showing an increase of ∼ 5 B/s and ∼ 15 B/s respectively. The true value
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Figure 12.9: Plot of the volume integrated net muon flavor number contained in the PNS
of u75.0-LS220-muons in red defined by Nµ = 4π

∫ rPNS
0 dr r2

{
ρ/mBYµ +Nνµ −Nνµ

}
, where

Nν are the local neutrino number densities. The cumulative time integrated net νµ number

flux Lnet
νµ

= 4πr2 ∫ t
0 dt

{
Lνµ − Lνµ

}
is plotted in black dashed lines; the net muon number

N
µ
− = 4π

∫ rPNS
0 dr r2 {ρ/mBYµ

}
is plotted in solid orange lines.

should be closer to ∼ 10 B/s for both. A new effect by the addition of muons is a sudden sharp
increase of the luminosity just as the PNS becomes unstable and begins its collapse. As this also
occurs for the τ neutrinos, this effect is not caused by any rapid muonization or demuonization
alone. Furthermore, as the neutrinos are trapped and dragged with the collapsing PNS, any
changes in the deep PNS cannot propagate to the surface in time. A similar effect was already
observed in Refs. [34, 72], and was attributed to a shift of the main heavy-lepton neutrino
production sites to lower densities where emission properties are more beneficial. Analysis of
the temperature profiles at the time of the collapse to a BH of each case shows a temperature
dip at the PNS surface relative to the surrounding matter in the standard case, compared to
no dip and constantly increasing temperature in the muonic case. The cause of this is simply
that in the muonic case the PNS contraction outpaces the energy loss by neutrinos, as the
PNS mantle does not shrink by the emission of neutrinos but by progressive softening of the
EOS. At the point in time when the PNS begins its collapse to a black hole, the shock reaction
is delayed compared to the rapid PNS contraction and the distance between shock and PNS
surface increases. As the entire post-shock volume is a cooling layer for heavy-lepton neutrinos,
an increase of this volume leads to a larger volume-integrated neutrino emission. Furthermore,
as there is no temperature dip at the PNS surface and the luminosity scales roughly with
Lν ∝ T 4, the increased volume at higher temperatures can lead to a disproportionate gain in
luminosity. Similarly, the mean energies of νe and νe show an increase of ∼ 1 – 1.5 MeV on
average during collapse, as their neutrinospheric temperature increases. The mean energies of
the heavy-lepton neutrinos show a significantly larger increase of∼ 2 – 3 MeV, as their number
and energy sphere lie deeper in the PNS.

The enhanced neutrino luminosity is, however, only able to increase the total emitted
neutrino energy by 6 B in the 50 ms left until collapse, as shown in Fig. 12.11. The extra
gravitational energy liberated by the PNS contraction is instead mostly stored in the muon gas,
outstripping the additional neutrino energy loss by more than one magnitude, cf. Fig. 12.8.
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Figure 12.10: The evolution of the lab-frame neutrino luminosity in the top row and the mean
neutrino energies in the bottom row, evaluated at a radius of 400 km. The red lines are the
u75.0-LS220-muons case; the black lines are the u75.0-LS220-standard case. The thick lines are
for the ν, and the thin lines are for the ν of each neutrino flavor. Note that for the u75.0-LS220-
standard case there exists only a single averaged heavy-lepton neutrino representing both µ
and τ neutrinos.
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12.2.3 Snapshots

Radial profiles of select quantities immediately before BH collapse of model u75.0-LS220-muons
are shown in Fig. 12.12. The net muon fraction is still mostly compensated for by the net νµ
fraction as shown in Fig. 12.9, and the net lepton fraction of the muon and standard case are very
similar to each other. Notably, the electron neutrino fraction becomes negative and decreases
the net lepton fraction of the standard case. Neutrino transport is therefore not fast enough, as
shown in the previous sections, to efficiently transport even electron lepton number away from
the PNS.

