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Abstract: Open water areas surrounded by sea ice significantly influence the ocean-ice-atmosphere
interaction and contribute to Arctic climate change. Satellite altimetry can detect these ice openings
and enables one to estimate sea surface heights and further altimetry data derived products.
This study introduces an innovative, unsupervised classification approach for detecting open water
areas in the Greenland Sea based on high-frequency data from Envisat and SARAL. Altimetry radar
echoes, also called waveforms, are analyzed regarding different surface conditions. Six waveform
features are defined to cluster radar echoes into different groups indicating open water and sea
ice waveforms. Therefore, the partitional clustering algorithm K-medoids and the memory-based
classification method K-nearest neighbor are employed, yielding an internal misclassification error of
about 2%. A quantitative comparison with several SAR images reveals a consistency rate of 76.9% for
SARAL and 70.7% for Envisat. These numbers strongly depend on the quality of the SAR images
and the time lag between the measurements of both techniques. For a few examples, a consistency
rate of more than 90% and a true water detection rate of 94% can be demonstrated. The innovative
classification procedure can be used to detect water areas with different spatial extents and can be
applied to all available pulse-limited altimetry datasets.

Keywords: satellite altimetry; Envisat; SARAL; unsupervised classification; K-medoids; Greenland
Sea; Fram Strait

1. Introduction

The Arctic Ocean, including its peripheral seas, e.g., the Greenland Sea, is considered one of the
most important components of the Earth’s climate system [1]. In particular, these areas show strong
responses to global warming and may affect climate conditions globally, for example, by changing the
oceanic thermohaline circulation. The north polar regions are crucial contributors to the global ocean
current system by carrying cold and fresh water southwards. Most of the Arctic Ocean is covered by
varying extents of sea ice with open water areas and floes with different spatial extents as well as fully
closed ice surfaces. The seasonal fluctuations of ice covers significantly impacts the atmosphere-ocean
interaction (e.g., ice-albedo). While a closed sea ice cover prevents the ocean from heat emission,
openings in the ice lead to a warming of the first atmospheric layers.

The evolution of sea ice is strongly influenced by sea surface temperature, wind, waves and
ocean currents [1]. During recent decades, increasing sea surface temperatures and an enhanced warm
water inflow in the Arctic Ocean resulted in decreased sea ice extent and volume [2,3]. Additionally,
the Greenland ice sheet experienced strong environmental changes due to an increasing mass loss
enhancing melt water influx into the Arctic Ocean [4].
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The monitoring of the changing north polar ocean conditions, especially in the Greenland Sea,
allows investigating interconnections between land, ocean, and atmospheric processes as well as their
climate forcing. Today, remote sensing systems provide a large set of different sensors for monitoring
the polar regions. Radar satellite altimetry is able to provide quantitative information about sea surface
heights, significant wave heights, and dynamic ocean topography [5,6]. However, in order to derive
reliable altimetry products, a careful selection of measurements from open water areas is necessary.
By analyzing the radar return signal of the altimeter, the so-called waveform, information about
the reflecting surface can be derived. This allows the classification of waveforms in water- and sea
ice-returns and the detection of open water areas in sea ice regions. For example, calm open water
areas within the footprint cause a very single-peak shape. With an along-track resolution of less than a
kilometer using high-frequency data, conventional satellite altimetry missions (such as Envisat and
SARAL) are able to detect small open water areas that might be missed by imaging Synthetic Aperture
Radar (SAR) satellite missions (Sentinel-1A/B, Radarsat-1/2, etc.) in case a high-resolution acquisition
mode is not available. Additionally, small water areas have insufficient backscatter properties to be
mapped by passive microwave satellite missions (e.g., Special Sensor Microwave Imager (SSM/I) and
SSM/I Sounder (SSM/IS)). However, altimeter radar echoes reflected from non-uniform scatterers,
like sea ice regions, are challenging to interpret because the large surface footprint of several kilometers
usually covers several ice types.

The first studies dealing with satellite altimetry in sea ice regions were published in 1980 by
Dwyer and Godin [7] and in 1992 by Fetterer et al. [8]. After the launch of the ESA satellites ERS-1
and ERS-2, covering high latitudes in a repeat orbit, further studies were conducted by Laxon [5] and
Laxon et al. [9]. They analyzed the potential of ERS-1 sea ice monitoring and the interannual variability
of sea ice thickness by employing ERS-1 and ERS-2 altimetry data. Furthermore, Peacock [10] provides
a first sea surface height determination in the Arctic ocean. In recent years, several sea ice applications
have been explored e.g., the detection of openings in the ice. Connor et al. [11] applied a peakiness
parameter, defined by Peacock [10] in order to detect small open water bodies in the sea ice cover
using high-frequency data of Envisat. Zakharova et al. [12] continues with the development of a lead
detection algorithm by using the Centre National d’ Études Spatiales (CNES) and Indian Space Research
Organisation (ISRO) satellite SARAL and maximum power threshold. Currently, all pulse-limited
altimetry-based approaches for detecting water returns in sea ice regions use thresholds for different
parameters. This has the disadvantage that the thresholds have to be set manually and individually
for every altimetry mission. Furthermore, a deep knowledge about the different scatter characteristics
in sea ice regions is required. Besides Zygmuntowska et al. [13] developed another approach
using the waveforms shape for classifying airborne SAR altimeter echoes over the Arctic sea ice
in a supervised way.

The present study proposes a new strategy to detect open water areas based on an unsupervised
classification of high-frequency altimetry radar echoes. The approach is able to detect water domains
with different spatial extents and can be easily applied without any deeper knowledge about
surface-dependent backscatter characteristics. The method is applicable to all available pulse-limited
altimeter data and is independent of mission-specific radar frequencies and characteristics.
Furthermore, the results are compared to processed SAR images using the method described in [14] to
obtain quantitative information about the classification performance.

