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Abstract
The task of similarity search refers to fetching an item that is closest to the query item from
a reference database under the notion of some distance measure. In critical applications of
large-scale search and pattern matching, exhaustive comparison is often not possible due
to prohibitive computational complexity and memory overheads. Towards mitigating this,
hashing has been adopted as a popular approach for performing computationally efficient
approximate nearest neighbor search. It is an approach of encoding data items into sequence
of bits, called hash codes, such that the nearest neighbor search in the coding space is efficient
and accurate. With explosive growth in big data in medical imaging, there is a particular
need for designing efficient indexing and search methods that can be leveraged for pattern
exploration and knowledge discovery.

Towards learning optimized hashing functions for efficient indexing, we propose hashing
forests (HF), which are an ensemble of code-efficient trees for recursive partitioning of the
feature space. We propose two variants of HF, namely unsupervised HF (uHF) and metric
HF (mHF) that are targeted at distance approximation and semantic-preserving hashing
scenarios respectively. In uHF, trees are trained to parse the feature space into balanced
well-clustered subspaces, whereas in mHF, the trees use localized metric learning to parse
the space into semantically similar local neighborhoods. The versatility and efficacy of both
these variants is demonstrated for the challenging task of pattern exploration within highly
heterogeneous neuron databases. Extending to medical images, we leverage deep learning for
end-to-end learning of convolutional neural networks for simultaneous representation learning
and hashing. For enforcing code consistency within such networks, we design optimization
objectives inspired by neighborhood component analysis (NCA) for minimizing the similarity
weighted Hamming distance, with additional losses and regularizations such as bit-balance,
bit-uncorrelation and quantization loss to improve hash code quality. We demonstrate the
ability of such networks to perform semantics-preserving similarity search on a large scale
chest X-ray image database with co-occurring disease patterns. We also investigate extension
to multiple instance (MI) retrieval through the introduction of the MI pooling layer and
robustness within NCA for improved learning. This was demonstrated on large-scale databases
of breast mammography and histology for carcinoma assessment.

In conclusion, this thesis explores aspects of code-consistent training of hashing forests and
deep learning models for end-to-end learning of hash codes and demonstrates that such
hashing models can be leveraged to perform efficient and accurate large-scale content-based
medical image retrieval.
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Zusammenfassung
Die Aufgabe der Ähnlichkeitssuche besteht darin, ein Element aus einer Referenzdatenbank
auszuwählen, das am nähesten des Suchelementes bezüglich einer Distanzmetrik ist. In
kritischen Such- oder Mustererkennungsanwendungen ist es meistens wegen Speicher- und
Rechen-Overhead nicht möglich, eine exhaustive Suche durchzuführen. Hashing ist eine
Methode, um die Nearest-Neighbor-Suche laufzeit-effizient zu lösen, in der man das Element
in einer Bitsequenz, genannt Hashcode, kodiert, so dass die Vergleiche im Kodierungsraum
effizient und präzise durchgeführt werden können. Der wachsenden Datenmenge in der
Bildgebung zugrunde müssen Algorithmen für effizientes Indizieren und Suchen entwickelt
werden, die für Mustererkennung und Wissenentdeckung genutzt werden.

Um optimierte Hashing Funktionen für effizientes Indizieren zu lernen, schlagen wir
Hash-Forests (HF) vor, die ein Ensemble von code-effizienten Bäume für rekursives
Partitionieren des Feature-Raums sind. Wir schlagen zwei Arten von HF vor, nämlich
unüberwachtes HF (uHF) und metrisches HF (mHF), die der Distanzapproximierung bzw.
dem semantik-bewahrenden Hashing gewidmet sind. Die trees im uHF werden zur Zerlegung
des Feature-Raums in ausgeglichene gut-gruppierte Unterräume traininert, während die mHF
Bäume lokales metrisches Lernen verwenden, um den Raum in semantisch ähnliche lokale
Nachbarschaften zu zerlegen. Die Vielseitigkeit und Wirksamkeit dieser beiden Varianten wird
anhand anspruchsvoller Mustererkennung in sehr heterogenen Neuronendatenbanken
beweist. Auf Bildgebung erweiternd, wir setzen Deep Learning in Form von Convolutional
Neural Networks (CNNs) für das simultanes Ende-zu-Ende-Lernen von automatischen
Features und Hashing ein. Zur Durchsetzung von Code-Konsistenz in CNNs entwerfen wir
Optimierungsziele, die von der Nachbarschaftskomponentenanalyse (NCA) inspiriert sind. Um
die Qualität der Codes zu verbessern, werden die Ähnlichkeits-gewichteten Hamming-Distanz
minimiert und andere Ziele und Regularisierungen einführt, wie Bit-Balance,
Bit-Unkorrelation und Quantisierungsverlust. Wir zeigen die Fähigkeit solcher CNNs,
semantik-erhaltende Ähnlichkeitssuche in einer Large-Scale Röntgen-Brust Bilddatenbank mit
zusammen auftretenden Krankheitsmuster auszuführen. Wir untersuchen sowohl die
Erweiterung auf Multiple Instance (MI) Retrieval durch die Einführung der MI-Pooling-Layer
als auch die Robustheit innerhalb NCA für verbessertes Lernen auf Large-Scale Datenbanken
der Brust Mammographie und Histologie zur Karzinom-Einschätzung.

Zusammenfassend untersucht diese Dissertation Aspekte des code-konsistenten Trainings
von Hash-Forests und Deep Learning Modellen für das Ende-zu-Ende-Lernen von Hashwerte
und zeigt, dass diese Hashing Modelle dazu genutzt werden können, effizientes und präzises
Large-Scale medizinisches inhaltsbasiertes Image Retrieval durchzuführen.
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1Introduction

„Medicine is a science of uncertainty and an art of
probability.

— William Osler
(Founding Professor, Johns Hopkins Hospital)

1.1 Motivation

Content-based Image Retrieval (CBIR) is an image search technique that is driven by
quantifiable features extracted directly from the images as the search criterion [181]. In
contrast to depending on manually assigned search keywords, these features are often
automatically / semi-automatically extracted from the images, thereby making the retrieval
system more objective and quantifiable. Essentially, a CBIR system measures image similarity
based on the underlying visual components and is ideal for large-scale mining of image
repositories. The goal of such a system is to answer two primal questions:

• What ?: Retrieve a set of images that are similar to the query image

• Why ? Explain why the retrieved results are similar to the query in an objective, non-
qualitative manner.

In the recent past, with the deluge of digital images (e.g. ImageNet [49], MS-COCO [115],
PASCAL VOC [59] etc.), CBIR has moved towards Big Data, with a new generation of
algorithms targeting retrieval at a massive scale. Towards this fast and efficient indexing and
compression methods have been proposed including product quantization techniques [90],
tree-based indexing structures [88, 97] and hashing [193] to name a few. The design
elements for a CBIR system the scale well are closely related to the concepts of efficiency and
accuracy of the system. These include:

Defining similarity: CBIR system requires application-specific definition of inter-image
similarity such that the extracted representations preserve the relevant semantics and factor
out irrelevant information.

Efficiency: The CBIR system has to efficiently organize the representations into indices such
that search and retrieval from large repositories is time-efficient and has a low-computational
footprint.
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Similarity search, also known as nearest neighbor search aims at finding items within a database
X that are nearest to a query q, under the definition of some distance measure. For large-scale
databases, the distance computation in a linear fashion (i.e. exhaustive search) is expensive
and is often computationally infeasible due to associated linear search-time complexity O(|X |).
Besides limited scalability of such an approach, since semantics-preserving representations are
often very high-dimensional, the curse of dimensionality and associated storage constraints
become important bottlenecks to consider and mitigate [16]. Often, retrieving a set of
Approximate Nearest Neighbors (ANN) is sufficient for practical applications. Hence, methods
that achieve sub-linear o(|X |), logarithmic O(|X |) or even constant O(1) query time is desired
for retrieving ANNs.

With increasing volume of modern image repositories and high feature dimensionality of
the descriptors, the question of how to efficiently mine them is important to address. In
many cases, it is not economical to exhaustive compare the query to every element in the
database. To achieve real-time retrieval, efficient indexing schemes are needed that store and
partition the database, such that the data can be accessed and explored quickly by filtering
out irrelevant data. This has given rise to approximate search schemes which aim at ranking
images within a dataset in accordance to their relevance to the query.

Tree-based indexing approaches employ hierarchical database structures that recursively
partition the feature space and inverted files to improve retrieval efficiency. Prior art of such
approaches includes KD tree [131], ball tree [18], metric tree [210], vantage point tree [139],
vocabulary tree [140] etc. to name a few. However, these approaches have a significant
overhead of storage and are reported to dramatically degrade in performance while handling
high dimensional data. In contrast to these methods, hashing methods repeatedly partition
the entire dataset and derive a single hash ‘bit’ from each partitioning. We extensively discuss
and present hashing based approximate nearest neighbor search in this chapter. Other popular
approaches towards handling scalability in large-scale retrieval include feature compression
(or dimensionality reduction) [27], re-ranking [138] and use of high-performance computing
environments [113].

1.2 Outline

This thesis, in its entirety, is dedicated to developing advanced hashing models and
demonstrating their usability for the task of CBIR in medical image databases. This thesis is
structured in four parts. In Part I, Chapter 1, the essentials of hashing and content based
image retrieval are introduced, including a detailed overview of learning and optimizing hash
functions, brief overview of the state-of-the art in hashing and subsequently evaluating such
functions. The chapter also presents a brief overview of image retrieval specific to medical
imaging discussing the challenges associated with it and presents the prior art methods
developed to address the same. This chapter aims to serve as a basis for the subsequent
chapters and lays the premise for the contributions presented in the thesis.

Part II contains the scientific contributions of this thesis, which are outlined as follows:
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• Chapter 2 introduces a machine learning model based on random forests for
unsupervised hashing, termed as Hashing Forests. This model is an ensemble of
independently trained hashing trees that recursively parse the feature space into
balanced clusters and encode them with binary codes. We introduce a novel cluster
validity and balanced partitioning based cost-function for learning the hash trees and
demonstrate their applicability to a challenging scenario of neuron image retrieval.

• Chapter 3 introduces supervision into the training of hashing forests, termed as metric
Hashing Forests (mHF). Key elements are the introduction of local metric learning and
a novel cost function inspired by code-consistent hashing to learn trees that kernelize
and parse the feature space recursively into semantically similar local neighborhoods
that are encoded with binary codes. mHF is extensively validated and compared against
state of the art hashing and metric learning methods for the task of similarity-preserving
neuron image retrieval.

• Chapter 4 delves into leveraging deep learning for the task of end-to-end learning of
hash codes and we introduce a novel deep architecture, termed Deep Residual Hashing
(DRH). To enforce code-consistency, optimization based on neighborhood component
analysis (NCA) was performed with additional losses and regularizations such as bit
balance, bit orthogonality and quantization being introduced to improve hash code
quality. DRH was extensively validated on the task of similarity-preserving retrieval
within a highly heterogeneous Chest X-ray database with a significant fraction of co-
morbid samples.

• Chapter 5 presents extensions of deep hashing concepts discussed in Chapter 4 into the
domain of multiple instance image retrieval and introduces a novel hashing paradigm
termed as Robust Multiple Instance Hashing (RMIH). Given a bag of images, RMIH
generates an hash code at the bag-level preserving the semantics associated with such
a bag. This is achieved with the introduction of the multiple instance pooling layer
to aggregate information selectively from across the bag. To learn in the presence of
label noise, we extended NCA loss discussed in Chapter 4 into robust-NCA with the
introduction of robust statistics. RMIH was extensively validated for retrieval on two
large-scale datasets related to assessment of breast carcinoma (mammography and
histology).

Substantial parts of this thesis have already been published, and the respective publications
are clearly indicated at the beginning of each chapter. Although the presented work can be
considered my own if not explicitly declared otherwise, the usage of the first-person plural
form indicates that many efforts where only possible as a team. Finally, Part III, Chapter 6,
concludes the thesis and outlines potential directions of future work. The appendix (Part IV)
contains additional information about pattern exploration in neuron image databases, the list
of awards and scholarships, abstracts of related publications not presented within this thesis,
lists of publications, figures, tables, and the bibliography.
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Fig. 1.1. Schematic illustrating the overall process of Content based Image Retrieval using Hashing: In the training
phase (performed offline), give a reference database, with associated semantics in case of supervised
retrieval, firstly we extract (or alternatively learn) features that encode these semantics. Post feature
extraction, hash functions are learnt to parse the feature space into semantically similar neighborhoods
which are indexed with a sequence of bits, called hash codes. The hash codes across the database is
organized into a hash table which is light-weight and is used during retrieval. In the querying phase
(performed online), the query item undergoes an identical feature extraction routine followed by index
generation through a learnt hash function. The hash code of the query is compared against the hash
table using computationally efficient inverse lookup and the database items are ranked. The top-ranked
data items are presented to the user and any available feedback re-incorporated into in the query phase.

1.3 Essentials of Hashing

To make retrieval fast without compromising of the performance, generalized hashing based
methods have been widely investigated. Hashing refers to the approach of mapping the
query to the target in a database using quantized representations such that similar nearest
neighbors can be searched and retrieved efficiently and accurately. This is usually achieved by
transforming the data items into a low-dimensional representation, or equivalently compact
codes consisting of a sequence of bits. Ideally, such a mapping has to preserve similarity
in which similar items are mapped to closer hash codes than dissimilar counterparts. The
distance computed on short codes is highly efficient and such encoding is scalable to large-
scale databases as the codes are much smaller than the input features (or data items) thus
resulting in the disk I/O cost reduction for cases where the original features are too large for
the available memory [193, 195, 201]. For instance, 120 thousand chest X-ray images, such
as Chest-XRay8 [198] (1000× 1000, 72 DPI, 12-bit encoding) would cost around 55G bytes in
storage space, but can be presented into 64-bits binary codes requiring only 7.2M bytes!
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1.3.1 Exact vs. Approximate Nearest Neighbor Search

Given query q, the goal of nearest neighbor search is to retrieve item NN(q) from within a
database X , such that

NN (q) = arg minx∈Xdist (x,q) (1.1)

where dist (x,q) is the distance computed between q and x. Typically, if X lies in
d-dimensional space Rd the distance is induced by an ls norm (usually s = 2), given by:

‖x− q‖s =
(

d∑
i=1
|xi − qi|s

)1/s

(1.2)

For a fixed-radius (say R) nearest neighbor problem, the goal is to retrieve items R that satisfy
R = {x‖dist (x,q) ≤ R,x ∈ X}. As discussed in the Sec. 1.1, the naïve solution based on
linear scan is computationally expensive and for most practical applications, an approximate
nearest neighbor search suffices. Formally, the (1 + ε) -approximate NN, for ε > 0 is defined
as dist (x,q) ≤ (1 + ε) dist (x∗,q), where x∗ is the true nearest neighbor.

1.3.2 Definition of Hashing

Hashing aims to map the database items into short codes so that approximate NN search can be
efficiently performed. Formally, the hash function is defined as: y = h (x), where y is the hash
code and h(·) is the hash function. When represented with sequence of bits (say N in number),
the hash code is y = H (x), where y = [y1y2 · · · yN ]T and H = [h1 (x)h2 (x) · · ·hN (x)]T .
Depending on the application, one may either approximate the distance using a hash table
lookup, wherein the hashing approach aims to maximize the probability of collision of near
items. Alternatively, instead of exhaustive search, an non-exhaustive approach would be to
fetch approximate nearest neighbors using the hash-codes and the fetched items are re-ranked
using the true distance. In either scenarios, the true distance can be approximated using the
Hamming distance computed between the hash-codes.

1.4 Learning to hash

The task of learning a compound hash function y = h(x) is to compute mapping of x to
a compact code y such that the coding space is efficient and similarity-preserving i.e. can
serve as an effective approximation to the true nearest neighbor search. There are three
fundamental building blocks that define an instance of a learning to hash approach:

• Nature of hash function: The hash function can be based on linear projections [180],
kernels [120], neural networks, non-parametric, and so on. A popular hash function
is the linear model, wherein each hash bit is associated with a projection vector w and
a quantization function (typically signum). For e.g., y = sign(wTx) ∈ {0, 1}, where
sign(wTx) = 1 if wTx ≥ 0 and 0 otherwise. The choice of hash function is a key decision
that influences the efficacy of computing hash codes and its flexibility of partitioning the
feature space. We discuss this in greater detail in Sec. 1.4.1.
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• Feature Representation and Similarity Measure: For binary encodings, the Hamming
distance (HD) is widely adopted as a similarity measure between two different hash codes
and hence deemed as an approximation of the true distance between their respective
data items. Given a hashing functions H = {hk (·)}Kk=1, the hamming distance dH

between two binary codes yi = H (xi) and yj = H (xj) is defined as:

dH (yi,yj) = |yi − yj | =
K∑
k=1
|hk (xi)− hk (xj)| (1.3)

HD can be efficiently calculated as the bitwise xor operation and it must be noted
that conducting exhaustive search in the Hamming space is significantly faster than
doing the same in the original feature space due to its low memory footprint and
computational cost. Variants such as normalized HD [205] asymmetric HD [67], query-
adaptive HD [220] have also been explored [193]. We discuss aspects related to feature
representation for encoding inter-item similarity in Sec. 1.4.2.

• Nature of Supervision: The optimization to learn hash functions attempts at achieving
an approximate nearest neighbor search result closest to the true search result with the
order of similarity preserved. For unsupervised settings, this translates to a scenario
where the distance computed in the encoded space closely mimics the distance computed
in the input space. For the case of semantic hashing, the neighborhood estimated using
approximate NN should preserve the semantic similarities that we intend to encode.
This loosely motivates the Code Consistency criterion that penalizes larger distances in
the coding space but with larger similarities in the input space (either semantic similarity
or closeness in Euclidean distance). Besides similarity preservation, another widely
adopted optimization criterion is code balance that refers to hash codes to be uniformly
distributed. We present a brief primer on the nature of supervision in scenarios of
learning to hash in Sec. 1.4.3.

1.4.1 Nature of hash function

The goal of learning to hash is to learn learn data-dependent and task-specific hash functions
that yield compact binary representations to achieve good search performance. Depending
on the nature of the hash function H, hashing methods can be broadly categorized into two
groups viz. linear and non-linear. We briefly discuss the pros and cons of such hash function
design as follows:

• Linear: Due to their computational efficacy, these methods aim at learning optimal
projections to map original feature space to the Hamming space. Earliest approaches in
this direction include unsupervised hashing methods such as PCA hashing [214] which
performed principal components analysis on the data to derive projections that preserve
the largest variance; under supervised settings, methods include Linear Discriminant
Analysis (LDA) Hashing [185] which are designed to learn more discriminative hash
codes. In addition to variance of projections, often additional constraints like
orthogonality [66], equal-variance projections [100], correlated projection learning
with error-corrective encoding [197] have also been investigated. Despite their
simplicity and low-computational requirement for hash code generation, linear hashing
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Fig. 1.2. Illustrative example of training phase of linear projection based binary hashing: The input feature space
({Xi}N

i=1) is parsed into sub-spaces using oblique hyperplane based hashing functions ({Hi}M
i=1).

Depending on the membership of each of the data points with respect to the learnt hashing functions,
binary hash codes are allotted. The database items are re-organized into the hash table, with items
belonging to the same hashed sub-space grouped into the same hash bucket (characterized by an unique
hash code). This hash table is representative of distribution of the data items in the original input space
and is used for calculating approximate nearest neighbors during querying.

methods suffer from insufficient discriminative power due to insufficiency in model
complexity and are of limited application in scenarios wherein differences amongst data
are not subtle and linearly inseparable. Fig. 1.2 and Fig. 1.3 present illustrative
examples of the training and testing phases of linear projection based hashing
respectively.

• Nonlinear: To override the limitations of linear hashing, methods that non-linearly map
the feature space into binary codes have been investigated. Prior art in this direction
include spectral hashing [201] that uses sinusoidal hash functions, methods using
kernelized encodings such as Kernel Sensitive Hashing [120], Compressed
Hashing [116], Anchor Graph Hashing [119], Optimized Kernel Hashing [72] etc. In
parallel, methods that aim at learning optimized discriminative kernels such as Metric
Learning Hashing [141], Supervised Kernel Sensitive Hashing [120], Maximum Inner
Product Hashing [114] etc. have been investigated.

1.4.2 Feature Representation

Visual feature extraction aims at representing low-level image content in a meaning fashion
such that it links to high-level perceptive concepts associated with the images. A good feature
representation is critical for good performance of CBIR systems as it is directly correlated with
the definition of image similarity. This has been an active area of research within the machine
learning and computer vision communities and has produced seminal contributions that
can be broadly categorized into hand-crafted and learned features. The main distinguishing
factor between the two types are whether the features are obtained through domain expert
knowledge or purely learnt from the data itself.
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Fig. 1.3. Illustrative example of inverse lookup in a hash table: Given a query Q that maps to the subspace
represented with hash code H (Q), we perform approximate nearest neighbor search by comparing
with the hash table of the database. Illustratively, say H (Q) = 0110 and we intend to fetch database
items that are at most 1 Hamming distance from H (Q), the potential neighbors would belong to the
buckets indexed as 0110, 1110, 0100 or 0111. We fetch the items belonging to the aforementioned hash
codes directly from the hash table, sans the need to perform pairwise comparisons. The latter aspect of
retrieval with hashing contributes significantly to speed-up.

The definition of similarity is closely related to the task of extracting feature representations
that preserve the semantics of the task at hand. Such a choice needs to bridge the following
gaps in representation:

• Sensory gap: This is the difference between the real-world representation of the object to
what is described by the features. The chosen features should ideally be robust towards
less relevant aspects of the image such as noise, low illumination, partial occlusion to
name a few. This gap is further compounded when information is lost when 2D images
are used for physical 3D objects due to choice of view points, acquisition settings such
as imaging quality, exposure, digitization and compression methods used.

• Semantic Gap: This gap arises due to inability of features to accurately represent the
underlying semantics within the image and the associated intent of the user.

In the rest of the thesis, learning based hashing methods that employ hand-crafted features
(discussed in Sec. 1.4.2) are referred to as Shallow-learning based hashing methods (or
Shallow Hashing for short) as they decouple feature representation and binarization into two
stages. In contrast to shallow hashing, methods that learn representations directly from the
data (representation learning, discussed in Sec. 1.4.2) and hash them (also learnt end-to-end
from the data) are referred to as Deep-learning based hashing methods (or Deep Hashing for
short).

Hand-Crafted Features

Hand-crafted features are sequentially extracted for each image (globally or locally) and are
generally based on expert knowledge wherein the feature encodes specific image content such
as color, texture, histograms etc. Some popular descriptors employed in prior literature for the
task of CBIR can be categorized as follows:
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• Local Features: These features are descriptive of information around interest points
such as corners, edges etc. Local features have the advantage of being robust to occlusion
or clutter, highly descriptive, distinctive and efficient to extract. They are often modeled
using a Bag-of-Words representation to obtain a global description of the whole image
typically by counting the frequency of the generated visual words within the image.
Popular features under this category include: Pixel Intensities, Haralick’s Gray Level
Co-occurence Matrix based features [82], Wavelets [121], Scale Invariant Feature
Transform [111, 123], Speeded Up Robust Features [14], Local Binary Patterns [215],
Gabor texture features [219], Tamura textural features [82], to name a few.

• Holistic Features: These features directly represent the global information in the entire
image. Popular features under this category include GIST [142], Histogram of Oriented
Gradients [83], Color Histogram [117], Moments [213], Fourier Descriptors [60], to
name a few.

Despite achieving significant strides in CBIR through informed choice of hand-crafted features,
they have short-comings when extended to large-scale retrieval. Domain knowledge to choose
appropriate features is often limited and does not work particularly well when the database
scales including potential outliers and cases that do not conform with standardized rules.
These methods are computationally intensive and contribute to the retrieval time overhead
which could critically limit retrieval time efficiency. Further, these features are often designed
with specific use cases and cannot be easily generalized on heterogeneous image databases.

Similarity amongst data items can be measured in a multitude of ways. If the features are
represented as a vector, distance metrics such as the Euclidean distance are used; for subtle
geometric differences, elastic deformations can be used [47]. If the spatial relationships
amongst objects of interest is to be encoded, then posing similarity estimation as a graph
matching problem is a potential solution [11]. Finally, statistical classifiers can be used to
automatically extract keywords and search terms from within query images, which in turn can
be used to fetch examples with similar attributes.

Representation Learning
Of late, approaches to hierarchically learn semantically relevant representations directly from
the data, collectively termed as Deep Learning, have become increasingly popular. In contrast
to hand-crafting features using domain knowledge, deep learning performs feature discovery
in a self-taught manner. Deep Networks are designed in a non-linear and hierarchical fashion,
such that they map features from fine to abstract with multiple layers of neural networks and a
large number of learned parameters. From a general perspective, deep learning was facilitated
by the availability of large training datasets (such as ImageNet [49], MS-COCO [115], PASCAL
VOC [59] etc.) making it possible for parameter optimization. Within the medical domain, with
availability of large-scale medical image databases (such as TGCA [70], DDSM [78], Chest-
XRay8 [198], ImageCLEF [135], TCIA [30] etc.), deep learning paradigms, both supervised
and unsupervised, are being increasingly adopted for end-to-end learning.

Deep neural networks (DNNs) consist of an input layer which interfaces with the input
feature vector, followed by multiple hidden layers of neurons with nonlinear connections
(through non-linear activation functions such as sigmoid, tangent hyperbolic etc. [55])
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Fig. 1.4. Illustrative example of architecture of deep neural networks: DNNs consist of an input layer which interfaces
with the input feature vector, followed by multiple hidden layers of neurons with nonlinear connections
(through non-linear activation functions such as sigmoid, tangent hyperbolic etc.) terminating in a
decision-making layer (such as softmax for classification; binary encoding for hashing etc.)

Fig. 1.5. Illustrative example of architecture of convolutional neural networks: Convolutional layers apply
convolution operation to input, passing the result to the next layer. The convolution emulates the
response of an individual neuron to visual stimuli. Pooling operator combine the outputs of neuron
clusters at one layer into a single neuron in the next layer. Fully connected layers connect every neuron
in one layer to every neuron in another layer and work on principals similar to a DNN. CNNs share
weights in convolutional layers, which means that the same filter is used for each receptive field in the
layer; this reduces memory footprint and improves performance.

terminating in a decision-making layer (such as softmax for classification; binary encoding for
hashing etc.)(schematically illustrated in Fig. 1.4). Typically, each hidden layer consists of a
set of neurons that are completely and independently connected to every other neuron in the
previous layer (without any shared connections) [165]. In contrast to this, Convolutional
Neural Networks (CNN) are tailored for fixed size inputs that are convolved with multiple
shared kernels used in conjunction with non-linear activation functions (such as Rectified
Linear Units (ReLU) [137]; parametric ReLU (pReLU) [74]; exponential Linear Units
(eLU) [31] etc.)(schematically illustrated in Fig. 1.5). Additional layers worth mentioning
include: pooling layers to down-sample representations (typically max- / mean-pooling);
batch-normalization layers to compensate for internal covariate shifts [87]; fully-connected
layers that are akin to DNNs and ultimately terminating in a decision making layer. Parameter
optimization within CNNs is typically done through back-propagating error gradients in a
reverse fashion by greedily updating parameters in directions that optimize the task-specific
loss function [79]. Towards this a number of gradient-based optimization techniques have
been proposed including popular approaches such as stochastic gradient descent [79];
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ADAM [98]; RMSProp [80] etc. To prevent model overfitting or memorization of the training
data, often regularizations such as weight decay [104], dropout [184] etc. are adopted.

Starting from the earliest variant of CNNs for hand-written number recognition (termed
LeNet [110]), seminal advances towards training very deep networks with advanced network
architectures have been made notably, AlexNet [103], GoogLeNet [187], VGG Net [26] and
ResNets [73]. Supervised training of CNNs requires a large amount of labeled training data.
Within domain of medical imaging, despite the deluge of data, obtaining high-quality manual
annotations is challenging and severely limits the size of the available training data-base.
Some popular approaches adopted to accommodate medical image analysis with deep learning
include:

• Transfer Learning: Instead of training CNN models from scratch, pre-trained architectures
from related tasks are adopted as a starting point and fine-tuned for the task at hand with
limited training data. Potentially one could use networks trained for image classification
on natural images (say, ImageNet [49]) or using auxiliary labels generated through
pre-existing approaches [160].

• CNN as a feature extractor: In scenarios with severe training data limitations, pre-
trained CNN models can be employed to extract features which can in turn be used
complementary to hand-crafted features [170].

• Data Augmentation: Synthetically transforming training data with class-preserving
transformations (such as geometric transformations, color variations, deformable
transformations etc.) can significantly boost the exploratory aspect of CNNs [202].
Additionally, synthetic images from simulations could also be potentially used to
augment training data [53].

• Unsupervised Pre-training: Leveraging vast amounts of unsupervised data to learn dataset
specific latent features by minimizing loss functions such as reconstruction error is also
widely adopted. Some noteworthy deep architectures under this category include
auto-encoders including variants such as denoising autoencoders [191], variational
autoencoders [99], convolutional autoencoders [128] etc.; generative models such as
retricted Boltzmann machines [189], deep belief networks [109] etc..

Clearly with a positive trend of increasing amounts of labeled training data within medical
image analytics, the approaches of data-driven representation learning is the way of the
future.

1.4.3 Nature of Supervision

Like machine learning paradigms, emerging hashing methods employ different levels of
supervision ranging from unsupervised and supervised to semi-supervised variants. Broadly,
unsupervised methods target integration of properties of the data manifold and distributions
to design compact hash codes. Representative unsupervised methods include spectral
hashing [201], anchor graph hashing [118], manifold hashing [172], iterative
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(a) Pairwise (b) Triplet (c) Higher-order

Fig. 1.6. Nature of Supervision in learning to hash: The neighborhood relationships amongst data base items can
be pair-wise (as shown in Fig. 1.6a) or include ranked-order such as in triples (as shown in Fig. 1.6b).
Alternatively, higher order relationships including multiple neighbors can also be used for supervised
hashing (as shown in Fig. 1.6c).

quantization [66], self-taught hashing [218], isotropic hashing [100] etc. to name a few. In
addition, supervised hashing methods exploit a range of techniques from kernelization to
metric learning to deep learning to learn binary codes and popular approaches under this
category include metric learning hashing [141], kernel sensitive hashing (KSH) [120],
supervised discrete hashing (SDH) [173], deep hashing network (DHN) [224], simultaneous
feature learning and hashing (SFLH) [107] among others. Finally, semi-supervised learning
paradigms employ both labeled and unlabeled data and aim at obtaining accurate and
balanced hash codes [196].

The relationship amongst the data items in a supervised (or semi-supervised) hashing setting
can be further used to sub-categorize hashing methods as follows:

• Pointwise: These approaches use instance-level semantic attributes to design hash
functions e.g. parameter-sensitive hashing [169], predictable discriminative binary-
coding [154] etc.

• Pairwise: Pairwise supervision is used to learn hash functions that preserve them in
the Hamming space. As shown in Fig. 1.6a, the pair (x1,x2) contains similar points,
while the other two pairs (x1,x3) and (x2,x3) contain dissimilar points. Such hashing
methods are the most widely investigated and aim at preserving relations between data
samples in the learned Hamming space. Learning methods employing such a supervision
include fast similarity search [218], kernel sensitive hashing [120], hamming-distance
metric learning [141], semi-supervised hashing [196], non-transitive hashing [143] etc.
It must be noted that as ranking information is not fully utilized, the performance of
pairwise supervision might be sub-optimal for nearest neighbor search.

• Triplet and Higher-Order Relationships: Triplets encode pairwise proximity information
amongst three data points. As demonstrated in Fig. 1.6b, the point x+ is more similar
to query point q than point x−. The methods that utilize ranking information such as
triplets (comparison amongst three data points), list-wise information (rank-order of
similarities amongst samples) [197], lifted-structure embedding (simultaneous use of
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positives or negatives samples as illustrated in Fig. 1.6c) [183] etc. are gaining popularity
due to their ability to more efficiently preserve ranking in the Hamming Space.

1.5 Code Consistent Hashing

Formally, code-consistent hashing refers to a category of hash functions that are based on
minimizing the similarity-weighted distance sijdist(yi,yj) (and possibly maximizing
dijdist(yi,yj), to formulate the objective function. Here, sij is the similarity between xi and
xj defined either in the input feature space or extracted from semantic relationships. In this
section, we will explore various prior art learning based code-consistent hashing techniques to
design data-specific indexing schemes, specifically looking into their technical merits,
advantages and drawbacks. It must be noted that the performance of each of these methods
depends on practical settings, including learning parameters and the dataset itself. In general,
methods under the category of non-linear and supervised hashing tend to learn more
optimized and discriminative hash codes over linear and unsupervised methods, while trading
off computational efficacy. In Table 1.1 and Table 1.2 we summarize the state of the art
shallow hashing and deep hashing methods along with the contributions of this thesis within
the respective categories.

1.5.1 Projection based Hashing

One of the earliest works on partitioning the input space was Locality Sensitive Hashing (LSH)
proposed by Slaney and Casey [180]. The idea behind the LSH is that if two points are similar
and closely embedded, then upon randomized linear projections they will remain close to
each other. The LSH generates binary encoding by partitioning feature space with randomly
generated hyperplanes [slaney2008, 64]. The hash functions for LSH can be parameterized
as:

hk (x) = sgn
(
wT
k x + bk

)
(1.4)

where {wk, bk}Kk=1 are parameters of the hash function representing the projection vector wk

and the corresponding intercept bk. The LSH is a data independent method since it randomly
generates hashing functions regardless of the data distribution. To mitigate the randomness of
projections while simultaneously induce data-dependence, LSH was extended by projecting
the input space along uncorrelated dimensions via PCA and learning a hashing function
that minimizes the error between the new feature matrix and the corresponding binarized
feature matrix [214]. Despite being highly efficient, linear projection based methods suffer
from the same pitfalls discussed in Section 1.4.1 of insufficient model complexity and poor
generalizablity.