The temperature and density profiles in Fig. 12.13 show that the PNS of both the standard
case and muonic case are very similar to each other at the moment when the gravitational
instability of each PNS occurs. This similarity is a result of the unchanged high-density nucle-
onic pressure support. Note that the temperature in the standard case is larger at the point of
collapse, as the PNS had more time to redistribute energy inside the PNS via convection and
neutrino transport. The reduced accretion rate and longer collapse time scale of the standard
case also allows the extended mantle to contract further against the stabilizing dense PNS core,
leading to a steeper density profile.
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Figure 12.12: Profiles of case u75.0-LS220-muons in solid lines and u75.0-LS220-standard in
dashed lines at 4 ms pre-BH collapse of the muonic case at tmuons

pb = tstandard
pb = 148 ms . The

plots are displayed as a function of the logarithmic radial coordinate from 1 km to 1000 km, to
capture both the PNS as well as the gain layer and pre-shock region. Note that the standard
case does not have any net heavy-lepton neutrino number as there is only a single averaged
neutrino.
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Figure 12.13: Profiles of case u75.0-LS220-muons in solid lines and u75.0-LS220-standard in
dashed lines at 4 ms pre-BH collapse of each case at tmuons
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respectively. Plot content is as in Fig. 12.12.
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12.2.4 Summary

Calculations of black hole formation have long been performed in 1D, but current state-of-
the-art simulations have recently progressed to two-dimensional calculations. An interesting
property is that many of these calculations show shock expansion shortly before the BH collapse
of the s40.0 progenitor of the 2007 Woosley&Heger model set explored in Refs. [104, 19]. We
can confirm these findings here also for the u75.0 progenitor of the 2002 model set using the
standard physics case. Even though the mass accretion rate still exceeds 1M�/s, it can achieve
shock expansion before the final collapse to a black hole for both the examined LS220 EOS and
SFHo EOS. Adding a self-consistent treatment of muonization into the calculations however
changes these results, as BH collapse is reached before the Si-O Interface and the concomitant
rapid drop in mass accretion rate can arrive. These results are in accordance with preliminary
simulations in Ref. [107], who have simulated an LS220 EOS supplemented by an ideal Bose-gas
of pions and they saw a similar shortening of the collapse timescale.

We find in our simulations that the time to BH collapse is reduced by roughly ∼ 50 – 60 ms
when adding muonization, compared to the standard case with only neutrons, protons, and
electrons. This decrease in collapse timescale is caused by the extremely rapid contraction
of the PNS, aided by the addition of muons. Compared to the lighter progenitors explored
in the preceding section, the PNS never enters a steady-state between neutrino cooling and
contraction. Instead, it remains highly dynamic in a rapid contraction that liberates gravitational
binding energy faster than neutrino radiation can react. The temperature inside the PNS
continually increases during the accelerated contraction, compared to the standard case, but
a significant amount of the released energy is stored in the form of muon rest mass in the
muonic gas. Muons are therefore a massive net sink of internal energy, which do not contribute
significantly to the stabilization of the PNS. In fact muons, due to their large mass of∼ 10% of
the nucleon mass, actually act gravitationally on the collapse. During the accretion phase, the
useful energy being lost in the form of neutrinos is not significantly increased compared to the
standard case and in fact, the trapped µ neutrino number is lost too slowly compared to the
rate of muon production. The resulting net muon flavor number in the PNS therefore remains
close to zero and muon production is suppressed by back-reactions. An additional feature of
the muonic case is a peak both in luminosity and mean energy at the moment of gravitational
collapse, caused by the effect of the rapid PNS contraction not being balanced by increased
neutrino luminosity. The changed temperature stratification in the post-shock layer leads to a
disproportionately large increase in temperature at the heavy-lepton neutrino production sites.