The present paper is structured into three main parts. First, the study area and the applied datasets
are introduced. Section 3 presents the method and processing procedure as well as the comparison
process of the obtained results. Section 4 presents the classification results and provides evidence
of the classification performance. At first, quantitative information considering the entire available
validation dataset (Section 4.1) is derived before some visual comparisons between the SAR images
and the altimetry overflights are provided. The paper finishes with a conclusion and an outlook to
future research.
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2. Study Area and Data Sets

This section provides an introduction to the study area and the different remote sensing datasets
used for classification and validation.

2.1. Greenland Sea and Fram Strait

The study area ranges from 70.0◦N to 81.5◦N in latitude and from the north-east coast of Greenland
to 28.0◦E in longitude and covers the Greenland Sea and the Fram Strait (see Figures 1 and 2).
The Greenland Sea belongs to the peripheral seas of the Arctic ocean. It connects the Fram Strait in
the north, a narrow passage between north-east Greenland and Svalbard, with the Norwegian Sea
as well as the Iceland Sea in the south. This area is affected by the East Greenland Current (EGC),
which transports more than 90% of fragmented sea ice from the Arctic Ocean through the Fram Strait
southwards [15]. Therefore, the EGC represents the main and most important freshwater outlet of the
Arctic Ocean. According to Serreze and Barry [16] the Greenland Sea and the region of the Fram Strait
is strongly influenced by rapid atmospheric and changing sea ice conditions as well as comparatively
fast ocean currents with a mean velocity of 20–30 cm/s [17] and maxima up to 80 cm/s [18]. The sea
ice state reaches from a nearly closed sea ice cover, showing straight lined and circular shaped open
water bodies, leads and polynyas, up to individual ice floes ranging from a few meters to kilometers in
diameter [16]. Applying open water detection to the Greenland Sea and the Fram Strait offers one the
chance to sensitize the unsupervised classification method for a various number of different sea ice
and ocean conditions.

Figure 1. Black rectangles indicate locations of the SAR images from ALOS and Radarsat-2 used for
comparison with Envisat classification results against the background of nominal sun-synchronous
ground tracks of one Envisat cycle. The four subsets discussed in Section 4.2 are highlighted by
different colors.
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Figure 2. Black rectangles indicate locations of the SAR images from Sentinel-1A used for comparison
with SARAL classification results against the background of nominal sun-synchronous ground tracks
of one SARAL cycle. One subset discussed in Section 4.2 is highlighted in orange.

2.2. Radar Altimetry Data

In the present investigation, the high-frequency radar altimetry data of the ESA satellite Envisat
and the CNES/ISRO altimetry satellite SARAL are used. Data of the missions Jason-1, Jason-2 and
Jason-3 are disregarded due to their low orbit inclination (about 66◦) not covering the Greenland Sea
and Fram Strait.

Envisat and SARAL carry pulse-limited radar altimeters and are placed on the same 35 day
repeat-orbit covering polar areas up to ±81.5◦ geographical latitude. Envisat was launched in March
2002 and orbits the Earth at an altitude of nearly 800 km. In October 2010, Envisat left the repeat-orbit
and started to drift until in May 2012, the ESA mission was decommissioned after an unexpected
signal loss. SARAL was placed in orbit in February 2013 and is still active even though in July 2016,
the satellite started its drifting orbit phase without fix repeat period.

All computations and methodologies used in this study are based on official high-frequency Sensor
Geophysical Data Record (SGDR) v2.1 dataset of Envisat’s radar altimeter (RA-2) and the SGDR-T
dataset of the AltiKa radar altimeter mounted on SARAL. In case of SARAL, data until July 2016
and in case of Envisat, data until the end of the mission are used. In this study, waveforms observed
in the Greenland Sea and Fram Strait (see Section 2.1) are employed in the classification process.
In order to calculate the altimeter backscatter values, different features stored in the SGDR dataset, for
example, atmospheric attenuation and instrumental corrections (e.g., sigma naught calibration factor)
are additionally used.

The two satellite missions differ mainly in the emitted radar bandwidth, the pulse repetition
frequency and the footprint size of the illuminating area onto the surface. RA-2 emits Ku-band
signals with an repetition frequency of 1800 pulses per second, covering an nominal elliptic area of
approximately up to 10 km diameter [11] depending on the surface conditions. Before transmitting to
earth, the waveforms are sampled to 18 Hz by the on-board processing. AltiKa works in the Ka-band,
with a repetition frequency of 4 kHz, generates 40 Hz averaged waveforms and has half the antenna
aperture of Envisat. This leads to a smaller footprint size up to 8 km diameter and an improved spatial
resolution [19]. Beside instrumental influences, the waveform’s shape is mainly affected by various
surface characteristics. Detailed explanations referring to the representation of the varying waveform’s
shape can be found in Section 3.1.
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2.3. Imaging Synthetic Aperture Radar (SAR) Data

A possible source for validating the classification results is the usage of imaging synthetic aperture
radar (SAR) data. Beside the altimeter satellites, several multispectral and SAR imaging satellite
missions regularly provide snapshots of periodically changing ocean conditions. In contrast to
multispectral sensors, working mostly in the visible and infrared spectrum, SAR sensors are unaffected
by cloudiness and lighting conditions, which makes it easier to identify appropriate scenes. However,
SAR sensors are side-looking instruments, which can cause a shadowing of very flat and smooth
surface structures (e.g., leads or polynyas) due to interjacent higher topography (e.g., ice floes, ridges).
Additionally, the recorded backscatter values do not only depend on the surface characteristics (e.g.,
roughness) but also on the incidence angle of the reflected radar waves, which makes it more complex
to provide information about different surface types. Furthermore, it has to be mentioned that most
SAR satellites are placed on sun-synchronous orbits, which allows for a uniform capture of ice state
but limits the minimum time lag between the acquisition dates of the SAR images and the altimetry
measurements of Envisat and SARAL also using sun-synchronous orbits.