1.5.2 Spectral Hashing

Spectral Hashing (SH) aims at preserving neighborhoods in the input space to neighborhoods
in the learned Hamming space and requires hash codes to be balanced and uncorrelated [201].
To find the best code for a dataset, SH draws analogy with the problem of graph partitioning
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and additionally introduces relaxed orthogonality and balanced partitioning constraints. Like
in spectral graph analysis, SH obtains solutions that are a subset of thresholded eigenvectors
of the graph Laplacian. Let {yn}Nn=1 = 1N be the hash-codes of N data items, with each yn of
M bit size. Let sij be the similarity that correlates with the Euclidean distance. The Spectral
Hashing formulation is given as:

minY Trace(Y(D− S)YT ) (1.5)

s.t. Y1 = 0

YYT = I

yim ∈ {−1, 1}

(1.6)

where Y = [y1y2 · · ·yN ], S = [sij ] is the similarity matrix of size N × N , D is a diagonal
matrix Diag(d11d, · · · , dNN ), and dnn =

∑N
i=1 sni. D− S is the Laplacian matrix and

Trace(Y(D− S)YT ) =
N∑
i=1

N∑
j=1

wij ‖yi − yj‖22 (1.7)

The constraints Y1 = 0 and YYT = I correspond to bit balance and bit uncorrelated
requirements respectively. Instead of solving Eq. 1.5 directly, under the assumption of uniform
data distribution, Weiss et al. [201] demonstrated that the spectral solution can be
approximated and efficiently computed using 1D-Laplacian eigenfunctions. The algorithm is
as follows:

1. Find the principal components of the N -d data using PCA.

2. Compute the M 1d Laplacian eigenfunctions with the smallest eigenvalues along each
PCA direction. For the case of uniform distribution defined on bounds [r1, r2], the 1d
eigen function φf (x) is

φf (x) = sin
(
π

2 + fπ

r2 − r1
x

)
(1.8)

and the corresponding eigenvalue λf is

λf = 1− exp

(
−ε

2

2

∣∣∣∣ fπ

r2 − r1

∣∣∣∣2
)

(1.9)

3. Pick the M eigen functions with the smallest eigen values amongst the Md

eigenfunctions.

4. Threshold the eigenfunction φf (x) at 0 to binarize into hash codes.

The computed projects are data-dependent and are learnt in an unsupervised fashion. However,
this method suffers from low-quality binary encodings when using low-variance projections.
To alleviate performance degradation upon extension to longer hash codes, a variant of SH was
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Hashing Method Input Similarity Hash Function Optimization Criteria

Locality Sensitive Hashing [180] Euclidean Linear Random Projections

Spectral Hashing [201] Euclidean Laplacian Eigenmaps
Coding Consistency

Bit Balance
Bit Uncorrelation

Hashing with Graphs [119] Semantic Kernel
Code Consistency

Bit Balance

Multi-dimensional Spectral Hashing [200]
Euclidean
Semantic Kernel

Coding Consistency
Bit Balance

Bit Uncorrelation

Linear Discriminant Analysis Hashing [185] Semantic Linear
Code Consistency

Projection Uncorrelation

Supervised Hashing with Kernels [120]
Semantic
Euclidean

Linear
Kernel MDS

Unsupervised Hashing Forests [42]
(Chapter 2) Euclidean

Tree-based
Nodewise Linear

Code Consistency
Projection Uncorrelation

Bit Balance
MDSD

Metric Hashing Forests [40]
(Chapter 3) Semantic

Tree-based
Nodewise Linear

Code Consistency
Projection Uncorrelation

MDSD
MD3

Maximum Margin

Tab. 1.1. Summary of shallow-learning based hashing algorithms: This table tabulates state of the art shallow
hashing methods along with the contributions made in this thesis and summarizes the underlying input
similarity, underlying hash function and optimization criterion used. (Abbreviation: MDS - Minimizing
differences between similarities; MDSD - Minimizing differences between similar distributions; MD3 -
Maximizing differences between dissimilar distributions; NCA - Neighborhood Component Analysis )

proposed (termed as Multidimensional Spectral Hashing) which employed kernalization [200].
It must be noted that a critical bottleneck with this approach was the assumption of uniform
data distribution which hardly holds for real-world data.

1.5.3 Anchor Graph Hashing

The main challenge of Spectral Hashing in solving Eq. 1.5 and Eq. 1.7, other than the uniform
distribution assumption, was defining wij , the computation of associated graph Laplacian
and the associated solving of the eigen-system which had quadratic complexity. Following on
similar lines as SH, Anchor Graph Hashing by Liu et al. [119] alleviates the assumption of
uniform distribution and creates an efficient approximation of the graph structure by building
the pairwise similarity graph A, using a small set of anchor points such that similarity between
any two points can be approximated using point-to-anchor similarities. Such an approximation
is both computationally efficient and representative of the neighborhood structure.

In particular, the truncated point-to-anchor similarity Z ∈ RN×M gives the similarity between
N database items to M anchor points. The approximated similarity matrix Â is calculated
as Â = ZΛZT , where Λ = diag(Z1) is the degree matrix of anchor graph Z. Based on such
an approximation the eigen-system of the matrix can be obtained by solving a much smaller
eigen-system with an M × M matrix Λ 1

2 ZZTΛ 1
2 and the final binary codes are obtained

through binarizing the spectral embedding as:

Y = sgn
(

ZΛ 1
2 VΣ 1

2

)
(1.10)
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where, V = [v1, · · · ,vk, · · · ,vK ] ∈ RM×K and Σ = diag (σ1, · · · , σk, · · · , σK) ∈ RK×K , where
{vk, σk} are the eigenvector-eigenvalue pairs. For out-of-sample extension, AGH extrapolates
the graph Laplacian eigenvectors to eigenfunctions and binarizes via hierarchical
thresholding.

1.5.4 Hashing with Kernels

To extend hashing methods into handling high-dimensional features and learn complex
distance functions into a low-dimensional Hamming space, Kernelized Locality-Sensitive
Hashing generalizes LSH to handle arbitrary kernel functions to accommodate linearly
inseparable data [120]. This work was extended into the supervised domain by considering
pairwise similarity/ dissimilarity information while encoding and minimizing the Hamming
affinity over hash codes and the similarity over data items. The similarity (sij = 1) or
dissimilarity (sij = −1) is given by label information or Euclidean distance. The hash
function is defined as follows:

ymn = hm (xn) = sign

(
Tm∑
t=1

wmtK (smt,x) + b

)
(1.11)

where {smt}Tmt=1 are sampled data points forming the hash function
hm (·) ∈ {h1 (·) , · · · , hM (·)}, K (·, ·) and {wmt} are weights to be learnt and b is the bias. The
objective function is derived as follows:

min
∑

(i,j)∈L

(sij − affinity (yi,yj))2 (1.12)

where L is a set of labeled pairs and y ∈ {1,−1}M The Hamming affinity between hash codes
yi and yj is defined as:

affinity (yi,yj) = M − ‖yi − yj‖1 (1.13)

This was achieved by posing Hamming distances with their equivalent code inner products
and using an efficient greedy algorithm to sequentially solve for the target hash functions bit
by bit.

1.5.5 Deep Hashing

Of late, deep learning based approaches are being increasingly adopted for end-to-end learning
of representations tailored for hashing, effectively mitigating the two-stage approach of prior
shallow hashing based methods (i.e. extraction of features followed by binarization). The
main purpose of such methods is to learn robust and powerful feature presentations which
are binarized to generate compact hash codes. In this section we review a few popular prior
art deep hashing methods, discussing their contributions, pros and cons.

Semantic Hashing by Salakhutdinov and Hinton [164] is one of the earliest works in using
deep learning for hashing. The approach builds a deep generative model based on stacked
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Hashing Method Input Similarity Hash Function Optimization Criteria

Semantic Hashing [164] Semantic Neural Networks MDS

Deep Hashing [58]
Euclidean
Semantic Neural Networks

MDD (in Euclidean)
MDS (in Semantic)

Bit Balance
Quantization Error

Equal Variance

Simultaneous Feature Learning and Hashing [107] Semantic
Convolutional

Neural Networks
Triplet Loss

Quantization Error

Deep Hashing Network [224] Semantic
Convolutional

Neural Networks
MDS

Quantization Error

Deep Residual Hashing [39]
(Chapter 4) Semantic

Convolutional
Neural Networks

NCA
Code Consistency

MDS
Bit Balance

Quantization Error
Bit Uncorrelation

Robust Multiple Insance Hashing [37]
(Chapter 5) Semantic

Convolutional
Neural Networks

Robust NCA
Code Consistency

MDS
Quantization Error

Tab. 1.2. Summary of deep learning based hashing algorithms: This table tabulates state of the art deep hashing
methods along with the contributions made in this thesis and summarizes the underlying input similarity,
underlying hash function and optimization criterion used. (Abbreviation: MDS - Minimizing differences
between similarities; MDSD - Minimizing differences between similar distributions; MD3 - Maximizing
differences between dissimilar distributions; NCA - Neighborhood Component Analysis )

Restricted Boltzmann Machines (RBM) with hidden binary units (i.e. latent topic features).
The hash codes were generated by thresholding the output of the deepest layer and were
shown to preserve semantically similar relationships in the code space. This was an
unsupervised learning paradigm without end-to-end learning of features. In a supervised
extension, Torralba et al. [189], introduced the idea of Neighborhood Component Analysis
(NCA) [65] to incorporate supervised information (neighbor / non-neighbor relationships)
between the training examples. Then, the objective function of NCA was optimized on top of
a deep RBM, making the deep RBM yield discriminative hash codes.

With strong efforts within the machine learning and artificial intelligence communities,
kicking off with Krizhevsky et al. [103] in 2012, convolutional neural networks (CNNs) have
found increasing applicability for end-to-end learning of hash-codes. In the work titled Deep
Hashing, Erin Liong et al. [58] proposed to learn multiple hierarchical non-linear
transformations that map the original image to compact binary hash codes. The model was
supervised by introduction of the reconstruction error between original real-valued feature
vector and the resulting binary codes. Additional constraints to generate balanced and
independent hash codes were imposed. Within the same work, to incorporate supervision
when available, an additional discriminative term incorporating pairwise supervised
information was added to the objective function. In the work of Lai et al. [107], they use a
stack of convolutional layers to produce effective intermediate features which are further
stratified via a divide-and-encode module to compress and encode into one hash bit each to
simultaneously learn features and hashing functions on top of them. The model was trained
via a triplet ranking loss and a piece-wise threshold function was used for binarization. In the
work, titled Deep Hashing Network, Zhu et al. [224] jointly learn image representations
tailored for hash coding and formally control the quantization error to improve hash code
quality. Their approach proposed using a stack of convolutional layers terminating in a
fully-connected hashing layer, which is trained end-to-end with a pairwise cross-entropy and a
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pairwise quantization loss. In a recent work, Yao et al. [209] propose the idea of co-training
for hashing by jointly learning projections from image representations to hash codes and
classification. The hash codes were learnt to preserve multilevel semantic similarities amongst
images with multiple semantic annotations. They employed the triplet ranking loss with
orthogonality constraints to learn discriminative and independent hash bits.

1.6 Evaluation of CBIR Systems

Post retrieving images, the task of evaluating the quality of retrieval within CBIR systems is
also critical. Towards this, several efforts have been made to benchmark dedicated retrieval
specific databases and tasks (such as ImageCLEF [95], VISCERAL [188] etc.). In this section,
we present the evaluation metrics and criterion popularly used to quantify retrieval
performance.

1.6.1 Evaluation Metrics

Evaluation metrics used to quantitatively evaluate the efficacy of CBIR systems. These include
precision, recall and retrieval time-related metrics.

Precision: This refers to the fraction of images retrieved that are relevant to the query image,
thus effectively evaluating the ability of CBIR systems to fetch similar or relevant samples.

precision = |{Relevant Images ∩ Retrieved Images}|
|{Retrieved Images}|

(1.14)

Recall: This refers to the fraction of relevant images retrieved within all the relevant images
in the database, i.e.:

recall = |{Relevant Images ∩ Retrieved Images}|
|{Relevant Images}|

(1.15)

Recall evaluates the sensitivity of the retrieval system i.e. whether the system is able to fetch
all relevant samples in a top-K ranked list, while keeping K as small as possible. Beyond
precision and recall, joint measures that combine both the metrics are also popularly adopted,
such as Fscore, Gmean:

Fscore = 2 · precision · recall
precision + recall

(1.16)

Gmean =
√

Precision× Recall (1.17)

To obtain a global view of the performance of the CBIR system it is common to associate
precision with recall typically in the form of a Precision-Recall curve (PR-curve). Every point
in the PR-curve is evaluated varying the scope of retrieval (i.e. K). From the PR-curve, we
can derive the mean average precision (MAP) metric which is akin to the area under the

20 Chapter 1 Introduction



curve of the Receiver Operating Characteristics used in evaluating classification performance.
MAP is a relatively stable metric and is defined as the mean of the average precision scores
over positions of all relevant database items (averaged over all queries). The MAP can be
formulated as:

MAP = 1
|M |

M∑
m=1

1
|K|

K∑
k=1

precision (Qm,k) (1.18)

where M is the number of query images, K indicated the top-K ranked relevant images for
each query, and Qm,k denotes the top-k retrieval precision of the mth query. MAP can be used
during massive testing and particularly alleviates the bias during precision evaluation.

To efficiency of the feature-indexing schemes the average time for retrieval and theoretical
comparison of the time-complexity are often used. The average time typically accumulates
the time for feature extraction on the query image, time to index the extracted features and
more importantly time for inter-item distance computation and ranking. In addition to the
aforementioned metrics, several other commonly employed measures include the precision
after the first NR images are retrieved, recall at 0.5 precision, rank-correlation between
ranked-lists etc. A detailed analysis of these metrics were discussed in previous articles [133,
134].

1.6.2 Evaluation Criterion

In addition to the evaluation metrics discussed in Sec. 1.6.1, the criterion of decision similarity
/ relevance is important. In unsupervised retrieval settings, where the goal is to perform
approximate nearest neighbor search in an efficient fashion, the similarity can be measured
using distance metrics defined in the input space and the representation space aims at
mimicking relationships encoded in the input space. In a supervised setting, two kinds of
evaluation criterion are commonly employed:

Annotation-based Criteria: Here, annotations associated with images (such as class labels,
key-words etc.) are used as a surrogate for retrieval performance. This is particularly suited for
large-scale evaluation tasks where generating expert-defined ranked-lists for each query image
by exhaustively exploring the database is expensive and subjective. The metrics of precision
and recall are measured sequentially comparing the labels between each query image and the
retrieved images.

User-based Criteria: In this setting, an expert user is often employed to manually evaluate
retrieval query typically through feedback on similarity/relevance between the query and
fetched neighbors. Such an approach can be adopted on smaller-scales especially for some
analytical tasks where simply using the class labels is not an adequate representation of
relevance.

Compared to annotation-based criterion, the use of domain experts to evaluate CBIR systems
can result in more fine-grained evaluations in form of relevance judgments for specific tasks.
However, such a criterion heavily relies on the user’s domain knowledge and may be partly
subjective based on the user’s background. In such a setting, employing multiple users (in a
blind fashion) and aggregating their opinions could be a more reliable evaluation. Markonis et
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al. [127] performed an user-oriented evaluation of CBIR systems with a team of 16 radiologists
to provide insights into the required specifications and the potential short-coming of such
systems. They concluded that designing user-oriented interactive systems is preferred and
proposed future directions targeted at filtering by imaging modality and cross-modal retrieval
by search for articles using image examples.

1.7 Image Retrieval in Medicine

Image analytics is a fundamental component of modern medicine and plays a central role in
clinical diagnosis [52], treatment planning [216], image-guided surgery [125] and
assessment of treatment-response [126]. Traditional decision making in diagnostics involves
seeking evidence from a patient’s data (both image and non-image factors) coupled with prior
knowledge of similar cases [81]. In such a setting, the question of objective definition of
image similarity is important as reliable interpretation and understanding of images within
the clinical work-flow means access to relevant stored data for making a well-informed
decision.

In a modern healthcare setup, data generated is often digitized, indexed and archived via the
Picture Archiving and Communication Systems (termed as PACS). Such systems have enabled
storage of large digital repositories of data and enables physicians to perform patient-specific
diagnosis through their longitudinal data by presenting all images related to a particular
patient [84]. In addition to this, PACS systems have opened up new opportunities for enhanced
image understanding, pattern discovery, teaching and research based on contrastive analysis
via inter-patient comparisons [133]. Towards achieving the aforementioned goals, we need an
objective way of searching and indexing the repository such that when a new query is presented
data sharing similar characteristics is efficiently retrieved. Currently deployed PACS systems
are heavily dependent on search via textual keywords including patient name, identifiers like
RadLex / ICD-10 codes and image device. This significantly limits the exploratory capacity
of such a search engine due to limited and often confounding vocabulary employed. This
also requires that the user to know the identifiers and the characteristics of data that they
wish to fetch. This becomes an important bottleneck to overcome when systems scale and
given the massive volumes of imaging data being stored in modern PACS systems a search
by textual keywords or manually assigned nomenclature (or labels) is not viable [132]. As
systems scale, both is size and number, manual annotation for retrieval is often impractical
and uneconomical. The high degree of underlying subjectivity owing to the high dependence
on the skill, training, experience and alertness of the expert could have potentially detrimental
effects on the quality of the retrieval system driven by manual annotations.

Retrieval vs. Classification: The term Retrieval is often associated with information search
wherein the user has an information need to be fulfilled by fetching data items that are
relevant to the query at hand. This is often performed in a class-agnostic setting and the
definition of relevance is user- and situation-dependent. Efficacy of retrieval algorithms are
evaluated in terms of precision and recall and the ability of the algorithm to rank the fetched
items in order of relevance. In contrast, with classic machine learning settings classification is
tasked with assigning the correct label to an unseen sample from a finite set of classes. The
performance measure in such a setting is typically the classification accuracy. From a broader
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perspective, both retrieval and classification fall under the umbrella of image understanding
which aims at extracting higher level content from the image to help understand the global
content within the image. Within the context of computer aided diagnosis (CAD), image
retrieval can be positioned as an interactive way of image understanding as the clinician can
pose a query with a case (or with a selected region of interest) and find visually similar cases
from the search database.

1.7.1 Challenges within Image Retrieval in Medicine

Despite advances in large-scale methods in generic image retrieval problems their seamless
adoption to the case of large scale medical image databases is still a challenge and open topic
for investigation [106, 133]. The major domain-specific challenges associated with medical
multimedia retrieval can be detailed as follows:

1. Context: In contrast to generic image databases, medical images always have a context
and the associated meta-data such as why was the image acquired, complex imaging
parameters (contrast agents, acquisition settings), demographic and patient information
(typically as an electronic health record) are very important to provide overall context.

2. Anatomical Variability: Despite being acquired via fairly standardized protocols,
anatomical differences between humans is very important as disease manifestations
often seen in images are a result of complex link between multiple inter-dependent
phenomena.

3. Complexity in image acquisition: Medical images are not acquired via digital cameras
with direct sensors detecting light and the underlying physics behind their acquisition
involves multiple stages such as sensing, detection, reconstruction, de-noising and
digitization. These steps are often lossy in nature due to constraints of storage and
time of acquisition and could be prone to artefacts associated with patient motion,
registration errors and scanner variabilities which implies that images of the same
patient acquired with the same type of scanner (exact model / manufacturer) can be
significantly different.

4. High Dimensionality: The size of medical images can be extremely large with thousands
of tomographic slices per patient to large gigapixel images for whole-slide histopathology.
In addition to this high dimensionality, the relevant disease manifestations can be very
subtle and requires dedicated routines targeted at localization and detection of these
changes which requires a fine-grained and detailed analysis approach.

5. Availability: The biggest challenge for large-scale analysis of medical images is their
availability owing to a variety of reasons including privacy, restrictions on data use
or patient selection, associated questions of ethics and high cost to obtain quality
annotations from medical experts. The above factors compound to create a scenario that
despite ever-increasing volume of data being generated, little training data is available
further complicating the development of image analytics solutions.
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These challenges factor out as two important variables that define the usefulness of a medical
CBIR system viz. system efficacy and accuracy. A medical CBIR system should be able to handle
massive amounts of images via efficient indexing and search schemes and must not resort to
exhaustive search across millions of images as this will be a critical bottleneck when scaling
up. In addition to this, the system has to achieve a high retrieval precision in reasonable
time and is trained to be sensitive to small, local anomalies and work under large intra- and
inter-class variation.

1.7.2 Prior art within Medical Image Retrieval

Hospital information systems curate a large variety of information, ranging from patient
demographics, clinical measurements, standardized / unstructured text reporting, test results
and images. Within images, a range of modalities ranging from 2D modalities like cytology,
histology, X-rays to volumetric images including Computed Tomography (CT), Ultrasound,
Positron Emission Tomography (PET), Magnetic Resonance Imaging (MRI) etc. In such a setting
developing CBIR systems that can handle this heterogeneous nature of patient information is
a daunting effort and often targeted application-specific solutions are explored. In this section,
we briefly review CBIR systems for medical image retrieval organized according to the nature
of the search database. One of the earliest CBIR sytems was proposed by Comaniciu et al.
[32] that supports decision making in clinical pathology. Muller et al. [134] explored the GIFT
- GNU Image Finding tool and investigated a range of feature extraction methods targeted at
the retrieval of medical images within the CasImage medical case database of the university
hospitals of Geneva. We organize the prior art CBIR systems within the domain of medical
imaging under the following types depending on the type of data within the database.

2D Image Retrieval
Major efforts of CBIR for medical images has been directed towards 2D images such as
radiographs [69], histology [23, 54], dermatology images [20] etc. The techniques developed
in this category reflect on how non-medical CBIR approaches have be adapted and tailored for
medical applications. In a work on CBIR system targeted at dermatology applications Bunte
et al. [20] proposed using concepts of limited rank matrix learning vector quantization for
feature compression coupled with a Large Margin Nearest Neighbor approach for learning
the distance metric. Within CBIR for histology applications, Doyle et al. [54] employed
manifold learning for retrieval within digitized histopathology slides of prostate cancer. They
investigated hand-crafted features descriptive of the architecture, morphology and texture of
these images and embedded them into low-dimensional representation which encode object
similarity using PCA and Laplacian eigenmaps. Caicedo et al. [23] proposed CBIR systems for
use in digital pathology which aims at retrieving histopathology images from a large collection
using an example image as query. They integrated multiple hand-crafted features with a
selection mechanism and learnt to perform automatic semantic image annotation on query
images. Zhang et al. [221] investigated CBIR techniques for computer aided detection of
actionable manifestations in breast histopathology images. They adopted a supervised kernel
sensitive hashing approach to learn compact informative signatures of high dimensional BOW
representation of SIFT features. They demonstrated that adopting an hashing based approach
was computationally efficient over dimensionality reduction and feature selection approaches
and achieves a promising throughput of 800 queries in under 0.01 seconds. Haas et al. [69]

24 Chapter 1 Introduction



used superpixels within the bag of visual words framework to effectively local descriptors into
representative and discriminative visual words. They targeted the task of categorization of
radiographs and localization of the lung within thorax CTs through retrieval.

Within hashing for 2D medical image retrieval, Sze-To et al. [186] learned deep denoising
auto-encoders with binary latent variables for tagging x Ray images with compact similarity
preserving codes. They demonstrated in an extensive study with 14,000 chest X Rays that
such an approach adaptively learn non-linear relationships amongst pixels to generate binary
codes that encode high-level features efficiently. Liu et al. [118] introduced a novel hashing
algorithm, termed as Composite Anchor Graph Hashing with Iterative Quantization to
compress mammographic regions of interest into compact binary codes that captures
similarities between the masses in an computationally efficient fashion by ensuring linear
complexity of the training procedure and constant time for query. Jiang et al. [93]
investigated joint kernel-based supervised hashing for fusion of multiple hand-crafted features
towards the task of categorization of breast cancer histopathological images into actionable
and benign cases.

3D+ Image Retrieval

Of late, with a deluge of 3D+ (including 3D, 2D+t, 4D data) acquired in clinical settings, many
CBIR algorithms have been adapted for use in such modalities. The key design aspect in such
extensions was first choosing key slices from the volume or extracting interesting regions of
interests or representing 3D images with abstract representations such as graphs and indexing
the same. André et al. [5] proposed a system for endomicroscopy video retrieval which uses
the Dense SIFT descriptor with bag-of-words to compute a visual signature for each video.
This visual signature was demonstrated to be concise and able to communicate high-level
medical knowledge consistently. Lan and Zhou [108] introduced a novel discriminative hand-
crafted feature termed as histogram of compressed scattering coefficients for the task of CBIR
particularly suited for medical computed tomography images. Murala et al. [136] proposed
a novel image descriptor combining binary wavelet transform with local binary patterns on
binary bit-plane representations of 8-bit gray-scale images. This descriptor was evaluated on
multiple medical image databases of MRI and CT and demonstrated significant improvements
over LBP and LBP features with Gabor transform. Cai et al. [22] investigated 3D CBIR systems
for functional imaging with applications in clinical dementia studies. The user query consisted
of pathology-centric masks which was represented with textural features related to the cerebral
metabolic rate of glucose consumption from neurological FDG PET images. Li et al. [112]
introduced an asymmetric binary coding strategy based on the maximum inner product search
(MIPS) for pattern exploration in large-scale neuronal databases and demonstrated potential
use cases in identification and analysis of neuron characteristics.

Multimodal and Heterogeneous Databases

Under scenarios of retrieval from diverse databases, the CBIR system must have the capacity
to differentiate between modalities while performing retrieval. Güld et al. [68] used global
features for describing the contents within the image for the task of modality classification in
addition to using downscaled representation of the original images for preserving spatial
information and learning distance measures that are robust to variations in radiation dose,
translation and local deformations. Caicedo et al. [24] targeted the task of modality
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classification within a large heterogeneous image database (ImageCLEFmed [95]) and
proposed an categorization index to perform ranking of similar image modalities. They also
demonstrated that combining holistic and low-level features as a better strategy towards
learning semantics.

Extending CBIR to multiple images and modalities is also an emerging area of research,
wherein CBIR systems adapt to use complementary information from different images and
discover and exploit relationships between them. Rahman et al. [152] proposed a CBIR
framework for handling heterogeneous collection of medical images from multiple imaging
modalities, anatomical regions and biological systems. They deploy probabilistic multi-class
support vector machine (SVM) and fuzzy c-mean (FCM) clustering to perform pre-filtering of
the database to extract a subset of potentially relevant candidates. Following which an user
interaction driven relevance feedback approach is adopted to incorporate perception
subjectivity into the querying process and adjust image similarity matching
functions. Depeursinge and Müller [50] extensively evaluated multiple information fusion
strategies for fusing visual and textual information which were further categorized into early
and late fusion strategies, with a few capable of inter-media query expansion. Cao et al. [25]
designed a multi-modal CBIR system for cancer research. They investigated the use of a novel
probabilistic Latent Semantic Analysis model to integrate visual and textual information.
Interestingly for cases of missing modalities, they trained a deep Boltzmann machine-based
multi-modal learning model to impute the missing modality.

System Solutions

Targeted at developing efficient and intelligent systems that can transform healthcare, the
academia and industry has started developing and providing dedicated CBIR systems
integrated within their PACS / data archiving systems. Antani et al. [6] investigated issues of
interfacing multi-location CBIR systems via an XML-based data and resource exchange
framework and demonstrated that the resultant framework was system portable and offered
richer functionality to the user through a web interface. A few existing deployments of
successful CBIR systems that impacted clinical practice and biological applications include:

• CervigramFinder: Xue et al. [206] developed a prototype CBIR system for retrieval
within the uterine cervix image databases of the National Cancer Institute as a part
of a multi-year longitudinal effort to study origins of cervical pre-cancer and cancer.
The system is build with a distributed architecture with the core indexing and retrieval
algorithms at the backend.

• ViewFinder: Agarwal and Mostafa [1] proposed the ViewFinder Medicine CBIR
application for retrieval in Alzheimer’s disease incorporating an multi-tier architecture
with flexibility of relevance feedback.

• ImageMiner: Foran et al. [61] proposed the ImageMiner software platform for
performing comparative analysis on expression patterns in tissue microarrays (TMA).
The proposed pipeline had tools for analysis and data management for rapidly
analyzing large ensembles of TMA data and further supports deployment in a
multi-institutional collaborative environment through grid-enabled web-services.
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• Khresmoi Radiology Search System: The system proposed by Hanbury et al. [71] aims
at retrieval of similar volumes from tomographic images in radiology. Upon querying
with a volume to be diagnosed, a selection of volumes containing similar regions of
interest and associated radiology reports are fetched for multi-modal retrieval enriched
by semantics.

• IBM Watson Health [28]: This is a modular system designed for deep content analysis and
evidence based reasoning. In addition to these, there are routines available for providing
personalized recommendations, learning from past experiences and an interactive
routine via chat bots that engage in dialog and perform relevance feedback.

• ASSERT [175]: This system is deployed for retrieval of high-resolution CT lung images
and was demonstrated to improve the accuracy of diagnosis made by the physicians.
Based on key pathology-bearing slices marked by the physician, the system retreived
images of the same type of lung pathology (e.g. emphysema, cysts, metastases etc.).
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Part II

Contributions





2Unsupervised Hashing Forests

„There is no scientific study more vital to man than the
study of his own brain. Our entire view of the universe
depends on it.

— Francis Crick
(Nobel Prize for Medicine 1962 for discovering

double-helix structure of DNA)

2.1 Overview and Publications

This chapter presents the contributions of this thesis concerning learning to hash with random
forests in an unsupervised fashion, termed as Hashing Forests. The chapter is established
upon hashing (search and retrieval) technique by employing multiple unsupervised random
trees, collectively called as Hashing Forests (HF). The HF are trained to parse the input space
hierarchically and preserve the neighborhoods in input space while encoding with compact
binary codewords. We further introduce the inverse-coding formulation within HF to effectively
mitigate pairwise similarity comparisons, thus allowing scalability to massive databases with
little additional time overhead. The proposed hashing tool has superior approximation of the
true neighborhood with better retrieval and ranking performance in comparison to existing
generalized hashing methods. With steady growth of digital neuroscientific data, there is an
increasing demand for a reliable, systematic, and computationally effective retrieval algorithm.
In this chapter, we present hashing forests as a potential tool for fast and accurate reference-
based retrieval within neuron image databases. This is exhaustively validated by quantifying
the results over 31266 neuron reconstructions from Neuromorpho.org dataset curated from
147 different archives. We envisage that finding and ranking similar neurons through reference-
based querying via such an algorithm would assist neuroscientists in objectively understanding
the relationship between neuronal structure and function for applications in comparative
anatomy or diagnosis.

The chapter is organized as follows: in Sec. 2.2 we introduce the concept of neuron image
retrieval and lay the premise for hashing with forests. The detailed mathematical formulation
is exposéd in Sec. 2.3 with discussions on the key elements of the hashing model, namely
cluster validity and tree balance during training of the hashing forests; and inverse lookup
during testing. In the next section Sec. 2.4, we present detailed experiments and results
of such an approach for the task of pattern exploration in neuron image databases. We
evaluate the methods against a number of ablative baselines and state of the art unsupervised
hashing based comparative methods. Finally, we conclude the chapter in Sec. 2.5, we discuss
how well the proposed hashing forests approximates true neighborhood and how does the
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Fig. 2.1. Schematic of the proposed method for neuron image retrieval with Hashing Forests: For a query neuron,
we extract neuromorphological features (Step 1), which are then fed into the learnt Hashing Forests
(Step 2). This results in a similarity-preserving binary query hash code (Step 3). Comparing this hash
code to the Hash Table (codes of neurons in the search database) through the proposed inverse coding
scheme (Step 4), we find and rank neurons that are morphologically similar to the query neuron (Step
5). Reprint from [42], with permission of Springer.

performance fare as the dimensionality of the encoding space varies. We also present scenarios
of incremental training as the database evolves to demonstrate the scalability of such an
approach.

Substantial parts of this chapter have already been published in the following articles and are
quoted verbatim:

[42] Conjeti, Sailesh, Sepideh Mesbah, Mohammadreza Negahdar, Philipp L.
Rautenberg, Shaoting Zhang, Nassir Navab, and Amin Katouzian. "Neuron-
Miner: An Advanced Tool for Morphological Search and Retrieval in
Neuroscientific Image Databases." Neuroinformatics 14, no. 4 (2016): 369-
385.

Copyright Statement. ©Springer Science+Business Media New York 2016.

[130] Conjeti, Sailesh, Sepideh Mesbah, Ajayrama Kumaraswamy, Philipp
Rautenberg, Nassir Navab, and Amin Katouzian. "Hashing forests for
morphological search and retrieval in neuroscientific image databases." In
International Conference on Medical Image Computing and Computer-Assisted
Intervention, pp. 135-143. Springer, Cham, 2015.

Copyright Statement. ©Springer International Publishing Switzerland
2015.

