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Abstract 

 

The present work is dedicated to implement an uncertainty quantification tool in MATLAB using 

the non-intrusive polynomial chaos expansion method and to examine the tool performance 

with an application test case. Given uniformly or normally distributed uncertain parameters, the 

tool computes the output quantities of interest. The test case is based on data of a recent 

scientific paper in the field of uncertainty quantification of thermoacoustic instabilities. The tool 

results for analytic moments of the uncertain quantities were compared to the results from the 

paper, where authors were using adjoints and Monte Carlo simulation. It was shown that the 

outputs of both methods are very comparable, the higher the order - the lower the difference, 

while the computation time was reduced. The tool results for local sensitivities were verified 

using the finite difference method. The results were still comparable, however, it was found 

that increase in polynomial chaos expansion order could lead to higher local fluctuations of the 

response function (approximation). The reduction of computation time and reliable results 

show, that the tool can be used instead of Monte Carlos simulation for small numbers of input 

parameters. Furthermore, this tool is the only choice to conduct an uncertainty quantification 

study, if a single function evaluation takes a lot of time as in CFD simulation.  
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2x  [rad] the phase of the outlet reflection coefficient  

3x   gain of the flame transfer function 

4x  [s] flame time delay  

 

Greek characters 

 

j   polynomial chaos expansion coeffcient 

   mean value 

   vector of standardized random variable 

   standardized random variable 

   weight function or probability density function  

 



  

vi 

 

   covariance 

   standard deviation 

   absolute deviation  

   multivariate polynomial 

   one dimensional polynomial 

i  [
rad

s
] growth rate 
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1 Introduction 

Uncertainty quantification (UQ) is the science of quantitative characterization of uncertainties 

in both real world and computational applications [1]. It tries to determine, how accurately does 

a mathematical model describe the true physics and what is the impact of model input 

uncertainty on model outputs.  

The objective of this work is to implement an uncertainty quantification tool in Matlab, show the 

tool application in a recent engineering problem, and to examine the efficiency of the tool, by 

comparing it to the Monte Carlo simulations. The tool will be built up similar to the open source 

software Dakota from SANDIA National Laboratories1. The uncertainty parameters in the tool 

are propagated to the output quantities of interest using the non-intrusive polynomial chaos 

expansion method.  

This present work is comprised of 6 chapters. The theoretical background of the implemented 

uncertainty quantification tool is described in chapter 2. First some general information about 

the orthogonal polynomials is given. Second, the theory of the polynomial chaos expansion 

and spectral projection are given. Then the applied numerical methods are discussed and the 

tool outputs are presented. Finally, the standardization of the uncertain parameters is 

described.  

The implementation and verification of the tool are given in chapter 3. The tool application test 

case is presented in chapter 4. The test case is based on data of a recent scientific paper 

about uncertainty quantification of thermoacoustic instabilities in a turbulent swirled combustor. 

The tool results are compared to results of Monte Carlo simulations and finite difference 

method. The report ends with some conclusions in chapter 5. 

 

  

                                                

1 https://dakota.sandia.gov/ 
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2 Theoretical Background  

 

2.1 Orthogonal polynomials 

An orthogonal polynomial sequence is a family of polynomials such that any two different 

polynomials m  and n  in the sequence defined over a range  ,a b  are orthogonal to each 

other. Hence the scalar product of two one dimensional polynomials characterized by 

weighting function ( )x  equals [2] 

 , ( ) ( ) ( )

b

m n m n mn

a

x x x dx c          2.1 

Where mnδ  is the Kronecker delta: 

 
 0      

 
1        

mn

for n m
δ

for n m





. 2.2 

If 1c  , then the polynomials are not only orthogonal, but orthonormal. 

The set of classical orthogonal polynomials is known as Askey scheme [3]. It includes Hermite 

Legendre, Jacobi, Laguerre and generalized Laguerre polynomials, each class of them 

provides an optimal basis for a specific continuous probability distribution type. 