Aiming at a small time lag between SAR images and satellite altimetry, wide swath data are
qualified best since these images cover a spatially extended area with medium pixel spacing. For this
investigation, SAR images of the JAXA Advanced Land Observing Satellite (ALOS) [20], MDA’s
Radarsat-2 [21] and ESA’s Sentinel-1A (S-1A) [22] are used. The Envisat classification results are
compared with ALOS PALSAR Level 1.5 Wide Beam (WB) images offered by the Alaska Satellite
Facility (ASF) DAAC and with Radarsat-2 (R-2) Scan SAR Mode data provided by ESA. The SARAL
classification outcomes are compared with Level-1, S-1A extra wide swath mode data. S-1A images are
made available through the ESA/Copernicus Sentinel Data Hub. Specifications, temporal availability
in the target region, and information about the used imaging SAR products are listed in Table 1.
To distinguish between open water pixels, appearing in near black, and sea ice pixels, appearing in
bright gray, HH-polarized images are used. For more information regarding SAR polarization and the
influence of different surface scattering see Dierking W. [23] and Jackson et al. [24].

Table 1. Synthetic Aperture Radar (SAR) image specifications [20–22] and altimeter satellites covering
same time periods.

SAR Satellite Band Mode Swath Width (km) Pixel Size (m) Period (mm/yyyy) Altimeter Satellite

ALOS L-Band Wide Beam 250–350 100 × 100 June 2007–May 2008 Envisat
Radarsat-2 C-Band Scan SAR Wide 500 50 × 50 June 2008–present Envisat/SARAL
Sentinel-1A C-Band Extra Wide 400 40 × 40 October 2014–present SARAL

In order to ensure similar sea ice conditions and allow for an unbiased comparison between
SAR and altimetry, only images with a time lag less than about 3.5 h, with respect to the altimetry
crossings, are used. The comparison is based on 16 grayscaled SAR images during the lifetime of
Envisat and 19 images for SARAL. The SAR data are selected from different epochs considering a
varying sea surface state with a focus on periods with various sea ice coverage. Figures 1 and 2 display
the locations of all used SAR images. The scenes are mainly located in the Fram Strait and near the
north-east coast of Greenland. Tables 2 and 3 list sensor and temporal information for all conducted
comparison pairs. Two of the R-2 images are used for multiple satellite overflights. In the case of
SARAL classification, it has to be mentioned that, due to sun-synchronous orbits and fixed revisit
times of Sentinel-1A and SARAL, it is not possible to find suitable pairs for comparison that show
good spatio-temporal coverage with a time gap smaller than 2 h 40 min during the study period.



Remote Sens. 2017, 9, 551 6 of 20

Table 2. Acquisition date of the SAR images and time gap between altimetry observations and imaging
data used for comparison with Envisat classification results.

SAR-Satellite Acquisition Date Time Gap hh-mm

ALOS 14 June 2007 02-30

ALOS 1 October 2007 02-57

ALOS 7 October 2007 01-55

ALOS 10 November 2007 03-07

ALOS 10 December 2007 02-50

ALOS 26 December 2007 02-13

ALOS 5 January 2008 02-40

ALOS 7 January 2008 01-46

ALOS 12 January 2008 02-49

ALOS 4 May 2008 01-25

R-2 4 November 2008 01-47

R-2 20 April 2009 02-09
00-29

R-2 21 April 2009 02-07

R-2 10 February 2010 03-04

01-52
R-2 14 March 2010 00-13

01-27

R-2 16 October 2010 02-04

Table 3. Sentinel-1A acquisition date of the SAR images and time gap between altimetry observations
and imaging data used for comparison with SARAL classification results.

Acquisition Date Time Gap hh-mm

23 October 2014 02-41
16 November 2014 03-34
14 November 2014 02-49
18 November 2014 02-42
3 December 2014 02-40
6 December 2014 02-58

27 December 2014 03-33
1 January 2015 02-59
15 January 2015 03-20
18 January 2015 03-27
16 March 2015 03-08

6 February 2015 03-29
6 February 2015 03-28

10 February 2015 03-22
22 February 2015 02-59

2 March 2015 02-44
9 March 2015 02-56
19 April 2015 02-53
15 May 2015 02-54

2.4. Sea Ice Data

Polar sea areas are affected by moving sea ice due to the influences of wind and ocean currents [16].
This results in a rapid change and high diversity of the sea surface conditions. To reach a realistic
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comparison of altimetry results and SAR images, the compensation for sea ice motion within the
time interval between the two observation sets is required. For this purpose, daily ice vector velocity
fields are exploited within the validation process. Therefore, the “Polar Pathfinder Daily 25 km
EASE-Grid Sea Ice Motion Vectors, Version 3” of the National Snow and Ice Data Center (NSIDC)
are employed [25]. This dataset contains zonal and meridional sea ice velocity observations of active
and passive sensors as well as in situ measurements interpolated to a 25 km spacing grid referring to
an azimuthal equal area map projection. This dataset covers the entire altimetry era until the end of
May 2015.

The sea ice velocity data are used to shift the SAR image, respectively, the image pixel coordinates,
assuming an averaged ice motion (direction and velocity) over the time interval between the altimetry
measurement and the SAR image. For this purpose, only homogeneous data represented by small
standard deviations in direction and velocity inside a predefined box (±35 km) around the altimetry
track are selected to compute a mean displacement vector. Sea ice velocity vectors located close to the
coastlines (within 25 km) are eliminated due to erroneous ice observations [25].

The comparison is performed only in areas affected by sea ice to suppress the influence of
falsely detected SAR ice pixels caused by diffuse scattering behavior due to rough swell in the open
ocean. Therefore, daily “Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSM/IS
Passive Microwave Data, Version 1” of the NSIDC [26] with a spatial resolution of 25 km × 25 km are
interpolated to the altimetry high-frequency data. Observations outside the ice edge without sea ice
are excluded from the comparison process.

