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Diffusion tensor image features 
predict IDH genotype in newly 
diagnosed WHO grade II/III gliomas
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We hypothesized that machine learning analysis based on texture information from the preoperative 
MRI can predict IDH mutational status in newly diagnosed WHO grade II and III gliomas. This 
retrospective study included in total 79 consecutive patients with a newly diagnosed WHO grade II or 
III glioma. Local binary pattern texture features were generated from preoperative B0 and fractional 
anisotropy (FA) diffusion tensor imaging. Using a training set of 59 patients, a single hidden layer neural 
network was then trained on the texture features to predict IDH status. The model was validated based 
on the prediction accuracy calculated in a previously unseen set of 20 gliomas. Prediction accuracy of 
the generated model was 92% (54/59 cases; AUC = 0.921) in the training and 95% (19/20; AUC = 0.952) 
in the validation cohort. The ten most important features were comprised of tumor size and both B0 and 
FA texture information, underlining the joint contribution of imaging data to classification. Machine 
learning analysis of DTI texture information and tumor size reliably predicts IDH status in preoperative 
MRI of gliomas. Such information may increasingly support individualized surgical strategies, 
supplement pathological analysis and highlight the potential of radiogenomics.

Large-scale genome-wide studies have dramatically broadened our insight into the complex genomic underpin-
nings of gliomas1–3. Perhaps the most prominent example of newly identified drivers of gliomagenesis are point 
mutations in either the codon 132 of isocitrate dehydrogenase 1 (IDH1) or infrequently codon 172 of IDH2, which 
are very common in WHO grade II and III gliomas (70–80%) and rare in primary de novo glioblastomas (WHO 
grade IV, <10%)4. Mutant IDH catalyzes the formation of the onco-metabolite 2-hydroxyglutarate (2HG), which 
is thought to mediate the oncogenic effects of IDH mutation5. IDH mutant tumors most probably arise from a dis-
tinct cell of origin6. Consequently, IDH mutant and wild type tumors have dramatically different clinical courses: 
IDH wild type tumors have a significantly shorter survival. IDH mutational status is in fact a stronger prognosti-
cator than WHO grade (III vs. IV)7. Using an epigenome-wide approach, we were able to show that a molecular 
classification of anaplastic gliomas based on IDH mutation and combined deletion of the short arm of chromo-
some 1 and the long arm of chromosome 19 (1p/19q co-deletion) is superior to a reference histopathological clas-
sification based on the original fourth edition of the WHO classification8–10. Other studies further substantiated 
that so-called “lower-grade glioma” (LGG; WHO grade II and III) are indeed subdivided into distinct molecular 
entities through IDH and 1p/19q3. All this evidence has led to the recognition of IDH mutant and wild type glio-
mas as distinct disease entities, which is also recognized in the updated WHO classification11. Considering that all 
tumor cells in an IDH mutant tumor carry the IDH mutation, it is not surprising that therapies targeting mutant 
IDH have been developed, both in the form of vaccinations12 and small molecules which inhibit mutant IDH13. 
Also, for WHO grade III and IV tumors, patients with IDH mutant tumors have been shown to benefit from 
extended resection (encompassing both enhancing and non-enhancing tumor) as opposed to those with an IDH 
wildtype tumor14. Thus, a preoperative method to assess IDH status bears the potential to meaningfully influence 
initial surgical strategy even before first pathological specimens are available.
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Besides this clinical reasoning for a radiological diagnosis of IDH status, in general, interest in how genomic 
information can be non-invasively assessed from imaging phenotype data has rapidly grown15,16. Machine learn-
ing algorithms, which excel at learning (non-linear) classifiers in multi-dimensional data sets, have greatly bene-
fitted this field. One major advantage of most modern machine learning techniques in comparison to traditional 
univariate analyses is their ability to analyze a high-dimensional data set without prior selection of “candidate 
features”, by automatically weighing each feature, and hence leveraging the full information contained in the data 
set. Traditional univariate methods on the other hand either require prior knowledge or multiple testing of all 
input variables.

We hypothesized that integrative analysis of multimodal MRI data (B0 and FA) using a modern texture quan-
tization method and a neural network classifier would yield a reliable non-invasive prediction of IDH status in 
WHO grade II and III low grade gliomas (LGG).