In this work the focus is put on two distribution types - normal and uniform, since they are 

often assumed for the distribution of the uncertain parameters in the engineering problems. 

For each distribution type there is an optimal polynomial type. When the input variable has a 

uniform distribution, we are dealing with the Legendre polynomials. Explicit representation of 

Legendre polynomials is given by [4] 

 
 

0

1 / 2
2  

n
n k

n

k

n n k

k n
 



    
   

  
  2.3 
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Hence the first 6 Legendre polynomials are: 

 
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Legendre polynomials are defined on a real interval  1,1I    and fulfil the orthogonal 

condition with respect to inner product defined in Eq. 2.1 with the weight (probability density) 

function of kind 

 
1

( )
2

x  .  2.4 

In the case of normal distribution of the variable x  the probabilists’ Hermite polynomials are 

used and defined as [5] 

 

2 2

2 2( ) ( 1)

x xn
n

n n

d
x e e

dx




  .  2.5 
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The first 6 Hermite polynomials are  

0
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Hermite polynomials are defined on a real interval  ,I     and the weight function is given 

by 

 

2

2
1

( )
2

x

x e




 .  2.6 
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2.2 Polynomial Chaos Expansion 

 

This section investigates the stochastic expansion method called polynomial chaos expansion 

(PCE), which is used as a process model in the implemented UQ tool.  Since the tool is built 

up similar to the Dakota tool, the theory of the PCE and following sections are based on 

Dakotas theory as well [6]. 

The goal of the PCE is to approximate the functional relationship between a stochastic 

response output and each of its random inputs. The response function R in terms of finite-

dimensional and standardized random input variable  1 2, ...   is given by 

 




 
0

( )j j

j

R   2.7 

where j   stands for the polynomial expansion coefficients and each of  j   are 

multivariate polynomials, involving one dimensional polynomials. In practice, the infinite 

expansion is truncated at a finite expansion order p  

 


 
0

( )
P

j j

j

R  .  2.8 

There are two main approaches of polynomial chaos expansion: The traditional “total-order 

expansion” includes a complete basis of polynomials up to a fixed total order specification, i.e. 

the sum of the orders 
j

it  of each j  over n random variables is constrained by the total 

expansion order p  

 

1

n
j

i
i

t p


 . 2.9 
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Another, alternative approach is referred to as “tensor-product expansion”, where the 

polynomial order bounds are applied on a per-dimension basis. The expansion order 
j

it

defining the set of j  is constrained by the polynomial order bound ip  for the i th  dimension 

 
j

i it p .  2.10 

The tensor-product expansion supports anisotropy in polynomial order for each dimension, 

since the polynomial order bounds for each dimension can be specified independently. The 

total number of terms tN  in an expansion of single orders ip  is  

  
1

1 1
n

t i

i

N P p


    ,  2.11 

 

hence tN  basis polynomials present all combinations of the one-dimensional polynomials. For 

example, the basis of multivariate polynomials for a second-order expansion in each of two 

random dimensions  1 2
2 p p  is given by 

 

0 0 1 0 2

1 1 1 0 2 1

2
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  

   
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   
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2.3 Spectral Projection 

The computation of the PCE-coefficients j  in the Eq. 2.8  is based on spectral projection 

method. This method projects the response R against each basis function using inner 

products and employs the orthogonality properties of the polynomials to extract the 

coefficients [6]. This results in 

  
2 2

, 1j

j j

j j

R
R d




  

 
     2.12 

 where     


 1

n

i ii
   is a joint probability density function and  2

j  is the norm 

squared of the multivariate orthogonal polynomial. The multivariate norm is computed 

analytically using the product of univariate norms squared 

 2 2

1

n

j j
tii




  .  2.13 

 