3. Methods

This study is based on an unsupervised classification process of altimetry waveforms.
Unsupervised classification algorithms group unassigned data into a predefined number of classes
without any background information about the data and their sources using only “natural“ and hidden
intra-cluster similarities [27]. The classification is performed based on a set of features characterizing
the input data. In contrast, supervised classification is based on a-priori information of a well known
or labeled dataset to classify and assign the observations [28]. Examples for unsupervised classification
methods are artificial neural networks (e.g., Self-Organizing Maps [29]) or partitional clustering
algorithms (e.g., K-means and K-medoids [30,31]). In the present investigation, a partitional cluster
algorithm, K-medoids, is used for separating a set of unlabeled waveform data into clusters indicating
different waveform properties. Therefore, features have to be defined describing various waveform
characteristics. Based on the clustering results, K-nearest-neighbor is applied to assign unclassified
waveform data.

In this section, at first, features for describing the various waveform shapes and their
characteristics are specified and explained. This is followed by the description of the methodical
background of the clustering and classification process. The last part of Section 3 presents the validation
approach for the classification procedure. The presented methods are applied independently to Envisat
and SARAL.

3.1. Waveform Features

The shape of altimetry waveforms strongly depends on the surface characteristics within the
altimeter footprint. Figure 3 shows Envisat/RA-2 and SARAL/AltiKa radar pulses reflected by ocean,
leads, and sea ice. Major differences can be detected in the power magnitude and the number and
shape of the signal peaks. Leads produce very narrow and peaky waveforms due to the specular
scattering of calm and flat water. In contrast, radar pulses originating from ocean or sea ice surfaces are
influenced by waves or interlaced and piled ice floes, respectively, leading to multi peaks and wider,
noisier shapes.
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Figure 3. Waveform examples for Envisat (top row) and SARAL (bottom row) for three different
surface scatterers: Ocean (left), Lead (middle), and Sea Ice (right).

In order to characterize a waveform and identify the main evocative surface scatterer, a number of
waveform features are defined. The computed values constitute a waveform feature space that provides
the input for the clustering and classification process. To increase the efficiency of the algorithm and to
get a reliable open water detection, the selected features should fulfill the following conditions:

1. The features should characterize different waveform types.
2. The selected features should be stand alone and without linear dependence and major correlations

among each other.
3. The feature space should be adaptable to any altimetry waveform.
4. All features should exhibit the same order of magnitude for equal weighting among each other.

In the present investigation, six features are defined to describe the waveforms mainly focusing on
the reflected radar pulse shape (width) and the recorded power intensity. These features are applicable
for each pulse-limited altimeter waveform, i.e., for Envisat as well as for SARAL.

• Waveform maximum (Wm)
The waveform height is described by the maximal power of the returning radar pulse σmax.
It provides information about the backscatter of calm or rough surface conditions. To compute σmax

for Envisat as well as SARAL, the maximum waveform power and mission specific rectifications
are applied by using instrumental and atmospheric corrections from the provided datasets
(see Section 2.2).

• Trailing edge decline (Ted)
The trailing edge decline is computed by fitting an exponential function, considering an
exponential decay of AltiKa waveforms, from the waveform power maximum to the last bin.
The estimated decay rate is used to characterize the decline of the trailing edge after the maximum.

• Waveform noise (Wn)
This feature quantifies the trailing edge scattering. It is computed as median absolute deviations of
the trailing edge fitting (see Ted) residuals. This parameter is very small for single peak waveforms
(leads) and moderate for oceans.

• Waveform width (Ww)
The number of bins where the power is equal to zero provides information about the
waveform’s width.

• Leading edge slope (Les)
The leading edge slope is obtained by subtracting the first bin position containing more than 30%
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of the power maximum from the bin position of the maximum power. The difference provides
relative information about the width and steepness of the leading edge independent of the absolute
position of the leading edge, i.e., the range.

• Trailing edge slope (Tes)
In contrast to the leading edge slope, the trailing edge slope is obtained by subtracting the last
bin position containing more than 30% of the maximum from the bin position of the maximum
power. This difference provides similar information to Ted in the case of single-peak waveforms
but supports the identification of strong specular peaks in front of an ocean-like trailing edge.

The selected features in the present investigation show a varying order of magnitudes, which
results in an irregular weighting in the clustering algorithm. In order to comply with condition 4
(see above) a standardization has to be processed. Before conducting the unsupervised classification
procedure, the features are reduced by subtracting their average and divided by their standard
deviation (standard-score).

The features are calculated for RA-2 and AltiKa waveforms in the same way. In the case of SARAL,
the maximum power is limited to 1250 counts. Power counts above this limit are not recorded due to
too high backscatter values that cannot be resolved by the tracking window [12]. The waveforms are
cut without a clear maximum peak in the radar echo, which makes it impossible to compute all features
(e.g., leading edge slope) and to constitute the complete feature space. These waveforms, which are
not flagged in the SGDR dataset, are skipped from the further classification process. Furthermore, all
waveforms are neglected, for which no reliable computation of the defined features is possible (e.g.,
if trailing edge fitting is impossible with 95% confidence).

3.2. Clustering

Within the clustering process a representative subset of all waveforms from a single mission will be
used to define waveform groups, so-called clusters, that will later be used to also classify all remaining
observations. In a first step, this reference model has to be created. For this purpose, a set of several
waveforms, containing a majority of all possible scatter types, has to be selected. To this end, waveform
data covering an area in the central Greenland Sea within bounds of 15◦W/10◦E longitude and 68◦N/80◦N
latitude are used. To cover as many sea ice types as possible, the epoch is selected at the beginning of the
melting period in early summer from April to May [32]. For Envisat, Cycle 57 (2007, containing about
307,000 waveforms), and for SARAL, Cycle 12 (2014, ca. 670,000 waveforms) are selected.

