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Abstract
The tasks of exploring unknown workspaces and recognizing objects based on their physical properties are challenging for
autonomous robots. In this paper, we present strategies solely based on tactile information to enable robots to accomplish
such tasks. (1) An active exploration approach for the robot to explore unknown workspaces; (2) an active touch objects
learning method that enables the robot to learn efficiently about unknown objects via their physical properties (stiffness,
surface texture, and center of mass); and (3) an active object recognition strategy, based on the knowledge the robot has
acquired. Furthermore, we propose a tactile-based approach for estimating the center of mass of rigid objects. Following the
active touch for workspace exploration, the robotic system with the sense of touch in fingertips reduces the uncertainty of the
workspace up to 65 and 70% compared respectively to uniform and random strategies, for a fixed number of samples. By
means of the active touch learning method, the robot achieved 20 and 15% higher learning accuracy for the same number of
training samples compared to uniform strategy and random strategy, respectively. Taking advantage of the prior knowledge
obtained during the active touch learning, the robot took up to 15% fewer decision steps compared to the random method to
achieve the same discrimination accuracy in active object discrimination task.

Keywords Active tactile object localization · Active tactile object exploration · Active tactile learning

1 Introduction

1.1 Motivation

Touch plays an important role in our daily lives, from per-
ceiving the environment to identifying, learning about and
interacting with objects. Compensating for a lack of touch
through other senses is difficult. For robotic systems that
interact in dynamic environments, recognizing objects via
their physical properties (such as surface texture, stiffness,
center of mass, and thermal conductivity) is crucial. How-
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ever, this is difficult to achieve even with advanced vision
techniques, which are often marred by the occlusion, poor
lighting situations, and a lack of precision.

As an alternative, tactile sensing can provide rich and
direct feedback to the robotic systems from abundant simul-
taneous contact points (Robles-De-La-Torre 2006). Over the
past decade, tactile sensing devices have evolved from being
located only on the fingertip to covering the full hand, even
the whole body, of a humanoid robot. Many tactile sen-
sors with various sensing principles and technologies have
been developed, e.g., resistive (Kaltenbrunner et al. 2013;
Strohmayr et al. 2013), capacitive (Schmitz et al. 2011;
Ulmen and Cutkosky 2010), optical (Ohmura et al. 2006),
piezoelectric (Dahiya et al. 2009; Papakostas et al. 2002),
acoustic (Denei et al. 2015; Hughes and Correll 2015) and,
recently, organic bendable and stretchable (Lee et al. 2016;
Nawrocki et al. 2016; Yogeswaran et al. 2015), etc. However,
in contrast to the rapid progress of tactile sensor advance-
ment, considerably less attention has been given to research
in tactile information processing andmodelling (Kaboli et al.
2015a). The performance of tactile systems depends not only
on the technological aspects of sensory devices, but also on
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Autonomous Robots

the design of efficient tactile perception strategies, robust fea-
ture descriptors, and tactile learning methods (Dahiya et al.
2010).

1.2 Background

Haptically accessible object characteristics can be divided
into three general classes: geometric information, material
properties, and inner properties (e.f. center of mass). Robots
can recognize the geometric properties of objects by perceiv-
ing their shapes via either proprioceptive receptors (Jia and
Tian 2010; Liarokapis et al. 2015; Liu et al. 2012, 2013)
or cutaneous receptors, by exhaustively touching a single
object with known orientation and location in the workspace
(Jamali et al. 2016; Liu et al. 2015; Nguyen and Perdereau
2013;Yi et al. 2016). The objectmaterial can be characterized
and identified by textural properties, stiffness, and thermal
conductivity. The robot can sense the textural properties of
objects using cutaneous tactile receptors by moving finger-
tips on the objects’ surfaces (Chathuranga et al. 2013; Chu
et al. 2013; Dallaire et al. 2014; Giguere and Dudek 2011;
Jamali and Sammut 2011; Watanabe et al. 2013). The stiff-
ness of objects can also be measured by using fingertips, in
this case, by pressing objects (Lederman 1981). The thermal
conductivity can be perceived by making lightly contact the
finger with the objects’ surfaces (Bhattacharya and Mahajan
2003).

The center of mass of rigid objects is an intrinsic physical
property of the object (Yao et al. 2017). Consider several rigid
objectswith the samephysical properties, such as shape, stiff-
ness, and textural properties, but different centers of mass. In
this case, we can discriminate objects among each other via
their centers of mass.

Previous work has been done for estimating the center of
mass of objects; however, to the best of our knowledge, no
work has applied the center of mass property as an object
feature in object classification and recognition tasks.

Atkeson et al. (1985) used a force/torque sensor to esti-
mate the center of mass of a rigid load by solving dynamic
equations of the robotic system during a manipulation
task. This approach has high computational complexity and
requires an accurate dynamic model of the robotic system.
Yu et al. (2004, 2005) estimated the center of mass of a
target object by determining at least three planes (or lines)
that pass through the center of mass of the object. The robot
tips the object repeatedly, and in the meantime, it estimates
the function of the plane (or the line) using the current fin-
gertip position and measured force signals. However, these
approaches require the estimations of the fingertip position
and force vectors of high accuracy. In addition, the stability
of the target object has to be guaranteed as it is being toppled,
which is often hard to satisfy in the real experiment. In this
paper, we propose a purely tactile-based approach to explore

the center of mass of target object, and formulate the cen-
ter of mass information as an intrinsic feature of the object,
which can be applied in object recognition tasks.

We humans use our sense of touch to actively explore our
environment and objects through their various physical prop-
erties such as surface texture, stiffness, shape, and thermal
conductivity (Kaboli et al. 2017b). To actively learn about
objects through their physical properties and efficiently dis-
criminate among them, humans strategically select tactile
exploratory actions to perceive objects’ properties (e.g. slid-
ing to sense the textural properties, pressing to estimate the
stiffness, and static contact tomeasure the thermal conductiv-
ity). Active tactile exploration is a complex procedure which
requires efficient active tactile perception and active tactile
learning methods.

Previous researchers have used various robotic systems
with different tactile sensors to passively explore and clas-
sify objects via their physical properties (Friedl et al. 2016;
Hu et al. 2014; Lepora et al. 2010; Mayol-Cuevas et al. 1998;
Mohamad Hanif et al. 2015; Sinapov et al. 2011; Song et al.
2014). They used a predefined number of exploratory move-
ments to sense physical properties of objects having fixed
positions and orientation in a known workspace. Therefore,
the autonomy of the robot is limited.

In this sense, active tactile exploration has shown great
potential for enabling the robotic system with more natural
and human-like strategies (Saal et al. 2010). The autonomous
robot should be able to select and execute the exploratory
actions that provide the robotic system with the maximum
amount of information. In this regard, several approaches
were proposed to actively discriminate among objects using
their physical properties. For instance, Xu et al. (2013)
used the index finger of the Shadow Hand with the BioTac
sensor to collect training data by executing three different
exploratory actions five times on each experimental object
(pressing for stiffness, sliding for surface texture, and static
contact for thermal conductivity). In Xu’s work, they placed
objects under the index finger, and apply a sequence of
exploratorymovements to construct observationmodels. The
base and wrist of the dexterous robotic hand were fixed on
a table, and all joints in the hand and wrist were deactivated
(except two joints of the index finger). These physical con-
straints therefore resulted in an approach which is unnatural
and unscalable for robotic tactile exploration. In Lepora et al.
(2013), a biomimetic fingertip was controlled to slide along
ten different surfaces to perceive their textural properties. In
thiswork, themeasurement of surfaces’ positionswere noisy.
In order to actively discriminate among the surfaces under
position uncertainty, the authors constructed the observation
models as well as the position of the surfaces offline by uni-
formly sampling the collected training data of each surface
texture and each possible surface position under a range of
contact depths. In another study (Schneider et al. 2009), the
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Weiss Robotics sensor was mounted on the end-effector of
a robot arm to classify 21 objects. They created a database
of tactile observations offline by grasping each object with
a pre-designed trajectory. The authors managed to actively
recognize objects task using tactile images, which were pro-
duced by strategically selecting the height of the robot finger
and grasping the objects.Martins et al. (2014) aimed at devel-
oping a general active haptic exploration and recognition
strategy for heterogeneous surfaces. The experiments were
conducted to search and follow the discontinuities between
regions of surfaceswith two differentmaterials. However, the
experiments were only carried out in simulation using uni-
formly collected data offline. Tanaka et al. (2014) combined
Gaussian process latent variable and nonlinear dimension-
ality reduction method to actively discriminate among four
cups (a paper cup, a steel cup, disposal cup, and ceramic
cup). The authors collected 400 training data uniformly using
three fingers of the Shadow hand. In this study, the Shadow
hand was fixed and the objects were placed on a turntable.
The observation model was constructed with action features
using the index finger with 2-DOF to generate inflective
and horizontal movements on the objects. The authors could
discriminate four cups in real experiments and 10 different
cups in simulation. Since the proposed method requires a
huge amount of training data, the high dimensional action
space makes the optimal action search and model learning
intractable.

In the above-mentioned work, the location and orien-
tation of the experimental objects in the workspace were
known. Moreover, in order to construct the observation
models, the training samples were collected uniformly and
offline. To increase the autonomy of a robotic system for
the tactile-based object recognition, the robot should be able
to autonomously explore an unknown workspace, actively
detect the number of objects, as well as estimate their posi-
tions and orientations in the workspace. Furthermore, the
informativeness of the training data collected with each
object is different. Some objects have distinctive tactile prop-
erties, which makes it easy to discriminate them among each
other. Therefore, collecting too many training samples with
such objects is redundant; whereas for objects, whose phys-
ical properties are similar and thus can be easily confused
with other objects’ properties, it is necessary to collect suf-
ficient samples to construct reliable and robust observation
models. Moreover, in order to efficiently discriminate among
objects, the autonomous robot should strategically select and
execute the exploratory action that provides the robot with
the maximum amount of information.

1.3 Contribution

To tackle the aforementioned problems, we propose a tactile-
based probabilistic framework for active workspace explo-

ration and active object recognition. Following our proposed
framework, the robotic system autonomously and efficiently
explores an unknown workspace to collect tactile data of
the object (construct the tactile point cloud dataset), which
are then clustered to determine the number of objects in the
workspace and estimate the location and orientation of each
object. The robot strategically selects the next position in
the workspace to explore, so that the total variance of the
workspace can be reduced as soon as possible.

Then the robot efficiently learns about the objects’ phys-
ical properties, such that with a smaller number of training
data, reliable observation models can be constructed using
Gaussian process for stiffness, surface texture, and center of
mass.

Taking advantage of the constructed observation models,
the robotic system efficiently discriminate among objects and
search for specified target objects by strategically selecting
the optimal exploratory actions to apply on objects to per-
ceive the corresponding physical property (sliding to sense
textural properties, pressing to measure stiffness, lifting to
determine center of mass).

Furthermore, for the first time, the center of mass of
rigid objects is considered as an intrinsic property for object
learning and discrimination. In this regard, we propose a
tactile-based algorithm to enable robotic systems to estimate
the center of mass of rigid objects.

Our contribution is summarized in four aspects:

(a) We propose a strategy based on Gaussian process
regression method to enable robotic systems equipped
with tactile sensors to autonomously explore unknown
workspaces, in order to localize and estimate the orien-
tation of objects within it.

(b) We propose amethod for autonomous systems to actively
learn about the objects based on their physical proper-
ties, and to construct Gaussian process based observation
models objects with the least required number of training
samples.

(c) We propose a method so that the robot can efficiently
discriminate among objects, or search for target objects in
a workspace that contains unknown objects, by selecting
a sequence of exploratory movements to apply on the
objects.