2.4 Numerical integration 

There are a different methods of the numerical integration that can be used for 

multidimensional integral in Eq.2.12. In this tool the numerical integration of the Eq.2.12 is 

based on tensor-product quadrature [6]. For approximation of multidimensional integrals this 

technique employs a tensor product of one-dimensional quadrature rules. Since only normal 

and uniform distributions of uncertainty parameters are considered, the UQ tool performs the 

integration with Gauss-Hermite and Gauss-Legendre rules. Using Gaussian quadrature the 

integral of function ( )if   in one dimensional case 1n   is approximated as  

   



1

( ) ( )
m

k k

k

f d f w  2.14 

 

where
kw  are the Gaussian weights and  1,..., m  is a sequence of m points in domain  .  
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These quadrature rules give exact results for all polynomials of degree 2 1m  or less in each 

dimension. The highest order of the integrand in Eq. 2.12  is 2 p  ( and R of order p ) in 

each dimension such that a minimal Gaussian quadrature order of 1p   is required for exact 

integration. 

For the multivariate integrals 1n   the full tensor product quadrature is given by  

      
  

   
1

11

1 1
1 1 2 1 1

1 1

... ( ... ) ... ... ( ,..., ) ...
n

nn

mm
k kn k kn

n n n
k k

f d d f w w .  2.15 

 

The above product needs 
1

n
kk

m
 function evaluations. The number of collocation points in 

a tensor grid grows exponentially fast in the number of input random variables. For example, 

if Eq.2.15 employs the same order for all random dimensions,  km m   then  
nm  function 

evaluation are required. Therefore, when the number of uncertain parameters is small, full 

tensor product quadrature is a very effective numerical tool, with low computational time [6]. 

Other possibility for numerical integration of Eq. 2.12 are nested grids, for example using 

Gauss-Patterson quadrature rule [7]. This, however, is not implemented in this tool. The 

advantage of this method is that the integration points of one specific order of PCE can be 

used for higher orders. Nevertheless, nested integration requires 2ip   integration points in 

each dimension to preserve the same accuracy as in non-nested case. Next disadvantage is 

that the number of integration points in single dimension is restricted to 1, 3, 7, 15…. 

Comparison of the overall number of integration points of nested and tensor grid type 

depending on the dimension and the expansion order is shown in Table 2.1.   

Large reduction of the number of collocation points for the case of moderately large number 

of uncertain parameters can be achieved using sparse tensor product spaces as first 

proposed by Smolyak [8]. This reduction can be seen in Table 2.2, where the comparison 

between sparse and tensor grids is given [9]. 
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dimension expansion order nested grid tensor grid 

2 1 9 4 

5 49 36 

13 225 196 

3 1 27 8 

5 343 216 

13 3375 2744 

4 1 81 16 

5 2401 1296 

13 50625 38416 

Table 2.1: Number of integration points depending on grid type, dimension and the 

expansion order 
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dimension expansion order sparse grid tensor grid 

2 1 5 4 

2 13 9 

3 29 16 

4 1 9 16 

2 41 81 

3 137 256 

6 1 13 64 

2 85 729 

3 389 4096 

Table 2.2: Number of integration points of the sparse and tensor grid depending on 

dimension and the expansion order 

 

2.5 Analytic moments and local sensitivity analysis  

The goal of UQ is to determine mean value, standard deviation and sensitivities of the 

uncertain quantities. Mean value and standard deviation of polynomial chaos expansion are 

available in simple closed form  

 

   0

1

P

R j k

j

R  


      2.16 

      
2 2 2

1 1 1

P P P

R k l k l k k
k l k

R    
  

          2.17 
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The expansion polynomial can be easily differentiated with respect to the random variables  

  
1

P
j

j
i ij

ddR

d d


 



   2.18 

 

2.6 Standardization of Uncertainty Parameters 

Before the uncertain parameters enter the polynomial chaos expansion computations they 

have to be standardized. Uncertain parameter ix  with a uniform distribution is transformed to 

a standardized uncertain parameter applying following linear transformation. 

 
xi i

i
i







  2.19 

where i  is a mean value and i  absolute deviation.   

