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Abstract

We establish rigorous error bounds for approximating correlation functions of conformal field theories 
(CFTs) by certain finite-dimensional tensor networks. For chiral CFTs, the approximation takes the form 
of a matrix product state. For full CFTs consisting of a chiral and an anti-chiral part, the approximation is 
given by a finitely correlated state. We show that the bond dimension scales polynomially in the inverse 
of the approximation error and sub-exponentially in inverse of the minimal distance between insertion 
points. We illustrate our findings using Wess–Zumino–Witten models, and show that there is a one-to-one 
correspondence between group-covariant MPS and our approximation.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Quantum field theory is arguably one of the most versatile physical theories developed to 
date. Beyond its early and astounding successes in the modeling of fundamental interactions, its 
applications now span many different areas of physics across all scales, ranging from subatomic 
particles, to condensed matter, to cosmology. The language of quantum field theory provides a 
sophisticated, unifying conceptual framework for addressing a variety of questions of physical 
interest. It constitutes one of the main pillars of modern physics.
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Quantum field theory provides significant insight into the mechanics of interacting quantum 
systems, yet calculations often tend to be extremely tedious, or even intractable. One major ob-
stacle is the fact that in many cases, methods for obtaining approximate answers are unknown. 
Even in settings where, e.g., systematic expansions exist, estimating the accuracy of a compu-
tational scheme may be challenging or impossible. This difficulty of applying the variational 
principle to quantum field theories in order to find good approximate expressions was already 
noted by Feynman [1].

Quantum field theory is also – as a number of physical theories – a rich source of inspiration 
and challenging problems in mathematics. Indeed, putting general quantum field theories on a 
firm axiomatic footing remains an important research topic. The special class of conformal field 
theories (CFTs) [2] is an important exception in this regard: here the presence of conformal sym-
metries allows to provide a rigorous algebraic formulation. Fortunately, CFTs also turn out to be 
physically relevant, as they provide accurate descriptions of e.g., critical systems. Consequently, 
CFTs provide an ideal testbed for ideas related to general quantum field theories. In particular, it 
is natural to first investigate variational methods in the context of CFTs. This is the topic of this 
paper.

Contrary to the case of quantum field theories, variational methods in non-relativistic quan-
tum mechanics, as well as condensed matter physics, are well established: here approximation 
schemes with well-controlled error guarantees exist and are being applied successfully. One 
prime example are tensor network contraction schemes. In one spatial dimension, an important 
member of this class is the density matrix renormalization group method, in short DMRG [3]. It 
varies over a certain class of Ansatz states, called matrix product states [4] (MPS) or finitely cor-
related states [5,6] (FCS). This class of states has been successfully applied to variety of physical 
models, often yielding exceptionally good results. The suitability of such states for variational 
physics has been rigorously explained by Hastings [7], who showed that ground states of gapped 
Hamiltonians in one spatial dimensions can be arbitrarily well approximated by matrix product 
states in an efficient manner. His line of work culminated in [8], yielding a provably convergent 
and efficient algorithm to find the ground state to arbitrary accuracy.

In this paper, we argue that similar statements hold for CFTs in two independent variables. 
To be precise, we show that correlation functions for surfaces of genus zero and one admit an 
approximate representation as a special class of matrix product states. We emphasize that our 
derivation provides rigorous error bounds for the validity of these approximations. Our results 
hold both for the chiral parts of such theories, as well as for the full theory consisting of both a 
chiral as well as an anti-chiral part. We illustrate our findings with examples from the family of 
Wess–Zumino–Witten models [9–11]. These are a natural family of CFTs which are rich enough 
to illustrate the main concepts, and, correspondingly, are often considered in the literature. For 
these examples, we find that the matrix product approximations originate from the special class 
of symmetric (‘G-covariant’) matrix product states. We provide an algorithm for constructing 
the approximation to the corresponding CFT.

Prior work Our work is motivated by a long line of previous results.
First, Haegeman, Cirac, Osborne, Verschelde and Verstraete [12,13] and Osborne, Eisert and 

Verstraete [14] initiated a series of studies [15–17] by constructing approximation schemes for 
certain quantum field theories. These can be seen as the continuum limit of tensor network 
schemes, and are thus aimed at addressing the difficulties that Feynman pointed out. However, 
so far, no error bounds exist for these approaches. While our approximations do not fall into this 
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class, the fact that such continuum limits seem to work well in a variety of models is certainly 
one of the motivations for our studies.

Second, several groups, including Nielsen et al. [18,19], Estienne et al. [20,21], as well as 
Zaletel and Mong [22], examined the possibility of constructing matrix product states for quan-
tum Hall systems from the field theoretic representation of the spatial electronic wave functions. 
Their central idea of suitably truncating the Hilbert spaces at a finite dimension is very much in 
our spirit. However, there are currently no error bounds for these methods and so far, only chiral 
correlation functions have been considered. This line of research is complemented by the work 
of Pollmann et al. [23], Pirvu et al. [24] and Stojevic et al. [25] on simulating critical quantum 
systems using matrix product states. As these systems are assumed to be described by CFTs, 
our results may be understood as an explanation of the empirical success of these studies. For 
a discussion of the relationship of our work (which focuses on MPS) to the multi-scale renor-
malization Ansatz, another method providing accurate descriptions of quantum critical systems 
introduced by Vidal [26] (see also [27,28]), we refer to our conclusions.

The challenge of simulating quantum field theories has, of course, been addressed on many 
levels. For example, it has been envisioned as a potential field of application of a working quan-
tum computer. Here we refer the reader to the work of Jordan et al. [29], where a quantum 
algorithm for computing relativistic scattering amplitudes in a quantum field theory with quartic 
interaction is presented. Such field theories are generally not conformal. We emphasize that con-
trary to [29], we are interested in tensor networks which can be (ideally efficiently) contracted 
on a classical computer. Furthermore, our focus is on all correlation functions for a large class of 
CFTs.

From the mathematical side, our results rely strongly on the theory of vertex operator algebras 
(VOAs). These were introduced by Borcherds [30] as well as Frenkel [31], and further investi-
gated in detail by Frenkel, Huang and Lepowsky [32]. Further key definitions and properties 
were established by Huang [33,34], Huang and Kong [35], Zhu [36], Dong [37] and others. Of 
particular importance to this work are the contributions of Frenkel, Zhu and Huang. We point 
the interested reader to the books of Kac [38], Lepowsky and Li [39], as well as to the mono-
graph [32] for a thorough introduction to this theory.

1.1. Conformal field theories (CFTs) in 1 + 1 dimensions

As any quantum field theory, a CFT is determined by its correlation functions. These are 
physically interpreted as expectation values of products of basic observable quantities, or quan-
tum fields. They depend continuously on certain parameters, specifying the degrees of freedom 
of the theory such as position or time. The correlation functions are postulated to transform in 
a simple manner under symmetry transformations of the theory. CFTs are special examples of 
quantum field theories possessing a much richer symmetry group than that of relativistic or non-
relativistic quantum fields. We begin with a short discussion of relevant background material, 
focusing on CFTs on 1-dimensional complex manifolds.

1.1.1. Historical development of CFTs
We point the interested reader to [40] for an extensive review of the historical development 

of CFTs. Here we merely summarize key advances with regards to the concepts relevant to our 
work. We emphasize that we neither claim to nor attempt to provide a complete discussion of 
this vast subject.



R. König, V.B. Scholz / Nuclear Physics B 920 (2017) 32–121 35
CFTs on 1-dimensional complex manifolds (often also called CFTs in 1 + 1 dimensions) 
where axiomatized in pioneering works of Belavin, Polyakov and Zamolodchikov [41], Fridan 
and Shenker [42] as well as by Segal [43]. The first three authors concentrated on analytic proper-
ties, starting from symmetry properties and the operator product expansion. The work of the last 
three authors concentrated on a geometric definition of CFTs. In the work [43] of Segal, such 
theories were characterized as a functor between two-dimensional surfaces and certain types 
of trace-class operators on a Hilbert space carrying a unitary representation of the conformal 
symmetry. Among the first examples were minimal models, which possess only conformal sym-
metries and no additional ones [41]. The second important class concerns Wess–Zumino–Witten 
or Wess–Zumino–Witten–Novikov models (WZW) [9–11], which in addition to the conformal 
symmetry, also possess an internal one given by a simple Lie group. Heuristically, it may be de-
fined as a particle moving on the manifold given by the Lie group. Because of their prominence 
in the literature, and their suitability for this purpose, WZW models will serve as our prime 
example to illustrate our findings.

After this initial period, Moore and Seiberg [44–46] as well as Felder et al. [47,48] further 
advanced the understanding of these objects by showing that analytic properties of correlation 
functions imply many additional identities beyond those given by the axioms. These identities 
are called braiding and fusion relations and are constrained by the decomposition of the CFT 
into irreducible representations. These questions were also studied from an operator algebraic 
point of view by Fröhlich and Gabbiani [49], as well as follow-up work. The operator algebraic 
language was also applied to study WZW models by Wassermann [50], some of whose estimates 
we will make use of here.

From a purely mathematical side, CFTs were studied in terms of vertex operator algebras
(VOAs). This algebraic structure was introduced by Borcherds [30], as well as Frenkel et al. [31,
32] in their study of the representations of the Monster group. This approach is very algebraic, 
and shares many similarities with Lie algebra theory. Apart from the Monster group, VOAs have 
also been used to study minimal models [51] and WZW theories [52]. In a long series of con-
tributions, Dong, Frenkel, Huang, Kong, Lepowsky, Zhu and others nailed down the properties 
of VOAs and showed that they are consistent with physically expected properties of a CFT. This 
makes VOAs the up-to-date tool for rigorously studying CFTs. VOAs also appear in the axiom-
atization of CFTs by Gaberdiel and Goddard, which puts the emphasis entirely on the properties 
of correlation functions [53,54].

Connections between the different approaches to CFTs only lately became clearer, thanks 
to the work of Carpi et al. [55], as well as Dong and Lin [37]. In [55], the authors provided a 
connection between VOAs and the algebraic quantum field theoretic picture. In [37], the focus 
was on VOAs and modules which are also Hilbert spaces, and where the Hilbert space structure is 
compatible with the VOA structure (see Section 2 for precise definitions). Our work is restricted 
to this case. In the following, we give a short but high-level outline of the setup considered. The 
exact definitions can be found in Section 2 of this paper.

1.1.2. Setup
We are concerned with quantum field theories defined on 1-dimensional compact complex 

manifolds (�, γ ), where γ denotes the Riemannian metric. It is customary to complexify space–
time, which implies that points are parametrized by two complex parameters (z, ̄z). In turn, the 
basic quantum fields Y(ϕ, z, ̄z) also depend on (z, ̄z). The argument ϕ serves as a label for the 
field in question and it is assumed that Y is linear in it. Depending on the setting, the variables 
(z, ̄z) are elements of different subsets of the complex plane.
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It is worth pausing for a moment to explain the physical interpretation of the complex pa-
rameters (z, ̄z). Here we can distinguish between two settings where such CFTs arise: the first 
one is relativistic quantum field theory in (1 + 1)-dimensional compactified Minkowski space. 
Here the parameters are usually the light-cone variables (z, ̄z) = (t − x, t + x) and are both real. 
The second setting of interest (arising in statistical mechanics and most relevant to condensed 
matter physics) is the Euclidean setting, where a point (x, y) ∈R

2 is identified with the complex 
number z= x + iy, and where we set z̄= z∗ equal to the complex conjugate of z.

The CFT is defined by its correlation functions

〈Y(ϕ1, z1, z̄1)Y(ϕ2, z2, z̄2) · · ·Y(ϕn, zn, z̄n)〉γ ,
where 〈·〉 denotes the expectation value in a fixed state of interest (often the so-called ‘vac-
uum state’, depending on the Riemannian metric γ ). In physical parlance, a term Y(ϕj , zj , ̄zj )
is an ‘insertion’ of the field ϕj at the ‘insertion point’ (zj , ̄zj ). The complex parameters 
(z1, ̄z1, . . . , zn, ̄zn) belong to a certain domain of a two-dimensional surface parametrized by 
a subset of complex numbers. We will be concerned with surfaces of genus zero or one, that 
is, either the compactified complex plane C ∪ {∞} – the Riemann sphere – or the torus. The 
latter can be identified with a subset of the complex plane with periodic boundary conditions. In 
this paper, we are mostly concerned with correlation functions evaluated on the real line, with 
insertion points z1, . . . , zn, z̄1, . . . , ̄zn separated by a minimal distance. We note that using ap-
propriate conformal transformations, most configurations of insertion points can be brought into 
this standard form.

The transition from 2D-Minkowski or Euclidean space to a compactified two-dimensional 
surface is necessary to have a proper, globally defined notion of conformal symmetries. Indeed, 
this is the one of the defining properties of a CFT [56, Lecture 2.1]: The correlation functions 
are covariant with respect angle-preserving deformation of the intrinsic metric of the Riemann 
surface. That is, if D be an angle-preserving diffeomorphism, then the correlation functions 
satisfy

〈Y(ϕ1, z1, z̄1) · · ·Y(ϕn, zn, z̄n)〉D∗γ = 〈Y(ϕ1,D(z1, z̄1)) · · ·Y(ϕn,D(zn, z̄n))〉γ ,
which we refer to as diffeomorphism covariance. The second assumption is local scale co-
variance, which means that if σ is a function on the manifold, then there exists real numbers 
{hi}i=1,...,n such that

〈Y(ϕ1, z1, z̄1) · · ·Y(ϕn, zn, z̄n)〉eσ γ = e−
∑n
i=1 hi σ (zi ,z̄i ) 〈Y(ϕ1, z1, z̄1) · · ·Y(ϕn, zn, z̄n)〉γ .

Both assumptions can be combined into a single one. For that, let w : C ∪ {∞} → C ∪ {∞} be a 
holomorphic map. Then conformal covariance is defined as the existence of real numbers hi, hi
such that

〈Y(ϕ1, z1, z̄1) · · ·Y(ϕn, zn, z̄n)〉 =∏
i

(
dw

dz

)hi ∣∣∣∣∣
zi

∏
i

(
dw

dz̄

)hi ∣∣∣∣∣
z̄i

〈Y(ϕ1,w(z1),w(z̄1)) · · ·Y(ϕn,w(zn),w(z̄n))〉 .

Stated differently, the correlations functions of certain fields are assumed to transform under 
Weyl transformations in a simple manner. Fields for which this assumptions holds are called 
primary, and they will be of main interest to us.

The axioms of diffeomorphism covariance and local scale covariance are best motivated from 
the geometric picture of CFTs put forward by Segal, see [56, Lecture 2.6] for an excellent 
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overview. Geometrically, a CFT is a functor from the category of 1-dimensional complex Rie-
mannian surfaces with boundaries, denoted by �, to trace-class operators A�,γ : ⊗H → ⊗

H
between tensor product Hilbert spaces (with one tensor factor for each boundary component 
of �). Whether the tensor factor belongs to the input or the output depends on whether the as-
sociated boundary parametrization agrees with the orientation of the manifold. The covariance 
properties then emerge simply from requiring certain invariance properties of this functor. For 
example, the diffeomorphism covariance states that A�2,γ = A�1,D

∗γ , if D :�1 →�2 is a dif-
feomorphism reducing to the identity around the boundary.

The underlying physical reasoning motivating these transformation properties depends on 
the setting under consideration. In the relativistic case, this invariance property can be derived 
from the Wightman axioms (axiomatizing relativistic quantum field theories) by restricting to one 
spatial dimension and demanding the existence of conformal symmetries. We point the interested 
reader to the book of Kac [38] or the paper by Furlan et al. [57] for an explanation of this 
derivation. In the statistical mechanics (Euclidean) setting, a similar derivation exists, starting 
from the Osterwalder–Schrader axioms (axiomatizing Euclidean field theories), see for example 
the papers by Felder et al. [47,48].

It is customary to assume that the variables z and z̄ can be decoupled, which can be proven 
for many CFTs of interest. More precisely, in this case it is sufficient to study basic fields Y(ϕ, z)
only depending on either z or z̄ and the corresponding correlation functions,

〈Y(ϕ1, z1) · · ·Y(ϕn, zn)〉 .
Such correlations functions are called chiral (if depending on z) or anti-chiral (if depending 
on z̄). Again, the same conformal covariance properties are assumed. The decoupling of chiral 
and anti-chiral part is the starting point of a formal axiomatization of chiral CFTs (i.e., those 
describing chiral correlation functions). In this axiomatization, chiral CFTs are determined by 
a symmetry algebra V , which includes the conformal one but may be considerably larger. The 
exact definition can be found in Section 2, but from a general viewpoint, V can be thought of as a 
complex vector space, together with a z-dependent multiplication rule. The symmetry algebra is 
called a vertex operator algebra (VOA), and will be defined below in detail. Correlation functions 
are specified by maps Y intertwining three irreducible representations of this symmetry algebra. 
That is, depending on the variable z, Y maps an element a ∈ A in the module A of V to an 
endomorphisms Y(a, z) : B → C from a module B into a third module C. Composing these 
maps gives rise to correlation functions as before, evaluated at elements a1, . . . , an of modules 
for V . In terms of VOAs, a full CFT depending on both z and z̄ consists of two VOAs, the chiral 
as well as the anti-chiral part. The corresponding algebraic object is called a conformal full field 
algebra. The dependence on both variables is recovered by considering the tensor product of the 
chiral VOA with the anti-chiral VOA.

1.2. Matrix product states and finitely correlated states

Before stating our main result, we briefly recall basic facts about matrix product and finitely 
correlated states. We would like to emphasize that while usually a state of a quantum system is 
normalized, here we are relaxing this requirement due to the fact that correlation functions are 
a priori not normalized. For the purpose of this paper, a matrix product state (MPS), or also a 
matrix product tensor network, is a linear functional σMPS on (Cd)⊗n, defined in terms of d + 1
many D×D-matrices X, �1, . . . �d (with integers d, n, D), of the form

σMPS(|k1〉 ⊗ |k2〉 ⊗ . . .⊗ |kn〉)= Tr[�k1�k2 · · ·�knX] ,
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where |k〉, k ∈ {1, . . . , d} is an orthonormal basis of Cd . The number D is called the bond di-
mension. Similarly, a finitely correlated state (FCS) – or more precisely a finitely correlated 
functional – is a functional σFCS on Mat(Cd)⊗n, where Mat(Cd) are the d × d matrices with 
complex entries, defined in terms of d + 2 many D×D-matrices ρ, e, �1, . . . �d by

σFCS(|k1〉〈l1| ⊗ |k2〉〈l2| ⊗ . . .⊗ |kn〉〈ln|)= Tr[ρ�k1�k2 · · ·�kne�∗
ln
�∗
ln−1

· · ·�∗
l1
] , (1)

where �∗ is the adjoint of �. In our work, the spaces Cd or Md will be the linear span of primary 
vectors. The function σMPS will encode chiral correlation functions, whereas σFCS encodes 
correlation functions of a full CFT. Intuitively, if D 
 dn, then functionals of the form σMPS
and σFCS have significantly reduced complexity compared to general functionals on (Cd)⊗n
or Mat(Cd)⊗n, respectively. As stated earlier, matrix product and finitely correlated states are 
widely used in the analysis of quantum spin systems in one spatial dimension. As it turns out, 
they can also be used to provide finite-dimensional approximations to the correlation functions 
of CFTs.

1.3. Results

Before turning to the main statement of this work, let us summarize our main assumptions. We 
consider a CFT, either a chiral one or a full CFT consisting of both chiral and anti-chiral parts. 
The chiral CFT is defined in terms of a VOA V and its modules, whereas the full CFT is defined in 
terms of a pair of VOAs. For the latter, we only consider theories where the chiral and anti-chiral 
VOAs are isomorphic, and are additionally glued together in a particularly simple way. Such “di-
agonally glued” theories are sometimes simply called “diagonal theories” [46]. In addition, we 
are only concerned with VOAs V that have finitely many non-isomorphic irreducible modules. 
Such theories are called rational. Moreover, we require the existence of a unique vacuum vector 
(the exact definition of this statement is found in Section 2). We need another technical assump-
tion, which is called C2-co-finiteness (to be defined in Section 2). We further restrict ourselves 
to the case of unitary VOAs and modules, those possessing a scalar product turning them into a 
Hilbert space (see Section 2.3.3). While this seems to be an impressive list of assumptions, we 
stress that most examples of physical interests are known to satisfy these. In particular, minimal 
models as well as WZW models do so (see pointers to the literature below).

In a CFT specified by a VOA V satisfying these assumptions, correlation functions are defined 
in terms of intertwining maps between modules of V . As mentioned earlier, in this paper we are 
only concerned with correlation functions involving primary fields. This allows us to exploit the 
transformation properties under conformal mappings. We point out, however, that more general 
correlation functions can be obtained from correlation functions involving primary fields by the 
so-called Ward identities, see e.g., [2]. While these identities involve derivatives and are hence 
not directly applicable to our setup, our arguments could be generalized to include not only 
primary fields but also a finite number of their descendants.

Theorem 1.1 (Main result, informal version). Consider

(i) a chiral CFT, specified by a VOA V satisfying our assumptions, or
(ii) a full CFT obtained by diagonal gluing of chiral and anti-chiral parts, specified by a VOA V

satisfying our assumptions.
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Then the genus-0 and genus-1 correlation functions, with equispaced (on C, respectively the 
torus) insertions of primary fields, can be approximated arbitrarily well by

(i) matrix-product states in case (i).
(ii) finitely correlated states in case (ii).

In both cases, the approximating expression is a certain contraction of a corresponding tensor 
network. More precisely, in case (i), it is the value σMPS(|k1〉 ⊗ · · · ⊗ |kn〉) of σMPS evaluated 
on a product input, whereas in case (ii), it is given by an expression of the form σFCS(|k1〉〈k1| ⊗
· · · ⊗ |kn〉〈kn|), respectively a finite linear combination thereof.

We emphasize that our results provide exact error bounds for the accuracy of these approxi-
mations. They are expressed in terms of the number n of insertion points as well as the minimal 
distance between the points. These error bounds imply that the bond dimension D scales poly-
nomially in the inverse of the error in the approximation, as well as sub-exponentially in the 
inverse of the minimal distance between the insertion points.1 In the case of a full CFT, we prove 
the existence of a transfer operator which determines the long-distance behavior of correlation 
functions. We illustrate our findings with examples based on WZW models, and also provide an 
algorithm to compute the matrices X, �1, . . . , �d for this case.

1.4. Outline

Let us briefly summarize the structure of this contribution. Section 2 provides a (short) intro-
duction to MPS, FCS and VOAs. In Section 3, we study correlation functions of chiral theories, 
and show how to express these in terms of our main technical tool, scaled intertwiners. In Sec-
tion 4, we show that these objects define bounded operators on the Hilbert space of the chiral 
theory. This is the main technical ingredient for Section 5, where we present our main arguments 
providing our approximation estimates in the chiral case. Section 6 then studies the case of a 
CFT consisting of both chiral as well as anti-chiral parts. We end with some open questions and 
remarks in Section 7. Some technical lemmas are deferred to Appendix A, while Appendix B
provides a description of the algorithm for the computation of the approximation for WZW mod-
els.

2. Preliminaries

The purpose of this section is to introduce the necessary terminology as well as notation. 
Section 2.1 is devoted to finitely correlated and matrix product states. Section 2.3 contains the 
necessary definitions related to chiral CFTs. The discussion of the definitions related to full CFTs 
is postponed to Section 6.1.

1 The inverse of the minimal distance may be interpreted as the best possible precision and may thus be identified 
with the maximal momentum. In turn, a lower bound on this minimal distance has a similar physical meaning as upper 
bounding the momentum. However, we do not go further in this direction and only assume a lower bound on the distance 
between insertion points.
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2.1. Finitely correlated states and matrix product states

This section is devoted to a brief review of basic definitions related to finitely correlated 
(FCS) and matrix product states (MPS). We begin with a discussion of finitely correlated states 
for translation-invariant systems, and then proceed to formally introduce general finitely corre-
lated states as well as matrix product states. The discussion of how CFT correlation functions 
of full/chiral CFTs can be written as/approximated by MPS/FCS will be deferred to subsequent 
sections.

2.1.1. Finitely correlated states for translation-invariant systems
Finitely correlated states, introduced by Fannes, Nachtergaele and Werner [5,6], describe 

translation-invariant states on a one-dimensional lattice Z with associated Hilbert space HZ =⊕
x∈ZHx . We briefly review some of the relevant facts, following [58], to which we refer for 

more details. Here the Hilbert spaces Hx ∼= H are isomorphic for different sites x, and are usu-
ally assumed to be finite-dimensional. In particular, the algebra Ax ∼= A = B(H) of single-site 
observables is the set Mat(Cd) of d × d-matrices. A (C∗-)finitely correlated state (FCS) with 
bond-system B (usually a direct sum of matrix algebras, but see the remarks on [58, p. 7]) then 
is a triple (E, ρ, e), where E : A ⊗ B → B is completely positive, e ∈ B is a positive element, 
and ρ a positive linear functional on B. Setting EA(B) = E(A ⊗B) for A ∈ A and B ∈ B, these 
objects satisfy the two conditions

EIA(e)= e and ρ(EIA(B))= ρ(B) for all B ∈ B , (2)

where IA is the identity element in the algebra A. In what follows, we will also use the notation 
IH for the identity operator on a Hilbert space H. In terms of these objects, the finitely correlated 
state σFCS then is defined by the expression

σFCS(A1 ⊗ · · · ⊗An)= ρ(EA1 ◦ · · · ◦EAn(e)) , (3)

for local observables A1, . . . , An. The expression (1) can be recovered if the completely positive 
map E is written in Kraus operator form. It can be shown [59] that if E is a unital map, i.e.,

E(IA ⊗ IB)= IB , (4)

then there is always exists a state ρ satisfying the second condition in (2) – taking e = idB then 
defines an FCS. An example is the case where B = B(B) for some Hilbert space B , and the 
map E is of the form

E(A⊗B)= V ∗(A⊗B)V (5)

for a linear map V : B → H ⊗ B which is an isometry, V ∗V = IB . Such FCS are called purely 
generated.

2.1.2. General finitely correlated states
The definition of finitely correlated states can be adapted in a straightforward manner to cover 

possibly non-translation-invariant states. Here we introduce the corresponding definitions.
We remark that the unitality (4) of E is not a necessary condition: in fact, existence of a 

positive e ∈ B satisfying the first condition in (2) is sufficient to guarantee existence of a suitable 
state ρ. At any rate, conditions (2) are only necessary to provide a translation-invariant state. Our 
focus is rather on the functional form of expression (3) (and we do not need conditions (2), (4)
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or the fact that the FCS is purely generated explicitly). Since we do not need the normalization 
condition, we sometimes also refer to functionals of the form (3) as finitely correlated functionals.

More specifically, we consider non-translation-invariant states on a system consisting of n
sites. For bond systems B(0), . . . , B(n) and completely positive operators E (j) : A(j) ⊗ B(j) →
B(j−1), a positive element e ∈ B(n), and a linear functional ρ on B(0), we may define a linear 
functional σFCS by

σFCS(A1 ⊗ · · · ⊗An)= ρ
(
E
(1)
A1

◦ · · · ◦E(n)An (e)
)

(6)

where Aj ∈ A(j) and E(j)Aj (Bj ) = E (j)(Aj ⊗ Bj ) for j = 1, . . . , n. Note that we do not impose 

constraints on positivity in this definition. As before, in the case where A(j) = B(H(j)), B(j) =
B(K(j)) for Hilbert spaces H(j), K(j), we call the FCS purely generated if the maps E (j) have 
the form (5) for linear maps V (j) : K(j−1) →H(j) ⊗K(j).

2.1.3. Matrix product states
Matrix product states are obtained by considering a vector-analog of (6), as follows. Let 

A(j), B(j) be Hilbert spaces and W(j) : A(j) ⊗ B(j) → B(j−1) be linear operators. Define 
A
(j)
aj (bj ) = W(j)(aj ⊗ bj ) for aj ∈ A(j) and bj ∈ B(j). Denoting by (·, ·) the pairing between 

B(0) and its dual space, we consider functionals on ⊗nj=1Aj of the form

σMPS0(a1 ⊗ · · · ⊗ an)=
(
(v(0))′,A(1)a1

◦ · · · · · · ◦ A(n)an (v
(n))

)
(7)

for (v(0))′ ∈ (B(0))′, v(n) ∈ B(n) as well as (in the case where B(0) = B(n))

σMPS1(a1 ⊗ · · · ⊗ an)= Tr
(

A(1)a1
◦ · · · · · · ◦ A(n)an X

)
(8)

for suitable operators X.
As a familiar special case of (8), consider the case where A(j) ∼= C

d , B(j) ∼= C
b for all j . 

Fixing an orthonormal basis {|k〉}dk=1 of A(j), each operator W (j) has the form

W(j)(aj ⊗ bj )=
d∑
k=1

〈k, aj 〉A(j)k bj ,

for a family {A(j)k }dk=1 of linear operators A(j)k : Cb → Cb . Then (8) becomes

σMPS1(|k1〉 ⊗ · · · ⊗ |kn〉)= Tr
(

A(1)k1
· · ·A(n)kn X

)
(9)

for all 1 ≤ k1, . . . , kn ≤ d . An element in Cdn = (Cd)⊗n corresponding to the linear form (9) on 
(Cd)⊗n is called a matrix-product state (MPS) with bond dimension equal to b. Note that because 
we did not require a proper normalization, the term “state” should be considered literally. More 
precisely, we call functionals of the form (9) matrix product tensor networks.

2.2. G-invariant MPS

Of particular interest to us will be MPS/FCS with additional local symmetries. Given a linear 
map W : Cd3 ⊗ Cd2 → Cd1 and unitary representations Uj : G → GL(Cdj ), j = 1, 2, 3, of a 
compact Lie group G, we say that W is a G-intertwining map if

W (U3(g)⊗U2(g))=U1(g)W , for g ∈G.
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A G-invariant MPS is defined by operators W(j) :A(j)⊗B(j) → B(j−1) that are G-intertwining 
with respect to fixed unitary representations of G on the spaces A(j), B(j).

Consider the translationally invariant case, W (j) = W for all j = 1, . . . , n. Here we assume 
A(j) ∼= C

d , B(j) = C
d , and that we are given two unitary representations U1 : G → GL(Cd), 

U2 : G → GL(Cb) of some compact Lie group G. The translation-invariant MPS is then given 
by a linear map W satisfying

W (U1(g)⊗U2(g))=U2(g)W , for g ∈G.
It then follows from this intertwining property, the unitarity of the representation and Eq. (9) that 
the MPS possesses a global G-invariance in the sense that

σMPS1(U1(g)|k1〉 ⊗ · · · ⊗U1(g)|kn〉)= σMPS1(|k1〉 ⊗ · · · ⊗ |kn〉) , for all g ∈G.
Similarly, if we have

EU1(g)
∗AU1(g)(U2(g)

∗BU2(g))=U2(g)
∗
EA(B)U2(g) , for g ∈G

and the positive functional ρ is invariant under the representation U2, it follows that the corre-
sponding FCS satisfies

σFCS(adU1(g)(A1)⊗ · · · ⊗ adU1(g)(An))= σFCS(A1 ⊗ · · · ⊗An) ,
for all local observables A1, . . . , An, where adU1(g)(A) =U1(g)

∗AU1(g). We call such function-
als G-invariant MPS/FCS. Starting from the work by [5], this class of MPS/FCS was extensively 
studied, see in particular [60]. It provides a very efficient way to construct trial states for quantum 
spin chains with built-in physical symmetries.

In the following, we will show that genus-zero correlation functions of chiral CFTs can be 
written in the form (7) for a functional σMPS0 , whereas genus-one correlation functions of such 
CFTs take the MPS form (8) for a functional σMPS1 . Finally, genus-0 correlation functions of 
full CFTs are given by functionals σFCS of the form (6), and genus-1 correlation functions will 
be certain linear combinations thereof. We will illustrate our findings by WZW models, and the 
corresponding approximations will turn out to be closely related to G-invariant MPS/FCS.

2.3. Vertex operator algebras, modules and intertwiners

We will work in the language of vertex operator algebras (VOAs), their modules and inter-
twiners. We will introduce these concepts only to the extent necessary for our purposes and 
refer to [32] for details. For a discussion of how VOAs axiomatize 2-dimensional CFT, and in 
particular, the relationship to the Wightman axioms, see e.g., [38].

2.3.1. Vertex operator algebras (VOAs)
A vertex operator algebra V is a tuple (V, Y, 1, ω) consisting of an N0-graded vector space 

V = ⊕
n∈N0

Vn, a linear map Y(·, z) : V → End(V)[[z, z−1]] into the space of formal Laurent 
series with coefficients in End(V), and two distinguished vectors 1 ∈ V0 and ω ∈ V2. To state 
the conditions obeyed by these objects, the following terminology is convenient: The vector 1 is 
called the vacuum, whereas ω is referred to as the conformal or Virasoro vector. Each space Vn
is called a weight space. A vector v ∈ Vn ⊂ V belonging to a weight space Vn is homogeneous of 
weight (or level) wt v = n.
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By definition, the vertex operator Y(v, z) associated with a vector v ∈ V can be written as

Y(v, z)=
∑
n∈Z

vnz
−n−1 , (10)

where vn ∈ End(V) is referred to as a mode operator of v. For all u, v ∈ V , these satisfy

vnu= 0 for n sufficiently large.