(d) We propose a tactile-based method to explore the center
of mass of rigid objects.

2 System description

2.1 Robotic gripper

Weused theRobotiq 3-FingerAdaptiveRobotGripperwhich
is an under-actuated industrial gripper with three fingers (A,
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Fig. 1 The experimental setup. A Robotiq three-finger adaptive robot
gripper is equipped with OptoForce sensors and mounted on a UR10
robotic arm. In this figure, five experimental objects are selected and
placed in the workspace for illustration purpose. In experiments, differ-
ent experimental objects can be placed in the workspace with various
locations and orientations

B, and C) (see Fig. 1). Finger B and C were aligned on the
same side of the gripper, and they moved in the opposite
direction as finger A. The position range of each of the grip-
per’s fingers was divided into 255 counts, with 0 indicating
fully open, and 255 fully closed. Thus, the position of the
finger was represented using position counts in this paper.

2.2 Robotic arm

We mounted the gripper at the end of the UR10 (Universal
Robots) robotic arm (6-DoF) (see Fig. 1), which was con-
trolled to collaborate with the gripper, in order to explore the
workspace and interact with objects.

2.3 Tactile sensors

Three channels of the OptoForce OMD-20-SE-40N 3D tac-
tile sensor set were installed on each fingertip of the gripper.
The OptoForce sensor can measure forces in three direc-
tions, using infrared light to detect small deformation in the
shape of the outer sensor surface. It has a nominal capacity
of 40N in ZSCF direction, and ± 20N in both XSCF and YSCF
directions. In this paper, we discuss forces in two coordinate
frames: world coordinate frame (WCF) (see Fig. 3) and sen-
sor coordinate frame (SCF) (see Fig. 1), both of which are
standard Cartesian coordinate systems. In SCF, we discuss
the tangential force vector f Ti and the normal force vector
f Ni

exerted on the grasped object. The value of tangential
force exerted by the i th finger is calculated as

| f Ti | =
(
| f xi |2 + | f yi |2

)−1/2
(1)

The force vectors in SCF are represented as f xi , f yi , and
f zi with the subscript i denoting the index of the finger,
i = 1, 2, 3, correspond to Fingers A, B, and C, respectively.

3 Proposed framework

Our proposed probabilistic tactile-based framework (Fig. 2)
consists of three parts: (1) an active touch approach for
exploring the unknown workspace (Fig. 2a), (2) an active
touch method for efficiently learning about objects’ physi-
cal properties (surface texture, stiffness, and center of mass)
(Fig. 2b), and (3) an active object discriminating strategy
via objects’ physical properties and an active target search
method (Fig. 2c).

First, taking advantage of the Gaussian process regression
(GPR), the robot efficiently explores the workspace from dif-
ferent directions, by strategically selecting the position to
explore, so that the total uncertainty of the workspace can be
reduced as quickly as possible. The tactile data captured dur-
ing exploration are then clustered in order to determine the
number of objects in the workspace. For each cluster, a min-
imum bounding box is calculated to estimate the location,
orientation, and geometric center of each object. After that,
the robot starts learning about objects via their physical prop-
erties by strategically selecting the objects to explore and the
physical properties to perceive. To do this, the robot moves to
the selected object and applies the corresponding exploratory
action on the object (sliding to sense the textural properties,
pressing to estimate the stiffness, lifting to determine the cen-
ter of mass (CoM)) in order to perceive its physical property.
Later on, the robot exploits the perceived physical property
of the explored objects and constructs observation models
using the Gaussian process classification (GPC). The con-
structed observation models will then be used as the robot’s
prior knowledge for actively discriminating among objects
(Fig. 2c-1) and/or searching for the unknown target objects
(Fig. 2c-2) in the workspace. Each part of the framework will
be explained in detail in the following sections.

4 Active touch for unknownworkspace
exploration

In this section, we propose a probabilistic active touch
method for robotic system with the sense of touch to effi-
ciently explore an unknown workspace.

4.1 Problem formulation

Taking advantage of the proposed approach, the robot strate-
gically executes translationalmovements fromeach direction
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(a) (b)

(c)

Fig. 2 Our proposed probabilistic tactile-based framework consists of
three components: a an active touch method for workspace exploration;
b an active touch algorithm for efficient learning about objects’ phys-
ical properties (texture, stiffness, center of mass); c and active touch

for recognizing objects, which has two parts: c-1 an active touch for
discrimination among objects based on their physical properties; c-2 an
active touch strategies for searching a target object/s in the workspace
that contains unknown objects

into the workspace, in order to efficiently detect contact with
objects via the tactile sensors that installed on the fingertips.

The sampled points obtained during each movement are
used to construct the probabilistic observation model (con-
structed using the GPR) of the workspace from the current
exploratory direction. Among the collected sampled points,
the ones that are detected on the object surface (i.e. the robot
contacted the object before it reached the target positionof the
movement), are registered into the tactile point cloud (TPC)
dataset, which is clustered and used to localize objects after
exploration.

The GPR model guides the exploration by predicting the
next exploratory position, which is the position that has the
maximum uncertainty in the current explored workspace.
Consequently, the total uncertainty of the workspace can be
reduced as quickly as possible during exploration.

After the explorations from all possible directions are
completed, the entire TPC dataset is clustered, and then the
clustering result is used to localize and map the experimental
objects in the workspace.

4.1.1 Tactile point cloud construction

The workspace is defined as a discretized 3D mesh-grid
within the reaching capabilities of the robotic hand. Spatial
point in theworkspace is denoted as pn = (xn, yn, zn), pn ∈
R
3, n ∈ N,1 which lies in predefined boundaries in theWCF:

xn ∈ [x, x], yn ∈ [y, y], and zn ∈ [z, z] with the underline
and overline of x, y, and z denoting the lower and upper
boundaries of the corresponding axis of the WCF, respec-
tively. The workspace can be explored from multiple direc-
tions di , i ∈ IDIR. In this work, the workspace is explored
from four directions: {di } ≡ {X+,Y−, X−,Y+}, IDIR =
{1, 2, 3, 4} with the subscript “+” and “−” representing the
positive and negative directions of the X and Y directions
of the WCF (see Fig. 3). The workspace in the direction di
is denoted as Wdi . For the exploration in each direction, the
start plane and the target plane are one pair of opposite side
faces of the workspace, and they are perpendicular to the
exploratory axis. In the exploration process, the nth action

1
R is the set of real numbers, N is the set of natural numbers.
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Fig. 3 The illustration of the active exploration process of an unknown workspace Wd4 (workspace in d4 = Y+ direction). The uncertainties
(variance) at different positions are revealed by the color. Red color represents high uncertainty, while blue color represents low uncertainty (Color
figure online)

tn ∈ R
3 is a translational movement from one position on

the start plane pstartn to the corresponding position on the
target plane pstartn , and the trajectory of tn is parallel to the
exploratory direction. After executing the action tn , an obser-
vation pobsn is obtained.

A light contact is detected as soon as the resultant force
| f RES| on the surface of the exploratory finger exceeds
a threshold, i.e. | f RES| > δ. The resultant force on the
exploratory finger is calculated as:

| f RES| =
(
| f x |2 + | f y |2 + | f z |2

)−1/2
(2)

with f x , f y , and f z being the force components in the X -
axis, Y -axis, and Z -axis of the SCF, respectively.

During the movement, if the sensor on the exploratory
finger has detected a light contact before reaching to pstartn ,
indicating the robot has touched an object on its surface,
then the current 3D coordinates of the contact position,
pobsn = pobjectn , will be recorded. However, if no light con-
tact is detected until the movement is completed, the target
position will be returned as the obtained observation, i.e.
pobsn = ptargetn .

The TPC dataset Tdi is the set of all the pobjectn collected
during the exploration of Wdi . The complete TPC of the
workspace is denoted as TW = ⋃

i Tdi .
Herewe take the exploration ofWd4 as an example to clar-

ify this procedure (see Fig. 3). In this case, the exploratory
direction is d4 = Y+, thus the y coordinates of the spa-
cial points increase along the exploratory direction. The
start plane is the X–Z plane that passes through the posi-
tions with minimum Y coordinates (points satisfy y = y),

while the target plane is parallel to the start plane and passes
through positions with maximum Y coordinates (points sat-
isfy y = y). Thus tn starts from pstartn = (xn, y, zn)

and points towards ptargetn = (xn, y, zn). If an observation
pobsn = pobjectn is obtained, it will be added into Td4 . Other-
wise, Td4 will not be updated.

4.1.2 Workspace modeling

We use Gaussian Process Regression approach to con-
struct a probabilistic model of the workspace in the current
exploratory direction to guide the exploratory process. A
brief introduction of theGaussian process (GP)method (Ras-
mussen and Williams 2006) can be found in Sect. 11.1.

We explain the application of GP in exploration task
through the example introduced in Sect. 4.1.1.

For the exploration of Wd4 , all points that trajectory tn
passes through have the same xn and zn coordinate, and pobsn
returns the yn coordinate, i.e. the depth of the object surface
from the start point pstartn in this direction.

We considered the single training input of the GPRmodel
gd4 , p

in
n = (xn, zn), pinn ∈ Xd4 ,Xd4 ⊆ R

2, n ∈ N, and the
corresponding training label (output): poutn = (yn), poutn ∈
Yd4 ,Yd4 ⊆ R, n ∈ N, with (xn, yn, zn) being the coordi-
nates of the observed point pobsn of the trajectory tn .

The entire training dataset of gdi is denoted as Ωdi =
{Xdi ,Ydi }. Represent the universal set of the 2D coordinate
pn all over the corresponding start plane as Xdi ; and pn =
(yn, zn) for i = 1, 3, whereas pn = (xn, zn) for i = 2, 4.

Given N pairs of training data {Xd4 , Yd4} = { pinn ,

poutn }n=1:N , the predicted distribution of target function
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gd4( p), p ∈ Xdi is denoted as ĝd4( p) ∼ GP(μ̂( p), υ̂( p)),
and the corresponding mean function and variance function
are calculated as:

μ̂( p) = k̃
T
(K + σ 2

n I)
−1y, (3)

υ̂( p) = k( p, p) − k̃
T
(K + σ 2

n I)
−1 k̃. (4)

where k :X × X �→ R is the covariance function, k̃ is the
covariance vector with its nth element indicating the covari-
ance between the test input p and the nth training data point
poutn , and y ∈ R

N is a vector of training outputs poutn . The
(i, j) entry of thematrixK represents the covariance between
i th and j th training inputs, i.e. Ki, j = k( pini , pinj ).

The predicted target p̂out for the test input p̂in subjects to
the Gaussian distribution: p̂out ∼ N(μ̂( p̂in),K + σ 2

n I), and
the probability of predicted p̂out is denoted as p( p̂out).

4.1.3 Next exploratory position selection

The contact positions pobs ∈ T are discretely distributed
points in theworkspace.Hence, a largenumber of exploratory
movements are required to obtain an authentic estimation of
the workspace, which is not data-efficient and also time con-
suming.

A strategy for selecting the next exploratory position is
necessary to reduce the total number of non-informative
exploratory samples. In order to select the next sample posi-
tion, several approaches are used, such as Jamali et al. (2016)
andMartinez-Cantin et al. (2007). These approaches explore
the unknownarea and exploit the information from the known
region in the workspace. In this paper, we focus on the uncer-
tain region of the workspace during exploration in order to
reduce the total uncertainty of the workspace model as soon
as possible. Considering the example discussed in Sect. 4.1.2,
aGPRmodel gd4 is trained tomake a prediction of poutn = yn ,
given input pinn = (xn, zn).