In conclusion, muons are shown to be an important addition to the simulation of failed
core-collapse supernovae. Their appearance modifies both the measurable neutrino signal as
well as the stability of the thermally stabilized hot PNS before their collapse. They are therefore
also relevant for the case of NS-NS merger events where similar temperatures and conditions
can be reached during the brief lifespan of the massive merger remnant. Muons, therefore,
must be treated consistently in BH formation simulations and may thereby also influence the
diffuse supernova neutrino background.
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12.3 BH collapse with muons in beta-equilibrium

As in Sec. 11.3, we will again look at whether the muonization of the PNS can be modeled by a
muon gas that is assumed to be in strict beta-equilibrium, i.e., µµ = µe = µn−µp at all times. As
the PNS in the rapid collapse scenario presented in Sec. 12.2 remained far from beta-equilibrium,
and there was a substantial trapped νµ number suppressing net muon formation, we would
expect the equilibrium treatment to vastly overstate the net muon number in the PNS. The net
muon number, however, might not be a critical factor at extremely high temperature. Instead,
the number of muon-antimuon pairs created by the large thermal energy might be dominant.
This would reduce the relative influence of net muon number on the dynamics, and the PNS
might behave similar as in the full muonic calculation. As in Sec. 12.2, the assumption that
any net heavy-lepton neutrino number can escape the PNS unhindered and muon production
is efficient, is maintained by simulating only the single averaged heavy-lepton neutrino. The
condition µνµ = µντ = 0 is then automatically fulfilled at all times, while neglecting lepton
flavor number conservation.

12.3.1 Comparisons

The new beta-equilibrium muon fraction model will be called u75.0-SFHo-µbeta, and has a
collapse time of tµ beta

pb,SFHo ≈ 226 ms. The final baryonic mass of the PNS is 2.534M�, and the final
gravitational mass is 2.484M�. These values fit the full calculation well, with only a slightly
earlier collapse. The shock radius evolution in Fig. 12.14 shows significant deviation, with
shock revitalization happening at the same time as in the standard case of Fig. 12.7. The full
muon calculation shows no sign of shock revitalization, even though the gain layer heating
rates are favorable compared to the standard case. This might be the result of 2D stochasticity
or differences in the PNS structure. The PNS itself initially shows slightly faster contraction,
up to ∆r ≈ 2 km, until the initiation of shock expansion at tpb ≈ 150 ms quenches the mass
accretion onto the PNS and contraction slows down. For the PNS to contract faster, more
thermal energy needs to be stored in the muon gas as shown in Fig. 12.15. The difference of
energy contained in the muon gas between the full muon physics case in dashed and the µbeta
case in solid lines rapidly grows to more than 30 bethe, while the neutrino luminosity remains
unchanged compared to the full physics case. The maximum temperature inside the PNS is
slightly hotter in the µbeta case by ∼ 2 MeV as shown in Fig. 12.16, indicating that still more
gravitational energy has been liberated than absorbed in the muon gas. This might be helped
by the additional reduction of degenerate electron neutrinos, as more of the negative charge is
provided by muons. The net muon number contained in the PNS has grown by nearly a factor
of two in Fig. 12.17 compared to the full physics case. As the energy contained in the muon gas
only raises by a factor of∼ 1.6, and temperature is also still somewhat increased, there must be
a significant pair contribution to the muon gas.

12.3.2 Summary

In this section, we have compared the results of a simple strict beta-equilibrated muon approx-
imation to our full physics set as in Sec. 11.3 for the case of BH formation. We have seen that
the initial premise of beta-equilibrium is never fulfilled, as there is a significant trapped µ neu-
trino number inside the PNS that would otherwise suppress muon production. Nonetheless,
as the temperatures inside the unstable PNS rise above the muon pair-production threshold,
the accurate determination of net muon number is subdominant compared to the vast amount
of energy stored in the muon pairs. The overall behavior of the protoneutron star is therefore
somewhat similar and thermally dominated.
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Figure 12.14: On the left, the shock radius of u75.0-SFHo-µbeta in red and u75.0-SFHo-muons
in black; on the right, the PNS radius with the same color assignments as on the left.
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Figure 12.15: On the left, the total internal plus rest mass energy contained in the muonic gas
inside the PNS given in bethe for model u75.0-SFHo-µbeta in black and u75.0-SFHo-muons in
red; on the right, the time-integrated and summed neutrino luminosity.
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Figure 12.16: On the left, the central temperature of u75.0-SFHo-µbeta in red and u75.0-LS220-
muons in black; on the right, the maximum temperature inside the PNS with the same color
assignments as on the left.
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Chapter VII

Conclusions
In this thesis, we have performed the first self-consistent implementation of a second family
of charged leptons, i.e., of muons, into the core-collapse supernova simulations, including the
necessary full coupling between neutrino transport and hydrodynamics. While the eventual
appearance of muons in beta-equilibrium in neutron stars is part of the standard theoretical
picture of cold neutron stars (cf. static NS profiles in Ref. [109]), there has been no previous
effort of investigating the feedback between ongoing muonization and the dynamical evolution
of supernovae and hot protoneutron stars.