2.2 Introduction

Projection based hashing methods like PCA Hashing [214], iterative quantization [66],
LDAH [185] etc. assume zero-centered datasets, with hash function hk consisting of a
projection matrix wk and such that:

hk(x) = sgn(wT
k x) (2.1)
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These methods are data-dependent, however their maximal code length is limited to intrinsic
dimension of the data (typically, the original feature dimension if the features are
de-correlated). As a consequence of this property, such methods are not natively scalable to
large code sizes which sometimes limits their performance in large-scale datasets with
low-dimensionality. Alternatively, one can add a bias factor bk to Eq. 2.1 to threshold the
projected values and modify it as: hk(x) = sgn(wT

k x + bk). However, this can lead to hash
functions that are non-independent and can thus be counter-productive to computational
efficiency. In this context, learning random hyperplanes that parse the data (like in
LSH [180]) has a favorable property of improved performance with increasing code length
without the bottle-neck of limiting the code-size to data’s intrinsic dimension. In this case, the
number of hyperplanes has to be large enough to guarantee good performance which results
in reduced speed of hashing.

Trees have been generally accepted as well-suited data structures for indexing large-scale
datasets (e.g. KD-tree [17], VP-tree [210]). In effect, they act at as non-linear projection but
carry the computational advantage of a simple linear projection as they have linear decision
models organized hierarchically. Extending to an ensemble of trees, forests offer a higher
degree of flexibility as they can be seamlessly applied on high and low dimensional data
and easily scalable to larger code sizes by growing the trees deeper or by adding more trees.
However, the traditional approach of training random forests for classification (typically by
maximizing information gain at each node) is agnostic to the notion of nearest neighbors
(and class similarity within them) and can thus result in inconsistency within the hash codes
generated by a particular tree for the same class data [212]. Towards this end, we propose
to leverage cluster validity as a principled way of bringing similar class examples closer
in the projected space, thus softly enforcing hash consistency. Further, as the trees are
grown independently forest-based hashing schemes have good asymptotic properties and with
additional bagging of the training samples, each tree explores a different facet of the dataset,
which makes forest based hashing preferable for highly heterogeneous datasets (like neuron
data) over methods that span the whole feature space.

For better scalability of retrieval to a growing heterogeneous database, we design hashing
functions established upon unsupervised random forests called Hashing Forests (HF). The
HF are trained to parse the input space in a hierarchical fashion and we demonstrate that
HF can generate more sensitive code words by effectively utilizing its tree-structure and
ensemble nature. Trees in HF are trained independently and they are more easily augmented
for evolving databases. In comparison to random forest hashing method proposed by Yu and
Yuan [212], we introduce an inverse coding scheme which effectively mitigates database-wide
pairwise comparisons, which is better suited for fast large-scale hashing. Fig. 2.1 schematically
illustrates the different methodological steps involved in using HF for neuron retrieval.

2.3 Mathematical Formulation

Hashing functions are used to encode records into hash codes, such that simple binary distance
defined on the hash codes preserves similarity amongst the encoded records. Ideally, the hash
function should generate compact and easy to compute representations, which can then be
used for accurate search and fast retrieval [201]. In this work, we model hashing functions
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through unsupervised randomized forests (H), which generates compact binary code blocks
(say, CH) encoding the input feature space. We hypothesize that computationally cheaper
binary distance measures (such as hamming distance etc.), defined between the generated
code blocks correlates well with the inter-item similarity, and thus aiding in effective hashing.
In the following sections, we discuss in detail the different stages involved in using hashing
forests for encoding and retrieval within large-scale image databases.

2.3.1 Training phase

The hashing forest (H) is an ensemble of binary decision trees which partitions the feature
space hierarchically based on learnt binary oblique split functions. We introduce randomness
through feature subspace bagging and bootstrapping to generate maximally decorrelated trees.
The goal of a decision forest is to combine the predictions of several decorrelated trees built
with different components in order to achieve high robustness in regards to noisy features.

Each hashing tree hk is grown in an unsupervised fashion by recursively partitioning the feature
set Xn, which reaches a particular node n into two subsets X2n and X2n+1. At each split
node n, split functions φn are generated as shown in Eq. 2.2, which are randomly selected
hyperplanes that split the feature space into two subsets. The hyperplane φn is parametrized
by the parameter set θn, which comprise of the node-level feature-wise mean vector µn, the
feature-wise standard deviation vector σn, and a vector of coefficients of individual features
αn along with an intercept scalar α0

n. The values of µn and σn are estimated locally from
training data Xn that reaches the node n.

The oblique split φn(x, θn) is defined as follows:

φ(x, θn) =
(

x− µn
σn

)
. αn + α0

n (2.2)

In this work, we use randomized node optimization, generating a family of candidate splits
(Fn), where each split (say θc ∈ Fn) is multivariate and assigned randomly generated
coefficient values (say αc computed from a parameter hypersphere of radius 1 centred at the
origin (i.e.

√∑
|αc|.2 = 1 ). The intercept α0

c is generated as a random value between the

minimum and maximum of
(

x−µn
σn

)
. αc. The coefficients are standardized by normalizing

them to make their l2 norm = 1 ( i.e.
√
|αc|.2 + |α0

c |2 = 1). Here, Fn is generated by randomly
selecting numVar features from Xn at each split node and the candidate split function, which
maximizes the node scoring function (given by Eq. (2.6)) is assigned to the split node in
which:

θn = argmaxθc∈FnE(Xn, θc) (2.3)

Using the above oblique split, the data set Xn is split into left and right subsets X2n and X2n+1

by corresponding split functions as follows:

X2n = {x|x ∈ Xn ∧ φn(x, θc) ≤ 0} (2.4)

34 Chapter 2 Unsupervised Hashing Forests



X2n+1 = {x|x ∈ Xn ∧ φn(x, θc) > 0} (2.5)

The choice of the optimal node split function is an interplay of two major factors namely, tree
balance (EB) and cluster validity (EC), which are unified in defining E as shown below:

E(Xn, θc) = EC(Xn, θc)︸ ︷︷ ︸
Cluster Validity

×EB(Xn, θc)︸ ︷︷ ︸
Tree Balance

(2.6)

Cluster Validity

Recursive splitting of the input space can be modeled as a clustering operation, where similar
data points are grouped together as we traverse down the tree. It is therefore appropriate
to evaluate the splitting functions on how well they partition the feature space such that
data elements within particular child node are more similar than across the other children
nodes. This translates into two measurement criterion for cluster validity: (1) Compactness
within the a child node and (2) Separation across other children nodes. The compactness
is often associated with dispersion within a dataset allocated to a particular child node and
the separation is measured as a distance measure between the datasets across other children
nodes.

Towards this end, we evaluate the cluster validity EC(Xn, θc) of split, generated by a candidate
split function φc, using the Krzanowski and Lai Index [2, 51, 101]. In Krzanowski and Lai
Index, the compactness and separation of the candidate split function φc is evaluated together
by minimizing the empirical distortion induced due to splitting the dataset into the children
nodes as follows:

EKL
C (θc, Xn) = 22/numFeat

(
1
|Xn|

∑
xi∈Xn

min
j∈(X2n,X2n+1)

(dM (xi, cj))
)

(2.7)

where, dM (xi, cj) is the Mahalanobis distance. It is defined as

dM (xi, cj) =
√

(xi − cj)Γ−1(xi − cj)T (2.8)

where Γ is the covariance matrix estimated from Xn. cj refers to the node specific centroid
evaluated from the dataset allocated to a particular child node. This measures were evaluated
for each candidate split function at the split nodes and contributed as the EC term in the node
scoring function (Eq. 2.6).

Tree Balance

Imbalance in an unsupervised tree is induced if the split divides the datasets into the children
nodes in a skewed fashion, resulting in one child node encoding a larger data subset than the
other node i.e. |X2n|> |X2n+1| or |X2n+1|> |X2n|. We measure the degree of tree balance
using a sigmoid function as follows:

EB(Xn, θc) = 2
1 + eγ.τ(Xn,θc)

(2.9)

2.3 Mathematical Formulation 35



Fig. 2.2. Variation of EB(Xn, θc): The
tree-balance factor is inversely
related with increasing tree
imbalance τ(Xn, θc). For
a high γ factor, EB(Xn, θc)
penalizes the overall cost
E(Xn, θc) in Eq. 2.6 steeply
with tree-imbalance. Reprint
from [42], with permission of
Springer.

where

τ(Xn, θc) = max
{(

|X2n|
|X2n+1|

− 1
)
,

(
|X2n+1|
|X2n|

− 1
)}

(2.10)

In Eq. 2.9, γ is a hyper parameter that controls the importance of imposing tree balance while
evaluating oblique splits. Increasing γ implies higher importance placed on tree-balance in
Eq. 2.6 and this is illustrated in Fig. 2.2, where increasing γ penalizes more as tree imbalance
increases.

The tree is grown through recursive splitting of the training dataset until the maximum
defined tree-depth (treeDepth) is reached. We create an ensemble of such independently
grown trees to create the hashing forest H. Such a forest of numTrees binary trees with
maximum depth of treeDepth, requires numTrees× treeDepth bits to encode each data-item.
The time complexities to grow a tree and ensemble a forest are tabulated in Table 2.2 (S1-
S2) [122].

Extension to non-Euclidean distances

In the proposed formulation, the oblique split defined in Eq. 2.2 falls under the family of
hyperplane hashing based locality sensitive hashing methods. The theoretical guarantees of
such methods applies only to certain metrics such as lp ∈ (0, 2] [195]. For extension of the
proposed HF method to more complex metric spaces like weighted distance, power distance
and other lp distances, the splitting function has to be suitably defined to split data in that
particular metric space. Typically, this can be done by considering a random sample reaching
the split node as a pivot element and evaluating the metric distance of all other samples about
this pivotal element. The split function can then be defined as a simple threshold over the
obtained metric distances. The subsequent encoding and retrieval schemes proposed for the
current HF formulation can be seamlessly extended for the non-Euclidean variants of HF.

36 Chapter 2 Unsupervised Hashing Forests



S1 Building tree O(
√
N ∗M ∗ d) +O(M ∗ 2d−1)

S2 Building forests O(T ∗ (
√
N ∗M ∗ d+M ∗ 2d−1)) Training

S3 Generating hash table O(T ∗ d) +O(M ∗ S)
S4 Generating Single Query Code O(T ∗ d)

S5
Calculating Inter-item similarity

with Forward Code O(M ∗ S)

S6
Calculating Inter-item similarity

with Inverse Code O(T ∗ d) Retrieval

S7 Quick sort O(M logM)
Symbols: Code word Size S = T (2d+1 − 2)); Number of Trees T ; Number of Features N ; Tree Depth d; Retrieval

Database Size M .

Tab. 2.2. Time Complexity Analysis of training and retrieval with unsupervised hashing forests. It must be noted
that for the complexity for calculating the inter-item similarity with inverse coding is independent of
database size M , which is the main factor contributing to scalability to large repositories. Reprint
from [42], with permission of Springer.

2.3.2 Hash Table Generation

Given a trained tree (hk) of the hashing forest H, each data item ni (characterized by the input
feature vector xi) in the database is passed through it till it reaches the leaf node. For a tree
hk of depth treeDepth, the split and the leaf nodes are assigned breadth-first order indices
(say nk), which are associated with binary bit bkn in the code word Ck(xi). For a particular
data item, if node nk is part of its path, then bkn is set to 1, otherwise, to 0. This leads to a
(2treeDepth+1 − 2) bit sparse code word Ck(xi). It must however be noted that only treeDepth

bits are required to generate the codeword as there are only 2treeDepth possible traversal paths,
each leading to a unique leaf node. We repeat the same process for every other tree in the
forest to generate the sparse code block CH(xi) of size S = (numTrees× (2treeDepth+1 − 2)) for
each data item.

For faster retrieval, we pre-compute the code blocks for all M data items in retrieval/training
database D and generate a hash table of size M × S. This is stored using (M ∗ (numTrees ∗
treeDepth)) bits along with traversal paths saved in a (2treeDepth ∗ (2treeDepth+1 − 2)) binary
look-up table. However, as the database gets bigger, so will the time required for calculating
the pairwise hamming distance between the codewords of all the data points in the dataset.
The time complexity of generating the hash table for all the data items in the database is
shown in Table 2.2 (S3). To address this problem, we further propose to generate the inverse
codewords to improve the retrieval speed performance.

2.3.3 Inverse Coding

Each bit bkn in CH encodes a unique input sub-space, which is constrained by the split functions
of tree hk leading to node nk. In order to avoid pair-wise comparisons between the data items
during retrieval in large databases, we formulate an inverse coding scheme. We transpose
the hash table to generate the inverted hash table I, which is a sparse (S ×M) dimensional
matrix. This implies that for feature vector xi, if bit bkn in Chk(xi) is 1, then I(nk, i) = 1, and
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it belongs to the feature subspace encoded by bkn. Given a new query data item, instead of
calculating the pairwise-similarity between all data items in D, we extract the corresponding
hash code from the hash table, which is a representation of similarity vector between the new
point and all the other data points. Through the generation of the inverse hash table I, we
have effectively encoded the input subspaces along with associated data items.

2.3.4 Testing Phase

The path in which a data item traverses through the trained trees is used to define inter-item
similarity. For a given query item nq (with feature vector xq), the corresponding code block
CH(xq) is generated in a similar fashion to the Hash Table Generation phase. In the direct
retrieval formulation, pairwise comparisons (through hamming distance) between CH(xq) and
code blocks of items (say CH(xi) for item ni) in the retrieval database D are made to evaluate
inter-item similarity S(nq, ni) i.e.

S(nq, ni) = 1
S

∑
∀bits

(CH(xq) == CH(xi)) (2.11)

If nq generates the same code block as an item in D (i.e. both belong to the same input
subspace), we assign perfect similarity to them (S = 1). However, the pairwise comparison
for large scale databases is computationally expensive as seen from its time complexity in
Table 2.2 (S5). To mitigate this, in the inverse coding, we formulate the similarity function
as SI = numTrees ∗ (treeDepth− 1) dimensional similarity accumulator cell Anq . Given the
code block CH(xq) for the query item nq, Anq is calculated as:

Anq (i) = 1
SI

∑
∀nk

I(nk, i) if bit bkn in CH(xq) = 1 (2.12)

The inter-item similarity S(nq, ni) is related to Anq as S(nq, ni) = Anq (i). Such an inverse
formulation is computationally more efficient for large databases (as seen from the order
complexity in Table 2.2 (S6)), than the forward scheme (Table 2.2 (S5)). The inverse coding
evaluates inter-item similarity by accumulating the membership of the database items from
the columns of the inverse hash table corresponding to the tree nodes reach by that of the
query item in HF. This effectively mitigates the need for pair-wise comparisons, leading to a
time complexity that is independent of the database size M .

In the task of retrieving an ordered set of K most similar items from D, we sort the items
of the database in ascending order of inter-item similarity using quick-sort (time complexity
of O(M log M)). The top (2K) nearest neighbor items are further re-ranked according to
their normalized Euclidean distance from the query item for better consistency (with an
additional time complexity of O(KN + K logK)). For validation purposes, this re-ranking
using normalized Euclidean distance is performed on all comparative methods and baselines
considered in Section 2.4.
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Fig. 2.3. Visual evaluation of neuron retrieval: For each query neuron on the left (boxed in green), the top-three
neighbors retrieved with the proposed HF algorithm are shown along with ground truth neurons (using
normalized Euclidean distance) are shown. The incorrect results are marked by red boxes. Reprint
from [42], with permission of Springer.

2.4 Experiments and Results

2.4.1 Neuron Image Retrieval

In the context of neuroscientific databases, the desired morphological similarity preserving
aspect of the hashing function implies that morphologically similar neurons are encoded with
similar binary codes. This implies that for a particular query neuron (say nq), the bucket of K
morphologically similar neurons retrieved from the database D through hashing should be
ideally as same as the K-nearest neighbors calculated using standardized Euclidean distance
over the whole neuromorphological space. We refer the reader to Appendix A for further
exposition on the task of pattern exploration in neuroscientific image databases. We used
31266 3D reconstructions of neurons extracted from 147 different archives, which curated
from multiple laboratories and are publicly available on http://neuromorpho.org [9]. All
archives listed as ‘In the Repository’ in the list of archives in the Neuromorpho.org repository
have been included in this study [226]. We employed the Lmeasure toolbox to extract 3D
neuromorphological features, which characterize different aspects of neuron structure and
topology [44, 166]. Fig. 2.3 illustrates the results of retrieval with hashing forests over the
target database.

2.4.2 Evaluation Metrics

Successful similarity-preserving hashing in large-scale databases depends on the efficacy
of the code word to compactly parse and represent the neuromorphological space as well
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as efficiently compute inter-neuron similarity using the generated hash codes. As part of
validations, we use the following evaluation metrics:

Neighborhood Approximation

We introduced the Neighborhood Approximation (NA) graph in Mesbah et al. [130] to model
how close the estimated neighborhood, computed from code words, (from the hashing method),
approximates the true neighborhood around a item in the input space. For a particular hashing
method, the NA for the jth neighbor is defined as the average of the normalized Euclidean
distances between the item and retrieved jth neighbor for all items in D. Let, for an item ni

(with feature vector x0
i ), the jth neighbor have a feature vector xji , then

NA(j) = 1
Mtest

(
Mtest∑
i=1

ε(x0
i ,x

j
i )
)

(2.13)

where

ε(x0
i ,x

j
i ) =


√√√√ 1
N

N∑
a=1

(
x0
ia − x

j
ia

sa

)2
 (2.14)

ε(x0
i ,x

j
i ) is the standardized Euclidean distance between x0

i and its jth neighbor xji with
ath feature standard deviation sa estimated over the whole database (which is chosen for
invariance to scales of different features). NA-graph is averaged over Mtest test items from the
testing dataset.

Retrieval Performance

We evaluate the retrieval performance by computing two metrics: Kendall’s rank correlation
coefficient κ and Gmean. The Gmean is often used in information retrieval algorithms to
better understand the trade-off between precision and recall. Let Nε(ni) represents the set
of items ‘relevant’ to the query item, which is the top K nearest neighbors defined upon the
normalized Euclidean distance in the input space and NH(ni) represents the retrieved items
through hashing as a set of k similar items. The Gmean is calculated as an average over the
test database and is calculated as:

Gmean =
√
Precision×Recall (2.15)

= 1
Mtest

M∑
i=1

√
|Nε(ni)

⋂
NH(ni)|2

|NH(ni)| × |Nε(ni)|
(2.16)

Kendall’s rank correlation coefficient κ is used to measure the association between two ranked
lists. We use this metric to evaluate the efficacy of ranking of relevant items. Given a pair of
ranking lists (

rR1 , r
T
1
)
,
(
rR2 , r

T
2
)
, · · · ,

(
rRn , r

T
n

)
(here, retrieved list (R) vs. true neighborhood list (T )). A pair of observations

(
rRi , r

T
i

)
and(

rRj , r
T
j

)
are said to be concordant if the ranks on both lists agree i.e. rRi > rTi and rRj > rTj

or rRi < rTi and rRj < rTj . The pairs are deemed discordant if rRi > rTi and rRj < rTj or
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rRi < rTi and rRj > rTj . If rRi = rTi and rRj = rTj , they are neither concordant nor discordant.
The κ for the retrieval performance on test dataset is evaluated as follows:

κ = 1
Mtest

Mtest∑
i=1

nic − nid
nic + nid

(2.17)

where nic and nid are the number of concordant and discordant pairs extracted from the
respective R and T lists for each item ni. In case of total agreement and disagreement
between the two paired lists, the coefficient value is κ = 1 and under κ = −1, respectively.

Retrieval Time

Hashing aims at minimizing the time for retrieval by reducing expensive pairwise distance
computations to cheaper binary operations defined over the hash codes (like xor for Hamming
distance computation). As discussed in Section 2.3, we consider two different strategies for
hash code comparison: (1) Forward Coding and (2): Inverse Coding. For a particular hashing
method, the training time includes time required to train the hashing functions and generate
the hash table for database. The testing time includes the time required for generating the hash
codes for the query items, time for comparison (forward / inverse coding), sorting and ranking
the approximate nearest neighbors. We incur an additional time overhead during testing, if
the fetched neighbors are re-ranked according to their normalized Euclidean distance from
the query item.

2.4.3 Comparative Methods

The main contribution of the hashing forests formulation presented in this chapter to design
hashing forests is the introduction of oblique split functions and improvised node-scoring with
cluster validity measures. Further, we formulate tree-traversal path based coding scheme as
opposed to leaf-based scheme proposed in Yu and Yuan [212] for more efficient hierarchical
parsing of the input space. These propositions lead us to four baselines to test the hypothesis
that introducing these contributions improve hashing performance. The baselines are tabulated
in Table 2.3. Each baseline differs in terms of the choice of the encoding scheme (leaf
node/tree path encoding), the inclusion/exclusion of cluster validity and the type of the
splitting function.

Comparisons to these baselines would support our hypothesis that oblique splits with cluster
validity leads to better parsing of the input space, resulting in higher code efficiency. In
addition, we validate the performance of our proposed algorithm (HF) by comparing it against
popular large scale hashing methods discussed in Chapter 1, including Locality Sensitive
Hashing (LSH) [180], Spectral Hashing (SH) [201], and Self taught hashing (STH) [218].
Additionally, as a baseline for comparison against hashing based approaches we include
dimensionality reduction based retrieval methods, including Principal Component Analysis
(PCA) and Neighborhood Preserving Embedding (NPE) [76]. In case of PCA and NPE, we
used single-precision floating point representation for the embedding and retrieval was done
by pairwise computation of Euclidean distance in the embedding space between the query
item’s embedding and that of the target database.
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Baselines
Encoding

LN - Leaf node
TP - Tree-path

Cluster
Validity Split Type

Baseline 1 (BL1) LN × Axis-aligned

Baseline 2 (BL2) TP × Axis-aligned

Baseline 3 (BL3) TP × Oblique

Baseline 4 (BL4) LN X Oblique

Proposed TP X Oblique

Tab. 2.3. Hashing Forest Baselines: To ablatively contrast the contributions within this chapter, baselines BL1-4
are defined with variations on the scheme of encoding (either using leaf-node encoding or tree-path
encoding), if cluster validity was employed for choosing the optimal split function and the nature of the
split function (linear or oblique). Reprint from [42], with permission of Springer.

γ 2.0 1.0 0.5 0.25 0.1 0.05

HF-S 51.09 54.25 51.34 52.87 53.80 52.96

HF-M 65.27 68.04 66.31 65.63 65.71 65.57

HF-D 67.18 67.65 67.15 63.51 64.20 64.10

Tab. 2.4. Hyperparameter Selection for HF: Contrasting three variants of HF i.e. HF-S, HF-M and HF-D, on basis of
the tree-depth, while simultaneously fixing the code size at 128 bits, we observe the retrieval performance
using Gmean metric as the tree-balance parameter γ is varied from 0.05 to 2. We observe a relative
stability of performance at γ = 1 across the configurations and performance is best at moderate depth in
contrast to shallow or very-deep trees. Reprint from [42], with permission of Springer.

2.4.4 Hyperparameter Selection for Hashing Forests

The main hyper parameters to be optimized for hashing forests include: tree balance parameter
(γ), number of trees (numTrees), and their depth (treeDepth). For hashing forests, the hash
code word size is given by numTrees×treeDepth. Fixing the code-size, we first optimize γ
to be used in further analysis. For this, we fix the code-size at 128 bits and optimize γ for
three configurations of HF: Shallow Trees (HF-S with treeDepth = 2), Moderately Deep Trees
(HF-M with treeDepth = 4), and Very Deep Trees (HF-D with treeDepth = 8). The numTrees

are chosen accordingly as 64, 32 and 16 respectively. The hyperparameter γ was varied as
[2.0, 1.0, 0.5, 0.25, 0.1 and 0.05] with decreasing importance towards tree-balance. The Gmean
for each of these configurations is tabulated in Table 2.4.

From Table 2.4, comparing HF-S, HF-M and HF-D, we infer that for sufficient depth, the
performance of HF is invariant to choice of numTrees and treeDepth. We observe consistent
optima at γ = 1.0 for all three tested configurations. Therefore, for the rest of validations, we
fix the tree balance parameter γ at 1.0 and treeDepth at 4, corresponding to moderately deep
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Fig. 2.4. Neighborhood Approximation
(NA) graph: For a fixed
codeword size (32 bytes), we
observe that the proposed
HF approximate the true
neighborhood best. The true
neighborhood is defined with
the scaled Euclidean distance
on the input space. Amongst
the comparative methods,
Spectral Hashing is observed
to be the closest to HF. Reprint
from [42], with permission of
Springer.

trees. This observation is extendable to other code-sizes as trees are grown independently in a
decorrelated fashion.

2.4.5 Neighborhood Approximation

In an unsupervised hashing setting, the distance function defined on the original input feature
space (say, normalized Euclidean distance (NAEUC)) is deemed to have the best neighborhood
approximation. Thus, the hashing method that diverges the least from the NAEUC graph
preserves the true neighborhood to the best possible extent. The NA graph is evaluated over
the target database and the results for all comparative methods are reported in Fig. 2.4. For
fair validation, we keep the size of the code-block fixed at 256 bits for this experiment. This
evaluation is performed for all the baselines and comparative methods. The treeDepth for the
baselines BL1-4 and HF was fixed at 4, thus leading to numTrees of 64.

2.4.6 Hashing retrieval performance vs. Code block size

We measure the Gmean and Kendall’s κ statistic for all comparative methods as well as
baselines by varying the code block size from 4 bytes to 64 bytes in geometric order of 2. We
compare the performance for retrieval (both search and ranking) of the top 10 neighbored
neurons using these methods for a heterogeneous test set of 800 randomly selected neurons
(not included while training) and the results are tabulated in Table 2.5 and Table 2.6. This
validation is performed to evaluate the improvement in similarity preserving aspect of the
hash code with increasing code-size. It also serves to validate our hypothesis that introducing
oblique splits with cluster validity and using whole tree-traversal path for encoding leads to
more efficient hash codes over the baselines and comparative methods. Fig. 2.3 demonstrates
the performance for 4 distinct neurons of differing morphologies with the closest neighbors
retrieved using the proposed HF formulation and the ground truth (minimal normalized
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Code Size Comparative Methods Baselines
Proposed

(in bytes) LSH SH STH PCA‡ NPE‡ BL1 BL2 BL3 BL4

4 24.08 26.45 24.80 42.11 48.20 29.23 30.91 29.44 30.59 34.27

8 28.86 35.20 38.20 57.15 52.41 29.69 42.92 44.19 45.92 49.41

16 41.15 53.00 43.40 61.60 62.65 43.11 58.40 60.61 63.16 69.51

32 46.98 67.40 47.60 64.91 67.75 59.37 72.70 76.05 81.00 83.13

64 57.51 81.60 47.20 67.72 70.80 74.53 84.27 87.31 83.48 92.72

‡ - These are non-hashing comparative methods (dimensionality reduction) using
floating-point representation (1 float = 4 bytes).
Note: The best performance for a fixed code size is shown in boldface. and the best
result amongst all the comparative methods is frameboxed .

Tab. 2.5. Retrieval performance using Gmean with varying code size: We observe that the retrieval performance for
most of the methods increases substantially with increasing code-size, as the Hamming distance can
better approximate the true neighborhood distance. Further, for code-size ≥ 16 bytes, the performance
of unsupervised Hashing forests is observed to be superior to the comparative methods and baselines.
Reprint from [42], with permission of Springer.

Euclidean distance). The HF was trained with γ = 1.0, numTrees = 64 and treeDepth =
4 and through visual evaluation, we observe close morphological similarity amongst the
ground-truth neurons and its retrieved neighbors.

The time for retrieval is an important evaluation metric for retrieval using hashing. To compare
and contrast the retrieval time against exhaustive pairwise distance computation, we report
the time for training and testing for the comparative methods and baselines in Table 2.7. The
training time includes the time to train the hash functions and extract the hashing table on
the training data of 30466 neurons. The testing time includes the time for generation of
the test hash codes and comparing it against the a priori extracted hash table using forward
/ inverse coding schemes for 800 test neurons. These algorithms were implemented on a
general purpose 64-bit CPU with 16GB RAM memory and 2.7GHz Intel(R) Core(TM) i7-4600U
processor. In case of retrieval with a mobile application, the actual retrieval time additionally
depends on the data transfer speed and the hardware configuration of the mobile device.

2.4.7 Incremental training with database evolution

As the database evolves with addition of new data, the current form of the hashing function
can be directly employed for populating the hash table with the new incoming data (method
M1). Alternatively, the hashing functions can be retrained on the extended dataset with the
additional new data (method M2). If the current code-size cannot sufficiently handle the
added heterogeneity as the database evolves, the hashing functions can be augmented with
further hash functions trained independently only on the additional new dataset (method
M3) and appending the newly generated hash codes to the existing hash table. In case of
HF, such a code augmentation translates to training additional independent hashing trees
on the additional dataset and concatenating these to the tree ensemble of the existing HF.
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Code Size Comparative Methods Baselines
Proposed

(in bytes) LSH SH STH PCA‡ NPE‡ BL1 BL2 BL3 BL4

4 0.2266 0.2450 0.2280 0.3986 0.4713 0.2879 0.2949 0.2998 0.2913 0.3250

8 0.2875 0.3569 0.3307 0.5628 0.5135 0.2970 0.4015 0.4113 0.4270 0.4554

16 0.3970 0.4729 0.3742 0.6010 0.6218 0.3869 0.5355 0.5354 0.5787 0.6505

32 0.4344 0.7329 0.4049 0.6351 0.6703 0.5492 0.6867 0.7338 0.7847 0.8149

64 0.5382 0.7867 0.4200 0.6645 0.7081 0.7035 0.8230 0.8476 0.8108 0.9274

Tab. 2.6. Retrieval performance (Kendall’s rank correlation coefficient κ) vs. Code block size. : We observe that the
retrieval performance for most of the methods increases substantially with increasing code-size, as the
Hamming distance can better approximate the true neighborhood distance. Further, for code-size ≥ 16
bytes, the performance of unsupervised Hashing forests is observed to be superior to the comparative
methods and baselines. ‡ - These are non-hashing comparative methods (dimensionality reduction)
using floating-point representation (1 float = 4 bytes). Note: The best performance for a fixed code size
is shown in boldface and the best result amongst all the comparative methods is frameboxed . Reprint
from [42], with permission of Springer.

Alternatively, the hash functions can be retrained on extended dataset for a larger code-size
(method M4). Comparing the alternative methods to handle database evolution, M2 and
M4 are computationally expensive in comparison to M1 and M3. It must be noted that in
scenarios where database evolution involves addition of new input features, the proposed
and the comparative hashing methods can potentially be extended to multi-view formulations
such as proposed in [118].

To evaluate the performance of different hashing functions as the database evolves, we create
a test scenario wherein the initial hash functions are trained on 19886 neurons curated from
86 archives. The database evolution is modeled by addition of 5048 new neurons from 16
additional data archives to the initial dataset. The new incoming dataset is divided into
non-overlapping training and testing datasets of 4548 and 500 neurons respectively. M1 is
trained for a code-size of 32 bytes, M2 is retrained for the same code size as M1, M3 augments
M1 with an additional 8 bytes making the code-size 40 and M4 is retrained for a code size of
40 bytes. The retrieval performance evaluated using Gmean score for top-10 neighbor retrieval
for each of the proposed and comparative methods is tabulated in Table 3.4. To analyze the
time overheads incurred during each of the four methods M1-M4, we also report the training
time and the testing time (using inverse coding) in Table 2.8.

2.5 Discussion

In the previous section, we designed experiments to validate our hashing forest performance
and perform comparative analysis with reference to other large-scale generalized hashing
methods and baselines. We further discuss in detail the observations and inferences we draw
from them in the following section.
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Exhaustive
Code Size Comparative Methods Baselines

Proposed
(in bytes) LSH SH STH PCA‡ NPE‡ BL1 BL2 BL3 BL4

Tr
ai

n
in

g
(i

n
s)

-

4 0.046 0.34 160.9

0.124 289.3

1.83 1.77 1.78 5.85 5.65

8 0.081 0.49 320.8 3.23 3.41 3.43 11.52 12.06

16 0.166 1.23 684.4 6.48 6.41 6.27 25.73 22.39

32 0.270 2.07 1385.6 15.44 13.7 13.9 45.12 48.56

64 0.606 3.612 1953.6 29.09 26.7 27.8 93.15 97.31

Te
st

in
g(

in
s)

Fo
rw

ar
d

C
od

in
g

91.654

4 2.642 2.652 2.718 5.29 5.18 3.282 5.648 5.654 3.282 5.646

8 4.213 4.228 4.357 8.46 8.77 5.036 8.705 8.705 5.035 8.708

16 7.104 7.139 7.329 9.51 9.49 7.838 15.868 15.869 7.836 15.868

32 13.226 13.808 13.808 14.86 14.95 14.255 31.406 31.401 14.256 31.407

64 24.742 24.909 25.676 29.81 31.99 33.119 67.741 67.739 33.019 67.718

Te
st

in
g(

in
s)

In
ve

rs
e

C
od

in
g

-

4 0.328 0.338 0.414

- -

0.416 0.709 0.715 0.416 0.707

8 0.543 0.558 0.687 0.660 1.129 1.129 0.659 1.132

16 0.951 0.986 1.176 1.063 2.131 2.132 1.061 2.131

32 1.581 1.653 2.163 1.728 3.771 3.766 1.729 3.772

64 3.142 3.309 4.076 4.222 8.619 8.617 4.222 8.616
‡ - These are non-hashing comparative methods (dimensionality reduction) using floating point representation (1 float = 4 bytes).

Tab. 2.7. Time analysis of Hashing performance: We observe that the time for training hashing forests is highly
competitive in comparison to the comparative methods. In terms of testing time, the use of inverse-coding
significantly improves the retrieval time across all the comparative methods and baselines. Reprint
from [42], with permission of Springer.