We propose using the variance predicted by the GPR
model, Var(gdi ( p)), since it indicates the uncertainty in
the current model at input position p, p ∈ Xdi . In addition,
the uncertainty of the workspace Wdi modeled by the GPR
model gdi can be measured by its total variance, defined as∑

p∈Xdi
Var(gdi ( p)).

To reduce the total variance as soon as possible, we select
the next exploratory position p∗ = (xn+1, zn+1) as the one
with the largest variance in the present GPR model:

p∗ = argmax
p∈Xdi

Var(gdi ( p)). (5)

In other words, the robot explores the position p∗, which the
current trained workspace model is mostly uncertain of.

4.1.4 One-shot data collection for initializing the GPR

At the beginning of the exploration process of one direction,
the robot first samples a few uniformly located points on
the start plane to initialize the GPR model. For example, the
training dataset of the GPR model gd4 is denoted as Ωd4 =
{Xd4 ,Yd4}, which can be initialized by sampling M × N
points on the start plane, these points are represented as (x +
m

M−1 (x − x), z + n
N−1 (z − z)), m = 0, 1, . . . , M − 1, n =

0, 1, . . . , N −1. In the meantime of collecting Ωd4 , sampled
points which satisfy pobs = pobject are registered to the TPC
dataset Td4 . Then gd4 is trained using the dataset Ωd4 , as
described in Sect. 4.1.2.

4.1.5 Updating the total uncertainty of TPC

After initialization, the robot selects the next exploration
position based on the GPR prediction. As soon as the next
exploratory position p∗ = (xn+1, zn+1) is determined, the
robot moves to the start position pstartn+1 = (xn+1, y, zn+1)

on the start plane and then executes an exploratory move-
ment towards the corresponding target position ptargetn+1 =
(xn+1, y, zn+1). During the movement, the robot maintains
the orientation of the tactile sensor in the d4 direction.

If a contact on the object surface is detected during this
motion, i.e. pobsn+1 = pobjectn+1 , the current 3D position of the

sensor, pobjectn+1 = (xn+1, yn+1, zn+1), is registered to Td4 ,
and the robot immediately retreats back to the start position.
If no contact is detected, the observation pobsn+1 = ptargetn+1 is
returned (yn+1 = y).

The coordinate of the sampled point along the exploratory
direction is used as the training output (i.e. label set), while
the other two dimensions are used as training input. The
observation pobsn+1 is added into the training set Ωd4 by
appending pinn+1 = (xn+1, zn+1) into Xd4 and appending
poutn+1 = (yn+1) into Yd4 . The GPR model is updated using
the updated Ωd4 , and then the next exploratory position is
selected according to Eq. (5).

4.1.6 Stop criteria

The exploratory process in the current direction continues
until a stop criterion is satisfied. For example, when the
total uncertainty of themodel,

∑
p∈Xdi

Var(gdi ( p)), reduces
below a tolerable threshold τ . When the exploration pro-
cess terminates in one direction (di ), the robot starts the new
exploration in the next exploratory direction di+1 by follow-
ing the same procedure. The entire unknown workspace is
completely explored when the exploratory processes are fin-
ished for all Wdi .
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Algorithm 1 Active unknown workspace exploration
TPC Construction
Require: [x, x], [y, y], [z, z] � workspace description
1: for Wdi , i ∈ IDI R do
2: sample Ωdi = {Xdi ,Ydi } � Sect. 4.1.3
3: initialization: Tdi � Tdi ⊆ Ωdi
4: initialization: train GPR gdi : Xdi �→ Ydi using Ωdi �

Sect. 4.1.2
5: initialization:

∑
p∈X Var(gdi ( p)) � initialize total uncertainty

6: while
∑

p∈Xdi
V ar(gdi ( p)) > τ do

7: p∗ ← argmax
p∈Xdi

V ar(gdi ( p)) � Sect. 4.1.3

8: pobs ← execute action followingt
9: if pobs is pobject then � collected on the object surface
10: Tdi ← Tdi ∪ pobs � update TPC

11: Xdi ← Xdi ∪ pin,Ydi ← Ydi ∪ pout � update Ωdi
12: Ωdi = Xdi ,Ydi
13: train gdi using Ωdi � update the GPR model gdi
14: calculate

∑
p∈Xdi

V ar(gdi ( p)) � update total uncertainty

Objects Localization
15: TW = ⋃

i Tdi � merge TPC
16:

⋃
k Ok , k = 1, 2, . . . , No ← cluster(TW) � cluster TPC,

Sect. 4.2.1
17: for k = 1 : No do � Sect. 4.2.2
18: construct Bk � construct bounding box
19: calculate {vki }, i = 1, 2, . . . , Nv � construct set of vertices
20: calculate φk = (φk

x , φ
k
y , φ

k
z ) � estimate center of object

21: estimate lk ,dk ,hk � estimate object shape
22: estimate θk � estimate object orientation

4.2 Object localization andmapping

When the exploration of the unknown workspace is com-
pleted, the TPC of the entire workspace, TW, can be
constructed by merging all the TPCs collected in different
directions: TW = ⋃

i Tdi . We cluster all the data points in
TW to obtain the points that belong to the same object into
one category, so as to localize each object in the workspace.

4.2.1 Clustering of tactile point cloud

In order to cluster the constructed tactile point clouds we
use the mean-shift clustering method (Cheng 1995), which is
non-parametric and application-independent. Themean-shift
clustering approach does not require prior knowledge of the
number of categories, and its performance is independent
of the shape of the data clusters. After clustering, TW is
divided into No mutual exclusive subsets, denoted as TW �→⋃

k Ok, k = 1, 2, . . . , No, where No is the estimated number
of objects, andOk contains all the points in the kth cluster, i.e.
belong to the kth object. For the sake of increasing robustness
against the noise, aminimumnumber of data points contained
in one category is assigned. If a cluster Ok contains fewer
data points than this lower limit, points in this cluster are
considered as noise and this cluster will be discarded.

4.2.2 Object localization

For estimating the location and geometric measurement of
each clustered object, a 3D minimum bounding box Bk is
calculated for each point set Ok, k = 1, 2, . . . , No. The
minimum bounding box is the smallest enclosing volume
that contains all the points in the data set. The vertices
of each Bk are represented as: vki = (vkix , v

k
iy

, vkiz ), i =
1, 2, . . . , Nv , where Nv = 8 in this work. The geometric
center of the kth object, φk = (φk

x , φ
k
y, φ

k
z ), is calculated

as:φk = (
∑

i v
k
ix

/Nv,
∑

i v
k
iy

/Nv,
∑

i v
k
iz
/Nv), therefore the

object is located at (φk
x , φ

k
y) on the reference plane (the X–

O–Y plane) of the workspace.
The geometric measurement of the object, i.e. length lk ,

width dk , and height hk can be roughly estimated by calculat-
ing the Euclidean distance between vertices on the reference
plane (for lk and dk, lk > dk) and in the Z direction (for hk).
The orientation of the kth object is θk ∈ [0, π ], defined as
the angle that is included between its long edge (the lk edge)
and the positive direction X axis of the WCF. As soon as
the geometric information (lk, dk , and hk) of the kth object is
determined, an object coordinate frame (OCF) can be defined
with respect to the object. As an example, to defined the OCF
for a cuboid object, the origin can be assigned as one vertex
of the object, and the X ,Y , and Z axes of the OCF can be
defined as along the length (lk), depth (dk), and height (hk)
edge of the object’s bounding box.

The entire active exploration process of the unknown
workspace is summarized in Algorithm 1.

5 Objects’ physical properties perception

In tactile object recognition problem, the physical properties
of objects are perceived by executing various exploratory
actions on the objects. For instance, a robotic system with
tactile sensing presses an object to obtain its stiffness, slides
on the object’s surface to perceive its textural property, and
lifts the object at several positions to determine its center
of mass. If various exploratory actions are executed on the
same objects, multiple physical properties can be sensed by
the robot. In this part, we introduce our approaches to per-
ceive the physical properties of the objects, namely stiffness,
surface texture, and center of mass.

5.1 Exploratory actions and tactile feature
descriptors

5.1.1 Stiffness

The robot perceives the stiffness of objects by pressing the
tactile sensors against the objects’ surfaces (see Fig. 4a). In
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Fig. 4 Exploratory actions. a Pressing, to measure the stiffness. b Sliding, to perceive the textural property. c Lifting, to check if the current position
is the CoM

this study, by exploiting the geometric information of target
object computed during workspace exploration (Sect. 4), the
robot first moves to the target object and adjusts the orien-
tation of the gripper to keep the finger facing the object’s
surface. Then, the gripper establishes a light contact with the
object by all three fingertips. The light contact is detected
as soon as the measured resultant forces ( f RESr ) of all tactile
sensors exceed a threshold ( ft ), i.e. f RESr > ft , r = 1, 2, 3.
Afterwards, the gripper presses the object by closing all its
fingers simultaneously for Nε extra position counts. For each
finger r , the difference in its resultant forces recorded before
and after pressing, Δ f RESr , is used as an indication of the
stiffness on the local contact area. The difference value aver-
aged over all fingers serves as a measurement of stiffness of
the object.

SOi =
Nr∑
r

Δ f RESr . (6)

with the subscript Oi indicating the i th object, and Nr the
total number of tactile sensors in contact with the object.

5.1.2 Surface texture

When the robot slides its fingertips on the surface of an object,
it generates vibration (see Fig. 4b). The caused vibration can
be measured by each tactile sensor on the fingertip fnv (nv =
1, 2, . . . , Nv , is the number of output signals from one tactile
sensor) to sense the textural property of the object.

In this regard, we previously proposed a set of novel tac-
tile descriptors to extract the robust tactile information from
the output of the tactile sensors (Kaboli et al. 2015b). The
proposed descriptor provides the statistical properties of the
tactile signals in the time domains. By taking the advan-
tage of our proposed descriptor the robot can extract robust

tactile features from the output of the both stationary and
non-stationary tactile signals (regular and irregular surface
texture). The proposed descriptors are called Activity,Mobil-
ity, and Complexity.

The Activity (Eq. 7) is the total power of a signal. The
Mobility parameter (Eq. 8) is the square root of the ratio of
the variance of the first derivative of the signal to that of the
signal. The Complexity (Eq. 9) is the second derivative of the
variance and shows how the shape of the signal is similar to a
pure sine wave. If the signal is more similar to the sine wave,
the complexity value converges to 1.

Act( f nv
) = 1

N

N∑
n=1

( fn,nv − f̄nv )
2
. (7)

Mob( f nv
) =

(
Act( d fnv

dn )

Act( f nv
)

)−1/2

. (8)

Com( f nv
) = Mob( d fnv

dn )

Mob( f nv
)
. (9)

Tactile object exploration first requires an initiation of a
static contact with the surface of objects by a fingertip or in
general sensitive skin and then sliding the fingertip or any
body part/s (with sensitive skin) across the surface of objects
(dynamic motion). The transition from the static state to the
dynamic state (and vice-versa) during tactile texture explo-
ration depends very much on the frictional properties of the
surface texture of objects. Robotic systems (for instance a
fingertip) need to apply more force to transit from the static
state to the dynamic state in order to explore the surface of
objects with a high frictional coefficient. Such a transition
affects the outer layer of the robotic skin (it is usually made
of materials such as silicone). This results in deformation of
the outer layer of the robotic skin, which generates linear
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or/and nonlinear correlation between outputs of tactile sen-
sors in the outer layer of the tactile sensor or robotic skin.
Therefore, we proposed in (Kaboli et al. 2014; Kaboli and
Cheng 2018) to consider the linear correlation (Eq. 10) and
nonlinear correlation coefficients (Eq. 11) between tactile
signals/sensors as additional tactile features. These features
indirectly provide information about the frictional properties
of the surface of objects with the robotic systems during the
exploratory procedure.