Here we have improved on the beta-equilibrated picture of muonic effects, only valid
for cold and neutrino-transparent neutron stars, by also taking the lepton number evolution,
constrained by conservation equations, fully into account. This requires, in contrast to the beta-
equilibrated approach, a direct coupling between the appearance of a net number of muons
and the corresponding opposite change in net number of µ-flavor neutrinos, whose evolution
requires a transport description. The benefit of this more involved treatment is that it allows
us to track muonization in phases where neutrino feedback cannot yet be neglected. This is a
prerequisite to investigating the muonization of a protoneutron star from the moment of birth
to cold beta-equilibrium conditions, without requiring any prior assumptions on the muon or
µ neutrino chemical potential.

Developing an arbitrary muon fraction in the protoneutron star requires the implementation
of a new lepton equation of state into general-purpose high-density baryonic equations of
state currently available. As the thermodynamics of noninteracting ideal leptons are largely
independent of those of baryons (Ref. [70]), we can easily extend any purely hadronic equation
of state to an arbitrary distribution of charge balance between the positive charge carriers,
e.g., protons, Σ+ or π+, and the leptonic negative charge carriers of electrons and muons. As
expected from experience with equations of state developed explicitly for cold beta-equilibrated
neutron star matter, our modified general-purpose equations of state still fulfill the observational
mass constraint of pulsar PSRJ0348+0432 (Ref. [3]). This is expected, because muons only
increase the leptonic degrees of freedom, but leave the hadronic degrees of freedom unchanged.
Protoneutron stars at birth, however, are surrounded by an extended hot mantle, supported
by degenerate electron and thermal nucleon pressure support. Muons, with their large rest
mass, can “soften” the equation of state in the sensitive mantle region, and alter the evolution
of the hot protoneutron star during the crucial initial second of a core-collapse supernova.
Compared to other possible additional particle degrees of freedom, the muon contribution
has no theoretical uncertainties and remained the next logical step in extending the current
treatment of the description of matter around nuclear saturation density.

To investigate the muonization of protoneutron stars, we have extended the well-tested
neutrino radiation-hydrodynamics code Prometheus-Vertex to solve the transport equations
of all six neutrino species, and added new evolution equations for the muon number with
corresponding muon neutrino sourceterms; the necessary number and energy source terms
associated with muons are implemented for particles of arbitrary mass and degeneracy. The
hurdle of the large muon rest mass, requiring a minimum incoming neutrino energy, can be
overcome in the presence of high temperature, large electron chemical potential, and with
nuclear self-interaction potential differences characteristic of neutron stars. The opacity set
extended by the muon beta-processes, lepton flavor exchange, lepton flavor conversion and
inverse muon decay, allow muon interactions at nearly any incoming neutrino energy above a
matter density of ρ ∼ 1012 – 1013 g/cm3. Muon beta-reactions are shown to be most effective close
to saturation density and high temperatures, where muons become most abundant. Towards
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lower densities, the purely leptonic processes of flavor exchange and conversion can harness
the considerable electron chemical potential, and assist µ-flavor neutrinos, and to some extent
also νe, to stay in chemical equilibrium. The still present process of inverse muon decay sets a
base floor opacity for muon creation, as it is nearly independent of incoming neutrino energy
and mostly depends on the electron chemical potential; in addition, it performs the natural
process of muon decay. We find these new opacities to efficiently drive the muon and µ-flavor
neutrino phase space distributions to their equilibrium spectra.

Using the modified Prometheus-Vertex code, we examined the process of muonization in
spherically symmetric (1D) and axisymmetric (2D) models of stellar core-collapse evolution to
explosion or black hole formation and obtained the following results.