Results
Patient characteristics.  Patient characteristics are summarized in Table 1. The training and validation 
cohort did not differ with respect to these parameters. IDH wild type tumors were a bit more common in the val-
idation cohort (30% vs. 23%), though this difference was not significant (Fisher’s exact test, p = 0.548). As in large 
registries17, the majority of tumors were histologically classified as astrocytomas, making up roughly 2/3 of cases 
in both the training and validation cohort, and patients with an IDH wild type tumor tended to be older (mean 
age 47 years) than patients with an IDH mutant tumor (mean age 39 years, Welch t test, p = 0.1). Neurosurgical 
resection was performed a few days after the preoperative MRI.

Radiogenomic analysis.  Using the pipeline shown in Fig. 1, we used the training cohort (59 patients) to 
generate 50 LBP texture features in the B0 and FA maps, respectively, as well as tumor size. These features were 
then used as input for a neural network classifier for IDH status. In the training cohort, this classifier (with six 
hidden units) reached an accuracy of 92% (54/59 cases; AUC = 0.921). While the neural network classifier inte-
grates weighted information from all input features, we calculated relative feature importance using Garson’s 
algorithm to identify features contributing most to classification. Figure 2A shows a network plot of the ten most 
important features and Supplementary Table 1 lists all features and their respective importance. Furthermore, 
representative examples (central two-dimensional slices of the three-dimensional patches showing textures rep-
resenting the learned texture patterns) of the 9 most important LBP textures are depicted in Fig. 2B.

To validate the classifier, we calculated the texture features derived from the training cohort in an independent 
sample of 20 additional WHO grade II and III patients (details in Table 1). Here, the neural network classifier 
accurately predicted IDH status in 19/20 patients (95%) with an AUC of 95.2% (Fig. 3A). This accuracy was sig-
nificantly higher than the “no information rate” (i.e. the percentage of correctly labelled samples if all samples 
were predicted to be IDH mutant; p = 0.007). We carefully inspected the misclassified IDH wild type tumor, but 
found no peculiarities. A principal component analysis (PCA) plot of the top 10 features in the test set showed a 
clustering of IDH mutant tumors, while IDH wild type were far more heterogeneously scattered, as suggested by 
the known higher genomic heterogeneity in IDH wild type tumors (Fig. 3B).

Analyzing tumor size.  Considering the importance of tumor size (voxel count) in the neural network, 
we found that in our cohort, IDH mutant tumors were significantly larger than their wild type counterparts 
(Wilcoxon rank sum test p = 0.008193; Fig. 4A). To validate this finding, we analyzed data from the 2015 brain 
tumor segmentation challenge (BRATS)18, which contains manually labelled whole tumor volumes for 44 WHO 
grade II and III gliomas as well as genotype information from the cancer genome archive (TCGA)3. In good 
agreement with our local data set, IDH wild type tumors in the BRATS set were also significantly smaller com-
pared to IDH mutant tumors (Wilcoxon rank sum test p = 0.02715; Fig. 4B). Note that due to different segmen-
tation strategies (B0 in our data set, T2/FLAIR in BRATS) and a smaller sample size in BRATS, data variability 
differs between BRATS and our local data set. However, a logistic regression model including only tumor size 
had a mediocre classification performance (AUC in training cohort = 0.727; AUC in validation cohort = 0.679), 

Training cohort (n = 59) Validation cohort (n = 20) p

Median age (SD, 95% CI), years 40 (13.8, 37.4–44.6) 42.5 (16.4, 35.3–50.7) 0.625

Sex, n 0.417

Male 35 12

Female 24 8

WHO grade II, n (%) 35 (59%) 11 (55%) 0.3051

WHO grade III, n (%) 24 (41%) 9 (45%)

Astrocytoma, n (%) 39 (66%) 12 (60%) 0.543

Oligoastrocytoma, n (%) 11 (19%) 6 (30%)

Oligodendroglioma, n (%) 9 (15%) 2 (10%)

IDH status, n (%) 0.548

Mutant 46 (77%) 14 (70%)

Wild type 13 (23%) 6 (30%)

Table 1.  Baseline patient characteristics.
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underlining the advantage of leveraging the full information contained in the data set through a neural network. 
Unfortunately, BRATS data do not contain DTI, precluding further validation of our classifier in this cohort.