For a homogeneous vector v, we use the notation

Y(v, z)=
∑
n∈Z

y(v)nz−n−wt v (11)

instead of (10), i.e., we index mode operators as y(v)n = vn+wt v−1. This convention is motivated 
by Eq. (22) below. The vacuum vector satisfies

Y(1, z)= idV , (12)

where idV is the identity operator on V , and the creativity property

Y(u, z)1 = u+
∑
n∈N

ũnz
n for some ũn ∈ V , (13)

which is sometimes written limz→0 Y(u, z)1 = u and colloquially known as the operator-state 
correspondence. We remark that in the latter limit, the formal indeterminate z is replaced by a 
complex number z ∈ C, a procedure we will discuss in more detail and use extensively below 
when considering correlation functions. However, in the present section, such substitutions are 
not necessary and every identity is to be understood as an identity between formal Laurent series.

For the conformal vector ω, which is homogeneous of weight wt ω = 2, the mode opera-
tors y(ω)n are denoted by Ln, i.e.,

Y(ω, z)=
∑
n∈Z

Lnz
−n−2 .

The operators {Ln}n∈Z are sometimes called the Virasoro operators.
Every weight space Vn is finite-dimensional, and the grading of V is given by the spectral 

decomposition of the operator L0: for every n ∈N0, Vn is the eigenspace of L0 with eigenvalue n. 
A homogeneous vector (or “field”) v ∈ Vn is quasi-primary if L1u = 0 and primary if Lnv = 0
for all n > 0.

The operators Ln satisfy the Virasoro algebra relations

[Ln,Lm] = (n−m)Ln+m + c

12
n(n2 − 1)δn+m,0 · idV for all m,n ∈ N0 , (14)

where the constant c is the central charge (sometimes denoted rankV).
Using additional indeterminate variables, one can define products of vertex operators in 

terms of formal series. Interpreted as such, a product such as Y(u, z1)Y (u, z2) is an element 
of End(V)[[z1, z

−1
1 , z2, z

−1
2 ]]. A VOA satisfies the following locality or weak commutativity

property with respect to such products: for all u, v ∈ V , there is a non-negative integer k such 
that

(z1 − z2)
k[Y(u, z1),Y(v, z2)] = 0 .

In fact, this condition implies the so-called Jacobi identity, which is often used instead as it is 
more explicit (see e.g., [39, Section 1.4] for a discussion of the relationship between different 
definitions). For completeness, we include the latter: it states that (see e.g., [52, Eq. (1.2.14)])
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Resz1−z2

(
Y(Y(u, z1 − z2)v, z2)(z1 − z2)

mιz2,z1−z2(z2 + (z1 − z2))
n
) = (15)

Resz1

(
Y(u, z1)Y(v, z2)ιz1,z2(z1 − z2)

mzn1
)−

Resz1

(
Y(v, z2)Y(u, z1)ιz2,z1(z1 − z2)

mzn1
)
,

for all m, n ∈ Z, u, v ∈ V . In this expression, Reszf (z) is the residue of f (z), i.e., the coefficient 
of z−1 in f (z), and ιz1,z2f (z1, z2) is the series expansion of the function f (z1, z2) in the domain 
|z1| > |z2|. In addition, a VOA has the translation property: for any v ∈ V , we have

d

dz
Y(v, z)= Y(L−1v, z) , (16)

where the lhs. is to be understood as the Laurent series obtained by termwise differentiation. 
This concludes the definition of a VOA. Important consequences of these axioms are e.g., the 
associativity property

(z1 + z2)
kY(u, z1 + z2)Y(v, z2)w = (z1 + z2)

kY(Y(u, z1)v, z2)w

for large enough k, which can be seen as the VOA-version of the operator product expansion of 
fields, as well as the commutator formula

[Y(u, z1),Y(v, z2)] = Y((Y(u, z1 − z2)− Y(u,−z2 + z1))v, z2) . (17)

We also remark that the subalgebra generated by {L0, L1, L−1} generates an action of SL(2, C)
on the formal variable z by Möbius transformations. This is a consequence of the Virasoro alge-
bra relations (14) and the translation property (16). Explicitly, we have

qL0Y(u, z)q−L0 = Y(qL0u,qz) (18)

q
L−1
λ Y(u, z)q

−L−1
λ = Y(u, z+ λ) where qλ = eλ

q
L1
λ Y(u, z)q−L1

λ = Y

(
q
L1
λ(1−λz)(1 − λz)−2L0u,

z

1 − λz
)
. (19)

More generally, an element

A=
(
a b

c d

)
∈ SL(2,C) ,

corresponding to the Möbius transformation

γ (z)= az+ b
cz+ d ,

acts by

DγY(v, z)D−1
γ = Y

((
dγ

dz

)L0

exp

(
γ ′′(z)
2γ ′(z)

L1

)
v, γ (z)

)
,

and γ �→Dγ defines a representation of SL(2, C) on V . The maps (18)–(19) are generated by 
the elements

L0 =
(

1/2 0
0 −1/2

)
L−1 =

(
0 1
0 0

)
L1 =

(
0 0
1 0

)
,

of sl(2, C). We also point out that the vacuum is invariant under Möbius transformations, i.e.,

Dγ 1 = 1 for all γ ,
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since L01 = 0 (as 1 ∈ V0), L11 = 0 since by (22)

wt (L11)= wt 1 − 1< 0

hence L11 ∈ V−1 = 0 by the assumption Vn = 0 for n < 0, and L−11 = 0. The latter is an 
immediate consequence of (12) and the translation property (16). Infinitesimally, the relation-
ships (18)–(19) read

[L0,Y(v, z)] = Y(L0v, z)+ zY(L−1v, z) (20)

[L−1,Y(v, z)] = Y(L−1v, z)

[L1,Y(v, z)] = Y(L1v, z)+ 2zY (L0v, z)+ z2Y(L−1v, z) . (21)

A consequence of (20), which is particularly relevant for our purposes is the following. The mode 
operators associated with a homogeneous vector w ∈ V map weight spaces to weight spaces, and 
change the weight according to

wt (y(w)nv)= wt v − n (22)

for any homogeneous vector v ∈ V .
We will require a few additional technical assumptions on the VOAs to derive our results. 

These are expressed by the following definitions: A VOA V is called of CFT-type if the weight 
space V0 = C1 is one-dimensional, i.e., spanned by the vacuum vector. It is rational if every 
admissible V-module (as defined below) is completely reducible, i.e., a direct sum of irreducible 
admissible V-modules. It is C2-co-finite if the space C2 = span{u−2v | u, v ∈ V} has finite 
co-dimension in V , dimV/C2 < ∞. We will also assume that the weight spaces are finite-
dimensional, i.e., dimVn <∞. We defer the discussion of the additional property of unitarity 
of VOAs to Section 2.3.3, where we also discuss some consequences. Many examples of physi-
cal interest satisfy all these conditions. In particular, a large class of minimal models as well as 
lattice models and WZW models are of CFT-type, rational, unitary, and C2-co-finite (see [37]
and the references therein).

Example 1 (Wess–Zumino–Witten (WZW) models). Our prime example in this paper will be 
CFTs of Wess–Zumino–Witten type [9,10], which are built upon a local symmetry action by a 
compact Lie group. However, the CFT is most easily understood in the differential picture, that 
is, from a Lie algebra viewpoint.

Following a first rigorous treatment of these theories by Kanie and Tsuchiya [61] in the case of 
the Lie algebra sl(2, C), and the work by Wassermann [50] for general elements of the A-series, 
the corresponding VOA structure, the modules and the relations between these have been very 
nicely constructed and studied by Frenkel and Zhu [52]. We will follow their approach, and try 
to illustrate our statements for these physically relevant examples.

The basic building block is a simple Lie algebra g over the complex numbers (from now 
on, all Lie algebras are considered to be complex, unless otherwise stated), with normalized2

Killing form (·, ·) : g × g → C. We then consider its affinization, which is the Lie algebra ĝ =
g ⊗ C[t, t−1] ⊕ kC, where k is an element of the center of ĝ, and C[t, t−1] is the algebra of 
Laurent polynomials in the formal variable t . The Lie bracket (a, b ∈ g, n, m ∈ Z) is

[a⊗ tn,b⊗ tm] = [a,b] ⊗ tn+m + δn+m,0 n (a,b)k . (23)

2 We usually take the normalization to be (θ, θ) = 2, where θ is the maximal root of g.
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In the following, we adopt the standard notation a ⊗ tn = a(n), and consider the decomposition 
of ĝ into the subalgebras

ĝ+ = g⊗C[t]t , ĝ− = g⊗C[t−1]t−1 , ĝ = ĝ+ ⊕ ĝ− ⊕ g⊕Ck .

Let U(ĝ) be the universal enveloping algebra of ĝ. It follows that the quotient of U(ĝ) by ĝ+
and k − kIU(ĝ), k ∈N is a natural ĝ-module. Its elements are of the form

a1(−n1)a2(−n2) · · ·al (−n
)IU(ĝ) , aj (−nj ) ∈ ĝ− , for j = 1, . . . , 


and we define the vacuum vector by 1 = IU(ĝ). The space has a natural grading defined by

wt (a1(−n1)a2(−n2) · · ·a
(−n
)1)=

∑
j=1

nj . (24)

Moreover, this module (which is isomorphic to U(ĝ−) as a vector space) has a maximal proper 
submodule. This allows us to again take the quotient with respect to that submodule. The result-
ing ĝ-module is denoted by Lk,0. In the following, we routinely identify elements in Lk,0 with 
corresponding representatives in U(ĝ−).

As shown by Frenkel and Zhu [52], the space Lk,0 has a VOA structure if −k is not equal 
to the dual Coxeter number g of g. We will assume this in the following. The Virasoro op-
erators {Ln}n∈Z are given by the Sugawara–Segal construction and are compatible with the 
grading (24), see [52] or [2, Chapter 15.2]. For a ∈ g � g ⊗ t−1, the associated vertex opera-
tor is

Y(a, z)=
∑
n∈Z

a(n) z−n−1 . (25)

Given an element of the form v = a1(−n1)a2(−n2) . . .a
(−n
)1 ∈ Lk,0, aj ∈ g, the associated 
vertex operator is defined via the Jacobi identity, which can be used to successively reduce the 
definition to elements in g, see [52] for details. This definition is then linearly extended to all 
of Lk,0. A more physical way of thinking of the object Lk,0 is as the Fock space over the space g ⊗
C[t−1] of polynomials in t−1 with values in the Lie algebra g, modulo the relations imposed by 
the commutator rule (23), and the identity playing the role of the vacuum.

Frenkel and Zhu [52] proved that, if we choose k (which is often referred to as the level) to 
be a positive integer – which we will do from this point onwards – then the VOA Lk,0 is simple, 
C2-co-finite and rational, that is, satisfies our basic assumptions and only possesses finitely many 
irreducible representations. This will be our prime example to illustrate our findings.

2.3.2. Modules
A module of a VOA is a vector space carrying a structure satisfying almost all defining proper-

ties of a VOA, as well as certain compatibility properties with the VOA. For a VOA (V, Y, 1, ω), 
a module (A, YA) is again a graded vector space A = ⊕

n∈N0
An, together with a linear map

YA(·, z) : V → End(A)[[z, z−1]] , YA(v, z)=
∑
n∈Z

vAn z
−n−1 ,

where vAn ∈ End(A) is again called the mode operator of v ∈ V . We call A0 the top level, and 
An the n-th level of the module A. (Here we follow the convention of [52] and assume that 
the grading is over the non-negative integers N0 = N ∪ {0}. Such N0-gradable modules are also 
called admissible, see e.g., [62, Section 6].)
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Homogeneous vectors and mode operators are defined analogously for modules as for VOAs. 
Weights are defined as eigenvalues of LA,0, which, in contrast to the case of VOAs do not need 
to be integers: they are of the form α + n, where α ∈ IA for some finite set IA ⊂ C and n ∈ N0. 
More precisely, for every n ∈N0, we have for all a ∈An

LA,0a = (α + n)a for some α ∈ IA . (26)

According to (26), we can refine the grading of the module to

A=
⊕

α∈IA,n∈N0

An,α where An =
⊕
α∈IA

An,α

and elements of An,α are weight vectors a with weight wt a = α+ n. In other words, the grading 
again coincides with the spectral decomposition, i.e., the eigenspaces of LA,0, but the latter 
provides more detail. For an irreducible module A = ⊕

n∈N0
An, the set IA = {h} consists of a 

single scalar (called the conformal weight or highest weight of A), and thus

LA,0|An = (h+ n)idAn for all n ∈ N0 .

For a homogeneous vector v ∈An we again use the notation

YA(v, z)=
∑
m∈Z

yA(v)mz−m−n ,

such that yA(v)m = vAm+n−1 and wt (yA(v)mw) = wtw−m, for any homogeneous vector w ∈A.
As shown by Gaberdiel and Nietzke [63, Proposition 10 and subsequent comment], as well 

as by Karel and Li [64], the weight spaces An of an irreducible module of a VOA satisfying the 
C2-co-finiteness condition are finite-dimensional. More precisely, their dimension is bounded by 
(see [65] for a nice discussion of results of this kind)

dimAn ≤ (dimA0) · P(n,CV ) , (27)

where CV = dimV/C2, C2 = span{u−2v | u, v ∈ V} as before, and P(n, CV ) is the number of 
CV -component multi-partitions3 of the integer n. As this number will later determine the size of 
the bond dimension of our approximation, we give a bound on its growth behavior in Lemma A.1.

The vertex operators YA(u, z) (and the mode operators LA,n of YA(ω, z)) satisfy all axioms of 
a VOA with the exception of the creativity property (13). Various consequences derived for VOAs 
continue to hold for modules, with suitable replacements when vertex operators are applied inside 
arguments: for example, the commutator formula (17) becomes

[YA(u, z1),YA(v, z2)] = YA((Y(u, z1 − z2)− Y(u,−z2 + z1))v, z2) .

Following the literature, we will often suppress the index A when it is clear from the context.

Special modules Given a VOA (V, Y, 1, ω), it is clear that (V, Y) is a module for V . This is 
called the adjoint module. Given a module A = ⊕

n∈N0
An for a VOA V , the restricted dual 

space A′ = ⊕
n∈N0

A′
n (i.e., the space of linear functionals on A vanishing on all but finitely 

many An) can be given a V-module structure as well [52]. The module operator is defined by

YA′ : V → End(A′)[[z, z−1]] , YA′(v, z)(a′)(a)= a′(YA(eL1(−z−2)L0v, z−1)a) ,

for v ∈ V , a′ ∈A′ and a ∈A. This is called the contragredient module.

3 A partition μ of an integer n is a set of integers μ = {μ1, . . . , μl} which sum up to n, |μ| = ∑l
i=1μ

i = n. An 
m-component multi-partition of an integer n is a set {μ1, . . . , μm} of m partitions such that 

∑m |μi | = n.
i=1
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Example 2 (WZW modules). As before, fix a simple Lie algebra g and an integer k ∈N. Let V be 
a module for g. Then there is a canonical module Vk for the affinization ĝ extending V by setting 
ĝ+V = 0, k = kIV and defining

Vk =U(ĝ)⊗U(ĝ+)⊕g⊕kI V .

(This notation indicates that Vk is the quotient of U(ĝ) ⊗ V by U(ĝ+) ⊕ g ⊕ kI.) Elements of 
this space are spanned by vectors of the form

a1(−n1)a2(−n2) · · ·a
(−n
)ϕ , aj (−nj ) ∈ ĝ− , ϕ ∈ V .
We can define a natural grading on Vk by setting

wt (a1(−n1)a2(−n2) · · ·a
(−n
)ϕ)=

∑
j=1

nj + hϕ , (28)

where hϕϕ = L0ϕ, and the Virasoro operators are again given by the Sugawara–Segal construc-
tion and are compatible with the grading (28). If V is an irreducible g-module of highest weight 
λ, the associated ĝ-module Vk has a maximal proper submodule, and we denote the quotient 
of Vk by this submodule by Lk,λ. The space Lk,λ turns out to be an irreducible module for the 
VOA Lk,0 (for certain weights λ as specified below). To avoid an accumulation of indices, we 
will denote the N0-grading of the module as

Lk,λ =
⊕
n∈N0

Lk,λ(n) .

Again, elements in Lk,λ(n) are said to belong to the level n, or the top level if n = 0.
Eq. (25) defines a module vertex operator by identifying a(n) with its action on Lk,λ, i.e. 

yLk,λ (a)n = a(n). The action of module operators on elements composed of products of the build-
ing blocks a(n) is defined via the Jacobi identity. The corresponding Fock space analogy is the 
same as before, but now the vacuum is replaced by the highest weight vector corresponding to λ. 
Accordingly, the top level Lk,λ(0) of the Lk,0-module Lk,λ (consisting of vectors with smallest 
eigenvalues of L0) is isomorphic to the g-module V . For the irreducible modules Lk,λ, the action 
of the grading operator L0 on the top level Lk,λ(0) is a multiple of the Casimir operator, more 
specifically, we have for [2, chapter 15]

hλ := 〈λ,λ+ ρ〉
k+ g

,

that hϕ = hλ for ϕ ∈ Lk,λ(0), which, as discussed above, is an irreducible g-module. Here, ρ is 
the Weyl vector of g and g is its dual Coxeter number. It was shown in [52] that the irreducible 
modules of Lk,0 are all derived from irreducible modules of g, and are hence of the form Lk,λ, 
with the additional constraint that the weight λ is integrable and satisfies λ(θ) ≤ k, where θ is 
the maximal root of g.

2.3.3. Unitary modules
A key tool in our analysis is the existence of certain positive definite Hermitian forms. This 

is the assumption of unitarity: A VOA V = (V, Y, 1, ω) is called unitary if there is an anti-linear 
involution φ : V → V of V with

φ(1)= 1 , φ(ω)= ω , and φ(vnw)= φ(v)nφ(w) for all v,w ∈ V ,
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together with a positive definite Hermitian form 〈·, ·〉V : V × V → C which is C-linear in the 
second argument and anti-C-linear in the first argument such that the invariance condition

〈w1,Y(e
zL1(−z−2)L0v, z−1)w2〉V = 〈Y(φ(v), z)w1,w2〉V (29)

holds for all v, w1, w2 ∈ V . Adopting the convention used in physics (but in contrast to [37]), we 
assume that 〈·, ·〉V is anti-linear in the first and linear in the second argument. The map v �→ φ(v)

is called an anti-linear automorphism of the VOA V . (Note that we do not complex conjugate z, 
which is a formal variable.) In the following, we will also assume (as e.g., in [37, Theorem 3.3]) 
that

〈φ(v1),φ(v2)〉V = 〈v1, v2〉V for all v1, v2 ∈ V .
Unitarity for modules can be defined in an analogous way (see [37]). More precisely, consider 

a unitary VOA V with anti-linear automorphism φ : V → V . A module (A, YA) of V is called 
unitary if there is a positive definite Hermitian form 〈·, ·〉A :A ×A → C which is C-linear in the 
second and C-anti-linear in the first argument such that

〈a1,YA(e
zL1(−z−2)L0v, z−1)a2〉A = 〈YA(φ(v), z)a1, a2〉A , (30)

for all v ∈ V and a1, a2 ∈A. As for the case of VOAs, we assume in addition that there exists an 
anti-linear involution η :A →A, which is compatible with φ in the sense that

η(anb)= φ(a)nη(b) , a ∈ V , b ∈A (31)

as well as with the scalar product,

〈η(a), η(b)〉 = 〈a, b〉 , a, b ∈A.
Note that the invariance property applied to the Virasoro vector ω implies that the adjoint operator 
of Ln for n ∈ Z is L−n,

〈Lna,b〉 = 〈a,L−nb〉 , a, b ∈A.
Following Gaberdiel [54], it is also easy to see that the operator L0 has to be positive for a unitary 
module, since its expectation value on the top level A0 satisfies

〈a,L0a〉 = 〈a,L1L−1a〉 = 〈L−1a,L−1a〉 , for a ∈A0 ,

which is necessarily positive.
Due to the Frechet–Riesz representation theorem, we note that for unitary modules we have 

a linear vector space isomorphism η̃ from the unitary module to its restricted dual space A′ =⊕
n∈N0

A′
n, given by the formula

η̃(a)(b)= 〈η(a), b〉 . (32)

Put differently,

A×A � a1 × a2 �→ (a1, a2)A := 〈ηA(a1), a2〉 (33)

defines a bilinear form on A. Moreover, this bilinear form inherits the invariance property from 
Eq. (30). That is, we have

(YA(v, z)a1, a2)A =
(
a1,YA(e

zL1(−z−2)L0v, z−1)a2

)
A

for all a1, a2 ∈A and v ∈ V .
(34)

For completeness, we give the proof of this statement.
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Proof. By definition, we have

(YA(v, z)a1, a2)A = 〈ηA(YA(v, z)a1), a2〉
= 〈YA(v, z)a1, ηA(a2)〉
= 〈a1,YA(ezL1(−z−2)L0φ(v), z−1)ηA(a2)〉
= 〈ηA(a1), ηA

(
YA(e

zL1(−z−2)L0φ(v), z−1)ηA(a2)
)
〉

=
(
a1, ηA

(
YA(e

zL1(−z−2)L0φ(v), z−1)ηA(a2)
))
A
.

The claim then follows since

ηA

(
YA(e

zL1(−z−2)L0φ(v), z−1)ηA(a2)
)

= YA(e
zL1(−z−2)L0v, z−1)a2

because of (31), the commutation relations between L0 and L1, and the fact that φ(Ln) = Ln
because ω is invariant under φ. �

Unitary modules are in fact special pre-Hilbert spaces, as they are linear spaces equipped with 
a positive definite sesquilinear form 〈·, ·〉. This form can be used to define a norm, by setting 
‖a‖A = 〈a, a〉 1

2 , which turns the unitary module A into a graded, normed space. We can then 
complete this space with respect to this norm, obtaining a Hilbert space, with inner product 
given by the unique extension of the sesquilinear form to the completion of A. In the following, 
we do not differentiate between unitary modules and their completion, as our arguments do not 
rely on this distinction. However, we will frequently use facts related to Hilbert spaces, such 
as the Cauchy–Schwarz inequality, and thus find it more appealing to work with the completed 
spaces.

Example 3 (WZW modules are unitary). Let again g be a complex simple Lie algebra, with asso-
ciated VOA Lk,0. If we denote by {ej , fj , hj } the Chevalley generators of g, then the associated 
Chevalley involution

η0(ej )= −fj , η0(fj )= −ej , η0(hj )= −hj ,

defines an involution on the real span of these generators. It can be extended to the associated 
real subspace (spanned by {ej , fj , hj } ⊗ {tm |m ∈ Z}) of ĝ by setting

η0(a⊗ tn)= η0(a)⊗ tn and η0(k)= −k

or, succintly, η0(a(n)) = η0(a)(−n). Moreover, (−η0) can be extended to an anti-linear anti-
automorphism on the whole of ĝ. This anti-automorphism η̂ satisfies the additional property that 
there exists a positive definite sesquilinear form [66, Chapter 11] on U(ĝ) for which the adjoint 
of a(n) ∈ ĝ is given by η̂(a)(−n),

〈a(n)v,w〉 = 〈v, η̂(a)(−n)w〉 , v,w ∈U(ĝ) , a ∈ g .

Conversely, as shown by Dong and Lin [37], setting

φ(a1(n1) · · ·a1(nl))= (−η̂(a1))(n1) · · · (−η̂(al ))(nl)
defines an anti-linear involution on U(ĝ), which leaves the maximal proper submodule invariant 
and hence induces an anti-linear involution on Lk,0. The scalar product on Lk,0 induced by the one 
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on U(ĝ) inherits the adjoint relations for elements a(n) ∈ ĝ, and moreover satisfies the required 
invariance property (Eq. (29)) as well as 〈φ(v), φ(w)〉 = 〈v,w〉. Thus, Lk,0 is a unitary VOA.

If Vk =U(ĝ) ⊗ĝ+⊕g⊕kIV is a ĝ-module, Kac [66, Chapter 11] shows that the map induced by 
η̂ is again an anti-linear involution on the whole of Vk . Moreover, if Vk stems from an irreducible 
highest weight representation with weight λ satisfying (λ, θ) ≤ k, then there exists a positive 
definite Hermitian form such that

〈a(n)χ1, χ2〉 = 〈χ1, η̂(a)(−n)χ2〉 , χ1, χ2 ∈ Vk , a ∈ g . (35)

Again following the ideas of Dong and Lin [37], we can show that the associated irreducible 
Lk,0-module Lk,λ carries an anti-linear involution η satisfying 〈η(χ1), η(χ2)〉 = 〈χ1, χ2〉, for 
χ1, χ2 ∈ Lk,λ and the induced scalar product on Lk,λ is invariant as required in (30), and thus 
a unitary module. For a more operator algebraic discussion of the same structures, leading to the 
same conclusions, see [50].

2.3.4. Intertwiners
Let A, B, C be modules of a rational VOA V . An intertwining operator Y of type 

(
C
A B

)
is a 

family of linear maps Y(·, z) from A to certain Laurent-like series with coefficients in End(B, C), 
i.e., it associates to every a ∈A a series

Y(a, z)=
∑

τ∈I,m∈Z
aτ,mz

−τ−m ,

where I = ICAB = {τ1, . . . , τd} is a finite collection of complex numbers (depending only on A, 
B and C) and aτ,m ∈ End(B, C) for τ ∈ I and m ∈ Z. For all b ∈ B , the mode operators satisfy

aτ,mb= 0 for sufficiently large m .

Consider the case where A, B , C are irreducible with highest weights hA, hB , hC , respectively. 
It can be shown (see [32, Remark 5.4.4]) that in this case,

ICAB = {hA + hB − hC} (36)

consists of a single element. In particular, up to a factor zhC−(hA+hB), an intertwiner of type (
C
A B

)
is given by a formal Laurent series. In the general case an intertwiner is thus a finite 

linear combination of Laurent-like series which upon multiplication with a fixed power in the 
indeterminate z are formal Laurent series. That is, we can write

Y(a, z)=
∑
τ∈I

Yτ (a, z) and Yτ (a, z) ∈ zτEnd(B,C)[[z, z−1]] .

In the following, we will use the notation End(B,C){{z, z−1}} for such a formal series and thus 
write Y(a, z) ∈ End(B,C){{z, z−1}}. As in (11), it will be convenient to use the notation

Y(a, z)=
∑

τ∈I,m∈Z
y(a)τ,mz

−m−τ−n (37)

for homogeneous vectors a ∈An. The operators Y(a, z) satisfy the translation property

d

dz
Y(a, z)= Y(LA,−1a, z) for all a ∈A . (38)

The compatibility of an intertwiner with modules is expressed by a corresponding Jacobi identity: 
we have
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Resz1−z2

(
Y(YA(v, z1 − z2)a, z2)(z1 − z2)

mιz2,z1−z2((z1 − z2)+ z2)
n
) = (39)

Resz1

(
YC(v, z1)Y(a, z2)ιz1,z2(z1 − z2)

mzn1
)−

Resz1

(
Y(a, z2)YB(v, z1)ιz2,z1(z1 − z2)

mzn1
)

for all m, n ∈ Z, v ∈ V and a ∈A. A useful consequence results if we set m = 0 and evaluate the 
residues for a homogeneous vector v ∈ V . We find by expansion of ((z1 − z2) + z2)

n that

yC(v)n−wt v+1Y(a, z)−Y(a, z)yB(v)n−wt v+1 =
∞∑
j=0

(
n

j

)
Y(yA(v)j−wt v+1a, z) z

n−j

(40)

for a ∈A. This identity will be used below in our algorithm for WZW models. As before, Eq. (38)
and the analog of (20) (which follows from Eq. (40)) imply that the mode operators defined 
by (37) preserve homogeneity and satisfy for a ∈An,α the identity

wt (y(a)τ,mb)= wt b−m− τ + α for any τ ∈ I and m ∈ Z , (41)

for any homogeneous vector b ∈ B . Indeed, we have

LC,0Y(a, z)b= (LC,0Y(a, z)−Y(a, z)LB,0)b+Y(a, z)LB,0b
= (Y(LA,0a, z)+ zY(LA,−1a, z))b+ wt b ·Y(a, z)b
= (wt a + z d

dz
+ wt b)Y(a, z)b .

Inserting (37) and comparing coefficients gives the claim (41).
Eq. (41) has a simple consequence in terms of levels. Let A, B, C be irreducible modules of 

highest weights hA, hB and hC , respectively. Recall that a homogeneous vector b ∈ Bn in the n-th 
level Bn of the module B has weight of the form wt b = hB + n. For such a vector, and a ∈An′
(with arbitrary n′ ∈N0), we get with τ = hA + hB − hC ∈ ICAB (cf. (36))

wt (y(a)τ,mb)= wt b−m+ hA − τ = hA + hB − (hA + hB − hC)+ (n−m)
= hC + (n−m) ,

according to (41). We see that y(a)τ,mb ∈ Cn−m belongs to the level n − m of the module C. 
That is, we have for homogeneous vectors a ∈A

y(a)τ,mBn ⊂ Cn−m .
In particular, the same inclusion holds for all a ∈A, as it is independent of the weight of a.

Now consider three arbitrary unitary modules A, B, C, which can be decomposed into finite 
direct sums of irreducible modules,

A=
⊕
α

A[α] , B =
⊕
β

B[β] , C =
⊕
γ

C[γ ] ,

with the sums including multiplicities. Let QD[δ] denote the projector which maps the mod-
ule D = {A, B, C} into the irreducible component δ = {α, β, γ }, e.g., QA[α]A = A[α]. If Y
is an intertwiner of type 

(
C
A B

)
, then each expression QC[γ ]Y(QA[α]·, z)QB[β] is an inter-

twiner between irreducible modules and hence the previous discussion applies to the modes 
QC[γ ]y(QA[α]·)mQB[β]. But since Y(·, z) = ∑

α,β,γ QC[γ ]Y(QA[α]·, z)QB[β], we find that

y(a)τ,mBn ⊂ Cn−m (42)

holds for general modules as well.
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Intertwiners between unitary modules As our discussion focuses on unitary modules, inter-
twiners between those deserve special attention. Equipped with positive definite Hermitian form, 
unitary modules are Hilbert spaces, and intertwiners are thus maps between different Hilbert 
spaces. A frequently used operation on operators is the adjoint, and hence the question arises 
whether the adjoint of an intertwiner is again an intertwiner. The next lemma is the first step in 
providing a positive answer.

Lemma 2.1. Let A, B, C be three unitary modules of a VOA, and denote by ηA, ηB, ηC the 
corresponding anti-linear automorphisms. Let Y be an intertwiner of type 

(
C
A B

)
, and define

Ȳ(a, z)b= ηC(Y(ηA(a), z)ηB(b))
for all a ∈A, b ∈ B and c ∈C. Then Ȳ is an intertwiner of type 

(
C
A B

)
.

Proof. We first check the translation property of Ȳ . For this purpose, note that ηA(L−1a) =
L−1ηA(a) since the involution φ leaves the Virasoro vector invariant, φ(ω) = ω. This implies 
that

Ȳ(L−1a, z)= ηC ◦Y(ηA(L−1a), z) ◦ ηB
= ηC ◦Y(L−1ηA(a), z) ◦ ηB
= ηC ◦ d

dz
Y(ηA(a), z) ◦ ηB

= d

dz
ηC ◦Y(ηA(a), z) ◦ ηB

= d

dz
Ȳ(a, z)

since z is a formal variable and differentiation is defined as an operation on the formal Laurent 
series. Finally, we have to check the Jacobi identity (39) for Ȳ ,

Resz1−z2

(
Ȳ(YA(v, z1 − z2)a, z2)(z1 − z2)

mιz2,z1−z2((z1 − z2)+ z2)
n)
) = (43)

Resz1

(
YC(v, z1)Ȳ(a, z2)ιz1,z2(z1 − z2)

mzn1
)−

Resz1

(
Ȳ(a, z2)YB(v, z1)ιz2,z1(z1 − z2)

mzn1
)
.

But for z= z1 − z2 we have

Ȳ(YA(v, z)a, z2)= ηC ◦Y(ηA(YA(v, z)a), z2) ◦ ηB
= ηC ◦Y(YA(φ(v), z)ϕA(a), z2) ◦ ηB .

Similarly, we find

YC(v, z1)Y(a, z2)= YC(v, z1)ηC ◦Y(ηA(a), z2) ◦ ηB
= ηC ◦ YC(φ(v), z1)Y(ηA(a), z2) ◦ ηB ,

as well as

Ȳ(a, z2)YB(v, z1)= ηC ◦Y(ηA(a), z2) ◦ ηB ◦ YB(v, z1)

= ηC ◦Y(ηA(a), z2) ◦ YB(φ(v), z1) ◦ ηB .
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Applying both sides to b ∈ B , we conclude that (43) is just the Jacobi identity (39) evaluated at 
v̄ = η(v), ā = ηA(a), b= ηB(b), and ηC applied from the left. �

The following lemma gives an expression for the adjoint operator of an intertwiner.

Lemma 2.2. Let A, B, C be as in Lemma 2.1 and let Y be an intertwiner of type 
(
C
A B

)
. Then 

there is an intertwiner Y1 of type 
(
B
A C

)
such that

〈Y(a, z)b, c〉 = 〈b,Y1(e
zL1(−z−2)L0ηA(a), z

−1)c〉
for all a ∈A, b ∈ B and c ∈ C.

Proof. The proof uses similar reasoning as the proof of (34). Let (·, ·)B , (·, ·)C , be the invariant 
bilinear forms defined by ηB and ηC , respectively (cf. (33)). Because of the invariance property, 
we can apply [32, Corollary 5.5.3], which states that there is an intertwiner Ỹ of type 

(
B
A C

)
such 

that

(c,Y(a, z)b)C =
(
Ỹ(ezL1(−z−2)L0a, z−1)c, b

)
B
.