2.5.1 Neighborhood Approximation

The NA graph evaluates how well a code word generated by particular hashing method is able
to approximate the neighborhood around a query item with respect to neighborhood defined
using normalized Euclidean distance. From Fig. 2.4, we observe a divergent trend (with
reference to the ground-truth NAEUC graph) in the NA graphs of all methods as the neighbor
index increases. For a fixed code size, the HF and other forest based baselines BL1-4
approximate neighborhood better than the comparative LSH, SH, and STH methods. This
supports the hypothesis that effective utilization of the tree-structure along with ensemble
nature of these methods improves data-driven parsing of the input space. Comparing
neighborhood approximation of dimensionality reduction driven retrieval methods, we
observe that NPE exhibits better NA over PCA as it effectively preserves local neighborhoods
during embedding. In comparison to hashing methods, NPE demonstrates performance
superior to STH and LSH and is comparable to SH.

Comparing BL2 with BL1, and proposed HF with BL4, we infer that using tree-traversal
path encoding over leaf node encoding leads to better neighborhood approximation. This
can be associated to the fact that complete decision path allows for a partial neighborhood
contribution in calculation of inter-item similarity. This effect is illustrated in Fig. 2.5, where
we consider two distinct items ni and nj which share nodes R, S1 and S4 during tree traversal.
However, they reach different leaf nodes L3 and L4 respectively. The similarity metric between
ni and nj defined with tree-traversal path-encoding is S(ni, nj) = 2/3, as they shared 2/3rds

of the traversal path. In contrast, with leaf node encoding, S(ni, nj) = 0, as they reach distinct
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Fig. 2.5. Illustration of partial neighborhood
effect due to tree-traversal encoding:
Given two items ni and nj entering
at root node R and traversing
through the nodes S1 and S4
to be sorted into leaf nodes
L3 and L4 respectively. Under
leaf-node encoding, the similarity
between the items (sim(ni, nj)), as
approximated by such a hashing
tree is 0 as they do not share the
same leaf node. Under tree-traversal
encoding, due to the partial sharing
of the tree-traversal path (until S4,
the similarity is sim(ni, nj) = 0.66.
Reprint from [42], with permission
of Springer.

leaf nodes. This partial neighborhood helps improving the neighborhood approximation of
the hash codes. Finally, comparing the baselines BL2 and BL3 to proposed HF, we observe
that the neighborhood approximation is improved when oblique splits (in HF over BL2) and
cluster validity (in HF over BL3) are employed.

2.5.2 Hashing retrieval performance vs. Code size

Comparative Methods

We quantitatively evaluated the performance of the proposed method for different lengths of
hash codes. It is clearly seen from Table 2.5 and Table 2.6 that the proposed HF performance
improves as code length increases, and achieves better results consistently in comparison to
other hashing based methods in searching and ranking relevant neurons. It must be noted that
we chose larger code sizes over conventional code sizes (> 16 bytes), as it was observed that
precision-recall performances for HF and comparative methods for smaller code sizes were
not sufficient enough for the application at hand. In comparison, the dimensionality reduction
based retrieval methods (PCA, NPE) exhibit superior retrieval performance for smaller code
sizes (4-8 bytes) over hashing based methods. However, the retrieval performance for PCA
and NPE does not improve significantly with increasing dimensionality of embedding with the
inclusion of projections corresponding to lower eigen values.

By looking at the results obtained from comparative methods, we observe that the SH performs
consistently better than the LSH and the STH. Though the LSH’s performance steadily increases
with increasing code-size, the improvement is considerably slower implying that LSH needs
much higher code sizes for achieving comparable performance to the proposed HF or the
SH, which will significantly increase the computational cost, resulting in delayed retrieval
(corroborates observations reported by Yu and Yuan [212]). In case of the STH, as code-size
increases, the eigenvectors corresponding to higher eigenvalues are utilized in defining the
hashing function. This is not desirable because eigenvalues are often very noisy.
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Baselines

As established in the discussion of NA Graph, tree-traversal path based encoding with its
partial neighborhood effect demonstrates considerable improvement in retrieval performance.
For code size of 64 bytes, we observe from Table 2.5, an overall increase of 9.74 % between
BL2 and BL1 (84.27% from 74.53%) and 9.24% between the proposed HF and BL3 (92.72%
from 83.48%). This trend is consistent in the ranking performance as the Kendall’s κ statistic
improvises by 0.1195 between BL2 and BL1 (0.8230 from 0.7035) and by 0.1166 between the
proposed HF and its leaf-encoding baseline BL4. These observations further corroborate the
hypothesis that partial neighborhood effect is desirable for effective retrieval of true neighbors.
We also report considerable improvement of 8.45 % from 84.27% to 92.72% for the 64 byte
code size, over our previous HF formulation [130] (BL2). This trend is consistently observed
across all the other smaller code sizes too. These observations demonstrate the superiority of
the proposed HF formulation over the baselines and validates our hypothesis that oblique splits
with cluster validity improves code efficacy. The improved performance of BL3 in contrast to
BL2 is due to the use of oblique splits. This can be attributed to the following aspects:

• Oblique splits can separate distributions that lie between the coordinate axes with a
single multivariate split, which might have required deep nested axis-aligned splits
otherwise;

• The learnt hashing trees are less biased to the geometrical constraints of the base learner
if oblique splits are used (also observed by Menze et al. [129]).

Further, inclusion of cluster validity during training, ensured that the neighborhoods, resulting
from clustering of similar neurons in the input space (as observed by Polavaram et al. [149]),
are preserved during the generation of hashing forest splits. This has resulted in improved
retrieval performance of the proposed HF in comparison to the nearest baseline BL3 (oblique
splits without cluster validity).

Time Analysis

We profiled the training and the testing time for retrieval of the comparative methods for
varying code-lengths for 10 trials with setting identical to Table 2.6 and tabulated the average
observed time for training and testing in Table 2.7. In the comparison of the training times,
we observe that all the methods except STH and NPE exhibit training time of under 100
seconds. The high training time of STH and NPE is attributed to the computationally expensive
eigenvalue decomposition step (order complexity of O(M3)). Additionally in STH, the
hash functions are independently trained binary support vector machine classifiers that are
computationally expensive to train for large datasets (order complexity of O(SMN)). During
retrieval, we observe that employing inverse coding for hashing methods reduces the time
for comparison and ranking significantly in comparison to forward coding and is significantly
lower than exhaustive pairwise distance computation. Comparing to the baselines, we observe
that BL1 and BL4 exhibit lower retrieval time in comparison to BL2, BL3 and the proposed
method due to the difference in the encoding schemes employed for comparison (leaf node for
BL1, BL4 and tree-path encoding for BL2, BL3 and the proposed method). Compared to other
hashing methods, the proposed method with inverse coding has a higher retrieval time for the
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Comparative
Method

M1
Original

32 bytes#

M2
Retrained
32 bytes

M3
Augmented

40 bytes$

M4
Retrained
40 bytes

Pe
rf

or
m

an
ce

LSH 40.23 42.93 46.13 47.10

SH 45.32 46.18 47.22 51.40

STH 41.44 42.80 43.15 44.54

BL2‡ 47.87 49.20 49.77 53.43

Proposed 68.20 70.03 71.47 73.37

Tr
ai

n
in

g
Ti

m
e

(i
n

s)

LSH 0.098 (0.281) 0.265 0.119 (0.078 + 0.041) 0.292

SH 0.030 (1.263) 1.697 0.192 (0.074 + 0.118) 2.38

STH 3.085 (900.6) 1177.8 67.36 (51.32 + 16.04) 1662.7

BL2‡ 0.379 (7.94) 10.69 1.944 (0.58 + 1.364) 17.8

Proposed 0.318 (30.107) 41.27 3.603 (2.171 + 1.432) 67.98

Te
st

in
g

Ti
m

e
(i

n
s)

LSH 1.012 0.961 1.176 1.305

SH 1.157 1.215 1.413 1.243

STH 1.319 1.467 2.055 2.230

BL2‡ 2.681 2.582 2.972 3.156

Proposed 2.474 2.756 3.282 3.151
‡ - Prior art method [130]
# - τM1

1 (τM1
2 ) - τM1

1 is the time required to infer hash-codes the new incoming dataset
using existing hash functions (τM1

2 is the time required for training the existing hash
functions, however it is not deemed as a part of the training time for M1).
$ - Total training time for M3 is τM3 = (τM3

1 + τM3
2 ) where τM3

1 is the time to train
the augmented hash codes on the incoming dataset and τM3

2 is the time required to
repopulate the existing dataset through the augmented hash functions.

Tab. 2.8. Time-analysis of training and testing for Hashing Forests and Comparative Methods under scenarios of
incremental learning: Specifically, for the proposed hashing forests, the performance increases upon
retraining to to a larger code size (M4) and also upon augmentation (M3) to existing code sizes. Reprint
from [42], with permission of Springer.

same code size, but is significantly lower than pairwise comparison used in dimensionality
reduction methods.

2.5.3 Incremental training with database evolution

With addition of new unseen data to the database, we evaluate variants of hashing methods
(retraining v.s. augmentation ) that have been proposed in Section 2.4 and report their
retrieval performance (Gmean) in Table 3.4. From an overall perspective, we conclude that
augmenting hashing functions with additional bits (M3) performs comparably to retraining
(M4) and is superior to retrieving with the the original hash function (M1). Further, the
proposed HF demonstrates significantly higher retrieval performance over the comparative
hashing methods (LSH, STH, SH and BL2) which is highly desirable as the database continually
evolves.
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From Table 2.8, we observe that time overhead for training/augmenting the hash codes for M1
and M3 are relatively lower in comparison to retraining based methods (M2 and M4). These
observations are concurrent with the expected trends as M1 involves no additional learning
of the hash functions and M3 learns the augmentation hash function on a relatively smaller
incoming dataset for a smaller code size. In comparison, M2 and M4 involves retraining the
entire hash functions on the extended dataset (existing dataset + incoming dataset). In terms
of the testing time, we observe that M1 and M3 are comparable to M2 and M4 respectively, as
the time complexity for inverse coding is linear in terms of code-size and independent of the
search database size.
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3Metric Hashing Forests

„A year spent in artificial intelligence is enough to make
one believe in God.

— Alan Perlis
(First Recipient of the Turing Award in 1966)

3.1 Overview and Publications

This chapter presents the contributions of this thesis concerning learning and validation of
metric Hashing Forests (mHF), which are a supervised variant of random forests tailored for the
task of nearest neighbor retrieval through hashing. mHF is achieved by training independent
hashing trees that parse and encode the feature space such that local class neighborhoods
are preserved and encoded with similar compact binary codes. At the level of each internal
node, locality preserving projections are employed to project data to a latent subspace, where
separability between dissimilar points is enhanced. Following which, we define an oblique
split that maximally preserves this separability and facilitates defining local neighborhoods of
similar points. By incorporating the inverse-lookup search scheme within the mHF, we can
then effectively mitigate pairwise neuron similarity comparisons, which allows for scalability
to massive databases with little additional time overhead. Exhaustive experimental validations
on 22,265 neurons curated from over 120 different archives demonstrate the superior efficacy
of mHF in terms of its retrieval performance and precision of classification in contrast to
state-of-the-art hashing and metric learning based methods. We conclude that the proposed
method can be utilized effectively for similarity-preserving retrieval and categorization in
large neuron databases.

This chapter is organized as follows: in Sec. 3.2 we present the premise for introducing
supervision into the training of hashing forests and how metric learning can be leveraged for
the same. Particularly, the aspects related to training and testing mHF are detailed in Sec. 3.3,
wherein we present our novel optimization objectives that enforce code-consistency within
hashing by evaluating class separability and neighborhood quality locally at each node (in
Sec. 3.3.1). We also discuss the training of a metric Hashing tree in Sec. 3.3.2 and how the
hash tables are subsequently generated and leveraged for retrieval in Sec. 3.3.3. Following
this, in Sec. 3.4, we present the results of evaluating mHFs for the task of large-scale semantics
preserving retrieval on neuron image databases. We particularly compare and contrast against
multiple ablative baselines (in Sec. 3.4.2), against non-hashing based methods (mostly metric
learning and dimensionality reduction approaches in Sec. 3.4.3) and against state-of-the art
supervised hashing based comparative methods (in Sec. 3.4.4). We conclude Sec. 3.4 with
Sec. 3.4.6, where we present a detailed analysis of time and memory costs associated with
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Fig. 3.1. Schematic illustrating the training and testing of metric Hashing Forests towards the task of neuron image
retrieval: Given a database of neurons (defined with the neuromorphological space), individual trees
are trained to partition the feature space with metric learning employed at each split node to choose an
optimal split function. The tree traversal path is used to generate the hash codes, which are aggregated
into a hash table representation. During testing, the query neuron traverses the learnt mHF and the
generated hash code is compared against the hash table to rank and retrieve similar neurons which
share morphological similarities and preserves desired semantics. Reprint from [40], with permission
©Elsevier.

the training and testing of the comparative methods. In the subsequent section (Sec. 3.5), we
present detailed discussions on the comparison with the baselines, hashing and non-hashing
based comparative methods with a detailed analysis of the retrieval performance in terms of
accuracy as well as ease of retrieval.

Substantial parts of this chapter have already been published in the following article and are
quoted verbatim:

[40] Conjeti, Sailesh, Amin Katouzian, Anees Kazi, Sepideh Mesbah, David
Beymer, Tanveer F. Syeda-Mahmood, and Nassir Navab. "Metric hashing
forests." Medical image analysis 34 (2016): 13-29.

Copyright Statement. ©2016 Elsevier B.V.

3.2 Motivation

In this chapter, we extend hashing with forests into the domain of classification by image
retrieval and propose a supervised variant of HF called metric Hashing Forests (mHF). The
extension of HF into the mHF is done by incorporating local metric learning and principled
node optimization in order to maximize class separability. The main advantage is that the
hashing functions generate codewords in which similar samples will have similar encodings.
Figure 3.1 provides an overview of how the proposed mHF are trained and leveraged for
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neuron retrieval and classification. In the context of Fig. 3.1, the primary objective of mHF is to
enable meaningful retrieval of neurons similar to the query and we use supervisory information
to learn hash bits that are both discriminative and consistent. The task of classification of a
new neuron into one of the considered cell-types should be seen as an additional outcome of
effective retrieval.

As pointed out by Weiss et al. [201], an ideal hashing function has to be easy to compute for a
novel input, should be compact, and preserve similarity. Our contributions in the context of
the aforementioned requirements are as follows:

• Out-of-sample Extension: For a novel input, the code is generated by traversing the mHF
trees. Each internal node of the tree carries a binary decision function, which determines
the direction of propagation to children nodes until a terminal node is reached. As the
original ambient feature space may not be optimal for class similarity-preserving retrieval,
we introduce node-level metric learning through locality preserving projections (LPPs).
These are linear approximations to Laplacian eigenmap embeddings that are defined on the
entire ambient space, thus guaranteeing seamless extension to novel inputs.

• Compactness: At each internal node, the mHT splits the training dataset into two equally
sized children subsets (by partitioning at the median), which ensures maximal code
efficiency. Towards this end, we introduce the concept of class separability for choosing the
node split function in a principled fashion. The cost function encourages splits that
preserve the class similarity constraints and penalizes the loss of neighborhood quality.
While growing hashing trees, the feature space is obliquely parsed to separate class
distributions that lie between feature axes and the constrained subspaces generated are
encoded with compact binary codewords (shown in Figure 3.6).

• Similarity Preserving: By local metric learning, we transform the data from the original
ambient feature space to a latent space, where maximal separability between dissimilar
data points is achieved (shown in Figure 3.4). Additionally, the partitioning function is
defined on the latent space in such a way that class separability becomes maximal. Such a
partitioning of the feature space is useful for preserving local similar class neighborhoods
and encoding samples within neighborhoods of similar binary codewords.

As the main focus of this work is inclusion of metric learning within previously developed
framework of hashing forests [130], we briefly overview the state-of-the-art in metric learning
based techniques.

The key concept behind metric learning is to learn a distance function defined on the feature
space that obeys class-similarity (supervised) or geometrically imposed constraints
(unsupervised/manifold learning). In the context of similarity-preserving retrieval, the given
supervisory class information is cast into pairwise similarity/dissimilarity constraints and the
distance metric is learned under these constraints. Such a metric is often parameterized as
matrix M ∈ Rd×d that can be used to define distance between two samples xi and xj as:

dM(xi,xj) = (xi − xj)T M (xi − xj) (3.1)
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If M is symmetric and positive semi-definite, it can be factorized as M = LTL, where
L ∈ Re×d and e ≥ rank(M). Using such a decomposition of M, the distance function dM can
be equivalently written as:

dM(xi,xj) = (xi − xj)T LTL (xi − xj) (3.2)

This can be interpreted as the Euclidean distance between points Lxi and Lxj defined on a
new latent space.

Generalized metric learning methods can be broadly categorized into supervised and
unsupervised approaches. Supervised techniques attempt to learn a projection such that
similar samples are kept closer while simultaneously maximizing the distance between
dissimilar samples. In the particular context of retrieval, this is highly desirable as the
approximate kNN neighborhood would maximally correspond to the true class neighborhood.
Some popular supervised metric learning methods that are driven by nearest neighbors
include neighborhood component analysis (NCA) by Goldberger et al. [65], largest margin
nearest neighbors (LMNN) by Weinberger and Saul [199], supervised neighborhood
preserving embedding (sNPE) by He et al. [76], locality sensitive discriminant analysis
(LSDA) by Cai et al. [21], locality preserving projections (LPP) by He and Niyogi [75] to name
a few1. In this chapter, we consider sNPE, LSDA, and LPP as representative supervised metric
learning methods in our comparative analysis of retrieval performance. With regards to
baselines, for evaluating the overall improvement induced by considering supervised
information in retrieval performance, we also include unsupervised metric learning methods
based on principle component analysis (PCA) and Mahalanobis distance for comparison. The
underlying hypothesis is that the learned distance metric M (or L) is more task relevant and
the approximate nearest neighbors defined on the projected space are closer to the true class
neighbors in comparison to the ones defined on the ambient feature space. For a detailed
exposition on metric learning, interested readers are directed to the surveys by Kulis [105]
and Bellet et al. [15].

3.3 Methods

The rationale behind the proposed mHF is to parse the feature space and encode samples into
binary codes (called hash codes), such that the Hamming distance defined between the hash
codes of similar data pairs is minimized and simultaneously maximized on dissimilar pairs. In
brief, the ultimate goal in designing the mHF retrieval algorithm is to ensure that samples
that share similar class and characteristics to that of the query are fetched in a time-efficient
manner.

1For sNPE, there exists an unsupervised metric learning counterpart (uNPE) which is also considered in this work.
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Fig. 3.2. Schematic illustrating encoding
of class similarity/dissimilarity
in matrix S: Neurons a and
b are similar (i.e. S(a, b) =
S(b, a) = 1). They are
dissimilar to Neuron d (i.e.
S(a, d) = S(b, d) = −1).
Class information of Neuron c
is unknown (i.e. S(a, c) =
S(b, c) = 0) Reprint from [40],
with permission ©Elsevier.

3.3.1 Class Separability and Neighborhood Quality

Given a data set X =
{

xi ∈ Rd
}N
i=1, an N × N dimensional similarity matrix S, like in

Figure 3.2, is defined as follows:

S =



s11 · · · s1n

. . .
... sij

...
. . .

sn1 · · · snn


(3.3)

where sij =


1 if xi,xj are similar

-1 if xi,xj are dissimilar

0 o.w.

The objective of a similarity-preserving hash function h is to map Rd 7→ {1, 0}1 such that
similar pairs are assigned the same binary values and dissimilar pairs are assigned to different
ones. Such a hashing function improves the local neighborhood of the samples as the distance
metric (say standardized Euclidean distance) is now defined on samples that share the same
hash bit than in the original sample distribution.

In the context of similarity preserving retrieval, we leverage this concept to evaluate the
class separability induced by hashing functions. This is akin to the concept of node purity in
traditional random forests [19, 46]. Prior to delving into how we evaluate the class separability,
we introduce the neighborhood quality functionQ in the context of k nearest neighbor retrieval.
For a dataset X with similarity matrix S, we evaluate the local neighborhoods around the
samples and define the a neighborhood quality function Q as follows:

Q(X ,S,M) = 1
nk

n∑
i=1

k∑
t=1

sit.p(xi,xt,M) (3.4)
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Fig. 3.3. Schematic the neighborhood
quality function Q: With
improving class separability (i.e.
local neighborhoods are of the
same class), the neighborhood
quality function Q increases
and is hence used as a
measure to rank candidate split
functions. Reprint from [40],
with permission ©Elsevier.

where xt is the tth neighbor of xi and xi,xt ∈ X . In the above quality function, the proximity
between two samples xi and xt is evaluated as:

p(xi,xt,M) = e
− d(xi,xt)

σiσt (3.5)

where d(xi,xt) = (xi − xt)T M (xi − xt)

where σi and σt are local scaling factors. As defined in Zelnik-Manor and Perona [217],
σi = d(xi,xJ), where xJ is the J th neighbor of xi. The incorporation of local scaling allows
for self-tuning of the point-to-point distances according to the local neighborhoods around
the points xi and xt. In addition to local scaling, we also use M , which is an appropriately
defined distance metric on feature space X (e.g. M = I for Euclidean distance, M = C−1 for
Mahalanobis distance, where C is the inverse of the covariance matrix). Alternatively, M can
be learned from the data through metric learning approaches.

By looking at the quality function Q, we observe that the pair of nearest neighbor points
contribute positively if they are similar and penalize it if they are dissimilar. The behavior of
Q is qualitatively illustrated in Fig. 3.3 for varying degrees of class-separability. Starting from
poorly separated classes (Case 1) and progressively improving class-separability (towards Case
4: Well separated classes), we observe that the neighborhood quality functionQ increases with
better class separability. Thus, higher values of Q implies that the local class neighborhoods
are well separated within a particular dataset and thus better guarantee of generalization for
class similarity preserving k nearest neighbor based retrieval towards new unseen test data.

We further leverage Q to evaluate the improvement in class separability that a particular
hash function h induces while dividing the training dataset X into two subsets X1 and X0

comprising of samples that are alloted binary values 1 and 0, respectively. The similarity matrix
is partitioned into two components S1 and S0, which are defined on X1 and X0 respectively.
The improved class separability ∆Q(h) is evaluated as:

∆Q(h,M) = |X0|
|X |
Q(X0,S0,M) + |X1|

|X |
Q(X1,S1,M) (3.6)

where |X1|, |X0|, and |X | are the number of samples in X1, X0, and X , respectively. Comparing
two hashing functions h1 and h2 (for a fixed M), if ∆Q(h1,M) > ∆Q(h2,M), then it implies
that h1 leads to subsets with better class separability and the retrieval in the neighborhood
constrained by h1 is superior to h2. Also, if ∆Q(h,M) > 0, it implies better generalization of
similarity-preserving retrieval in the search space constrained by h than in the original feature
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(a) PCA (b) LPP

Fig. 3.4. Effect of local metric learning on class separability: The neurons of different cell types mapped into a
2-dimensional space. Fig. 3.4a: Representation using first two components of principal component
analysis and Fig. 3.4b: Results of supervised locality preserving projections. Each color and marker type
corresponds to a neuron cell type. Under the LPP transformation, we observe that the cell types are
better separated in comparison to the PCA space. Reprint from [40], with permission ©Elsevier.

space. In this chapter, we use ∆Q for evaluating split functions defined at the internal nodes
of the hashing trees (discussed in Section 3.3.2).

3.3.2 Training metric Hashing Tree (mHT)

The goal of mHF is to concatenate piecewise binary hash codes generated using several
decorrelated hashing trees to get a composite hash code for a particular sample. Each metric
hashing tree hj is trained independently with a bagged dataset X j generated by Monte Carlo
sampling of the training dataset X (both training samples and features). Thus, the trees are
trained to be maximally decorrelated which helps reducing the redundancy in the generated
hash codes. The trees are grown by recursive partitioning of the feature set Xn that reaches a
particular node n into two subsets X2n and X2n+1. This node-level partitioning is governed by
a split function φn that is generated to maximize the class separability between the two subsets
(discussed in Section 3.3.1). At each node level, we learn a locality preserving projection (LPP)
of the data that reaches the node using the algorithm proposed in [75]. Such a projection is
learned to discover the underlying non-linear local manifold structure and to project it along
directions that maximizes separability between dissimilar pairs and simultaneously cluster
similar data pairs. This is demonstrated in Figure 3.4 for the neuroscientific image data and
its constituent cell types. Defining the split function φn in the projected space is expected to
induce better class separability between the two children subsets over splitting in the original
feature space.

Locality Preserving Projection

Let Xn =
{

xi ∈ Rd
}m
i=1 denote a subset of the training data that reaches internal node n of

the mHT. Let Sn denote the similarity matrix associated with it. In this context, we leverage
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the LPP to learn a linear transformation matrix An that maps the m points in Xn to a set of
points in the latent subspace Yn =

{
yi ∈ Rl

}m
i=1 (l ≤ d) such that yi = ATxi. The LPP is an

optimal linear approximation to the eigenfunctions of the Laplace-Beltrami operator on the
manifold constituted by Xn and preserves the neighborhood structure of the data set while
embedding.

In order to find the optimal linear embedding, a weighted undirected graph G with symmetric
weights W is constructed on X , such that edges connect similar points together. The task of
learning a projection using LPP is to find a mapping that minimizes the distance between
connected points in the projected space, and it is mathematically formulated as:

min
A

∑
ij

(yi − yj)2
Wij (3.7)

where yi = ATxi. Using standard spectral graph theory, [75] cast this problem as
min
A
ATXnLX Tn A. Here, L is the Graph Laplacian matrix of W , which is estimated as

L = D −W , where D is a diagonal matrix such that Dii =
∑
jWij . To avoid the trivial

solution of A = 0, they imposed an additional constraint that ATXnDX Tn A = 1. Thus, the
estimation of optimal transformation matrix An reduces to the following minimization
problem:

An = arg min
A

ATXnLX Tn A s.t. ATXnDX Tn A = 1 (3.8)

The optimal transformation An that minimizes this objective function is obtained by the
minimum eigenvalue solution to the generalized eigenvalue problem XnLX Tn A = λXnDX Tn A.
We chose the eigenvectors corresponding to the smallest l non-zero eigenvalues to constitute
An. With this learned transformation matrix An, we project Xn to Yn, which is subsequently
used to define the split function φn. The advantage of LPP in the context of retrieval is two-fold
as follows:

• LPP discovers and preserves the local class neighborhood structure while embedding.

• It is simple, linear, fast, and more importantly defined everywhere in the ambient feature
space, thus, enabling a natural out-of-sample extension to new unseen test data.

Split Function

Each split node n in the mHT is governed by a partitioning function φn, which divides
the training dataset Xn that reaches it into two children subsets X2n and X2n+1. The split
functions are defined on the learned projective space Yn (using An learned from LPP on Xn)
and parameterized as oblique hyperplanes. We use oblique hyperplanes over traditional axis
aligned split functions as they are better suited to separate distributions that lie between the
coordinate axes, which might have otherwise required deep nested axis-aligned splits [129].
Particularly in the context of encoding with hashing trees, the structure of the tree determines
the number of bits required to encode the feature space spanned by it (code size is directly
proportional to tree depth) and deeper trees with axis aligned splits require longer codes in
order to be as effective as shallower trees with oblique split.
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Fig. 3.5. Schematic illustrating the randomized node optimization: Given multiple candidate node-partitioning
functions, the optimal choice is made by evaluating the degree to which such a function partitions the
training data into balanced homogeneous children nodes. Reprint from [40], with permission ©Elsevier.

The hyperplane φn is parametrized by the parameter set θn, which comprises of coefficients of
individual features αn along with an intercept scalar α0

n. The oblique split φn(y, θn) is defined
as φ(y, θn) = αTny + α0

n. Using this oblique split, the data set Xn is split into left and right
subsets X2n and X2n+1 by corresponding split functions as follows:

X2n = {x|x ∈ Xn ∧ φn(ATnx, θc) ≤ 0} (3.9)

X2n+1 = {x|x ∈ Xn ∧ φn(ATnx, θc) > 0} (3.10)

An ideal splitting function at each node induces maximum class separability between the two
children subsets (X2n and X2n+1), so that dissimilar data points are assigned to different tree
branches and are hence alloted different encoding codewords (and simultaneously assign
similar data points to the same tree branch). As the task of k-NN retrieval is highly non-linear,
no closed form solution exists that generates an optimal split and therefore we resort to greedy
node optimization to generate φn (akin to traditional random forests [46]). We generate a
family of candidate splits (Fn), where each split (say θc ∈ Fn) parametrized by randomly
generated coefficient values (say αc). The coefficients were individually generated at random
from a normal distribution with zero mean and unit standard deviation and normalized
such that

√∑
|αc|.2 = 1. This is equivalent to generating the coefficients at random from a

parameter hypersphere of radius 1 centered at the origin (i.e.
√∑

|αc|.2 = 1 ).

For maximum code efficiency while encoding, it is necessary that the trees grow in a balanced
fashion, implying that |X2n| = |X2n+1|. Thus, the intercept α0

c is generated as the median
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value of αTc y. From the candidate splits Fn, the split function that induces the maximal
improvement in neighborhood quality (evaluated using Eq. (3.6)) is assigned to the

θn =argmaxθc∈Fn∆Q(θc, ATnAn)

=argmaxθc∈Fn


|X2n|
|Xn| Q(X2n,S2n, A

T
nAn)

+
|X2n+1|
|Xn| Q(X2n+1,S2n+1, A

T
nAn)


(3.11)

This is schematically illustrated in Figure 3.5, where the candidate split that creates maximal
class separability between the two ensuing children subsets is chosen as optimal. In Case
1, the candidate split spans entirely over a particular class resulting in a degradation of
the neighborhood quality as a significant number of similar pairs are assigned to different
child nodes resulting in inconsistent encoding. In Case 2, the candidate split sub-optimally
divides the dataset as dissimilar pairs are assigned to the same child-node resulting in a hash
function that is not discriminative. Finally, in Case 3, the candidate split induces maximal
class-separability amongst the resulting children nodes and would thereby be preferred as a
split function over the candidate splits in Cases 1 and 2.

The tree is further grown through such a recursive splitting of the training dataset until the
maximum defined tree-depth (treeDepth) is reached. The parsing of the feature-space by an
oblique tree is shown in Figure 3.6. We create an ensemble of such independently grown
trees {h1, · · · , hj , · · · , hnumTrees} to form the hashing forest H. Such a forest of numTrees binary
trees with maximum depth of treeDepth, requires numTrees× treeDepth bits to encode each
sample.

3.3.3 Hash Table Generation

Given a trained tree (hj) of the hashing forest H, each data sample xi in the training
database, is passed through the hashing forest until it reaches the leaf node. For a tree hj

of depth treeDepth, the leaf nodes are assigned breadth-first order indices (say nj), which
are associated with binary bit bjn in the codeword Cj(xi). If the data sample reaches a
particular leaf node nj in the jth tree, the bit bjn is set to 1, otherwise to 0. This leads to a
2treeDepth bit sparse codeword Cj(xi) for the encoded sample xi through tree hj . Figure 3.6
depicts the encoding of the feature space parsed by a hashing tree of treeDepth = 3. It
must however be noted that only treeDepth bits are required to generate the codeword as
there are only 2treeDepth possible traversal paths, each leading to a unique leaf node. We
repeat the same process for every other tree in the forest to generate the sparse code block
CH(xi) = [C1(xi), · · · , CnumTrees(xi)] of size S = (numTrees× 2treeDepth) for each data sample.
For faster retrieval, we pre-compute the code blocks for all N samples in retrieval/training
database X and generate a hash table CH(X ) of size N × S. This is stored using (N ∗
(numTrees ∗ treeDepth)) bits along with traversal paths saved in a (2treeDepth ∗ 2treeDepth) binary
look-up table.
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Fig. 3.6. Schematic illustrating parsing and encoding of the feature space by a metric hashing tree: Starting from the
root-node R, the feature space is recursively split by partitioning functions (φS1−6 ), which are chosen
to induce the maximal improvement in class-neighborhood quality (∆Q). A query sample (shown in
red) traverses down the tree and is alloted the sparse codeword corresponding to the leaf node that it
reaches. Reprint from [40], with permission ©Elsevier.

Baselines Local Metric
Class

Separability
Criterion

Split Type

Baseline 1 (BL1) Eye × Univariate in original feature space

Baseline 2 (BL2) Eye ×
Oblique in original feature space

Baseline 3 (BL3) Eye X

Baseline 4 (BL4) PCA ×

Oblique in metric space space
Oblique in original feature space

Baseline 5 (BL5) PCA X

Baseline 6 (BL6) LPP ×

Proposed (mHF) LPP X

Tab. 3.2. metric Hashing Forest Baselines: To evaluate the individual contributions within mHF, six baselines (BL1 -
BL6) are set ablatively on choices of the local metric used (Eye / PCA / LPP), if class-separability criterion
was employed and the nature of the node partitioning function (univariate / oblique). Reprint from [40],
with permission ©Elsevier.
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3.3.4 Baselines

The main contributions of the mHF formulation presented in this chapter over our previously
proposed formulation [130] are: (a) inclusion of local metric learning and (b) improvised
node-partitioning function optimization with the introduction of class separability criterion.
To validate the overall improvement due to local metric learning, we consider two baseline
transformations: I (identity matrix) and PCA basis that are learned in an unsupervised
fashion from the data reaching each split node. Additionally, we validate the performance
improvement by introducing the class separability criterion through contrasting against purely
random balanced oblique splits at each split node (no node optimization). A combination
of these methods form six baselines that are tabulated in Table 3.2. Comparisons to these
baselines would support our proposed hypothesis that training hashing forests with local metric
learning and class separability optimization criterion leads to more meaningful transformation
and parsing of the feature space, thus resulting in higher code efficiency and discriminative
retrieval performance.