 
,max ,min

2





i i
i

x x
 2.20 

 
,max ,min

2





i i
i

x x
 2.21 

For continuous normal distributed uncertain parameters holds following transformation  

 
2







 i i

i

x
 2.22 

where i  is a mean value and i  standard deviation.   
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3 Tool implementation and verification 

The UQ tool implementation is done in MATLAB and is based on theory described in chapter 

2. The tool can work with up to 10 uncertain input parameters, which can be uniformly or 

normally distributed.  The tool start inputs and end outputs are given in Table 3.1.  

  

Tool start inputs: Tool end outputs: 

 bounds of  ,i ia b  each uncertain input parameter 

ix   (uniform distribution) or 

 

 mean value i  and standard deviation i  of each 

uncertain input parameter ix  (normal distribution) 

 
 

 quadrature order in each dimension iq  

 

 response mean value R  

 
 

 response standard deviation 

R   

 
 

 response derivatives 
i

i

dR

dx
   

Table 3.1: UQ tool start inputs and end outputs 

Since the tool is performing numerical integration of Eq. 2.15 2.15, it defines the integration 

points, i.e. uncertain parameter values for which examined function have to be evaluated. 

Once the tool receives the function (response) values, it computes the output uncertainties. 

The tool computation steps are illustrated in Figure 3.1. The computation time of the output 

uncertainties depends on the selected quadrature order and number of dimensions, in other 

words the number of the polynomial evaluations equals the number of integration points.   

 

 

Figure 3.1: UQ tool computation steps 

 

Start 
Inputs

Tool

Script 1

List of 
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Function 
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Tool
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The tool is verified by comparing the results with the outputs of open source software Dakota 

from SANDIA National Laboratories. For a verification test case the Rosenbrock function is 

selected, given by: 

 2 2 2( , ) 100( ) (1 )1 2 2 1 1    R f x x x x x  3.1 

where 1x  and x2  are random input parameters. For uniformly distributed random parameters 

a range of  2,2  and for the normally distributed random parameters the mean value 

1 2 0    and standard deviation 1 2 5     are selected. PCE computations are performed 

using fifth-order quadrature in 1x  and third-order quadrature in 2x . The results for uniformly 

distributed random variables and results for the normally distributed random variables are 

gathered in Table 3.2 and in Table 3.3 respectively. The UQ tool and Dakota outputs are equal 

for both distributions.  

 

quadrature orders: 1 5q  , 2 3q   UQ Tool Dakota 

mean value R  
455.6667 455.6667 

standard deviation R  
606.5602 606.5602 

derivative of 1x  at 1  
-2.0000 -2.0000 

derivative of 2x  at 2   
0.0000 0.000 

Table 3.2: UQ tool and Dakota computations for uniformly distributed random variables. 
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quadrature orders: 1 5q  , 2 3q   UQ Tool Dakota 

mean value R  
1.9003e+5 1.9003e+5 

standard deviation R  
6.1394e+5 6.1394e+5 

derivative of 1x  at 1  
-2.0000 -2.0000 

derivative of 2x  at 2   
0.0000 0.0000 

Table 3.3: UQ tool and Dakota computations for normally distributed random variables. 

 

The response function R (PCE output-polynomial), which can is extracted using Script 3 is a 

very good approximation of the Rosenbrock function on the selected domain. The surfaces of 

both analytical functions are identical, which can be seen in the Figure 3.2. 

 

 

Figure 3.2: The plot of the Rosenbrock function and the response function (indistinguishable) 
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4 Uncertainty quantification of eigenvalues in thermoacoustics 

 

Uncertainty quantification is a growing field with broad applications to a variety of engineering 

fields. This chapter deals with a specific engineering problem, used here as an application test 

case of the UQ tool. The test case is based on data of a recent scientific paper about 

uncertainty quantification of thermoacoustic instabilities in a turbulent swirled combustor with 

two configurations (C4, C8) [10]. In the paper authors use adjoints and Monte Carlo 

simulations, we will use PCE and compare results. 