Hence we find that

〈Y(a, z)b, c〉 = 〈c,Y(a, z)b〉
= ((ηC(c),Y(a, z)b)C
=

(
Ỹ(ezL1(−z−2)L0a, z−1)ηC(c), b

)
B

= 〈ηB ◦ Ỹ(ezL1(−z−2)L0a, z−1)ηC(c), b〉
= 〈b,ηB ◦ Ỹ(ezL1(−z−2)L0a, z−1)ηC(c)〉.

By Lemma 2.1,

Y1(a, z)c= ηB ◦ Ỹ(ηA(a), z)ηC(c)
defines an intertwiner of type 

(
C
A B

)
. The claim then follows since

ηB ◦ Ỹ(ezL1(−z−2)L0a, z−1)ηC(c)= Y1(ηA(e
zL1(−z−2)L0a), z−1)c

and ηA(Lna) = LnηA(a). �
Example 4 (WZW intertwiners). As all irreducible modules of the VOA Lk,0 are derived from 
irreducible highest weight modules of the Lie algebra g, it is sufficient to consider intertwiners 
between three of these modules. Let us fix three weights λ1, λ2, λ3, and consider the corre-
sponding irreducible highest weight g-modules Lλ1 , Lλ2, Lλ3 , as well as the derived irreducible 
modules Lk,λ1 , Lk,λ2, Lk,λ3 of the VOA Lk,0.

We now consider intertwiners between these three modules. Given that all objects of the VOA 
are derived from the corresponding objects of the Lie algebra g (with additional constraints 
coming from the level k), it is not surprising that intertwiners can similarly be defined in terms 
of corresponding objects associated with g. As shown by Frenkel and Zhu [52], any intertwiner 
between three irreducible modules of the VOA Lk,0 is determined by an intertwiner between the 
three corresponding irreducible g-modules, again with an additional assumption involving the 
level k (see [52, Corollary 3.2.1] as well as [61] for a more analytic approach in the case of 
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g = sl(2, C)). An application of Zhu’s theory [36,52] provides a procedure for reconstructing an 
intertwiner of the VOA Lk,0 from such a Lie algebra intertwiner. We provide an explanation of 
that argument in terms of an implementable algorithm in Appendix B.

Conversely, given an intertwiner Y of type 
( Lk,λ1

Lk,λ3 Lk,λ2

)
for modules of the VOA Lk,0, we can 

obtain the associated g-module intertwiner as follows: if we choose to evaluate Eq. (40) for the 
zero modes of the module operators and the intertwiner operator, we find that

ay(ϕ3)τ,0ϕ2 = y(aϕ3)τ,0ϕ2 + y(ϕ3)τ,0aϕ2 , (44)

for ϕ2 ∈ Lk,λ2(0), ϕ3 ∈ Lk,λ3(0), where τ = hλ3 + hλ2 − hλ1 . Here, a ∈ g is identified with its 
image in the corresponding irreducible representation of g. This implies that the operator y(·)τ,0
restricted to the top levels of the modules Lk,λi , i = 1, 2, 3 is an intertwiner from the tensor 
product g-module defined by the weights λ2, λ3 to the irreducible g-module corresponding to 
the weight λ1. This follows since the top levels are irreducible g-modules. We refer to Proposi-
tion 5.14 below for more details.

3. Correlation functions via transfer operators

Having introduced the necessary terminology, we continue to argue that correlation functions 
can be expressed exactly in term of an MPS. This is the central point of this section; it is also the 
basis for the finite-dimensional approximations discussed in Section 5.

3.1. Correlation functions for modules and intertwiners

Up to this point, variables denoted by z or similar were interpreted as formal variables, and 
expressions involving powers in it as formal Laurent series. All identities held term-by-term in 
different powers of z (or z−1), but no statement concerning convergence were made. In order to 
make contact with physical quantities, more precisely correlation functions, the formal Laurent 
series expansions have to be evaluated to yield finite numbers. That is, the Laurent series are 
reinterpreted as sums of operators with complex coefficients (after substituting complex numbers 
for the indeterminates), and these sums need to be shown to converge.

Matrix elements of products of vertex operators, or more generally module operators and in-
tertwiners, thus become functions on the Riemann sphere. These can be shown to satisfy physical 
axioms of CFT correlation functions (e.g., modular invariance on the torus). Conversely, VOAs 
may be constructed from correlation functions, see [67]. In the following, we briefly sketch the 
general theory, then focus on the special case of equidistant points.

Recall the pairing (·, ·) between the restricted dual space V ′ and V . For a VOA V , the genus-
zero n-point (vacuum-to-vacuum) correlation function is defined as

F
(0)
V ((v1, z1), . . . , (vn, zn))=

(
1′,Y(v1, z1) · · ·Y(vn, zn)1

)
.

(More generally, one considers general matrix elements by substituting arbitrary elements for 
1′ ∈ V ′ and 1 ∈ V .) It can be shown that this expression is the series expansion of a rational func-
tion f (z1, . . . , zn), converging on a suitable subdomain of C (see [32, Proposition 3.5.1]). Again, 
the formal variables z1, . . . , zn are to be interpreted as complex numbers. For vacuum-to-vacuum 
correlation functions, the function f (z1, . . . , zn) takes the form

f (z1, . . . , zn)= g(z1, . . . , zn)∏
j<k(zj − zk)sjk ,
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for a polynomial g(z1, . . . , zn). Similarly, we can define the genus-one n-point functions by

F
(1)
p,V ((v1, z1), . . . , (vn, zn))= TrV

(
Y(zL0

1 v1, z1) · · ·Y(zL0
n vn, zn)p

L0−c/24
)

Here 0 < p < 1 is the ‘diameter’ of the torus, and the trace is calculated on each finite-
dimensional level and hence is well-defined. The introduction of the factors zL0

j in the arguments 
is a convention.

In his seminal work [36], Zhu identified sufficient conditions for the existence of genus-1-cor-
relation functions: assuming rationality and C2-cofiniteness of the VOA, the function F (1)p,V
converges on the domain (see [36, Section 4.1])

1> |z1|> · · ·> |zn|> p , (45)

and can be continued to an analytical function, possibly with poles at zi = 1, zi = zj , zi = 0. 
This gives n-point correlation functions on the torus C\{0}/z∼ {zpk} regarded as the punctured 
plane C\{0} modulo the relations

z= zpk for k ∈ Z . (46)

The latter reasoning was extended to the case of intertwiners by Huang [34,68]. For the 
genus-0-case, consider V-modules A(i), B(i), i = 1, . . . , n, B(0), and intertwiners Yi of type (
B(i−1)

A(i) B(i)

)
. For any (v(0))′ ∈ (B(0))′, v(n) ∈ B(n), the genus-0 correlation function F (0)

(v(0))′,v(n) =
F
(0)
Y1,...,Yn,(v(0))′,v(n) is defined by

F
(0)
(v(0))′,v(n) ((a1, z1), . . . , (an, zn))=

(
(v(0))′,Y1(a1, z1) · · ·Yn(an, zn)v(n)

)
for all ai ∈ A(i), i = 1, . . . , n, where (·, ·) is the canonical pairing between the restricted dual 
space (B(0))′ and B(0). For unitary modules, this pairing can be written in terms of the scalar 
product, as discussed (cf. (32)). We then write

F
(0)
v(0),v(n)

((a1, z1), . . . , (an, zn))= 〈v(0),Y1(a1, z1) · · ·Yn(an, zn)v(n)〉 (47)

for the corresponding correlation function, where now v(0) ∈ B(0). Huang [34,68] has shown that 
the corresponding series is absolutely convergent in the domain

|z1|> |z2|> · · ·> |zn| . (48)

Despite this general result, if we speak about genus-0 correlation functions in the following, 
we are always considering the special case where B(0) = B(n) = V , the adjoint module, and 
v(0) = v(n) = 1, the vacuum element.

Similarly, for V-modules A(i) and B(i), i = 1, . . . , n with B(0) = B(n) and intertwiners Yi of 
type 

(
B(i−1)

A(i) B(i)

)
, we can define the genus-1 correlation function F (1)p := F (1)p,Y1,...,Yn by

F (1)p ((a1, z1), . . . , (an, zn))= TrB(n)
(
Y1(z

L0
1 a1, z1) · · ·Yn(zL0

n an, zn)p
L0−c/24

)
(49)

for all ai ∈Ai . Huang [34,68] showed that (49) (respectively a certain geometrically transformed 
version thereof, see [68, Remark 3.5]) gives an absolutely convergent power series on the do-
main (45). His results apply to rational, C2-co-finite VOAs of CFT-type. The genus-1-partition 
function without insertions,

ZB(p)= TrB(p
L0−c/24) (50)
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is the character of the module B . It converges for 0 < p < 1 (see e.g., [63]) for the VOAs 
and modules considered here. Expression (50) appears below as a multiplicative factor in our 
accuracy estimate for approximations to correlation functions on the torus.

We deliberately choose the same letter z for the formal variable and the corresponding com-
plex number, in order to emphasize the similarity and to make the connection between the formal 
language of VOAs and physical quantities clear. However, we stress that the interpretation in 
terms of complex numbers only makes sense in terms of correlation functions, as it always in-
volves a statement about convergence. In what follows, a variable z appearing in an expression 
involving only intertwining operators, which are not evaluated to give a number of physical 
significance, is interpreted as formal indeterminate. If it appears in a quantity of physical signif-
icance, such as a correlation function, it denotes a complex number which can be freely chosen 
within its domain of definition.

3.2. Invariance properties of correlation functions of primary fields

It follows from the commutators (20)–(21) and the corresponding exponentiated versions that 
the correlation functions inherit the invariance properties with respect to global conformal trans-
formations. If the vector v is primary, i.e., if Virasoro operators with positive index map it to 
zero, Lnv = 0, n > 0, the relations (20)–(21) generalize to higher order Virasoro elements,

[Ln,Y(v, z)] = zn+1∂zY(v, z)+ (wt v) (n+ 1) znY(v, z) .

These relations generalize to module operators and also intertwiners [32], if we again define 
primary elements in a module A to be vectors a ∈A such that Lna = 0, n > 0,

[Ln,Y(a, z)] = zn+1∂zY(a, z)+ (wt a) (n+ 1) znY(a, z) .

A basic assumption of CFT is that this infinitesimal symmetry lifts to a local action which 
gives rise to a change of variables. More precisely, the genus-0 and genus-1 correlation func-
tions of intertwiners evaluated at homogeneous primary vectors a1, . . . , an should be, up to an 
overall factor depending on the transformation as well as the conformal weight, invariant under 
conformal mappings. That is, for a conformal map z �→w(z) we have

F((a1,w(z1)), . . . , (an,w(zn)))=
n∏
i

(
dw

dz

∣∣∣∣
z=zi

)−wt ai

F ((a1, z1), . . . , (an, zn)) ,

where F = F (0) or F = F (1). Here, we use the terms conformal and holomorphic interchange-
ably – meaning a mapping specified by a holomorphic function.

We proceed to consider correlation functions evaluated on a set of n complex coordinates 
ζ1, . . . , ζn on the complex plane, with constant imaginary part, Im(ζj ) = Im(ζj ′) = θ , for all 
j, j ′ = 1, . . . , n and equally spaced real part, Re(ζj ) = jd + d0. Here, d0 ≥ 0, d > 0 are positive 
real numbers, the first one possibly being zero. We call such a set of points equally spaced on 
a line, d0 the offset, and d the minimal distance between the insertion points. The configuration 
of points is illustrated in Fig. 1. Applying the conformal invariance property to the conformal 
transformation

z �→w(z) := e−z = e−xe−iy , z= x + iy , x, y ∈ R ,

leads to the following reparametrization of correlation functions with insertion points given by 
the coordinates ζ1, . . . , ζn, since ζ ′ :=w(ζj ) = zqj , for 0 < q = e−d < 1, z= e−d0eiθ .
j
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Fig. 1. Configuration of insertion points on the plane before applying the conformal mapping. All points have a fixed 
imaginary part and equispaced real parts.

Observation 3.1. Let A(1), . . . , A(n), B(0), . . . , B(n) be unitary modules of a VOA V , with 
B(0) = B(n) = V , the adjoint module. Assume that S(j) ⊂ A(j) is a finite-dimensional linear 
subspace of primary vectors, aj ∈ S(j) are homogeneous vectors therein and Y1, . . . , Yn is a 

set of intertwiners, where Yj is of type 
(
B(j−1)

A(j) B(j)

)
. Consider n equally spaced points on a line 

ζ1, . . . , ζn with offset d0 and minimal distance d. Then the corresponding vacuum-to-vacuum 
correlation function can be written as (cf. Eq. (47))

F (0)((a1, ζ1), . . . , (an, ζn))= (−z)
∑
j wt aj q

∑
j jwt aj 〈1,Y1(a1, ζ

′
1) · · ·Yn(an, ζ ′

n)1〉 ,
for all aj ∈ Sj with the identifications ζ ′

j = zqj and 0 < q = e−d < 1, z= e−d0eiθ .

This shows that we need to consider correlation functions defined at powers of a positive vari-
able, which can be chosen to be smaller than one. This is a key technical step in our discussion: 
it allows us to construct operators out of intertwiners, which are bounded in norm. This in turn is 
a necessary step in our approximation argument, and the error bound also depends on this norm.

Given this preview we clearly want a similar statement for torus correlation functions. Recall 
that we parametrized the torus as the punctured plane modulo the relations z = zpk , k ∈ Z, p
being the diameter of the torus. The conformal mapping defined by the principal branch of the 
complex logarithm z �→ log z then maps the torus to the twice periodic strip (or patch)

Tp =C/ (log(1/p)Z+ 2πiZ) ,

which is periodic both in the real as well as in the imaginary part. Again starting from a set of 
equally spaced insertion points ζ1, . . . , ζn, ζj = d0 + log(1/p) − dj + iθ on a line, now assumed 
to lie within Tp, we see that they are the image of points zqj under the complex logarithm, 
z = ed0eiθ , q = e−d. This configuration of points is illustrated in Fig. 2. The requirement that 
all points ζj do not lie on the boundary of Tp translates into a non-zero offset 0 < d0 < d, 
hence q < 1/|z| < 1, as well as p ≤ qn. Applying again the conformal invariance of correlation 
functions leads to the following genus-1 version of Observation 3.1.

Observation 3.2. Let A(1), . . . , A(n), B(0), . . . , B(n) be unitary modules of a vertex operator al-
gebra V , with B(0) = B(n). Assume that S(j) ⊂ A(j) is a finite-dimensional linear subspace of 
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Fig. 2. (a) Configuration of insertions on C, p = q5 < zq5 < zq4 < · · ·< zq < 1, with the choice n = 5 for illustration. 
(b) The image of (a) under the principal branch of the complex logarithm. Note that because the strip is periodic with 
period log(1/p), we can first take the logarithm and then translate the whole image by − log(1/p) = −nd, the result of 
which is illustrated here.

primary vectors, aj ∈ S(j) are homogeneous elements and Y1, . . . , Yn is set of intertwiners, 

where Yj is of type 
(
B(j−1)

A(j) B(j)

)
. Choose n equispaced points ζ1, . . . , ζn within the periodic strip 

of height 2π and length log(1/p) as illustrated in Fig. 2b. The corresponding correlation function 
with insertions as these points is given by the torus correlation function

F (1)p ((a1, zq), . . . , (an, zq
n))

= z
∑
j wt aj q

∑
j jwt aj TrB(n)

(
Y1(a1, ζ

′
1) · · ·Yn(an, ζ ′

n)p
L0−c/24

)
for all aj ∈ Sj under the identifications ζ ′

j = zqj and z= ed0+iθ , |z| > 1, q = e−d < 1.

We see that in the genus-0 case, the parameter z can be chosen to be of modulus one, while in 
the genus-1 case, its modulus always has to be greater than one. In the following, the parameter z
appearing in the correlation functions is to be interpreted as characterizing the offset as well as the 
imaginary part of points on the line, as described in the previous observations. However, in view 
of the fact that correlation functions of VOAs are determined by setting a formal variable to some 
complex number, it is natural to consider the variable z in the expression Y(a, ζj ) = Y(a, zqj )
first as a formal variable, which is then set to a complex number if the intertwiner is evaluated 
within a correlation function.

In order to motivate our further considerations, let us examine more closely the case of two-
point correlation functions, that is, expressions involving two intertwiners. We note that due to the 
covariance property of intertwiners with respect to dilations we have for primary vectors a1, a2,

qwt a1q2wt a2Y(a1, ζ
′
1)Y(a2, ζ

′
2)= qwt a1q2wt a2Y(a1, zq)Y(a2, zq

2)

= qL0Y(a1, z)q
−L0q2L0Y(a2, z)q

−2L0

= qL0/2 qL0/2Y(a1, z)q
L0/2qL0/2Y(a2, z)q

L0/2q−5/2L0 .
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However, the last power of the grading operator L0 vanishes if applied to the vacuum, or can be 
absorbed with the power appearing in the expression of the torus correlation functions. We hence 
see that the formal operator qL0/2Y(a, z)qL0/2 can be used to build up the correlation functions of 
interest. Moreover, we are mainly concerned with the situation where a lies in a linear subspace 
consisting of primary vectors. These considerations motivate the following definition.

Definition 3.3 (Scaled intertwiner). Let V be a VOA, A, B, C unitary modules of V , S ⊂ A a 
linear subspace, Y a intertwiner operator of type 

(
C
A B

)
. For 0 < q < 1, we define the q-scaled 

intertwiner Wq of type 
(
C
A B

)
,

Wq(·, z) : S → End(B,C){{z, z−1}}
a �→ Wq(a, z)

by

Wq(a, z)b := qL0/2Y(qL0/2 a, z)qL0/2b (51)

for b ∈ B .

In the following, we often omit the exact dependence of W on q or the subspace S ⊂ A with 
the understanding that, whenever we write W, such a subspace S exists. In our applications, this 
subspace is a proper one. However, for most intermediate results this is not necessary, and S can 
be equal to the whole of A. The expression W is defined for this S and any 0 < q < 1 as above. 
Scaled intertwiners with different scaling parameters q1, q2 are related to each other as follows: 
for all a ∈ S and b ∈ B , we have

Wq(a, z)= qL0/2
1 Wq2(q

L0/2
1 a, z)q

L0/2
1 where q = q1q2 (52)

since

Wq1q2(a, z)= qL0/2
1 q

L0/2
2 Y(qL0/2

2 q
L0/2
1 a, z)q

L0/2
2 q

L0/2
1

= qL0/2
1 Wq2(q

L0/2
1 a, z)q

L0/2
1

We see that scaling the original intertwiner makes its properties much nicer – this will also be 
the key ingredient for our approximation result. As discussed, the composition of scaled inter-
twiners can be used to express correlation functions. The next definition and the following results 
make this intuitive statement clear.

3.3. Reconstruction of correlation functions

With the definition of a scaled intertwiner at hand, we can show that genus-0 and genus-1 cor-
relation functions are reproduced exactly. For this purpose, we will introduce a certain operator T
which we call the (formal) transfer operator, adopting the language used for MPS. Again, we 
emphasize that variables zj appearing in expressions involving intertwiners are to be interpreted 
as formal variables, which become complex valued only in the context of correlation functions.

Definition 3.4 (Formal transfer operators). Let A(i), i = 1, . . . , n and B(i), i = 0, . . . , n be uni-
tary modules of a VOA V . For i = 1, . . . , n, let Yi be a unitary intertwiner of type 

(
B(i−1)

A(i) B(i)

)
, 

S(i) ⊂A(i) a subspace, and let
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Wi = Wi,q(·, z) : S(i) → End(B(i),B(i−1)){{z, z−1}}
be the associated scaled intertwiner for some 0 < q < 1. For ai ∈ S(i), i = 1, . . . , n, we define 
the formal transfer operator T ∈ End(B(n),B(0)){{z1, z

−1
1 , . . . , zn, z

−1
n }} by

T = W1(a1, z1) ◦ W2(a2, z2) ◦ · · · ◦ Wn(an, zn). (53)

We call this the transfer operator with insertions {ai}ni=1.

For the genus-1-case, we will consider periodic boundary conditions, where B(0) = B(n) = B , 
such that the transfer operator is simply T ∈ End(B){{z1, z

−1
1 , . . . , zn, z

−1
n }}. We will also occa-

sionally specialize to translation-invariant systems, which are particularly natural for MPS: here 
A(i) = A, S(i) = S, B(i) = B(0) = B , Yi = Y for i = 1, . . . , n are all identical. We will argue 
below that the transfer operator encodes n-point correlation functions (both on the plane and the 
torus) for equidistant insertion points {ζj }nj=1 as expressed in Observations 3.1 and 3.2. The pa-
rameter z, which is chosen to be the same for each intertwiner, will determine the ‘offset’ of the 
sequence of insertions.

Lemma 3.5. Let T be a formal transfer operator with insertions {ai}ni=1 and parameter q as in 
Definition 3.4. Then we have

T = q−L0/2
(
Y1(â1, z1q)Y2(â2, z2q

2) · · ·Yn(ân, znqn)
)
q(n+1/2)L0 , (54)

as an identity for formal series in End(B(n),B(0)){{z1, z
−1
1 , . . . , zn, z

−1
n }}, where

âj = q(j+1/2)L0aj . (55)

Proof. The formal transfer operator T is defined recursively by T = T1, where

Tn(b)= Wn(an)b

Tk(b)= Wk(ak)Tk+1(b) for k = n− 1, . . . ,1

for b ∈ B . To show (54) we first argue that for every k = 1, . . . , n − 1, we have the relation

q(k−1/2)L0 Tk(b)= Yk(âk, zkqk)q((k+1)−1/2)L0 Tk+1(b) . (56)

Indeed, this follows from

q(k−1/2)L0 Tk(b)= q(k−1/2)L0Wk(ak) ◦ Tk+1(b)

= q(k−1/2)L0qL0/2Yk(qL0/2ak, z)q
L0/2Tk+1(b)

= qkL0Yk(qL0/2ak, z)q
−kL0q(k+1/2)L0 Tk+1(b)

= Yk(q(k+1/2)L0ak, q
kz)q(k+1/2)L0 Tk+1(b) ,

where we used the dilation property (18) applied to intertwiners in the last step. For later use, we 
also point out that the same reasoning gives

q(n−1/2)L0 Tn(q
−nL0b)= Yn(ân, znqn)qL0/2b . (57)

Applying (56) inductively gives

qL0/2T1(b)= Y1(â1, z1q)Y2(â2, z2q
2) · · ·Yn−1(ân−1, zn−1q

n−1)q(n−1/2)L0 Tn(b)

and combining this with (57), we conclude that
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qL0/2T1(q
−nL0b)= Y1(â1, z1q)Y2(â2, z2q

2) · · ·Yn(ân, znqn)qL0/2b for all b ∈ B .
This implies

T1 = q−L0/2qL0/2T1q
−nL0qnL0

= q−L0/2
(
Y1(â1, z1q)Y2(â2, z2q

2) · · ·Yn(ân, znqn)
)
q(n+1/2)L0

which is the claim (54). �
We stress again that the previous identity is defined in terms of equality of power series. 

Taking matrix elements and replacing the indeterminates by complex numbers then gives rise 
to correlation functions, if the series converges for the given choice of complex variables. In 
the following, we will choose all variables equal to a single complex number z, as motivated by 
Observations 3.1 and 3.2. In the genus-1 case, the modulus of this number z has to be bigger than 
one. With this choice, an immediate consequence of Lemma 3.5 is the fact that transfer operators 
encode correlation functions in the following sense.

Corollary 3.6 (Exact reproduction of genus-0 correlation functions). Let T : B(n) → B(0) be a 
transfer operator as in Definition 3.4 with homogeneous insertions {ai}ni=1, parameter 0 < q < 1
and the indeterminates {zj }nj=1 replaced by a complex number z ∈ C \ {0}. Let v(0) ∈ B(0) and 

v(n) ∈ B(n) be homogeneous elements. Then

〈v(0),Tv(n)〉B(0) = q(n+1/2)(wt v(n))+(wt v(0))/2+∑n
j=1 j wt aj · F (0)

v(0),v(n)
((ã1, ζ

′
1), . . . , (ãn, ζ

′
n)) ,

where F (0)
v(0),v(n)

is the genus-0 correlation function (cf. (47)), and

ãj = qL0/2aj and ζ ′
j = zqj for j = 1, . . . , n . (58)

Moreover, the sequence of points (ζ ′
1, . . . , ζ

′
n) belongs to the domain (48).

Proof. According to (54), the expression 〈v(0), Tv(n)〉 has the form

〈v(0),Tv(n)〉B(0) =
= 〈v(0), q−L0/2

(
Y1(q

(1+1/2)L0a1, zq) · · ·Yn(q(n+1/2)L0an, zq
n)
)
q(n+1/2)L0v(n)〉B(0)

= 〈qL0/2v(0),
(
Y1(q

(1+1/2)L0a1, zq) · · ·Yn(q(n+1/2)L0an, zq
n)
)
q(n+1/2)L0v(n)〉B(0)

= q(n+1/2)(wt v(n))+(wt v(0))/2+∑n
j=1 j wt aj · 〈v(0),Y1(q

L0/2a1, zq) · · ·
Yn(qL0/2an, zq

n)v(n)〉 ,
where we used the definition of âj and the insertion points zj , the fact that L0 is self-adjoint 
with respect to 〈·, ·〉B(0) , as well as the assumption that all the vectors {ai}ni=1 and v(0), v(n) are 
homogeneous. Since we have 0 < q < 1, it follows that |zq| > |zq2| > . . . > |zqn| > 0 and hence 
any matrix element of the transfer operator is a well-defined absolutely convergent power series 
(see Sect. 3.1). �

Similarly, we obtain genus-1-correlation functions by taking the trace of the formal transfer 
operator T and again interpreting the formal variables as complex numbers.
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Corollary 3.7 (Exact reproduction of genus-1 correlation functions). Assume periodic boundary 
conditions, i.e., B(0) = B(n) = B , and let T : B → B be a transfer operator with insertions 
{ai}ni=1 as in Definition 3.4 and indeterminates replaced by a complex number z, with |z| > 1
and 0 < q < 1/|z|2. Then for any 0 < r ≤ 1, the value TrBTrL0 is related to the genus-one 
correlation function F (1)p = F (1)p,Y1,...,Yn (Eq. (49)) by

TrBTrL0 = pc/24F (1)p

(
(ã1, ζ

′
1), . . . , (ãn, ζ

′
n)
)

(59)

where

ãj = qL0/2aj and ζ ′
j = zqj for j = 1, . . . , n ,p = rqn . (60)

In particular, under the identification (46), the points {zj }nj=1 are equidistant along one funda-
mental cycle of a torus of diameter p = qn. The sequence of points (ζ ′

1, . . . , ζ
′
n, p) belongs to the 

domain (45), as can easily be verified.

The parameter r is introduced here may appear somewhat arbitrary at this point: indeed, set-
ting r = 1, we recover the configuration (83) of equidistant insertions on the torus. However, it 
will have the effect of “regularizing” the expression when we consider truncated intertwiners in 
the next section.

Proof. Clearly, the points (z1, . . . , zn, p) lie in the domain (45), hence the rhs. of (59) is well-
defined. The claim follows by taking the trace of the product TrL0 using expression (54). �
3.4. Proof strategy

In Section 3.3, we showed that correlation functions of interest can be expressed in terms of a 
transfer operator T. This object is itself a composition of scaled intertwiners W. The scaling will 
be essential for us, as it ensures that W is a bounded operator with respect to the operator norm 
induced by the scalar product, for finite-dimensional subspaces S ⊂ A. That is, for a ∈ S ⊂ A, 
we will have

‖Wq(a, z)‖ ≤ ϑ(q, z)‖a‖A ,
for some function ϑ(q, z), bounded for the parameter regime in (q, z) we are interested in. Here, 
‖a‖A denotes the norm in the unitary module A inherited from the scalar product, and analo-
gously,

‖Wq(a, z)‖ = sup{ |〈c,Wq(a, z)b〉| : c ∈C , ‖c‖C ≤ 1 , b ∈ B , ‖b‖B ≤ 1 }
denotes the operator norm of the linear and densely defined mapping Wq(a, z). Of course, this 
statement only makes sense if the formal variable z is replaced by a complex number. This will 
be the case throughout the next section if norm expression are present. We will choose the same 
complex number for all scaled intertwiners, although other choices are in principle possible. The 
complex parameter z is always assumed to be non-zero, and to be bigger than one if appearing in 
genus-1 expressions. Applying the fact that scaled intertwiners have bounded norms recursively 
leads to a norm bound for T.

Section 5 starts with the observation that as a first step towards our approximation statement, 
we have to ensure that the image of a finite-dimensional subspace under the action of a scaled 
intertwiner is again contained in a fixed finite-dimensional space. However, this is not the case, 



64 R. König, V.B. Scholz / Nuclear Physics B 920 (2017) 32–121
since an intertwiner consists of terms allowing for arbitrary changes of the weight. The natural 
idea here is to truncate the Hilbert space with respect to the weight decomposition. This moti-
vates the definition of a scaled truncated intertwiner W[N ]

q , where N ∈ N denotes the truncation 
parameter. This object will have the feature of changing the weight of a vector by at most N . The 
obvious question is how it compares to its original version, and we show that it fulfills

‖Wq(a, z)− W[N ]
q (a, z)‖ ≤ ‖a‖A err(q, z)qN/4 ,

where err(q, z) is a function independent of the truncation parameter N , and the statement is 
again with respect to the operator norm. This shows that for large enough N , we can safely re-
place Wq by its truncated version W[N ]

q . Applying this argument recursively leads to an equivalent 
statement for the transfer operator T.

In a last step, we have to ensure that we only have to apply the truncated transfer operator – 
obtained by replacing the scaled intertwiners in its definition by their truncated versions – to fixed 
finite-dimensional subspaces, so that the image is again a fixed finite-dimensional space which 
then can be chosen as the bond Hilbert space. In the case of genus-0 vacuum-to-vacuum corre-
lation functions, this is immediate, since the transfer operators is applied to a fixed vector, the 
vacuum. In the genus-1 case, however, we also need to truncate the trace. After this is achieved, 
all expressions can be converted to an MPS picture. As in previous sections, we illustrate our 
findings with WZW models.

4. Bounded intertwiners

As explained in Section 3.4, we will argue that a scaled intertwiner defines a bounded operator 
if the formal variable is replaced by a non-zero complex number. We start with a motivating 
example, which shows that a special kind of intertwiner for WZW models is bounded, namely 
module operators. Although we will not use this fact later, the proof idea as well as the result 
serves as an illustration for the following arguments.

4.1. Motivation: energy bounds for WZW models

Consider the WZW-type VOA Lk,0 and let us fix some a ∈ g ⊂ Lk,0. Recall that elements of 
the Lie algebra g ∼= g ⊗ t−1 are identified with vectors of the first level of Lk,0 (see Eq. (24)).

Now consider the construction of the module Lk,λ for WZW-type VOAs Lk,0 as explained 
in Example 2, and the (module) mode operators a(n) associated with a. These are defined 
by YLk,λ (a, z) =

∑
n∈Z a(n)z−n−1 – here we slightly abuse notation by using the same letter. 

From the construction of the module, the mode operators {a(n)}n∈Z also satisfy the commutator 
rule (23). By the results in [69] (see also [50]), this implies that the mode operators a(n) associ-
ated with the unitary modules Lk,λ of the vertex operator algebra Lk,0 in question satisfy linear 
energy bounds. That is, the operators a(n), a ∈ g satisfy the bound

‖a(n)χ‖Lk,λ ≤ c · (η̂(a),a) 1
2 |n+ 1| · ‖(L0 + I)χ‖Lk,λ (61)

for any χ ∈ Lk,λ, where c > 0. This implies various continuity statements, for example that the 
scaled module vertex operator for a ∈ g and z ∈C

qL0/2Y(a, z)qL0/2

is bounded (and – more fundamentally, the sum defining it converges in the norm topology).
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Proof. We can decompose an arbitrary element χ ∈ Lk,λ into weight spaces as

χ =
∑
m∈N0

cmχm where cm ∈C and χm ∈ Lk,λ(m) .

Without loss of generality, we may assume that ‖χm‖Lk,λ = 1 for all m ∈ N0. This implies that 
‖χ‖Lk,λ = (∑m |cm|2)1/2. In particular, of any operator O on the module Lk,λ and any χ ∈ Lk,λ, 
we get by the Cauchy–Schwarz inequality

‖Oχ‖Lk,λ ≤
∑
m

|cm| · ‖χm‖Lk,λ ≤ ‖χ‖Lk,λ ·
(∑
m

‖Oχm‖2

)1/2

.

In particular, this implies that the operator norm of O is bounded by

‖O‖2 ≤
∑
m∈N0

sup
χ∈Lk,λ(m)
‖χ‖Lk,λ≤1

‖Oχ‖2 . (62)

We now apply this to bound the operator norm of the scaled intertwinerO = qL0/2Y(a, z)qL0/2. 
Observe that for χ ∈ Lk,λ(m), we have

qL0/2Y(a, z)qL0/2χ = q(hλ+m)/2qL0/2Y(a, z)χ

= q(hλ+m)/2qL0/2
∑
n∈Z

a(n)z−n−1χ

= qhλ+m
∑

n∈Z,n≤m
q−n/2z−n−1a(n)χ

where we used the fact that for χ ∈ Lk,λ(m), we have

a(n)χ

{
∈ Lk,λ(m− n) for n≤m and

0 otherwise.
(63)

In particular, these vectors are orthogonal, and we get

‖qL0/2Y(a, z)qL0/2χ‖2
Lk,λ

= q2(hλ+m) ∑
n∈Z,n≤m

q−n|z|−2n−2‖a(n)χ‖2
Lk,λ for χ ∈ Lk,λ(m) .