Discussion
In the present analysis, we have established a neural network classifier for prediction of IDH status from the pre-
operative MRI of WHO grade II and III glioma patients, relying on tumor volume and texture information from 
DTI data. This model reached accuracies of 92% in the training and 95% (19/20; AUC = 0.952) in the validation 
cohort.

In the current fourth edition of the WHO classification8,11, signs of anaplasia and mitotic activity distinguish 
WHO grade II and III gliomas. However, both criteria are subjective and prone to relevant inter-observer varia-
bility19–21. Furthermore, molecular subtypes associated with biology and prognosis have been identified3,9,22, and 
it was shown that outcome differences between WHO grade II and III gliomas rely far more on the distribution of 
these molecular subgroups than on true biological differences between WHO grade II and III gliomas23, suggesting 
that grade II and III gliomas may in fact be an entity better subdivided by molecular parameters. Consequently, we 
merged WHO grade II and III gliomas for our analysis. This is in accordance with large cohorts such as the cancer 
genome archive (TCGA), which also group WHO grade II and III gliomas as “lower grade glioma”.

Figure 1.  Overview of the image analysis pipeline.
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Figure 2.  Plot of the final neural network classifier. (A) Please note that due to clarity, only the ten most 
important features (as per Garson importance) out of 101 are shown. Red lines indicate positive weights, blue 
lines negative weights. The thicker the line, the stronger the weight. (B) Representative examples (central two-
dimensional slices of the respective cluster centers) of the 9 most important LBP textures. Please note that for 
illustrative purposes, only the central two-dimensional slice within each three-dimensional patch is shown for 
each texture. For the network analysis, three-dimensional textures have been used.

Figure 3.  Validation cohort. (A) Receiver operating characteristic (ROC) curve for IDH status prediction in the 
20 validation cases. Area under curve = 0.952. (B) PCA plot for the top 10 features in the network.
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Among molecular alterations in gliomas, IDH mutations are arguably the most prominent. Besides its diag-
nostic11 and prognostic value7, IDH status influences the clinical management of glioma patients and will do 
so even more in the future. In a large prospective cohort of 335 WHO grade III and IV gliomas, Beiko and 
colleagues demonstrated that IDH mutant tumors derive a clear overall survival benefit from total resection, 
including both enhancing and non-enhancing tumor, while IDH wild type tumors do not14. These results suggest 
individualized surgical strategies based on IDH status and therefore clearly necessitate diagnostic approaches for 
a preoperative IDH status assessment. To this end, several imaging-based methods have been developed, most 
prominently the 2HG magnetic resonance spectroscopy, which detects the onco-metabolite produced by mutant 
IDH24,25. Although this technique promises a high diagnostic accuracy through the immediate detection of the 
metabolic activity of mutant IDH, it is still not in widespread use and the sequence as well as the post-processing 
routines need to be expertly set up at each center. On the other hand, our network classifier relies on a stand-
ard DTI sequence, which is readily available in most scanners, and publicly available classification algorithms. 
Furthermore, while the 2HG spectroscopy is naturally limited to detecting IDH mutations, machine-learning 
image analysis as presented here can possibly be extended to predict other relevant molecular targets as well, such 
as 1p/19q co-deletion or MGMT promoter methylation. In addition, molecular subgroups of gliomas, such as 
glioblastoma subgroups based on epigenome-wide methylation data9,26, could potentially be identified. Further, 
such techniques might be useful to help distinguish true tumor progression from treatment-associated pseudo-
progression. Of note however, our classifier was not trained for these tasks and would need to be re-trained with 
appropriate samples to assess its performance and utility for these issues. While demonstrating a high diagnostic 
accuracy for predicting IDH mutations, our study thereby also highlights the potential of such approaches for 
radiogenomics in general.