In all equations, fnv and fns are the input signals, N is the
number of data samples, and Rk is the difference between the
rank of fnv and the rank of fns .

Lcor
fnv ,fns

=
∑N

n=1 ( fn,nv − f̄nv ) · ( fn,ns − f̄ns )

σ (fnv ) · σ(fns )
. (10)

Ncor
fnv , fns

= 1 − 6
∑N

n=1 (Rk)
2
n

N (N 2 − 1)
. (11)

Agrip =
⎡
⎣ 1

Nv

nv∑
nv=1

Act( fnv )
FA ,

1

Nv

Nv∑
nv=1

Act( fnv )
FB ,

1

Nv

Nv∑
nv=1

Act( fnv )
FC

⎤
⎦ (12)

Mgrip =
⎡
⎣ 1

Nv

Nv∑
nv=1

Mob( fnv )
FA ,

1

Nv

Nv∑
nv=1

Mob( fnv )
FB ,

1

Nv

Nv∑
nv=1

Mob( fnv )
FC

⎤
⎦ (13)

Cgrip =
⎡
⎣ 1

Nv

Nv∑
nv=1

Com( fnv )
FA ,

1

Nv

Nv∑
nv=1

Com( fnv )
FB ,

1

Nv

Nv∑
nv=1

Com( fnv )
FC

⎤
⎦ (14)

Lgrip =
⎡
⎣ 1

NsNv

Ns∑
ns=1

Nv∑
nv=1

Lcorr( fnv , fns )
FA ,

1

NsNv

Ns∑
ns=1

Nv∑
nv=1

Lcorr( fnv , fns )
FB ,

1

NsNv

Ns∑
ns=1

Nv∑
nv=1

Lcorr( fnv , fns )
FC

⎤
⎦ (15)

Ngrip =
⎡
⎣ 1

NsNv

Ns∑
ns=1

Nv∑
nv=1

Ncorr( fnv , fns )
FA ,

1

NsNv

Ns∑
ns=1

Nv∑
nv=1

Ncorr( fnv , fns )
FB ,

1

NsNv

Ns∑
ns=1

Nv∑
nv=1

Ncorr( fnv , fns )
FC

⎤
⎦ (16)

Dtotal = [
Agrip; Mgrip; Cgrip; Lgrip;Ngrip

]
(17)

In this study, we adapted our proposed tactile descriptors
to extract robust tactile information from the output of the
three-axis OptoForce tactile sensor (Eqs. 12, 13, 14), and
(Eqs. 15, 16). The final proposed feature descriptors for the
robotic system with three fingers (FA, FB, and FC ) and each
fingertip with a three-axis tactile sensor (nv = 1, 2, 3; Nv =
3 is the number of output signal from one tactile sensor) can
be written as Eq. (17).

Thefinal feature descriptor (Eq. 17) is the concatenation of
all extracted features as one feature vector. The final feature
vector Dtotal has 15 data samples.

5.1.3 Center of mass

TheCoMof a rigid body is a constant positionwith respect to
the object. In this work, we present a tactile-based approach
to determine the CoM of the target object via lifting actions.

Think of the process of lifting an object, for example, a
steelyard. The steelyard can only maintain its balance (in the
equilibrium state) during lifting, if and only if the resultant
force’s line of application passes through its CoM. In this
case, two conditions should be satisfied, i.e. the force condi-
tion and the torque condition, which state that both resultant
force and resultant torque applied on the lifted object are
zero.

We show that in a three-contact-point case, both force and
torque conditions can be verified via tactile-based approaches
by taking advantage only of the force signals measured on
the contact surfaces, and the determination of the CoM of the
target object (herewe take the 1DCoMas an example) can be
formulated as the problem of searching for a lifting position
on the object, at which the conditions for equilibrium are
satisfied.

A. Linear slip detection for force condition verification

Consider a target object that lying on the reference plane
is grasped by the robotic gripper on its side faces and then
slowly lifted up for a distance Δh. The applied lifting force
(the force component in the gravitational direction) balances
the object’s weight and the other applied external forces (e.g.
support force from the reference plane, if exists). When the
object is lifted up and stays at a target height, it will not slip
out of the gripper (linear slip does not happen on the contact
surface), as long as the resultant force applied on the object is
zero, i.e. the force condition is satisfied. The force condition
should be satisfied to guarantee that the object can be stably
lifted to a target height.
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We verify the force condition by detecting linear slip of
the object, which can be realized bymeasuring the increasing
rate of lifting force on the contact point (Kaboli et al. 2016b).
The lifting force fL on one contact point is the component of
the applied result force that decomposed in the Z direction
of the WCF. A linear slip is detected as soon as the value of
lifting force applied on the contact surface fL has increased
by a percentage ε within a short time period of Δt :

| fL(t + Δt) − fL(t)| > ε · | fL(t)|. (18)

The robotic gripper regulates its applied force by detect-
ing linear slips during the lifting process, in order to satisfy
the force condition. In application, the gripper first closes its
fingers compliantly until all the fingertips are in light con-
tact with the object’s surface. Then the robot slowly lifts the
object to a target height. If the object has slid out of the grip-
per during this process, or if a linear slip is detected after
the object has been lifted to the target height, the grasping
force is considered insufficient. Then the robot lays down
the object, opens the gripper, re-grasps the object with an
increased grasping force, and then lifts up the object again.
The robot repeats this procedure until the grasped object can
be lifted up to the target height and held stably (no linear slip
is detected). Then the force condition is considered satisfied,
and the robot proceeds to check the torque condition.

B. Object rotation detection for torque condition verification

If the applied resultant torque is not zero, the grasped object
will rotate as it is being lifted up, i.e. rotational slip happens
on the contact points. However, to the best of our knowl-
edge, rotational slip on one single contact point can hardly
be detected based solely on the force signal. Thus, in a two-
contact-point grasp case, the rotation of the grasped object
cannot be detected based on rotational slips on the contact
area. We show that based on force signals, it is possible to
detect the rotation of the lifted object with at least three con-
tact points (denoted asA,B, andC), amongwhich twocontact
points (e.g. B and C) are aligned on the same side of the
grasped object and close to each other, while opposite to the
other one (e.g. A).

We propose to detect the rotation of the object by mea-
suring the similarity between frictions measured on different
contact points during lifting.

The cross-correlation of two jointly stationary series x and
y is defined as

ρx y = cov(x, y)
σxσ y

(19)

with cov(x, y) = E[(x − x̄)( y − ȳ)T] being the cross-
covariance of x and y, x̄ and ȳ being the vectors composed of

expected values of x and y, respectively; σx and σ y to denote
the standard deviation of x and y. The cross-correlation ρx y

is a normalized value within [− 1, 1], thus it can also be
applied on objects of different textures and stiffness, even if
the change of contact properties may result in different abso-
lute values of the friction. The closer ρx y to 1, the higher the
similarity between x and y.

In this case, we focus on rigid objects, and we assume that
during the lifting process, the three contact positions satisfy
the symmetry property that B and C are symmetrical with
respect to A, i.e. A, B, and C formulate an isosceles triangle.
As a result, same lifting forces should be applied on B and
C (or in other words B and C should have balanced the same
linear frictions) if the object is lifted at its CoM.We represent
the time series of frictions recorded on each contact points
of A, B, and C as f A, f B , and f C , respectively. The lifting
position is represented by position A. The torque condition
is considered to be satisfied if ρBC is higher than an expected
similarity level γ (see Fig. 5a):

ρBC ≥ γ, γ ∈ (0, 1]. (20)

If both force and torque conditions are satisfied, the current
lifting position can be estimated as the CoM.

C. CoM exploration

TheCoM is a constant 3Dposition in the correspondingOCF.
Here we explain the exploration of the 1D CoM component
along the X -axis of the OCF (referred to as the exploratory
axis) as an example.

For searching the 1D CoM component, we propose to use
the binary search algorithm, which is the 1D optimal search
algorithm with a computational complexity of O(log2 Ns)

for maximum Ns sampling points.
We denote the cross-correlation of f A and f B as ρAB ,

the cross-correlation of f A and f C as ρAC . At different side
of the real CoM, ρAC and ρAB show the contrary numerical
relationship (see Fig. 5b). It reveals the fact that between two
adjacent contact points (B and C), the one that is closer to the
real CoM balances larger friction. According to this relation-
ship, the robot determines the exploratory range of the next
lifting, thus the sequence of lifting positions is guaranteed
to converge to the real CoM of the object. For example, if
ρAB > ρAC , according to the binary search algorithm, the
exploratory range of the next action is determined as one of
the bisected ranges, which is closer to B while further away
from C. The robot then lifts the object at the middle of this
exploratory range.

D. CoM feature extraction

The length of the object along the exploratory axis can be
segmented by the corresponding CoM component into two
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Fig. 5 Illustration of the cross-correlation between force signals
sequences recorded during the lifting process at different lifting points.
The target object was lifted up for a height Δh = 30mm at 41 sequen-
tial positions along its length edge, and at each lifting position, the
measured sequences of frictions from contact points A, B, and C , were
recorded during the lifting process. The abscissa scale denotes the lift-
ing positions sequentially distributed along the object, from one tail (1)

to the other tail (41). The ordinate scale represents the calculated cross-
correlation of signal sequences. a The cross-correlation ρBC is used to
determine if the corresponding lifting position can be determined as
the real CoM. γ represents the threshold of similarity, above which the
current lifting point can be estimated as the CoM. b The relationship of
ρAB and ρAC is used to guide the selection of the next lifting position

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6 The analysis of lifting forces at different lifting positions on the
length edge of a target object. a The X, Y, and Z axes of the object coor-
dinate frame (OCF) are defined along the length edge, depth edge, and
height edge of the object, respectively. a–d The robot lifts object at dif-
ferent positions. The real CoM of the object is marked by the red ribbon

in each figure. e–h The sequence of corresponding lifting force signals
from each contact point during lifting process. If the object is lifted
almost at its CoM (d), the frictions measured on the contact points on
the same side are almost the same (h), owe to the positional symmetry
of contact points B and C

parts. In order to extract the CoM as an object feature that is
independent of the position and orientation of the object, we
represent the CoM feature as a ratio of the shorter segment
(indicated by the subscript s) to the longer part (indicated by
the subscript l) (see Fig. 6d). For example, the CoM property
of a 3D object can be formulated in the length-depth-height
order:

η = (ls/ll, ds/dl, hs/hl). (21)

Therefore, η is constant for rigid objects, and each com-
ponent of η lies in the range of (0, 1].
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In this paper, only the CoM component along the length
edge (1D, along the X -axis of the OCF) is considered. To
explore the CoM, the robot moves its end-effector above
the centroid of the target object, adjusts its orientation, and
lifts the object at determined positions sequentially along its
length edge. The robot first regulates its grasping force to
satisfy the force condition. As long as the object can be lifted
and held stably without linear slip, the robot records the force
signals while lifting the object for a distance Δh, and ana-
lyzes the cross-correlation of signal sequences to determine
if the current lifting position can be estimated as the CoM.
If not, the robot selects the next lifting position based on the
relationship of signals (Sect. 5.1.3). In thiswork, the explored
CoM feature η is denoted as one single scalar: η = ls/ll.

6 Active touch for object learning (ATOL)

In this section, we describe our proposed probabilistic
method for active touch object learning method (ATOL).
Our proposed algorithmenables robotic systems to efficiently
learn about objects via their physical properties such as sur-
face texture, stiffness, and center of mass properties and
to correspondingly construct the observation models of the
objects (see Fig. 2b).