The uncertainties considered in the test case are: the magnitude of the outlet reflection 

coefficient 1x , the phase of the outlet reflection coefficient 2x , the gain of the flame transfer 

function 3x  and the time delay 3x . These four independent input parameters are uniformly 

distributed within the bounds given in Table 4.1. The output angular frequency r  or in growth 

rate i  of thermoacoustic instabilities are computed with a Helmholtz solver. 

uniform distributed input uncertainties: bounds: 

magnitude of the outlet reflection coefficient 1x  0.6 ± 10% [-] 

the phase of the outlet reflection coefficient 2x  π ± 10% [rad] 

gain of the flame transfer function 3x  1.5 ± 10% [-] 

flame time delay 4x  4.73e-3 ± 10% [s] 

Table 4.1: Bounds of the input uncertainties 

Firstly, the results are evaluated using the tool. PCE-computations are performed for three 

different quadrature orders, including second, third and fourth order in each of the input 

dimensions. The computation time of the output uncertainties depends on the selected 

quadrature order (see chapter 3). Thus to compute the output uncertainties in angular 

frequency r  or in growth rate i  on a conventional laptop2 it takes about 30 minutes for 

second order, about 2.3 hours for third order and about 6.6 hours for fourth order quadrature  

                                                

2 Intel Celeron CPU 1005M 1.9GHZ, 4,0 GB RAM 
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The output uncertainties are then quantified again, using method from the paper (Monte Carlo 

simulations), in which the Helmholtz solver performs calculations with repeated random 

sampling. For the purposes of this test 10 000 random input samples are fed. The computation 

time of the simulation takes more than 14 hours on the same computer, which is a way slower 

than PCE. 

The results of PCE and Monte Carlo simulation are listed in Appendix 1 in Tables A.1 - A.2 for 

configuration C4, and in Tables A.3 - A.4, for configuration C8. Both methods give nearly the 

same results, the percentage differences between them are given in Tables 4.2 - 4.3, for 

configuration C4, and in Tables 4.4 - 4.5, for configuration C8. In general variation of the 

quadrature orders shows that the higher the order - the better the results. The differences 

between the orders, however, stay relatively low.    

 

 UQ Tool vs. Monte Carlo 

quadrature order 4 x 2nd order 4 x 3rd order 4 x 4th order 

mean value R  
-0,03% -0,03% -0,03% 

standard deviation R  
-1,23% -0,83% -0,47% 

Table 4.2: Comparison of the UQ Tool results to the Monte Carlo results for                               

angular frequency r (configuration C4) 

   

 UQ Tool vs Monte Carlo 

quadrature order 4 x 2nd order 4 x 3rd order 4 x 4th order 

mean value R  
-0,37% -0,37% -0,34% 

standard deviation R  
0,15% -0,22% -0,05% 

Table 4.3: Comparison of the UQ Tool results to the Monte Carlo results for                               

growth rate i (configuration C4) 
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 UQ Tool vs Monte Carlo 

quadrature order 4 x 2nd order 4 x 3rd order 4 x 4th order 

mean value R  
0,01% 0,01% 0,01% 

standard deviation R  
-1,26% -0,88% -0,82% 

Table 4.4: Comparison of the UQ Tool results to the Monte Carlo results for                               

angular frequency r (configuration C8) 

 

 UQ Tool vs Monte Carlo 

quadrature order 4 x 2nd order 4 x 3rd order 4 x 4th order 

mean value R  
-0,15% -0,13% -0,16% 

standard deviation R  
0,69% 0,47% 0,32% 

Table 4.5: Comparison of the UQ Tool results to the Monte Carlo results for                               

growth rate i (configuration C8) 
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The next tool outputs are partial derivatives of the response function with respect to the input 

parameters at the parameter mean values i . Their reliability is verified by the finite difference 

method (FDM). The numerical solution for partial derivate using FDM is defined as 