1. We found that the production of muon number effectively softens the EOS in the density
and temperature domain most sensitive to modifications in the leptonic sector. The
protoneutron star is found to contract more rapidly in the case where muons are included,
as thermal pressure and electron degeneracy are continuously reduced by converting
energy into inert muon rest mass; furthermore, the equilibrium isospin asymmetry is
shifted to slightly more proton-rich conditions, as the reduction of µe leads to a larger
beta-equilibrium µp = µn − µe

¬, and the increased negative charge fraction required
for charge neutrality is provided by muons with µµ ≤ µe . Since the nuclear pressure
around saturation density depends on the isospin asymmetry parameter J according
to P ∝ (1 − 2Yp)2J , an increased proton fraction reduces the available pressure. This
process begins as early as 100 ms post-bounce. The faster contraction of the protoneutron
star mantle increases the temperature at the neutrinospheres, leading to an increase of the
mean energies of all neutrinos by ∼ 1 MeV.

2. The muonization of the protoneutron star proceeds efficiently in the mantle region be-
low nuclear saturation density, as neutrinos can escape efficiently and Pauli-blocking is
negligible. This results in a considerably enhanced net νµ number flux that is the largest
observable signature of the muonization, as demanded by muon lepton number conserva-
tion. The muonization of the inner core of the PNS above saturation density is, however,
suppressed by strong back-reactions of highly degenerate νe and the long trapping of a
large number of νµ. The result is that the muon chemical potential reaches and stays
very close to beta-equilibrium µe = µµ in the PNS mantle after only a few milliseconds
post-bounce, but remains far from beta-equilibrium in the PNS core during the explo-
sion phase. The inner core only achieves full muonization after several ten seconds of
post-explosion PNS cooling.

3. The increased luminosity and mean energy of all neutrinos, by the developing muoniza-
tion, can influence the critical accretion phase and can make conditions more favorable
to explosions. In multi-dimensional (2D) simulations, the muonic model shows an ear-
lier explosion time for the LS220 baryonic equations of state. In the case of the “stiffer”
SFHo EOS, the effect of muonization is even able to lift a model above the explosion
threshold, turning a dud without muons into a successful explosion. The genuinely
multi-dimensional hydrodynamic motions, which increase the matter dwell time­ com-
pared to the 1D case, remain a crucial ingredient, as the effect of muonization on the
shock dynamics stays marginal in 1D. Whether the beneficial influence of muonization
carries over into full 4π simulations (3D) remains to be investigated, but the successful 2D
results give hope that muons might provide a needed boost to reach the critical luminosity
condition also in 3D (cf. Ref. [128]).

¬
µn −µp ≈ 4(1− 2Yp)

2
J(T, ρ) (Ref. [32]) further links the chemical potential difference to the proton fraction Yp

and symmetry energy J , which leads to Yp being anticorrelated to µe in beta-equilibrium.
­The time a fluid element spends in the neutrino heating layer.
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4. We have further examined the influence of muonization during the Kelvin-Helmholtz
phase; i.e., the cooling period of ∼ 20 s from a hot thermally supported extended PNS
to a warm, compact, nuclear pressure supported quasi-NS. We find the appearance of
muons to strongly modify the temperature evolution of the protoneutron star during the
deleptonization phase, i.e., during the loss of trapped electron neutrino number, because a
fair fraction of the electron degeneracy energy is converted into inert muon rest mass rather
than being transformed into thermal energy. When the PNS reaches beta-equilibrium with
respect to electron neutrinos, i.e., µνe ≈ 0 MeV, it still has very high temperatures and
continues to lose charged lepton number while it cools due to neutrino emission; reason
being that the equilibrium proton-fraction typically decreases with matter temperature.
The muon fraction, produced at high temperatures at the end of the deleptonization phase,
stores a large part of the liberated electron degeneracy energy. As some of these muons
decay, their stored kinetic and large rest mass energy will be released in the form of high
energy neutrinos and electrons. In this way, the muon gas acts as an energy “battery” that
is rapidly charged during the initial deleptonization phase, and slowly discharged during
the following cooling phase. Accordingly, we find muonization to uniformly increase the
luminosity and mean energy of all neutrinos in the cooling phase after 10 s of post-bounce
time.