3.3.5 Semantics-preserving Neuron Image Retrieval

We used 22265 3D reconstructions of neurons extracted from about 120 different archives,
which curated from multiple laboratories and are publicly available on
http://neuromorpho.org [9]. The neurons were each classified into seven major cell types
(with database compositional percentages), namely, axon-terminal neurons (4.82%),
inter-neurons (53.76%), principal cells (4.29%), granule cells (2.67%), motor neurons
(1.38%), pyramidal cells (31.36%) and sensory neurons (1.71%). This labeling is motivated
by the differences in the morphology between these major cell types. It must be noted that
Neuromorpho.org (accessed on December 2015) curated around 34.5K neurons. The
ontological scheme followed by Neuromorpho.org [227] involves either structural or
functional classification of neurons. Functional classification is mainly based on the type of
neuron-transmitter used by the neuron. As this study focuses on anatomical classification, we
excluded around 12.3K neurons from the database that were classified functionally. Therefore
in total about 22.2K neurons that met this inclusion criterion are used for further validations
within this study.

We employed the Lmeasure toolbox to extract 3D neuromorphological features, which
characterize different aspects of neuron structure and topology [44, 166]. In studies on
morphological diversity and discovery of biologically relevant clusters [211], it is desirable to
retrieve neurons that belong to the same neuronal cell type, which share similar
morphological attributes [145]. This acts as a major motivation factor towards incorporating
the requirement of class-similarity preservation into our retrieval framework. In this chapter,
we use the class information to generate the similarity matrix S (Eq. 3.3), assuming that pairs
of samples are similar if they share the same label and dissimilar otherwise. As pointed out
in Bellet et al. [15], this approach of deriving the constraints prior to learning the metric is
widely accepted and quite often never challenged. A more refined (but computationally
expensive) approach towards generation of S was proposed by Wang et al. [194], where they
discover constraints and learn the metric using an alternating optimization framework. We
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direct interested readers towards Appendix A for a more detailed exposition on aspects of
neuron image retrieval and the neuromorphological space.

Parameters Settings Applicable to

Depth of the tree(treeDepth) 4

All baselines and
mHF

Code Size 8, 16, · · · , 96

Number of trees (numTrees)
2, 4, · · · , 24

(Code Size / treeDepth)

Bagging Ratio (bagRatio) 1/numTrees

Number of bagged features (numFeat) d
√
de

Number of Candidate
Splits (numSplit)

50 BL3, BL5‡ and mHF‡

1 BL1, BL2, BL4‡, BL6‡

Number of variables in
split (featSplit)

1 BL1

numFeat
BL2, BL3, BL4‡, BL5‡,

BL6‡ and mHF‡

Number of nearest neighbors (k) 1
All

(BL3, BL5 and mHF in
GenerateSplit)

Local scaling factor (J in Eq. 3.5) 5 BL2 - 6 and mHF

Tab. 3.3. Parameter settings for the baselines and proposed method: The parameters for proposed mHF and the
associated baselines (BL1 - BL6) are chosen such that the resultant models are comparable in model
complexity with sufficient learnable parameters for the problem at hand. Here, ‡ implies the parameter
is defined on the metric learned space. Reprint from [40], with permission ©Elsevier.

3.3.6 Configuration Settings

The parameter configurations for the baselines (BL1 - BL6) and the proposed mHF method are
tabulated in Table 3.3. It must be noted that in training the baselines and mHF, the parameter
choice of k nearest neighbors is as same as the one used in retrieval. In practice, the local
scaling factor is empirically fixed at J = 5 and such an intermediate value (not too small or
large) is deemed acceptable. The algorithms were implemented using MATLAB R2015b on a
general purpose 64-bit CPU with 16GB RAM memory and 2.7GHz Intel(R) Core(TM) i7-4600U
processor.

3.4 Experiments and Results

3.4.1 Evaluation Metrics

Successful hashing in neuroscientific databases depends on the efficacy of the codeword to
compactly parse and represent the true class neighborhood around the neurons in the
neuromorphological space. Let NH(nq) represents the set of neurons retrieved from the
database X through hashing that fall within the kth nearest neuron neighborhood of query
neuron nq i.e. Nk,H(nq) = {ni|dH(xi,xq) ≤ dH(xk,xq),xi ∈ X , ni 7→ xi}, where xk
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corresponds to the feature vector of the kth nearest neuron to nq. Let cq ∈ C represent the
class label of neuron nq. Let Xt refer to the test dataset. We quantify the retrieval
performance using following metrics:

• Retrieval Precision (RP): It is defined as the ratio of the total number of similar neurons
amongst the retrieved neighbors to the total number of retrieved neighbors for a particular
value of k-NN. RP is evaluated as:

RPkH =

∑
∀nq∈Xt

∣∣∣N cq
k,H(nq)

∣∣∣∑
∀nq∈Xt |Nk,H(nq)|

(3.12)

where N cq
k,H(nq) = {ni|ni ∈ Nk,H(nq) & ci = cq} refers to the subset of neurons within the

neighborhood of nq that share the same class as that of nq.

• Classification Accuracy (CA): For classification through retrieval, we assign the predicted
class cpred

k,H(nq) for a query neuron nq using maximum a posteriori class evaluated from the
top k nearest neighbors retrieved through hashing with method H. Let C represent the set
of all possible classes of neurons in the database X and xq the features of neuron nq.

cpred
k,H(nq) = argmax

c∈C
p(c|xq, k,H) (3.13)

where p(c|xq, k,H) =

∣∣∣N c
k,H(nq)

∣∣∣
|Nk,H(nq)|

The CA for a particular hashing method is evaluated as the ratio of the number of correctly
classified test samples to the total number of samples in the testing dataset and is estimated
as:

CAkH =

∑
∀nq∈Xt

∣∣∣cpred
k,H(nq) == ctrue(nq)

∣∣∣
|Xt|

(3.14)

In the subsequent experiments, k = 1 nearest neighbors are used for retrieval and classification
as it does not require cross-validating parameters. Unless specified, to make each evaluation
metrics statistically meaningful, we calculate them as an average of 10 experimental runs,
which differ from one another due to the randomization involved in defining the training and
testing datasets and in training the hashing forests (BL 1 - 6 and mHF).

3.4.2 Validations against baselines

In this section, we validate the incorporation of local metric learning (Eq. 3.8) and node
optimization with neighborhood quality improvement (Eq. 3.6, 3.11) by contrasting retrieval
performance of the proposed mHF against baselines listed in Table 3.2. We vary the code-sizes
from 16 bits to 96 bits in increments of 8 bits and evaluate the overall performance of baseline
and mHF (configuration settings presented in Table 3.3) using RP (Eq. 3.12) and CA (Eq. 3.14)
metrics. Following a 5-folded cross-validation strategy, for each fold 80% of the total dataset
was reserved as training and the rest non-overlapping 20% is used as an evaluation set. We
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(a) Classification Accuracy (b) Retrieval Precision

Fig. 3.7. Evaluation of the proposed mHF vs. other hashing forest baselines varying code-size: Fig. 3.7a: Overall
accuracy of classification by retrieval and Fig. 3.7b: Precision of retrieval through hashing. With
improved performance of the proposed method across varying code sizes, we observe that the
contributions of node-wise metric learning (contrasting with BL2-3), choice of metric learning (LPP
vs. PCA (BL-5)) and the use of class-separability criterion for optimizing (vs. BL6) are significantly
contributing towards improved hashing performance. In particular, contrasting with BL-1(unsupervised
hashing forests), we observe a significant margin with all the other learning based methods. Reprint
from [40], with permission ©Elsevier.

report the average performance of CA and RP metrics with the 95% confidence interval error
bars in Fig. 3.7a and Fig. 3.7b, respectively. We also perform the two sample Kolmogrov-
Simrnov test to assess the statistical significance of the margins and it is deemed significant if
p-value< 10−3.

3.4.3 Comparative analysis against non-hashing methods

Hashing based methods generate compact binary representations of feature vectors, which
facilitate scalability to massive databases and high dimensional feature spaces. In this section,
we perform a comparative analysis between popular non-hashing methods employed for
retrieval against the proposed mHF technique. These include lp- norm based methods
(Euclidean (p = 2); Chebyshev (p = ∞), and Minkowski distance (p = 1)); unsupervised
metric learning methods (Mahalanobis, Principal Component Analysis PCA, unsupervised
Neighborhood Preserving Embedding uNPE [76]), and supervised metric learning methods
(supervised Neighborhood Preserving Embedding sNPE [76], Locality Sensitive Discriminant
Analysis LSDA [21] and Locality Preserving Projections LPP [75]). For comparison, we
present the results of mHF with code-size of 96 bits (treeDepth = 4 and numTrees = 24). In
Figure 3.8, we illustrate the average and the 95% confidence intervals of the overall
classification accuracy for 5−folded cross-validation using the same data splits in
Section 3.4.2. We also refer back to the observations in Figure 3.7a for comparative
analysis.
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Fig. 3.8. Comparison of the proposed mHF’s classification accuracy vs. state-of-the-art non-hashing based retrieval
methods: These include lp-norm based methods (Euclidean (p = 2); Chebyshev (p =∞) and Minkowski
distance (p = 1)); unsupervised metric learning methods (Mahalanobis, PCA, uNPE), and supervised
metric learning methods (sNPE, LSDA and LPP). In terms of retrieval performance, LPP is the closest
to mHF . The supervised metric learning methods are observed to be superior to their unsupervised
counterparts and significantly better than performing retrieval in the native input space. Reprint
from [40], with permission ©Elsevier.

3.4.4 Comparative analysis against hashing methods

In this section, we evaluate the performance of mHF in comparison to state-of-the-art
generalized hashing methods that are suited for large-scale retrieval. These include data
independent methods (e.g. Locality Sensitive Hashing LSH [64, 180] etc.), data-driven
unsupervised methods (e.g. Spectral Hashing SH [201], Anchor Graph Hashing AGH [119],
Principal Component Analysis-based variant of LSH (PCAH) etc.) and data-driven supervised
methods (e.g. Linear Discriminant Analysis based variant of LSH (LDAH), Kernel Supervised
Hashing KSH [120] etc.). We quantify the retrieval performance (using CA and RP), varying
the code-size from 16 to 96 bits in increments of 16 bits. Similar to the earlier validations,
Figure 3.9a and 4.5b, we illustrate the average and the 95% confidence intervals of CA and
RP, respectively, for 5−folded cross-validation using the same data splits employed in
Section 3.4.2.

3.4.5 Evaluation of class-wise retrieval performance

We evaluate the performance of mHF towards retrieval of the individual classes, which in
this particular application are the seven distinct neuron types based on neuromorphology:
axon-terminal, interneuron, principal cell, granule cell, motor neuron, pyramidal cell and
sensory neuron. The mHF is compared against the following methods:

• BL2: the oblique forest variant of the prior-art method proposed in Mesbah et al. [130]
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(a) Classification Accuracy (b) Retrieval Precision

Fig. 3.9. Evaluation of the proposed mHF vs. hashing based comparative methods varying code-size: Fig. 3.9a:
Overall accuracy of classification by retrieval and Fig. 3.9b: Precision of retrieval through hashing. We
observe an increasing trend in performance of the hashing methods as the code size increases (for mHF,
the classification accuracy improves from 68% with a code size of 16 to 88% for a code size of 96 bits).
mHF is observed to be consistently better than the state-of-the art for code sizes beyond 32 bits followed
by KSH demonstrating a similar trend. The performance of hashing methods such as KSH, AGH and
PCAH saturates without significant improvement for code-sizes beyond 64 bits. Reprint from [40], with
permission ©Elsevier.

• Minkowski metric - the closest competitive non-hashing technique

• LPP - the closest competitive metric learning method

• State-of-the-art unsupervised hashing algorithms (LSH, AGH, PCAH, SH) and

• Supervised hashing methods (KSH, LDAH)

Adopting the one vs. rest binarization strategy, the class-specific performance is assessed with
F1-score, which is a commonly used as evaluation measure in the domain of information
retrieval. The F1-score is evaluated as the harmonic mean of the precision and recall and is
evaluated at the precision-recall break-even point on a precision - recall curve (PR curve).
Similar to the earlier validations, we illustrate the average and the 95% confidence intervals
of neuron-type specific F1-score in Figure 3.10, for 5−folded cross validation setting using the
same data splits employed in Section 3.4.2. Additionally, we also demonstrate the performance
for retrieval of 14 distinct neurons (2 from each class) from the test set along with the top 5
approximate neighbors retrieved using the proposed mHF algorithm (96 bit hash code with
numTrees = 24 and treeDepth = 4.) in Figure 3.11.
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Fig. 3.10. Class-specific evaluation of retrieval using F1-score: Contrasting class-wise retrieval performance of metric
hashing forests vs. selected comparative methods, we osberve that mHF consistently demonstrates
an F1-score over 80% across all the neuron categories and demonstrates highest mean performance
in six of the seven categories. The closest method amongst metric learning methods to mHF is using
locality preserving projections (LPP) and kernel supervised hashing (KSH) is the closest amongst hashing
methods. Reprint from [40], with permission ©Elsevier.

3.4.6 Analysis of time and memory costs for training and
testing of the comparative methods

The time efficiency is an important performance measure of information retrieval methods
and is especially important for validating the efficacy of hashing based techniques. Methods
requiring exhaustive pair-wise computation of similarity measures across the database have
poor scalability to massive databases as the average time complexity of these methods is
O(Nd) where it directly depends on size of the target database (N) and the dimensionality
of the feature space (d). These methods additionally incur a memory storage overhead of
the size of the entire database, thus requiring a memory footprint of 8Nd bytes (assuming
double-precision floating-point representation). Employing a hashing method, we can generate
compact representations of the features, leading to significant minimization of memory storage
overhead. For n independent hash functions, each generating k bits, the incurred memory
storage costs is Nnk/8 bytes (and typically nk/8 << 8d). As discussed in Section 2.3.4, we
consider two different strategies for hashing codeword comparison: (1) Forward Search and
(2) Inverse Lookup. Despite reduced computational expense due to binary xor operation
(between two nk binary codewords) in comparison to distance computation (between two
d-dimensional floating-point feature vectors), forward search still incurs a time complexity
of O(Nnk), which is linear to the database size and hence limits its scalability. With inverse
lookup scheme, we achieve a time complexity of O(nk), which is independent of the database
size. This argument favoring code-comparison in hashing with inverse lookup protocol
extends seamlessly to mHF and to the comparative hashing techniques as well as the baselines
considered in this work.

To evaluate the time and memory costs, we record the training time (time required to train the
hashing functions (τ1); generate the hashing table of the target database (τ2)) and testing time
(time required for code generation of the query items (τ3); time required for code-comparison
and sorting through forward search (τf4 ) and inverse lookup (τ i4)) using the code-profiler
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Fig. 3.11. Illustrative examples neurons fetched upon query based neuron image retrieval using mHF: We present the
retrieval results for 14 different unseen query neurons (belonging to 7 different cell types) acquired
from different species and brain regions. From a superficial visual inspection, we observe that all the
retrieved neighbors consistently share morphological similarities with respect to the query especially.
Reprint from [40], with permission ©Elsevier.

within MATLAB 2015b. We also report the memory cost incurred at testing time when a
particular method is deployed for retrieval. This includes the memory overhead of the hashing
functions and the database (for non-hashing based methods) or storing the hash table (for
hashing based methods). The average time and memory costs are tabulated in Table 3.4 for all
the baselines and the comparative non-hashing as well as hashing based methods (code-size
of 96 bits) for a 5−folded cross-validation setting using data-splits identical to the ones used
in the earlier experiments.

3.5 Discussion

3.5.1 Validations against baselines

In this validation, we compare the performance of mHF against incrementally designed
baselines to critically analyze the major contributing elements namely, inclusion of supervisory
information, local metric learning and the importance of neighborhood quality function in
choosing optimal splits. By looking at Fig. 3.7, we observe that all hashing forests demonstrate
an overall monotonically improving trend as the code-size increases. This is consistent with
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Category Comparative Methods Training Time (in s) Testing Time (in s) Query Time
per sample Memory

τ1 τ2 τ1 + τ2 τ3
Forward
τf4

Inverse
τ i4

Forward
τ3 + τf4

Inverse
τ3 + τ i4

Forward
τfq (in ms)

Inverse
τ iq(in ms) (in MB)

Exhaustive Search

Euclidean

-

-

-

-

53.27

-

53.27

-

11.95

- 5.441

Chebyshev 52.04 52.04 11.69

Minkowski 47.51 47.51 10.67

Metric Learning

Mahalanobis 0.002 0.002 52.27 52.27 11.74

PCA 0.129 0.129 46.88 46.88 10.53

uNPE 3.914 3.914 50.11 50.11 11.25

sNPE 0.852 0.852 50.49 50.49 11.34

LSDA 0.641 0.641 49.83 49.83 11.19

LPP 0.210 0.210 46.93 46.93 10.54

Hashing based
comparative methods

AGH 0.573 0.112 0.685 0.029 1.348 0.342 1.378 0.372 0.319 0.084 0.279

PCAH 0.195 0.011 0.206 0.008 1.550 0.332 1.558 0.340 0.350 0.076 0.249

SH 0.194 0.094 0.288 0.083 1.618 0.317 1.701 0.400 0.382 0.089 0.250

LSH 0.020 0.006 0.026 0.006 1.724 0.372 1.730 0.378 0.388 0.084 0.238

KSH 943.4 0.018 943.4 0.018 1.538 0.342 1.556 0.360 0.349 0.081 0.314

LDAH 0.010 0.007 0.018 0.006 1.502 0.348 1.508 0.354 0.339 0.079 0.217

Baselines

BL1 1.375 0.147 1.522 0.061 1.254 0.321 1.315 0.382 0.295 0.086 0.316

BL2 1.405 0.170 1.575 0.059 1.267 0.312 1.324 0.369 0.297 0.083

0.325

Bl3 24.86 0.352 25.23 0.086 1.308 0.331 1.393 0.417 0.313 0.094

BL4 9.510 0.277 9.786 0.089 1.333 0.342 1.421 0.431 0.319 0.097

BL5 27.06 0.289 27.35 0.089 1.337 0.332 1.425 0.421 0.320 0.095

BL6 11.01 0.382 11.39 0.086 1.333 0.311 1.420 0.400 0.319 0.089

Proposed 27.98 0.335 28.32 0.082 1.349 0.346 1.430 0.427 0.321 0.096

Notation: τ1 - Hashing function training time; τ2 - Hash table generation time; τ3 - Query hash code generation time; τf4 - Comparison time with forward
search; τ i4 - Comparison time with inverse lookup; τfq - Query time per sample with forward search and τ iq - Query time per sample with inverse lookup.
Note: Comparative analysis is presented for a scenario of k = 5 cross-validation ( i.e. 80% of the data (17,812 neurons) is employed in training and the rest

20% (4,453 neurons) for testing.)

Tab. 3.4. Analysis of Training and Retrieval Time and Memory Requirement: We observe that the training time for
mHF (28 seconds) is highly competitive and significantly faster than KSH (943 seconds) which is the
closest state-of-the art supervised hashing method in terms of retrieval performance. We consistently
observe that the testing time of hashing methods employing inverse-lookup (0.42 seconds for mHF) is
significantly lower than methods employing exhaustive pairwise distance computations such as in metric
learning 47 seconds for LPP). In terms of memory requirements, the hashing models incur a significantly
low memory cost in contrast to metric learning methods. Reprint from [40], with permission ©Elsevier.

the expected behavior of an ensemble learning method as increasing strength of the ensemble
leads to improved generalization performance until convergence. Additionally, the proposed
mHF demonstrates a statistically significant improvement over the baselines for code-sizes
in the range of 8-64 bits (at 56 bits, we observe over 8% (for CA) and over 7% (for RP)
improvement of mHF in comparison to the closest baselines BL5 and BL6, respectively).
Beyond 72 bits, the mHF is consistently better, however, the margin on improvement is
reduced to 4% (for both CA and RP) at the maximal 96 bits. Beyond 96 bits, the feature space
is heavily parsed and the methods demonstrate asympotic convergence to the upper-bound of
the generalization performance. For time-efficient hashing and reduced storage complexity,
it is highly desirable to maintain smaller code-sizes. As mHF discovers and encodes the
true class neighborhood better than the other baselines, we infer that it is well suited for
the task of similarity-preserving retrieval and subsequent classification. Next, we perform a
comprehensive evaluation and contrast each of the baselines against mHF and present our
observations and inferences as follows:

Effect of choice of split function φ

The BL1 is our prior-art unsupervised hashing forests technique [130], where it performed
superior Euclidean neighborhood approximation at the cost of longer code-sizes (over 512
bits - not shown in Fig. 3.7) for comparable retrieval performance (CA: 81.4% ±2.1%), which
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is achievable through proposed mHF at code-size of 56 bits (CA: 83.5% ±2.2%). As the
architecture of the tree is directly related to the code-size, univariate splits often require
deep nested trees to separate distributions that are obliquely aligned between the feature
axes [129]. Given a fixed treeDepth, the parsing induced by BL1 is significantly weaker than
that induced by oblique decision boundaries employed in mHF (and other baselines). The
baseline BL2 alleviates the aforementioned limitation of univariate splits in BL1 by introducing
oblique splits at each split node. In comparison to BL1, BL2 demonstrates a very significant
improvement (beyond code-size of 32 bits) thus reaffirming our earlier inference. Contrasting
against mHF, for code-sizes up to 88 bits, the large difference in performance is probably
attributed to the lack of inclusion of task-specific information in training of hashing forests.

Effect of supervision

The baseline BL3 is a supervised variant of BL2, where supervisory information is
incorporated by optimizing the node-level class separability with the neighborhood quality
function (Eq. 3.6, 3.11). In comparison to BL2, the margin of improvement is statistically
significant till code-size of 80 bits. In comparison to mHF, the performance margin of BL3 is
comparatively lower than BL2, validating our hypothesis of optimizing class separability as
the parsed subspaces are more class-consistent in comparison to random parsing used by
BL2.

Effect of local metric learning

The baselines BL4 - 6 have been defined to validate the proposal of local metric learning for
defining splits on a learned latent subspace. The BL4 utilizes PCA transformation
(unsupervised) at each node level to project the data along the directions of maximal variance.
Contrasting against BL2 (equivalent to Eye transformation at each node level), the
improvement margin is statistically significant at smaller code-sizes (up to 32 bits). Beyond
72 bits, BL3 and BL4 show convergent trends with no significant margin and incorporating
PCA at each node level is deemed not necessary as oblique splits can effectively induce the
same amount of subspace parsing. Comparing with mHF, a large performance margin is seen
across all code-sizes, which can be associated to the same limitations inherited within purely
unsupervised methods as discussed earlier for BL2.

Following on similar lines of BL3, we modify BL4 by incorporating the neighborhood quality
function to obtain BL5. As evident in Fig. 3.7, the BL5 is the closest to mHF when contrasting
the performance. The BL5 also demonstrates a statistically significant improvement margin
over BL4, thus strongly supporting the efficacy of the proposed node optimization strategy
for reasons similar to the ones discussed in BL3. We define the baseline BL6 to evaluate the
hypothesis that local supervised metric learning helps discover subspaces with better class
separability, which are highly desirable for similarity preserving retrieval. By contrasting
against BL4, we observe that incorporating supervisory information, significantly improves the
retrieval performance across all code-sizes. In comparison to BL5 and mHF, the performance
of BL6 is marginally lower than BL5 (and similarly BL5 is lower than mHF) suggesting that
mHF,which uses local metric learning augmented with splits preserving class separability,
results in superior performance than the baselines.
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3.5.2 Comparative analysis against non-hashing methods

Within this validation, we test our hypothesis that mHF generates hash codes that are both
compact and discriminative by comparing against non-hashing based methods (dimensionality
reduction) that can be alternatively used for retrieval. By looking at Figure 3.8, we observe
that the mHF (CA: 87.8%±0.5% at 96 bits) performs better than the closest comparative
non-hashing method LPP, involving exhaustive search with supervised distance metric learning
(CA: 85.4%±1.1%). This validates our hypothesis that retrieval in the hamming space defined
by mHF preserves the desired class similarity among the approximate nearest neighbors.
Amongst the lp- norm based methods, Minkowski metric (CA: 82.2%±0.7%) is observed to
perform the best. Comparing lp- norm based methods to unsupervised metric learning methods
(Mahalanobis, PCA and uNPE), we observe improved retrieval performance probably due to
the incorporation of distribution geometry (in Mahalanobis and PCA) and local neighborhood
information (in uNPE) in generating the distance metric used for defining the pairwise
distances for comparison. We further included supervisory similarity information in sNPE,
LSDA and LPP to learn the distance metric. The LPP improved the retrieval performance by
a margin of 1.2% over Mahalanobis metric, suggesting incorporating available task relevant
supervisory information is desirable for achieving better performance during retrieval.

3.5.3 Comparative analysis against hashing methods

Under Section 2.2 and Section 3.2, we highlighted the major theoretical advantages of
using mHF over other hashing based approaches. Towards, this end we discuss the detailed
observations and inferences of the experiment on comparing and contrasting against other
hashing methods re-highlighting these advantages within the context of hashing performance
on the target application. The observations are organized under three categories of code-sizes
as follows:

Short Code-Sizes 16− 32 bits
For shorter code-sizes, we observe that the mHF’s CA and RP performances are comparable to
both PCAH and AGH. The performance margins amongst these methods are not statistically
significant (except at 24 bits, where RP of PCAH > mHF). Comparing the supervised KSH
to the other methods, the performance is significantly lower. The KSH uses the separable
nature of code inner products (and its equivalence to hamming distance) to greedily learn
hashing functions with a sequential update scheme to minimize the difference between the
ground-truth similarity matrix and the one generated using hash codes [120]. The lower
performance of KSH is probably due to high residual difference between the core-inner product
similarity and the ground-truth similarity matrix S at small code sizes.

Intermediate Code-Sizes 32− 72 bits
Beyond 32 bits, we observe a clear statistically significant margin of improvement of the
proposed mHF over the comparative methods. The KSH exhibits the second best performance,
implying that sufficiently large code-sizes along with incorporated supervisory information
drives it towards more meaningful parsing and encoding of the feature space. For KSH, error
between the similarity matrix inferred through hashing and the ground-truth is convergent as
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the code-size increases beyond 48 bits and the margin of improvement with additional bits
in the codeword is not statistically significant. For LDAH, the RP is significantly improved
from code-sizes of 40 to 64 bits, however, the CA metric gets saturated. This is possibly due
to the shrinking of the approximate nearest neighborhood size as the code-size increases
while the true class neighbors contribute little within that neighborhood. The comparatively
lower performance of LDAH is mainly because of the over simplistic nature of it underlying
linear separability assumption amongst different classes, which is not extendable to the highly
heterogeneous neuromorphological feature space.

Longer Code-Sizes 80− 96 bits

For longer code-sizes, the performance of mHF, KSH, PCAH, and LSH are observed to converge
asymptotically around 96 bits. The mHF converges to a significantly higher value over the
closest hashing method (KSH) by a margin of over 6.1% and 5.1% in CA and RP, respectively.
This trend of convergence is expected as the nearest approximate neighborhood defined by
hashing tends to converge to the desired true class neighborhood for supervised methods (or
geometric true neighborhood for the unsupervised methods) as code-size increases.

3.5.4 Evaluation of class-wise retrieval performance

Firstly, through visual evaluation of Figure 3.11, we observe close 3D morphological and class
similarity amongst the neurons and their retrieved neighbors, invariant to their orientation,
which implies that the mHF fetches true class-specific neighbors to a query neuron during
retrieval. Secondly, in Figure 3.10, we observe that the proposed mHF is consistently ranked
top by a statistically significant margin in Categories 1,3,4 and 6 and very competitive to
the top performing methods for 2,5 and 7 categories. It is worth mentioning that the target
classification by retrieval task has an imbalanced training dataset and the mHF is able to
handle it in a satisfactory fashion. The hierarchical nature of the parsing function allows
for exploration of the localized constrained feature subspaces, where linear metric learning
is more meaningful in inducing class separability. Comparing mHF and baseline BL2 [130]
to non-hashing exhaustive search (Minkowski and LPP), we observe that in a majority of
categories, the LPP fares better than the retrieval in the original feature space (Categories
1,2,3,4 and 7). The inclusion of supervisory information in defining the LPP transformation
renders the neighborhoods on the resultant metric space to be more class consistent in
comparison to the original feature space. Comparing against the state-of-the-art hashing
based methods, we observe that KSH exhibits the most consistent performance reaffirming
the need for supervision in the learning of the hash functions. The comparatively lower
performance of SH and LDAH indicate that the underlying assumptions of SH (uniform
distribution of eigenfunctions) and LDAH (linear separability amongst classes) are not justified
for a challenging application like neuroscientific image retrieval.
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3.5.5 Analysis of time and memory costs for training and
testing of the comparative methods

From Table 3.4, we quantify the time and the memory requirements of mHF in comparison to
the comparative methods and report our inferences as follows2:

Training time
Due to high computational costs of node optimization and learning of optimal LPP at each
split node, the mHF incurs a considerably high training time in comparison to global metric
learning based and hashing based methods (except KSH). The KSH, which is the closest to
mHF in terms of retrieval performance has a very high training time (over 30× τ1 reported
for mHF), because of underlying sequential optimization. It must be noted that the training
time for mHF can be considerably lowered if parallelized training of the independent mHTs is
used.

Testing time
Retrieval time is an important indicator of hashing efficiency during deployment. Hashing
tries to circumvent exhaustive pairwise comparisions across the database using hash table
generation and inverse lookup (discussed in Section 2.3.4). From Table 3.4, for forward search,
we observe that the query time per sample is reduced for mHF by over 32 times in contrast to
forward PCA Metric Learning based retrieval (fastest non-hashing based comparative method).
This is owing to the reduced computational expense of binary xor operation used in forward
search of hashing in comparison to distance calculation in non-hashing methods. Further,
employing inverse-lookup, the retrieval time is significantly decreased( by over 3.3 times
for mHF). This improved trend is consistently observed among inverse-lookup in all the
hashing-based methods.

Memory
For scalability to large databases, the retrieval method must have minimalistic memory
requirements. In comparison to non-hashing methods, which demand for an access to the full
feature matrix, access to the hash table suffices for retrieval using hashing based methods.
From Table 3.4, we observe a 16 times compression in memory requirement for mHF (96
bits) in contrast to non-hashing methods. In comparison to other hashing-based methods, the
memory requirement for mHF is fractionally higher.

2It must be noted that the time reported in Table 3.4 does not include the time for generating features from 3D
digital reconstructions of neurons. On average, we observed that the L-measure tool [166] required 0.1005 second
per neuron for feature extraction. This is a constant overhead that is applicable to all retrieval methods.
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4Hashing with Residual Networks

„We chose it because we deal with huge amounts of
data. Besides, it sounds really cool.

— Larry Page
Co-founder of Google Inc.

4.1 Overview and Publications

This chapter presents the contributions of this thesis concerning learning end-to-end hash
codes using deep learning. We discuss a novel deeply learnt convolutional neural network
architecture for supervised hashing of medical images through residual learning, coined as
Deep Residual Hashing (DRH). First, DRH offers maximal separability of classes in hashing
space while preserving semantic similarities in local embedding neighborhoods. Second, a
new optimization formulation comprising of complementary loss terms and regularizations
that suit hashing objectives is introduced. Extensive validations on a large-scale public Chest
X-ray images with co-morbidities demonstrates improved performance and computational
benefits of the proposed algorithm for fast and scalable retrieval.

The chapter is organized as follows: in Sec. 4.2 we present the underlying clinical motivation
for investigating deep learning for hashing, particularly for the task of retrieval within Chest
X-ray databases. The methodology behind training such a deep hashing model is presented in
detail in Sec. 4.3, wherein we discuss the architecture of such a network in Sec. 4.3.1, the
formulation of the supervised retrieval loss function in Sec. 4.3.2, hashing related losses and
regularizations employed while model learning in Sec. 4.3.3 and finally conclude the section
with aspects of model learning in Sec. 4.3.4. Following the exposition of the methodology,
the contributions of this chapter are evaluated on a large-scale Chest-X ray image database
with co-occurring disease manifestations and the results of which are presented in Sec. 4.4.
Particularly in Sec. 4.4.2 and Sec. 4.4.3, we compare and contrast with multiple ablative
baselines and incremental variants of DRH and also evaluate against state-of-the art deep
learning based hashing methods. In Sec. 4.5, we present an in-depth discussion on different
aspects of leveraging deep learning for hashing, focusing on the trainability of such networks
in Sec. 4.5.1, the representability of the learnt hash codes in Sec. 4.5.2, on the compactness
of the learnt hash codes in Sec. 4.5.3, on how well the semantics are preserved in local
neighborhoods in the learnt encoding space in Sec. 4.5.4 and finally close the section on how
joint optimization improved hash code quality in Sec. 4.5.5.

Substantial parts of this chapter have already been published in the following article and are
quoted verbatim:
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Copyright Statement. ©Springer International Publishing AG 2017.

