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Abstract

We present a method to determine the relation between contact point velocity and contact angle, which can be used as a

boundary condition for simulating immiscible and incompressible fluids in contact with solids. The relation is determined

from a micro model based on the phase field method. The micro model performs a steady-state computation in a box

around the contact point, with far field data given by the macroscale wall contact angle. The size of the micro box is

chosen such that physical diffusive processes around the contact point are fully represented. The contact point velocity is

shown to converge with respect to the size of the micro box. The angle–velocity relation determined by the micro model

is verified on a parameter setting that can be represented by a full phase field simulation.
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Introduction

The numerical simulation of incompressible fluid flow
with several immiscible fluids is very challenging, both
from a methodological and an implementation point of
view. A major challenge is the prediction of the physical
behavior when the interface that separates two fluids is
in contact with a solid and moves, a so-called moving
contact line. Applications where the contact line behav-
ior is significant can be found in micro fluidics, coating
processes, and biological flows.

The dynamic behavior at contact lines is discussed in
recent review articles.1,2 Typically, the interface forms
an angle to the solid that strongly depends on the dis-
tance from the contact line. The angle observed on a
macroscopic scale, usually referred to as the apparent
contact angle, aligns according to the global flow phys-
ics. Closer to the contact line one enters the hydro-
dynamic region where the interface becomes more
strongly bent. Here, the interface shape is determined
by a balance of viscous and surface tension forces. Even
closer to the contact line, within the range of nano-
meters, molecular fluctuations become important. It is
this fine-scale nature of the flow around the contact line
that represents a significant numerical difficulty, as it is

several orders of magnitude smaller than global flow
features in many important applications.

A standard mathematical model for two-phase flow
is given by the incompressible Navier–Stokes equations
supplemented with jump conditions for the pressure at
the interface between the fluids. In a model for moving
contact lines, the conventional no-slip boundary condi-
tion is not valid, because it would lead to a singularity
in the stresses at the contact line.3 A possibility is to
instead use the so-called Navier condition, which
relates the slip velocity uslip along the wall to the
normal strain rate

uslip ¼ �n � ruþ ðruÞ
T

� �
ð1Þ
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Here � is the so-called slip length, see Davis4 and Spelt.5

The Navier condition works well for flows that are
driven by external forces. For capillary-driven flows,
the contact angle between the interface and the solid
must be explicitly included in the model. This is often
done by prescribing the wall contact angle, that is, the
microscopic contact angle at the solid wall. Spelt5 pro-
posed to track the contact point explicitly and set its
velocity as a function of the contact angle. These and
alternative moving contact line models as well as their
numerical implementations are discussed in the review
article by Sui et al.6

Another possibility is to use the phase field method,
where the contact line moves through diffusion. It is
based on a phenomenological description using a dif-
fuse interface of finite thickness instead of a mathem-
atically sharp interface.7 The phase field method can
handle typical contact line behavior such as advancing
or receding motion by virtue of a boundary condition
that relates the surface free energy to the contact angle
by Young’s relation.7 However, to get reliable results,
accurate physical values of the diffusion length and dif-
fuse interface width must be used and the solution must
be well resolved.8 Since the diffusion processes around
the contact point typically happen on a very small scale
whose numerical resolution cannot be afforded for
many important settings, it becomes necessary to
choose the diffusion length and diffuse interface width
as numerical parameters instead. In the context of
moving contact lines, adaptive mesh refinement has
been demonstrated to represent contact line features
that are several orders of magnitude smaller than the
simulation domain.6 However, small diffusion length
parameters and interface widths at the contact line
often translate to high resolution requirements around
the interface in the interior of the computational
domain for phase field methods as well. More import-
antly, the representation of fast time scales of contact
line diffusion requires the global time step size to be
smaller than the diffusion time scale. In the fully adap-
tive phase field implementation of Ceniceros et al.,9 the
time step size is proportional to �x3=2, which would
lead to prohibitively small time steps in case a physical
diffusion length scale were to be resolved.