Hence we obtain the operator norm bound (cf. (62))

‖qL0/2Y(a, z)qL0/2‖2 ≤ q2hλ
∑
m∈N0

q2m sup
χ∈Lk,λ(m)
‖χ‖Lk,λ≤1

∑
n∈Z,n≤m

q−n|z|−2n−2‖a(n)χ‖2
Lk,λ

≤ q2hλ
∑
m∈N0

∑
n∈Z,n≤m

q2m−n|z|−2n−2c · (η̂(a),a) |n+ 1|2|m+ hλ + 1|2

where we inserted the energy bound (61). These sums can be bounded, yielding

‖qL0/2Y(a, z)qL0/2‖ ≤ ‖a‖Lk,λ ϑ(q, z)

where ϑ(q, z) is finite as long as 0 < q <min{|z|2, |z|−2}4 and where we used that (η̂(a), a) =
〈a(−1)1, a(−1)1〉Lk,λ = ‖a‖2

Lk,λ
. �

4 Evaluating the sums we arrive at
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The conclusion that scaled module vertex operators are bounded can in fact be extended to 
general elements v ∈ Lk,0 (instead of merely a ∈ g). This can be shown by identical arguments 
starting from energy bounds on the modes of the module operator Y(v, z). The latter have the 
form

‖y(v)nχ‖Lk,λ ≤ Cv|n+ 1|rv‖(L0 + I)svχ‖Lk,λ ,

where Cv, rv, sv are constants only depending on v ∈ Lk,0. Following the discussion in [55, Sec-
tion 6], such energy bounds for modes y(v)n of module operators Y(v, z), for v ∈ Lk,0 can be 
derived from those for the operators a(n), a ∈ g.

4.2. S-Boundedness and implications

Motivated by the energy bounds described in the context of WZW models, and their impli-
cation that they turn a “scaled” version of the module operator into a bounded operator, we now 
generalize these definitions and establish corresponding results. For this purpose, we first in-
troduce a certain form on the tensor product of two modules. We note that a similar object was 
already studied by Felder et al. [48], where the boundedness was however assumed. The principal 
idea is to use an intertwiner to construct a new Hilbert space out of the algebraic tensor prod-
uct of two modules. Using the existence of genus-0 correlation functions, this then shows that 
for non-zero values of z such that 0 < q < 1/|z|2, the scaled intertwiner at value z is a densely 
defined operator. Next, we use the existence of genus-1 correlation functions to show that this 
operator is actually bounded.

Lemma 4.1. Let V be a rational and C2-cofinite VOA, let A, B, C be unitary modules of V , and 
let Y be an intertwiner operator of type 

(
C
A B

)
. Let z ∈ C\{0} be arbitrary and 0 < q < 1/|z|2. 

For a1, a2 ∈A and b1, b2 ∈ B , define

〈a1 ⊗ b1, a2 ⊗ b2〉Y,q,z := 〈qL0/2 Y(qL0/2a1, z)q
L0/2b1, q

L0/2 Y(qL0/2a2, z)q
L0/2b2〉C

(64)

Then the map (a1 ⊗ b1, a2 ⊗ b2) �→ 〈a1 ⊗ b1, a2 ⊗ b2〉Y,q,z can be extended to a sesquilinear, 
densely defined and positive semi-definite form on A ⊗B .

Proof. Let us first verify that the expression (64) is well-defined, i.e., gives a finite value for any 
z ∈C\{0} and q satisfying 0 < q < 1

|z|2 . To do so, we rewrite it as a genus-0-correlation function.
Take a1, a2 ∈A and b ∈ B arbitrary. Then we have

. . .≤ c2
(
qhλ

|z|
)2

‖a‖2
Lk,λ

(∑
m≥0

(
q

|z|2
)m

[(1 + 2hλ)(m+ 1)5 + h2
λ] +

∑
m≥0

q2m[(1 + 2hλ)(m+ 1)2 + h2
λ]

∑
n≥0

(|z|2 q)n(n+ 1)2
)

≤ c2
(
qhλ

|z|
)2

‖a‖2
Lk,λ

[
(1 + 2hλ)

(
5! |z|

2

q

[
log

( |z|2
q

)]−6
+ 1

2|z|2q3

[
log

(
1

q

)
log(

1

|z|2q )
]−3)

+

h2
λ

(
1

1 − |z|−2q
+ 1

2|z|2q3(1 − q2)(− log(|z|2q))3
)]

where we used Lemma A.2 multiple times in the last bound.



R. König, V.B. Scholz / Nuclear Physics B 920 (2017) 32–121 67
〈a1 ⊗ b1, a2 ⊗ b2〉Y,q,z = 〈Y(qL0/2a1, z)q
L0/2b1, q

L0Y(qL0/2a2, z)q
L0/2b2〉C

= 〈qL0/2b1,Y1(e
zL1(−z−2)L0ηA(q

L0/2a1), z
−1)qL0Y(qL0/2a2, z)q

L0/2b2〉C
= 〈qL0/2b1,Y1(ã1, z

−1)qL0Y(q−L0 ã2, z)q
L0/2b2〉C .

In first identity, we used the fact that L0 is self-adjoint with respect to 〈·, ·〉C , and in the second 
step, we used the intertwiner Y1 introduced in Lemma 2.2. Finally, in the third identity, we 
introduced the abbreviations

ã1 := ezL1(−z−2)L0ηA(q
L0/2a1) ã2 := q3L0/2ã2

for convenience. Using the action of L0 on mode operators, we have

qL0Y(q−L0 ã2, z)= Y(ã2, qz)q
L0 .

This means that

〈a1 ⊗ b1, a2 ⊗ b2〉Y,q,z = 〈Y(qL0/2a1, z)q
L0/2b1, q

L0Y(qL0/2a2, z)q
L0/2b2〉C

= 〈qL0/2b1,Y(ã1, z
−1)Y(ã2, qz)q

3L0/2b2〉C
= F (0)v,w ((ã1, z1), (ã2, z2))

has the form of a genus-0 two-point correlation function (cf. (47)) with v := qL0/2b1, w :=
q3L0/2b2, and insertions of ã1, as well as ã2 at

z1 := z−1 and z2 := qz .
By assumption on z and q , we have |z−1| > |qz|, hence (z1, z2) lie in the domain (48). Since we 
assumed that the VOA V is rational and C2-co-finite, it follows from the results of Huang [34]
(see Section 3.1) that the expression

〈Y(qL0/2a1, z)q
L0/2b1, q

L0Y(qL0/2a2, z)q
L0/2b2〉B

is finite for any a1, a2 ∈A and b ∈ B . Extending the definition linearly to finite sums of the form ∑
i ai ⊗bi ∈A ⊗B , and using the fact that the latter are dense in A ⊗B , it follows that 〈·, ·〉Y,q,z

is indeed a sesquilinear, densely defined and positive semi-definite form on A ⊗B .
Let {aα}α ⊂A and {bβ}β ⊂ B be finite families of elements in A and B , respectively. To show 

that 〈·, ·〉Y,q,z is positive semi-definite, it suffices to check that for any such families, the matrix{
〈qL0/2Y(qL0/2aα1, z)q

L0/2bβ1, q
L0/2Y(qL0/2aα2 , z)q

L0/2bβ2〉C
}
(α1,β1),(α2,β2)

is positive semi-definite. But this is the Gram matrix (with entries given by inner products) asso-
ciated with the family of vectors {qL0/2Y(qL0/2aαz)q

L0/2bβ}(α,β), hence the claim follows. �
The following property of the sesquilinear form constructed in Lemma 4.1 constitutes our 

main technical step.

Definition 4.2. Let V be a VOA, A, B, C unitary modules of V , and let S ⊂ A be a linear 
subspace in the module A. Let Y be an intertwiner operator of type 

(
C
A B

)
and 〈·, ·〉Y,q,z the 

sesquilinear form constructed in Lemma 4.1. We call Y S-bounded if for any z ∈ C\{0} and 
0 < q <min{|z|2, 1/|z|2}, there is a constant ϑ(q, z) <∞ such that

〈a ⊗ b, a⊗ b〉Y,q,z ≤ ϑ(q, z)2‖a‖2
A‖b‖2

B

for all a ∈ S and b ∈ B . In this definition, 〈·, ·〉Y,q,z is the form defined by Lemma 4.1, whereas 
‖ · ‖A and ‖ · ‖B are the norms induced by the non-degenerate forms on A and B , respectively.
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We will verify that a large class of VOAs have the property that for an appropriate subspace S, 
all intertwiners are S-bounded. We are especially interested in the case where the subspace S is 
the space of primary vectors, or the space of vectors of highest weight. We can use the known 
existence results for genus-1-correlation functions to establish the following:

Proposition 4.3. Let V be a rational and C2-co-finite VOA, A, B, C unitary modules of V and 
S ⊂ A a finite-dimensional subspace of A. Let Y be an intertwiner operator of type

(
C
A B

)
. 

Then Y is S-bounded.

Proof. Fix a ∈ S ⊂ A and b ∈ B arbitrary (not necessarily homogeneous). By definition of the 
sesquilinear form 〈·, ·〉Y,q,z we have

〈a⊗ b, a⊗ b〉Y,q,z = 〈qL0/2Y(qL0/2a, z)qL0/2b, qL0/2Y(qL0/2a, z)qL0/2b〉C
≤ ‖qL0/2Y(qL0/2a, z)qL0/2‖2 · ‖b‖2

B , (65)

where ‖ · ‖ is the operator norm. Using an orthonormal basis {aj }dim S
j=1 of S, we get

‖qL0/2Y(qL0/2a, z)qL0/2‖ ≤ √
dimS · ‖a‖A · max

1≤j≤dim S
‖qL0/2Y(qL0/2aj , z)q

L0/2‖ .
(66)

Combining (65) and (66), we conclude that it suffices to show that each operator

H(aj ) := qL0/2Y(qL0/2aj , z)q
L0/2

is bounded. In fact, each of these operators is Hilbert–Schmidt, and this holds not just for basis 
elements, but for any a ∈ S: we have using an orthonormal basis {bk}k of B

TrB(H(a)
∗H(a))=

∑
k

〈qL0/2Y(qL0/2a, z)qL0/2bk, q
L0/2Y(qL0/2a, z)qL0/2bk〉C

=
∑
k

〈Y(qL0/2a, z)qL0/2bk, q
L0Y(qL0/2a, z)qL0/2bk〉C

=
∑
k

〈qL0/2bk,Y1(e
zL1(−z−2)L0ηA(q

L0/2a), z−1)qL0Y(qL0/2a, z)qL0/2bk〉B

=
∑
k

〈bk, qL0/2Y1(e
zL1(−z−2)L0ηA(q

L0/2a), z−1)qL0Y(qL0/2a, z)qL0/2bk〉B

where we used the fact that L0 is self-adjoint with respect to 〈·, ·〉C in the first and last step, and 
Y1 is the intertwiner introduced in Lemma 2.2. Defining

a1 := qL0/2ezL1(−z−2)L0ηA(q
L0/2a) , a2 := q2L0a ,

we get

qL0/2Y1(e
zL1(−z−2)L0ηA(q

L0/2a), z−1)qL0Y(qL0/2a, z)qL0/2

= qL0/2Y1(q
−L0/2a1, z

−1)qL0Y(q−3L0/2a2, z)q
L0/2

= Y1(a1, q
1/2z−1)Y(a2, q

3/2z)q2L0 ,

where we used the action of L0 on the intertwiners (cf. (18)). Setting

z1 := q1/2z−1 z2 := q3/2z p = q2 ,
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we conclude that

TrB(H(a)
∗H(a))= TrB

(
Y1(a1, z1)Y(a2, z2)p

L0
)

= pc/24F
(1)
p,Y1,Y

(
(z

−L0
1 a1, z1), (z

−L0
2 a2, z2)

)
is proportional to a genus-1 two-point function. By the assumption that the VOA V is rational 
and C2-co-finite, this is finite since the triple (z1, z2, p) satisfies 1 > |z1| > |z2| > p for any 
0 < q <min{|z|2, 1/|z|2} (see Section 3.1 and Ref. [34]). �

The notion of bounded intertwiners gives rise to a family of bounded operators, mapping 
the Hilbert subspace S into the bounded operators between the Hilbert spaces B and C. By 
inspection, we see that these are exactly given by scaled intertwiners (51), with the indeterminate 
replaced by a complex number. In fact, due to the special structure, these operators are also of 
trace class.

Corollary 4.4. Let V be a rational and C2-co-finite VOA, A, B, C unitary modules of V , 
S ⊂ A a subspace of A, Y an S-bounded intertwiner of type

(
C
A B

)
and z ∈ C\{0}, 0 < q <

min{|z|2, 1/|z|2} be arbitrary. Then the associated scaled intertwiner W with the formal variable 
replaced by the complex number z is a bounded operator, with operator norm bounded by

‖Wq(a, z)‖ ≤ ϑ(q, z)‖a‖A , for all a ∈ S , (67)

where ‖ · ‖A is the norm induced by the non-degenerate form on A. Furthermore, the operator 
Wq(a, z) is also of trace-class.

In the following, we refer to this operator as an S-bounded scaled intertwiner of type 
(
C
A B

)
, 

with the understanding that A, B, C are unitary modules and S ⊂A is a linear subspace.

Proof. Eq. (67) follows immediately from the definitions since for b ∈ B arbitrary (cf. 
Lemma 4.1 and Definition 4.2)

‖Wq(a, z)b‖2
C = 〈a ⊗ b, a⊗ b〉Y,q,z .

For the second assertion, note that by using (52) with q1 = q1/2, q2 = q1/2, we have

Wq(a, z)b= qL0/4Wq1/2(q
L0/4a, z)qL0/4b

for all a ∈ S and b ∈ B . The Hölder inequality for operators on a Hilbert space implies that the 
product of a bounded operator and one of trace-class stays in the trace-class, and we find

‖Wq(a, z)‖1 ≤ ‖qL0/4Wq1/2(q
L0/4a, z)‖ · ‖qL0/4‖1 <∞ ,

since for any 0 < q < 1, the operator qL0 is of trace-class, compare to Eq. (50). Here, we also 
used the first assertion as well as the fact that the operator norm of qL0/4 is bounded by one, 
since the spectrum of L0 is positive and we have 0 < q < 1. �

Since we defined the formal transfer operator T as the composition of several scaled inter-
twiners, it follows from the fact that the operator norm is sub-multiplicative that it itself defines 
a bounded operator.



70 R. König, V.B. Scholz / Nuclear Physics B 920 (2017) 32–121
Lemma 4.5. Let T be a transfer operator as in Definition 3.4 composed of S(i)-bounded inter-
twiners, insertions ai ∈ S(i), i = 1, . . . , n, and the formal variables replaced by a complex num-
ber z ∈ C\{0} satisfying 0 < q <min{|z|2, 1/|z|2}. Then the operator norm of T is bounded by

‖T‖ ≤
n∏
j=1

ϑj (q, z)‖aj‖A(j) . (68)

Proof. The operator (77) is defined recursively by T = T1, where

Tn = Wn(an, z)

Tk = Wk(ak, z) ◦ Tk+1 for k = n− 1, . . . ,1

for b ∈ B . Inductively using (67), this immediately implies that

‖T1‖2 ≤
n∏
j=1

ϑ2
j (q, z)‖aj‖2

A(j)
,

which is the claim (68). �
We close this section by again examining WZW models, but now intertwiners instead of 

module operators. These VOAs are rational and unitary, and hence the corresponding scaled in-
tertwiners are, for suitable choices of S, bounded by the results of this section. However, the exact 
analytic form of the parameter ϑ(q, z) is in general unclear. Nevertheless, for certain choices 
of the Lie algebra and the irreducible modules, explicit bounds on the boundedness parameter 
ϑ(q, z) can be obtained.

Example 5 (WZW intertwiners are S-bounded). Let us again fix a simple complex Lie algebra 
g, which for concreteness is now assumed to be an element of the A series, hence g = sl(d, C). 
This choice leads to models known in the physics literature as su(2) at level k, where the level is 
given by the choice of the value of the central extension. Let us now fix three irreducible highest 
weight modules of g corresponding to the weights λ1, λ2, λ3. As explained in Examples 2 and 4, 
this also uniquely determines three irreducible modules Lk,λ1, Lk,λ2 , Lk,λ3 of the VOA Lk,0 as 

well as an intertwiner Y of type 
( Lk,λ1

Lk,λ3 Lk,λ2

)
. We now choose the subspace S ⊂ Lk,λ3 equal to 

the top level Lk,λ3(0) of Lk,λ3 . As discussed, S = Lk,λ3(0) is an irreducible sl(d, C) module. We 
now make the additional assumption that S is the defining representation, hence S = C

d . For 
this choice, the work [50] of Wasserman implies an explicit analytic bound on the boundedness 
parameter ϑ(q, z) which we summarize as a corollary.

Corollary 4.6 (of [50]). Let g = sl(d, C), λ1, λ2, λ3 three highest weights, with λ3 corresponding 

to the defining representation on Cd . Let Y be an intertwiner of the VOA Lk,0 of type 
( Lk,λ1

Lk,λ3 Lk,λ2

)
, 

and let Wq be the associated scaled intertwiner for the subspace S = Lk,λ3(0) � C
d , the top level 

of the module Lk,λ3 . Then we have for 0 < q < 1/|z|2, |z| > 1,

‖Wq(ϕ, z)‖ ≤ ‖ϕ‖Lk,λ3
· q 1

2 (hλ1+hλ2 +hλ3 ) · |z|−τ ·
√

1

(1 − q2)(1 − |z|2q) + q

(1 − q)2 ,

ϕ ∈ C
d ,

where τ = hλ + hλ − hλ and ‖ · ‖ denotes the operator norm.
2 3 1
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Proof. Due to the results of Wassermann [50, Section 25] the modes of any intertwiner between 
irreducible modules can be written as (h a real number depending only on the three modules)

y(ϕ)τ,n = Pa[ϕn]Q,
where a[·] is a fermionic creation operator with domain S⊗C[t, t−1], P, Q are projections, and 
ϕn = ϕ⊗ tn. The detailed construction is not important for us, and we refer the interested reader 
to Wassermann’s work, but what is important for us is that fermionic creation operators satisfy 
the estimate

‖a[ϕn]‖ ≤ ‖ϕ‖Lk,λ3
. (69)

Since projectors do not increase the norm, it follows that bounds on the norm of the modes 
a[ϕn] imply norm bounds for the modes of the intertwiner. Indeed, considering an arbitrary 
homogeneous element χ ∈ Lk,λ2(m) belonging to the m-th level and of unit norm, we have – 
since weight spaces of different weights are orthonormal – that

‖qL0/2Y(ϕ, z)qL0/2χ‖2
Lk,λ1

=
∑

n∈Z,n≤m
q2m−n|z|−2n−2τ‖Pa[ϕn]Q‖2

≤ ‖ϕ‖2
Lk,λ3

qhλ1+hλ2 |z|−2τ

⎛⎝∑
n≥0

q2m+n|z|2n +mqm
⎞⎠ ,

where we used the norm estimate (69) and then separated the sum over n into negative and 
positive terms. Note that we have n ≤ m, since weights in unitary modules have to be positive 
(cf. (63)). We also applied Eq. (36), since all three modules are irreducible. We are left with 
taking the sum over m ∈N to get the final estimate, which leads to

‖qL0/2Y(qL0/2ϕ, z)qL0/2χ‖2
Lk,λ1

≤ ‖ϕ‖2
Lk,λ3

qhλ1+hλ2 +hλ3 |z|−2τ
(

1

(1 − q2)(1 − |z|2q) + q

(1 − q)2
)
. �

The case of a general irreducible module Lk,λ3 with top level corresponding to an arbitrary 
highest weight representation of sl(d, C) can be handled as well, see [70] for an exposition. This 
construction in the case of Spin groups is very nicely presented in the thesis of Laredo [71]. 
However, representations other than the defining one generally lead to more complicated norm 
bounds.

5. Approximating CFT correlation functions

In Section 4, we showed that scaled intertwiners are bounded operators if the formal variable 
is replaced by a complex number. The next step in our considerations is the construction of a 
truncated version of these operators, which only changes the weight by a finite number. This then 
ensures that the image of a finite direct sum of weight spaces under this operator is still contained 
in a fixed finite-dimensional space, which is obtained by truncating in the weight basis. This is 
the first main ingredient for our MPS construction.
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5.1. Truncated scaled intertwiners

Recall the mode expansion (37) of an intertwiner Y(a, z) = ∑
τ∈I,m∈Z y(a)τ,mz−m−τ−n for a 

homogeneous vector a ∈An,α ⊂An. According to (41), the operator y(a)τ,m changes the weight 
of a vector by −τ −m + α, for any τ ∈ I and m ∈ Z. This motivates the following definition:

Definition 5.1 (Truncated intertwiner). Let A, B, C be modules of a VOA V and Y an intertwiner 
of type 

(
C
A B

)
. Let N > 0. The truncated intertwiner Y [N ] :A → End(B,C){{z, z−1}} is defined 

as

Y [N ](a, z)=
∑

τ∈I,m∈Z
|m|≤N

y(a)τ,mz
−m−τ−n

for any homogeneous vector a ∈An, and then linearly extended to the whole module A.

We usually choose N to be a positive integer. We sometimes refer to it as the truncation 
level or truncation parameter. It is worth explicitly writing out what condition (41) implies for 
truncated intertwiners. Indeed, this is the key to bounding the bond dimension of the resulting 
MPS (see Section 5.2.2). A truncated intertwiner Y [N ](a, z) does not change the level by more 
than N in the sense that

Y [N ](a, z)Bn ⊂
⊕
m∈Z|m|≤N

Cn−m{{z, z−1}} for all n ∈ N0 . (70)

This is an immediate consequence of the definition and Eq. (42). Analogously, we can introduce 
a similar notion of truncated scaled intertwiners. However, before doing so, we need to introduce 
the following notion for a finite-dimensional subspace S ⊂A of a module A. We define

Shom :=
⊕

n∈N0,α∈IA
(S ∩An,α) , (71)

where the sum is over all weights occurring in the module A. The main motivation for this 
definition is to ensure that Shom is spanned by homogeneous vectors, which is not a priori true 
for any finite-dimensional subspace S ⊂A (take for example a single, non-homogeneous vector). 
In the following, all our statements apply to Shom, that is finite-dimensional subspaces which 
are spanned by homogeneous vectors. Note however that starting from any finite-dimensional 
S ⊂ A, we can suitably enlarge S by homogeneous vectors to get a finite-dimensional S̃ ⊂ A
with S ⊂ S̃ = S̃hom.

Definition 5.2 (Scaled truncated intertwiner). Let A, B, C be unitary modules of a VOA V . 
For a linear subspace S ⊂ A, let Shom be defined by Eq. (71). Let Y be an S-bounded unitary 
intertwiner operator of type 

(
C
A B

)
, and let W be the associated S-bounded scaled intertwiner of 

type 
(
C
A B

)
(cf. Definition 3.3). Fix a truncation level N > 0 and 0 < q < 1. Define

W[N ]
q : Shom → End(B,C){{z, z−1}}

a �→ W[N ]
q (a, z)

by

W[N ]
q (a, z)b := qL0/2Y [N ](qL0/2a, z)qL0/2b
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for homogeneous a ∈ S and arbitrary b ∈ B , and extend this linearly to all of Shom. Then we call 
the family {W[N ]

q : Shom → End(B,C){{z, z−1}}}0<q<1 the N -th level truncation of W, or simply 
a truncated scaled intertwiner.

Of course, truncated scaled intertwiners also have a “controlled” behavior on the levels in the 
sense that

W[N ]
q (a, z)Bn ⊂

⊕
m∈Z|m|≤N

Cn−m{{z, z−1}} for all n ∈N0 , (72)

as follows immediately from (70) and the fact that L0 preserves levels. Starting from this formal 
power series, we can get a well-defined operator by replacing the formal variable by a com-
plex number (the fact that it is well-defined follows since it is a finite sum of operators times a 
power of a complex variable). Observe that for z ∈ C, the operator W[N ]

q (a, z) acts on the infinite-
dimensional module B . This raises the question whether it is bounded, which is answered by the 
following lemma.

Lemma 5.3. Let W[N ]
q be the N -th level truncation of an S-bounded scaled intertwiner Wq of type (

C
A B

)
. Let ϑ be the boundedness parameter of Wq introduced in Definition 4.2, z ∈ C\{0}, 0 <

q <min{|z|2, 1/|z|2} and 0 < q1, q2 < 1 satisfying q1 ·q2 = q be given. Then W[N ]
q is S-bounded 

with

‖W[N ]
q (a, z)‖ ≤ ‖a‖A ·

√|IB | · ϑ(q2, z)√
1 − q1

, for all a ∈ S .
Specifically, setting q1 = q2 = √

q we get

‖W[N ]
q (a, z)‖ ≤ ‖a‖A ·

√|IB | · ϑ(√q, z)√
1 − √

q
, for all a ∈ S .

The bound is independent of the truncation parameter N , and in fact holds in the case N = ∞, 
that is, for the scaled intertwiner Wq itself.

Proof. Let b ∈ Bn be a homogeneous vector at level n. Since the weights spaces are orthogonal 
and qL0/2 does not change the weight, we find for the square of the norm

‖W[N ]
q (a, z)b‖2

C =
∑

τ∈I,m∈Z
|m|≤N

‖qL0/2y(a)τ,mq
L0/2bz−m−τ−n‖2

C .

Each term ‖qL0/2y(a)τ,mqL0/2bz−m−τ−n‖2
C for m ∈ Z is positive, and hence we make the ex-

pression only larger if we drop the restriction |m| ≤N . But then

‖W[N ]
q (a, z)b‖2

C ≤
∑

τ∈I,m∈Z
‖qL0/2y(a)τ,mq

L0/2bz−m−τ−n‖2
C = ‖Wq(a, z)b‖2

C , (73)

by the same arguments as before.
Let us now consider a general b ∈ B , and decompose it into homogeneous elements belonging 

to fixed levels as

b=
∑
n∈N0
β∈IB

μn,βbn,β where μn,β ∈ C and bn,β ∈ Bn,β , ‖bn,β‖B = 1 ,
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implying ‖b‖2
B = ∑

n∈N0
β∈IB

|μn,β |2. By (52) we have for a ∈A, and q = q1 · q2 that

Wq(a, z)b= qL0/2
1 Wq2(q

L0/2
1 a, z)q

L0/2
1 b .

Combining these observations with (73) we find using the Cauchy–Schwarz inequality

‖W[N ]
q (a, z)b‖C ≤

∑
n∈N0
β∈IB

|μn,β | · ‖W[N ]
q (a, z)bn,β‖C

≤ ‖b‖B ·
( ∑
n∈N0
β∈IB

‖qL0/2
1 Wq2(q

L0/2
1 a, z)q

L0/2
1 bn,β‖2

C

) 1
2

.

Applying the fact that Wq2 is a scaled intertwiner and hence bounded by Corollary 4.4, as well 
as using qL0/2

1 bn,β = qβ/21 q
n/2
1 bn,β and ‖bn,β‖B = 1 leads to

‖W[N ]
q (a, z)b‖C ≤ ϑ(q2, z)‖b‖B‖a‖A ·

( ∑
n∈N0
β∈IB

q
β+n
1

) 1
2

≤ √|IB | · ‖b‖B‖a‖A ϑ(q2, z)√
1 − q1

,

since qβ1 ≤ 1 (since 0 < q1 < 1 and IB ⊂ R≥0 for unitary modules) and the operator norm 

of qL0/2
1 is bounded by one. �

Our main motivation for the introduction of truncated scaled intertwiners is the fact that these 
operators do not increase the weight too much, and hence the image of a finite direct sum of 
weight spaces is still of that form, with adjusted parameters. As we will see below, this allows 
us to approximately restrict to a finite bond dimension when considering genus-0 or genus-1
correlation functions. The next step towards this goal is to establish an explicit error bound on 
the approximation of Wq by W[N ]

q (see Theorem 5.5 below). The following lemma will be needed 
for this purpose. It formalizes the fact that elements of high weight are scaled down by operating 
with qL0 .

Lemma 5.4. Consider an irreducible unitary module A, and let P[n−N,n+N ] be the weight space 
projection onto⊕

n−N≤m≤n+N
Am .

For 0 < q < 1, N ∈ N, we have∑
n∈N0

qn
∥∥(I − P[n−N,n+N ])qL0/2

∥∥2 ≤ qN
3

(1 − q)2 .

Proof. Consider an arbitrary element a ∈A of unit norm ‖a‖A = 1 decomposed as

a =
∑
m∈N0

am where am ∈Am .

Then (since L0 is compatible with the grading), we have
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(I − P[n−N,n+N ])qL0/2a =
∑
m∈N0
m<n−N

qL0/2am +
∑
m∈N0
m>n+N

qL0/2am

and thus∥∥(I − P[n−N,n+N ])qL0/2a
∥∥2
A

=
∑
m∈N0
m<n−N

‖qL0/2am‖2
A +

∑
m∈N0
m>n+N

‖qL0/2am‖2
A .

Here we used the fact that the projector (I − P[n−N,n+N ]) leaves the grading invariant as well 
as the assumption of irreducibility to conclude that elements am ∈Am, am′ ∈Am′ have different 
weights for m �=m′ and hence are orthogonal. These weights are then of the form h +m, h ≥ 0
and m ∈N0. Using that ‖am‖A ≤ ‖a‖A = 1, we have∑

m∈N0
m<n−N

‖qL0/2am‖2
A =

{∑n−N−1
m=0 ‖qL0/2am‖2

A ≤ qh ·∑n−N−1
m=0 qm if n >N

0 otherwise
,

that is, with
∑n−N−1
m=0 qm ≤ 1

1−q∑
m∈N0
m<n−N

‖qL0/2am‖2
A ≤

{
qh

1−q if n >N

0 otherwise
.

Similarly, we can bound∑
m∈N0
m>n+N

‖qL0/2am‖2
A ≤ qh

∑
m∈N0
m>n+N

qm ≤ qh
∞∑

m=n+N+1

qm .

But since we have 
∑∞
m=n+N+1 q

m = qn+N+1 ∑∞
m=0 q

m = qn+N+1

1−q , we obtain

∥∥(I − P[n−N,n+N ])qL0/2a
∥∥2
A

≤ qh

1 − q

{
(1 + qn+N+1) if n >N

qn+N+1 otherwise .

From this expression, we get the bounds

∑
n∈N0

qn
∥∥(I − P[n−N,n+N ])qL0/2a

∥∥2
A

≤ qh

1 − q

[∑
n>N

(1 + qn+N+1)qn +
N−1∑
n=0

q2n+N+1

]

= qh

1 − q

[
qN+1

1 − q + q3(N+1)

1 − q + qN+1 1 − q2N

1 − q2

]

≤ qN+1 3

(1 − q)2
where we used that qh < 1 since q < 1. The claim follows since a ∈ A with ‖a‖A = 1 was 
arbitrary. �

Our central result is the following bound on the approximation error (in operator norm).
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Theorem 5.5. Let W[N ]
q be the N -th level truncation of a scaled intertwiner Wq of type 

(
C
A B

)
. 

Let ϑ be the boundedness parameter of Wq introduced in Definition 4.2. Fix z ∈ C\{0}, 0 <
q < min{|z|2, 1/|z|2} and 0 < q1, q2 < 1 satisfying q1 · q2 = q . Then there is a constant κ > 0, 
depending only on the three modules A, B, C such that we have

‖Wq(a, z)− W[N ]
q (a, z)‖ ≤ ‖a‖A · κ · ϑ(q2, z) q

N/2
1

1

1 − q1

for all a ∈ Shom and b ∈ B . In particular, setting q1 = q2 = √
q , we get the bound

‖Wq(a, z)− W[N ]
q (a, z)‖ ≤ ‖a‖A · κ · ϑ(√q, z) qN/4 1

1 − √
q
.

Before presenting the proof, let us briefly discuss the bound. The function

err(q, z) := κ · ϑ(√q, z)
1 − √

q

is finite for all 0 < q < 1 as well as independent of the truncation parameter N . Hence we 
get an exponentially fast convergence of the truncated scaled intertwiner to its non-truncated 
version with respect to the operator norm as we increase the truncation parameter. Recalling 
from Observations 3.1 and 3.2 that q = e−d, with d being the minimal distance between insertion 
points, we see that d determines the speed of the exponential convergence.