Several imaging techniques better capturing underlying biology than traditional anatomical imaging (T1, T2, 
FLAIR) have recently been investigated for their ability to predict biology from the imaging phenotype. Diffusion 
tensor imaging (DTI) is an extension of diffusion weighted imaging (DWI). By measuring several gradient direc-
tions, DTI allows to calculate advanced scalars, most prominently fractional anisotropy (FA), which represents 
the directionality of the diffusion process. FA is thought to represent the cellular organization of tumors as well 
as their microenvironment, the extracellular matrix. In rat models, distinct patterns of diffusion directionality in 
the core and periphery of rat and human gliomas have been observed, which correlate well to histological find-
ings in these models. Importantly, these patterns were not discernible in conventional MRI27. Consequently, FA 
values have been shown to indicate malignancy of gliomas, being associated with cell density and proliferation in 
human glioblastoma28 as well as WHO grade29. Furthermore, mean FA values in the contrast-enhancing tumor 
are significantly higher in glioblastoma compared to brain metastases, thereby facilitating the differentiation 
between these entities30. Recently, Xiong et al. reported that the maximum FA value in oligodendroglial tumors 
was significantly smaller in IDH mutant tumors compared to their wild type counterparts31. In addition to the FA 
maps, we also used the B0 images for texture analysis, as they are T2 weighted and in perfect co-registration with 
the FA maps. T2 texture information has been used to predict methylation status of the O6-methylguanine-DNA 
methyltransferase (MGMT) promoter in glioblastoma32 as well as the presence of a combined deletion of 1p and 
19q in oligodendrogliomas33.

Among the ten features most important for IDH prediction was tumor volume. In our local data set, IDH 
mutant tumor were significantly larger (in terms of B0/T2 hyperintense whole tumor volume) than IDH wild 
type tumors. There have been few, but conflicting reports regarding differences in tumor size between tumors of 
different IDH status. Metellus et al. reported in WHO grade II gliomas that IDH wild type tumors were signifi-
cantly larger on T2 images34. On the contrary, Lai et al. observed a larger size at diagnosis for IDH mutant tumors 
in a large cohort, albeit in glioblastoma6. In the BRATS data set, we could indeed confirm that at time of diag-
nosis, IDH mutant tumors are larger than their wild type counterparts. Importantly, time between preoperative 
MRI and tumor resection was short (a few days) in both groups in BRATS and our data set and therefore cannot 
explain this difference. Several factors might explain the difference in size at initial diagnosis between IDH mutant 
and wild type gliomas: First, IDH mutant tumors are known to predominantly occur in the frontal lobe14, allow-
ing a tumor to grow larger before becoming symptomatic. Further, IDH mutant tumors grow slower than their 
wild type counter parts, giving the brain time to adjust and possibly delaying diagnosis. Importantly however, 
models solely relying on tumor size only had mediocre performance (AUC in training cohort = 0.727; AUC in 

Figure 4.  Tumor size of IDH mutant and wild type tumors. Boxplot of tumor size (separated by IDH status) in 
(A) our local data set and (B) the BRATS data set. Tumor size (voxel count) has been scaled to the mean of IDH 
mutant in each cohort.
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validation cohort = 0.679), which was not significantly different from random labelling, clearly highlighting the 
necessity of analyzing the entire information contained in the data set. The remaining features were comprised of 
FA and B0 texture information, underlining the mutual contribution of texture information from both sequences 
for classification.

There are limitations to our study. As expected4, the majority of tumors (76%) carried an IDH mutation. To 
avoid missing IDH mutations, all tumors with a negative IDH1R132H immunohistochemistry were sequenced, 
thus a few samples without sufficient DNA for sequencing had to be excluded. Class imbalances can negatively 
impact a classifier. However, to account for this, the no information rate of our data set was used as a benchmark 
to validate model performance (i.e. if the model correctly predicts IDH status in more samples than expected 
just by chance). Furthermore, the data used for building the model was retrospectively collected in a single insti-
tution, containing 79 samples. The BRATS data unfortunately do not contain DTI data, precluding its use as a 
validation cohort for the classifier. However, we aimed to have a homogenous cohort of newly diagnosed patients 
with WHO grade II or III gliomas. In addition, this model was built only on B0 and FA information. How other 
modalities, especially perfusion and hypoxia imaging35,36, may meaningfully contribute to a predictive model for 
IDH status (or possibly other genomic aberrations) remains to be determined in future studies. Further, only six 
directions were acquired for tensor estimation. While this reduces scan time in clinical routine and can help to 
reduce motion artifacts, it remains unclear how a higher number of directions might influence texture generation 
and the classifier. However, an older study suggested that the influence of a higher number of directions is more 
pronounced for the eigenvalues than for tensor estimates (FA and mean diffusivity D)37. In addition, LBP textures 
rely on relative differences and not on absolute (B0/FA) values, suggesting that also for DTI with a higher number 
of directions, the presented classifier might be applicable (though it potentially might need to be retrained on the 
specific setup). Further, this classifier has been trained only on histologically proven WHO grade II/III gliomas. 
Its applicability to grade IV glioblastoma (which are mostly enhancing) is therefore unclear.