In this work we determine a relation between contact
angle and contact line velocity from a series of micro-
scale simulations of contact line dynamics using the
phase field technique. This relation is intended to be
used as a boundary condition when simulating immis-
cible and incompressible fluids in contact with solids on
a larger (macro) scale. Our approach uses ideas from
matched asymptotics and assumes a temporal and spa-
tial scale separation between the local contact line
behavior and global fluid flow. In terms of matched
asymptotics, the macroscopic region represents an

outer region. The outer solution in the macro model
is assumed to exhibit an interface with a well-defined
contact angle at the contact line (the apparent contact
angle). The inner problem is modeled by the
Cahn–Hilliard/Stokes equations, where the effect of a
wall is modeled by a standard phase field boundary
condition.10

We assume the scale separation in space is such that
there is a ‘‘matching region’’, which is close to the con-
tact line at the outer scale and far from the contact line
at the inner scale. In the matching region the angle of
the interface to the wall varies only very slowly at the
inner scale, and we match it to the outer angle (the
apparent contact angle). The assumption of the inner
interface being essentially planar far from the contact
line, supported experimentally,11 enables us to formu-
late the inner problem as an initial boundary value
problem, with boundary conditions derived from the
Huh–Scriven similarity solution.3 The temporal scale
separation means that the time it takes for the inner
problem to reach a state of steady movement is small
compared to the time scale of the macro flow. This
assumption is justified for flows driven by capillary
forces. Due to the small length scales in the inner prob-
lem, the contact line can be assumed to be essentially
straight in the tangential direction to the wall. Thus, the
micro model is a two-dimensional problem that con-
siders a single point of contact, referred to as the con-
tact point in the remainder of this work.

The relation we obtain is intended to be used
together with some classical scheme on the macroscale,
thus providing a procedure for achieving the accuracy
of the phase field model with physically relevant par-
ameters in a computationally more efficient framework
without excessive grid resolution requirements. The
approach inherits the capabilities of the phase field
model to treat flows with variable densities, viscosities,
or interfacial tension. The simulation domain of the
micro model is chosen small enough to represent phys-
ical values for the diffusion length scale and diffuse
interface width. These parameters have been collected
by the phase field community over the last two decades.
Our method allows the physical mechanisms described
by these parameters to be applied when simulating
larger macroscopic flows at a fixed numerical cost.

The proposed method can be interpreted as a variant
of a multiscale method. Several multiscale approaches
for the contact line problem have been developed in
the literature. Hadjiconstantinou12 used a molecular
dynamics simulation around the contact line, coupled
to a continuum description by overlapping domains. In
each time step, several iterations were computed on
each domain using the results of the other model as
boundary conditions until convergence. A more generic
approach to couple models based on different physical
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descriptions at different scales is the heterogeneous
multiscale method.13,14 This method was successfully
applied to two-phase flow.15 The micro model is usually
based on molecular dynamics as in the approach by
Qian and co-workers,16,17 see also their review
paper.18 For a discussion of different models for con-
tact line dynamics, we refer to Ren and co-workers19,20

and references therein. All the aforementioned
approaches of multiscale models have been applied to
two immiscible fluids in Couette or Poisseuille flows
with equal fluid densities and viscosities. For more gen-
eral fluids, multiscale approaches that combine semi-
analytical models at the microscale with conventional
macroscale solvers have been proposed for droplets
moving along walls without contact.21,22 Macroscale
simulations of liquid/gas systems in contact with walls
have been enhanced by semi-analytical models at the
microscale.5,6,23,24

The outline of this article is as follows. In the follow-
ing section, we introduce the phase field model. We for-
mulate a micro problem and describe an algorithm to
determine the contact point velocity for a given apparent
contact angle. In ‘‘Micro results’’ we present the micro
problem results. In ‘‘Capillary driven channel flow’’ we
compare the micro results with a simulation of capillary-
driven flow using the phase field method. After some
time the solution reaches a quasi-steady state, which
we compare against the similarity solution. From the
transient evolution we have recorded instantaneous con-
tact point velocities and apparent contact angles, which
can be compared to the corresponding results from the
micro problem. Finally, ‘‘Conclusions’’ summarizes the
findings.

Micro model

In this section, we describe the micro model that is used
to compute a relation between the apparent contact
angle and the contact point velocity. The model is for-
mulated on a small domain near the contact point. The
apparent contact angle is the angle between the inter-
face and the solid measured in the macro simulation at
a given instant in time. In the setting of this paper, the
contact point velocity only depends on the apparent
contact angle. It is therefore possible and also most
efficient to perform the micro simulation independently
of the macro simulation and tabulate the results for use
in the macro model.