To group the reference data, a K-medoids cluster algorithm is implemented that clusters
unsupervised data into K clusters. K-medoids performs a distance minimization between the features
and the most centrally located feature (medoids) based on the feature space itself. Thereby, K-medoids
is more robust to outliers and noise in contrast to K-means, which tries iteratively to estimate an
optimal partition of unlabeled data by minimizing the distances between the coordinates of a mean
cluster center (centeroids) and the features. However, in contrast to K-medoids, K-means integrates
every value of the feature space into the arithmetic average [27].

At first, K-medoids randomly chooses K medoids of the feature space and computes the distances
to every feature. In the next steps, the algorithm rearranges every single feature until there is no motion
within the K clusters and the minimal distances to the medoids are found. However, the clustering
result depends on the initial randomly chosen medoids. This is why the algorithm is repeated several
times and the best solution is selected by analyzing the final sum of all distances within the clusters.
This leads to high computational efforts by employing large input datasets, but it is considerable that
the clustering has to be performed just once per altimetry mission. To reduce the computation times,
the algorithm examines only a random sample of cluster members during each medoids updating
step. The size of the sample is set by default to 0.1% of the total number of data points. The iteration
terminates if the medoids are stabilized.
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Partition clustering algorithms require an initialization of the number of clusters K. In the present
investigation, K is chosen empirically after several test runs by evaluating the best segmentation
results [31]. Indicators for defining an appropriate K are, for example, the analysis of the sum of
all distances within the clusters and, additionally, a visual analysis of all clusters. In order to obtain a clear
partitioning of waveforms, it is useful to set K larger than the desired number of the three surface types, the
present investigation is looking for, namely, calm open water, ocean or sea ice conditions. Figure 4 shows
the clustering for 30 classes based on derived waveform features of about 307,000 Envisat waveforms
(the clustering results for SARAL waveforms can be found in the Supplementary section, Figure S1).
The displacements between the points and the medoids are computed using Euclidean distances.

Figure 4. Envisat waveform clusters (K = 30) after K-medoids clustering showing segmented
waveforms (every twenty fifth per cluster).

After running K-medoids, each cluster has to be assigned to one surface condition. The 30 clusters
need to be manually condensed to three main classes indicating ocean, sea ice, and lead/polynya
returns. This is done based on the feature statistic per cluster (see Figure 5) and knowledge on
the physical backscattering behavior of different surfaces. It is well known that radar returns from
dominant scatterers (i.e., a lead with a calm, mirror-like surface) cause single-peak waveforms with
high power and narrow shape. Radar echoes nearly entirely reflected by sea-ice show a more diffuse
scattering, weak power and no clear peaks. Using these relationships and transferring them to the
cluster statistics enable a nearly unambiguous assignment. However, questionable clusters with
ambiguous feature properties remain and are labeled as ”undefined“.

Figure 5 indicates the cluster assignment by different colors. Lead and polynya returns (clusters 2,
10–12, 20, and 26) are characterized by a very narrow and peaky shape and high maximum power
values. In contrast, ocean returns (clusters 1, 3, 6, 18, 22, 23, 25, 27–29) are wider and show a greater
trailing edge decay. Waveforms belonging to the ice class (clusters 5, 7–9, 13, 14, 16, 21, 24, and 30)
are between these two groups. They are defined by a smaller trailing edge decay and slope as well as
bigger power values than ocean returns. However, there are clusters (4, 15, 17, and 19), that cannot
clearly be assigned to one surface type. As an example, cluster 19 shows an ocean like behavior, but
is characterized by an indistinct leading edge as well as a steeper ice-like trailing edge. Undefined
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waveform classes show, apart from more noise in the cluster itself, no clear signature or trend to the
underlying feature space or to the three main surface classes.

Figure 5. Means and standard deviations of waveform features (see Section 3.1) per cluster. Four classes
are illustrated using different colors: “lead/polynya” (cyan), “ocean” (purple), “ice” (green), and
“undefined” (red).

3.3. Classification

The waveform model created by the clustering (Section 3.2) can now be used to classify all
waveforms. For this purpose the K-Nearest Neighbor (K-NN) classifier is employed. In general,
K-NN belongs to the memory-based classifiers and does not require a stochastic model [28]. Basically,
K-NN searches for the closest distance between a query point and a given input model. Similar to the
K-medoids algorithm, the K-NN uses the euclidean distance. However, K has a completely different
meaning than in the K-medoids algorithm. The K is now defined as the number of neighbors used
for the classification. The cluster assignment of a specific waveform is done based on the majority of
clusters of these K nearest neighbors. K must be set before the classification process starts.

In the present study, K is estimated by performing a 10-fold cross-validation. Therefore the
reference model used for the clustering and already assigned to the clusters is divided into 10 randomly
sorted, but equally sized subsets and validated against each other. This means, that every subset is
used as a test sample and the remaining subsets as training sets. In order to find an appropriate K for
K-NN, the cross-validation is performed based on different numbers of neighbors. Figure 6 shows the
mean misclassification error as a percentage of the 10-fold cross-validation in the case of SARAL and
Envisat. Similar errors can be expected for the classification of the remaining unlabeled waveforms.
The minimum error defines the optimal number of neighbors. SARAL displays less variability and a
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smaller misclassification rate than Envisat. The K-NN method seems to be more stable with clustered
SARAL than with Envisat waveforms, which can be explained due to less variability in the AltiKa
waveforms and a more robust waveform clustering. For SARAL a minimum error rate is obtained
with K = 20 (1.93 ± 0.05%). In the case of Envisat, nearest-neighbor number K = 44 (2.3 ± 0.08%) is
used, providing a good balance between low error and variance.

The misclassification rate in connection with the defined number of neighbors gives information
about the K-NN prediction error based on the reference model and class labels. This parameter can be
used to estimate the internal precision of the classification approach. In this study, a minimal error of
about 2% has to be expected from the methodology itself.

Figure 6. Misclassification error and its standard deviation for SARAL (red) and Envisat (blue) with
varying number of K neighbors as computed by 10-fold cross-validation.