Proof. We first restrict to the case where A, B, C are irreducible modules. As we will argue be-
low, the general case follows since any module can be decomposed into finitely many irreducible 
ones, as the VOA is rational. We first establish a relationship (see (75) below) between Wq(a, z)b
and W [N ]

q (a, z)b: we will show that, for homogeneous a ∈ Shom and b ∈ Bn belonging to a fixed 
level n, the latter is obtained by applying a weight projection P[n−N,n+N ] to the former. To do 
so, we use the definition of scaled intertwiners. For homogeneous a ∈ S ∩Ar at level r we have 
qL0/2a ∈ S ∩Ar and thus, writing out the definition of scaled intertwiners

Wq(a, z)b=
∑
m∈Z

qL0/2y(qL0/2a)τ,mz
−m−τ−rqL0/2b ,

where τ = hA + hB − hC is a fixed real number depending on the irreducible modules A, B, C, 
see Sect. 2.3.4. Each term in the sum has the form

z−m−τ−rqL0/2y(qL0/2a)τ,mq
L0/2b= q(wt a)/2z−m−τ−rqL0/2y(a)τ,mq

L0/2b ,

that is, we have

Wq(a, z)b= q(wt a)/2
∑
m∈Z

qL0/2y(a)τ,mq
L0/2b z−m−τ−r

W[N ]
q (a, z)b= q(wt a)/2

∑
m∈Z|m|≤N

qL0/2y(a)τ,mq
L0/2b z−m−τ−r (74)

where we applied the same reasoning to W[N ]
q (a, z)b. Since L0 leaves the levels invariant, we 

have

qL0/2y(a)τ,mq
L0/2Bn ⊂ Bn−m for all n ∈N0 and m ∈ Z ,
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according to (42) with the convention that Bn′ = 0 for n′ < 0. In particular, this means that for 
every bn ∈ Bn, we have

P[n−N,n+N ]qL0/2y(a)τ,mq
L0/2bn =

{
qL0/2y(a)τ,mqL0/2bn if |m| ≤N
0 otherwise .

Thus applying P[n−N,n+N ] to (74) gives the identity

W [N ]
q (a, z)bn = P[n−N,n+N ]Wq(a, z)bn for all bn ∈ Bn , (75)

where n ∈ N0 is arbitrary. Since this identity is independent of the level r of a, and the scaled 
intertwiner as well as its truncated version are linear in a, it extends to the whole of Shom.

Consider now a general b ∈ B , and decompose it into elements belonging to fixed levels as

b=
∑
n∈N0

μnbn where μn ∈C and bn ∈ Bn , ‖bn‖B = 1 ,

that is, ‖b‖2
B = ∑

n∈N0
|μn|2. Then (75) gives∥∥Wq(a, z)b− W[N ]
q (a, z)b

∥∥
C

=
∥∥∥∥∑
n∈N0

μn(I − P[n−N,n+N ])Wq(a, z)bn

∥∥∥∥
C

≤
∑
n∈N0

|μn| ·
∥∥(I − P[n−N,n+N ])Wq(a, z)bn

∥∥
C

≤ ‖b‖B ·
⎛⎝∑
n∈N0

∥∥(I − P[n−N,n+N ])Wq(a, z)bn
∥∥2
C

⎞⎠1/2

(76)

where we used the Cauchy–Schwarz inequality in the last step. For a ∈A, we have for q = q1 ·q2
that with (52)

(I − P[n−N,n+N ])Wq(a, z)bn = (I − P[n−N,n+N ])qL0/2
1 Wq2(q

L0/2
1 a, z)q

L0/2
1 bn .

With the norm bound ‖Xv‖C ≤ ‖X‖ · ‖v‖C , applied to X = (I − P[n−N,n+N ])qL0/2
1 and v =

Wq2(q
L0/2
1 a, z)qL0/2

1 bn, we get∥∥(I − P[n−N,n+N ])Wq2(a, z)bn
∥∥
C

≤ ∥∥(I − P[n−N,n+N ])qL0/2
1

∥∥ · ∥∥Wq2(q
L0/2
1 a, z)q

L0/2
1 bn

∥∥
C

The second norm factor can be upper bounded using the fact that Wq2 is a scaled intertwiner, 
which is bounded. This gives

‖(I − P[n−N,n+N ])Wq2(q
L0/2
1 a, z)bn‖2

C ≤ ϑ(q2, z)
2‖a‖2

A q
n
1

∥∥(I − P[n−N,n+N ])qL0/2
1

∥∥2

where we used that ‖qL0/2
1 ‖ is bounded by 1 as well as that qL0/2

1 bn = q
(hB+n)/2
1 bn and 

‖bn‖B = 1. Evaluating the sum over n ∈N0 as needed by (76) and using Lemma 5.4 gives∥∥Wq(a, z)b− W[N ]
q (a, z)b

∥∥
C

≤ ‖a‖A‖b‖B ϑ(q2, z) q
N/2
1

√
3qhB/21

1 − q1
,

for irreducible modules A, B, C. Since q1 < 1, this proves the claim for irreducible modules of 
highest weights hA, hB, hC .
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Consider now three arbitrary modules, which we again denote by A, B, C. Each module can 
be decomposed into a finite direct sum of irreducible ones,

A=
⊕
α

A[α] , B =
⊕
β

B[β] , C =
⊕
γ

C[γ ] .

Let |I | denote the maximal number of irreducible modules appearing in these decompositions. 
This is well-defined since the VOA is rational. Denoting by QD[δ] the projector onto the ir-
reducible component, D ∈ {A, B, C}, δ ∈ {α, β, γ }, we find since the irreducible modules are 
orthogonal∥∥Wq(a, z)b− W[N ]

q (a, z)b
∥∥2
C

=
∑
γ

∥∥∑
α,β

QC[γ ]
(

Wq(QA[α]a, z)− W[N ]
q (QA[α]a, z)

)
QB[β]b

∥∥2
C

≤
∑
γ

(∑
α,β

∥∥(QC[γ ]Wq(QA[α]a, z)QB[β]

−QC[γ ]W[N ]
q (QA[α]a, z)QB[β]

)
QB[β]b

∥∥
C

)2

.

Now each of the operators QC[γ ]Wq(QA[α]a, z)QB[β] (resp. QC[γ ]W[N ]
q (QA[α]a, z)QB[β]) is 

a scaled intertwiner between irreducible modules (resp. its truncated version) and hence our 
previous bound applies. Moreover, we have

‖QC[γ ]Wq(QA[α]a, z)QB[β]‖ ≤ ‖Wq(QA[α]a, z)‖ ≤ ϑ(q, z)‖QA[α]a‖A ≤ ϑ(q, z)‖a‖A ,
since projectors have operator norm equal to one. Inserting this and using Cauchy–Schwarz once 
for the sum over the indices α, β leads to∥∥Wq(a, z)b− W[N ]

q (a, z)b
∥∥2
C

≤ 3|I |2
∑
α,β,γ

‖QA,αa‖2
A‖QB,βb‖2

B ϑ(q2, z)
2 qN1

q
hγ
1

(1 − q1)2
.

But since q
hγ
1 ≤ 1 and 

∑
α ‖QA,αa‖2

A = ‖a‖2
A and similarly for b, the result follows with κ =√

3 |I |3/2. �
5.2. Approximating correlation functions

In this section, we use the notion of bounded intertwiners to establish error bounds on the 
approximation of correlation functions. We proceed in two steps: in Section 5.2.1, we establish 
bounds on the approximation accuracy when replacing intertwiners by their truncated versions 
in the definition of the transfer operator T. In Section 5.2.2, we additionally project onto a finite-
dimensional subspace to obtain bounds for the approximation by MPS (or finitely correlated 
states) with finite bond dimension.

As we are only interested in approximation statements in this section, we only consider the 
case where the formal variables are replaced by complex numbers, or more precisely a single 
one, denoted again by z and assumed to satisfy min{|z|2, |z|−2} > q > 0. Of course, we could 
also first define the truncated transfer operator as a formal polynomial, from which an operator 
is then obtained by fixing the values of the indeterminates. However, we felt that this approach 
is of limited added value.
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5.2.1. Truncated transfer operators and error bounds
In analogy to Definition 3.4, we can define transfer operators which are truncated at some 

level N . The corresponding definition is the following.

Definition 5.6 (Truncated transfer operators). Let A(i), i = 1, . . . , n and B(i), i = 0, . . . , n be 
unitary modules of a VOA V . Fix some z ∈ C \ {0} and some 0 < q < min{|z|2, |z|−2}. For 
i = 1, . . . , n, let Yi be an S(i)-bounded intertwiner of type 

(
B(i−1)

A(i) B(i)

)
, and let

W[N ]
i = W[N ]

i,q (·, z) : S(i) → End(B(i),B(i−1))

be the associated truncated scaled intertwiner. For ai ∈ S(i)hom, i = 1, . . . , n, define T[N ] : B(n) →
B(0) by

T[N ] = W[N ]
1 (a1, z) ◦ W[N ]

2 (a2, z) ◦ · · · ◦ W[N ]
n (an, z) . (77)

Then T[N ] is called the transfer operator with insertions {ai}ni=1, truncated at level N or simply 
the truncated transfer operator.

We stress that T[N ] is by itself not an operator acting on finite-dimensional spaces; further 
steps will be needed to arrive at a finite-dimensional MPS. The main question we address in this 
section is how the truncated operator T[N ] can be interpreted as an approximation to the transfer 
operator T introduced in Definition 3.4. The following is the key technical result.

Lemma 5.7 (Approximation by truncated transfer operators). Let T be the transfer operator 
with insertions ai ∈ S(i)hom, i = 1, . . . , n and parameters (q, z) as in Lemma 4.5, and let T[N ] be 
the associated truncated transfer operator as in Definition 5.6. Then we have

‖T − T[N ]‖ ≤ qN/4 ·
[
n · κ ·

(
max

1≤j≤n

√|IB(j) | · ϑj (√q, z)
1 − √

q

)n]
·
(
n∏
i=1

‖ai‖Ai
)
,

where ‖ · ‖ is the operator norm.

Before we proceed to the proof, let us discuss the dependence of the bound on the parameters. 
We see that the expression in the square brackets

�(n,q, z) := n · κ ·
(

max
1≤j≤n

√|IB(j) | · ϑj (√q, z)
1 − √

q

)n
(78)

is independent of the truncation parameter N , and thus constant for a fixed number of insertions n
and any 0 < q < 1. Hence we get exponentially fast convergence (in the truncation parameter N ) 
of the truncated transfer operator to the original one. The speed of convergence is again governed 
by the value of q , or equivalently, by the minimal distance between insertion points on the plane 
or the periodic strip.

Proof. Defining

�(
)n = Ŵ(
)
n (an, z) ∈ End(B(n),B(n−1))

�
(
)
k = Ŵ(
)

k (ak, z) ◦�(
)n+1 ∈ End(B(k),B(k−1)) for k = n− 1, . . . ,1 ,

where
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Ŵ(
)
n =

{
Wn for n≤ 

W(N)
n for n > 
 ,

we have �(0)1 = T[N ] and �(n)1 = T (and more generally, �(
)1 contains 
 non-truncated intertwin-
ers and n − 
 truncated ones). Using the telescoping sum, we get the upper bound

‖�(n)1 −�(0)1 ‖ ≤
n∑

=1

‖�(
)1 −�(
−1)
1 ‖ (79)

For notational simplicity, let us first introduce the following set of abbreviations

errj (q, z) := κ ϑj (
√
q, z)

1 − √
q

, ϑ tr
j (q, z) :=

√|IB(j) | · ϑj (√q, z)√
1 − √

q
,

where ϑj (q, z) is the boundedness parameter of the j -th scaled intertwiner in the definition of 
the transfer operator T. We proceed to bound the differences ‖�(
)1 −�(
−1)

1 ‖. For 
 = 1, we have

�
(1)
1 −�(0)1 = W1(a1, z) ◦ W[N ]

2 (a2, z) ◦ · · · ◦ W(N)
n (an, z)

− W[N ]
1 (a1, z) ◦ W[N ]

2 (a2, z) ◦ · · · ◦ W(N)
n (an, z) ,

hence applying Theorem 5.5 and Lemma 5.3 (the latter n − 1-times) yields

‖�(1)1 −�(0)1 ‖ ≤ ‖a1‖A1 · ‖W[N ]
2 (a2, z) ◦ W(N)

3 (a3, z) ◦ · · · ◦ W(N)
n (an, z)‖ · err1(q, z)q

N/4

≤ ‖a1‖A(1) · ‖a2‖A(2) · ‖W(N)
3 (a3, z) ◦ · · · ◦ W(N)

n (an, z)‖
· err1(q, z)q

N/4ϑ tr
2(q, z)

≤
(
n∏
i=1

‖ai‖A(i)
)

· err1(q, z)q
N/4

n∏
j=2

ϑ tr
j (q, z) . (80)

Similar reasoning for 
 = 2 gives

‖�(2)1 −�(1)1 ‖ ≤
(
n∏
i=1

‖ai‖A(i)
)

· err2(q, z)q
N/4ϑ tr

1(q, z)

n∏
j=3

ϑ tr
j (q, z) . (81)

More generally, for 
 ≥ 3, we have

�
(
)
1 −�(
−1)

1 = W1(a1, z) ◦ W2(a2, z) ◦ · · · ◦ W
−2(a
−2, z)δ where

δ = (W
−1(a
, z)− W[N ]

−1(a
, z))η

η= W(N)

 (a
, z) ◦ W[N ]


+1(a
+1, z) ◦ · · ·W(N)
n (an, z) .

Theorem 5.5 and Lemma 5.3 then yield

‖�(
)1 −�(
−1)
1 ‖ ≤

(
n∏
i=1

‖ai‖Ai
)

· errl−1(q, z)q
N/4


−2∏
j=1

ϑj (q, z)

n∏
j=

ϑ tr
j (q, z)

= qN/4
(
n∏
i=1

‖ai‖Ai
)
κ ϑl−1(

√
q, z)

1 − √
q


−2∏
j=1

ϑj (q, z)

×
n∏
j=


√|IB(j) | · ϑj (√q, z)√
1 − √

q
(82)
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for 
 ≥ 3. We then have for 0 < q < 1 that 
√

1 − √
q ≥ 1 − √

q , as well as ϑj (q, z) ≤ ϑj (
√
q,z)√

1−√
q

due to the last assertion of Lemma 5.3. Combining these facts with (80), (81) and (82) with (79)
gives

‖T − T[N ]‖ ≤
(
n∏
i=1

‖ai‖A(i)
)

· qN/4 nκ
n∏
j=1

√|IB(j) | · ϑj (√q, z)
1 − √

q
. �

An immediate consequence of Corollaries 3.6 and 3.7 together with Lemma 5.7 are the fol-
lowing estimates of the correlation functions in terms of truncated intertwiners. These are the 
“truncated” counterparts to those results: indeed, in the limit N → ∞ of no truncation, the exact 
statement is reproduced. In order to simplify the expressions encountered, we henceforth assume 
that the insertion vectors {ai}ni=1 appearing in the definition of the transfer operator as well as its 
truncated version are of unit norm, that is,

‖ai‖A(i) = 1 for all i = 1, . . . , n .

All of our approximation statements are now subject to this assumption. The general case may 
be obtained by multiplying the error by the product 

∏n
i=1 ‖ai‖A(i) .

Corollary 5.8 (Approximate reproduction of genus-0 correlation functions). For ai ∈ S(i)hom, 
i = 1, . . . , n, let T[N ] : B(n) → B(0) be the truncated transfer operator with normalized inser-
tions {ai}ni=1 and parameters (q, z) (cf. Definition 5.6). Suppose v(0) ∈ B(0)
0

is at level 
0 and 

v(n) ∈ B(n)
n is at level 
n and both vectors are of unit norm. Then the genus-0 correlation func-

tion F (0)
v(0),v(n)

is approximated as∣∣〈v(0),T[N ]v(n)〉 − q(n+1/2)
n+
0/2+∑n
j=1 j wt aj · F (0)

v(0),v(n)
((ã1, ζ

′
1), . . . , (ãn, ζ

′
n))

∣∣
≤ qN/4�(n,q, z) ,

where

ãj = qL0/2aj and ζ ′
j = zqj for j = 1, . . . , n .

Note that the dependence on N is exponential. However, the bound turns out to be only in-
teresting for N large compared to the difference |
0 − 
n| between the levels: as we will show 
below in (87), the expression 〈v(0), T[N ]v(n)〉 vanishes if |
0 − 
n| > nN .

Proof. Inserting the expression of Corollary 3.6 for the correlation function in terms of the trans-
fer operator T, we find∣∣∣∣〈v(0),T[N ]v(n)〉 − q

[
(n+1/2)
n+
0/2+∑n

j=1 j wt aj
]
F
(0)
v(0),v(n)

((a1, ζ
′
1), . . . , (an, ζ

′
n))

∣∣∣∣
=

∣∣∣〈v(0),(T[N ] − T
)
v(n)〉

∣∣∣ ≤ ‖T[N ] − T‖‖v(0)‖B(0)‖v(n)‖B(n) .
Inserting the bound from Lemma 5.7 finishes the proof. �
Corollary 5.9 (Approximate reproduction of genus-1 correlation functions). Assume periodic 
boundary conditions B(0) = B(n) = B . Fix normalized ai ∈ S(i) , i = 1, . . . , n and let T[N ] :
hom
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B(n) → B(0) be the truncated transfer operator with insertions {ai}ni=1 and parameters (q, z)
(cf. Definition 5.6). Let 0 < r < 1, and let

ãj = qL0/2aj and ζ ′
j = zqj for j = 1, . . . , n ,p = rqn . (83)

Then the genus-1 correlation function (cf. Eq. (49))

F (1)p

(
(ã1, ζ

′
1), . . . , (ãnζ

′
n)
)

(84)

is approximated as∣∣TrBT[N ]rL0 − pc/24F (1)p ((ã1, z1), . . . , (ãn, zn))
∣∣ ≤ qN/4�(n,q, z) · rc/24ZB(r) (85)

where ZB(r) is the partition function (or character) of the module B ,

ZB(r)= TrB [rL0−c/24] .

Consider for example the (typical) translation-invariant case, where the modules A(j) = A, 
B(j) = B and intertwiners Yj = Y , j = 1, . . . , n, are all identical. Then the error bound becomes∣∣TrBT[N ]rL0 − pc/24F

∣∣ ≤ qN/4 nκ
[√|IB | · ϑ(√q, z)

1 − √
q

]n
· rc/24ZB(r)

The expression in the square brackets should be regarded as normalization factor determining 
the overall scale of the approximation error. In contrast, the error qN/4 n κ decays exponentially 
withN . Finally, the third factor in (85) only depends on the regularization parameter r and should 
be considered as a constant. To summarize, Eq. (85) implies that the error is exponentially small 
in the truncation level N independently of the number n of insertions.

Proof. The proof of the equivalent result in the genus-1 case follows again by using Lemma 5.7, 
as well as by using the Hölder inequality for the Schatten norms. Explicitly, denoting the corre-
lation function by

F = F (1)p

(
(ã1, ζ

′
1), . . . , (ãn, ζ

′
n)
)
,

we have by Corollary 3.7

|TrBT[N ]rL0 − pc/24F | = |TrB
(

T[N ] − T
)
rL0 | ≤ ‖T[N ] − T‖TrBr

L0 ,

since the operator rL0 is positive. Inserting the bound from Lemma 5.7 as before completes the 
argument. �
5.2.2. Approximation using finite bond dimension

Up to this point, we have merely truncated and scaled the intertwiner Y in such a way that 
it does not change the level in one application by more that N in absolute value, see Eq. (72). 
However, this does not mean that the spaces involved in the evaluation of e.g., approximate 
correlation functions (as in Lemma 5.9) are finite-dimensional. To obtain a representation by an 
MPS with finite bond dimension, we generally have to further restrict the truncation space (unless 
we are considering genus-0 vacuum-to-vacuum correlation functions, as discussed below).

More precisely, the trace in expression (85) is taken over the infinite-dimensional mod-
ule B(0) = B(n) = B . To obtain an approximation using a finite bond dimension, consider the 
N0-grading B = ⊕

n∈N0
Bn and the projection P [M] onto 

⊕
n≤M Bn. That is, the operator P [M]

projects onto the highest weights (up to and including the levelM). Here M ∈ N is an additional 
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truncation parameter which ultimately determines the bond dimension of the resulting MPS (see 
Lemma 5.10 below) according to

dB(M) := dimP [M]B =
∑

0≤n≤M
dimBn forM ≥ 0 . (86)

To distinguish it from the ‘truncation level’ N used in the definition of truncated intertwiners, let 
us refer to M simply as the cutoff or cutoff parameter.

We are ultimately interested in the approximation error when approximating correlation func-
tions by MPS with finite bond dimension. For this purpose, we need a refinement of Corol-
lary 5.9, which provides a bound on the accuracy when approximating a correlation function by 
a truncated trace TrBP

[M]
B T[N ]rL0 . In Section 5.3.1, we will argue that this expression is given 

by matrix elements of an MPS.

Lemma 5.10. Assume periodic boundary conditions B(0) = B(n) = B . Fix normalized ai ∈
S
(i)
hom, i = 1, . . . , n and let T[N ] : B(n) → B(0) be the truncated transfer operator with inser-

tions {ai}ni=1 and parameters (q, z) (cf. Definition 5.6). For M > 0, let P [M]
B be the projection 

onto
⊕

0≤m≤M Bm. Let F be the genus-one correlation function defined by (84). Then for any 
0 < r < 1, we have∣∣TrBP

[M]
B T[N ]rL0 − pc/24F

∣∣ ≤ (
nκ qN/4 rc/24ZB(r)+ rM/2rc/12ZB(

√
r)
)

·
(

max
1≤j≤n

√|IB(j) |ϑj (√q, z)
1 − √

q

)n
where ZB(r) is the character of the module B (cf. (50)).

Here we should again think of the multiplicative factor involving the boundedness parame-
ters ϑj as a normalization factor, as it determines the overall scale of the correlation function. 
The partition function appearing in both terms plays the same role. Hence this yields an exponen-
tially small (in the truncation parameters N, M) error estimate when approximating a correlation 
function by the expression TrBP

[M]
B T[N ]rL0 . It remains to connect this expression to a finite-

dimensional MPS. In the next section, we show that for a certain bond dimensionD and a certain 
choice of matrices {Aa}a ∈ Mat(CD) defining an MPS, the quantity TrBP

[M]
B T[N ]rL0 is equal to 

the sum of certain matrix elements of the MPS.

Proof. Recall from Corollary 3.7 that TrTrL0 = pc/24F is the exact correlation function. Using 
the triangle inequality, we thus have∣∣TrBP

[M]
B T[N ]rL0 − pc/24F

∣∣ ≤ ∣∣TrBP
[M]
B T[N ]rL0 − TrBT[N ]rL0

∣∣+ ∣∣TrBT[N ]rL0 − pc/24F
∣∣

= |TrB
(

I − P [M]
B

)
T[N ]rL0

∣∣+ ∣∣TrBT[N ]rL0 − pc/24F
∣∣

≤ |TrB
(

I − P [M]
B

)
rL0

∣∣‖T[N ]‖ + qN/4�(n,q, z) · rc/24ZB(r),

where we used the result of Corollary 5.9 in the last step as well as the Hölder inequality 
for Schatten norms. We proceed in two steps: First, following exactly the same arguments of 
Lemma 4.5 and using Lemma 5.3, we find
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‖T[N ]‖ ≤
n∏
j=1

ϑ tr
j (q, z) ,

since all vectors ai are supposed to be normalized. Second, since I − P [M]
B is the projector onto 

all weight subspaces of weight lower bounded by M , we have

TrB
(

I − P [M]
B

)
rL0 =

∑
n≥M

dim(Bn)r
n ≤ rM/2

∑
n≥0

dim(Bn)r
n/2 = r(hB+M)/2TrBr

L0/2 .

The claim follows since Tr(rL0/2) = rc/12ZB(
√
r), rhB/2 < 1, and by inserting the definition of 

ϑ tr
j (q, z) as well as using 

√
1 − √

q ≥ 1 − √
q . �

5.3. Structure of approximation and the bond dimension

In the following, we combine our results and give the proof of Theorem 1.1. On a structural 
level, we first have to connect matrix elements of the truncated transfer operator to an MPS. In 
Section 5.3.2, we will then analyze the bond dimension of the resulting MPS.

5.3.1. Recovering the MPS
To relate expressions such as 〈v(0), T[N ]v(n)〉 and TrBP

[M]
B T[N ]rL0 to a finite-dimensional 

MPS, we simply use Eq. (72), i.e., the fact that application of a truncated scaled intertwiner 
W[N ]
q does not change the level of a vector by more than N in absolute value. As an immediate 

consequence, any sequence of truncated intertwiners W[N ]
i (ai, z) applied to vector of bounded 

weight is still contained in a finite-dimensional subspace. This fact is made use of in the proof 
of the following result, which gives an upper bound on the bond dimension. (Recall that dB(M)
is the dimension of the subspace obtained by keeping all levels up to and including M in the 
module B , see (86).) We will also show (as mentioned earlier) that the expression 〈v(0), T[N ]v(n)〉
vanishes unless N is large compared to the difference between the levels of v(0) and v(n).

Recall from Eq. (86) that dB(M) denotes the total dimension of all levels up to and includ-
ing BM in the module B .

Lemma 5.11 (Genus-0 MPS). For ai ∈ S(i)hom, i = 1, . . . , n, and z ∈ C \ {0}, 0 < q <

min{|z|2, |z|−2}, let T[N ] : B(n) → B(0) be the truncated transfer operator defined in Lemma 5.7. 
Suppose v(0) ∈ B(0)


(0)
is at level 
(0) and v(n) ∈ B(n)


(n)
is at level 
(n). Then

〈v(0),T[N ]v(n)〉 = 0 if |
(0) − 
(n)|> nN . (87)

Fix a cutoff M > 0. Then there exist operators Ãa1, Ãa2 , . . . , Ãan on CD , linearly depending on 
the vectors aj , with

D = max
0≤j≤n

dB(j) (M + nN) ,
and linear embeddings⊕

0≤m≤M B
(n)
m → C

D(n) ⊂C
D

v(n) �→ ṽ(n)
and

⊕
0≤m≤M B

(0)
m → C

D(0) ⊂C
D

v(0) �→ ṽ(0)

with D(n) = dB(n) (M), D(0) = dB(0) (M), such that

〈v(0),T[N ]v(n)〉B(0) = 〈ṽ(0), Ãa1 · · · Ãan ṽ
(n)〉CD ,

for all v(0) ∈ ⊕
B
(0)
m and v(n) ∈ ⊕

B
(n)
m .
0≤m≤M 0≤m≤M
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Note that Lemma 5.11 merely expresses the fact that 〈v(0), T[N ]v(n)〉 can be related to a 
finite-dimensional MPS; we defer the discussion of the relationship between the approximation 
accuracy of correlation functions and the bond dimension to Section 5.3.

We also point out that in the special case of vacuum-to-vacuum correlation functions, we will 
set v(0) = v(n) = 1 and can thus take M = 0.

Proof. The expression T[N ]v(n) is defined recursively with T[N ]v(n) = T[N ]
1 v(n) as

T[N ]
n v(n) = W[N ]

n (an, z)(v
(n))

T[N ]
k v(n) = W[N ]

k (ak, z) ◦ T[N ]
k+1(v

(n)) for k = n− 1, . . . ,1 .

In particular, if we define operators

Aaj : B(j) → B(j−1)

b �→ W[N ]
j (aj , z)(b)

we have

T[N ]v(n) = Aa1 · · ·Aanv
(n) . (88)

Furthermore, by (72), we have the containment

Aaj B
(j)
m ⊂

⊕
|m′−m|≤N

B
(j−1)
m′ (89)

for any level m ∈N. In particular, if v(n) ∈ B(n)

(n)

, then we conclude that

T[N ]v(n) ∈
⊕

|m′−
(n)|≤nN
B
(0)
m′ ,

by iteratively applying (89) to (88). Since different levels are orthogonal, Eq. (87) follows imme-
diately. Eq. (89) also implies

Aaj
⊕

0≤m≤M
B
(j)
m ⊂

⊕
0≤m≤M+N

B
(j−1)
m (90)

Iteratively applying (90), we conclude that for v(n) ∈ ⊕
0≤m≤M B

(n)
m = P

[M]
B(n)
B(n) and all r =

1, . . . , n, we have

AarAar+1 · · ·Aanv
(n) ∈

⊕
0≤m≤M+(n−r+1)N

B(r−1)
m ⊂

⊕
0≤m≤M+nN

B(r−1)
m = P [M+nN]

B(r−1) B(r−1) .

(91)

For any

v(n) ∈
⊕

0≤m≤M
B(n)m and v(0) ∈

⊕
0≤m≤M

B(0)m ,

projecting the vectors, i.e., setting ṽ(0) = P (0)
B(0)
v(0) and ṽ(n) = P (n)

B(n)
v(n) leaves them invariant, 

i.e.,

v(0) = ṽ(0) and ṽ(n) = ṽ(n) . (92)
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Combining (88), (91) and (92) therefore gives

〈v(0),T[N ]v(n)〉 = 〈ṽ(0), Ãa1 · · · Ãan ṽ
(n)〉 ,

where

Ãaj = P [M+nN]
B(j−1) Aaj P

[M+nN]
B(j)

The claim follows since all operators and vectors involved in the expression (95) are supported 
on spaces of the form 

⊕
0≤m≤M+nN B

(j)
m . These spaces can be embedded in C

D with D =
max0≤j≤n dB(j) (M + nN), their maximal dimension. �

Note that in the second half of this proof, we only made use of (90) instead of the stronger 
two-sided bound (89). This is motivated by the fact that we are mostly interested in correlation 
functions associated with vectors of low weight, as for example for vacuum-to-vacuum correla-
tion functions. Other correlation functions may be extracted using the Ward identities [2].

To make a similar statement about genus-1-correlation functions, we again introduce a cut-
off by projecting onto the subspace of levels less than M of the module B . As before (see 
Section 5.2.2), we denote the corresponding projection by P [M]

B . The argument proceeds by 
reduction to the genus-0-case.

Lemma 5.12 (Genus-1-MPS). Let A(i) and B(i), i = 1, . . . , n be unitary modules of a VOA V , 
with B(0) = B(n) =: B . Let S(i) ⊂ A(i) and ai ∈ S(i)hom be as in Lemma 5.7. Let T[N ] : B → B be 
the associated truncated transfer operator. Then there exist operators Ãa1, Ãa2 , . . . , Ãan on CD , 
linearly depending on the vectors aj , with D = max1≤j≤N dB(j) (M + nN), and an operator X̃
on CD of rank D(0) = dB(M) ≤D such that

TrBP
[M]
B T[N ]rL0 = TrCD

[
Ãa1 Ãa2 · · · Ãan X̃

]
.

We remark that the dependence of the bond dimensionD on n can be slightly improved from 
n to �n2 � using the fact that we are taking the trace, though this does not affect our conclusions 
in a significant way.

Proof. Choose an orthonormal basis {bi}dB(M)i=1 of the space P [M]
B B = ⊕

0≤m≤M Bm consisting 
of homogeneous vectors. Then

TrBP
[M]
B T[N ]rL0 =

dB(M)∑
i=1

rwt bi 〈bi,T[N ]bi〉 (93)

By Lemma 5.11, there are operators Aaj : B(j) → B(j−1) for j = 1, . . . , n such that the projected 

operators Ãaj = P [M+nM]
B(j−1) Aaj P

[M+nM]
B(j)

satisfy

〈P [M]
B(0)
bi , Ãa1 · · · ÃanP

[M]
B(n)
bi〉 = 〈bi,T[N ]bi〉 for all i = 1, . . . , dB(M) . (94)

Observe that because B(0) = B(n) = B in the genus-1-case, and since {bi}i is a basis of ⊕
0≤m≤M Bm, we have P [M]

B(n)
bi = P [M]

B(0)
bi = bi . Because L0 is compatible with the grading, we 

further have rL0P
[M]
B bi = rwt bi bi . Defining

X̃ = P [M]
B rL0P

[M]
B and b̃i = P [M]

B bi ,
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we hence get

TrBP
[M]
B T[N ]rL0 =

dB(M)∑
i=1

〈b̃i , Ãa1 · · · ÃanX̃b̃i〉 (95)

by combining (93) and (94). The claim follows since all operators and vectors involved in the ex-
pression (95) are supported on spaces of the form 

⊕
0≤m≤M+nN B

(j)
m which can all be embedded 

in CD . �
Let us now for simplicity assume that d = dimS(j) is identical for all 1 ≤ j ≤ n, and let 

{|k〉}1≤k≤d denote an orthonormal basis of Cd . Since the operators Ãaj depend linearly on the 
vectors aj , we can define a linear form on (Cd)⊗n as

σMPS1 : |k1〉 ⊗ |k2〉 ⊗ · · · ⊗ |kn〉 �→ TrCD
[
Ãk1 Ãk2 · · · Ãkn X̃

]
, (96)

where we denoted Ãk2 = Ã|k2〉. We can thus finally collect the pieces of provide a proof of our 
first main result.

Proof of Theorem 1.1. In the genus-0 case, we use Lemma 5.11 (in the form (96)) to write the 
vacuum expectation value of the truncated transfer operator as the matrix element of an MPS 
(cf. (7)), that is,

σMPS0(|k1〉 ⊗ · · · ⊗ |kn〉)= 〈1,T[N ]1〉B .
According to Corollary 5.8, we have (since the level of the vacuum 1 is 
0 = 
n = 0)∣∣〈1,T[N ]1〉B − q

∑n
j=1 jwt aj · F (0)((ã1, ζ1), . . . , (ãn, ζn))

∣∣ ≤ qN/4�(n,q, z)
=: εMPS0(n, q, z,N)

This means that for primary fields {aj }nj=1, the MPS approximates a (scalar multiple) of 
the genus-0 n-point vacuum-to-vacuum correlation function (see Observation 3.1) with error 
(cf. (78) for the definition of �(n, q, z))

εMPS0(n, q, z,N)= qN/4 · n · κ ·
(

max
1≤j≤n

√|IB(j) | · ϑj (√q, z)
1 − √

q

)n
where z= e−d0eiθ , q = e−d . (97)

Consider now the genus-1 case. Here we have to additionally cut off the Hilbert space dimension 
at some level M ∈ N. Comparing the rhs. of Eq. (96) with Eq. (9), we see that they agree. 
Correspondingly, we have (with Lemma 5.12) an MPS σMPS1 such that

σMPS1(|k1〉 ⊗ |k2〉 ⊗ · · · ⊗ |kn〉)= TrBP
[M]
B T[N ]rL0 .