 
( ) ( )

2
i

i i

i

R x h R x hdR

dx h


  
  4.1 

where 10 6ih x e   . The results are given in Appendix A in Tables A.5 - A.8. The percentage 

differences between the tool results and results obtained by the finite differences method are 

listed in Table 4.6 - 4.9.  The lowest value in each dimension is marked bold. 

The results for angular frequency r  in Tables 4.6 - 4.7  show, that in some cases the 

difference decreases with increasing quadrature order, while in other cases the difference 

increases. However, we can say that is better to select higher order for all dimensions, to 

achieve the optimal results (to avoid the outliers). Here, the fourth quadrature order seems to 

be the optimal one, since it gives the results with less than 1% difference to the FDM for all 

dimensions, for both configurations.  

 

 UQ Tool vs FDM 

quadrature order 4 x 2nd  4 x 3rd  4 x 4th  

1
1

dR

dx


 
1,41% 0,02% -0,15% 

2
2

dR

dx


 
-2,02% -0,48% -0,19% 

3
3

dR

dx


 
-1,04% 0,13% 0,11% 

4
4

dR

dx


 
0,58% 0,60% 0,36% 

Table 4.6: Comparison of response derivatives for angular frequency r (configuration C4)  
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 UQ Tool vs FDM 

quadrature order 4 x 2nd  4 x 3rd  4 x 4th  

1
1

dR

dx


 
0,17% -0,04% 0,05% 

2
2

dR

dx


 
7,15% 4,85% 0,10% 

3
3

dR

dx


 
-0,59% -0,78% 0,92% 

  

4
4

dR

dx


 
-0,13% 0,49% -0,02% 

Table 4.7: Comparison of response derivatives for angular frequency r (configuration C8) 

 

Results for the growth rate i , given in Tables 4.84.6 - 4.9 showed larger deviations, so PCE-

computations were made for two additional quadrature orders (4 x 5th, 4 x 6th).  Since the 

result values fluctuate around the FDM value, it is hard to say that the difference either 

increases or decreases with the increasing quadrature order. For configuration C4 in Table 4.8 

it can be assumed that the 5th quadrature order is the optimal one, while the results for lower 

orders and higher order show larger or smaller fluctuation. Similar assumption can be made 

also for results for configuration C4, given in Table 4.8, where the 4th quadrature order is the 

optimal one. For a better representation of the expansion order influence on UQ Figure B.1 (as 

an example) is added to Appendix 2 and it shows the response function in dependence of the 

magnitude of the outlet reflection coefficient 1x  for different quadrature orders (configuration 

C8). On Figure B.1 can be seen that increase in polynomial chaos expansion order could lead 

to higher local deviations of the response function in dependence of certain dimension. 

In general we can say, that the local sensitivity and FDM results were still comparable, 

however, increase in polynomial chaos expansion order did not necessarily result in lower 

differences.  
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 UQ Tool vs FDM 

q. order 4 x 2nd  4 x 3rd  4 x 4th  4 x 5th 4 x 6th 

1
1

dR

dx


 
0,17% -0,14% -0,71% 0,00% -4,42% 

2
2

dR

dx


 
1,14% 0,50% 0,86% 0,00% 1,27% 

3
3

dR

dx


 
2,18% 0,09% 2,76% 0,00% -1,00% 

4
4

dR

dx


 
-0,31% -0,53% 1,46% 0,02% 1,79% 

Table 4.8: Comparison of response derivatives for growth rate i (configuration C4) 

 