5. The degree of muonization depends sensitively on the temperature evolution of the PNS
and thereby also on the mass accretion rate. Progenitors with massive iron-cores and high
core compactness correspondingly favor muon formation compared to progenitors with
less compact cores. Progenitor stars of failed supernovae, which collapse to black holes
already during the accretion phase, therefore, show a significant influence of muonization
on the lifetime of the doomed thermally stabilized protoneutron stars forming at their
center. In the examined case of an ultra-low metallicity 75M� progenitor, the lifetime
of the central protoneutron star is only on the order of ∼ 200 ms and radiative neutrino
energy losses are inefficient. The continuously growing temperature of the protoneutron
star leads to abundant thermal production of muon-antimuon pairs acting as an additional
energy sink. As the collapse timescale is too short for neutrino diffusion from the muon-
producing regions to be efficient, the production of net muon number is suppressed by the
trapped large νµ number, and the initially vanishing net µ-flavor number is maintained
nearly up to collapse. This means that increased additional total energy loss by neutrino
radiation does not accelerate the collapse, but rather the aforementioned production of
thermal muon pair rest mass does. The effect of muonization on the stability of such
hot protoneutron stars, in this case, is similar to the initial collapse of very massive (&
100M�) stars by the electron-positron pair-instability, in which stabilizing thermal energy
is rapidly converted into electron pair rest mass. This instability is self-reinforcing, as the
muon pairs continually drain thermal pressure support from the contracting protoneutron
star, which leads to further contraction. Accordingly, the muonic case reaches the point of
gravitational instability∼ 50 ms earlier than the nonmuonic case, with a correspondingly
earlier shut off of the neutrino signal.

Having presented the results of typical scenarios encountered in core-collapse supernovae,
we have challenged the standard assumption of muons being irrelevant in the early phase of
stellar core-collapse and supernova explosions. Muons are shown to macroscopically impact
the evolution of hot protoneutron stars already shortly after birth and not only late in their
cooling evolution as previously assumed. The formation of a muon gas can be seen as assured,
as the matter temperature and electron chemical potential practically force their presence from
simple energetic considerations. These environmental factors leading to muon formation are
not limited to the CCSN scenario, but include all events which form similarly hot neutron stars.
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One possible further candidate scenario where muons might play a dynamically relevant
role are NS – NS mergers. The temperature at the interface of the two colliding NSs can easily ex-
ceed the threshold temperature for muon formation, and the possible hypermassive metastable
NS remnant will have a stabilizing thermal pressure contribution. Whether the softening effects
of a muonic component in the equation of state can shorten the lifetime of the centrifugally
supported hot supra-massive or hypermassive neutron stars will require dedicated studies,
but as seen for the case of BH collapse, the survival timescale of these hot metastable compact
remnants might be shortened. These effects might affect the measurable future gravitational
wave signals from future events, following the recent very first detection of a gravitational
wave of a NS–NS merger in the case of GW170817 (Ref. [1]). Changes of the neutrino emission
due to the presence of muons might also affect the nucleosynthesis and r-process conditions in
the merger ejecta, which caused the kilonova (AT2017gfo; Ref. [30]) discovered in association
with GW170817 and the accompanying gamma-ray burst (GRB1709817A; Ref. [29]). Since the
formation of the heaviest elements in the universe, for which NS–NS mergers are currently
considered as the most promising sources, sensitively depends on the final electron fraction in
the ejecta, muons might also be interesting for scientists studying the nuclear processes in the
merger ejecta (see e.g. Refs. [60, 135]).

As the inclusion of muons also leads to a nonzero chemical potential for the µ-flavor
neutrinos, neutrino oscillations in CCSNe might be altered. Especially the increased flux of
muon antineutrinos might be detectable in a measured electron antineutrino signal from a
future galactic SN, as those have the largest detection probability in current neutrino detectors.