But according to Lemma 5.10, the latter expression approximates a correlation function (see 
Observation 3.2)∣∣TrBP

[M]
B T[N ]rL0 − pc/24F (1)p ((ã1, ζ1), . . . , (ãn, ζn))

∣∣ ≤ εMPS1(n, q, z, r,N,M)

with error
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εMPS1(n, q, z, r,N,M)=
(
nκ qN/4 rc/24ZB(r)+ rM/2rc/12ZB(

√
r)
)

·
(

max
1≤j≤n

√|IB(j) | · ϑj (√q, z)
1 − √

q

)n
. (98)

Thus the MPS σMPS1 approximates the correlation genus-1-correlation function, as claimed. �
5.3.2. Scaling of the required bond dimension

Having constructed an MPS for approximating CFT correlation functions, we will next dis-
cuss the relationship between the bond dimension, the approximation accuracy, and parameters 
of the CFT. Recall that the finite-dimensional MPS approximates the exact correlation function 
(with prefactors) with error εMPS0 (cf. (97)) in the genus-0 case and with error εMPS1 (cf. (98)) 
in the genus-1 case. Both quantities depend on

(i) the number n of insertions. (In the case of a full CFT, the number n can be replaced by 
the number of non-trivial insertions, i.e., those not equal to the vacuum vector – see the 
discussion in Section 6.3.3.)

(ii) the minimal distance d between insertion points (via q = e−d) and the offset d0 (see Fig. 2). 
(Alternatively, we may use the length L of the interval considered: according to Obser-
vation 3.1, the number of insertions is equal to n = L/d, where d is again the minimal 
distance between two insertion points.) Its inverse 1/d may be interpreted as the maximal 
precision and hence an upper bound on the momentum observed; the continuum limit cor-
responds to d → 0. In addition, in the genus-1 case, we have a regularization parameter 
0 < r ≤ 1 (which determines the diameter of the torus via p = re−nd). In the limit d → 0, it 
is natural to set this to an exponentially small value in d. For concreteness, we will choose 
r = q1/2 = e−d/2.

(iii) the CFT under consideration, in terms of the boundedness parameters ϑj .
(iv) the truncation parameter N ∈ N0, and, in the genus-1-case, the cutoff parameter M ∈ N0. 

We will treat both on the same footing by setting M = 0 for genus-0 vacuum-to-vacuum 
correlation functions (see remark after Lemma 5.11).

The quantities (i) and (ii) determine the correlation function under consideration. In a first step, 
we will substitute (iv) by

(iv′) the bond dimension D of the MPS, determined by

D = dB(M + nN) .
Here we assume translation-invariance for simplicity, i.e., the modules B(j) = B are all iden-
tical for j = 1, . . . , n. According to Lemmas 5.11 and 5.12, this bond dimension is sufficient 
to yield an MPS with error εMPS .

We stress that (iv′) depends on the dimension of the weight spaces, which in turn is determined 
by the CFT under consideration. Indeed, the following analysis shows that (iv′) is the most sig-
nificant dependence on the CFT (rather than (iii)). In the following, we will use a simple upper 
bound on the growth of the weight spaces of modules (i.e., the function dB(·)). Its dependence 
on the VOA V in question is captured by the quantity

CV = dimV/C2 , C2 = span{u−2v | u,v ∈ V} .
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We then have the following statements:

Corollary 5.13.

(i) The constructed MPS requires a bond dimensionD scaling polynomially in 1/ε, where ε > 0
is the approximation accuracy (i.e., εMPS ≤ ε). The degree of the polynomial depends lin-
early on each of the parameters CV , the number of insertions n, and the inverse distance 1/d
between insertions. That is, there are constants �1, �2 > 0, such that a bond dimension of

D ≈�1 · (1/ε)�2 CV n
d

is sufficient to yield accuracy ε.
(ii) For a fixed approximation accuracy ε > 0, the required bond dimension D grows sub-

exponentially with the number n of insertions (or the number of non-trivial insertions in 
the full CFT case, see Section 6.3.3), and the rate of growth is determined by CV . More 
precisely, there is a constant � =�(ε) > 0 such that

D ≈� · e π3
√
CVn (99)

is sufficient to yield the desired accuracy.

In particular, for a fixed interval length L, the dependence of the bond dimension on the in-
verse 1/d = n/L of the minimal distance between insertion points is sub-exponential.

Remarkably, the dependence of the required bond dimension on the VOA V is reduced to a 
single parameter CV . In some sense, this quantity determines the difficulty of approximation; 
because of its direct link to the bond dimension, it appears to represent a measure of the amount 
of correlations and/or entanglement encoded in correlation functions. Following Gaberdiel and 
Neitzke [63, p. 324], we can interpret the parameter CV roughly as the number of degrees of free-
dom of our theory if counted using free fermions for comparison. This matches the assumption 
that a theory with more degrees of freedom should require a larger bond dimension.

If the quantity CV could be replaced by the central charge c of the corresponding representa-
tion of the Virasoro algebra acting on the module B , these bounds would be closer to what may 
be conjectured based on results found in the literature: a bound similar to (99) would imply that 
the bond dimension scales as the density of states of the CFT (with 1/d being the correspond-
ing energy). The latter is given by the famous formula of Cardy in the context of BTZ black 
holes [72]. Indeed, this formula was also employed by Zaletel and Mong [22] for a more heuris-
tic argument to get an estimate on the bond dimension in the context of quantum Hall physics. 
Unfortunately, though, only partial results are known that connect CV to the central charge c. 
Gaberdiel and Neitzke [63] have shown that it is an upper bound on the effective central charge,

c− 24 min(wt b : b ∈ B)≤ CV
2
.

However, we do not know how tight this bound is, nor can we explain appearance of the factor 
of one half.

Let us also mention that intuitively, we could also expect that the scaling of the bond dimen-
sion is related to the well-known entropy formula by Holzhey et al. and Calabrese and Cardy [73,
74]. This states that the von Neumann entropy of the reduced density matrix of a line of length L
of a full conformal field theory should scale as c/3 logL, with c the central charge of the theory. 
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However, as noted in [75], a bound on the von Neumann entropy is usually not sufficient to get 
a rigorous estimate on the required bond dimension. Moreover, here our aim is not to approx-
imate the path integral description of the reduced density matrix, but rather to get approximate 
expressions for correlation functions.

Proof. Let us first consider the bond dimension D of the MPS. Eq. (27) implies the bound

D = dBj (M + nN)≤ (dimB0) ·
∑

1≤l≤M+nN
P (l,CV ) ,

where dimB0 is the dimension of the top level of the module B . Inserting the (pretty rough) 
upper bound on the multi-partition function P(n, CV) obtained in Lemma A.1 in the appendix, 
we can further bound this by

D ≤ (dimB0)(M + nN)e2π
√
CV

6 (M+nN)
. (100)

The bound (100) implies a sub-exponential growth of the bond dimension with the truncation 
parameters M, N . However, the approximation errors εMPS0 , εMPS1 (cf. (97), (98)) scale expo-
nentially in these parameters. This amounts to saying that the bond dimension scales at most 
polynomially within the approximation error.

More precisely, recall from (97) that εMPS0 is proportional to qN/4 = e−dN/4, and thus de-
cays exponentially with a rate determined by the minimal distance d between the insertions, see 
Fig. 1 (b). For the genus-1 correlation function, we choose the cutoff level to be M =N , and the 
regularization parameter r = q1/2 = e−d/2. Then both in the genus-0 and genus-1-case, we have

εMPS ≤ (constant) · e−dN/4 . (101)

In particular, combining this with (100), we find that for a fixed approximation guarantee ε, 
a bond dimension of roughly

D � (constant)
n+ 1

d
log

(
1

ε

)
e

2π

√
CV

2(n+1)
3d log

(
1
ε

)
� (constant)

(
1

ε

)CV
4π(n+1)

3d

is sufficient (for a fixed number of insertions n). This is the claim (i). Similarly, for a fixed 
approximation accuracy ε > 0, Eq. (101) fixes N and thus the bond dimension D by (100). The 
claim (ii) then follows (neglecting logarithmic terms). �
5.4. Intertwiners and G-invariant MPS for WZW models

We end this section with a discussion of the MPS approximation in the case of our main 
example, the WZW models. We are interested in the case where S is the subspace of top-level 
vectors in an irreducible module. The following statement characterizes the degrees of freedom 
that scaled intertwiners have in this case. It also applies to truncated scaled intertwiners, and thus 
characterizes MPS for WZW-models.

Proposition 5.14. Consider a WZW model with internal symmetry group G (a compact Lie 
group), specified by the Lie algebra g. For j = 1, 2, 3, fix integral dominant weights λj such 
that λj (θ) ≤ k. Let Lk,λj be the corresponding Lk,0-module, and recall (cf. Section 2.3.2) that 
the top-level Vj = Lk,λj (0) is an irreducible g-module. Let Uj :G → GL(Vj ) be the associated 
unitary representation of G. Let S = Lk,λ3(0) be the top level in the module Lk,λ3 . Then there is 
a one-to-one correspondence between
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(i) G-intertwining maps W : V3 ⊗ V2 → V1
(ii) S-bounded intertwiners W(·, z) : S→ End(Lk,λ2 , Lk,λ1){{z, z−1}}.

More precisely, the correspondence is given by the identity

W(ϕ3 ⊗ ϕ2)= zτ q− 1
2

∑3
j=1 hλj · P [0]

1 Wq(ϕ3, z)P
[0]
2 ϕ2 (102)

for ϕ2 ∈ V2 = Lk,λ2(0) and ϕ3 ∈ S = V3 = Lk,λ3(0), where τ = hλ3 + hλ2 − hλ1 .

Observe that the expression on the rhs. of Eq. (102) can be written in terms of the truncated 
scaled intertwiner W[N ]

q with truncation parameter N = 0 if the vectors belong to the top levels, 
i.e.,

P
[0]
1 Wq(ϕ3, z)P

[0]
2 ϕ2 = W[0]

q (ϕ3, z)ϕ2 for ϕj ∈ Lk,λj (0) . (103)

In other words, a scaled intertwiner W[N ]
q truncated at N = 0 determines a G-intertwining map 

and vice versa. As discussed in Section 2.2, the latter describe G-invariant MPS. That is, part 
of the approximation procedure for WZW models involves the construction of a group covariant 
MPS. Conversely, for every such MPS – or rather for every group-covariant isometry associated 
with it – we can uniquely construct an intertwiner for a WZW model. In Appendix B, we describe 
a constructive algorithm for this purpose.

We remark that in fact, it is possible to extend Proposition 5.14: a G-intertwining map W :
V3 ⊗ V2 → V1 actually determines the whole intertwiner Y (defined beyond the subspace S) of 

type 
( Lk,λ1

Lk,λ3 Lk,λ2

)
. This follows by extending the algorithm in Appendix B along the lines of [76]. 

Here we restrict to S-bounded scaled intertwiners for concreteness and since this is our main 
object of interest.

The proof of Proposition 5.14 involves standard arguments: the constructive algorithm is an 
explicit application of Zhu’s theory [36,52], and can also be seen as the generalization of Huang’s 
arguments for minimal models [76]. It is based on the observation that the matrix elements of 
the zero-mode fixes all other matrix elements by the local symmetry properties as defined by the 
affine Lie algebra ĝ. The argument is presented in Appendix B. For completeness, here we argue 
one direction of Proposition 5.14: every scaled intertwiner W defines a G-intertwining map W
by restriction of the zero mode to the top levels.

Proof. According to Proposition 4.3, an intertwiner Y of type 
( Lk,λ1

Lk,λ3 Lk,λ2

)
is S-bounded, and 

we obtain a scaled S-bounded intertwiner W(·, z). It will be convenient to work with the inter-
twiner Y instead of its scaled version. Since scaling amounts to the introduction of additional 
factors when considering homogeneous vectors (which is sufficient for this purpose), we can re-
late the rhs. of Eq. (102) to the zero-mode y(·)τ,0 of Y(a, z) = ∑

m∈Z y(a)τ,0z−m−τ−n: we have 
with (103)

P
[0]
1 Wq(ϕ3, z)P

[0]
2 ϕ2 = P [0]

1 W[0](P [0]
3 ϕ3, z)P

[0]
2 ϕ2

= q(hλ1+hλ2+hλ3 )/2z−τ y(ϕ3)τ,0ϕ2 .

Here we used that elements of the top level Lk,λj (0) have weight hλj , and y(ϕ3)τ,0ϕ2 also belongs 
to the top level for ϕ2 ∈ Lk,λ2(0). Statement (102) then expresses the fact that a G-intertwiner W :
V3 ⊗ V2 → V1 is uniquely determined by

P
[0]
1 y(P [0]

3 ·)τ,0P [0]
2 : Lk,λ3(0)→ End(Lk,λ2(0),Lk,λ1(0)) , (104)
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and vice versa. We call (104) the restriction of the zero-mode of Y to the top levels. In this 
language, Eq. (102) takes the form

W(ϕ3 ⊗ ϕ2)= P [0]
1 y(P [0]

3 ϕ3)τ,0P
[0]
2 ϕ2 = y(ϕ3)τ,0ϕ2 , (105)

for vectors ϕj ∈ Lk,λj (0), j = 2, 3 belonging to the top level. This is because the projections P [0]
j , 

j = 2, 3 leave these vectors invariant and application of the zero-mode does not change the 
weight, resulting in a vector again belonging to the top level.

Given an intertwiner Y(a, z) = ∑
m∈Z y(a)τ,0z−m−τ−n of type 

( Lk,λ1
Lk,λ3 Lk,λ2

)
, define a linear 

map W : V3 ⊗ V2 → V1 by (105). We claim that W is a G-intertwining map. (The converse 
direction will be shown in Appendix B.)

It follows from Eq. (44) that for a ∈ g we have

W(aϕ3 ⊗ ϕ2)= aW(ϕ3 ⊗ ϕ2)−W(ϕ3 ⊗ aϕ2) , for all ϕj ∈ Vj = Lk,λj (0) ,

where we denote the action of a ∈ g ⊂ ĝ on the irreducible module Lk,λi , i = 1, 2, 3 by the same 
letter as the corresponding Lie algebra element. (Note that these operators also do not change the 
weight.) Exponentiating, we conclude that the operator W satisfies

W (U3(g)⊗U2(g))=U1(g)W , for all g ∈G ,
where Ui : G → GL(Vi), i = 1, 2, 3, are the irreducible unitary representations of the com-
pact Lie group G. Hence the operator W intertwines irreducible group representations of G, as 
claimed. �
6. Finitely correlated states for full CFTs

Using VOAs, we have established a faithful MPS representation of chiral CFTs. These de-
scribe fields depending holomorphically on the coordinates; antiholomorphic fields are not in-
corporated into this framework. In the following, we describe how to extend these results to 
a full CFT containing both holomorphic and antiholomorphic fields (also referred to left- and 
right-movers).

6.1. Background: VOAs and conformal full field algebras

We again restrict our attention to the complex plane as well as the torus, where a rigorous 
construction of CFTs has been given by Huang and Kong [35,67] in terms an algebraic object 
called a conformal full field algebra. In contrast, the algebraic construction of CFTs on higher-
genus surfaces remains a topic of ongoing research, but see the work of Fuchs, Runkel and 
Schweigert [77].

We only briefly sketch the pertinent ingredients in this construction and refer the interested 
reader to [35,67]. Following the seminal work of Belavin, Polyakov and Zamolodchikov [41], 
one starts with a symmetry algebra being a product of two chiral factors (associated with left-
and right-movers) and studies its representations. The factors each contain a copy of the Vi-
rasoro algebra, whose generators {LLn }n respectively {LRn }n are the Laurent modes of a chiral 
respectively antichiral field (i.e., the energy-momentum tensor). The whole set of fields consists 
of conformal families that are obtained as descendants of some number of primary fields. As 
discussed in the introduction (see Section 1.1), correlation functions (or ‘insertions’) depend on 
two a priori independent variables z, ̄z ∈ C. In the statistical mechanics (Euclidean) case we will 
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choose z̄ to be the complex conjugate of z, whereas for relativistic theories, both parameters stay 
independent, but real and imaginary part are equal to the lightcone variables before compactify-
ing the space–time.

6.1.1. Conformal full field algebras
In the terminology of VOAs, a CFT on the plane (or more precisely, a conformal full field 

algebra as defined in [35]) can be constructed starting from two VOAs VL = (VL, YL, 1L, ωL)
and VR = (VR, YR, 1R, ωR) satisfying our main technical assumptions: they are rational and 
C2-cofinite, and we assume that they are unitary. Given two such VOAs, one obtains a VOA VL⊗
VR by setting

1 = 1VL ⊗ 1VR , ω= ωVL ⊗ 1VR + 1VL ⊗ωVR
and

Y(vL ⊗ vR, z)= YL(vL, z)⊗ YR(vR, z) .

Observe also that if AL and BR are modules of VL and VR , respectively, then AL ⊗BL defines 
a module for the VOA VL ⊗ VR .

6.1.2. The full CFT space
A CFT based on VL ⊗ VR is determined by a module H of the VOA VL ⊗ VR and an in-

tertwiner Y of type
( H
H H

)
. Let us first discuss properties of the module H. Under the given 

technical assumptions, H decomposes (see [35, Corollary 2.2]) as

H ∼=
⊕
j

(A[j ] ⊗B[j ]) (106)

into tensor products of irreducible modules A[j ] of VL and B[j ] of VR (in contrast to [35], 
we include multiplicities in this sum). Importantly, this is a finite sum for the VOAs of interest, 
since rational VOAs only have finitely many non-isomorphic irreducible modules [32]. As for 
the VOAs VL and VR , we assume that the modules A[j ] of VL and B[j ] of VR are unitary 
modules. Hence they are equipped with a positive-definite sesquilinear form, as well as with 
an anti-unitary involution. Upon completion with respect to the positive-definite form, they turn 
into Hilbert spaces with inner product defined by the extension of the positive definite form to the 
completion. As in the chiral case, in the following we do not differentiate between the module A
and its Hilbert space completion.

We denote the images of 
⊕
j (LA[j ],n ⊗ idB[j ]) and 

⊕
j (idA[j ] ⊗ LB[j ],n) under the isomor-

phism (106) by LLn : H → H and LRn : H → H, respectively. The operators LL0 and LR0 give 
an N0 ×N0-grading of the Hilbert space

H =
⊕

(nL,nR)∈N0×N0

H(nL,nR) where H(nL,nR) =
⊕
j

H(nL,nR),j . (107)

A vector ψ ∈H(nL,nR),j satisfies

LL0ψ = (hA[j ] + nL)ψ LR0 ψ = (hB[j ] + nR)ψ ,
where hA[j ] and hB[j ] denote the highest weights of A[j ] and B[j ], respectively. The spaces 
H(nL,nR),j are given by

H(nL,nR),j =A[j ]nL ⊗B[j ]nR
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We will set

Ln ≡ LLn +LRn for n ∈N0 . (108)

As before, a vector ψ ∈ H is called homogeneous if it is an eigenvector of the operator L0. The 
eigenvalue is called the weight of ψ and denoted wt ψ , i.e.,

L0ψ = (wt ψ)ψ .

It follows that weights are of the form hA[j ] + hB[j ] + n for some j and some integer n ∈ N0. 
Finally, we mention that primary vectors ψ ∈ H are defined (as before) by the property that

Lnψ = 0 for all n > 0 .

Diagonally glued CFTs and uniqueness of vacuum In fact, the decomposition (106) of the 
full CFT module H can be refined. Denoting by {A[α]}α∈V̂L the set of equivalence classes of 
irreducible modules of the VOA VL, and by {B[β]}β∈V̂R those of the VOA VR , we have

H ∼=
⊕

α∈V̂L,β∈V̂R
mα,βA[α] ⊗B[β] (109)

for some integer multiplicities mα,β ∈N0. Physical considerations [45] then further demand that 
there exists an injective map σ : V̂L → V̂R such that only pairs of the form (α, β) = (α, σ(α))
appear in (109), that is, we have

H ∼=
⊕
α∈V̂L

mαA[α] ⊗B[σ(α)] (110)

for some integers mα . In the following, we will focus (following [35, Section 3]) on CFTs of 
this form, where VL = VR = V , and B[σ(α)] =A[α]′ is the contragredient module of the mod-
ule A[α]. The decomposition (106) then takes the form

H ∼=
⊕
j

(A[j ] ⊗A[j ]′) , (111)

where the index j now runs over the set of irreducible modules as well as counting multiplicities. 
Such CFTs obtained by “diagonally gluing” chiral and anti-chiral parts are sometimes referred 
to as “diagonal theories” [46].

Finally, we also add the following assumption on our full CFT: We require that the direct sum 
decomposition of Eq. (110) contains one and only one summand equal to the tensor product of 
the adjoint module V with its corresponding contragredient module V ′, and all other appearing 
modules are not equal to the adjoint module V or V ′. This amounts to saying that there is a unique 
vacuum state 1 ⊗ 1′ ∈ H. This vector plays a particular role, see (114).

6.1.3. Full CFT intertwiner
Given the intertwiner Y of 

( H
H H

)
, where H is a module of VL ⊗ VR , the full (CFT-)inter-

twiner is given by a formal Laurent-like series in two indeterminates z and z̄. It is given by the 
expression

Y(ψ, (z, z̄))= zLL0 z̄LR0 Y(ψ,1)z−LL0 z̄−LR0 for ψ ∈H . (112)

This object obeys similar properties as usual intertwiners. Most importantly for our purposes, the 
following analog of (18) holds for dilations:
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qL0Y(ψ, (z, z))q−L0 =Y(qL0ψ, (qz, qz)) . (113)

In addition, the full intertwiner Y has the property that on the vacuum vector 1 ⊗ 1′, it evaluates 
to the identity (irrespective of the formal parameters (z, ̄z)), that is (see [35])

Y(1 ⊗ 1′, (z, z̄))= IH . (114)

One implication of (114) is that insertions of the vector 1 ⊗ 1′ in a correlation function (see 
Sec. 6.1.4) do not affect the value of the correlation function and can be removed.

The full CFT intertwiner Y can be decomposed into constituent intertwiners, as follows. De-
noting the isomorphism (106) by γ : ⊕j (A[j ] ⊗ B[j ]) → H and omitting superscripts {L, R}
for notational convenience, it can be shown (see [35, Proposition 2.3]) that the intertwiner (112)
has the form

Y(γ (ãj ⊗ b̃j ), (z, z̄))γ (ak ⊗ bk)
=

∑



γ

([
A[
]

A[j ]A[k]
]
(ãj , z)ak ⊗

[
B[
]

B[j ] B[k]
]
(b̃j , z̄)bk

)
,

for ãj ∈ A[j ], b̃j ∈ B[j ] and ak ∈ A[k], bk ∈ B[k], for some intertwiners 
[ A[
]
A[j ] A[k]

]
of type ( A[
]

A[j ] A[k]
)
, and intertwiners 

[ B[
]
B[j ] B[k]

]
of type 

( B[
]
B[j ] B[k]

)
. In the following, we also omit explic-

ity writing the isomorphism, i.e., we write this decomposition as

Y(ãj ⊗ b̃j , (z, z̄))ak ⊗ bk =
∑



[
A[
]

A[j ]A[k]
]
(ãj , z)ak ⊗

[
B[
]

B[j ] B[k]
]
(b̃j , z̄)bk .

In the special case of a diagonal CFT, intertwiners have the form

Y(·, (z, z̄)) :H → End(H){{z, z−1, z̄, z̄−1}} (115)

where

Y(aj ⊗ a′
j , (z, z̄))bk ⊗ b′

k =
∑



[
A[
]

A[j ]A[k]
]
(aj , z)bk ⊗

[
A[
]′

A[j ]′ A[k]′
]
(a′
j , z̄)b

′
k (116)

for aj ∈A[j ], a′
j ∈A[j ]′, and bk ∈A[k], b′

k ∈A[k]′. We call the VOA intertwiners appearing in 
this decomposition the constituents of the CFT intertwiner Y.

6.1.4. Correlation functions of full CFTs
As in the chiral case, correlation functions of full CFTs are obtained by evaluating matrix 

elements of formal Laurent series with coefficients in the endomorphisms on H, and then setting 
the indeterminates to values given by complex numbers. The question of convergence has to be 
addressed again, but due to the decomposition (115), this can be reduced to convergence proper-
ties of the chiral and anti-chiral part (see [35] as well as [67] for a detailed discussion). As in the 
chiral case, we will use the same letters for the indeterminates and their complex valued counter-
parts, with the understanding that whenever matrix elements or operators on Hilbert spaces are 
considered, then complex numbers are used.

Correlation functions of the full CFT are specified by a sequence of the full intertwiner, 
evaluated at different values of complex numbers (z1, ̄z1), . . . , (zn, ̄zn) and at different elements 
ψ1, . . . , ψn ∈ H. As for the chiral case, we consider genus-0 or genus-1 correlation functions. 
For the genus-0 case, the vacuum-to-vacuum correlation function is

F
(0)
((ψ1, z1, z̄1), . . . , (ψn, zn, z̄n))= 〈1 ⊗ 1′,Y(ψ1, z1, z̄1) · · ·Y(ψn, zn, z̄n)1 ⊗ 1′〉 .
H
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Correspondingly, the genus-1 case is given as the trace of such a sequence of intertwiners, again 
scaled by a factor p using the dilation operator defined by (108), i.e.,

F
(1)
p,H((ψ1, z1, z̄1), . . . , (ψn, zn, z̄n))

= TrH

(
Y(z

LL0
1 z̄

LR0
1 ψ1, z1, z̄1) · · ·Y(zL

L
0
n z̄

LR0
n ψn, zn, z̄n)p

L0−2c/24
)
.

We again assume that ψ1, . . .ψn ∈ S , where S ⊂ H is a finite-dimensional subspace of the full 
module H, consisting of primary vectors.

As in the chiral case, we assume that our insertion points are separated by a minimal distance. 
More precisely, we consider the setup illustrated in Figs. 1 and 2, respectively. That is, the vari-
ables ζi lie on a line of fixed imaginary part θ – either in the plane or on the periodic strip – and 
are separated by a minimal distance d. As explained before, the variable z̄ is set to be equal to 
the complex conjugate of z. Applying again either the conformal mapping z �→ e−z (in the case 
of the plane) or the principal branch of the complex logarithm (for the periodic strip) to both the 
variables ζ and ζ̄ leads to the following analogue of Observations 3.1 and 3.2.

Observation 6.1. Let S ⊂ H be a finite-dimensional linear subspace of primary vectors of the 
Hilbert space of the full CFT, and ψ1, . . . , ψn ∈ S homogeneous elements. Then the vacuum-to-
vacuum correlation functions of n equally spaced points ζ1, . . . , ζn on a line with offset d0 and 
minimal distance d can be expressed as

F
(0)
H ((ψ1, ζ1, ζ

∗
1 ), . . . , (ψn, ζn, ζ

∗
n ))=

= |z|2
∑
j wt ψj q

∑
j jwt ψj 〈1 ⊗ 1′,Y(ψ1, ζ

′
1, ζ̄

′
1) · · ·Y(ψn, ζ ′

n, ζ̄
′
n)1 ⊗ 1′〉

with the identification 0 < q = e−d < 1, z = e−d0eiθ , ζ ′
j = zqj , ζ̄ ′

j = (ζ ′
j )

∗. Similarly, the cor-
relation function of n equispaced points ζ1, . . . , ζn within the periodic strip of height 2π and 
length log(1/p) for these elements ψ1, . . . , ψn is given by

F
(1)
p,H((ψ1, zq, z̄q), . . . , (ψn, zq

n, z̄qn))=
= |z|2

∑
j wt ψj q

∑
j jwt ψj TrH

(
Y(ψ1, ζ

′
1, ζ̄

′
1) · · ·Y(ψn, ζ ′

n, ζ̄
′
n)p

L0−c/12
)

under the identifications z = ed0+iθ , ζ ′
j = zqj , ζ̄ ′

j = (ζ ′
j )

∗ and the assumption |z| > 1, q =
e−d < 1.

The convergence of the formal Laurent series with indeterminates replaced by complex num-
bers as above follows from the results on chiral VOAs, see [35] as well as [67].

As in the chiral case, the transformed correlation functions motivate the definition of scaled 
intertwiners. Correlations functions can then again be expressed as sequences of these scaled 
intertwiners, which are combined to the definition of appropriate transfer operators. Our analysis 
then continues as before, by first approximating the scaled intertwiner and the corresponding 
transfer operator, and finally truncating the Hilbert space.

6.2. Matrix product tensor networks for full CFTs

We proceed to construct a matrix product tensor network approximating the correlation func-
tions of a full CFT. In Section 6.3 we then show how this tensor network can be interpreted as 
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a finitely correlated state. Once again, the expression “state” should not be taken literally, as the 
normalization depends on the correlation function.

The definitions and results for the chiral case can be generalized with minimal adaptations 
to full CFTs. A main difference is that all expressions depend both on (z, ̄z), and truncations 
have to be defined with respect to the N0 ×N0-grading of H. Nevertheless, most proofs directly 
generalize to this setting. For conciseness, we only present the arguments that deviate from the 
chiral case and omit derivations that are completely analogous.

In analogy to the definitions for the chiral case, we will first introduce the concept of a scaled 
intertwiner, as well as the corresponding transfer operator. As before, we will usually assume 
that the subspace S in the following definitions is spanned by primary vectors and contains the 
vacuum vector 1 ⊗ 1′. Moreover, we assume that S has the form

S ∼=
⊕
j

S[j ] ⊗ S[j ]′ , (117)

where S[j ] ⊂A[j ] is a finite-dimensional subspace of primary vectors, and S[j ]′ ⊂A[j ]′ is the 
image of S[j ] under the isomorphism η̃ :A[j ] →A[j ]′ introduced in (32). Using the definitions 
of Section 2.3.3, it is straightforward to check that S[j ]′ also consists of primary vectors.

6.2.1. Scaled intertwiners and correlation functions
The scaled intertwiner as well as the associated transfer operator are introduced as formal 

Laurent series, which turn into well-defined operators on H once the formal indeterminates are 
replaced by complex numbers.

Definition 6.2. Consider a full CFT obtained by diagonally gluing chiral and anti-chiral parts. 
For 0 < q < 1 and a linear subspace S ⊂ H of the form (117), define the scaled intertwiner Wq

as the linear map from S to formal Laurent-like series with coefficients in the endomorphism 
of H,

Wq(·, (z, z̄)) : S → End(H){{z, z−1, z̄, z̄−1}}
ψ �→ Wq(ψ, (z, z̄))= qL0/2Y(qL0/2ψ, (z, z̄))qL0/2 .

Using this scaled intertwiner, we can then proceed to introduce transfer operators as in Defi-
nition 3.4. In contrast to Definition 3.4, this is based only on one type of intertwiner, which is the 
full CFT intertwiner Y.

Definition 6.3 (Transfer operators for the full CFT). Let S ⊂ H be a subspace spanned by pri-
mary vectors. Let 0 < q < 1 and let Wq be the scaled intertwiner of a CFT on a Hilbert space H. 
For any ψi ∈ S, i = 1, . . . , n, define the transfer operator T with insertions {ψi}ni=1 as the ele-
ment

T ∈ End(H){{z1, z
−1
1 , z̄1, z̄

−1
1 , . . . , zn, z

−1
n , z̄n, z̄

−1
n }}

given by

T =Wq(ψ1, (z1, z̄1)) ◦ · · · ◦Wq(ψn, (zn, z̄n)) .

Then, as before, the genus-0 and genus-1 correlation functions are encoded in the transfer 
operator in the following sense (compare to Corollary 3.6 and Corollary 3.7).
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Corollary 6.4 (Exact reproduction of CFT correlation functions). Let z, ̄z ∈ C\{0} be two com-
plex numbers and 0 < q < 1 such that 0 < q <min{1/|z|2, 1/|z̄|2}. Let T be the full CFT transfer 
operator with insertions {ψi}ni=1 as in Definition 6.3, with the indeterminates replaced by z and 
z̄ respectively. Then we have for the genus-0 case

〈1 ⊗ 1′,T1 ⊗ 1′〉 = q
∑
j jwt ψj F

(0)
H ((ψ̃1, ζ

′
1, ζ̄

′
1), . . . , (ψ̃n, ζ

′
n, ζ̄

′
n)) , (118)

and for the genus-1 case with 0 < r ≤ 1

TrHTrL0 = pc/12F
(1)
p,H

(
(ψ̃1, ζ

′
1, ζ̄

′
1), . . . , (ψ̃n, ζ

′
n, ζ̄

′
n)
)

(119)

with the identifications

ψ̃i = qL0/2ψ and ζ ′
j = zqj , ζ̄ ′

j = z̄qj for j = 1, . . . , n ,p = rqn . (120)

Proof. The proof of this statement is analogous to the proof of Lemma 3.5 and Corollaries 3.6
and 3.7; it is a direct consequence of (113) and will be omitted here. �

We proceed to argue that the concept of bounded intertwiners also generalizes to full CFTs.

6.2.2. Bounded intertwiners for full CFTs
As in the chiral case, in order to establish bounds for the approximation of full CFT correlation 

functions by finite-dimensional MPS, we need bounds on the norms of operators appearing in 
the definition of the transfer operator. Accordingly, we first introduce an analogous notion of a 
bounded intertwiner.