6.1 Problem definition

Suppose the robot have explored the unknown workspace
and found N objects O = {oi }Ni=1 and then determined their
poses. Now, the robot is asked to learn about the objects via
their physical properties. We denote the physical properties
of objects byK = {k j }Ki= j . These objects might have similar
physical properties, for instance similar stiffness, while some
might have quite different properties, for example different
center of mass and /or texture.

In this situation, the robot’s task is to efficiently learn about
objects by means of their physical properties with as few
training samples as possible and to efficiently construct the
reliable observation models of the objects. Since the objects
with the similar properties cannot be easily discriminated
among each other, the robot should autonomously collect
more training samples with these objects.

The active touch-based object learning problem (ATOL)
is formulated as a standard supervised learning problem for
multi-class classification, where each object oi is consid-
ered as a class; for each physical property k j , a probabilistic
classifier is efficiently constructed by iteratively select-
ing the “next object to explore” and the “next physical
property to learn”, in order to collect the next training sam-
ple.

In ATOL algorithm the one versus all (OVA) Gaussian
Process Classifier (GPC) is used to construct observation

models of objects. In this case, the target (or label) set Y
contains integers indicating the labels of input data, i.e.Y =
{1, 2, . . . , N }, for N possible target classes in total. Each
target label is mapped to a vector vy ∈ R

N . In the vector vy ,
all entries are set to − 1 except the yth entry which is set to
1. Then the function relation that maps the input data X into
the classes Y is learned as: f : X �→ Y.

GPC estimates the probability of each target label p(y|x̃)

for a test data point x̃ by f (x̃), and then assigns it to the class
with the largest predicted probability:

ỹ = argmax
y∈Y

f (x̃) (22)

In this study, we used the RBF as kernel function Eq. (40)
in Sect. 11, and the hyper-parameters are selected by cross-
validation.

6.2 Methodology

6.2.1 One-shot tactile data collection

To start learning about objects via their physical proper-
ties, the robot first constructs a small set of training data
S = {Sk j }Kj=1 by executing each of the three actions

A = {ak j }Kj=1 once on each object (One-shot tactile data
collection), in order to perceive the object physical property
denoted as k j ∈ {texture, stiffness, center of mass }, K = 3
and ak j ∈ { sliding, pressing, lifting }.

Then the autonomous robot iteratively collects new train-
ing samples Sk j . At each iteration, ATOL algorithm updates
GPCs with the training data set collected hitherto, and esti-
mates the uncertainty in the constructed observation models
which guide to next round of tactile data collection.

6.2.2 Objects’ uncertainty estimation

In order to estimates the uncertainty in the objects’ obser-
vation models the ATOL measures the Shannon entropy of
each training samples. In this regard, the training dataset of
one physical property Sk is divided into categories Sk =
{Sk

oi }Ni=1, where each category Sk
oi has M

k
i number of sam-

ples. For each set of training samples, the mean value of the
Shannon entropy is measured:

H(oi , k) = 1

Mk
i

∑

skoi ∈Sk
oi

H(skoi ) (23)

H(skoi ) = −
∑
o∈O

p
(
o|skoi

)
log(p(o|skoi )) (24)
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with the p(o|skoi ) being the observation probability predicted
by the GPC model. The higher the H(oi , k) is, the more
uncertain the robot is about the object.

6.2.3 Next object and next physical property selection

We define the object-property pair, Φ(oi , k) as a function
of the object O = {oi }Ni=1 and the physical property k.
After selecting Φ(oi , k), the robot moves to the object oi
and executes the action ak to perceive the physical prop-
erty k. In order to reduce the entropy of the observation
models as quickly as possible, the next training sample is
generated from the pair Φ(oi , k) with the largest entropy. In
order to learn about objects efficiently, the robot can greedily
sample the next object and the next property which max-
imize H(oi , k j ) of GPCs (exploitation). In this way, the
robot autonomously collects more training samples from the
objects based on their physical properties which are easily
confused. At the end of each iteration, the new training sam-
ple will be added to the entire dataset S := S

⋃
s∗.

The active learning process is repeated until a target cri-
terion is reached, in our case, when there is no perceived
reduction of the entropy for the observation models, or the
robot collects a certain number of training samples. In order
to avoid being trapped in the local maxima, we add an explo-
ration rate so that the robot can randomly select Φ(o, k) by
following the uniform distribution (exploration). We denote
pΦ as a probability, which is uniformly generated with
U(0, 1) at each iteration in the ATOL. Then the next object
o∗ and next physical property k∗ is determined by:

Φ∗(o, k)

=
⎧⎨
⎩

argmax
oi∈O,k j∈K

H(oi , k j ), if pΦ > εΦ

o = U{o1, o2, . . . oN }, k = U{k1, k2, k3}, o.w.

(25)

In Eq. (25), the parameter εΦ controls the exploration–
exploitation trade-off.

7 Active touch for object recognition (ATOR)

Assuming the observation models with the efficient training
dataset are constructed during the active learning process (see
Fig. 2b), the autonomous robot is faced with the task of rec-
ognizing objects in an unknownworkspace (see Fig. 2c). The
task is divided into two scenarios. In the first scenario (see
Fig. 2c-1), the robot is asked to discriminate among objects
which have already been learned. However, in this scenario,
each object can have various orientations and positions in the
workspace. In second scenario (see Fig. 2c-2), the unknown
workspace includes both known and unknown objects with

Algorithm 2 Active touch for object learning

Require: O = {oi }Ni=1 � N objects to learn, each is regarded as a class
Require: L = {li }Ni=1 � The locations of the objects
Require: K � object physical properties
1: initialization: S � one-shot tactile data collection
2: initialization: GPCs f : S �→ O � Gaussian Process Classifiers.

Sect. 6.2
3: for r = 1 : R do
4: p(o|s) ← f (s) � class predictions for training data
5: E[Ht+1(k)] ← ∑

o∈O p(o)Ht+1(o, k) � object uncertainty,
Sect. 6.2.3

6: Φ∗(o, k) ← argmax
oi∈O,k∈K

E[Ht+1(k)] � Next object and next

physical property selection. Sect. 6.2.3
7: Move_robot(li ) � move the robot to the object oi
8: Execute_action(ak) � Sect. 5.1
9: S ← S

⋃
s∗ � update training dataset with new samples

10: GPCs ← S � update the observation models
return GPCs, S � observation models, training dataset,

different orientations and locations: “known objects” are the
objects about which the robotic system has learned before
via (ATOL); “unknown objects” are the objects the robot has
not been encountered. The task of the robot is to search for
a known object or objects in this workspace.

7.1 Active touch for object discrimination

7.1.1 Problem definition

The task of the robot is to perform a sequence of exploratory
actions (A = {ak}Kk=1) to efficiently discriminate among
objects which have already been learned. However, the
objects can have different positions and orientations in the
unknown workspace. Therefore, using the proposed active
touch workspace exploration method the robot first local-
ize the objects in the workspace (see Sect. 4). Then the robot
exploits the objects’ prior knowledge that efficiently obtained
by our proposed active object learning strategy (the observa-
tion models and training dataset of objects) (see Fig. 2b), in
order to iteratively execute exploratory actions on objects. In
this part of study, we propose a method to enable the robotic
system to determine the most informative exploratory action
at each step, such that the objects can be distinguished with
the fewest exploratory actions possible (see Fig. 2c-1).

7.2 Methodology

The object discrimination task is achieved through sequen-
tially executing the exploratory actions on the objects. Firstly,
the object’s belief p(o) is initialized as being uniformly
distributed. Next, an exploratory action is executed on the
object in order to perceive an observation zt . Then, the
object’s belief is updated which helps to determine the next
exploratory movement a∗. This process is repeated until a
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target criterion is reached: for example, until the maximum
a posteriori (MAP) exceeds a probability threshold, or the
maximum times to update the procedure is reached.

7.2.1 Objects’ belief updating

Once an action ak has been performed and the corresponding
observation zt is obtained at time step t , the object posterior
distribution can be updated using Bayes’ rule:

pt (o|zt ) ∝ p(zt |o)pt−1(o) (26)

with pt−1(o) being the posterior distribution from the previ-
ous time step, and p(zt |o) being the observation probability
calculated by the observation models.

7.2.2 Next optimal exploratory action selection

When selecting which exploratory action is optimal to recog-
nize objects, we need to predict the benefit of the movement
based on the updated object priors p(o) and the prior knowl-
edge (observation models and training dataset). In this work,
we propose a method to estimate the expected benefit of
a movement, which guides the next action selection called
confusion matrix-based uncertainty minimization (CMUM).
Our proposed method predicts the benefit of an exploratory
action by inferring the resulting confusion between objects.
If a movement produces tactile information which is most
easily discriminated among objects, then objects can be rec-
ognizedmore quickly by executing such a exploratory action.
Conversely, exploratory actions which generates confused
observations are not helpful. Therefore, the advantage of
selecting a particular exploratory action can be inferred by
how much confusion the action results in. To do this, we
measure the confusion of an exploratory action by calcu-
lating the objects’ similarity, and use it to guide the next
action selection. Similar work has been done by Fishel et
al (Fishel and Loeb 2012). However, their method suffered
from the curse of dimensionality and their method could only
be tractable with low-dimensional features. In contrast, our
proposed method is unrestricted by the feature dimensions,
and thus can be applied to high dimensional features, such
as surface texture property.

7.2.3 Proposed confusion matrix-based uncertainty
minimization (CMUM)

When predicting the confusion cki j between objects oi and o j

for the tactile property k, we calculated the observation prob-
ability p(o j |skoi ) for each training sample, which belongs to
the object oi , but is misclassified to the object o j . Then cki j
is estimated by the average value of p(o j |skoi ):

Algorithm 3 Active touch for object discrimination

Require: LM = {lm}Mm=1 � The locations of M objects in the
workspace

Require: GPCs, S = {Sn}Nn=1 � observation models, training data for
N classes of objects

1: for m = 1 : M do
2: p0(o) ← U � initialize object priors
3: Move_robot(lm) � move the robot to another object
4: while �n|(p(on |zkt ) > β) do
5: a∗ ← Select_action(p(o)) � Sect. 7.2.2
6: Execute_action(a∗)
7: pt (o|zt ) ∝ p(zt |o)pt−1(o) � get observation zt , update

object priors: Sect. 7.2.1
8: om ← argmax

on∈O
(p(o)) � object identified

return o1:M

cki j = 1

Mk
i

∑

skoi ∈Sk
oi

p(o j |skoi ) (27)

with Mk
i being the number of training data for object oi and

tactile property k. cki j ranges between 0 and 1, where 0 refers
to no confusion, and 1 means total confusion.

After obtaining a new observation zkt at time step t , the
expected confusion uoi ,k between the object oi and the others
is measured:

uoi ,k =
∑

o j∈O,o j =oi p(o j |zkt )cki j∑
o j∈O p(o j |zkt )cki j

. (28)

The expected confusion Uk for property k can be estimated
by considering all objects:

Uk =
∑
o∈O

p(o|zkt )uo,k . (29)

This value predicts the confusion between objects after
executing an exploratory movement. In other words, it mea-
sures the expected uncertainty of an action. The next action
a∗ is selected in order to bring the maximum benefit. In our
case, this means minimizing the expected uncertainty:

a∗ = argmin
k

(Uk)
β (30)

where the discount factorβ is used to control the exploration–
exploitation trade-off. It is inversely proportional to the
number of times an action has been taken.