Phase field method

The phase field model for a system of two immiscible
incompressible fluids is based on a mathematical model
consisting of the coupled Cahn–Hilliard/Navier–Stokes

equations posed on a single domain �

@c

@t
þ u � rc�mr2 ¼ 0 ð2Þ

 �
3�"

4

2

"2
c3 � c
� �

� r2c

� �
¼ 0 ð3Þ

r � u ¼ 0 ð4Þ

�
@u

@t
þ u � ru

� �
� r � 2�rsuð Þ þ rp ¼ �gþ  rc ð5Þ

where c is a concentration or order parameter that is þ1
and �1 in either fluid with a smooth transition in
between. The variable  ¼ (c) denotes the chemical
potential, and the term c3� c represents a double-well
potential. The Cahn–Hilliard equation (2)–(3) is
derived from an interfacial free energy.10,25 The term
u � rc accounts for convective transport by the fluid
velocity u. The variable p denotes the fluid pressure,
and rsu ¼ 1

2 ðruþ ðruÞ
T
Þ is the rate of deformation

tensor. The parameters � ¼ �1 þ
1
2 ð�2 � �1Þð1� cÞ

and � ¼ �1 þ
1
2 ð�2 � �1Þð1� cÞ represent density and

dynamic viscosity, m represents mobility, � surface ten-
sion, and e controls the diffuse interface width. For a
plane interface with normal parallel to the x-direction,
the interface profile is given by tanh(x/e). Our notation
can be converted to the notation used in Jacqmin7,10

with  ¼ � c3 � c
� �

� �r2c and parameters � ¼ 3�"=4
and � ¼ 3�=2". The gravitational acceleration vector
is denoted by g and the quantity  rc in the momentum
equation (5) represents surface tension. The Cahn–
Hilliard equation (2)–(3) is written as a system, which
is the form used in the numerical implementation in
‘‘Numerical implementation of phase field solver’’
below.

Boundary conditions supplement the above equa-
tions. On a solid boundary (see Figure 1) these condi-
tions are

u ¼ 0, ð6Þ

n � r ¼ 0, ð7Þ

Figure 1. Sketch of a static interface with the static contact

angle �S.
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�" n � rcþ cosð�SÞð1� c2Þ ¼ 0 ð8Þ

where n denotes the unit normal vector on the bound-
ary and �S denotes the static contact angle between the
fluid–fluid interface and the solid, see Jacqmin.10 The
static contact angle is defined as the angle at which no
forces originate from the contact point.

Physics of the micro model

The phase field model allows for contact point motion
despite no-slip boundary conditions (6) through diffu-
sive mass transfer around the contact point.10,26 In the
micro model, we use this effect to find a balance
between the diffusion and the relative velocity of the
interface with respect to the solid, the so-called contact
point velocity. The phase field solution is characterized
by two inherent length scales.8,10 The first length scale is
the diffuse interface width e. The mobility m gives rise
to the second length scale, the range over which diffu-
sive mass transport is active. In terms of the solution to
the Cahn–Hilliard equation, there is a jump in c from
þ1 to �1 over a range proportional to e, and the chem-
ical potential  is significant in a region of size propor-
tional to m. Hence, interface forces due to contact point
dynamics are concentrated to a region whose size is
determined by e and m.

We base the micro simulation on physical values for
e and m for the fluids under consideration. Typical
length scales are a few tens to hundreds of nano-
meters.10,27 Since we assume the contact region to be
small compared to macroscopic length scales, an inter-
face exhibits radii of curvature that are usually much
larger than the relevant region for the microscale simu-
lation. In other words, away from the contact point the
interface is essentially planar at length scales relevant to
diffusive transport. Furthermore, the solution on the
micro scale is approximately two-dimensional around
the interface. Hence, it suffices to solve the micro prob-
lem in two spatial dimensions.

At nanometer length scales, the ratio between vis-
cous and inertial forces in the momentum equation is
very high, that is, the Reynolds number is very low,
Re� 1. Thus, we neglect all inertial and gravitational
effects in the micro model. In this setting, the Navier–
Stokes equations reduce to the Stokes equations with
the momentum equation given by

�r � 2�rsuð Þ þ rp ¼  rc ð9Þ

and continuity equation according to (4). In our micro
model, the Stokes system is coupled to the Cahn–
Hilliard equation (2)–(3), and it is time-dependent due
to this coupling.