4.2 Motivation

Content-based image retrieval (CBIR) aims at effectively indexing and mining large image
databases such that given an unseen query image we can effectively retrieve images that are
similar in content. The search is driven in entirety by the contents of the image and does not
rely explicitly on keywords describing the image. With the deluge in medical imaging data,
there is a need to develop CBIR systems that are both fast and efficient. For example, a
radiologist examining a chest x-ray (CXR) image which displays manifestations of a particular
cardiopulmonary disease should be able to retrieve images with similar abnormalities. This
could facilitate and objectify the reading of the medical image and help make better
diagnosis [10]. However, in practice, it is often infeasible to exhaustively compute similarity
scores between the query image and each image within the database. A radiologist can better
understand the disease in an image if presented with its context e.g., where the disease is, the
degree of severity, organ affected etc. Furthermore, with large collection of medical images
being curated within hospitals, images can be retrieved based on their context, example with
textual queries such as " retrieve images with cardiopulmonary diseases in the upper right lobe of
the lung" or purely image-based by querying with an image. A preview of retrieved images
using the proposed image-based retrieval in the setting of cardiopulmonary chest X-rays is
demonstrated in Fig. 4.1.

With the latter goal, we propose an end-to-end one-stage deep residual hashing (DRH)
network to directly generate hash codes from input images. Specifically, the DRH model
consists of a sub-network with multiple residual convolutional blocks for learning
discriminative image representations followed by a fully-connected hashing layer to generate
compact binary embeddings. Through extensive validation, we demonstrate that DRH learns
discriminative hash codes in an end-to-end fashion and demonstrates high retrieval quality on
standard chest X-ray image databases. The ultimate objective of learning similarity preserving
hashing functions is to generate embeddings in a latent Hamming space such that the
class-separability is preserved while embedding and local neighborhoods are well defined and
semantically relevant. This can be visualized in 2D by generating the t - Stochastic
Neighborhood Embedding (t-SNE) [124] of unseen test data post learning like shown in
Fig. 4.2. Starting from Fig. 4.2(a) which is generated by a purely unsupervised setting we aim
at moving towards Fig. 4.2(d) which is closer to an ideal embedding. In fact, Fig. 4.2
represents the results of our proposed DRH approach in comparison to other methods and
baselines.
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Fig. 4.1. Preview of retrieved results for unseen query images using Deep Residual Hashing network with 64-
bit encoding and 34-layer depth. Particularly note that the retrieval preserves class-similarity and is
insensitive to intensity differences due to windowing and varying anatomies. Reprint from [39], with
permission of Springer.

(a) GIST - ITQ (b) VGGF - KSH (d)DRH-34(c) DPH-18

Fig. 4.2. tSNE embeddings of the hash codes generated by the proposed and comparative methods: GIST - ITQ
uses hand-crafted features followed by iterative quantization for hashing. VGGF - KSH is a two-stage
hashing method that fine-tunes VGGF network for CXR images and subsequently hashes them with KSH.
Deep PlainNet Hashing (DPH-18) is a 18-layer convolutional neural network trained end-to-end for
hashing. Deep Residual Hashing (DRH- 34) is the proposed 34-layer residual network for simultaneous
representation learning and hashing. Color indicates different classes. The figure needs to be viewed in
color. Reprint from [39], with permission of Springer.
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Fig. 4.3. Network architecture for deep residual hashing (DRH) with a hash layer: For a 18 - layer network, the
number stacked residual blocks are: P = 2, Q = 2, R = 2 and S = 2. Likewise, for a 34 - layer network, P
= 3, Q = 4, R = 6 and S = 3. The inset image on the left corner is a schematic illustration of a residual
block. Reprint from [39], with permission of Springer.
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Fig. 4.4. Residual vs. Plain Convolutional Block: Residual connections are well suited for training very deep
networks without loss of representational power and helps mitigate vanishing gradients due to skip
connections. With increasing depth, CNNs with PlainNet blocks are prone to limited trainability as the
gradients can potentially vanish during back-propagation.

4.3 Methods

Unlike classification which aims at assigning a semantic class to a test image, retrieval aims at
fetching examples from the training set that share semantic similarities with the query image.
Features representations tailored for the retrieval task map input images into a latent feature
space such that dissimilar instances are mapped apart while simultaneously mapping similar
instances closer into a compact local neighborhood. Typically, Euclidean distance in such a
space between the instances mimics their semantic similarity.

An ideal hashing method should generate codes that are compact, similarity preserving and
easy to compute representations (typically, binary in nature), which can be leveraged for
accurate search and fast retrieval [180]. The desired similarity preserving aspect of the
hashing function implies that semantically similar images are encoded with similar hash codes.
Mathematically, hashing aims at learning a mapping H : I → {−1, 1}K , such that an input
image I can be encoded into a K bit binary code H(I). In hashing for image retrieval, we
typically define a similarity matrix S = {sij}, where sij = 1 implies images Ii and Ij are
similar and sij = 0 indicates they are dissimilar. Similarity preserving hashing aims at learning
an encoding function H such that the similarity matrix S is maximally-preserved in the binary
hamming space.

4.3.1 Architecture for deep residual hashing

We start with a deep convolutional neural network architecture inspired in part by the seminal
ResNet architecture proposed for image classification by He et al. [73]. As shown in Fig. 4.3,
the proposed architecture consists of the a convolutional layer (Conv 1) followed by a sequence
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of residual blocks (Conv 2-5) and terminating in a final fully connected hashing (FCH) layer
for hash code-generation.

Residual connections have been demonstrated to facilitate training very deep networks without
overfitting, which is highly desirable for an end-to-end learning scenario like the current one.
The key idea behind residual learning arises from the empirically tested hypothesis that
while adding a stack of learning layers to deep network it is often easier to optimise residual
mapping than to optimise the original, unreferenced mapping [73]. Multiple non-linear
layers in network can asymptotically approximate complicated functions, say mapping to T (x)
from x. Residual learning drives such blocks to explicitly approximate a residual function
F (x) = T (x) − x and then adds x to the residual F (x) to approximate T (x). The last
operation is performed via a shortcut connection from the input and by performing element-
wise addition. This is schematically illustrated in Fig. 4.4. Another major issue to training deep
architectures is the problem of vanishing gradients during training (this is in part mitigated
with the introduction of rectified linear units (ReLU), input batch normalization [87] and
layer normalization). Residual connections offer additional support via a no-resistance path
for the flow of gradients along the shortcut connections to reach the shallow learning layers.
These unique advantages offered by the ResNet architecture motivates use to leverage it for
the application at hand.

Let hi represent the output of the final FCH layer (shown in Fig. 4.3) for an input image
Ii generated by passing through a DRH network. We perform quantization of this output
to obtain the binary codes as: bi = sgn (hi). Let B = [b1, · · · ,bN ] ∈ {−1, 1}K×N and
H = [h1, · · · ,hN ] ∈ RK×N be the matrix representation of the K bit hash codes and the
corresponding non-quantized outputs of the DRH network for a batch of N input images.

4.3.2 Supervised Retrieval Loss Function

Typically, end-to-end learnt deep networks are trained with respect of classification by
minimising loss functions like L2-norm, cross-entropy loss etc. [103] [26]. This does not
seamlessly extend to the task of retrieval and might generate sub-optimal representations. In
order to learn feature embeddings tailored for retrieval and specifically for the scenario at
hand where the pairwise similarity matrix S should be preserved, we propose our supervised
retrieval loss drawing inspiration from the neighbourhood component analysis [65]. To
encourage the learnt embedding to be binary in nature, we squash the output of the residual
layers to be within [−1, 1] by passing it through a hyperbolic tangent (tanh) activation
function. The final binary hash codes (bi) are generated by quantizing the output of the tanh
activation function (say, hi) as follows: bi = sgn (hi). Given N instances and the
corresponding similarity matrix is defined as S = {sij}Ni,j=1 ∈ {0, 1}

N×N , the proposed
supervised retrieval loss is formulated as:

JS = 1− 1
N

N∑
i,j=1

pijsij (4.1)

where pij is the probability that any two instances (i and j) can be potential neighbours.
Inspired by kNN classification, where the decision of an unseen test sample is determined by
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(a) Before Training (b) After Training

Fig. 4.5. 2D embedding of images in Hamming Space: Schematic illustrating in 2D the embedding of samples in
the Hamming space, within the batch. Colors indicate present disease manifestations, with multiple
colors indicating co-occurring diseases. In Fig. 4.5a, prior to training, the data items are organized in
random fashion within the encoding Hamming space only regularized by global image similarities. Post
training, as shown in Fig. 4.5b, the embeddings ideally order such that local neighborhoods preserve
the semantic similarities. Under such an encoding, the Hamming distance defined between hash codes
approximates the true neighbor distances as defined by the training semantic labels. Particularly, data
items with multiple classes would embed in features spaces in between the clusters of data items with
respective individual labels.

the semantic context of its local neighbourhood in the embedding space, we define pij as a
softmax function of the hamming distance (indicated as ⊕) between the hash codes of two
instances and is derived as:

pij = e−(bi⊕bj)∑
l 6=i e

−(bi⊕bl)
where b(·) = sgn

(
h(·)
)

(4.2)

As gradient based optimisation of Js in a binary embedding space is infeasible due to its non-
differentiable nature, we use a continuous domain relaxation and substitute non-quantized
embeddings h(·) in place of hash code b(·) and Euclidean distance as as surrogate of Hamming
distance between binary codes. This is derived as:

pij =
−‖hi−hj‖2∑
i 6=l e

−‖hi−hl‖2 (4.3)

It must be noted that such an continuous relaxation could potentially result in uncontrollable
quantization error and large approximation errors in distance estimation. With continuous
relaxation, Eq. (4.1) is now differentiable and continuous thus suited for backpropagation of
gradients during training. In Fig. 4.5a and Fig. 4.5b, we illustrate the embedding of the data
points before and after training with the supervised cost function.
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4.3.3 Hashing related Loss Functions and Regularization

Generation of high quality hash codes requires us to control this quantization error and bridge
the gap between the Hamming distance and its continuous surrogate. We jointly optimise for
Js and improve hash code generation by imposing additional loss functions as follows:

Quantization Loss

In the seminal work on iterative quantization (ITQ) for hashing [66], Gong and Lazebnik
introduced the notion of quantization error JQ−ITQ as

JQ−ITQ = ‖hi − sgn (hi)‖2 (4.4)

Optimizing for JQ−ITQ required a computation intensive alternating optimization procedure
and is not compatible with back propagation which is used to train deep neural nets (due to
non-differentiable signum (sgn) function within the formulation). Towards this end, we use a
modified point-wise quantization loss function proposed by Zhu et al. sans the sgn function
as [224]:

JQ−Zhu = ‖|hi| − 1‖1 (4.5)

They establish that JQ−Zhu is an upper bound over JQ−ITQ, therefore can be deemed as a
reasonable loss function to control quantization error. For ease of back-propagation, we
propose to use a differentiable smooth surrogate to L1 norm:

|(·)|1 ≈ log cosh (·) (4.6)

and derived the proposed quantization loss function as

JQ =
N∑
i=1

(log cosh (|hi| − 1)) (4.7)

With the incorporation of the quantization loss, we hypothesise that the final binarization
step would incur significantly less quantization error and the loss of retrieval quality (also
empirically validated in Section 4.4).

Bit Balance Loss

In addition to JQ, we introduce an additional bit balance loss JB to maximise the entropy of
the learnt hash codes and in effect create balanced hash codes. Here, JB is derived as:

JB = − 1
2N tr

(
HHT

)
(4.8)

This loss aims at encouraging maximal information storage within each hash bit.

Orthogonality Regularisation

Inspired by ITQ [66], we also introduce a relaxed orthogonality regularisation constraint RO
on the convolutional weights (say, Wh) connecting the output of the final residual block of
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Fig. 4.6. Attractive Gradients: These gradients pull similar class samples to one-another. Unlike scenarios of
training with pairwise similarities, here for each item in a training batch, every other item within the
batch that shares similar class contributes with an associated attractive gradient.

the network to the hashing block. This weakly enforces that the generated codes are not
correlated and each of the hash bits are independent. Here, RO is formulated as:

RO = 1
2
∥∥WhWT

h − I
∥∥2
F

(4.9)

Weight Decay Regularisation

The weight decay regularization term (RW ) is imposed to control the scale of the learnt weights
and biases (W(·) and b(·)) and also helps prevents over-fitting and numerical instability in
scenarios of learning with limited training examples. Here, RW is derived as:

RW = 1
2

(∥∥∥W(·)
∥∥∥2

F
+
∥∥∥b(·)∥∥∥2

2

)
(4.10)

4.3.4 Model Learning

In this section, we detail on the training procedure for the proposed DRH network with
respect to the supervised retrieval and hashing related loss functions. We learn a single-stage
end-to-end deep network to generate hash codes directly given an input image. We formulate
the optimization problem to learn the parameters of our network (say, Θ :

{
W(·), b(·)

}
):

argmin
Θ:{W (·),b(·)}

J = JS + λqJQ + λbJB︸ ︷︷ ︸
Hashing Losses

+λoRO + λwRW︸ ︷︷ ︸
Regularisation

(4.11)

where λq, λb, λo and λw are four parameters to balance the effect of different contributing
terms for the quantization, bit-balance, orthogonality regularization and weight decay
respectively.
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Fig. 4.7. Repulsive Gradients: These gradients push dissimilar class samples to one-another. Unlike scenarios of
training with pairwise similarities, here for each item in a training batch, every other item within the
batch that has a dissimilar class contributes with an associated repulsive gradient.

To solve this optimisation problem, we employ stochastic gradient descent to learn optimal
network parameters. Differentiating J with respect to Θ and using chain rule, we derive:

∂J

∂Θ = ∂J

∂H
∂H
∂Θ = 1

N

N∑
i=1

∂J

∂hi
∂hi
∂Θ (4.12)

The second term ∂hi/∂Θ is computed through gradient back-propagation. The first term
(∂J/∂hi) is the gradient of the composite loss function J with respect to the output hash
codes of the DRH network.

We differentiate the continuous relaxation of the supervised retrieval loss function with respect
to the hash code of a single example (hi) as follows [65]:

(4.13)
∂JS
∂hi

= 2

 ∑
l:sli>0

plidli −
∑
l 6=i

 ∑
q:slq>0

plq

 plidli


− 2

 ∑
j:sij>0

pijdij −
∑

j:sij>0
pij

∑
z 6=i

pizdiz



where dij = hi − hj . As shown in Fig. 4.6 and Fig. 4.7, the gradients at each data point
(here Point 0) are computed with respect to every other point in the training batch. They
are attractive in nature from points (l : sli > 0) and repulsive from points (l : sli = 0). Both
the aforementioned gradients are added through gradient tensor addition (Fig. 4.8) and the
network parameters are updated using gradients across the whole batch (Fig. 4.9).

The derivatives of hashing related loss functions (JQ and JB) are derived as:

∂JQ
∂hi

= tanh (|hi| − 1) sgn (hi) (4.14)
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Fig. 4.8. Gradient Tensor Addition: The final gradient update at each sample within the batch is evaluated through
a tensor addition of attractive and repulsive gradients.

and
∂JB
∂hi

= −hi (4.15)

The regularisation function RO acts on the convolutional weights corresponding to the hash
layer (Wh) and its derivative with respect to Wh is derived as follows:

∂RO
∂Wh

= Wh

(
WhWT

h − I
)

(4.16)

Similarly, the derivative of weight-decay regularisation Rw is derived as:

∂Rw
∂W(·) = W(·) and

∂Rw
∂c(·)

= c(·) (4.17)

Having computed the gradients of the individual components of the loss function with respect
to the parameters of DRH, we apply gradient-based learning rule to update Θ. We use
mini-batch stochastic gradient descent (SGD) with momentum. SGD incurs limited memory
requirements and reduces the variance of parameter updates. The addition of the momentum
term γ leads to stable convergence. The update rule for the weights of the hash layer is
derived as:

Wt
h = Wt−1

h − νt where νt = γνt−1 + η

(
∂J

∂Wt−1
h

+ λo
∂RO

∂Wt−1
h

+ λw
∂RW

∂Wt−1
h

)
(4.18)

The convolutional weights and biases of the other layers are updated similarly. It must be
noted that the learning rate η in Eq 4.18 is an important hyper-parameter. For faster learning,
we initialize it the largest learning rate that stably decreases the objective function (typically,
at 10−2 or 10−3). Upon convergence at a particular setting of η, we scale the learning rate
multiplicatively by a factor of 0.1 and resume training. This is repeated until convergence or
reaching the maximum number of epochs.
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Fig. 4.9. Gradients across a batch: Schematic illustrating the direction and magnitude of gradients on all samples
within a training batch. The similar items are incrementally pulled towards one-another, while the
dissimilar items are pushed further apart.

4.4 Experiments and Results

4.4.1 Chest XRay Image Retrieval

We conducted empirical evaluations on the publicly available Indiana University Chest X-
rays (CXR) dataset archived from their hospital’s picture archival systems [48]. The fully-
anonymized dataset is publicly available through the OpenI image collection system [229]. For
this chapter, we use a subset of 2,599 frontal view CXR images that have matched radiology
reports available for different patients. Following the label generation strategy published
in [174] for this dataset, we extracted nine most frequently occurring unique patterns of
Medical Subject Headings (MeSH) terms related to cardiopulmonary diseases from these
expert-annotated radiology report [225] using the same labeling protocols under the Disease
Label Mining section reported in [174].

The dataset was divided into non-overlapping subsets for training (80%) and testing (20%)
with patient-level splits. The semantic similarity matrix S is constructed using the MeSH
terms i.e. a pair of images are considered similar if they share atleast one MeSH term. These
include (% the term is mentioned / % overlap with other terms): normal (44.3 %/ 0 %),
opacity ( 11.8%/ 52.4%), calcified granuloma ( 8.2%/ 54.3%), calcinosis (8.2%/72.8%),
cardiomegaly (8.8%/62.3%), catheters indwelling (2.4%/53,2%), bone-fractures (2.2%/
48.3%), granulomatous disease (3.4%/ 77.5%), lung hyperdistention (6.5%/ 50%), lung
hypoinflation (6.9% / 56.2%), nodule (3.2% / 67.5% ), osteophyte (11.8% / 52.4%), scoliosis
(4.54% / 55.9%), spine/degenerative (4.5% / 55.9%), spondylosis (2.2% / 42.1%) , surgical
instruments (2.5%/ 53.8% ) and thoracic vertebrae/degenerative (8.3% / 58.6%). The co-
morbidities within the dataset are illustrated as a chord diagram in Fig. 4.10 1 It must be
noted that these MeSH term combinations are chosen carefully as they can be associated with
unique image appearance patterns.

1The percentages reported in this chapter correspond to the subset of frontal CXR images used in this study, hence
differ from the reportings of [174], where they report it over the complete dataset.
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Fig. 4.10. Schematic illustrating the co-morbidities within the OpenI dataset: We observe that almost all diseases
co-occur with all other pathologies, thus justifying the choice of including a multi-label formulation
within this chapter.

4.4.2 Comparative Methods and Baselines

We evaluate and compare the retrieval performance of the proposed DRH network with eight
state-of-the art methods including two unsupervised shallow-learning methods: LSH [180],
ITQ [66]; two supervised shallow-learning methods: KSH [120] and MHF [40] and four deep
learning based methods: AlexNet - KSH (A - KSH) [103] and VGGF - KSH (V - KSH) [26],
SFLH [107] and DHN [224]. To justify the proposed formulation, we include simplified four
variants of the proposed DRH network as baselines as follows:

• DPH (Deep Plain Net Hashing) by removing the residual connections;

• DRHNQ (Deep Residual Hashing without Quantization) by removing the hashing related
losses and generating binary codes only through tanh activation;

• DRN - KSH by training a deep residual network with only the supervised retrieval loss
and quantizing through KSH post training and

• DRH - NB which is a variant of DRH where continuous embeddings are used sans
quantization, which may act as an upper bound on performance.

The contrastive aspects of aforementioned baseline variants of DRH is tabulated in Table 4.3.
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layer name output size 18-layer 34-layer

conv1 112× 112 [7× 7, 64]× 1, stride 2, BN, ReLU

conv2_x 56× 56
3× 3 max pool, stride 23× 3, 8

3× 3, 8

× 2, BN, ReLU

3× 3, 8

3× 3, 8

× 3, BN, ReLU

conv3_x 28× 28

3× 3, 16

3× 3, 16

× 2, BN, ReLU

3× 3, 16

3× 3, 16

× 4, BN, ReLU

conv4_x 14× 14

3× 3, 32

3× 3, 32

× 2, BN, ReLU

3× 3, 32

3× 3, 32

× 6, BN, ReLU

conv5_x 7× 7

3× 3, 64

3× 3, 64

× 2, BN, ReLU

3× 3, 64

3× 3, 64

× 3, BN, ReLU

fc 7× 7 average pool, [1× 1, 64]× 1

hash [1× 1, code size ]× 1, tanh activation

# parameters

Tab. 4.2. Architecture for 18- and 34-layer DRH Networks: The main difference between the 18- and the 34-layer
DRH networks are the network depth as seen from the multiplicity of the convolution blocks (conv3-5)
within the architecture design. Here, Brackets ([·]) indicate the size of convolutional filters within a
particular residual block, with the number of blocks stacked. The image down-sampling is performed by
blocks conv3_1, conv4_1 and conv5_1 with stride 2.

We used the standard metrics for evaluating retrieval quality as proposed by Lai et al. [107]:
Mean Average Precision (MAP) and Precision - Recall Curves varying the code size (16, 32,
48 and 64 bits) (discussed in detail in Sec. 1.6.1). For fair comparison, all the methods were
trained and tested on identical data folds. The retrieval performance of methods involving
residual learning and baselines is evaluated for two variants varying the number of layers:
(·)− 18 and (·)− 34. The configurational parameters of the network architectures is tabulated
in Table 4.2.

For the shallow learning methods, we represent each image as a 512 dimensional GIST
vector [142]. For the DRH and associated baselines, the input image is resized to 224× 224
and normalized to a dynamic range of 0-1 using the pre-processing steps discussed in [174].
For A-KSH and V-KSH, the image normalization routines were identical to that reported in the
original works [103] [26]. We implement all our deep learning networks ( including DRH) on
the open-source MatConvNet framework [190]. The hyper-parameters λq, λb and λ0 were
set at 0.05, 0.025 and 0.01 empirically. The momentum term γ was set at 0.9, the initial
learning rate η at 10−2 and batchsize at 128. The training data was augmented on-the-fly
extensively through jittering, rotation and intensity augmentation by matching histograms
between images sharing similar co-morbidities. All the comparative deep learning methods
were also trained with similar augmentation. Furthermore, for A - KSH and V - KSH variants,
we pre-initialized the network parameters from the pre-trained models by removing the final
probability layer [103] [26]. These network learnt a 4096-dimensional embedding by fine-
tuning it with cross-entropy loss. The hashing was performed explicitly through KSH [120]
upon convergence of the network.
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Baselines
Hashing Method
TS - Two-stage

SS - Single-stage
Architecture Quantization Loss

Deep Residual Network with
Kernel Sensitive Hashing (DRN - KSH) TS Residual ×

Deep Plain Net Hashing (DPH) SS Plain X

Deep Residual Hashing
without Quantization Loss

(DRH-NQ)
SS Residual ×

Deep Residual Hashing
without binarization

(DRH - NB)
SS Residual ×

Deep Residual Hashing
(Proposed - DRH) SS Residual X

Tab. 4.3. Baseline variants of Deep Residual Hashing: To evaluate the choice of residual architecture and quantify
the loss of retrieval performance due to quantization errors, we contrast against baseline variants of
DRH. The baselines differ in terms of how the hashing is performed (Two-stage: representation learning
followed by independent hashing and Singe-stage: end-to-end hashing), architecture choice (residual vs.
plain convolutions) and if quantization loss is used in the objective function.

4.4.3 Evaluation against Comparative Methods and
Baselines

The results of the MAP of the Hamming ranking for varying code sizes of all the comparative
methods are listed in Table 4.6. We report the precision-recall curves for the comparative
methods at a code size of 64 bits in Fig. 4.11 and Fig. 4.12 for the shallow and deep learning
based comparative methods respectively. To justify the proposed formulation for DRH, several
variants of DRH (namely, DRN - KSH, DPH, DRH - NQ and DRH - NB) were investigated and
compare their retrieval results are tabulated in Table 4.4. In addition to MAP, we also report
the retrieval precision withing Hamming radius of 2 (P @ H2). The associated precision-recall
curves are shown in Fig. 4.14. To investigate the contributions of the proposed loss terms,
we performed extensive ablative testing by setting combinations of λq, λb and λo to zero
individually. The weight decay term RW is standard practice in training deep networks, hence
not tested ablatively. The MAP and the PR curves for code size of 64 bits are shown in Table 4.5
and Fig. 4.13 respectively.

4.5 Discussion

4.5.1 Trainability of Deep Residual Hashing

The introduction of residual connections offers short-cut connections which act as zero-
resistance paths for gradient flow thus effectively mitigating vanishing of gradients as network
depth increases. This is strongly substantiated by comparing the performance of DRH - 34 to
DRH - 18 vs. the plain net variants of the same depth DPH - 34 to DPH - 18 respectively. From
Table 4.6, we infer that there is a strong improvement in MAP with increasing depth for DRH
of about 9.3%. On the other hand, we observe a degradation of 2.2% MAP performance on
increasing layer depth in DPH. The performance of DRH-18 is fractionally better than DPH - 18
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Method
MAP P @ H2

18-L 34-L 18-L 34-L

DRN - KSH 54.60 62.50 83.58 87.50

DPH 66.59 64.38 91.50 93.10

DRH - NQ 62.69 66.23 82.37 89.32

DRH - NB 69.21 77.45 95.81 95.64

DRH 67.44 76.72 95.56 94.59

Tab. 4.4. Retrieval Performance of DRH and associated baselines: We report the mean average precision (MAP) and
precision at Hamming distance of 2 (P @ H2) of the Hamming ranking w.r.t. varying network depths
for baseline variants of DRH at a fixed code size of 64 bits. Performing hashing end-to-end improves
performance significantly over the two-stage baseline (DRN - KSH). Training with quantization loss
attempts to improve the performance of DRH over without quantization loss ( DRH-NQ) and effectively
bridge the gap to training without binarization (DRH-NB) which is an upper-bound on performance.
Reprint from [39], with permission of Springer.
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Fig. 4.11. PR Curves at code size of 64 bits for the shallow comparative methods: We observe a significant margin
between the performance of DRH against shallow learning based comparative methods. This strongly
suggests that due to complexity of the underlying semantics generic image features such as (GIST) used
for the shallow learning methods fail to capture it sufficiently and motivates the need for end-to-end
representation learning based methods (i.e. deep learning based methods). Reprint from [39], with
permission of Springer.

indicating that DRH exhibits better generalizability and the degradation problem is addressed

90 Chapter 4 Hashing with Residual Networks



Method
λ MAP

λq λb λo 18-L 34-L

Ablative
Testing

DRH - ( )

◦ ◦ ◦ 48.97 55.07

◦ ◦ • 56.03 60.03

◦ • ◦ 52.51 55.80

• ◦ ◦ 62.69 66.23

◦ • • 53.43 62.66

• ◦ • 66.42 71.17

• • ◦ 64.39 72.46

NB • • • 69.21 77.45

Proposed • • • 67.44 76.72

Tab. 4.5. Retrieval Performance of DRH under ablative testing: We report the mean average precision (MAP) and
precision at Hamming distance of 2 (P @ H2) of the Hamming ranking w.r.t. varying network depths
for ablative variants of DRH at a fixed code size of 64 bits, selectively choosing if a particular hashing
related loss or regularization is used within the optimization. The proposed combination of hashing
related loss-terms is demonstrated to improve performance over individual contributions demonstrating
that they independently attempt improve the hashing performance. The introduction of the quantization
loss is observed to be the most significant contributor to performance gain within DRH. In comparison
to the baseline sans binarization (NB), we only incur a marginal loss in retrieval performance. Reprint
from [39], with permission of Springer.

well as we have significant MAP gains from increased depth. With the introduction of batch
normalization and residual connections, we ensure that the signals during forward pass have
non-zero variances and that the back propagated gradients exhibit healthy norms. Therefore,
neither forward nor backward signals vanish within the network. This is substantiated by the
differences in MAP observed in Table 4.6 between methods using BN (DRH, DPH and V-KSH)
in comparison to A-KSH which does not use BN.

4.5.2 Representability of Deep Residual Hashing

Ideally, the latent embeddings in the Hamming space should be such that similar samples are
mapped closer while simultaneously mapping dissimilar samples further apart. We plot the
t-Stochastic Neighbourhood Embeddings (t-SNE) [124] of the hash codes for four comparative
methods ( GIST - ITQ, VGGF - KSH, DPH - 18 and DRH - 34) in Fig. 4.2 to visually assess
the quality of the hash codes generated. Visually, we observe that hand-crafted GIST features
with unsupervised hashing method ITQ fail to sufficiently induce semantic separability. In
comparison, though VGGF-KSH improves significantly owing to network fine-tuning, better
embedding results from DRH - 34 (DPH-18 is highly comparable to DRH-34). Additionally, the
significant differences in MAP reported in Table 4.6 between these methods substantiates our
hypothesis that in scenarios of limited training data it is better to train smaller models from
scratch over fine-tuning to avoid over-fitting (DRH - 34 has 0.183M in comparison to VGGF
with 138M parameters). Also the significant domain shift between natural images (ImageNet -

4.5 Discussion 91



Method
MAP Time

(in ms)16 bits 32 bits 48 bits 64 bits

LSH [180] 22.77 23.93 23.99 24.85 193.7‡

ITQ [66] 25.06 25.19 25.87 26.23 194.1‡

MHF [40] 23.62 27.02 30.78 36.75 212.3‡

KSH [120] 26.46 32.49 32.01 30.42 198.5‡

A - KSH [103] 35.95 37.28 36.64 39.31 28.28†

V - KSH [26] 47.92 50.64 53.62 52.61 40.45†

SFLH [107] 62.94 63.27 70.48 73.37 13.11†

DHN [224] 62.31 50.64 62.38 70.47 13.48†

DPH - 18 48.78 52.13 54.01 66.59 4.75†

DPH - 34 46.64 44.43 51.39 64.38 5.08†

DRH - 18 50.93 57.46 62.76 67.44 11.23†

DRH - 34 56.79 65.80 75.81 76.72 13.17 †

Tab. 4.6. Mean Average Precision of Hamming ranking w.r.t. varying code sizes and time for retrieval: We observe
a significant margin between the performance of DRH against shallow learning based comparative
methods. This strongly suggests that due to complexity of the underlying semantics generic image
features such as (GIST) used for the shallow learning methods fail to capture it sufficiently and motivates
the need for end-to-end representation learning based methods (i.e. deep learning based methods).
Contrasting with deep learning methods, we observe that DRH-34 performs better than SLNH and
DHN due to improved optimization. Increasing layer-depth helps significantly improve the performance
(contrasting DRH - 18 vs. DRH-34). Further, an end-to-end hashing method is in general observed
to be superior to two-stage methods that learn representations and hash functions independently (i.e.
AlexNet+KSH and VGGF+KSH vs. rest). Here: † is computed on the GPU and ‡ is the CPU time. Reprint
from [39], with permission of Springer.

VGGF) and CXR poses a significant challenge for generalizability of networks fine-tuned from
networks trained for the ISLVRC ImageNet recognition challenge [26, 103].

4.5.3 Compactness of Hash Codes

Hashing aims at generating compact representations preserving the semantic relevance to the
maximal extent. Varying the code sizes, we observe from Table 4.6 that the MAP performance
of majority of the supervised hashing methods improves significantly. In particular for DRH
- 34, we observe that the improvement in the performance from 48 bits to 64 bits is only
fractional. The performance of DRH - 34 at 32 bits is highly comparable to DRH - 18 at 64 bits.
This testifies that with increasing layer depth DRH learns more compact binary embeddings
such that shorter codes can already result in good retrieval quality.
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Fig. 4.12. PR Curves at code size of 64 bits for the deep learning based comparative methods: Contrasting with deep
learning methods, we observe that DRH-34 performs better than SLNH and DHN due to improved
optimization. Increasing layer-depth helps significantly improve the performance (contrasting DRH
- 18 vs. DRH-34). Further, an end-to-end hashing method is in general observed to be superior to
two-stage methods that learn representations and hash functions independently (i.e. AlexNet+KSH and
VGGF+KSH vs. rest). Reprint from [39], with permission of Springer.

4.5.4 Semantic Similarity Preservation within Deep Residual
Hashing

Visually assessing the t-SNE representation of GIST - ITQ (Fig. 4.2(a)) we can observe that it
fails to sufficiently represent the underlying semantic relevance within the CXR images in the
latent hamming space, which re-testifies the concerns over hand-crafted features that were
raised in Section 1.4.2. VGGF - KSH (Fig. 4.2(b)) improves over GIST - ITQ substantially,
however it fails to induce sufficient class-separability. Despite KSH considering pair-wise
relationships while learning to hash, the feature representation generated by fine-tuned VGG-F
is limited in representability as the cross-entropy loss is evaluated point-wise. Finally, the
t-SNE embedding of DRH - 34 shown in Fig. 4.2 visually reaffirms that semantic relevance
remains preserved upon embedding and the method generates clusters well separated within
the hamming space. The high degree of variance associated with the t-SNE embedding of
normal class (red in color) is conformal with the high population variability expected within
that class.