Definition 6.5. Let Y be the full CFT intertwiner of a CFT on a Hilbert space H, and let S ⊂ H
be a linear subspace. Let Wq be the associated scaled intertwiner (Definition 6.2). We call Y
S-bounded if for all z, ̄z ∈ C\{0} and 0 < q < min{|z|2, 1/|z|2, |z̄|2, 1/|z̄|2}, there is a constant 
�(q, (z, ̄z)) such that

‖Wq(ψ, (z, z̄))‖ ≤�(q, (z, z̄)) · ‖ψ‖H for all ψ ∈ S .

The following result implies that S-boundedness can be established by considering only in-
tertwiners associated with a chiral part of the CFT (cf. (116)).

Lemma 6.6. Let Y be the full CFT intertwiner of a diagonally glued CFT on a Hilbert space H, 
and let S ⊂ H be a linear subspace of the form (117). Then Y is S-bounded if and only if each 
constituent is either S[j ]- or S[j ]′-bounded, depending on its type.

Assume that the VOA V = VL = VR satisfies all our technical assumptions. Then Lemma 6.6, 
when combined with Corollary 4.4, implies that Y is S-bounded for any finite-dimensional sub-
space of the form (117).

Proof. Inserting the definitions, we find the following expressions for the full scaled intertwiner 
Wq ,

Wq(aj ⊗ a′
j , (z, z̄))(bk ⊗ b′

k)=
=

∑
qL0/2

[
A[
]

A[j ]A[k]
]
(qL0/2aj , z)q

L0/2bk
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⊗ qL′
0/2

[
A[
]′

A[j ]′ A[k]′
]
(qL

′
0/2a′

j , z̄)q
L′

0/2b′
k

=
∑



W

[



j k

]
q

(aj , z)bk ⊗ W′
[



j k

]
q

(a′
j , z)b

′
k ,

for aj ∈ S[j ] ⊂ A[j ], a′
j ∈ S[j ]′ ⊂ A[j ]′, bk ∈ A[k] and b′

k ∈ A[k]′. In this identity, W
[ 

j k

]
q

is the q-scaled version of the intertwiner
[ A[
]
A[j ] A[k]

]
, and, analogously, W′[ 


j k

]
q

is the scaled 

version of
[ A[
]′
A[j ]′ A[k]′

]
. We conclude that

Wq(aj ⊗ a′
j , (z, z̄))=

∑
k,


W

[



j k

]
q

(aj , z)⊗ W′
[



j k

]
q

(a′
j , z) (121)

where each of the summands is an operator supported on A[k] ⊗A[k]′. By the triangle inequal-
ity and the assumption that the constituents are S[j ]- or S[j ]′-bounded, we get for normalized 
vectors aj ∈ S[j ] and a′

j ∈ S[j ]′ the inequality

‖Wq(aj ⊗ a′
j , (z, z̄))‖ ≤

∑
k,


∥∥W

[



j k

]
q

(aj , z)
∥∥ · ∥∥W′

[



j k

]
q

(ã′
j , z)

∥∥
≤

∑
k,


ϑjk
(q, z)ϑ
′
jk
(q, z̄) ,

where ϑjk
(q, z) and ϑ ′
jk
(q, ̄z) are the boundedness parameters of the constituents.

Consider a general element ψ ∈ S , which can be decomposed into

ψ =
∑
jrs

cjrsajr ⊗ a′
js , with ajr ∈ S[j ] , a′

js ∈ S[j ]′ , (122)

where we assume that for each fixed j , the vectors ajr (resp. a′
js ), r, s = 1, . . . , dimS[j ], form a 

orthonormal basis of the space S[j ] (resp. of S[j ]′) and thus

‖ψ‖2
H =

∑
jrs

|cjrs |2 .

Inserting the decomposition into the expression for the full scaled intertwiner, we find

‖Wq(ψ, (z, z̄))‖H ≤
∑
jrs

|cjrs | · ‖Wq(ajr ⊗ a′
js , (z, z̄))‖ (123)

≤ ‖ψ‖H ·
√∑
jrs

‖Wq(ajr ⊗ a′
js, (z, z̄))‖2

≤ ‖ψ‖H

√√√√√∑
j

⎛⎝dimS[j ]
∑
k,


ϑjk
(q, z)ϑ
′
jk
(q, z̄)

⎞⎠2

=: ‖ψ‖H ·�(q, z, z̄)
by the Cauchy–Schwarz inequality. Since the sum under the square root only involves a finite 
number of terms by our assumptions on S[j ] and the rationality of the VOA V , the expression 
�(q, z, ̄z) is finite. This proves that if the constituents are S[j ]- or S[j ]′-bounded, respectively, 
then the full scaled intertwiner Wq is S-bounded.
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For the converse, assume that the full scaled intertwiner is bounded with boundedness pa-
rameter �(q, (z, ̄z)). Observe that according to (121), constituents may be obtained by applying 
suitable projections Qj onto the subspaces A[j ] ⊗A[j ]′ ⊂H, i.e., we have

Q
Wq(aj ⊗ a′
j , (z, z̄))Qk = W

[



j k

]
q

(aj , z)⊗ W′
[



j k

]
q

(a′
j , z̄)

Since projections do not increase the norm, we obtain∥∥∥W

[



j k

]
q

(aj , z)⊗ W′
[



j k

]
q

(a′
j , z̄)

∥∥∥ ≤�(q, (z, z̄))‖aj ⊗ a′
j‖H ,

that is,∥∥∥W

[



j k

]
q

(aj , z)

∥∥∥
‖aj‖A[j ]

·

∥∥∥W′
[



j k

]
q

(a′
j , z̄)

∥∥∥
‖a′
j‖A[j ]′

≤�(q, (z, z̄))

for all aj ∈ S[j ] and a′
j ∈ S[j ]′ .

Taking the supremum over aj and a′
j , we conclude that the constituents W

[ 

j k

]
q

and W′[ 

j k

]
q

are S[j ]-bounded and S[j ]′-bounded, respectively, with boundedness parameters satisfying

ϑjk
(q, z)ϑ
′
jk
(q, z̄)≤�(q, (z, z̄)) . � (124)

The preceding proof exemplifies how statements about the full CFT case can be established by 
expressing the scaled intertwiner as a sum of tensor products of scaled intertwiners of the original 
VOA, and then applying the results for the chiral case. Since most statements in this section are 
obtained following this straightforward strategy, we will merely sketch the arguments.

As in the chiral case (see Eq. (68)), the boundedness of scaled intertwiners (Definition 6.5) 
immediately implies the boundedness of the associated transfer operator. More precisely, we 
have for the operator norm of T (cf. Definition 6.3), with insertions ψi ∈ S, i = 1, . . . , n and 
the formal variables replaced by two complex numbers z, z̄ such that z, ̄z ∈ C\{0} and 0 < q <
min{|z|2, 1/|z|2, |z̄|2, 1/|z̄|2} the bound

‖T‖ ≤ (�(q, z, z̄))n
n∏
j=1

‖ψj‖H . (125)

We will use (125) below to estimate the errors when truncating operators.

6.2.3. Approximation results for truncated intertwiners
We next introduce a truncated version of the scaled intertwiner, now for the full CFT. It is 

again defined in such a way that it does not change the grading by more than the truncation 
parameter N . However, the latter notion has to be defined with respect to the N0 × N0-grading 
of the Hilbert space H given in (107). Recall (cf. (116)) that the full CFT intertwiner Y is given 
by a linear combination of tensor products of intertwiners

[ A[
]
A[j ] A[k]

]
and 

[ A[
]′
A[j ]′ A[k]′

]
. To define 

a truncated version, we simply truncate each of these constituent intertwiners. The definition of a 
truncated scaled intertwiner follows accordingly. As in the chiral case, we have to ensure that the 
subspace S is spanned by homogeneous elements, which requires the introduction of a version 
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of Shom for the full CFT case. In complete analogy to Eq. (71), we define

Shom :=
⊕
j

⊕
nL,nR∈N0

(
S ∩ (A[j ]nL ⊗A[j ]′

nR
)
)
. (126)

Definition 6.7 (Truncated intertwiner for full CFT). Let Y be the full intertwiner of a diago-
nally glued CFT with associated Hilbert space H, with action given as in (116). For a linear 
subspace S ⊂ H, let Shom be defined by Eq. (126) and suppose that Y is S-bounded. Then 
for N > 0, the truncated intertwiner

Y
[N ](·, (z, z̄)) :H → End(H){{z, z−1, z̄, z̄−1}}

is defined by

Y
[N ](aj ⊗ a′

j , (z, z̄))bk ⊗ b′
k

=
∑



[
A[
]

A[j ]A[k]
][N ]

(aj , z)bk ⊗
[

A[
]′
A[j ]′ A[k]′

][N ]
(a′
j , z̄)b

′
k

for aj ⊗ a′
j ∈ A[j ] ⊗ A[j ]′ and bk ⊗ b′

k ∈ A[k] ⊗ A[k]′. The associated scaled truncated inter-
twiner (cf. Definition 3.3) is defined by

W
[N ]
q : Shom → End(H){{z, z−1, z̄, z̄−1}}

ψ �→ W
[N ]
q (ψ, (z, z̄)) := qL0/2Y[N ](qL0/2ψ, (z, z̄))qL0/2 ,

for all homogeneous ψ ∈ S , and linearly extended to Shom. We call the family {W[N ]
q }0<q<1 the 

N -th level truncation of W, or simply a truncated scaled intertwiner.

As with intertwiners, we can decompose truncated scaled intertwiners into their constituents; 
those happen to be made up of truncated scaled intertwiners in the chiral sense. More precisely, 
by inserting the definition of Y[N ], we have (using (108))

W
[N ]
q (aj ⊗ a′

j , (z, z̄))(bk ⊗ b′
k)=

∑



W

[



j k

][N ]

q

(aj , z)bk ⊗ W′
[



j k

][N ]

q

(a′
j , z)b

′
k ,

(127)

where each W
[ 

j k

][N ]
q

is a truncated S[j ]-bounded scaled intertwiner of type 
( A[
]
A[j ] A[k]

)
, and 

similarly, each W′[ 

j k

][N ]
q

is a truncated S[j ]′-bounded scaled intertwiner of type 
( A[
]′
A[j ]′ A[k]′

)
. 

Again by reduction to the chiral case (cf. Lemma 5.3), we find that the truncated scaled inter-
twiner is itself bounded.

Corollary 6.8. Let W[N ]
q be the truncated scaled intertwiner of a full CFT, with indeterminates 

replaced by complex numbers z, ̄z ∈ C\{0} such that 0 < q <min{|z|2, 1/|z|2, |z̄|2, 1/|z̄|2}. Then 
we have for ψ ∈ Shom

‖W[N ]
q (ψ, (z, z̄))‖ ≤ ‖ψ‖H�(

√
q, (z, z̄))

1 − √
q

,

where the bound holds for all N ∈ N ∪ {∞}, so in particular also for the non-truncated scaled 
intertwiner.
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Starting from the truncated scaled intertwiner, we immediately get the truncated version of 
the transfer operator. That is, the truncated transfer operator T

[N ] : H → H with insertions 
ψi ∈ S, i = 1, . . . , n, is defined by the composition

T
[N ] =W

[N ]
q (ψ1, (z, z̄)) ◦W[N ](ψ2, (z, z̄)) ◦ · · · ◦W[N ](ψn, (z, z̄)) , (128)

where the formal variables have been replaced by complex numbers z, ̄z ∈ C\{0} satisfying 0 <
q <min{|z|2, 1/|z|2, |z̄|2, 1/|z̄|2}.

In order to establish error bounds on the approximation of CFT correlation functions, we 
need an analogue of Theorem 5.5. In fact, we again can obtain a norm estimate on the difference 
between Wq and W[N ]

q by a reduction to that theorem. Due to its importance for our main result, 
we include a proof of this fact.

Theorem 6.9. Let z, z ∈ C\{0} be such that 0 < q <min{|z|2, 1/|z|2, |z|2, 1/|z|2} and let W[N ]
q

be the N -th level truncation of a scaled intertwiner Wq with boundedness parameter �. Then 
the norm of the difference between the scaled intertwiner and its truncated version is bounded by∥∥Wq(ψ, (z, z))−W

[N ]
q (ψ, (z, z))

∥∥ ≤ qN/4 · � · �(
√
q, (z, z̄))

(1 − √
q)2

· ‖ψ‖H
for all ψ ∈ Shom, where � is a constant only depending on the dimension of S and the number 
of irreducible modules of the VOA V appearing in the decomposition (111) of H.

Proof. Fix some index j in the decomposition (111) of H and let aj⊗a′
j ∈ Shom ∩(A[j ] ⊗A[j ]′)

be arbitrary but normalized. By the triangle inequality, we find∥∥W[N ]
q (aj ⊗ a′

j , (z, z̄))−Wq(aj ⊗ a′
j , (z, z̄))

∥∥ ≤

≤
∑
k,


∥∥∥W

[



j k

][N ]

q

(aj , z)⊗ W′
[



j k

][N ]

q

(a′
j , z̄)− W

[



j k

]
q

(aj , z)

⊗ W′
[



j k

]
q

(a′
j , z̄)

∥∥∥
Every term in this sum has the form∥∥W[N ]

q (aj , z)⊗ (W′)[N ]
q (a′

j , z̄)− Wq(aj , z)⊗ W′
q(a

′
j , z̄)

∥∥ ,
where Wq and W′

q are S[j ] and S[j ]′-bounded scaled intertwiners with parameters ϑjk
(q, z)

and ϑ ′
jk
(q, ̄z), respectively (cf. Lemma 6.6), and W[N ]

q and (W′)[N ]
q are their truncated versions 

(cf. (127)). In particular,∥∥W[N ]
q (aj , z)⊗ (W′)[N ]

q (a′
j , z̄)− Wq(aj , z)⊗ W′

q(a
′
j , z̄)

∥∥
≤ ∥∥W[N ]

q (aj , z)− Wq(aj , z)
∥∥ · ∥∥(W′)[N ]

q (a′
j , z̄)

∥∥
+ ‖Wq(aj , z)‖ · ∥∥(W′)[N ]

q (a′
j , z̄)− W′

q(a
′
j , z̄)

∥∥
≤ qN/4√

1 − √
q

(
errjk
(q, z)ϑ

′
jk
(

√
q, z̄)+ err′jk
(q, z̄)ϑjk
(

√
q, z)

)
where we used Theorem 5.5 and Lemma 5.3. Taking the sum over k, 
 and inserting the expres-
sions for the error bounds errjk
(q, z), err′ (q, ̄z) from Theorem 5.5 then leads to the bound
jk
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∥∥W[N ]
q (aj ⊗ a′

j , (z, z̄))−Wq(aj ⊗ a′
j , (z, z̄))

∥∥
≤ 2κ

qN/4

(1 − √
q)2

∑
k,


(
ϑ ′
jk
(

√
q, z̄)ϑjk
(

√
q, z)

)
The case of a general element ψ ∈ S then follows as in Lemma 6.6, following Eq. (122) and the 
remainder of the proof of Lemma 6.6. Analogous to Eq. (123), we obtain the estimate∥∥W[N ]

q (ψ, (z, z̄))−Wq(ψ, (z, z̄))
∥∥

≤ 2κ
qN/4

(1 − √
q)2

√√√√∑
j

(
dimS[j ]

∑
k,


ϑjk
(
√
q, z)ϑ ′

jk
(
√
q, z̄)

)2

for normalized ψ ∈ S . But using (124), we have for all j, k, 


ϑjk
(
√
q, z)ϑ ′

jk
(
√
q, z̄)≤�(√q, (z, z̄)) .

The claim follows, since∑
j

(
dimS[j ]

∑
k,


�(
√
q, (z, z̄))

)2

=�(√q, (z, z̄))2
∑
j

(
dimS[j ]

∑
k,


1

)2

=�(√q, (z, z̄))2 · dimS · |J |(|J |2)2 ,
where |J | is the number of summands in the decomposition (111) of H. �

By again exploiting the telescoping sum technique, we obtain the following bound on the 
norm difference between the truncated transfer operator and its original. This statement is sim-
ilar to Lemma 5.7 with one important improvement: instead of the number n of insertions, the 
bound depends on the number m of non-trivial insertions, that is, insertions that are not equal to 
the vacuum 1 ⊗ 1′. This stems from the additional property (114) of full CFT intertwiners: the 
intertwining maps associated with 1 ⊗ 1′ are the identity.

Corollary 6.10. Let T be the transfer operator of the full CFT (cf. Definition 6.3), with each 
insertion ψi , i = 1, . . . , n satisfying either

(i) ψi ∈ Shom\{1 ⊗ 1′}, ‖ψi‖H = 1 or
(ii) ψi = 1 ⊗ 1′,

and the formal variables replaced by two complex numbers z, ̄z ∈ C\{0} such that 0 < q <
min{|z|2, 1/|z|2, |z̄|2, 1/|z̄|2}. Let T[N ] be its truncated version (cf. Eq. (128)). Then the norm of 
their difference is bounded by

‖T−T
[N ]‖ ≤ qN/4 ·m · � ·

(
�(

√
q, (z, z̄))

(1 − √
q)2

)m
,

where m is the number of insertions which are not identical to the vacuum vector, m = #{i ∈
{1, . . . , n} : ψi �= 1 ⊗ 1′}.

Proof. In the case where all insertions ψi , i = 1, . . . , n are not equal to the vacuum, we have 
n =m and the proof is completely analogous to Lemma 5.7 and thus omitted.
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Now consider the case where ψj = 1 ⊗ 1′ for some j ∈ {1, . . . , n}. We employ the fact that 
intertwiners of full CFTs map the vacuum vector to the identity map on H independently of the 
formal variables z, ̄z, cf. (114). This implies immediately that the truncated intertwiner satisfies

Y
[N ](1 ⊗ 1′, (z, z̄))=Y(1 ⊗ 1′, (z, z̄)) ,

independently of the truncation parameter N , and hence also

W
[N ]
q (1 ⊗ 1′, (z, z̄))=Wq(1 ⊗ 1′, (z, z̄)) .

Hence within the telescoping sum argument of Lemma 5.7 (or rather its straightforward adaption 
to the full CFT case), the replacement of Wq(1 ⊗ 1′, (z, ̄z)) with its truncated version W[N ]

q (1 ⊗
1′, (z, ̄z)) can be done without picking up an error term resulting from the approximation. This 
proves the assertion. �

Finally, we need to project the Hilbert space H onto a finite-dimensional subspace. For this 
purpose, we use the N0 × N0-grading of the Hilbert space H given in (107). For M > 0, we 
define the projection P [M] on H as the orthogonal projection onto the subspace

P
[M]H =

⊕
nL≤M,nR≤M

H(nL,nR) . (129)

Recall that the Hilbert space H of a diagonally glued CFT decomposes as in (111) into a direct 
sum of tensor products A[j ] ⊗A[j ]′, where each A[j ] is irreducible and A[j ]′ is the associated 
contragredient module. Using the N-grading on these modules, the space (129) can be written as

P
[M]H =

⊕
j

P
[M]
A[j ]A[j ] ⊗ P [M]

A[j ]′A[j ]′ ,

where P [M]
A for a module A is the projection introduced in Section 5.2.2. That is, the projection 

associated with the full CFT has the form

P
[M] =

⊕
j

P
[M]
A[j ] ⊗ P [M]

A[j ]′ ,

i.e., it cuts off each module independently.
Combining the bound between the transfer operator and its truncated version with the ex-

pressions for the correlation functions leads directly to the analogue of Corollary 5.8 for the 
vacuum-to-vacuum full CFT correlation function. Incorporating the projector P[M] and repeat-
ing the steps in the proof of Lemma 5.10 leads to the corresponding analogue in the genus-1 
case. We collect these approximation statements into a Corollary, but omit the proof (which as 
stated is exactly as in the chiral case).

Corollary 6.11 (Matrix product tensor network for full CFT). Let M, N be positive natural num-
bers, the truncation parameters, and let T[N ] be the truncated transfer operator (cf. Eq. (128)) 
of a full CFT with Hilbert space H, with each insertion ψi , i = 1, . . . , n satisfying either

(i) ψi ∈ Shom\{1 ⊗ 1′}, ‖ψi‖H = 1 or
(ii) ψi = 1 ⊗ 1′.

Let F (0)H and F (1)p,H be the genus-0 and genus-1 correlation functions defined by the right hand 
sides of Eqs. (118) and (119) with the identification of variables as in (120). Then we have the 
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following approximation statement for the vacuum-to-vacuum correlation function,∣∣∣〈1 ⊗ 1′,T[N ] 1 ⊗ 1′〉 − q
∑
j jwt ψj F

(0)
H

∣∣∣ ≤ qN/4 ·m · � ·
(
�(

√
q, (z, z̄))

(1 − √
q)2

)m
,

where m is the number of insertions which are not identical to the vacuum vector, m = #{i ∈
{1, . . . , n} : ψi �= 1 ⊗ 1′}. Similarly, the following approximation statement for the genus-1 cor-
relation function holds for 0 < r < 1,∣∣∣TrHP

[M]
T

[N ]rL0 − pc/12F
(1)
p,H

∣∣∣ ≤ (
qN/4m� rc/12

Z(r)+ rMrc/6Z(√r)
)

·
(
�(

√
q, (z, z̄))

(1 − √
q)2

)m
,

where Z(r) is the partition function of the full CFT,

Z(r)=
∑
j

ZA[j ](r)2 .

We have thus found approximating expressions for the correlation functions of full CFTs in 
the genus-0 and the genus-1 case. It remains to show that these expressions can be represented 
using finitely correlated functionals on matrix algebras. This is the topic of Section 6.3.

6.3. Full CFTs as finitely correlated functionals

To relate the expressions involving the truncated transfer operator T
[N ] in Corollary 6.11

to finitely correlated functionals, we proceed in two steps. We first show that elements in the 
full CFT Hilbert space H can be interpreted as Hilbert–Schmidt operators. This identification 
lifts to a norm-preserving isomorphism. We then show that the truncated scaled intertwiner is 
equivalent to a linear map on this space of Hilbert–Schmidt operators. Using this observation, 
we can construct certain completely positive maps defining an FCS.

6.3.1. Elements of the full CFT Hilbert space as Hilbert–Schmidt operators
In order to argue that H can be seen as a space of Hilbert–Schmidt operators, consider first 

the case where the direct sum in (111) only consists of a single term. This implies that H is the 
algebraic tensor product H =A ⊗A′, with A′ being the restricted dual space.5 The space H can 
alternatively be represented as a space of operators on A. In fact, the equation(∑

i

ai ⊗ a′
i

)
(b)=

∑
i

ai a
′
i (b) , ai ∈A, a′

i ∈A′ ,

defines a linear operator of finite rank on the Hilbert space A. Conversely, a finite rank operator 
O on A can be decomposed as

O(·)=
∑
i

ai 〈ãi , ·〉 , ai, ãi ∈A.

In fact, setting a′
i = η̃(ãi ) (see (32)) gives rise to the well-known linear isomorphism υ between 

the algebraic tensor product space A ⊗A′ and the space of linear finite-rank operators on A. If we 

5 If A = ⊕
n∈NAn is the decomposition of A into levels, then A′ = ⊕

n∈NA′
n .
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complete A ⊗A′ as a tensor product Hilbert space (there is a unique scalar product), υ extends to 
a norm-continuous Banach space isomorphism with image being the Hilbert–Schmidt operators 
on A. This isomorphism also naturally extends to direct sums. We summarize the discussion into 
the following lemma.

Lemma 6.12. Let H be a rational diagonally glued CFT with unique vacuum associated with a 
VOA V . Then H is linearly isomorphic to the direct sum of Hilbert spaces of Hilbert–Schmidt 
operators H(A[j ]) acting on the Hilbert space A[j ],

H ∼=H =
⊕
j

H(A[j ])∼=
⊕
α∈V̂

H(Aα)⊗C
mα .

We denote this isomorphism of Hilbert spaces by υ : H →H.

By definition, the isomorphism υ is compatible with the N0 × N0-grading of the Hilbert 
space H: the images of H(nL,nR) under υ give an N0 ×N0-grading on H. In particular, the image 
of P[M]H (cf. (129)) under υ is the space of Hilbert–Schmidt operators with levels (nL, nR) sat-
isfying nL, nR ≤M . We will write P[M]

H for this space. By definition, the space P[M]
H is equal 

to the direct sum

B
[M] =

⊕
j

Mat(CdA[j ](M)) (130)

of matrix algebras equipped with the Hilbert–Schmidt norm.
Similarly, let us denote the images of S and Shom under υ by S and Shom, respectively. Observe 

that the isomorphism υ is also compatible with S if the latter has the form (126): in this case, its 
restriction to S[j ] ⊗ S[j ]′ has image H(S[j ]) ⊂ H(A[j ]). Note also that since the spaces S[j ]
are assumed to be finite-dimensional, it follows from Lemma 6.12 that S is equal to a direct sum 
of matrix algebras, equipped with the Hilbert–Schmidt norm,

S =
⊕
j

Mat(Cdim S[j ]) . (131)

6.3.2. Intertwiners as maps on Hilbert–Schmidt operators
Because of the compatibility of υ with S , we can compose the isomorphism υ with an instance 

of a scaled intertwiner Wq : Shom �→ End(H) to obtain a bounded map on Hilbert–Schmidt op-
erators. We denote this map by

Dq : Shom ×C×C → End(H)
( , z, z̄) �→ Dq( , (z, z̄))= υ ◦Wq(υ

−1( ), (z, z̄)) ◦ υ−1 .

Again, the formal variables are replaced by complex numbers z, z̄ such that z, ̄z ∈ C\{0} and 
0 < q < min{|z|2, 1/|z|2, |z̄|2, 1/|z̄|2}. Since the map υ is an isomorphism, any sequence of 
scaled intertwiners Wq on H can be reexpressed as a sequence of maps Dq on Hilbert–Schmidt 
operators.

We can apply the same arguments to truncated scaled intertwiners, obtaining linear maps on 
the space of Hilbert–Schmidt operators. This map will change the N0 × N0-grading of H by at 
most N (in each argument). Furthermore, this procedures also applies if we additionally project 
onto weight spaces. That is, for truncation- and cutoff-parameters M, N ∈N0, we define a map
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D
[M,N ]
q :
Shom ×C×C → End(P[M]

H) ,

( , z, z̄) �→ D
[M,N ]
q ( , (z, z̄))= υ ◦ (

P
[M]

W
[N ]
q (υ−1( ), (z, z̄))P[M]) ◦ υ−1.

(Contrary to our treatment of the chiral case, we choose to incorporate the cutoff, i.e., projection 
using P[M], into the definition of the truncated scaled intertwiner.)

6.3.3. Finitely correlated states for full CFTs
Using the isomorphism υ :H → H and following the arguments in the proofs of Lemma 5.11

and Lemma 5.12, we conclude that expressions such as 〈1 ⊗1′, T[N ] 1 ⊗1′〉 in Corollary 6.11 can 
be expressed in terms of a composition of the maps D

[M+nN,N]
q (see the proof of Lemma 6.13

below for explicit expressions). We will show that the maps D[M+nN,N]
q can be replaced by 

completely positive maps on matrix algebras. This turns the expressions of interest into finitely 
correlated functionals. The involved matrix algebras are built from the imagesB[M+nN] of weight 
spaces (cf. (130)), as well as the matrix algebra S associated with the subspace S (cf. (131)).

Lemma 6.13 (FCS for full CFTs). Let M, N ∈N0 be the cutoff and truncation parameters. There 
exist a bounded linear embedding

ι : B[M+nN] → Mat(C2)⊗B
[M+nN]

as well as a completely positive map

Eq : S⊗ Mat(C2)⊗B
[M+nN] → Mat(C2)⊗B

[M+nN] ,

such that the following holds for the maps ( ∈ S)

Eq, (Y )= Eq( ⊗ Y) Y ∈ Mat(C2)⊗B
[M+nN] .

For all  i ∈ Shom, i = 1, . . . , n, parameters z, ̄z ∈ C \ {0}, 0 < q <min{|z|2, |z|−2, |z̄|2, |z̄|−2}, 
0 < r ≤ 1 and φ1, φ2 ∈ P

[M+nN]
H, the (projected) matrix elements of the truncated transfer 

operator T[N ] (cf. Eq. (128)) with insertions  i ∈ Shom, i = 1, . . . , n are given by a composition 
of the maps Eq, j as

〈φ1,P
[M+nN]

T
[N ]rL0P

[M+nN]φ2〉 = TrCD
[
ι(!1)

∗
Eq, 1 ◦ · · · ◦Eq, n ◦Er,|1〉〈1|(ι(!2))

]
.

Furthermore, the map Eq=1,|1〉〈1| satisfies

E1,|1〉〈1|(ι(!2))= ι(!2) for all !2 ∈ Mat(C2)⊗B
[M+nN] . (132)

Proof. By repeating the arguments of Lemma 5.11 and exploiting the isomorphism υ , we get 
the following representation of matrix elements of the projected and truncated scaled intertwiner,

〈φ1,P
[M+nN]

T
[N ]rL0P

[M+nN]φ2〉 =
= TrCD/2

[
υ(φ1)

∗ ·D(1) ◦ · · · ◦D(n) ◦D(n+1)(υ(φ2))
]
,

where we abbreviated

D
(i) =D

[M+nN,N]
q ( i, (z, z̄)) , D

(n+1) =D
[M+nN,N]
r (|1〉〈1|, (z, z̄)) .

Here, we also used that the υ is a Hilbert space isomorphism and that the scalar product for 
Hilbert–Schmidt operators is given by the trace. The map Dq is a bounded mapping from a 
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finite-dimensional space of Hilbert–Schmidt operators S into the endomorphism of a space of 
Hilbert–Schmidt operators P[M+nN]H. It can therefore be linearly extended to a bounded map 
defined on the tensor product,

Fq : S⊗B
[M+nN] → B

[M+nN] , by setting Fq( ⊗!)=D
[M+nN,N]
q ( , (z, z̄))(!) ,

for  ∈ S and ! ∈ B
[M+nN]. Here, we suppressed the dependence on the parameters z, ̄z in Fq

for notational convenience.
Since Fq is a bounded operator between two spaces of Hilbert–Schmidt operators, it is also 

bounded as a map from matrices to matrices equipped with the operator norm. As the matrix 
algebras are finite-dimensional, it is completely bounded (explicit bounds will of course include 
various factors depending on the dimensions). By the extension of Stinespring’s theorem to com-
pletely bounded mappings [78, Theorem 8.4], there exists linear embeddings V1,q , V2,q of CD/2

into Cd ⊗C
D/2 ⊗C

D′
, D′ ≤ (dD)2 such that

Fq( ⊗!)= V ∗
1,q

(
 ⊗!⊗ I

CD
′
)
V2,q .

This statement is immediate for each direct summand of B[M+nN] and can be extended to the 
whole space since the sum is finite. We then define the bounded embedding

ι : B[M+nN] → Mat(C2)⊗B
[M+nN] , ι : ! �→ |0〉〈1| ⊗!,

where |0〉,|1〉 is the standard basis of C2. We now define

Vq : C2 ⊗C
D/2 →C

2 ⊗C
d ⊗C

D/2 ⊗C
D′
, Vq = V1,q ⊗ |0〉〈0| + V2,q ⊗ |1〉〈1| .

This gives rise to a completely positive map

Eq : S⊗ Mat(C2)⊗B
[M+nN] → Mat(C2)⊗B

[M+nN]

Eq : X1 ⊗X2 �→ V ∗
q

(
X1 ⊗X2 ⊗ I

CD
′
)
Vq .

This map is of the form

Eq =
(
F1,q Fq

F
∗
q F2,q

)
,

where Fq,i , i = 1, 2 are completely positive maps, and F∗
q is the Hermitian conjugate of the 

map F. It follows from this structure that

Eq( ⊗ ι(!))= ι(Fq( ⊗!)) ,
and hence we find by composing this identity

Eq, 1 ◦Eq, 2 ◦ · · · ◦Eq, n ◦ ι(!)= ι ◦ Fq, 1 ◦ Fq, 2 ◦ · · · ◦ Fq, n(!) (133)

where we abbreviated Fq, (!) := Fq( ⊗!). Furthermore, we have

TrCD
[
ι(!)∗ι(!′)

] = TrCD
[|1〉〈1| ⊗ (!∗!′)

] = TrCD/2
[
!∗!′] (134)

and thus combining Eqs. (133) and (134) gives

〈φ1,P
[M+nN]

T
[N ]rL0P

[M+nN]φ2〉 = TrCD
[
ι(!1)

∗
Eq, 1 ◦ · · · ◦Eq, n ◦Er,|1〉〈1|(ι(!2))

]
.

In order to verify the statement of Eq. (132), note that the pre-image of |1〉〈1| under the isomor-
phism υ equals the vacuum vector 1 ⊗1′ ∈ V ⊗V ⊂ S ⊂H. And since intertwiners of a full CFT 
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are required to map the vacuum vector 1 ⊗ 1′ ∈ V ⊗ V ′ to the identity operator (cf. Eq. (114)), 
we have

Dq(|1〉〈1|, (z, z̄))(X)= qL0(X) ,

where we denoted by L0 = υ ◦L0 ◦υ−1 the corresponding grading map on the space of Hilbert–
Schmidt operators. This implies that D1(|1〉〈1|, (z, ̄z))(X) =X. �

With this Lemma at hand, we can also complete the proof of our main theorem.