After defining an appropriate K, the remaining waveforms are applied to K-NN. In the end of the
classification process every waveform is labeled by a certain cluster and, consequently, assigned to a
specific surface type.

3.4. Validation Approach

In order to conduct an external validation for the waveform classification, a comparison with
independent SAR images is performed. For this purpose, the defined waveform classes of ocean,
lead/polynya, sea ice are assigned to water (ones) and non-water (zeros) observations. Undefined
waveforms classes are also labeled with zeros. In order to provide quantitative information about
the classification performance, it is necessary to compare the results to an external dataset. For this
purpose, imaging SAR data are used, as they regularly provide snapshots of different sea surface states
in the study area.

Before performing an automatic comparison between SAR and the classification results, the SAR
images are pre-processed by using the ESA toolbox SNAP, version 4.0.0 for Sentinel-1A as well as
Radarsat-2 and the MapReady toolbox, version 3.1.22 for ALOS image data offered by ASF. Basically,
the following standard routines are applied to the imaging SAR data:

1. Thermal noise removal (only S-1A)
2. Radiometric calibration
3. Speckle filter (only Radarsat-2)
4. Delay Doppler terrain correction
5. Reprojection to Lambert Azimuthal Equal Area map projection
6. Converting backscatter values to db
7. Datatype conversion in uint8
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On the pre-processed SAR images, linear and circular shaped black and near black areas indicate
openings inside the sea ice cover generated by a smooth surface and specular reflection of the radar
waves. To automatically extract these areas, the SAR images have to be converted into binary pixel
values by applying several image processing tools. The applied approach is described in detail by
Passaro et al. [14]. Briefly summarized, the images undergo a noise and minimum filtering in order to
emphasize dark pixel regions, followed by an adaptive thresholding that considers local illumination
changes. Finally, a mathematic morphological closing operation is applied to the black and white
coded images to link fragmented open water regions. To control the effect of the morphological closing
operation a structure element (kernel) or convolution matrix is needed. Regarding linear and circular
shapes of open water areas, an octagon with various size, considering the nominal pixel spacing of the
SAR images, is employed. In the case of ALOS, the octagon size is six pixels around the center pixel,
and in the case of Sentinel-1A and Radarsat-2, a kernel size of 12 pixels is used. Moreover, the image
coordinates are shifted to compensate for sea ice-motion, for the acquisition time difference between
altimetry and SAR (see Section 2.4). In a last step, the locations of the altimetry returns are interpolated
to the SAR pixel locations by using nearest neighbor method.

4. Results and Discussion

In this study, 15,025 Envisat and 19,919 SARAL observations are investigated for which SAR
image classification results are available for validation. 31.2% of the Envisat waveforms and 15.0%
of the SARAL returns are assigned to water classes. Furthermore, 4.7% of Envisat and 14.2% of
SARAL waveforms are set to undefined and defined as non-water returns. For a quantitative rating,
19 comparison pairs for SARAL and Envisat, respectively (see Section 2.3), are used. The results of this
comparison are presented in the following section. Afterwards, examples are displayed to illustrate
and discuss the functionality of the validation approach.

4.1. Automatic Comparison to SAR Images

As mentioned above, the automatic comparison process only relies on observations in areas with a
semi-closed sea ice layer. This allows one to reduce false SAR classifications outside the ice edge due to
an unreliable SAR image processing. Table 4 provides the numbers of measurements assigned to water
and ice by the two observation techniques and, therefore, allows for an assessment of the altimetry
classification performance. The absolute number of water and ice detections are listed column-wise for
the altimetry classification results and row-wise for the SAR open water detection. The table shows
that 1124 of the 15025 Envisat observations are identified as water by both, altimetry and SAR, whereas
837 locations are assigned to non-water by altimetry and to water by SAR. Assuming the SAR to
be the ground truth validating the altimetry water detection, four dependencies are derived to rate
the classification results. The total consistency rate, P(CR) is computed by summing up the bold
values and dividing them by the total number of comparison points. In addition, three conditional
frequencies are derived: The true water detection rate (P(Alt|SAR)) is computed by dividing the
“correct” altimetry water detections by the total number of SAR water observations, whereas the false
water detection rate (P(Alt|SAR)) is defined as the relation between the water altimetry detections not
confirmed by SAR and the total number of SAR ice detections. Moreover, the percentage of correctly
classified water returns P(SAR|Alt) represents the “correct” water altimetry detections in relation to
the total number of open water detections by altimetry.

In the case of Envisat, a consistency rate of 70.7% is reached. In detail, nearly 60% of SAR water
detections are truly classified by Envisat (P(Alt|SAR) = 0.57) in contrast to below 30% of SAR ice
observations that are falsely assigned to water areas by Envisat (P(Alt|SAR) = 0.27). However, only
about a quarter of all Envisat open water detections are also classified by SAR (P(SAR|Alt) = 0.24).

The comparison between SARAL and Sentinel-1A water detection yields a higher consistency
rate of 76.9% but a smaller true water detection rate of less than 30% (P(Alt|SAR) = 0.28). At the same
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time, the false water detection rate P(Alt|SAR) is very small and yields only 12.3%. Moreover, the
correctly classified water return rate P(SAR|Alt) = 33% is better as for Envisat.

It has to be noticed that for the interpretation of these numbers it is important to consider that
inconsistencies are not only due to altimetry classification but that the SAR open water detection as
well as the sea ice-motion correction also contribute to the error budget. For example, most of the
SARAL comparisons take place during the sea ice maximum between January and mid March, when
the pack ice is very close and exhibits only small openings in the ice, which makes it challenging to be
detected by the SAR image processing.