Comparing DRH to shallow hashing methods, it is evident from significant gap in the PR curves
(see Fig. 4.11), that GIST features fail to capture the semantic concepts despite introduction
of supervised hashing (KSH and MHF). However, this is mitigated with end-to-end learning in
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Fig. 4.13. PR Curves at code size of 64 bits for ablative baseline variants of DRH: The proposed combination of hashing
related loss-terms is demonstrated to improve performance over individual contributions demonstrating
that they independently attempt improve the hashing performance. The introduction of the quantization
loss is observed to be the most significant contributor to performance gain within DRH. Reprint from [39],
with permission of Springer.

deep hashing methods as shown in Fig. 4.12. Particularly, DRH outperforms state-of-the art
methods (both SFLH and DHN) as well as A - KSH and V - KSH. This clearly demonstrates that
simultaneous representation learning for hashing is preferred. Drawing comparisons from
Table 4.6, we observe that at code-sizes larger than 16 bits, DRH-34 consistently outperforms
SFLH and DHN (despite the network architecture for all the methods being residual in nature
and of same depth). This singles out the proposed loss combinations to be better than triplet
loss (SFLH) or pair-wise cross entropy (DHN), for the problem at hand.

Fig. 4.1 demonstrates the first five retrieval results sorted according to their Hamming rank
for four randomly selected CXR images from the testing set. In particular, for Case (d), where
we observe that the top neighbors (d 1-5) share at least one co-occurring pathology. For cases
(a), (b) and (c), all the top five retrieved neighbors share the same class.

4.5.5 Joint Optimization for Improved Hash Code Quality

The main contribution of the work hinges on the hypothesis that performing an end-to-end
learning of hash codes is better than a two stage learning process. Comparative validations,
presented in Table 4.6 and Fig. 4.12 against the two-stage deep learning methods, as (A -
KSH, V - KSH and baseline variant DRN - KSH) strongly support this hypothesis. In particular,
we observe over 14.2% improvement in MAP comparing DRN - KSH (34 - L) to DRH - 34.
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This difference in performance may be owed to a crucial disadvantage of DRN - KSH that
the generated feature representation is not optimally compatible to binararization. We can
also observe from Table 4.4 and Fig. 4.14 that, DRH - 18 and DRH - 34 incur very small
average MAP decrease of 1.8% and 0.7% when binarizing hash codes against non-binarized
continuous embeddings in DRH - NB- 18 and DRH - NB - 34 respectively. In contrast, DRH
- NQ suffers from very large MAP decreases of 6.6% and 10.8% in comparison to DRH - B.
These observations validate the need for the proposed quantization loss as it leads to nearly
lossless binarization.

To investigate the contributions of the proposed loss terms, we performed extensive ablative
testing by setting combinations of λq, λb and λo to zero individually and reported the results of
MAP in Table 4.5 and the associated PR-curve for a code size of 64 bits in Fig. 4.13. The weight
decay term RW is standard practice in training deep networks, hence not tested ablatively.
From, Table 4.5, we observe that amongst the hashing related losses, the quantization loss
(JQ) is of primordial importance (DRH - 34 without JQ under-performs by 14% w.r.t. with JQ).
Orthogonalization (RO) boosts the performance by 5% over the baseline sans any additional
losses for DRH-34, implying that mutual independence of hash bits is improved. Interestingly,
the bit balance loss (JB) improves performance only marginally (0.7%) for DRH-34, but
significantly for DRH-18 (3.5%). It must be noted that combinations with at least two losses
improve consistently over individual baselines, substantiating effectiveness of the proposed
loss function and the complementary nature of the individual losses.
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5Robust Multiple Instance Hashing

„We are all agreed that your theory is crazy. The
question that divides us is whether it is crazy enough
to have a chance of being correct.

— Neils Bohr
(Columbia University, 1958)

5.1 Overview and Publications

In this chapter, we introduce a multiple instance (MI) deep hashing technique, termed Robust
Multiple Instance Hashing (RMIH), for learning discriminative hash codes with weak bag-
level supervision suited for large-scale retrieval. We learn such hash codes by aggregating
deeply learnt hierarchical representations across bag members through an MI pool layer. For
better trainability and retrieval quality, we propose a two-pronged approach that includes
robust optimization and training with an auxiliary single instance hashing arm which is
down-regulated gradually. We pose retrieval for tumor assessment as an MI problem because
tumors often coexist with benign masses and could exhibit complementary signatures when
scanned from different anatomical views. Experimental validations demonstrate improved
retrieval performance over the state-of-the-art methods for two large-scale breast carcinoma
assessment datasets on mammography and histology.

The chapter is organized as follows: in Sec. 5.2 we present the clinical motivation behind
retrieval with multiple instances and present state-of-the art methods that deal with multiple
instance classification and retrieval. Having laid the premise for multiple instance retrieval,
in Sec. 5.3 we present the methodology behind leveraging deep learning for the task of
multiple instance hashing. Particularly, in Sec. 5.3.1 the architecture for RMIH is introduced
and we discuss specific variations proposed for training and testing such a network and in
Sec. 5.3.2 we mathematically formulate the optimization objective including the aspect of
incorporating robustness for improved immunity against label noise. In the subsequent section
Sec. 5.4, we present aspects of the target multiple instance retrieval databases (mammography
and histology) and discuss various model settings and validations proposed to evaluate the
contributions within this chapter. The results of such validations are presented and discussed
in Sec. 5.5. In particular, we discuss the effects of training with auxiliary losses in Sec. 5.5.1,
the effect of introducing robustness 5.5.2, of the quantization loss in improving hash code
quality in Sec. 5.5.3 and compare and contrast the performance against state-of-the art MI
hashing methods and MI variants of single instance hashing methods in Sec. 5.5.4.
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5.2 Motivation

Breast carcinoma is the second leading cause of cancer-related deaths among women. Early
diagnosis is reported to significantly improve the five-year survival rate from 24% when the
cancer is diagnosed at a distant stage to 99% if diagnosed at a localized stage [91]. A range
of imaging modalities and biomarkers have been proposed and clinically adopted for breast
cancer screening including non-invasive modalities such as mammography, elastography,
theromography, MRI, CT, ultrasound etc. Upon identification of actionable tumors in such
screening modalities, staging is performed through invasive modalities (biopsy) such as fine-
needle aspiration cytology, histopathology etc. In this section, we introduce and discuss the
motivation towards developing CBIR systems targeting two of the aforementioned modalities
viz. mammography for screening and histopathology for staging and diagnosis.

Mammography is widely considered as the most effective and widely accepted method for
breast cancer screening. Interestingly, the modality received a gold standard status for breast
cancer detection by the American Cancer Society [182]. Disease specific manifestations as seen
on mammography are majorly masses and micro calcifications. Amongst these, masses are
observed to have a high variability in shape, size, texture, margin and are often co-occurring
with surrounding tissue, which makes their detection and staging challenging. Interpretation
of mammograms is also fraught with substantial inter- and intra-observer variability. Redondo
et al. [158] reported the the observer variability, in a study across 21 expert radiologists
interpreting 100 mammograms, as fair for the BI-RADS assessment (concordance score κ
of 0.37). Upon collapsing categories into suspect normal/benign (Categories I and II) and
actionable (III, 0, IV, V), the agreement moderately improved to κ =0.53 across all categories.
The intra-observer agreement for BI-RADS assessment was observed to be moderate (κ =
0.3) and substantial on recall (κ = 0.66). In addition to these, a considerable portion
of retrospectively visible masses are missed by radiologists and unnecessary biopsies are
frequently conducted on normal tissues. Owing to the high clinical significance and the
challenging nature of mammography mass detection, a number of computer aided diagnostics
(CAD) approaches have been proposed [62, 89, 153].

Histology still stands as the gold standard for assessment of carcinoma in breast. Effective
management of breast cancer necessitates need for early detection and treatment. The
pre-cancerous stages of breast cancer are typically categorized into the lobular and ductal
subtypes, with the majority of pre-invasive and invasive cancers belonging to the latter
category [167]. Page et al. [144] in a study on atypical hyperplastic breast lesions, categorized
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intraductal lesions into three major classes namely, usual ductal hyperplasia (UDH), atypical
ductal hyperplasia (ADH) and ductal carcinoma in situ (DCIS). ADH and DCIS are deemed as
precursor lesions while UDH is not. Typically, patients diagnosed with UDH on core-biopsy
are recommended for routine follow-up, whereas those with ADH and DCIS are subjected
to excisional biopsy, which is invasive and uncomfortable and is associated with significant
health-care costs [223]. Under such settings, developing an objective tool for comprehensive
assessment of histology slides is needed, so that it offers more reliable and consistent analysis of
histopathology images [56]. In this context, a reference based assessment, such as presenting
prior cases with similar disease manifestations (termed Content Based Image Retrieval (CBIR))
could be used to circumvent discrepancies in cancer grading. With growing sizes of clinical
databases, such a CBIR system ought to be both scalable and accurate. Towards this, hashing
approaches for CBIR are being actively investigated for representing images as compact binary
codes that can be used for fast and accurate retrieval [39, 120, 222].

Malignant carcinomas are often co-located with potentially benign looking manifestations
and suspect normal tissues. In such cases, describing the whole image with a single label is
often inadequate for objective machine learning and alternatively requires expert annotations
delineating the exact location of the tumor or region of interest. This argument extends to
screening modalities like mammograms, where multiple anatomical views are acquired. In
such scenarios, the status of the tumor is best represented to a CBIR system by constituting
a bag of all associated images, thus veritably becoming multiple instance (MI) in nature.
This is illustrated in Fig. 5.1. With this as our premise we present, for the first time, a
novel deep learning based MI hashing method, termed as Robust Multiple Instance Hashing
(RMIH). Yang et al. were the first to extend hashing methods to MI learning scenarios with
two variants: Instance Level MI Hashing (IMIH) and Bag Level MI Hashing (BMIH) [208].
However, these approaches are not end-to-end and are susceptible to semantic gap between
features and associated concepts. Alternatively, deep hashing methods such as simultaneous
feature learning and hashing (SFLH) [107], deep hashing networks (DHN) [224] and deep
residual hashing (DRH) [39] to name a few, propose the learning of representations and
hash codes in an end-to-end fashion, in effect bridging this semantic gap. It must be noted
that all the above deep hashing works targeted single instance (SI) hashing scenarios and an
extension to MI hashing was not investigated.

Earlier works on MI deep learning in computer vision include work by Wu et al. [203],
where the concept of an MI pooling (MIPool) layer is introduced to aggregate representations
for multi-label classification. Yan et al. leveraged MI deep learning for efficient body part
recognition [207]. Unlike MI classification that potentially substitutes the decision of the
clinician, retrieval aims at presenting them with richer contextual information similar to the
case at hand to facilitate decision-making. RMIH effectively bridges the two concepts for
CBIR systems by combining the representation learning strength of deep MI learning with the
potential for scalability arising from hashing. Within CBIR for breast cancer, notable prior art
includes work on mammogram image retrieval by Jiang et al. [92] and large-scale histology
retrieval by Zhang et al. [222]. Both these works pose CBIR as an SI retrieval problem.
Contrasting with [92] and [222], within RMIH we create a bag of images to represent a
particular pathological case and generate a bag-level hash code, as shown in Fig. 5.2. Our
contributions in this chapter include:
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Bag Representation

Malignant 
Concept

Fig. 5.1. Schematic illustrating construction of image bags: Here, an example of a large region of interest (∼ 6K ×
4K) labeled as malignant is shown wherein a few patches overlapping with the actual tumor represent
the underlying malignant concept while proximal patches are potentially benign or less discriminative
connective / lipidic tissues. It must be noted that these are not individually identified and only a bag-level
weak annotation is available for learning.

• introduction of a robust supervised retrieval loss for learning in presence of weak labels
and potential outliers;

• propose the training of networks with an auxiliary SI arm with gradual loss trade-off for
improved trainability; and

• incorporation of the MIPool layer to aggregate representations across variable number
of instances within a bag, generating bag-level discriminative hash codes.

5.3 Methodology

Lets consider database B = {B1, . . . , BNB} with NB bags. Each bag, Bi, with varying number
(ni) of instances (Ii) is denoted as Bi = {I1, . . . , Ini}. We aim at learning H that maps each
bag to a K-d Hamming space H : B → {−1, 1}K , such that bags with similar instances and
labels are mapped to similar codes. Fig. 5.2 presents an overview of how RMIH is used to
generate hash codes for a bag of images. For supervised learning of H, we define a bag-level
pairwise similarity matrix SMI = {sij}NBij=1, such that sij = 1 if the bags are similar and zero
otherwise. In applications, such as this one, where retrieval ground truth is unavailable we
can use classification labels as a surrogate for generating SMI.

5.3.1 Architecture for RMIH

As shown in Fig. 5.4, the proposed RMIH framework consists of a deep CNN terminating in a
fully connected layer (FCL). Its outputs {zij}nij=1 are fed into the MIPool layer to generate the
aggregated representation ẑi that is pooled (max∀j {zij}nij=1, mean(·), etc. ) across instances
within the bag (as illustrated in Fig. 5.5). ẑi is an embedding in the space of the bags and is the
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Fig. 5.2. Overview of RMIH for end-to-end generation of bag-level hash codes: We are given multiple images
representing the same anatomy, thus constituting a bag. The images of the bag traverse through the deep
CNN layers and the global features (fully-connected) at image-level are pooled across the bag to create
a bag-level feature vector. This feature vector is further binarized using hashing layers thus resulting
in a bag-level hash code. The breast anatomy image is attributed to Cancer Research UK/Wikimedia
Commons. Reprint from [37], with permission of Springer.

input of a fully connected MI hashing layer. The output of this layer is squashed to [−1, 1] by
passing it through a tanh{·} function to generate hMI

i , which is quantized to produce bag-level
hash codes as bMI

i = sgn (hMI
i ). The deep CNN mentioned earlier could be a pretrained
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Fig. 5.3. Architecture for Robust Multiple Instance Hashing for Training: Given an image bag Bi = {Ij}ni
j=1 with ni

images, the individual images Ij independently traverse through the Deep CNN (with ResNet-50 [73]
architecture and pre-training) until the pool5 layer, resulting in a 2048× ni tensor representation for the
bag. Following, they are reduced in dimensionality to 512×ni via the fully connected layer (FCL) layer to
generate {zij}ni

j=1. The network branches into two arms beyond this layer. Within the multiple instance
arm, the image-level tensors are pooled into a 512-dimensional tensor ẑi, which is then fed to the MI
hashing layer with a tangent hyperbolic activation function to generate the bag-level hash code hMI

i .
During training, gradients from the Robust NCA loss JMI

S and the quantization loss JQ are fed into this
arm. To alleviate the gradient sparsification due to the MI Pool layer, the single instance hashing arm is
fed with {zij}ni

j=1 from the FCL layer and hashed through the SI hashing layer to generate instance-wise
hash codes

{
hSI

ij

}ni

j=1
. During training this arm is fed through gradients from the single-instance variant

of the robust NCA loss JSI
S . Reprint from [37], with permission of Springer.

network, such as VGGF [26], GoogleNet [187], ResNet50 (R50) [73] or an application specific
network.
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Fig. 5.4. Architecture for Robust Multiple Instance Hashing for Testing: Given an image bag Bi = {Ij}ni
j=1 with ni

images, the individual images Ij independently traverse through the Deep CNN (with ResNet-50 [73]
architecture and pre-training) until the pool5 layer, resulting in a 2048× ni tensor representation for
the bag. Following, they are reduced in dimensionality to 512× ni via the fully connected layer (FCL)
layer to generate {zij}ni

j=1. The network branches into two arms beyond this layer. Within the multiple
instance arm, the image-level tensors are pooled into a 512-dimensional tensor ẑi, which is then fed to
the MI hashing layer with a tangent hyperbolic activation function to generate the bag-level hash code
hMI

i .
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Fig. 5.5. Schematic demonstrating the multiple instance pooling operation: In this example, global instance-wise
feature vectors extracted through a deep CNN are max-pooled along each feature to constitute a bag-level
feature representation. Such a pooling operation is referred to as Multiple Instance pooling across this
chapter.

During training of RMIH, we introduce an auxiliary SI hashing (aux-SI) arm, as shown in
Fig. 5.3. It taps off at the FCL layer and feeds directly into a fully connected SI hashing
layer with tanh{·} activation to generate instance level non-quantized hash codes, denoted as
{hSI

ij}
ni
j=1. While training RMIH using backpropagation, the MIPool layer significantly sparsifies

the gradients (analogous to using very high dropout while training CNNs), thus limiting the
trainability of the preceding layers (illustratively shown in Fig. 5.6a). The SI hashing arm
helps to potentially mitigate this by producing auxiliary instance level gradients which add to
the gradients from the MI pool layer and densify them (shown in Fig. 5.6b).

5.3.2 Model Learning and Robust Optimization

To learn similarity preserving hash codes, we propose a robust version of supervised retrieval
loss based on neighborhood component analysis employed by [189]. The motivation to
introduce robustness within the loss function is two-fold:

• robustness induces immunity to potentially noisy labels due to high inter-observer
variability and limited reproducibility for the applications at hand [56];

• it can effectively counter ambiguous label assignment while training with the aux-SI
hashing arm.

Given SMI, the robust supervised retrieval loss JMI
S is defined as:

JMI
S = 1− 1

N2
B

NB∑
i,j=1

sijpij (5.1)

104 Chapter 5 Robust Multiple Instance Hashing



(a) Sparsification of gradients due to multiple Instance Pooling layer

(b) Auxiliary gradients from the single instance arm

Fig. 5.6. Schematic illustrating gradient sparsification and auxiliary gradients: Due to the multiple instance pooling
layer, the gradient arising from the hinter part of the network are sparsified during training (illustrated in
Fig. 5.6a). This limits the trainability of really deep networks. To mitigate this and densify the gradients,
an auxiliary single instance hashing arm is introduced within the architecture, which contributed
auxiliary gradients in addition to ones from the multiple instance hashing arm (illustrated in Fig. 5.6b).

where pij is the probability that two bags (indexed as i and j) are neighbors. Given hash
codes hi =

{
hki
}K
k=1 and hj, we define a bit-wise residual operation rij as rkij = (hki − hkj ). We

estimate pij as:

pij = e−LHuber(hi,hj)∑NB
i 6=l e

−LHuber(hi,hl)
, where LHuber(hi,hj) =

∑
∀k

ρk(rkij) (5.2)
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Fig. 5.7. Noisy gradients during training of RMIH: Both repulsive and attractive can arise due to potential label
noise during the training of RMIH. The introduction of the single instance hashing arm for improved
trainability has a counter-effect of introducing significant label noise, thus resulting in such potentially
malicious gradients. To improve immunity towards it, the robustness is introduced in the objective
function (Eq. 5.2 and Eq. 5.3), which during back-propagation of gradients clips potentially noisy
gradients to an adaptively tuned gradient clipping hypersphere (parametrized by ck.

The Huber norm’s robustness operation ρk is defined as:

ρk(rkij) =


1
2(rkij)2, if | rkij |6 ck

ck | rkij | −
1
2c

2
k, if | rkij |> ck

(5.3)

In Eq. (5.3), the tuning factor ck is estimated inherently from the data and is set to ck,
estimated as:

ck = 1.345× σk (5.4)

The factor of 1.345 is chosen to provide approximately 95% asymptotic efficiency and σk is
a robust measure of bit-wise variance of rkij . Specifically, σk is estimated as 1.485 times the
median absolute deviation of rkij as empirically suggested in [86]. This robust formulation
provides immunity to outliers during training by clipping their gradients (as shown in Fig. 5.7
and Fig. 5.8). For training with the aux-SI hashing arm, we employ a similar robust retrieval
loss JSI

S defined over single instances with bag-labels assigned to member instances.

JSI
S = 1− 1

N2

N∑
m,n=1

smnpmn (5.5)
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Fig. 5.8. Noisy gradients are clipped during back-propagation in RMIH: Due to the robustness within the
optimization objective, potentially noisy gradients with magnitude beyond ck are clipped to ck during
backpropagation and model-learning of RMIH (Eq. 5.11). The threshold ck is adaptively computed from
within the gradients of a batch. Clipping such potentially noisy gradients provides immunity against
potential label noise and improper class assignment owing to the addition of the single instance auxiliary
arm.

To minimize loss of retrieval quality due to quantization, we use a differentiable quantization
loss JQ proposed in [224] and is estimated as:

JQ =
M∑
i=1

(log cosh(| hi | − 1)) (5.6)

This loss also counters the effect of using continuous relaxation in definition of pij over using
Hamming distance. As a standard practice in deep learning, we also add an additional weight
decay regularization term RW , which is the Frobenius norm of the weights and biases, to
regularize the cost function and avoid over-fitting.

The following composite loss is used to train RMIH:

J = λtMIJ
MI
S + λtSIJ

SI
S + λqJQ + λwRW (5.7)

where λtMI, λ
t
SI, λq and λw are hyper-parameters that control the contribution of each of the

loss terms.

Specifically, λtMI and λtSI control the trade-off between the MI and SI hashing losses. The SI
arm plays a significant role only in the early stages of training and can be traded off eventually
to avoid sub-optimal MI hashing. For this we introduce a weight trade-off formulation that
gradually down-regulates λtSI, while simultaneously up-regulating λtMI. Here, we use:

λtSI = 1− 0.5
(

1− t

tmax

)2
(5.8)

λtMI = 1− λtSI (5.9)
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Fig. 5.9. Weight trade-off between MI and SI arms for training RMIH: The weighting factors λt
MI and λt

SI control the
relative contributions of the MI and SI arms towards the overall cost function J (in Eq. 5.7). During
training of RMIH, with epochs, we gradually down-regulates λt

SI, while simultaneously up-regulating λt
MI,

such that the auxiliary gradients from the noisy SI arm help with initial convergence and is gradually
traded-off for an improved multiple-instance hashing performance oblivious to how well the SI hashing
performs. Reprint from [37], with permission of Springer.

where t is the current epoch and tmax is the maximum number of epochs (see Fig. 5.9). We
train RMIH with mini-batch stochastic gradient descent (SGD) with momentum. Due to
potential outliers that can occur at the beginning of training, we scale ck up by a factor of 7
for t = 1 to allow a stable state to be reached. Specifically, the gradient of J (·)

S w.r.t. to hi is
derived as:

∂J
(·)
S

∂hi
=

 ∑
l:sli>0

pliL′H(hl,hi)−
∑
l 6=i

 ∑
q:slq>0

plq

 pliL′H(hl,hi)


−

 ∑
j:sij>0

pijL′H(hi,hj)−
∑

j:sij>0
pij

∑
z 6=i

pizL′H(hi,hz)

 (5.10)

where L′H(hi,hj) = {ρ′k(rkij)}kk=1. The derivative of the huber term ρk
′(rkij) can be computed

as:

ρ′k(rkij) =

rkij , if | rkij |6 ck

ck sgn(rkij), if | rkij |> ck
(5.11)

Regarding the quantization loss function, the derivative can be computed as follows:

∂JQ
∂hi

= tanh (|hi| − 1) sgn (hi) (5.12)

Having computed these gradients, we use back propagation to compute the derivatives of the
preceding layers.

5.4 Experiments
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Fig. 5.10. Example images of breast mammography and histology: Select images from the histology database (IPUHL)
and mammography database (DDSM) are shown to showcase the degree of anatomical variability within
and across the classes. Within the IUPHL database, there exists significant differences in the size of the
whole slide images and variations in staining patterns. Within the DDSM database, within a particular
semantic class there exists differences with the scanning instruments used (especially X-ray windowing)
and significant anatomical variability associated with lesion type, presence/absence of micro-calcification
and extent of confounding fatty tissue in the background of the lesions.

5.4.1 Databases for Multiple Instance Retrieval

Clinical applicability of RMIH has been validated on two large scale datasets, namely, Digital
Database for Screening Mammography (DDSM) [77, 92] and a retrospectively acquired
histology dataset from the Indiana University Health Pathology Lab (IUPHL) [57, 222].
Fig. 5.10 illustrates select images from the two datasets to showcase anatomical variability
within and across the constituent classes.

Mammography
The DDSM dataset comprises of 11,617 expert selected regions of interest (ROI) curated from
1861 patients. Multiple ROIs associated with a single breast from anatomical views constitute
a bag (size: 1-12; median: 2), which has been annotated as normal, benign or malignant by
expert radiologists. A bag labeled malignant could potentially contain multiple suspect normal
and benign masses, which have not been individually identified.

Histology
The IUPHL dataset is a collection of 653 ROIs from histology slides from 40 patients (20
with precancerous ductal hyperplasia (UDH) and rest with ductal carcinoma in situ (DCIS))
with ROI level annotations done by expert histopathologists. Due to high variability in sizes
of these ROIs (upto 9K × 8K pixels), we extract multiple patches (of size 1024× 1024) and
populate a ROI-level bag (size: 1-15; median: 8). As cellular and nuclei level characteristics
are important to distinguishing DCIS from UDH, it is not recommended to rescale these images
to standard input sizes used by CNNs (typically, 244 × 224 in [26, 73, 187]). It must be
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noted that patches from an ROI labeled as DCIS could contain UDH-like manifestations, hence
associating the DCIS label individually to them could lead to potentially misleading results.
From both the datasets, we use patient-level non-overlapping splits to constitute the training
(80%) and testing (20%) sets.

5.4.2 Model Settings and Validations

To validate proposed contributions, namely robustness within NCA loss and trade-off from
the aux-SI arm, we perform ablative testing with combinations of their baseline variants by
fine-tuning multiple network architectures. Additionally, we compare RMIH against four
state-of-the art methods: ITQ [66], KSH [120], SFLH [107] and DHN [224]. For a fair
comparison, we use R50 for both SFLH and DHN, since as discussed later it performs the
best. Since SFLH and DHN were originally proposed for SI hashing, we introduce additional
MI variants by hashing through the MIPool layer. For ITQ and KSH, we further create two
comparative settings as follows:

• Using IMIH [208] that learns instance-level hash codes followed by bag-level distance
computation;

• Utilizing BMIH [208] using bag-level kernalized representations followed by
binarization.

For IMIH and SI variants of SFLH, DHN and RMIH, given two bags Bp and Bq with SI hash
codes, say H(Bq) = {hq1, . . . , hqM} and H(Bp) = {hp1, . . . , hpN}, the bag-level distance is
computed as:

d(Bp, Bq) = 1
M

M∑
i=1

(min
∀j

Hamming(hpi, hqj)). (5.13)

All images were resized to 224 × 224 and training data were augmented to create equally
balanced classes. λtMI and λtSI were set assuming tmax as 150 epoch; λq and λw were set at 0.05
and 0.001 respectively. The momentum term within SGD was set to 0.9 and batch size to 128
for DDSM and 32 for IUPHL. For efficient learning, we use an exponentially decaying learning
rate initialized at 0.01. The RMIH framework was implemented in MatConvNet [190]. We
use standard retrieval quality metrics: nearest neighbor classification accuracy (nnCA) and
precision-recall (PR) curves to perform the aforementioned comparisons. The results (nnCA)
from ablative testing and comparative methods are tabulated in Table 5.2 and Table 5.7
respectively. Within Table 5.7, methods were evaluated at two different code sizes (16 bits
and 32 bits). We also present the PR curves of select bag-level methods (32 bits) in Fig.
5.11 and Fig. 5.12 for the mammography and histology datasets respectively. For ease of
understanding, Table 5.2 has been broken down into Table 5.3, Table 5.4, Table 5.5 and
Table 5.6 to discuss the effects of introducing an auxiliary SI arm during training, to contrast
the contributions of introducing a loss trade-off, evaluate the effect of including robustness
within the supervised loss function and understand the effect of quantization in the hash code
generation respectively.
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Method
Variants DDSM IUPHL

R T P VGGF ResNet50 GoogleNet VGGF ResNet50 GoogLeNet

Ablative
Testing

A ◦ ◦ ◦ 62.66 70.92 68.96 80.21 79.69 82.29

B ◦ • ◦ 71.51 74.25 72.02 85.42 89.06 86.46

C • ◦ ◦ 68.96 73.27 72.72 84.90 88.02 85.42

D • • ◦ 78.67 82.31 76.83 87.50 89.58 89.06

E ◦ ◦ • 68.65 72.76 71.70 83.85 85.42 82.29

F ◦ • • 75.38 77.34 72.92 85.94 90.10 88.02

G • ◦ • 70.65 76.63 70.02 83.33 85.94 86.46

H ◦ � • 66.65 69.67 68.26 83.33 88.54 84.90

I • � • 67.05 76.59 72.84 84.38 89.58 85.42

RMIH • • • 81.21 85.68 78.67 91.67 95.83 88.02

RMIH(λq = 0) • • • 75.34 79.88 73.06 87.50 89.58 88.51

RMIH NB • • • 83.25 88.02 79.06 94.79 96.35 92.71

Legend

R(Robustness) ◦ = L2, • = LHuber

T(Trade-off) ◦ = Equal weights, • = Decaying SIL weights, � = No SIL branch

P(Aggregation) ◦ = Mean pooling, • = Max pooling

Tab. 5.2. Ablative testing and comparative analysis with baselines of RMIH: For a code size of 16 bits, we report the
nearest neighbor classification accuracy estimated over unseen test data. We ablatively test RMIH against
variants in terms of use of robustness within the optimization objective, if a trade-off was employed
while training with the single instance arm and the nature of the pooling function to aggregate instance
level features into bag level. We also contrast RMIH against baselines without the quantization loss and
an upper bound baseline which does not employ any binarization. Reprint from [37], with permission of
Springer.

5.5 Results and Discussion

In the following section we will showcase the superiority of RMIH through discussion of the
results of ablative testing and the comparison of RMIH with the state of the art methods
mentioned earlier. The testing objective of the ablative testing can be summarized as follows:

• Effect of auxiliary SI hashing arm: Compare with baselines sans SI hashing arm.

• Contribution of robustness: Contrast with baseline with classical NCA loss (L2 norm).

• Loss Trade-off : Compare with baseline setting λtMI = λtSI = 0.5.

• Quantization: Contrast with baseline setting λq = 0.

5.5.1 Effect of auxiliary single instance arm

To justify using the aux-SI loss, we introduce a variant of RMIH without it (E in Table 5.3),
which leads to a significant decline of 3% to 14% in contrast to RMIH. This could be potentially
attributed to the prevention of the gradient sparsification caused by the MIPool layer. From
Table 5.3, we observe a 3%-10% increase in performance, comparing cases with gradual
decaying trade-off (B) against baseline setting (λtMI = λtSI = 0.5, A,C).
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Method
Variants DDSM IUPHL

R T VGGF R50 GN VGGF R50 GN

Ablative
Testing

D ◦ � 66.65 69.67 68.26 83.33 88.54 84.90

E • � 67.05 76.59 72.84 84.38 89.58 85.42

RMIH • • 81.21 85.68 78.67 91.67 95.83 88.02

Legend

R(Robustness) ◦ = L2, • = LHuber

T(Trade-off)
◦ = Equal weights, • = Decaying SIL weights,
� = No SIL branch

Networks R50: ResNet50, GN: GoogleNet

Tab. 5.3. Effect of auxiliary Single Instance Arm: We observe 3% - 14% improvement for RMIH over baseline
without the SI hashing arm. Improved representation learning ability in presence of limited training
data and sparsification of gradients through MIPool. Modified from [37], with permission of Springer.

Method
Variants DDSM IUPHL

R T VGGF R50 GN VGGF R50 GN

Ablative
Testing

A ◦ ◦ 68.65 72.76 71.70 83.85 85.42 82.29

B ◦ • 75.38 77.34 72.92 85.94 90.10 88.02

C • ◦ 70.65 76.63 70.02 83.33 85.94 86.46

RMIH • • 81.21 85.68 78.67 91.67 95.83 88.02

Legend

R(Robustness) ◦ = L2, • = LHuber

T(Trade-off)
◦ = Equal weights, • = Decaying SIL weights,
� = No SIL branch

Networks R50: ResNet50, GN: GoogleNet

Tab. 5.4. Effect of loss tradeoff: We observe improvement in range of 3-10% improvement for RMIH over
baseline without trade-off. Learning without trade-off potentially leads to sub-optimal MI hashing as SI
loss might compete. Modified from [37], with permission of Springer.

5.5.2 Effect of Robustness

For robust-NCA, we compared against the original NCA formulation proposed in [189] (A,B,D
in Table 5.5). Robustness helps handle potentially noisy MI labels, inconsistencies within a
bag (like non-informative patches) and the ambiguity in assigning SI labels. Comparing the
effect of robustness for baselines sans the SI hashing arm (D vs. E as shown in Table 5.5)
we observe marginally positive improvement across the architectures and datasets, with a
substantial 7% in ResNet50 for DDSM. Robustness contributes more with the addition of the
aux-SI hash arm (proposed vs. E) with improved performance in the range of 4%-5% across
all settings. This observation further validates our prior argument.
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Method
Variants DDSM IUPHL

R T VGGF R50 GN VGGF R50 GN

Ablative
Testing

B ◦ • 75.38 77.34 72.92 85.94 90.10 88.02

D ◦ � 66.65 69.67 68.26 83.33 88.54 84.90

E • � 67.05 76.59 72.84 84.38 89.58 85.42

RMIH • • 81.21 85.68 78.67 91.67 95.83 88.02

Legend

R(Robustness) ◦ = L2, • = LHuber

T(Trade-off)
◦ = Equal weights, • = Decaying SIL weights,
� = No SIL branch

Networks R50: ResNet50, GN: GoogleNet

Tab. 5.5. Effect of robustness of loss function: We observe improvement in range of 5-7% improvement for
RMIH over baseline without robustness. Better learning in presence of label ambiguity and noise.
Modified from [37], with permission of Springer.