Proof of Theorem 1.1. The chiral case was already proven in Section 5.3.1. The full CFT case 
follows by combining Observation 6.1 with Corollary 6.11 and Lemma 6.13. �

We remark on one further feature of this approximation. If we are interested in n-point correla-
tion functions with non-equispaced insertion points, but all distances are a multiple of a smallest 
distance, then we do not need to increase the bound dimension to achieve a desired level of ap-
proximation. Instead, we only have to apply the map Eq,|1〉〈1| a certain number of times. Let us 
illustrate this with the example of a three-point correlation function.

Consider the correlation function of the full CFT, with three insertion points on the real line, 
ζ1 = ζ ∗

1 , ζ2 = ζ ∗
2 , ζ3 = ζ ∗

3 , separated by distances which are multiples of a > 0 and evaluated 
for three primary vectors ψ1, ψ2, ψ3. Without loss of generality, due to translational invariance, 
we can assume that ζ1 = 0, ζ2 = t · a, ζ3 = (t + s + 1) · a with t, s ∈ N. Since the image of the 
vacuum element under the action of Y is required to be the identity operator, we find for the 
corresponding correlation function

F (0)((ψ1, ζ1, ζ1), (ψ2, ζ2, ζ2), (ψ3, ζ3, ζ3))

= F (0)((ψ1, ζ1, ζ1), (1 ⊗ 1′, a, a), . . . , (ψ2, ζ2, ζ2), . . . , (ψ3, ζ3, ζ3)) ,

with dots . . . representing insertions of the vacuum. Using Corollary 6.11 as well as Lemma 6.13, 
we find

qwt ψ1+t ·wt ψ2+(t+s+1)wt ψ3F (0)((ψ1, ζ1, ζ1), (ψ2, ζ2, ζ2), (ψ3, ζ3, ζ3))

≈ TrCD
[
ι(|1〉〈1|) ·Eq, 1 ◦ (

Eq,|1〉〈1|
)t ◦Eq, 2 ◦ (

Eq,|1〉〈1|
)s ◦Eq, 3(ι(|1〉〈1|))

]
.

This may motivate the term transfer map for the mapping Eq,|1〉〈1|, since it plays the role of the 
transfer operator in the usual setting of MPS and FCS.

7. Summary and outlook

We have obtained rigorous error bounds for approximating correlation functions of conformal 
field theories in terms of finite-dimensional matrix product tensor networks. These bounds apply 
both to chiral as well as full conformal field theories. Prior to our work, various numerical and 
theoretical studies (see Section 1 for references) suggested that such approximations are possible, 
yet explicit error bounds were missing.

Our construction, which is phrased in terms of vertex operator algebras, their modules and 
intertwiners, exploits and elucidates the underlying representation-theoretic structures of a CFT. 
The power of this approach becomes especially apparent in the case of WZW models, where we 
exhibit a close connection between our construction of transfer operators and group-covariant 
MPS.
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An intermediate step in our arguments shows that correlation functions are exactly represented 
by certain (infinite-dimensional) MPS or finitely correlated states. This property is ultimately 
a consequence of the “gluing axiom” (see e.g., [56]) of CFT correlation functions, a feature 
which has a counterpart in the axiomatization of topological quantum field theories (see e.g., [44,
79–81]). For the latter setting, various tensor network techniques have been developed [82–84], 
which in some cases [85,86] also turn out to give exact descriptions. However, contrary to the 
setting of topological quantum field theories, CFTs are inherently infinite-dimensional. From the 
point of view of computational and variational physics, it is therefore imperative to quantitatively 
understand the approximability by finite-dimensional tensor networks. Here our analysis estab-
lishes relationships between the accuracy of approximation, MPS parameters (in particular, the 
bond dimension), and parameters of the CFT.

We expect that the tools developed here can also be applied to obtain similar quantitative 
statements for other classes of tensor network functionals approximating quantum field theories. 
An example of such a class of finite-dimensional approximations are continuous matrix prod-
uct states. Another class of tensor network Ansatz states, the so-called MERA (for multi-scale 
renormalization Ansatz), has empirically been shown to provide accurate numerical descriptions 
of quantum critical systems [26–28]. Its application is also supported by entanglement entropy 
considerations [26]. This method has been extremely successful at numerically identifying the 
CFT resulting from the continuum limit of a critical spin system. Our work is taking a comple-
mentary approach: given a CFT, we seek suitable finite-dimensional tensor networks encoding 
the correlation functions. Having addressed this problem for MPS, we expect that our meth-
ods constitute the first step in a similar program for MERA. Ultimately, this should provide a 
convincing theoretical explanation for the numerical success of MERA.

Beyond alternative classes of tensor networks, several fundamental open problems remain to 
be addressed. Our work is restricted to genus-0 and genus-1 correlation functions; analogous 
results for higher genus surfaces would be desirable. A potential strategy could be to follow the 
work [77] and try to find approximate versions of their arguments. Finally, whether such rigorous 
statements about the existence of useful finite-dimensional approximations can also be made for 
more general quantum field theories, that is, not necessarily conformal ones, remains completely 
open.
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Appendix A. Bounds on partition functions and polylogarithms

In this appendix we summarize various estimates used in the main paper on the asymptotic 
behavior and upper bounds for partition functions. We fix some notation before we start. Let 
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P(n, k) be the number of (multi-)partitions of n into integers of k colors. Its generating function 
can be found to be [87],

∞∑
n=0

qnP (n, k)=
∏
n≥1

(1 − qn)−k ,

and we denote the right hand side by gk(q). Throughout this appendix, we assume that q is a real 
number with 0 < q < 1.

The next Lemma gives a very rough upper bound on the asymptotic growth of P(n, k). Its 
proof is analogues to a well-known argument by Siegel, see [88, pp. 316–318] for an exposition.

Lemma A.1. We have

P(n, k) < e
2π

√
kn
6 .

Proof. Let gk(q) = ∑∞
n=0 q

nP (n, k) = ∏
n≥1(1 − qn)−k . It follows that P(n, k)qn < gk(q) and 

thus

logP(n, k) < loggk(q)+ n log
1

q
.

We estimate both terms on the rhs. separately, and begin with the first.

loggk(q)= − log
∏
n≥1

(1 − qn)−k = −k
∑
n≥1

log(1 − qn)= k
∑
n≥1

∑
m≥1

qmn

m

= k
∑
m≥1

1

m

∑
n≥1

(qm)n = k
∑
m≥1

1

m

qm

1 − qm .

However, an easy argument shows that

1

m

qm

1 − qm ≤ 1

m2

q

1 − q ,

from which we get that

loggk(q)≤ k q

1 − q
∑
m≥1

1

m2
= k q

1 − q
π2

6
.

Moreover, we have that

log
1

q
<

1 − q
q

,

from which it follows that

logP(n, k) < loggk(q)+ n log
1

q
≤ k q

1 − q
π2

6
+ n1 − q

q
.

Choosing the value of q as

q �→ 1

1 +
√
kπ2

6n
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then leads to the bound

logP(n, k) < 2n

√
kπ2

6n
= 2π

√
kn

6
. �

Apart from partition functions, in the discussion of WZW models, certain sums appeared in 
the norm bounds of module and intertwiner operators. In general, these sums had the form∑

n≥0

qan(n+ 1)b

for positive integers a, b and 0 < q < 1. However, slight rewriting leads to∑
n≥0

qan(n+ 1)b = q−a∑
n≥1

(qa)n

n−b

which is a multiple of the defining equation for the poly-logarithm. At negative integers, it can 
be expressed as∑

n≥1

(qa)n

n−b =
(
x
∂

∂x

)b
x

1 − x
∣∣
x=qa

For the convenience of the reader, we provide a more explicit bound on the dependence in q .

Lemma A.2. Let a, b be positive integers, and 0 < q < 1. Then we have the estimate∑
n≥0

qan(n+ 1)b ≤ a−b−1b!q−a log

(
1

q

)−b−1

.

Proof. We use the first order expression of the integral given by the Euler–MacLaurin formula, 
see [89], and find

∑
n≥0

qan(n+ 1)b =
∞∫

0

dtqat (t + 1)b

+
∞∫

0

dt (t − �t�)
[
bqat (t + 1)b−1 + a log(q)qat (t + 1)b

]

≤
∞∫

0

dtqat (t + 1)b + b
∞∫

0

dtqat (t + 1)b−1 ,

since log(q) < 0. By subsequent variable substitution, we can rewrite the integral

∞∫
0

dtqat (t + 1)b = q−aa−b−1 log(1/q)−b−1

∞∫
a log( 1

q
)

dte−t tb ≤ q−aa−b−1 log(1/q)−b−1b! ,

where we used that the gamma function at integral values reduces to the factorial function. �
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Appendix B. Algorithm for WZW models

In this appendix, we present an algorithm for computing matrix elements of an intertwiner 
between three irreducible modules (for WZW models).

B.1. Computing normal forms of vectors

For this purpose, we need to introduce suitable bases, both of the Lie algebra g as well as 
of the Hilbert spaces of the corresponding Lk,0-modules. The relationship (35) between the in-
volution η̂ : g → g and adjoints suggests that it is especially convenient to work with elements 
e1, . . . , e
 ∈ g with the property that

η̂(ej )= ej (135)

for j = 1, . . . , 
. By polarization, we can assume that elements {ej }j with the property (135)

span g. We will choose a basis {ei}dimg

i=1 of the Lie algebra g of this form. In the following, we 

will often pick families {ak}k ⊂ {ei}dim g

i=1 or {bk}k ⊂ {ei}dimg

i=1 of basis elements of g, i.e., ak = eik
for some function i : k �→ ik ∈ {1, . . . , dimg} and similarly for bk (but it will be convenient not 
to use the latter notation).

Let us next consider an irreducible module Lk,λ of the VOA Lk,0 corresponding to an integral 
dominant weight λ such that λ(θ) ≤ k. The Hilbert space Lk,λ is the space spanned by elements 
of the form

ei1(−n1)ei2(−n2) · · · eil (−nl)ϕi (136)

such that the following conditions hold:

(i) The vectors {ϕi}dim Lk,λ(0)
i=1 are a basis of the irreducible g-module Lk,λ(0) (which coincides 

with the top level of the Lk,0-module, see Section 2.3.2).
(ii) The ni are positive integers. A vector of the form (136) belongs to the level Lk,λ(N) of the 

module, where N = ∑
i ni . This also implies that l is bounded by the level, l ≤N .

That fact that the space Lk,λ has a basis of the form (136) can be seen formally from Claim B.1, 
which provides an algorithm for expanding arbitrary vectors; an additional property of this ex-
pansion is that the integers {ni}i are ordered.

We remark that these vectors are not orthonormal, but this is not necessary for our purposes 
(if an orthonormal basis is required, this can be obtained by applying Gram–Schmidt within 
each level, see e.g., [21]). The representation of vectors as linear combinations of vectors of 
the form (136) provides a natural way to index elements of the (truncated) Hilbert space: in-
deed, (136) is homogeneous and of weight hλ +∑


j=1 nj (cf. (28)).
Recall that the top level Lk,λ(0) is an irreducible g-module of highest weight λ. As explained 

in Section 2.3.3, property (135) implies that

〈ej (m)ϕ,ϕ′〉Lk,λ = 〈ϕ, ej (−m)ϕ′〉Lk,λ (137)

for any two elements ϕ, ϕ′ ∈ Lk,λ(0) belonging to the top level of Lk,λ. This is a key property we 
will use extensively in the following.
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Elements a(n) = a ⊗ tn of the affine Lie algebra ĝ act on the vectors (136) in a natural way. 
Here and below, we can identify the zero modes a(0) with the action of a ∈ g on the irreducible 
g-module Lk,λj (0), and thus we henceforth write a(0)ϕj = aϕj , for ϕj ∈ Lk,λj (0). If n < 0, then, 
after decomposing a into a linear combination of the eis, the vector is again a linear combina-
tion of elements of the form (136). However, if n ≥ 0, then we have to recursively apply the 
commutation relation (cf. (23))

[a(n),b(m)] = [a,b](n+m)+ nδn+m,0(a,b)kI (138)

in order to obtain a linear combination of our basis elements (136). Let us denote this linear 
transformation by L. We note that it only depends on the structure of the affine Lie algebra ĝ in 
question. Pseudo-code for this linear transformation is given in Algorithm 1. It is straightforward 
to show the following.

Claim B.1. For a given input specifying a product br(nr) · · ·b1(n1) ∈ ĝ, where bj ∈ {ei}dimg

i=1 , the 

Algorithm 1 produces a list L = {
(m, αm, 

ism ,...,i1
ksm ,...,k1

)
}
m

with the property that

br (nr) · · ·b1(n1)ϕ =
∑
m∈L

αmeism (ksm) · · · ei1(k1)ϕ (139)

for all ϕ ∈ Lk,λ(0) belonging to the top level of (any) irreducible Lk,0-module Lk,λ. (In the sum on 
the right, an additional index m associated with the tuple ism ,...,i1

ksm ,...,k1
is left implicit.) Furthermore, 

for every entry in the list, the integers kj satisfy

ksm < ksm−1 < · · ·< k1 ≤ 0 . (140)

In other words, L performs a kind of normal ordering: it converts any product of elements in 
a ĝ-module to a linear combination of “normally ordered” terms as in Eq. (136) (observe that 
ei1(0) preserves the top level).

Proof. It is easy to check that Algorithm 1 maintains property (139) throughout. Indeed, any 
replacement described in lines 7–12 simply constitutes an application of the commutation rela-
tions (138) in the form

eism (ksm) · · · ei1(k1)=R1(eir (kr )eir−1(kr−1))R2

=R1
([er (kr ), er−1(kr−1)] + er−1(kr−1)eir (kr )

)
R2

=R1
([er , er−1](kr + kr−1)+ krδkr+kr−1,0(eir , eir−1)kI)

)
R2

to a single term in the sum, where

R1 = eism (ksm) · · · eir+1(kr+1)

R2 = eir−2(kr−2) · · · ei1(k1) .

Also, step 4 does not change the action on vectors ϕ ∈ Lk,λ(0) belonging to a top level since for 
such vectors, we have

ei (k)ϕ = 0 for all i = 1, . . . ,dimg and k > 0 .

The claim follows since ‘incorrectly ordered’ terms are moved to the right by successive ap-
plication of the commutation relations and eventually disappear at step 4 (thus ensuring prop-
erty (140)). �
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Algorithm 1: The routine L expands a product br (nr) · · ·b1(n1) ∈ ĝ, where bj ∈ {ei}dimg

i=1 , 
into a linear combination of terms eism (ksm) · · · ei1(k1) such that ksm < · · ·< k2 < k1 ≤ 0 and 
the linear combination has the same action on elements ϕ ∈ Lk,λ(0) in the top level of a 
Lk,0-module Lk,λ. It simply applies commutators for achieving this. There is no dependence 
on the module.

Input: (br ,...,b1
nr ,...,n1

), where

elements b1, . . . ,br ∈ {ei }dimg

i=1 ⊂ g

integers n1, . . . , nr

Output: Finite list L = {
(m, αm, ism ,...,i1ksm ,...,k1

)
}
m

, where for each m, we have αm ∈ C and −kj ∈ N0, 1 ≤ ij ≤ dimg

for j = 1, . . . , sm. This list satisfies br (nr ) · · ·b1(n1)ϕ = ∑
m αmeism (ksm) · · · ei1 (k1)ϕ for all 

ϕ ∈ Lk,λ(0), and ksm < · · ·< k2 < k1 ≤ 0.
1 Set L equal to the one-element list with entry representing the product br (nr ) · · ·b1(n1), i.e., 
L = {(1, α1 = 1, ir ,...,i1nr ,...,n1

)} where bj = eij .

2 changed ←− true
3 while changed = true do

4 remove all entries (m, αm, ism ,...,i1ksm ,...,k1
) ∈ L with k1 > 0

5 changed ←− false

6 try to find an entry (m, αm, ism ,...,i1ksm ,...,k1
) ∈ L with kr ≥ kr−1 for some r ∈ {2, . . . , sm}.

7 if found then
8 changed ←− true
9 Assume that r ∈ {2, . . . , sm} is the maximal integer such that kr ≥ kr−1

10 remove the entry (m, αm, ism ,...,i1ksm ,...,k1
) from L

11 create new entries in L by applying the commutation relations (138). That is, compute the commutator 
[eir , eir−1 ] = ∑dimg


=1 β
e
 and create entries of the form (αmβ
, 
ism ,...,ir+1,
,ir−2...,i1

ksm ,...,kr+1,kr+kr−1,kr−2,...,k1
) for 


 = 1, . . . , dimg,

12 as well as an additional entry of the form (αmkr δkr+kr−1,0(eir , eir−1 )k, 
ism ,...,ir+1,ir−2...,i1
ksm ,...,kr+1,kr−2,...,k1

)

13 and an entry of the form (αm, ism ,...,ir+1,ir−1,ir ,ir−2...,i1
ksm ,...,kr+1,kr−1,kr ,kr−2,...,k1

) in L.

14 return L

The Algorithm 1 is a key ingredient in the following algorithm for computing matrix elements 
of intertwiners.

B.2. An algorithm for extending G-invariant maps to intertwiners

Having introduced the basis (136) for modules and discussed the action of module mode oper-
ators, we proceed to consider intertwiners. For j = 1, 2, 3, consider irreducible modules Lk,λj of 
the VOA Lk,0. To fully specify the intertwiner Y , we need to provide all matrix elements between 
vectors of the form (136), i.e., expressions of the form

〈a
(m
) · · ·a1(m1)ϕ
p

1 ,Y(cs(ks) · · · c1(k1)ϕ
r
3, z)br (nr) · · ·b1(n1)ϕ

q

2 〉Lk,λ1
,

where {ϕpj }p is a basis of the top level Lk,λj (0) of module Lk,λj for j = 1, 2, 3, and ap, cr , bq ∈
{ei}dimg

i=1 . In principle, this can be done following the techniques of [76]. However, our setting 
is somewhat simpler because we are interested in S-bounded intertwiners with the subspace 
S = Lk,λ3(0) equal to the top level of the module Lk,λ3 . Here it suffices to consider the case 
where the first argument of Y is of the form ϕr instead of cs(ks) · · · c1(k1)ϕ

r .
3 3
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Algorithm 2: F computes the matrix element of an intertwiner, using the subroutine H.

Input: (z, 
, r, ϕ3, ϕ1
ϕ2| a
,...,a1
m
,...,m1|br ,...,b1

nr ,...,n1
), where 

z ∈ C

vectors ϕj ∈ Vj belonging to irreducible g-modules Vj , j = 1,2,3.

, r ∈ N0

elements a1, . . . ,a
,b1, . . . ,br ∈ {ei }dimg

i=1 ⊂ g

integers m1, . . . ,m
, n1, . . . , nr
Output: matrix element 〈a
(m
) · · ·a1(m1)ϕ1, Y(ϕ3, z)br (nr ) · · ·b1(n1)ϕ2〉Lk,λ1

1 if 
 > 0 then

2 return
F(z, 
− 1, r + 1, ϕ3,

ϕ1
ϕ2|

a
−1,...,a1
m
−1,...,m1| a
,br ,...,b1−m
,nr ,...,n1

)

+zm
 F (z, 
− 1, r,a
ϕ3,
ϕ1
ϕ2|

a
−1,...,a1
m
−1,...,m1|br ,...,b1

nr ,...,n1
)

3 else
4 return H(z, r, ϕ3, ϕ1

ϕ2|br ,...,b1
nr ,...,n1

)

In the following, we give an algorithm which computes the matrix elements of Y(ϕ3, z) with 
respect to vectors of the form (136). The algorithm requires that an intertwining map

W : V3 ⊗ V2 → V1

between g-modules Vi , i = 1, 2, 3 is given (equivalently, this is a G-intertwining map between 
the corresponding unitary representations of the group G), and extends this to an intertwiner of 
the VOA modules (or more precisely, to operators Y(ϕ3, z) for ϕ3 ∈ Lk,λ3(0) in the top level): 
The resulting intertwiner Y has the property that its restriction to the top levels is the intertwining 
map W . This establishes the converse direction in Proposition 5.14, i.e., the correspondence 
between group-covariant MPS and the intertwiner of the VOA.

We call the algorithm F (Algorithm 2 in the following pseudocode). It takes as an argument 
two natural numbers 
, r , as well as three vectors ϕi ∈ Lk,λi (0) = Vi together with elements 
a1, . . . , a
, b1, . . . , b1 ∈ {ei}dimg

i=1 ⊂ g and integers m1, . . . , m
, n1, . . . , nr . It outputs the matrix 
element

〈a
(m
) · · ·a1(m1)ϕ1,Y(ϕ3, z)br (nr) · · ·b1(n1)ϕ2〉Lk,λ1
.

The evaluation proceeds recursively, and invokes an auxiliary function H (Algorithm 3). The 
latter function evaluates matrix elements of a specific form by reduction to the zero mode; it 
depends itself on the subroutine L (Algorithm 1) performing the normal ordering.

Claim B.2. Suppose we are given an intertwining map W : V3 ⊗ V2 → V1 between the ten-
sor product g-module V3 ⊗ V2 and the g-module V1, where Vj , j = 1, . . . , 3 are irreducible 
g-modules of highest weight λj . We assume that W is specified in terms of (an algorithm for 
computing) the matrix elements

〈ϕ1,W(ei1 · · · eism ϕ3 ⊗ ϕ2)〉V1 ,

for ϕj ∈ Vj . Set τ = hλ3 + hλ2 − hλ1 and let z ∈ C. Then Algorithm 2 computes matrix elements 
of the form

〈a
(m
) · · ·a1(m1)ϕ1,Y(ϕ3, z)br (nr) · · ·b1(n1)ϕ2〉Lk,λ1
where ϕj ∈ Vj = Lk,λj (0) ,

and where Y is an intertwiner of type 
( Lk,λ1

Lk,λ3 Lk,λ2

)
, with the property that the restriction of its zero 

mode to the top levels (see Proposition 5.14) coincides with W .
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Algorithm 3: H computes certain matrix elements of an intertwiner from the restriction 
of the zero mode to the top levels. The latter is given by an G-intertwining map W . The 
implementation of H relies on a subroutine L.

Input: (z, r, ϕ3, ϕ1
ϕ2|br ,...,b1
nr ,...,n1

), where 
z ∈ C

r ∈ N0
vectors ϕj ∈ Vj belonging to irreducible g-modules Vj , j = 1,2,3.

elements b1, . . . ,br ∈ {ei }dimg

i=1 ⊂ g

integers n1, . . . , nr satisfying nr < nr−1 < · · ·< n1 ≤ 0
Output: matrix element 〈ϕ1, Y(ϕ3, z)br (nr ) · · ·b1(n1)ϕ2〉Lk,λ1

1 if r = 0 then
2 return z−τ 〈ϕ1, W(ϕ3 ⊗ ϕ2)〉V1
3 else
4 if n1 = 0 then
5 compute ϕ′

2 ← b1ϕ2 ∈ V2

6 return H(z, r − 1, ϕ3, 
ϕ1
ϕ′

2
|br ,...,b2
nr ,...,n2

)

7 else

8 L = {
(m, αm, ism ,...,i1ksm ,...,k1

)
}
m

←− L(br ,...,b1
nr ,...,n1

, ϕ2)

9 return
∑
m αm · (−1)smz

∑sm
j=1 kj z−τ 〈ϕ1, W(ei1 · · · eism ϕ3 ⊗ ϕ2)〉V1

Proof. We show how to construct the matrix element of the intertwiner Y from the map W . 
Evaluating Eq. (40) for modes of the form a(m), a ∈ g, and intertwiners evaluated for ϕ3 ∈
Lk,λ3(0), we find

a(m)Y(ϕ3, z)= Y(ϕ3, z)a(m)+Y(a(0)ϕ3, z)z
m , (141)

since the action of positive modes on top level vectors vanishes, a(m)ϕ3 = 0, for m > 0. Applying 
property (137) and Eq. (141) once, we find

〈a
(m
) · · ·a1(m1)ϕ1,Y(ϕ3, z)br (nr) · · ·b1(n1)ϕ2〉Lk,λ1
=

= 〈a
−1(m
−1) · · ·a1(m1)ϕ1,a
(−m
)Y(ϕ3, z)br (nr) · · ·b1(n1)ϕ2〉Lk,λ1

= 〈a
−1(m
−1) · · ·a1(m1)ϕ1,Y(ϕ3, z)a
(−m
)br (nr) · · ·b1(n1)ϕ2〉Lk,λ1

+ 〈a
−1(m
−1) · · ·a1(m1)ϕ1,Y(a
ϕ3, z)br (nr) · · ·b1(n1)ϕ2〉Lk,λ1
zm
 ,

for ϕi ∈ Lk,λi (0), i = 1, 2, 3. Let us define the function

f
,r (z, ϕ3,
ϕ1
ϕ2|a
,...,a1
m
,...,m1|br ,...,b1

nr ,...,n1
)

:= 〈a
(m
) · · ·a1(m1)ϕ1,Y(ϕ3, z)br (nr) · · ·b1(n1)ϕ2〉Lk,λ1
,

for ϕi ∈ Lk,λi (0), elements a1, . . . , a
 and b1, . . . , br in the Lie algebra g, and integer numbers 
m1, . . . , m
, n1, . . . , nr . Then we have established the recursion relation

f
,r (z, ϕ3,
ϕ1
ϕ2|a
,...,a1
m
,...,m1|br ,...,b1

nr ,...,n1
)= f
−1,r+1(z,ϕ3,

ϕ1
ϕ2|a
−1,...,a1
m
−1,...,m1| a
,br ,...,b1−m
,nr ,...,n1

)

+ zm
 f
−1,r (z,a
ϕ3,
ϕ1
ϕ2|a
−1,...,a1
m
−1,...,m1|br ,...,b1

n ,...,n ) .
r 1
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Applying this function recursively, we can decrease the index 
 step by step to zero. Then we 
have to consider the function

hr (z, ϕ3,
ϕ1
ϕ2|br ,...,b1
nr ,...,n1

) := f0,r (z, ϕ3,
ϕ1
ϕ2| |br ,··· ,b1

nr ,··· ,n1
) ,

which is more explicitly given by

hr (z, ϕ3,
ϕ1
ϕ2|br ,...,b1
nr ,...,n1

)= 〈ϕ1,Y(ϕ3, z)br (nr ) · · ·b1(n1)ϕ2〉Lk,λ1
.

The function hr can easily be computed if ϕj ∈ Lk,λj (0), j = 1, 2, 3 belong to the top level, and 
all nj < 0 are negative for j = 1, . . . , r . Indeed, in this case we can again apply (141) and the 
adjoint condition (137) to get

hr (z, ϕ3,
ϕ1
ϕ2|br ,...,b1
nr ,...,n1

)= 〈br (−nr)ϕ1,Y(ϕ3, z)br−1(nr−1) · · ·b1(n1)ϕ2〉Lk,λ1

− znr 〈ϕ1,Y(brϕ3, z)br−1(nr−1) · · ·b1(n1)ϕ2〉Lk,λ1
,

and the first term vanishes since br (−nr)ϕ1 = 0 for nr < 0. Applying this reasoning recursively 
and inserting the mode expansion of the intertwiner we arrive at the explicit expression

hr (z, ϕ3,
ϕ1
ϕ2|br ,...,b1
nr ,...,n1

)= (−1)rz
∑r
j=1 nj 〈ϕ1,Y(b1 · · ·brϕ3, z)ϕ2〉Lk,λ1

.

This expression only depends on the zero mode of the intertwiner (since all vectors belong to 
their respective top level, and only the zero mode does not change the weight). We conclude that 
in order to obtain an extension of the intertwining map W , we must set

hr (z, ϕ3,
ϕ1
ϕ2|br ,...,b1
nr ,...,n1

)= (−1)rz
∑r
j=1 nj z−τ 〈ϕ1,W(b1, . . . ,brϕ3 ⊗ ϕ2)〉V1 , (142)

for ϕj ∈ Lk,λj (0), j = 1, 2, 3 belonging to the top level (or equivalently the irreducible 
g-modules Vj ), and all nj < 0 negative for j = 1, . . . , r .

Similarly, we can treat the case where n1 = 0 and nj < 0 for j = 2, . . . , r : here we observe 
that ϕ′

2 = b1ϕ2 is also an element of the top level Lk,λ2(0), and we obtain

hr (z, ϕ3,
ϕ1
ϕ2|br ,...,b1
nr ,...,n1

)= hr (z, ϕ3,
ϕ1
ϕ′

2
|br ,...,b2
nr ,...,n2

) .

Also, if r = 0, then we must set

hr (z, ϕ3,
ϕ1
ϕ2|)= 〈ϕ1,Y(ϕ3, z)ϕ2〉Lk,λ1

= z−τ 〈ϕ1,W(ϕ3 ⊗ ϕ2)〉V1 .

Consider now the case where some of the integers nj , j = 1, . . . , r are positive and again 
ϕ2 ∈ Lk,λ2(0). In this case, we can apply the subroutine L to get a linear combination of vectors 
of the form (136), i.e.,

br (nr) · · ·b1(n1)ϕ2 =
∑
m

αmeism (ksm) · · · ei1(k1)ϕ2,

where ksm < · · · < k1 ≤ 0 is non-positive (we again abuse notation and suppress an additional 
index m for i and k). By linearity of the inner product, we conclude that

hr (z, ϕ3,
ϕ1
ϕ2|br ,...,b1
nr ,...,nr

)=
∑
m

αmhr (z, ϕ3,
ϕ1
ϕ2|er ,...,e1
kr ,...,k1

) .

At this stage, we use the explicit form (142) of the function g for every element of this linear 
combination. �
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Algorithms 1, 2 and 3 summarize these arguments as pseudocode. In this code, we use the 
notation

F(z, 
, r, ϕ3,
ϕ1
ϕ2|a
,...,a1
m
,...,m1|br ,...,b1

nr ,...,n1
)= f
,r (z, ϕ3,

ϕ1
ϕ2|a
,...,a1
m
,...,m1|br ,...,b1

nr ,...,n1
)

H(z, r, ϕ3,
ϕ1
ϕ2|br ,...,b1
nr ,...,n1

)= hr (z, ϕ3,
ϕ1
ϕ2|br ,...,b1
nr ,...,n1

) .

References

[1] R.P. Feynman, Difficulties in applying the variational principle to quantum field theories, in: Proc. Int. Workshop 
on Variational Calculus in Quantum Field Theory, Wangerooge, West Germany, World Scientific, 1987, pp. 28–40.

[2] P. Francesco, P. Mathieu, D. Sénéchal, Conformal Field Theory, Springer Science & Business Media, 2012.
[3] U. Schollwöck, The density-matrix renormalization group, Rev. Mod. Phys. 77 (2005) 259–315.
[4] M.M. Wolf, D. Perez-Garcia, F. Verstraete, J.I. Cirac, Matrix product state representations, Quantum Inf. Comput. 

7 (2007) 401–430, http://www.rintonpress.com/journals/qiconline.html#v7n56.
[5] M. Fannes, B. Nachtergaele, R. Werner, Finitely correlated pure states, J. Funct. Anal. 120 (2) (1994) 511–534.
[6] M. Fannes, B. Nachtergaele, R.F. Werner, Finitely correlated states on quantum spin chains, Commun. Math. Phys. 

144 (3) (1992) 443–490.
[7] M.B. Hastings, An area law for one-dimensional quantum systems, J. Stat. Mech. Theory Exp. 8 (2007) P08024.
[8] Z. Landau, U. Vazirani, T. Vidick, A polynomial time algorithm for the ground state of one-dimensional gapped 

local Hamiltonians, Nat. Phys. (2015).
[9] J. Wess, B. Zumino, Consequences of anomalous ward identities, Phys. Lett. B 37 (1) (1971) 95–97.

[10] E. Witten, Non-abelian bosonization in two dimensions, Commun. Math. Phys. 92 (4) (1984) 455–472.
[11] S.P. Novikov, Multivalued functions and functionals. An analogue of the Morse theory, Sov. Math. Dokl. 24 (1981) 

222–226.
[12] F. Verstraete, J.I. Cirac, Continuous matrix product states for quantum fields, Phys. Rev. Lett. 104 (1) (2010) 190405.
[13] J. Haegeman, J.I. Cirac, T.J. Osborne, H. Verschelde, F. Verstraete, Applying the variational principle to

(1 + 1)-dimensional quantum field theories, Phys. Rev. Lett. 105 (2) (2010) 251601.
[14] T.J. Osborne, J. Eisert, F. Verstraete, Holographic quantum states, Phys. Rev. Lett. 105 (2) (2010) 260401.
[15] J. Haegeman, J.I. Cirac, T.J. Osborne, F. Verstraete, Calculus of continuous matrix product states, Phys. Rev. B 

88 (8) (2013) 85118.
[16] J. Haegeman, T.J. Osborne, H. Verschelde, F. Verstraete, Entanglement renormalization for quantum fields in real 

space, Phys. Rev. Lett. 110 (1) (2013) 100402.
[17] D. Jennings, C. Brockt, J. Haegeman, T.J. Osborne, F. Verstraete, Continuum tensor network field states, path 

integral representations and spatial symmetries, New J. Phys. 17 (6) (2015) 063039.
[18] A.E. Nielsen, G. Sierra, Bosonic fractional quantum Hall states on the torus from conformal field theory, J. Stat. 

Mech. Theory Exp. 2014 (4) (2014) P04007.
[19] A.E. Nielsen, J.I. Cirac, G. Sierra, Laughlin spin-liquid states on lattices obtained from conformal field theory, Phys. 

Rev. Lett. 108 (25) (2012) 257206.
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