7.3 Active touch for target object search

The task of the robot is to recognize a target object/s in
the unknown workspace includes both known and unknown
objects with different orientations and locations. in this sce-
nario the robot should efficiently search for a object in this
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workspace. Different from the object discrimination task in
which all objects in the workspace should be distinguished
(see Fig. 2c-1), in the problem of target object search (see
Fig. 2c-2), the robot only needs to recognize the target
objects. To do this, we divided the objects which are explored
in the active learning into categories of target object and non-
target objects O = Otg

⋃
Onon-tg, and divide the training

dataset correspondingly S = Stg
⋃

Snon-tg. Then the multi-
class GPCs are reduced to binary classifiers which give the
observation probability p(o ∈ Otg|z).

pt (otg|zt ) ∝ p(zt |otg)pt−1(otg) (31)

in which pt (otg|zt ) being the posterior distribution from the
previous time step, and p(zt |otg) being the observation prob-
ability calculated by the observation models. The optimal
exploratory action is selected by the robot following the
procedure described in Sect. 7.2.2. The similarity between
object pares is calculated by our proposed CMUM method
explained in Sect. 7.2.3. TheAlgorithm 4 show the proceeder
of our proposed active target search more in detail.

Algorithm 4 Active touch for target object search

Require: LJ = {l j }Jj=1 � The locations of J objects in the workspace
Require: otg ∈ O � define which object to find
1: initialization: S = {Stg,Snon−tg} � divide training data
2: initialization: binary GPCs � Sect. 7.2.1
3: p(otg) ← 1

2 � initialize target object priors
4: for j = 1 : J do
5: Move_robot(l j )
6: while p(otg) > τ1 or p(otg) < τ2 do
7: a∗ ← Select_action(p(otg)) � select next exploratory

movement
8: Execute_action(a∗)
9: pt (otg |zt ) ∝ p(zt |otg)pt−1(otg) � update target object priors

10: if p(otg |zkt ) > γ1 then
11: o j ← otg � target object found
12: ltg ← l j
13: break
14: if p(otg |zkt ) < γ2 then
15: continue � leave the robot to another object

return ltg

7.4 Baseline: expected entropy reduction (EER)

We used expected entropy reduction (EER) method as a
baseline to compare with our proposed CMUM method.
The EER is an approach for estimating the expected benefit
of a exploratory action by predicting its entropy (Rebguns
et al. 2011; Schneider et al. 2009). The exploratory action
which produces lower entropy can better discriminate among
objects. To do the comparison, we measured the expected
entropy reduction for different action to perceive different
physical properties of an object.

Let us denote Ht+1(k) the entropy at the next time step
t + 1 from the action ak taken to obtain an observation zkt+1,
where k refers to the object property. We measure Ht+1(k)
by:

Ht+1(k) = −
∑
o∈O

pt+1(o|zkt+1) log(pt+1(o|zkt+1)). (32)

Since we do not knowwhichmeasurements zkt+1 the robot
will obtain at time t + 1, we need to integrate all possible
observations. This is approximated through summing up all
the samples in the training dataset Sk for tactile property k,
weighted by the object priors p(o):

E[Ht+1(k)] =
∑
o∈O

p(o)Ht+1(o, k) (33)

where Ht+1(o, k) is the mean value of the entropy for an
object o:

Ht+1(oi , k) = 1

Mk
i

∑

skoi ∈Sk
oi

Ht+1(oi , k|skoi ) (34)

= − 1

Mk
i

∑

skoi ∈Sk
oi

∑
o∈O

pt+1(o|skoi ) log(pt+1(o|skoi ) (35)

with Mk
i being the number of training data for object oi and

tactile feature k. pt+1(o|skoi ) is the object posterior at t + 1,
updated by the training sample skoi . Actions havemore benefit
when the expected entropy is minimized:

a∗ = argmin
k

E[Ht+1(k)]. (36)

8 Experimental results

To evaluate the performance of our proposed framework in
real time, as well as experimentally validate the efficiency of
the suggested approaches for active object learning and active
object recognition in an unknownworkspace, the robotic sys-
tem performed experiments in three different scenarios.

At the beginning of all scenarios, the robot did not have
any prior knowledge about the location, orientation, and the
number of objects. Thus it is necessary for the robot to first
explore the entire workspace to gather information about tar-
get objects located inside. After exploration, the robot was
able to address each object in the workspace and to perform
different tasks.

Thefirst taskof the robotwas to actively and autonomously
learn the physical properties of experimental objects in the
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Fig. 7 Experimental objects. The physical properties are evaluated sub-
jectively by human subjects and are indicated in the panel to the upper
right of each object (S: stiffness, very soft (- -) and very hard (++) T:

roughness of surface textures, very smooth (- -) and very rough (++) C:
center of mass, far from the centroid (- -), close to the centroid (++)

workspace, i.e. their stiffness, textural properties, and CoM
(see Fig. 8).

In the second scenario (see Fig. 14), the task of the robot
was to efficiently discriminate among the objects, taking
advantage of the knowledge of objects that was learned in
the previous scenario. The objects had different locations
and orientations in the workspace to the first scenario.

In the last scenario (see Fig. 16), the robot was asked to
search for a specified target object in an unknown workspace
that contains objects, some of which were already learned by
the robot previously, and some were not (new objects).

In these experiments, the robotic system, i.e. the UR10
robotic arm, the Robotiq gripper, and the OptoForce sensors,
was controlled in the framework of ROS. Tactile signals were
sampled at a frequency of 333 Hz, and the gripper was con-
trolled at 50 Hz.

8.1 Properties of experimental objects

In order to evaluate the performance of our proposed frame-
work, we deliberately selected 20 objects (see Fig. 7), made
of various materials, such as wood, glass, metal, and plastic.
The physical properties of these experimental objects vary
from relatively similar to quite different. Since the focus of
this work is object recognition via surface texture, stiffness,
and CoM, the geometrical properties of the objects are out of
our scope. Due to the constraints from our hardware (e.g. size
of sensor, width and length of robotic fingers), we selected
cuboids and objects of bar shape, so that these constraints
can be satisfied.

8.2 Active touch for object learning in unknown
workspace

In the first scenario (see Fig. 8(WS-1)), the robot started
with the active exploration of the unknown workspace to
determine the number of objects, as well as their positions,
sizes, and orientations. After this, it actively learned about
each object using our proposed approach.

8.2.1 Active touch for exploration of unknown workspace

The unknownworkspace (see Fig. 3) is a cuboid with the size
of 1000mm(Length)×640mm (Width)×100mm (Height),
and the world coordinate frame is defined along its width
edge (X ), length edge (Y ), and height edge (Z ). Five objects
were selected randomly at uniform from object list in Fig. 7
and put in the workspace.2 Starting from the origin position,
theworkspace is discretized by a step size of 40mm in both X
and Y directions, and 15 mm in Z direction, according to the
width (40mm) of the finger and the distance from fingertip to
the center of sensor (15 mm). Therefore, the allowed number
of sampling points is 25 along the Y axis, 16 along the X
axis, and 4 in Z axis, thus the maximum number of sampling
for the entire workspace of all four directions counts up to
328 (the total number of mesh grids on four start planes of
the workspace). The robot performed exploration clockwise
around the workspace, i.e. from Wd1 to Wd4 in sequence.

A. Tactile point cloud construction

We take the exploration of Wd4 as an example, as explained
in Sect. 4.1.1. During the exploration process, fingers of the
gripper were controlled individually and only one finger was
stretched out for exploration. The gripper first stretched out
finger A while maintained finger B and finger C closed, and
then theUR10moved its end-effector (the gripper) to the start
position on the start plane with the tactile sensor (the finger-
tip) orienting the d4 direction, and then started exploration.
A contact was detected as soon as the resultant force (Eq. 2)
measured on the fingertip of A exceeds δ = 0.5 N , then the
current position of the finger A was returned as an observa-
tion point. The observation point is added into the training
dataset of the GPR gd4 . If this light contact is detected before

2 Due to the constraints of the workspace, it is difficult for the UR10
robot to explore more than five objects. Therefore, five out of 20 objects
were selected randomly at uniform for the evaluation.
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(a)

(b)

(c)

Fig. 8 The active exploration results of the unknown workspace in the
first scenario (see Sect. 8.2.2). (WS-1) The layout of the workspace in
the first scenario. From left to right, each one of the three sub-figures
aligned in a row illustrates the constructed TPC, clustering result of
TPC, and result of object localization. a The active exploration results

of the unknown workspace by applying our proposed strategy. b The
active exploration results of the unknown workspace by applying ran-
dom sampling strategy. c The active exploration results of the unknown
workspace by applying uniform sampling strategy
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the robot reached the target point, it is also added to the TPC
dataset Td4 .

In order to initialize the GPR model, the robot first uni-
formly sampled 6(M = 3, N = 2) equally spaced points
in total on the start plane as training dataset Ωd4 . After
the GPR model was trained, the robot selected the next
sampling position according to the predicted variance. The
robot continued sampling until the stop criteria is satisfied,
which is

∑
p∈Xdi

Var(gdi ( p)) < τ . Then it started the
exploration in the next directions. The entire TPC dataset
TW = ⋃

i Tdi ,IDIR = {1, 2, 3, 4} was fully constructed
(see Fig. 8a-1) after the exploration of the entire workspace
was completed.

B. Baseline strategies for comparison

In order to evaluate our proposed active workspace explo-
ration strategy, we selected the uniform sampling strategy
and the random sampling strategy as baselines for evaluating
the performance. For both baseline strategies, the robot sam-
pled exactly the same initialization dataset as for the active
exploration strategy at the beginning of the exploration.

Following the uniform sampling strategy, the robot started
fromone corner of the start plane, and then sampledover all of
the start points on the start plane column-wise. For example,
the robot started fromone corner (e.g. (x, z)) of the start plane
of Wd4 . The robot sampled from (xi , z) to (xi , z), and then
moved horizontally to the next column (start with (xi+1, z)).

When applying the random sampling strategy, all of the
points p ∈ X on the start plane have the same probability to
be selected, and the robot arbitrarily chose a start point on the
start plane, and then executed the translational movement.

Since by following our proposed active exploration strat-
egy, the average value of required sample steps for satisfying
the stop criteria (

∑
p∈Xdi

Var(gdi ( p)) < τ ) is 60 for
Wd1 , Wd3 and 40 for Wd2 , Wd4 , we set these number of
sample steps as the stop criteria for both uniform sampling
and random sampling in the experiment.

The constructed TPC by following the random and uni-
form strategies are plotted in Fig. 8b-1 and c-1, respectively.

C. Statistical evaluation of exploration strategies

To statistically compare the performance of three different
strategies, the robot explored the unknownworkspace in total
30 different scenarios.

For each strategy, a GPR model with the same parame-
ters is trained and updated after each observation point is
obtained. When applying the active exploration strategy, the
GPR model is used to select the next sample position, as
well as measure the uncertainty of the workspace (total vari-
ance); while applying uniform and random strategies, the

GPR models are trained only to calculate the uncertainty
(total variance) of the workspace after each sampling.

In each scenario and for every strategy, the robot first
sampled 6 positions (M = 3, N = 2) for Wd1, Wd3 (4
for Wd2 , Wd4 , M = 2, N = 2) to initialize the GPR
model at the beginning. Then the robot sampled 60 steps
for Wd1, Wd3 and 40 steps for Wd2 , Wd4 , and recorded
the value of the total variance predicted by the trained
GPR model after each sample step. A small total variance∑

p∈Xdi
Var(gdi ( p)) indicates that the GPR model, which

is trained with the dataset sampled so far, can accurately
describe the workspace; in other words, the exploration strat-
egy is data-efficient.