Analyzing the absolute water detection numbers of Envisat versus SAR images, it is remarkable
that the number of open water points differs by 2732 between the SAR detection and the Envisat
classification. The Envisat classification identifies significantly more open water areas than the SAR
processing (factor of nearly 2.4). In the case of SARAL, a transposed situation can be found. This can
be explained by different SAR sensor characteristics and an insufficient pixel resolution as well as
an imprecise SAR image processing, including an unreliable sea ice-motion correction. Additionally,
the altimeters are affected by off-nadir returns, which can cause an enhanced number of open water
detections. In the case of Envisat, a larger footprint size than SARAL intensifies off-nadir effects.

Overall, it is important to understand, that the classification performance numbers of SARAL and
Envisat are not directly comparable with each other. The underlying different instrumental, sensor,
and spatio-temporal conditions differ too strongly to provide qualitative information that would allow
for a comparative assessment of the two altimetry satellites. More details related to the impacts of SAR
and altimetry processing on the quantitative comparison process can be found in Section 4.2.

Analyzing, for example, P(CR) of Envisat and SARAL, the quantitative comparison confirms
the reliability of the altimetry-based classification method and a good performance of their results.
However, it has to be kept in mind that a data comparison of two totally different Earth observation
techniques for open water detection in a very dynamic study area is not possible without a variety
of uncertainties and inaccuracies. In order to provide a better impression of the difficulties of a
quantitative comparison approach, the next section shows a couple of examples in a visual comparison.

Table 4. 2D contingency tables based on Envisat—ALOS/R-2 (top) and SARAL—S-1A (bottom)
comparisons. The table shows the number of points classified as water/ice from altimetry (Alt) with
the corresponding classification from SAR.

Alt (Water) Alt (Ice) ∑

SAR (water) 1124 837 1961
SAR (ice) 3569 9495 13064

∑ 4693 10332 15025

Alt (Water) Alt (Ice) ∑

SAR (water) 987 2600 3587
SAR (ice) 2007 14325 16332

∑ 2994 16925 19919

4.2. Visual Comparison

Using different SAR image subsets, this section will provide some visual comparisons between
open water classification by altimetry and SAR images. The images were selected in order to indicate
possible difficulties due to uncertainties in the SAR image or altimetry processing as well as sea ice
motion correction. Figures 7 and 8 show five visual examples before (left) and after (right) image
processing. The altimetry measurement locations are superimposed on the SAR image. Cyan colored
altimetry observations identify open water classifications. These regions are plotted in white in
the binary coded SAR images (right column). Figure 7a–f display Envisat-ALOS and Figure 7g,h
Envisat—Radarsat-2 comparisons. Figure 8 shows a visual example of one SARAL—Sentinel-1A
comparison. Metadata information, i.e., acquisition date and applied sea ice motion correction on each
comparison is provided next to the images (visualized classification results without class assignment can
be found in supplementary Figures S2–S6). Moreover, Table 5 displays quantitative comparison results.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. Examples of open water detection from Envisat against ALOS (a–f) and Radarsat-2 (g,h)
before (left) and after SAR image processing (right) with open water indicated in white. Boxes
provide additional image and processing information. Red: ice detection, cyan: open water detection.
The geographical locations of the image subsets are displayed in Figure 1; from top to bottom in green,
blue, yellow and magenta.
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(a) (b)

Figure 8. Example (orange highlighted in Figure 2) of open water detection from SARAL against
Sentinel-1A before (a) and after SAR image processing (b) with open water indicated in white. Box
provides additional image and processing information. Red: ice detection, cyan: open water detection,
yellow: saturated AltiKa observations.

Table 5. Table providing percentage statistical information about conditional P(X|Y) and consistency
P(CR) rates of visual examples discussed in Section 4.2. “SAR” and “Alt” indicate imaging SAR and
altimetry. Ice detections are indexed by overline character marked shortcuts.

Subset P(CR) P(Alt|SAR) P(SAR|Alt) P(Alt|SAR)

Figure 7b 90.63% 15.91% 91.86% 94.05%
Figure 7d 85.10% 16.04% 64.58% 88.57%
Figure 7f 12.61% 88.99% 2.02% 100.00%
Figure 7h 76.22% 22.36% 0.00% 0.00%
Figure 8b 72.07% 12.41% 40.68% 25.53%

The first example (Figure 7a) demonstrates very good accordance between altimetry and SAR
classification.The L-band image displays different sea ice and open water conditions. From West to
East, various sized open water areas ranging from 200 m up to 3.5 km are visible. A large region
appearing in dark reaches from the image center at 11◦W to the eastern edge. It indicates a mixture
of differently sized ice floes interrupted by open water sections. Analyzing the colored altimetry
observations, the open water detection is in good accordance with the grayscaled as well as with the
binary coded SAR image (Figure 7b). The quantitative comparison yields a consistency rate P(CR) of
90.63%. Moreover, the altimetry classification approach provides a true classification rate close to 100%
(P(Alt|SAR) = 0.94). This comprises small leads as well as larger areas of open water.

An almost perfect accordance between altimetry classification and SAR images can also be
observed in Figure 7c, detecting an expanded lead in the southern image part and some small leads
in the central part of the image. However, comparing Figure 7c and d to the altimetry classification
results at 75◦36.00′N, it is clearly visible that SAR image processing is not always able to segment very
narrow lead fragments. This might happen because of a poor spatial pixel resolution of the SAR sensor
(100 m), an insufficient identification of the ice-water transition, or a too restrictive threshold level in
the SAR image processing. This deficiency in the automatic SAR image processing results in reduced
performance in the quantitative comparison with a total consistency rate of about 85% and a true water
detection rate of 88.6%.
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However, there are also problems related to the altimetry observation technique. The example
displayed in Figure 7e,f is characterized by a very long (ca. 47 km) and in most parts narrow lead
located parallel to the satellite track. The SAR image is shifted about 1.2 km in the northeastern
direction, assuming a steady sea ice motion. Even if the altimeter track is still located northwards at the
off-nadir position of the lead, almost all measurements are classified as open water. As a consequence,
in the quantitative comparison, just 2% of all Envisat open water detections are confirmed by SAR
classification although they can be visually connected with the dominant lead in the image center.
The overall consistency rate yields only 12.6%—probably due to the fact that the altimetry classification
approach is not able to separate off-nadir water returns from nadir water returns or the mean sea ice
motion correction is not enough to consider the total sea ice drift.