Method
Variants DDSM IUPHL

R T VGGF R50 GN VGGF R50 GN

RMIH • • 81.21 85.68 78.67 91.67 95.83 88.02

RMIH(λq = 0) • • 75.34 79.88 73.06 87.50 89.58 88.51

RMIH NB • • 83.25 88.02 79.06 94.79 96.35 92.71

Legend

R(Robustness) ◦ = L2, • = LHuber

T(Trade-off)
◦ = Equal weights, • = Decaying SIL weights,
� = No SIL branch

Networks R50: ResNet50, GN: GoogleNet

Tab. 5.6. Effect of Quantization: Learning without quantization loss leads to decrease of 3% to 5% in retrieval
performance. Comparing with upper-bound (non-quantized embeddings), marginal decrease of 2% to
4%. Modified from [37], with permission of Springer.

5.5.3 Effect of Quantization

To assess the effect of quantization, we define two baselines: (1) setting λq = 0 and (2)
using non-quantized hash codes for retrieval (RMIH - NB). The latter potentially acts as an
upper bound for performance evaluation. From Table 5.6, we observe a consistent increase in
performance by margins of 3%-5% if RMIH is learnt with an explicit quantization loss to limit
the associated error. It must also be noted that comparing with RMIH - NB, there is only a
marginal fall in performance (2%-4%), which is desired.

Within Table 5.2, we also evaluated two variants of the MIPool layer’s aggregation functions,
namely mean(·) and max(·). (P = • for max(·) and P = ◦ for mean(·)). In all settings (A vs.
E, B vs. F, C vs. G and D vs. proposed in Table 5.2), the choice of max pooling was observed to
boost performance. except for GoogleNet in IUPHL) This can in part be justified by the the
fact that max(·) is more selective, thus allowing more discriminative feature representation.
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Fig. 5.11. Precision-recall curves for retrieval performance in DDSM database: For a code size of 32 bits, we observe
that RMIH has the best area under the PR curve closely followed by the multiple instance variant of
deep hashing network. We note a significant margin of improvement over two-stage hashing approaches.
Reprint from [37], with permission of Springer.

This is necessary in the cases of detecting malignancy, which potentially co-exists in the same
bag with a variety of suspect normal and benign tissues.

As a whole, the two-pronged proposed approach, including robustness and trade-off, along
with quantization loss delivers the highest performance, proving that RMIH is able to learn
effectively, despite the ambiguity induced by the SI hashing arm. Fig. 5.13 demonstrates
the retrieval performance of RMIH on the target databases. For IUPHL, the retrieved images
are semantically similar to the query as consistent anatomical signatures are evident in the
retrieved neighbors. For DDSM, in the cancer and normal cases the retrieved neighbors are
consistent, however it is hard to distinguish between benign and malignant. The retrieval
time for a single query for RMIH was observed at 31.62 ms (for IUPHL) and 17.48 ms (for
DDSM) showing potential for fast and scalable search.

From an overall perspective, we observe a consistent performance gap between the DDSM
and IUPHL datasets. This could be attributed to the following reasons:

• learning with pre-trained architectures (VGGF [26], ResNet 50 [73] and GoogLeNet
[187]) that have been trained for RGB images collected in the wild could be potentially
biased to histology images against grayscale mammogram images in DDSM

114 Chapter 5 Robust Multiple Instance Hashing



0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

Recall

P
r
e
c
is
io
n

DDSM

RMIH
DHN
SFLH

KSH-R50
ITQ-R50
KSH-G
ITQ-G

0 0.2 0.4 0.6 0.8 1

0.5

0.6

0.7

0.8

0.9

1

Recall

P
r
e
c
is
io
n

IUPHL

RMIH
DHN
SFLH

KSH-R50
ITQ-R50
KSH-G
ITQ-G

Fig. 5.12. Precision-recall curves for retrieval performance in IUPHL database: For a code size of 32 bits, we observe
that RMIH has the best area under the PR curve closely followed by the multiple instance variant of
SFLH. We note a significant margin of improvement over two-stage hashing approaches and note that
the choice of GIST features fails to capture fine-grained semantics within the dataset despite introduction
of supervision during hashing. Reprint from [37], with permission of Springer.

• mammogram is used as a screening modality and is more prone to ambiguity in
interpretation against invasive histopathology.

This also reflects in sample retrieval cases shown in Fig. 5.13, where actionable cases (benign
and malignant) are hard to distinguish. However, in case of IUPHL, the retrieved images are
more semantically similar owing to consistent signatures of anatomical gland-like structures
and cellular diversity.

5.5.4 Comparative Methods

In the contrastive experiments (tabulated in Table 5.7) against ITQ and KSH, hand-crafted
GIST [142] features underperformed significantly, while the improvement with the R50
features ranged from 5%-30%. However, RMIH still performed 10%-25% better, proving that
even if deep learnt features severely boost the performance, the shallow methods cannot fully
breach the gap to the deep ones. Comparing the SI with the MI variations of DHN, SFLH and
RMIH in Table 5.7, it is observed that the performance improved in the range of 3%-11%,
suggesting that end-to-end learning of MI hash codes is preferred over two-stage hashing
i.e. hashing at SI level and comparing at bag level with Eq. (5.13). However, RMIH fares
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+1 0+1

Fig. 5.13. Retrieval results for RMIH at code size 16 bits: When presented with an unseen bag of images representing
the query, RMIH generates a bag-level hash code which is in turn compared against the learnt hash table
to fetch similar image bags. With visual inspection, we can observe that within the IUPHL dataset, the
retrieval is observed to preserve the semantics well. In case of mammography (DDSM), the performance
of retrieval on the non-actionable cases needs further improvement and investigation. This is potentially
due to label noise as mammography labels are fraught with high inter- and intra-observer variability.
Here, +1 indicates retrieval from class consistent with query and -1 indicates otherwise. Reprint
from [37], with permission of Springer.

comparably better than both the SI and MI versions of SFLH and DHN, owing to the robustness
of the proposed retrieval loss function to potentially noisy labels and inconsistent instances
within bags (also evident from PR curves in Fig. 5.11 and Fig. 5.12). In all fairness, the
concepts of training with aux-SI hashing arm with gradual trade-off and robustness could be
potentially adapted to SFLH and DHN to improve their MI hashing performance. As also seen
from the associated PR curves in Fig. 5.11 and Fig. 5.12, the performance gap between shallow
and deep hashing methods remains significant despite using R50 features. Comparative results
strongly support our premise that end-to-end learning of MI hash codes is preferred over
conventional two-stage approaches.
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Method A/F B/I
DDSM IUPHL Time (in mS)

16-bit 32-bit 16-bit 32-bit DDSM IUPHL

Sh
al

lo
w

ITQ [66]

R50 ◦ 66.35 67.71 78.58 80.28 15 28

R50 • 64.56 71.98 89.58 79.69 16 29

G ◦ 65.22 66.55 51.79 51.42 9 21

G • 59.73 61.03 57.29 58.85 11 23

KSH [120]

R50 ◦ 61.88 64.81 87.74 86.51 17 30

R50 • 59.81 72.17 70.83 80.21 18 32

G ◦ 60.50 61.91 57.36 57.83 11 24

G • 55.34 55.67 60.94 58.85 14 25

D
ee

p

SFLH [107]
R50 ◦ 73.54 77.46 83.33 85.94 19 32

R50M • 71.98 75.93 85.42 88.54 18 31

DHN [224]
R50 ◦ 65.64 74.79 82.29 86.46 18 32

R50M • 72.88 80.43 88.02 90.62 17 30

RMIH-SIL R50 ◦ 76.02 78.37 87.92 88.58 20 34

RMIH R50M • 85.68 89.47 95.83 93.23 17 31

Le
ge

n
d

A/F:
A: Architecture, F: Features
R50: ResNet, R50M: ResNet+MIPool, G: GIST

B/L:
B: Bag Level, I: Instance Level
◦ = Instance Level, • = Bag Level

Tab. 5.7. Comparison of RMIH against state of the art deep hashing methods: Comparing SI variant of deep hashing
methods to their MI variants, we observe that the retrieval performance improves significantly, which
justifies formulation as a MI retrieval problem. Further, there exists a significant performance gap
between two stage hashing methods in comparison to end-to-end hashing. The time for retrieval with
RMIH is highly competitive and comparable to other deep hashing methods. Reprint from [37], with
permission of Springer.
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6Conclusions

In this thesis, several advanced machine learning models have be presented for learning
efficient hash functions that can be leveraged for large-scale retrieval. The presented
mathematical formulations are generic and within this thesis we particularly focus on medical
image retrieval. This chapter will summarize the contributions of this work, all of which have
been successfully validated on a range of large-scale retrieval tasks, and provide an outlook to
potential future work.

Medical image retrieval is a particularly challenging topic of investigation due to domain-
specific challenges such as how to incorporate medical context associated with these images,
how to effectively factor anatomical variability out, how to deal with potential complexities
associated with image acquisition such as artifacts, scanner variability etc. In addition to
the aforementioned challenges, medical images often have very high dimensionality and
limited availability. However, investigating medical image retrieval also presents with a lot
of opportunities as technically they are ultra-fine grained data and have significant impact
in image-guided diagnosis, clinical-decision support, evidence-based medicine, precision
medicine, pedagogical goals within medical education and effective management of clinical
data. Particularly, the contributions within this thesis target applications that generate data in
large-scale and aims at developing learning models that facilitate efficient clinical reasoning in
such scenarios using techniques for scalable and accurate retrieval. We envisage that adopting
these hashing methods into clinical practice can facilitate real-time querying and feedback for
challenging cases by providing the clinician with fast access to similar past cases and enable a
structured exploration of large-scale medical databases.

6.1 Unsupervised Hashing Forests

In Chapter 2, we demonstrated that random forests can be suitably modified for the task of
hashing and leveraged for the task of large-scale retrieval within heterogeneous
neuroscientific image databases. Hashing forests are ensemble of dedicated hashing trees that
recursively parse and encode the feature space with binary similarity preserving code words
generated by hashing functions that enable efficient query, retrieval and analysis. Particularly
for the task of neuron retrieval, we observe that the use of ensemble of trees and hierarchical
tree-structure makes hashing forests more robust to noisy neuromorphological features
(observed due to inconsistent 3D digital reconstruction of neuron). We establish that the
proposed HF formulation has superior neighborhood approximation and retrieval
performance in comparison to existing generalized hashing methods by quantifying the
results over 31266 neuron reconstructions dataset curated from 147 different archives. To the
best of our knowledge, this is the first research to present hashing in neuroscientific databases
and demonstrates higher flexibility for reference-based retrieval over existing alternative
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methods [228]. The proposed formulation utilizes inverse coding in HF, which helps avoiding
pairwise comparisons across the database while retrieving, without compromising on
accuracy. With the inclusion of oblique split functions in conjunction with cluster validity
measures, we ensure that the native neighborhoods and clusters within the
neuromorphological space are maximally preserved during hashing.

Towards the future work, improving efficiency of hashing forests includes investigating
improvements to the node-scoring functions like introducing maximum-margin approaches to
improve parsing of the feature space [94]. Improvising scalability of the HF is also a direction
for future pursuit [212]. Improving search specificity through a multi-view hashing approach
can allow for the user to freely define a flexible search criterion, such as retrieval based on
similarity with specific subparts of the neuron / image.

6.2 Metric Hashing Forests

In Chapter 3, we extend hashing forests into semantics-preserving hashing by introducing a
novel supervised hashing method, termed as metric Hashing Forests (mHF). We work towards
the objective of generating compact, similarity preserving binary codewords using metric
Hashing Trees (mHTs). We introduced a principled node-optimization strategy by measuring
the quality of neighborhood improvement (tailored for k-NN nearest neighbor search). We
leveraged metric learning paradigms at local node level to project the data reaching each
internal node into a latent subspace where classes have better separability. This ensured
both class-separability and consistency within the hash codes generated by a mHT. Creating
discriminative local subspace embeddings also helped bridge the gap between the low-level
features and high-level semantic concepts that the hash bits have to preserve while generating
encodings.

The proposed mHF comprises of ensemble of independently trained hashing trees, that
hierarchically parse and encode the feature space such that local class neighborhoods are
preserved and encode class similarity relationships in a highly compressed binary
representation. Additionally, the asymptotic nature of forests and the independence between
the hash functions helped achieve a steady improvement in hashing performance with
inclusion of additional bits in the encoding.

The exposition of the proposed mHF framework is generic and we present the proof-of-concept
for the challenging task of retrieval in neuroscientific image databases. Working on the
neuromorphological feature space, we leveraged the mHF for classification by retrieval of
neurons into seven cell types depending on their morphologies. We validated the proposed
mHF algorithm on a large-scale, highly heterogeneous databases of 22,265 neurons curated
from over 120 different archives, which are publicly available through neuromorpho.org [9].
The mHF framework is user-friendly as it is purely content-driven and query based, hence,
does not require an expert to laboriously define the search criterion [228]. To the best of
our knowledge, this is the first supervised hashing framework targeting neuroscientific image
databases and we demonstrated superior retrieval and indexing performance over the state-of-
the-art non-hashing and hashing based methods. By leveraging the concepts of hash tables
and inverse lookup, we could achieve a time complexity independent of the database size,

122 Chapter 6 Conclusions



thus ensuring easy scalability of the mHF for time-efficient retrieval in large databases. We
envisage that as the presented formulation is generic, it can be extended with success to other
large-scale search and retrieval problems in medical imaging.

Towards the future work, we will look into retrieving neighbors that share similarity in local
neuronal structures by introducing part-wise search specificity by providing the
neuroscientists with the flexibility of selecting the volume of interest is a possible direction of
future investigation. For further improvement in time efficiency, the mHF can be deployed in
a parallel fashion. Introducing an on-line update variant like in Zhang et al. [223] can also
help the mHF to evolve as the database scales up in size and heterogeneity. The current work
focused on retrieval under constraints of anatomical similarities. Within neuroscientific
databases, the extension of mHF to other classification schemes (like neurotransmitter based
functional classification) remains an open topic for future investigation. In such cases, one
can include associated multi-view features like taxonomical attributes (like species, gender,
age etc.), experimental conditions (like protocol, staining, reconstruction method etc.),
anatomical attributes (brain region) and other associated meta-data in tandem with
neuromorphological features within the hashing scheme.

6.3 Hashing with Residual Networks

In Chapter 4, we have presented a novel deep learning based hashing approach leveraging
upon residual learning, termed as Deep Residual Hashing (DRH). DRH integrates
representation learning and hash coding into a joint optimization framework with dedicated
losses for improving retrieval performance and hashing related losses to control the
quantization error and improve the hash code quality. Our approach demonstrated very
promising results on a challenging chest x ray dataset with co-occurring morbidities. In the
future, from a clinical perspective, we would investigate into the visualizing what DRH learns
e.g. if a particular image is classified as cardiomegaly, is DRH actually picking on clinical
indicators around the heart and lungs rather as opposed to contextual clues from the
background. We also plan to evaluate the transferability to datasets with unseen disease
manifestations. It might also be interesting to extend DRH into a multi-modal / multi-view
setting to jointly perform hashing by exploiting the relationship amongst these multiple
modalities/views and for support specialized tasks such as cross-modal search.

From a technical perspective, a significant overhead is the hash code computation and use of
efficient network designs such as binary convolutional networks [155] or alternatively training
networks with low-precision weights [85] can be adopted. The training of DRH and many
other state of the art deep hashing methods depends on pairwise similarity or variants of the
same. Higher the sampling rate of such pairs during training, better the search accuracy at the
cost of high training overhead. Such an approach can become prohibitively expensive when
handling very large data and opens up a further questions of how to learn hash functions in a
scalable fashion.

6.3 Hashing with Residual Networks 123



6.4 Robust Multiple Instance Hashing

In Chapter 5, for the first time, we proposed an end-to-end deep robust hashing framework,
termed Robust Multiple Instance Hashing (RMIH), for retrieval under a multiple instance
(MI) setting. We incorporate the multiple instance pooling (MIPool) layer to aggregate
representations across instances to generate a bag-level discriminative hash code. We introduce
the notion of robustness into our supervised retrieval loss inspired by neighborhood component
analysis and improve the trainability of RMIH by utilizing an auxiliary single instance hashing
arm regulated by a weight trade-off. Extensive validations and ablative testing on two public
breast cancer datasets (mammography and histology) demonstrate the superiority of RMIH
and its potential for future extension to other MI applications.

The inclusion of robustness within the training of deep hashing methods facilitates learning
in presence of label noise. This implies that we can leverage potential sources of weak
annotations such as biomedical crowd-sourcing [3], bounding box annotations or whole
image level annotations (in place of fine-grained localization of pathology) [96] to learn these
models. This is particularly useful in scenarios of limited availability of expert annotations.
Incorporating semi-supervised learning paradigms such as [196] together with intelligently
designed deep hashing models can be of high potential impact for medical image retrieval. In
addition to learning with weak supervision, the incorporation of relevance feedback within
retrieval could potentially supplement weak supervision. It is relatively inexpensive and highly
effective if complex semantic concepts are not sufficiently incorporated in training data during
supervision [152]. Approaches of hashing in combination with relevance feedback can also
be effectively leveraged for interactive exploration of large-scale medical images such as
whole-slide histopathology images (typically 1-2 Gbytes in size), starting with weakly explored
queries and iteratively refining the search criterion with feedback.

6.5 Outlook

Retrieval in medical images is an open and active area of research. The availability of large-
scale datasets, annotated training examples and scientific challenges has created immense
opportunities to contribute within this field. Moving from visual information based CBIR to
a more holistic multi-modal approach has much potential for creating real impact. Xu et al.
[204] argue that fusion techniques that combine information from heterogeneous sources such
as electronic health records with associated images will be helpful in exploring influences of
patient related non-visual cues on specific disease change patterns in imaging information. It is
likely that retrieval per se as an individual step is not sufficient for clinical practice, but rather
integrating it with detection and classification would have practical impact. With increasing
integration of multi-scale data such as genomics, proteomics and metabolomics etc. moving
from a similar image retrieval to a case retrieval is needed. This implies integration of all
available patient data to understand what similarity means in a specific scenario is needed.

On the technical aspect of retrieval, methods that require weakly annotated data or even
no annotations are still open to investigation. Active learning to reduce annotation effort,
relevance feedback to incorporate supervision on the fly, and crowd-sourcing for annotations
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with quality control can be potentially leveraged in such scenarios. With mobile health
technologies taking shape, adapting retrieval methods that will allow access to relevant
clinical data and search function through light-weight mobile applications could create huge
impact. Creating compute infrastructure within hospitals for medical research data analysis
and retrieval would be a crucial step towards making digital medicine a reality and is a
stepping stone for developing quality decision support tools with clinical impact.

6.5 Outlook 125





Part IV

Appendix





APattern Exploration in
Neuroscientific Image Databases

Nu
mb

er
 of

 R
ec

on
str

uc
tio

ns

Reconstructions

vAlphavAlpha
v3.0v3.0 v4.0v4.0

v5.0v5.0 v5.7v5.7

v6.0v6.0
v6.1v6.1

v6.3v6.3

v7.0v7.0

v7.1v7.1

v7.2v7.2

Version

July
 20

06

Jan
uar

y 2
007

July
 20

07

Jan
uar

y 2
008

July
 20

08

Jan
uar

y 2
009

July
 20

09

Jan
uar

y 2
010

July
 20

10

Jan
uar

y 2
011

July
 20

11

Jan
uar

y 2
012

July
 20

12

Jan
uar

y 2
013

July
 20

13

Jan
uar

y 2
014

July
 20

14

Jan
uar

y 2
015

July
 20

15

Jan
uar

y 2
016

July
 20

16

Jan
uar

y 2
017

July
 20

17
0

20k

40k

60k

80k

Highcharts.com

(a) Total Number of Reconstructions

Data Categories

Brain Region Cell Type Species Archives

July
 20

06

Jan
uar

y 2
007

July
 20

07

Jan
uar

y 2
008

July
 20

08

Jan
uar

y 2
009

July
 20

09

Jan
uar

y 2
010

July
 20

10

Jan
uar

y 2
011

July
 20

11

Jan
uar

y 2
012

July
 20

12

Jan
uar

y 2
013

July
 20

13

Jan
uar

y 2
014

July
 20

14

Jan
uar

y 2
015

July
 20

15

Jan
uar

y 2
016

July
 20

16

Jan
uar

y 2
017

July
 20

17
0

100

200

300

400

500

Highcharts.com
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Fig. A.1. Evolution of the number of neurons in the NeuroMorpho database: In Fig. A.1a, amongst different released
versions till October 2017, we can clearly see an exponential growth in the total number of neuronal
reconstructions being made public. In addition to increasing number, as shown in Fig. A.1b we observe
a similar trend in the heterogeneity within the database in terms of brain regions explored, cell types,
species and archives.

Neurons facilitate exchange and processing of information and transmission of decisions within
an organism and with their environment. They are typically tree-like structures with distinct
morphological characteristics (in comparison to other body cells). The 3D morphometry of a
neuron is of high interest to the neuroscience community as it is correlated to its physiology
and functionality [44]. As a result, number of digitally reconstructed neuroscientific image
databases has been rapidly increased over the past decade and become available publicly
through web-based platforms like Neuromorpho (neuromorpho.org) [9], NeuronDepot [156],
FlyCircuit (flycircuit.org) [29] to name a few. These repositories consist of heterogeneous
multi-center data acquired from different species, brain regions, and experimental settings [9,
156] which allows for wider sharing of research data and outcomes and provide neuroscientists
with an opportunity to study neuronal behavior and its morphological attributes across
different species, brain regions, and experimental settings [9]. Fig. A.1 demonstrates the
evolution of the number of neurons in one such popular public database (Neuromorpho.org).
This has motivated researchers, particularly computer scientists, to develop new search
systems for image retrieval and processing over large-scale datasets for the purpose of neuron
categorization and ultimately comprehension of its functionality.

Digital reconstruction of neurons are digital representations of traced neuritic arborizations
that encode information about the location, orientation and branching patterns as a set of
interconnected cylinders ( often using a tree-based data structure). These are typically acquired
during the course of studies on neuron electrophysiology, pharmacology or histology and
have are often used to derive morphological and stereological attributes about the neuron [9].

129



Fig. A.2. Schematic of generating digital neuron reconstruction: The neuron sample is imaged at high resolution
using a confocal microscope to obtain an image stack. The image stack is then segmented either manually
or using neuron-tracing tools to generate the digital reconstruction of the neuron.

Typically, neuron images are acquired using a myriad of microscopic imaging modalities like
confocal light microscopy, laser scanning microscopy or electron microscopy [146]. Upon
acquiring these images, neurons are either manually-traced (labor-intensive typically requiring
1-person week per neuron) or semi-automatically traced using neuron-tracing tools like
Vaa3D [147] and saved as digital reconstructions. Fig. A.2 illustrates schematically the process
of generating 3D digital reconstructions of neurons.

Fig. A.3. Schematic of neuromorphological space: The neuromorphological space is a high-dimensional feature
representation encoding multiple aspects of neuron morphology. Using 3D reconstructions of neurons,
features are extracted at the whole-neuron level such as height, length, volume etc., at the branch-level
including mean branch length, branch order etc. and at the neuronal bifurcation-level including partition
assymetry, angles between children branches etc.

Today, more than ever, the increasing volume and growing diversity of neuroscientific data
demand for computationally efficient methods for systematic neuron categorization and
indexing. For example, within a particular species (say, mouse) the volume of a neuron
could vary from < 1µm3 for hippocampal neurons to > 107µm3 for somatic neurons from
the peripheral nervous system. Within a particular class of neurons (say granule cell), the
neuronal volume could vary from approximately 300µm3 for a chimpanzee to > 3000µm3

for a mouse. Neuron retrieval techniques can help researchers to compare and contrast the
outcomes of their studies in terms of neuromorphology, organize the neurons in biologically
meaningful clusters, and characterize and study neuronal networks [146, 192]. Query-
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Search specificity Features

Whole-neuron Level

arbor length, arbor height, arbor width, arbor depth, total volume,

total number of tips, number of bifurcations, total surface, number

of branches, diameter, soma surface, number of stems, contraction,

fragmentation, Pk- classic + Branch level and Bifurcation level features.

Branch Level

average and max helicity, average and max fractal dimension, average

and max branch path length, max branch order,average terminal degree,

path distance, euclidean distance.

Bifurcation Level

average partition asymmetry, average and max local amplitude angle,

average and max remote amplitude angle, average and max local tilt

angle,average and max remote tilt angle, average and max local torque

angle, average and max remote torque angle

Tab. A.1. Quantitative morphological measurements: This is the exhaustive features are extracted from 3D digital
reconstructions of neurons that together constitute the neuromorphological space.

based retrieval of relevant neurons within databases can also be leveraged for comparative
morphological analysis, which are used to study age related changes [157]. All these have
motivated researchers to investigate and develop search, retrieval, and encoding algorithms
upon large-scale neuron image datasets for purpose of neuron categorization, classification,
and ultimately comprehension of its functionality. For example, Scorcioni et al. [166]
extracted morphological descriptors to identify neuron structures with significant geometrical
variations. Costa et al. [45] proposed a neuron search algorithm, where pairwise 3D structural
alignment was employed to find similar neurons. In a similar approach, Ganglberger et al.
[63] proposed a structure-based retrieval algorithm that compared local neural structures
by capturing the orientation of neurons with a structure tensor field. During retrieval, this
method compares the field generated for a query neuron across the cases in the target database
and fetches neighbors with similar fields. In another approach, Polavaram et al. [149] focused
on the evaluation of morphological similarities and dissimilarities between groups of neurons
deploying unsupervised clustering technique using expert-labeled meta data (like species,
brain region, and cell type). Recently, Wan et al. [192] designed a tool called BlastNeuron for
comparing neurons in terms of their global appearance, detailed patterns of arborization, and
topological similarities. Adopting a two stage retrieval approach, Wan et al. [192] compared
neurons based on their global morphological features and then performed local alignment
between pairs of retrieved neurons with a tree-based dynamic programming approach.

The concept of the neuromorphological space has been introduced by Costa et al. [44], where
each neuron is represented by a set of morphological and topological measures. This feature
space is used for multidimensional analysis of neuronal shape and showed that the cells
of the same brain regions, types, or species tend to cluster together. This motivated us to
leverage this space for evaluating inter-neuron similarity and propose a data-driven retrieval
system for large neuron databases. We used the publicly-available Lmeasure software toolbox
for extracting quantitative morphological measurements from digital 3D reconstructions of
neurons [166]. These include features quantifying neurons at the level of the whole neuron,
the branch level, and the bifurcation level. A sample neuron with some of its quantitative
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morphological measurements is illustrated in Fig. A.3. In total, we selected 37 features
tabulated in Table A.1. A detailed description of each feature metric has been presented in
[230, 166].
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DAbstracts of Publications not
Discussed in this Thesis

ReLayNet: Retinal Layer and Fluid Segmentation of Macular
Optical Coherence Tomography using Fully Convolutional
Network

Abhijit Guha Roy, Sailesh Conjeti, Sri Phani Krishna Karri, Debdoot Sheet, Amin Katouzian,
Christian Wachinger, Nassir Navab

Proposed fully convolutional ReLayNet architecture. The spatial resolution of the feature maps are
indicated in the boxes. The underlying layer symbols are indicated to the right.

Optical coherence tomography (OCT) is used for non-invasive diagnosis of diabetic macular
edema assessing the retinal layers. In this paper, we propose a new fully convolutional deep
architecture, termed ReLayNet, for end-to-end segmentation of retinal layers and fluid masses
in eye OCT scans. ReLayNet uses a contracting path of convolutional blocks (encoders) to
learn a hierarchy of contextual features, followed by an expansive path of convolutional
blocks (decoders) for semantic segmentation. ReLayNet is trained to optimize a joint loss
function comprising of weighted logistic regression and Dice overlap loss. The framework is
validated on a publicly available benchmark dataset with comparisons against five state-of-
the-art segmentation methods including two deep learning based approaches to substantiate
its effectiveness.

Biomedical Optics Express (2017)
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Supervised domain adaptation of decision forests: Transfer of
models trained in vitro for in vivo intravascular ultrasound tissue
characterization

Sailesh Conjeti, Amin Katouzian, Abhijit Guha Roy, Loïc Peter, Debdoot Sheet, Stéphane
Carlier, Andrew Laine, Nassir Navab

Overview of the proposed method for domain adaptation of in vitro trained random forests for in vivo
intra-vascular ultrasound tissue characterization.

In this paper, we propose a supervised domain adaptation (DA) framework for adapting
decision forests in the presence of distribution shift between training (source) and testing
(target) domains, given few labeled examples. We introduce a novel method for DA through
an error-correcting hierarchical transfer relaxation scheme with domain alignment, feature
normalization, and leaf posterior reweighting to correct for the distribution shift between
the domains. For the first time we apply DA to the challenging problem of extending in vitro
trained forests (source domain) for in vivo applications (target domain). The proof-of-concept
is provided for in vivo characterization of atherosclerotic tissues using intravascular ultrasound
signals, where presence of flowing blood is a source of distribution shift between the two
domains. This potentially leads to misclassification upon direct deployment of in vitro trained
classifier, thus motivating the need for DA as obtaining reliable in vivo training labels is
often challenging if not infeasible. Exhaustive validations and parameter sensitivity analysis
substantiate the reliability of the proposed DA framework and demonstrates improved tissue
characterization performance for scenarios where adaptation is conducted in presence of only
a few examples. The proposed method can thus be leveraged to reduce annotation costs and
improve computational efficiency over conventional retraining approaches.

Medical Image Analysis (2016)
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Coupled Manifold Learning for Retrieval Across Modalities

Sailesh Conjeti, Anees Kazi, Nassir Navab, Amin Katouzian

Schematic of proposed cross-modal search retrieval scheme using Coupled Manifold Learning (CpML).
Given modalities (image and text) and limited co-occurring instances, we model the intra-modal
proximity with pMST which creates locally dense connections with a global spanning tree representing
the underlying data manifolds global topology. Next, we leverage correspondences through CpML, we
learn to map to the coupled latent space that is makes the modalities metric-comparable.

Coupled Manifold Learning (CpML) is targeted at aligning data manifolds across two related
modalities to facilitate similarity preserving cross-modal retrieval. Local and global topologies
of the data cloud reflect intra-class variability and overall heterogeneity respectively making it
critical to retain both for meaningful retrieval. Towards this we propose a learning paradigm
which simultaneously aligns global topology while preserving local manifold structure. The
global topologies are maintained by recovering underlying mapping functions in the joint
manifold space by deploying partially corresponding instances. The inter-, and intra-modality
affinity matrices are then computed to reinforce original data skeleton using perturbed
minimum spanning tree (pMST), and maximizing the affinity among similar cross-modal
instances, respectively. The performance of proposed algorithm is evaluated upon two
benchmark multi-modal image-text datasets (Wikipedia and PascalVOC2012 - Sentence). We
further show versatility and interdisciplinary application by extending it to cross-modal
retrieval between multi-stain atherosclerosis histology medical image dataset. We
exhaustively validate and compare CpML to other joint-manifold learning methods and
demonstrate superior performance across datasets and tasks.

International Conference on Computer Vision Workshop on Manifold Learning: From Euclidean to
Reimannian (2017)
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Error Corrective Boosting for Learning Fully Convolutional
Networks with Limited Data

Abhijit Guha Roy, Sailesh Conjeti, Debdoot Sheet, Amin Katouzian, Nassir Navab, Christian
Wachinger

Illustration of the different steps involved in training of fully convolutional CNNs with surplus auxiliary
labeled data and limited manually labeled data.

Training deep fully convolutional neural networks (F-CNNs) for semantic image segmentation
requires access to abundant labeled data. While large datasets of unlabeled image data are
available in medical applications, access to manually labeled data is very limited. We propose
to automatically create auxiliary labels on initially unlabeled data with existing tools and
to use them for pre-training. For the subsequent fine-tuning of the network with manually
labeled data, we introduce error corrective boosting (ECB), which emphasizes parameter
updates on classes with lower accuracy. Furthermore, we introduce SkipDeconv-Net (SD-Net),
a new F-CNN architecture for brain segmentation that combines skip connections with the
unpooling strategy for upsampling. The SD-Net addresses challenges of severe class imbalance
and errors along boundaries. With application to whole-brain MRI T1 scan segmentation, we
generate auxiliary labels on a large dataset with FreeSurfer and fine-tune on two datasets with
manual annotations. Our results show that the inclusion of auxiliary labels and ECB yields
significant improvements. SD-Net segments a 3D scan in 7 secs in comparison to 30 hours
for the closest multi-atlas segmentation method, while reaching similar performance. It also
outperforms the latest state-of-the-art F-CNN models.

International Conference on Medical Image Computing and Computer-Assisted Intervention 2017
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Deeply Learnt Hashing Forests for Content Based Image
Retrieval in Prostate MR Images

Amit Shah, Sailesh Conjeti, Nassir Navab, Amin Katouzian

Overview of CBIR framework for Prostate MR images using Deep Learnt Hashing Forests.

Deluge in the size and heterogeneity of medical image databases necessitates the need for
content based retrieval systems for their efficient organization. In this paper, we propose
such a system to retrieve prostate MR images which share similarities in appearance and
content with a query image. We introduce deeply learnt hashing forests (DL-HF) for this
image retrieval task. DL-HF effectively leverages the semantic descriptiveness of deep learnt
Convolutional Neural Networks. This is used in conjunction with hashing forests which are
unsupervised random forests. DL-HF hierarchically parses the deep-learnt feature space to
encode subspaces with compact binary code words. We propose a similarity preserving feature
descriptor called Parts Histogram which is derived from DL-HF. Correlation defined on this
descriptor is used as a similarity metric for retrieval from the database. Validations on publicly
available multi-center prostate MR image database established the validity of the proposed
approach. The proposed method is fully-automated without any user-interaction and is not
dependent on any external image standardization like image normalization and registration.
This image retrieval method is generalizable and is well-suited for retrieval in heterogeneous
databases other imaging modalities and anatomies.
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