In summary, we present a machine learning classifier relying on preoperative DTI data to accurately pre-
dict IDH mutational status in newly diagnosed WHO grade II and III gliomas, highlighting the potential of 
non-invasive, MRI-based genotype assessment. Considering the clinical need for reliable determination of IDH 
mutational status and the emerging use of mutant IDH as a therapeutic target, such models have the potential 
not only to meaningfully complement pathological evaluation of the tumor but even to precede it and therefore 
support individualized surgical strategies.

Materials and Methods
Patients and MR imaging.  This study was approved by the ethics committee of the TUM, and informed 
consent was waived for this retrospective analysis. In total, this study included 79 patients with a newly diagnosed 
WHO grade II or III glioma (astrocytoma, oligodendroglioma or mixed oligoastrocytoma) based on histopatho-
logical diagnosis, who had received a preoperative MRI including a standard 6 direction DTI (TR/TE 7665/85ms, 
spatial resolution 2 × 2 × 2mm³, b value 1000 s/mm²) on a 3 Tesla Philips Achieva between 2011 and 2015 and 
had IDH mutational status available. Patients without IDH status, preoperative DTI or severe motion artifacts 
were excluded. All remaining eligible patients, identified using our local pathology database, were included. 
Fractional anisotropy (FA) maps were automatically calculated from DTI raw data using software supplied by 
the MRI manufacturer. Briefly, gradient-direction images are co-registered on the B0 image, and a linear system 
is used to estimate the diffusion tensor. Patient demographics and histological diagnosis according to the fourth 
edition of the WHO classification8 were obtained from medical records. All methods were carried out in accord-
ance with the relevant guidelines and regulations.

Additionally, 44 cancer imaging archive (TCIA; http://www.cancerimagingarchive.net/) WHO grade II and III 
samples from the brain tumor segmentation challenge (BRATS18; http://braintumorsegmentation.org) were col-
lected (https://www.smir.ch/BRATS/Start2015) to serve as a validation cohort for tumor size differences based on 
IDH status. For these samples, manually segmented labels (on FLAIR and T2 images) were used to extract whole 
tumor volumes. In parallel, genotype data for these samples was compiled from The Cancer Genome Archive 
(TCGA; http://cancergenome.nih.gov/).

Image analysis.  B0 images were semi-automatically segmented using the publicly available software 
ITK-Snap (version 3.4.0), with a threshold-based approach38. Segmentation target was whole tumor, i.e. all areas 
of signal abnormality (including solid tumor, infiltrating tumor and edema) were included in a unified tumor 
mask. An example is shown in Supplementary Figure 1. In all cases, the resulting segmentation was visually 
inspected by an investigator blinded to IDH status (P.E., experienced neuroradiologist) and manually refined 
where necessary. To evaluate tumor segmentation, the neuroradiologist had access to all sequences, including 
FLAIR and contrast-enhanced T1. However, rigid registration (using the Elastix framework) of DTI and FLAIR 
revealed small but relevant registration differences (in terms of minimizing a mutual information – based cost 
function). Due to these reasons, we chose to perform segmentation of tumors on B0 images.

Consecutively, tumor texture was quantified using three-dimensional local binary patterns (LBP). LBPs 
are popular rotational invariant texture descriptors, which have recently been extended to three-dimensional 
representations39.