While implementing muons into current radiation-hydrodynamics codes can be cumber-
some, their impact on the core-collapse scenario is of a similar magnitude as other considered
theoretical uncertainties. Their effect on the “explodability” of core-collapse supernovae, how-
ever, requires further study in full 3D simulations, which remove the artificial effect of the
symmetry axis of 2D models. This is, however, the subject matter for future work.
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A IMPLICATIONS OF NEGLECTING THE ELECTRON REST MASS FOR LOW-MASS
PROGENITORS

Appendix

A Implications of neglecting the electron rest mass for low-mass pro-
genitors

The implementation of inelastic neutrino-electron scattering in Vertex-Prometheus in the for-
malism developed in ref. [139] for ultrarelativistic massless electrons is analytically exact in the
scattering angle integration but neglects the rest mass of the charged lepton. Here we wish
to show the errors that treating electrons as ultrarelativistic during all phases of a low-mass
supernova progenitor collapse can cause, as well as the advantages of our new implementa-
tion of the NES scattering kernel including all rest mass terms introduced in section 6.1 for
the particular case of the z9.6 progenitor by Woosley&Heger ([137]). This progenitor features a
low-temperature extended envelope with temperatures where electrons become nonrelativistic.
βe = me/T can give a measure of the degree of relativistic effects on electrons, where βe → 0
implies that the particle has become ultrarelativistic and Ee ' pe . On the other hand βe of

order unity and above require the correct relativistic energy dispersion Ee =
√
p2

e +m2
e , which

for very low temperatures approaches the classical nonrelativistic case of Ee ' p2
e/2me+me .

Figure A.1 shows the initial temperature and βe profiles of the z9.6 progenitor, where we can
see that electrons quickly become nonrelativistic at relatively small radii, which are still inside
the computationally relevant domain where the accurate calculation of neutrino source terms
and opacities remain essential.
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Figure A.1: Initial profiles of z9.6 progenitor ([137]).

Neglecting the electron mass in the Fermi-Integrals appearing in the Yueh & Buchler ([139])
Legendre expansion typically used in most codes results in a significant overestimation of the
electron number densities for regions where βe > 1. The reason for this can easily be understood
by comparing the formulae for the number density of a Fermi-Dirac gas of an ultrarelativistic
and nonrelativistic Fermi-Dirac gas.

The number density of an ultrarelativistic gas is proportional to

nUR
e ∝

∫ ∞
0

E2
e

exp
((
Ee − µe

)
/T
)

+ 1
dE , (A.1)
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PROGENITORS

where the relativistic electron chemical potential µe = µkin
e + me including rest mass is used,

which for low temperatures converges towards the electron rest mass. As Ee here itself does
not contain any term accounting for the electron rest mass, the relativistic chemical potential
causes the Fermi-Dirac distribution to appear fully degenerate at low-temperatures, resembling
a constant electron number density regardless of the physical density. As the scattering opacity
is in effect the cross-section of an individual electron times the density of scattering targets, this
also results in a constant neutrino scattering opacity. In contrast the nonrelativistic number
density,

nNR
e ∝

∫ ∞
0

p2
e

exp
((
p2

e/2me +me − µe

)
/T
)

+ 1
dp , (A.2)

correctly captures the low-temperature limit of the number density as the rest mass term in
the nonrelativistic dispersion relation cancels the rest mass term in the chemical potential but
does not treat the intermediate regime correctly. It is therefore necessary to apply the arbitrarily
relativistic formulation of the number density,

nAR
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e +m2
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)
/T

)
+ 1

, (A.3)

when temperatures are at 1 MeV or lower in regions of interest.
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Figure A.2: Number densities of electrons as calculated using different approximations com-
pared to physical electron number density of z9.6-LS220 model at the time of bounce. Note that
arbitrarily relativistic and physical number density are identical and so only one is plotted.