Additional discrepancies between altimetry and SAR classification can occur in areas with new,
very thin ice coverage. Figure 7g shows those areas, appearing light gray in C-band, only a little
darker than the surrounding older ice. These areas are correctly set to ice by the SAR image processing
(see Figure 7h) because of the small brightness differences between the thin and surrounding ice types.
In contrast, the altimetry returns within these areas are falsely classified and interpreted as calm open
water since they show a very narrow and single-peaked lead/polynya-like shape. One explanation for
this mis-interpretation is the dominant scattering of all flat and specular surfaces. Connor et al. [11]
found that strong reflective surfaces, for example, leads/polynyas, can also affect the waveform shape
if covered by very thin ice. A distinction from open water is not possible based on the altimetry
waveform’s shape. Since the ice is very thin, the retracked ranges should represent the water level well
enough, even if the classification is wrong.

Related to the comparison process itself, uncertainties in sea ice motion correction can reduce the
quantitative consistency rate. Figure 8a,b are corrected by ice-motion considering a time difference
of more than 3 h. Analyzing Figure 8b, it can be shown that only 25.53% of the SAR detected ice
openings are well identified by the altimetry data. A visual image inspection suggests that the applied
ice motion correction is too small to completely compensate for the effect of the time lag.

Further challenging issues using SARAL SGDR-T data are so-called saturated waveforms.
Zakharova et al. [12] pointed out that leads or strongly reflecting surfaces can exceed the maximum
permissible power count value of 1250. The waveforms are cut and feature no clear peak due to
a saturated power tracking window. Figure 8 highlights saturated SARAL observations in yellow.
They are mainly located near small and calm open water areas, producing very high backscatter
returns. In the classification process, they are omitted because of an unknown maximum peak position.
In general, saturated SARAL waveforms are mainly traceable within the sea ice edge, but can provide
evidence about the location of further open water areas. However, just 0.14% (i.e., 288 waveforms) of
the comparison data are affected by a saturated power tracking window.

The present section shows a number of challenging and unavoidable impacts on the validation of
the waveform classification process. Considerable parts of the inconsistencies do not originate from
the altimetry classification but from the SAR classification or the ice-motion correction. In order to
adequately rate the quantitative comparison results, it is necessary to keep these effects in mind.

5. Conclusions and Outlook

The present paper introduces an unsupervised classification approach based on pulse-limited
multi-mission altimetry data to detect open water areas in a largely sea ice covered region. The study
demonstrates the successful application of the clustering of pulse-limited altimeter waveforms for
the automatic identification of open ocean, sea ice, lead and polynya observations. The approach
is based on known partition cluster strategies (i.e., K-medoids) and memory-based classification
methods (i.e., K-nearest-neighbor). A 10-fold cross-validation for the assessment of the precision of
the classification method is performed. It indicates an internal misclassification error of about 2% for
Envisat and SARAL. The algorithm is applicable to every pulse-limited altimetry satellite mission
without requiring any deeper knowledge about mission specific details. Moreover, it can be assumed
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that the developed approach also works for SAR altimetry waveforms if the waveform feature space
is adapted adequately. Additionally, the presented method can be adapted to a number of open
water detection or waveform classification tasks, e.g., for the identification of lake returns [33] or in
inundation areas.

In order to evaluate the classification results, a comparison with SAR images is performed.
In contrast to previous studies, the present validation relies not only on visual and manually selected
examples, but also on a larger set of images and an automated comparison procedure. The comparison
procedure allows for a quantitative assessment of the classification performance by assigning the
altimetry observations to open water and sea ice returns and checking them against processed SAR
images that indicate sea ice and open water areas. We reach consistency rates of 70.7% for Envisat and
76.9% for SARAL. However, it has to be underlined that the quantitative comparison results of Envisat
and SARAL are not directly comparable because of significant differences in the underlying sensor
and instrument characteristics of the available SAR missions.

When interpreting the comparison results, different sources of inconsistencies have to be
considered, e.g., effects from the altimetry data and their classification procedure and uncertainties in
SAR image processing as well as in the ice-motion correction. The Fram Strait and the Greenland Sea
are one of the most dynamic areas on Earth. Fast changing sea ice conditions due to short, periodic
melting and refreezing as well as rapid climate change make it hard to provide a high reliability in the
comparison as well as in the altimetry classification results. Local phenomena, such as melt ponds (i.e.,
open water pools on the sea ice surface) and their impacts on the open-water detection, have to be
investigated. Over specific sea ice types, altimetry waveforms show ambiguities, which prevents a
clear attribution to sea ice or open water returns. In particular, specular thin and flat ice produces very
specular returns resembling open water returns. In contrast, big ice floes or landfast ice can imitate
ocean-like returns due to similarities in ocean surface roughness and reflectivity.

Further improvements of the classification method are possible. In particular, saturated SARAL
waveforms have to be included in the classification process. In addition, the application of more recent
sea ice motion data in combination with Sentinel-1B data could lead to a better spatio-temporal ratio
within the validation process.

A reliable classification is an indispensable requirement for a meaningful estimation and an
efficient computation of sea surface heights in the Arctic by retracking only open water waveforms.
In addition to Envisat and SARAL, more pulse-limited (e.g., ERS-1/2) as well as delay-doppler
altimetry data (e.g., CryoSat-2, Sentinel-3A) may be employed in the classification process and, thus,
contribute to the generation of a long-term sea level record for the Arctic ocean.

Supplementary Materials: The following folder and figures are available online at www.mdpi.com/2072-4292/
9/6/551/s1, Figure S1 displays SARAL waveform clusters, Figures S2–S6 and folder S2 contain Figures 7 and 8
showing the classification results without class assignment.
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