LBP feature calculation.  For each voxel p in the segmented tumor, n neighborhood voxels in a sphere with 
radius r, centered at voxel p, are sampled. The intensity values of the neighborhood voxels are then compared to 
the intensity value of voxel p. That is, neighborhood voxels are set to 1 if they are more intense, and to 0 otherwise. 
This binary neighborhood representation is then approximated by a combination of spherical harmonics. More 
in particular, coefficients of spherical basis functions are computed such that the resulting function approximates 
the binary neighborhood representation. The LBP features are then given by the L2-norms of these coefficients 
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and the kurtosis of the original intensities of the neighborhood voxels. In this study, LBP features were calculated 
for radii of 1 mm, 2 mm and 3 mm and concatenated into one single feature vector.

LBP clustering.  During a training phase, the feature vectors were calculated for all voxels within the tumor 
regions of all the training patients. We then performed clustering of all the feature vectors using k-means cluster-
ing with k = 50 clusters. The centroids of these clusters are referred to as the learned texture patterns and represent 
distinctive patterns specific to our dataset.

To get a texture representation for the previously unseen validation cohort, raw LBP features are calculated 
for all voxels within the tumor mask, as previously described, and are then clustered towards the learned texture 
patterns. The final feature vector, describing the texture of the entire tumor, is then set to the relative occurrence 
of each of the learned texture patterns.

Genotype analysis.  All tumor samples were formalin fixed and paraffin embedded. 3 μm thick sections 
were cut, using a rotary microtome (HM355S, Thermo Fisher Scientific), mounted on SuperFrost Plus slides, 
and then stained with hematoxylin and eosin. Screening and grading was performed by two neuropathologists, 
assuring sections with representative tumor content were selected.

IDH1-R132H immunohistochemistry was performed on deparaffinized and rehydrated sections, using the 
Benchmark immunohistochemistry system (Ventana XT, Ventana Medical Systems, Tucson, AZ, USA). Slides 
were incubated for 31 min with mIDH1R132H hybridoma supernatant (clone H09, dilution 1:1, standard Cell 
Conditioner 1 M pretreatment and amplification). Cytoplasmic staining in tumor cells was considered positive.

Tumors showing no IDH1 immunoreactivity were then sequenced for IDH1 and IDH2 mutations. DNA was 
extracted from tumor tissue using the QIAmp DNA FFPE Tissue Kit (QIAGEN Venlo, Netherlands). PCR and 
sequencing was performed as previously described40.

Pattern classification.  The resulting 101 image features (voxel count of segmented area, frequencies of the 
50 LBP textures in B0 and FA, respectively) were used as input variables in a single hidden layer neural network. 
Patients were randomly separated 3:1 into a training cohort (59 patients) and a validation cohort (20 patients). 
For activation, a sigmoid function was used, with a single logistic output neuron. The neural network was fitted 
using the R package “nnet”. The R package “caret” was used to perform a grid search over the tuning parameters 
“size” (number of hidden units) and “decay” (parameter for weight decay) on the 59 training cases optimizing for 
classification accuracy in the training cohort. We used Garson’s algorithm to calculate the relative importance of 
input variables in the final neural network41. Network visualization was performed with the “NeuralNetTools” 
package.

Validation.  The final model was applied to the 20 validation cases that had not been used during model gen-
eration. The model’s performance was assessed in this independent validation cohort calculating classification 
accuracy and the area under the curve (AUC) of the receiver operating characteristic (ROC) using the “caret” and 
“pROC” packages. We performed an exact binomial test, using the rate of IDH mutant tumors in the validation 
cohort (i.e. the “no information rate”) as probability of success, to assess whether the classification accuracy in the 
validation cohort is above chance.

Wilcoxon’s rank sum test was used to compare median tumor size between IDH mutant and wild type tumors. 
To calculate the individual performance of tumor size for IDH status prediction, we performed a univariate logis-
tic regression and calculation of the AUC from the ROC curve. Fisher’s exact test was employed to compare distri-
butions in a 2 × 2 contingency table. Student’s t test, assuming unequal variances between groups, was employed 
for continuous data. Analyses were carried out using R version 3.3. A p value < 0.05 was considered significant.

Data Availability.  The R scripts used to train the network classifier as well as methods for generating LBP 
textures from three-dimensional image data are available from the corresponding author (BW) upon request.
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