 UQ Tool vs FDM 

q. order 4 x 2nd  4 x 3rd  4 x 4th  4 x 5th 4 x 6th 

1
1

dR

dx


 
6,73% -3,40% -3,00% -3,19% 5,56% 

2
2

dR

dx


 
0,26% -0,17% -0,16% -0,53% -0,18% 

3
3

dR

dx


 
-0,11% -0,31% -0,55% -0,36% -0,05% 

4
4

dR

dx


 
2,36% -2,69% 1,05% 5,48% 1,36% 

Table 4.9: Comparison of response derivatives for growth rate i (configuration C8) 
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In addition to the response outputs computed above, the response PDF for different quadrature 

orders is calculated and compared to PDF of the growth rate presented by C.Silva et al [10]. 

For a single uncertainty input parameter 1x , it is possible to calculate the PDF of the response 

( )iRf  using expression [11] 

 
1

1 1( ) ( ( )) ( ( ))i i i
R Xi

d
f R f R

d
  



   4.2 

 

 where 
1X

f stands for the PDF of the input variable. Since there is more than one input 

parameters considered here, the PDF is computed using Monte Carlo simulations applied on 

the PCE-output polynomial (using Script 3). In Figure 4.1 and Figure 4.2 the computed PDFs 

of the growth rate i  for the two methods are compared. The results are virtually identical for 

all three orders considered.  

While the Monte Carlo simulation with the Helmholtz solver takes several hours (as applied in 

[10]), the simulation with the PCE-response polynomial only takes a few minutes. It is clear, 

that evaluation of PCE-response polynomial is a way faster than the evaluation of original 

function (Helmholtz solver). The speed up increases with complexity of the original function. 

 

Figure 4.1: Growth rate PDF for different quadrature orders, configuration C4 
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Figure 4.2: Growth rate PDF for different quadrature orders, configuration C8 
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5 Conclusion 

In the present work an uncertainty quantification tool in Matlab was implemented using the 

non-intrusive polynomial chaos expansion method. The tool can work with up to 10 uncertain 

input parameters, which can be uniformly or normally distributed. Given the uncertainty 

parameters the tool computes the output quantities of interest. The results of the UQ Tool were 

verified with the data obtained with Dakota software and the data match. 

Then the tool was applied to data of a recent paper in the field of uncertainty quantification of 

thermoacoustic instabilities. The output quantities of interest in the paper were calculated using 

Monte Carlos Simulation, while we were using the UQ tool for low polynomial expansion 

orders. It was shown that results of the both methods are comparable, while the computation 

time was much reduced. Next we compared the tool outputs for sensitivities at the uncertain 

parameter mean values to the results of FDM.  In general the accuracy of the output analytic 

moments increases with increasing quadrature order. On the other hand the output local 

sensitivities in most of the cases do not show this trend, but instead show that the increase in 

quadrature order could lead to higher local deviations of the response function in dependence 

of certain dimension. However, it seems that there is an optimal quadrature order for each 

dimension. 

The reduction of computation time and reliable results show, that the tool can be used instead 

of Monte Carlos simulation for small number of input parameters. Furthermore, this tool is the 

only choice to conduct an uncertainty quantification study, if a single function evaluation is 

large as in CFD simulation.  

The tool can be extended for other probability distributions of the uncertain input parameters 

and for moderately large numbers of uncertain parameters or higher orders using sparse 

tensor product spaces (reduction of the number of collocation points). The tool output of the 

local sensitivities can be studied further to examine the cause of fluctuation. 
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A Appendix 1  

 

Here the results of tool, Monte Carlo simulation and finite difference method are given.  