The statistical comparison of the results is illustrated in
Fig. 9. Since the exploration processes in each direction are
independent, here we only compared the exploration perfor-
mance ofWd1 . The result shows that for all the strategies, the
uncertainty of the workspace reduces as the number of sam-
ples increases. At each sample step, the workspace has the
minimal total variance by following the active exploration
strategy, and its uncertainty reduces faster than either uni-
form or random strategy, indicating that the workspace can
be much more efficiently sampled by applying the proposed
active exploration strategy than the baseline strategies.

D. Object localization andmapping

The sampled TPC in each scenario is clustered using the
mean-shift approach (see Fig. 8a-2, b-2, c-2). Clusters with
less than 5data pointswere considered noise points and there-
fore discarded. After this, the minimum bounding box was
calculated for each cluster to estimate the location, orien-
tation, and geometric center of each object (see Fig. 8a-3,
b-3, c-3). As Fig. 8 shows, all of the experimental objects
were successfully clustered (see Fig. 8a-2) and correctly
localized (see Fig. 8a-3) by employing our proposed strat-
egy. However, by applying random sampling strategy, some
regions of the workspace were not sufficiently explored, thus
the TPCwas incorrectly clustered into 6 objects (see Fig. 8b-
2) and the estimated geometric information of the objects
was fallacious as a result (see Fig. 8b-3).While using the uni-
formsampling approach, because of the constraints of sample
steps, the robot was not able to complete the exploration.
Therefore, only part of the workspace was fully explored. As
a result, the TPC dataset was not complete (see Fig. 8c-2) and
objects were not able to be correctly localized (see Fig. 8c-3).

We evaluated the performance of mean-shift clustering
approach in all 30 scenarios based on the normalized mutual
information (NMI). Table 1 shows the NMI values of the
clustering result in each scenario. The average NMI of all 30
scenario is 0.92.
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Fig. 9 The statistical comparison of the performance of the proposed
active exploration strategy (GPR), uniform strategy, and random strat-
egy for exploring the unknownworkspace. Each small sub-figure on the
right side named S1–S30 corresponds with one experimental scenario
and illustrates the change of total variance in one exploratory direction

(here we take X+ direction as an example) as the number of samples
increases, by applying different exploratory strategies. The large sub-
figure on the left side shows the averaged total variance over all the 30
scenarios with the shadowed area denoting the standard deviation

Table 1 Evaluation of clustering performance based on the normalized mutual information (NMI)

Group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

NMI 1.00 0.94 0.84 0.80 0.86 0.93 0.96 1.00 0.90 0.91 0.87 1.00 1.00 0.91 0.82

Group 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

NMI 1.00 0.85 0.87 1.00 0.95 1.00 0.85 0.91 0.83 0.88 0.90 1.00 1.00 0.93 0.90

In 9 out of 30 scenarios, the TPC data were perfectly clus-
tered (NMI = 1.00). In 16 out of 30 scenarios, the sampled
data points were clustered (NMI < 1.00) followed by a suc-
cessful localization andmapping of the experimental objects.
Although some points were wrongly clustered, due to either
the noise data or the connection of adjacent objects; how-
ever, by filtering out the noise clusters and constructing the
bounding boxes, the localization and mapping results were
acceptable for the robot to execute the subsequent tasks. The
clustering failed in the remaining 5 scenarios, either because
a large part of the TPC dataset were wrongly clustered, or
the number of clusters does not match the number of real
objects (object number is wrongly estimated). The reason is,
multiple experimental objects were densely placed in these
scenarios, some of them even connected to each other, thus
these objects are occluded and cannot be fully explored.

The active exploration process of the unknownworkspace
was carried out at the beginning of each scenario, and the
obtained information of objects was used for the subsequent
procedures.

8.2.2 Evaluation of active tactile object learning (ATOL)

A. Test data collection

The performance of our proposed active object learning (see
Fig. 2) was evaluated with a test dataset. The dataset was
collected by the robot autonomously, by performing three
exploratory actions (pressing, sliding, and lifting) on 20
experimental objects (Fig. 7). The data collection procedure
was repeated 20 times for each object and each exploratory
action. During executing all exploratory actions, the gripper
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is controlled in “pinch”mode, i.e. finger B and finger C of the
gripper were arranged next to each other and are controlled to
have the same positions. Finger B and finger C move simul-
taneously and are opposite to the moving direction of finger
A. In this configuration, these three contact positions (finger-
tips) form an isosceles triangle with B and C symmetric with
respect to A.

For pressing action, the robot first moved to the object
(i.e. let the geometric center of three fingers coincides the
geometric center of the target object), it then closed all fingers
for Nε = 3 extra position counts after a light contact of
ft = 0.5 N on each fingertip. When sliding on the surface of
objects, the robot slid for 30 mm vertically after contacting
the object (light contact force: ft = 0.5 N ). In order to lift
the object, the robot exerted an initial contact force of 0.5 N
to grasp the object and then lifted it up for Δh = 30 mm. A
linear slip was detected, if the tangential force had increased
more than 25% within Δt = 1 s after the object being lifted
to the target height. The expected similarity level for the
CoM was set as γ = 0.9; however, considering the time
consumption, the process of exploring the CoM would also
be terminated if the distance between two successive lifting
positions was less than 0.5 mm.

B. Baselines

The performance of our proposed active learning strategy
(ATOL) was evaluated with both random and uniform sam-
pling strategies.

Random learning strategyWhile applying the random learn-
ing strategy, both of the next object o = U{o1, o2, . . . oN }
and the next physical property k = U{k1, k2, k3} subject
to uniform distribution (o ∼ U(1, N ) and k ∼ U(1, 3)),
i.e. all of the os (and ks) have the same probability to be
selected. The robot arbitrarily determines the next object
o ∈ {o1, o2, . . . oN } and the next physical property to learn
k ∈ {surface texture, stiffness, center of mass}.

Uniform learning strategy Using the uniform learning
approach, at each round of the exploration, the robot learned
about all three physical properties of each object in the
workspace. In other words, the robot moved to each of five
object {o1, o2, . . . , oN } and executed all three exploratory
actions {a1: sliding, a2: pressing, a3: lifting } on each object
in order to learn about {k1: texture, k2: stiffness, k3: center of
mass}.

C. Evaluation of active tactile object learning via all physical
properties

In this scenario, the task of the robot was to learn five objects
in the workspace based on their physical properties (stiff-

ness, surface textures, CoM). To initialize the active learning
process, the robot collected small training samples by per-
forming each of three exploratory actions once on each
object. Each step when the robot sampled a new training
instance, the recognition accuracy of GPCs was measured
with the test dataset.

Figure 10 illustrates the distributions of the tactile fea-
tures extracted from the eight objects (as an example) in
test dataset. On the one hand, depending on the physi-
cal properties, objects have different degrees of confusion.
For instance, Fig. 10b shows that although some objects
have similar surface structures, they can be discriminated
by their textural property, thanks to our proposed robust
tactile descriptors. In contrast, it is difficult to distinguish
objects using stiffness, because the stiffness of the objects
are very similar (see Fig. 10a). On the other hand, for
the same physical property, objects’ confusion are different
from each other. For example, Fig. 10c clearly shows that
objects 1, 2, 3, 4, and 8 can be easily recognized via their
CoM, whereas objects 5, 6, and 7 are confused with each
other.

At each object learning round 5 objects {o1, o2, . . . , o5}
were randomly selected out of 20 objects O1:20 (see Fig. 7).
Then, the robot learned about objects via their physical prop-
erties. In order to have a fair comparison between our ATOL
method and the baseline learning strategies the robot exe-
cuted 45 exploratory actions in total during learning process.
This process is repeated 30 time for 30 groups of objects,
each group is repeated 5 times.

Figure 11 shows the robot’s learning progress mea-
sured by the classification accuracy on the test dataset
each of 30 groups of experiments as well as the classi-
fication accuracy averaged over all 30 groups. Figure 11
demonstrate that ATOL consistently outperforms the base-
line methods by obtaining the higher recognition accuracy
while performing fewer exploratory actions. For instance,
the robot obtained in average more than 81% recogni-
tion accuracy when it performed 20 exploratory actions
However, using random and uniform strategies the robot
achieved 71% recognition rate with the same number of
actions. Obviously, the active learner learns about the
object more quickly than uniform and random sampling
strategies.

Apart from a numerical evaluation of the performance
of the proposed method, we also investigated the learn-
ing process and decision of the strategy over time. Fig-
ure 12 demonstrates one exemplifying result of the learn-
ing progress following three aforementioned strategies to
select next object and next physical property. The bot-
tom rows with a color code illustrate the selected object
and action to perceive physical property at each decision
step. Figure 12a shows that following our proposed learn-
ing method ATOL, the robot focused on collecting more
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(a) (b) (c)

Fig. 10 Distributions of the features extracted from the test dataset. a
The resultant force response for stiffness. bRobust textural descriptors.
c CoM. The observation distributions for object stiffness and CoM are
modeled by univariate Gaussian distribution. To visualize the distribu-

tion of textures, we first reduce the 12 dimensional texture descriptor
to 2D vector via principle component analysis (PCA). Then we model
the distributions of features by multivariate Gaussian distribution

Fig. 11 Active learning about objects based on their physical properties. The horizontal axis represents the number of training data collected thus
far. The vertical axis shows the mean value of the classification accuracy of evaluation dataset averaged over 30 runs

training samples for the objects’ physical properties that
make objects to be more confused (such as stiffness). More-
over, using ATOL the robot sampled less data to obtain
the observations with which objects can be quickly rec-
ognized (such as surface texture). Conversely, since uni-
form (see Fig. 12b) and random learning strategies (see
Fig. 12c) collected training samples without exploiting
their informativeness, the “difficult” objects were insuffi-
ciently learned, while the “easy” objects were redundantly
observed.

D. Evaluation of active tactile object learning via each phys-
ical property

In order to evaluate the robustness of our active learning
algorithm, the robotic system was asked to learn about
objects via only one of the three tactile properties (stiff-
ness, surface texture, and CoM). Random sampling and
uniform sampling serve as baseline. Each method was run
30 times by the autonomous robot. Figure 13 shows the
learning performance of the robotic system when it explored
the objects. It is evident that the learning progress was
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(a)

(b)

(c)

Fig. 12 An example of learning five objects with three physical
properties. Three object and exploratory action selection methods are
compared. a Proposed active learning method ATOL. b Uniform sam-
pling method. c Random sampling method. The lower bar shows the
exploratory actions at each time step (“P” for pressing, “S” for sliding,
“L” for lifting). The upper bar shows the object to explore at each step.
The vertical axis shows the classification accuracy on the test database

dependent on the distributions of the tactile features. For
instance, Fig. 13a shows that learning objects via their stiff-
ness led to low classification accuracy, because object’s
were confused by their stiffness. It is the same situation
for learning objects via their CoM (see Fig. 13c). On the
contrary, objects were easily distinguished by using our pro-
posed robust tactile descriptors (see Fig. 13b). Therefore,
the learning process for object surface texture was faster

and ended with higher recognition rate. In all cases (see
Fig. 13), the entropy reduction method outperforms the other
two methods by up to 30% of the recognition accuracy with
the same number of training samples. Therefore, our active
learner is robust to different distributions of the tactile fea-
tures.

8.2.3 Evaluation of active tactile object recognition (ATOR)

A. Evaluation of active object discrimination

With the reliable observation models constructed by our pro-
posed active touch learning method (ATOL) with 30 groups
of objects previously, we evaluated our proposed active
object discrimination and action selection strategy. To do
this, we compute the decision steps using our CMUM, the
expected entropy reduction (EER) (Sect. 7.4) and random
strategy a∗ ∈ U(1, 3), a∗ ∈ {a1 : sliding, a2 : pressing, a3 :
lifting} approaches to discriminate among objects in the
workspace (see Fig. 14WS-2).