In Fig. A.2 one can see that the ultrarelativistic approximation fails to accurately reproduce
the physical number density Ye at a radius of 1000 km and above, which in turn leads to a
scattering opacity that is nonphysically increasing with a decreasing matter density. This leads
to a nonphysical neutrino heating rate that only depends on neutrino luminosity according
to roughly Q+

E ∝ r2. Depending on the density gradient of the progenitor this can lead
to significant neutrino heating where neutrinos should nominally be completely decoupled
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from matter. In Fig. A.3 we demonstrate the effect this has on the z9.6 progenitor structure
with its very steep density falloff. The internal energy source term per baryon is seen to
nonphysically increase again when the numerical electron density uncouples from the physical
electron density. This can lead to significant preheating of the pre-shock matter and can in
extreme cases deposit sufficient energy into the outer layers to gravitationally unbind them. This
problem is especially evident in simulations of white-dwarf like stellar structures of the oxygen-
neon-magnesium ECSN progenitors, e.g., refs. [97, 98], where excessive neutrino heating can
lead to spontaneous fusion and deflagration of the extremely degenerate white-dwarf core
mantle and atmosphere (c.f. refs. [53, 54]) before collapse due to electron capture onto neon can
even proceed.
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Figure A.3: Net integrated internal energy source term per baryon for z9.6 progenitor at the time
of bounce. The blue line is the matter-energy source term using the Yueh&Buchler scattering
kernel; The purple line is the Yueh&Buchler scattering kernel suppressed using Eq. A.4; The
black line is the source term utilizing the implementation detailed in Sec. 6.1 and the dashed red
line is the same implementation using mass-less electrons. Note that the plotted source term,
as output from our code, contains interpolation wiggles and is only calculated up to a radius
of 10000 km as that is the outer boundary of our neutrino transport grid.

A simple interim solution to this problem that resembles the true physical behavior is to
extrapolate the NES inverse mean free path from the point, where the error of the ultrarelativistic
integrals is still of order unity by assigning a scaling operator based on the change of the physical
net neutrino number density. A small complication is the dependency of the scattering cross
section on the helicity of neutrinos which is relevant for the accuracy of the νe – e− scattering
opacity. This reaction is in general roughly one-third the strength of the νe – e− scattering opacity
for nondegenerate electrons, as demonstrated in Tubbs & Schramm (1975) Fig. 2 (ref. [133]).
One therefore has to balance the accuracy of the relative νe – e−/νe – e− scattering opacity with
the absolute scattering opacity. For our purposes, we have chosen a cut-off parameter βe = 4
which gives a reasonable balance between the two. The neutrino-electron scattering opacity is
then suppressed according to the following formula,

φin/out
l (r, E1, E3) = φin/out

l (r, E1, E3) ·
ne (r)

ne
(
βe = 4

) , (A.4)

165



A IMPLICATIONS OF NEGLECTING THE ELECTRON REST MASS FOR LOW-MASS
PROGENITORS

where ne is the local net electron density and ne
(
βe = 4

)
is the net electron density at the last

point where βe ≤ 4, which mimics the scaling of the scattering opacity with the number of
available scattering centers under the assumption of vanishing positron density. To verify our
approximate suppression factor, we plot in Fig. A.4 the scattering opacity of electron neutrinos
for the ultrarelativistic case of ref. [139], our suppressed modification of ref. [139] and our
arbitrarily relativistic scattering kernel of Eq. 6.1. For the sake of comparison of the integration
accuracy of our arbitrarily relativistic scattering kernel, we additionally plot an opacity where
we neglect the electron rest mass that reproduces the behavior of ref. [139].
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Figure A.4: Scattering opacity comparison of different kernels for z9.6 progenitor at E1 =
13 MeV.
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We note further that the limitations of the ultrarelativistic scattering kernel do not only apply
to the particular case of very low-mass progenitors but is in general problematic for all phases
of the neutrino-driven wind phase. The overestimated heating rate leads to sustained heating
and entropy generation in the neutrino-driven wind as well as higher velocity of the expanding
material, which can have consequences for the nucleosynthesis properties. An illustration
of this behavior is shown in Fig. A.5, where the additional entropy generation caused by the
ultrarelativistic approximation is visible compared to our arbitrarily relativistic kernel of Sec. 6.1.
We additionally examine the resulting entropy using our artificially suppressed ultrarelativistic
kernel according to Eq. A.4 and find that both the suppressed and arbitrarily relativistic kernel
are in good agreement.
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Figure A.5: Comparison plot of z9.6 progenitor matter outflow entropy in the late neutrino-
driven wind phase at tpb = 8.7 s.
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