 

 UQ Tool Monte Carlo 

quadrature order 4 x 2nd  4 x 3rd  4 x 4th   

mean value R  
147.7648 147.7643 147.7682 147.8064 

standard deviation R  
3.3217 3.3351 3.3472 3.3630 

Table A.1 : Results for angular frequency r (configuration C4) 

 

 UQ Tool Monte Carlo  

quadrature order 4 x 2nd  4 x 3rd  4 x 4th   

mean value R  
109.6342 109.6410 109.6679 110.0443 

standard deviation R  
17.9473 17.8812 17.9122 17.9208 

Table A.2: Results for growth rate i (configuration C4) 

 

 UQ Tool Monte Carlo  

quadrature order 4 x 2nd  4 x 3rd  4 x 4th   

mean value R  
129.6169 129.6175 129.6161 129.6003 

standard deviation R  
3.0657 3.0776 3.0794 3.1049 

Table A.3: Results for angular frequency r (configuration C8) 
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 UQ Tool Monte Carlo  

quadrature order 4 x 2nd  4 x 3rd  4 x 4th   

mean value R  
109.2022 109.2255 109.1888 109.3649 

standard deviation R  
13.7553 13.7258 13.7056 13.6617 

Table A.4: Results for growth rate i (configuration C8) 

 

 UQ Tool FDM 

quadrature order 4 x 2nd 4 x 3rd 4 x 4th 

1
1

dR

dx


 
20.1336 19.8527 19.844 19.8490 

2
2

dR

dx


 
-3.7077 -3.7644 -3.7752 -3.7825 

3
3

dR

dx


 
-3.2833 -3.3218 -3.3210 -3.3174 

4
4

dR

dx


 
-11656.3458 -11659.0547 -11630.6275 -11589.2706 

Table A.5: Response derivatives for angular frequency r (configuration C4) 

  



  

34 

 

 UQ Tool FDM 

quadrature order 4 x 2nd 4 x 3rd 4 x 4th 

1
1

dR

dx


 
17.8320  17.7943 17.8095 17.8009 

2
2

dR

dx


 
1.5870 1.5451 1.4751 1.4736 

3
3

dR

dx


 
-0,5955 -0.5943 -0.6045 -0.5990 

4
4

dR

dx


 
-10914.8268 -10983.0256 

 

-10926.8612 -10928.9282 

Table A.6: Response derivatives for angular frequency r (configuration C8) 
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 UQ Tool FDM 

q.order 4 x 2nd  4 x 3rd  4 x 4th  5 x 5th 6 x 6th 

1
1

dR

dx


 
39.6773 39.5555 

  

39.73306 39.6105 37.8601 39.6109 

2
2

dR

dx


 
75.6938 75.2060 75.4714 74.8275 75.7779 74.8288 

3
3

dR

dx


 
56.0188 54.8464 56.3106 54.7962 54.2508 54.7975 

4
4

dR

dx


 
-

38010.4480 

-

37925.0564 

-

38682.3518 

-

38133.7644 

-

38807.8577 

-

38126.6416 

Table A.7: Response derivatives for growth rate i (configuration C4) 
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                                UQ Tool FDM 

q.order 4 x 2nd  4 x 3rd  4 x 4th  4 x 5th 4 x 6th 

1
1

dR

dx


 
-16.5443 -14.9068

 

  

-14.9686 -14.9399 -16.2896 -15.4316 

2
2

dR

dx


 
67.2836 66.9914 66.9984 66.7502 66.9893 67.1081 

3
3

dR

dx


 
56.6548 56.5463 56.4065 56.5142 56.6901 56.7194 

4
4

dR

dx


 
-

14267.5922 

-

13556.8445 

-

14077.3620 

- 

14694.7160 

-

14121.1743 

-

13931.3442 

Table A.8: Response derivatives for growth rate i , configuration C8 
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B Appendix 2  

 

Here the response function in dependence of the magnitude of the outlet reflection coefficient 

1x  for different quadrature orders is given, while for other input variables mean values ( 2 , 

3 , 4 ) were used (configuration C8). The lack vertical line shows the mean value of the 

magnitude of the outlet reflection coefficient ( 1 ). 

 

Figure B.1: The response function in dependence of the magnitude of the outlet reflection 

coefficient 1x   for different quadrature orders 

 

 