In this regard, the robot first explored the workspace
following the procedure as described in Sect. 8.2. The con-
structed TPC, clustering results, and localization results are
illustrated in Fig. 14.

The robotic system executed a sequence of exploratory
movements on an object, until the object MAP exceeded
90%, or the iterations reached seven times. Then, we mea-
sured the number of decision steps and compared the MAP
results to the true object class. The experiment was repeated
30 times. In each experiment, the robot used three methods
to explore each object five trails.

Figure 15 shows the average number of decision steps.
The robot discriminated among objects by CMUM and EER
more quickly than the random method. Furthermore, the
decision accuracy from CMUM are higher than EER and
random (CMUM: 99.9%, EER: 92.4%, Random: 93.2%).
Therefore, we can conclude that a robotic system that uses
our proposed CMUM can discriminate objects quickly and
correctly.

B. Evaluation of active target object search

When evaluating the robot’s competence of searching for
the target objects, we randomly replaced two known objects
in the workspace at each of 30 groups of objects with two
randomly selected unknown objects (see Fig. 16).

Now the task of the is robot to find the targeted object, or
leaves the non-targeted object as quickly as possible while
taking the advantage of its already constructed observation
models in section as prior knowledge.

To do this, the robotic system explored each of the object
in theworkspace using our proposedCMUMstrategy and the
EER and random strategies as baselines. Each strategy was
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Fig. 13 Active learning each object physical property individually.
a Learning object’s stiffness. b Learning object’s surface textures. c
Learning object’s CoM. The horizontal axis represents the growing

number of training data, and the vertical axis represents the value of
classification accuracy on the test data averaged over 30 runs

Fig. 14 The active exploration results of the unknown workspace in the second scenario (see Sect. 8.2.3) by applying our proposed strategy.WS-2
The layout of the workspace in the second scenario. a-1 The constructed TPC. a-2 Clustering result of TPC. a-3 Object localization result
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Fig. 15 Evaluating active object discrimination and target object search. Average decision steps the robot takes to discriminate objects
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Fig. 16 The active exploration results of the unknown workspace in the third scenario (see Sect. 8.2.3) by applying our proposed strategy. WS-3
The layout of the workspace in the third scenario. a-1 The constructed TPC. a-2 Clustering result of TPC. a-3 Object localization result
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Fig. 17 Evaluating active object discrimination and target object
search. Average decision steps the robot takes to find the target objects

run 30 times with 30 groups of randomly selected objects. In
each round, the robot explored each object in the workspace
five times. The exploration was run until the object MAP is
larger than 90%, or until seven exploratory movements were
conducted. As a result, the robot either detected the target
object (when p(o = otg) > p(o = otg)) or the non-target
object (when p(o = otg) < p(o = otg)). We recorded
the number of exploratory movements the robot executed in
order to make a decision, as well as the decision accuracy.

Figure 17 illustrates average decision steps over 30 groups
of objects which robot takes to find the target objects. Fig-
ure 17 shows that bothCMUMandEER take fewer steps than
random method to recognize all target objects. The decision
accuracy from CMUM is higher than EER and the random
selection (CMUM: 99%, EER: 87%, Random: 90%). Fig-
ure 17 shows the average decision step the robot leaves the
non-target objects. Figure 18 demonstrates the similar results
using CMUM, EER, and random strategies, the robotic sys-
tem efficiently leave the non-target objects with almost the
same decision accuracy (CMUM: 97%, EER: 92%, Random:
94%).
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Fig. 18 Evaluating active object discrimination and target object
search. Average decision steps the robot leaves the non-target objects

9 Discussion

We proposed a probabilistic strategy to enable the
autonomous robot to explore its surroundings with high
efficiency, in order to localize and estimate the geometric
information of the objects in its perimeter. Taking advantage
of GP regression, the robotic system explored the workspace
so that more tactile points were sampled on the objects and
around their perimeter. At each step, the tactile data already
collected were used to construct a probabilistic model to
guide the next step of workspace exploration. The experi-
mental results show that our proposed approach outperforms
both random and uniform data selection. The captured tac-
tile data points were then clustered by the robotic system in
order to ascertain the number of objects in the workspace.
The minimum bounding box was calculated for each cluster
to estimate the location, orientation, and geometric center of
each object.

After object localization and workspace mapping, the
autonomous robot actively discriminated them from each
other based on their physical properties. In this regard, the
robot used our proposed GP classification based method to
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efficiently learn the physical properties of objects. It used the
extended version of our previously proposed tactile descrip-
tor to perceive the textural properties of objects by sliding its
fingertips on the surface of the objects (objects with either
regular or irregular textural properties). Moreover, the robot
employed our suggested tactile-based approach to estimate
the CoM of rigid objects. It measured the stiffness of each
object by pressing against them with its three fingertips.

In previous studies, the observation models were con-
structed by the predefined number of training samples for
each object, which were collected offline during tactile
exploration. Contrary to previous works, using our proposed
algorithm, the robotic system sampled the objects such that
with a smaller number of exploratory actions it constructed
reliable object observation models online. The robot col-
lected more training samples from “difficult” objects which
had fewer discriminative tactile properties and thus were
confused with other objects. In other words, the robot did
not deposit any redundant tactile information. The exper-
imental results illustrate that the robotic system learned
about objects based on their physical properties efficiently
and achieved higher classification accuracy by using our
proposed approach. It proves that our proposed method out-
performs random and uniform sampling strategies.

After object learning phase, the autonomous robot effi-
ciently distinguished experimental objects with arbitrary
location and orientation from each other. It also found the
target object in the workspace quickly. To do this, it used
our proposed strategies for active object discrimination and
target object search and took the advantage of the reliable
observation models constructed during the object learning
phase.

In this regard, the robotic system predicted the benefit of
each of the exploratory actions (pressing, sliding, and lifting)
and executed the one that would obtain the most discrimi-
native properties. The performance of our proposed method
was compared with both EER and random exploratory action
selection strategies. The experimental results show that by
using our proposed method the robotic system discriminated
among objects faster than by using random strategy, and
reached higher recognition rate than the EER.

It executed fewer exploratory actions to find the target
object, while the usage of the random action selection strat-
egy required more exploration. When estimating the benefit
of an exploratory movement, CMUM inferred the dissimi-
larity between objects by building a probabilistic confusion
matrix.

The most computational intensive part of the task is the
Gaussian process, its computational complexity is O(N 3)

with N being the number of training data. The computa-
tional complexity of the active touch for unknownworkspace
exploration is the same as the GPR model, i.e. O(N 3), since
the exploration processes of each direction are independent.

The computational complexity of active touch learning is
Np×No×O(N 3), where Np is the number of object physical
properties, No is the number of objects, and N is the number
of training data points. The complexity active object discrim-
ination is O(No), comes from the updating of object belief.
For active target object search, the complexity is O(N 3) for
training the binary GPCs, then it becomes O(No) for the
update of object belief during online experiment.

The computation of action selection was proportional to
the square of the number of objects (O(N 2

o )). However, EER
integrated all the training samples to predict the benefit of an
exploratory action. As the number of training samples grew,
the computation became costly. In this case, for example
instead of GPs the sparse approximation of Gaussian pro-
cesses (Csato and Opper 2002) can be used.

Furthermore, it was found that compared to CMUM, EER
wouldmore frequently converge to a incorrect decisionwhen
the probability threshold was not set high enough. Its perfor-
mance could be improved when the threshold was set higher,
and more exploratory movements were required.

A limiting assumption of ourwork is that the experimental
objects need to be rigid and should not be immobilized after
the workspace exploration phase. Moreover, due to the con-
straints of our hardware, such as the size of robotic fingers
and the spatial resolution of the tactile sensor, we selected
cuboid objects to satisfy these constraints.

In the future, in order to evaluate our proposed frame-
work with complex shapes and deformable objects, we will
equip a humanoid robot with sense of touch and will extend
our framework for dual hand workspace exploration and tac-
tile object recognition. We will also generalize our proposed
algorithm for the estimation of the center of mass of objects
with complex shape. Moreover, a very interesting future
work would be enabling the autonomous robot to learn about
unknown objects while searching for the known target object
in a workspace (active tactile transfer learning, Kaboli et al.
2016a, 2017a).

10 Conclusion

The probabilistic methods proposed in this study enables the
robot with a sense of touch to perform a complete series of
tasks: the active exploration of unknown workspaces, active
object learning, and the active recognition of target objects.
Its effectiveness was demonstrated through online experi-
ments in several distinct scenarios.

Following the active touch for unknownworkspace explo-
ration, the robot explored and localized objects in completely
unknown workspaces. It was able to reduces the uncertainty
of the workspace up to 65 and 70% compared to uniform and
randomstrategies respectively, for afixednumber of samples.
The robot then autonomously learned about all objects in the
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workspace based on their physical properties. Using our pro-
posed active touch learning algorithm, the robot obtained 20
and 15% higher learning accuracy for the same number of
training samples compared to uniform strategy and random
strategy, respectively.

By taking advantage of the prior knowledge acquired pre-
viously, the robot successfully discriminated among objects.
In this scenario, the robot took up to 15% less decision steps
compared to the randommethod to achieve the same discrim-
ination accuracy while using either our proposed CMUM
method or the EER action selectionmethod. However, taking
advantage of our proposed CMUM action selection method,
the robot achieved up to 10% higher decision accuracy in
comparison with the EER.

Furthermore, to search for a target object, the robot
reduced the decision steps up to 24% to find the target objects
by following either the proposed CMUMmethod or the EER
method, compared to the random method, whereas using the
CMUMmethod, the robot reached14%higher decision accu-
racy than EER to find the target object.

In addition, our p roposed tactile-based CoM detection
approach demonstrated its validity in enabling the robot to
find the CoM of a rigid object with a low computational
complexity.

11 Appendix

11.1 Gaussian process (GP)

GP (Rasmussen andWilliams 2006) is a supervised learning
method which describes the functional mapping g : X �→ Y
between the input data setX and the output data setY. TheGP
model is non-parametric and can be completely determined
by its mean function μ(x) and covariance function k(x, x′):

μ(x) = E[g(x)], (37)

k(x, x′) = E[(g(x) − μ(x))(g(x′) − μ(x′))]. (38)

The distribution of g can be denoted as:

g(x) ∼ GP(μ(x), k(x, x′)). (39)

In a regression task, GP is exploited to approximate the
functional relation g, in order to predict the output y = g(x)

given a test input x.
In this work, we used the radial basis function (RBF) as

the covariance function:

k(a, b) = σ 2
f exp(−

(a − b)2

2l2
) + σ 2

n δab, (40)

the hyper-parametersσ f , σn , and l are selected throughcross-
validation in order to tune the kernel for fitting the training
dataset.

11.2 Normalizedmutual information (NMI)

In the information theory, the mutual information measures
themutual dependency between two variables, i.e. howmuch
information of a variable can be obtained, when the other
variable is known.

Formally, themutual information of two discrete variables
X and Y is defined as:

I (X ,Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
. (41)

The mutual information is a non-negative value, with
I (X ,Y ) = 0 indicating that the two variables are indepen-
dent.

Normalized mutual information normalizes the mutual
information to be within 0 and 1, with 1 referring that two
random variables are the same. In this work, we used the
form proposed in Strehl and Ghosh (2002):

NMI(X ,Y ) = I (X ,Y )√
H(X)H(Y )

. (42)

This measurement has been widely used to evaluate the per-
formance of a clustering algorithm. Let ytrue be the true labels
of the data samples, ypred be their predicted labels. Then the
NMI measurement can be computed by:

NMI( ytrue, ypred) = I ( ytrue, ypred)√
H( ytrue)H( ypred)

. (43)
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