As a computational domain, we choose a rectangu-
lar box of height L, which needs to be large enough in
order to fully represent the diffusion region in the phase
field model. The length of the box is �L, where � is
selected large enough to cover the complete interface
(including some additional space in order to allow the
contact position to develop), and varies with the wall
angle �a. Figure 2 depicts the computational domain
together with the boundary conditions defined in
‘‘Boundary conditions for the micro model’’ below.
The flow in the micro model is characterized by the
following non-dimensional numbers

�� ¼
�1

�2
viscosity ratioð Þ

Ca ¼
Uref�1

�
capillary numberð Þ

S ¼

ffiffiffiffiffiffiffiffiffi
m�1
p

‘ref
strength of diffusive mass transportð Þ

Cn ¼
"

‘ref
Cahn numberð Þ

where �1,�2 are the dynamic viscosities of fluids 1 and
2, respectively. The velocity scale is chosen as Uref ¼

�
�1
,

which normalizes the velocity with respect to surface
tension and gives Ca¼ 1. The diffusion length
scale ‘ref is chosen as ‘ref ¼

ffiffiffiffiffiffiffiffiffi
m�1
p

, which normalizes
the strength of diffusive mass transport at S¼ 1.
Together with the static contact angle, these physical
parameters fully describe the Cahn–Hilliard/Stokes
system. In our approach, the only numerical parameter
is the box height L. We will show convergence of the
micro results with respect to L !1 in ‘‘Convergence
behavior of micro model.’’ This means that our micro
results do not depend on other numerical parameters,
assuming that the phase field parameters e and m are
matched to experimental data in the usual phase field
framework.

Figure 2. Schematic illustration of micro model with

boundary conditions. The similarity velocity usim is centered at

the point (x0,0), the extension of a plane interface to the

boundary.
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Asymptotics of micro model

Our approach is based on ideas from matched asymp-
totics.1 The matching is done at an intermediate meso-
scale, which is much smaller than the global length
scales of the flow (e.g. scale of droplets), but still
much larger than the microscale based on the interface
width and diffusion length. On this mesoscale, the
macro solution is close to wedge shaped with a well
defined contact angle. The flow around a plane inter-
face at zero Reynolds number can be described by the
flow model introduced by Huh and Scriven.3 The Huh–
Scriven model gives a similarity solution for the velocity
usim based on the apparent contact angle �a and the
viscosity ratio �*. The model breaks down close to
the contact point because of the singularity in the
shear stress. In our micro model the inherent diffusion
of the phase field method avoids the stress singularity at
the contact point, see also Figure 13 later. There is
experimental evidence that the flow at intermediate dis-
tance from a contact point is close to the Huh–Scriven
similarity solution in Dussan.11 We therefore match the
macro- and microscale solutions by applying the Huh–
Scriven similarity solution as a boundary condition at
the open boundaries for the microscale problem.
Asymptotically we expect the interface of the micro-
scale solution to become increasingly planar far from
the contact point. Note that the logarithmic depend-
ence predicted in the literature, see for example Bonn
et al.1 and Snoeijer and Andreotti,2 which corresponds
to viscous bending, is most prominent near the contact
point. This effect will, to a large extent, be captured by
the micro model.

Boundary conditions for the micro model

Since the velocity field does not decay away from
the contact point, we need to define the behavior of
the velocity on the boundary of the micro model. We
assume that the Huh and Scriven3 similarity solution is
valid in the far field and use it to formulate boundary
conditions on the open boundaries of the micro
domain. The similarity velocity usim is expanded
around the point (x,y)¼ (x0,0), the extension of a
plane interface to the wall, see Figure 2. Note that the
similarity velocity is not related to the interface descrip-
tion by the phase field method, and does not specify
values for the variables c and  .

As explained above, the purpose of the micro model
is to find a contact point velocity U given an apparent
wall contact angle �a, by considering the flow field in a
small domain around the contact point. The contact
point velocity U describes the relative motion of the
contact point which is in balance with the diffusion in
the phase field method when an outer apparent contact
angle is prescribed. In order to restrict the simulation to

a fixed domain, we let the simulation domain follow the
contact point speed U by changing the frame of
reference.

The following boundary conditions are set in the
micro simulation (compare with Figure 2).

. Along the solid wall, we assume the usual phase field
boundary condition (7)–(8) together with a convec-
tional no-slip boundary condition (6) for the vel-
ocity. Due to the change of frame of reference, the
boundary condition is umjwall ¼ ðU, 0Þ.

. The velocity field on the open boundaries is set
according to the Huh–Scriven similarity velocity,3

scaled by the velocity of the contact point,
umjopen ¼ Uusim.

. The concentration variable along the upper bound-
ary follows the profile that is attained by plane inter-
faces, cðxÞ ¼ tanhð	ðxÞ=CnÞ, where 	(x) denotes the
signed distance of x from the initial interface. This
ensures the interface remains fixed along the upper
boundary. At the left and right boundaries, c is set to
�1 and þ1, respectively. The chemical potential is
set to a homogeneous Dirichlet condition at the
upper boundary and no-flux (7) at the left and
right boundaries, respectively. These conditions
ensure the contribution from surface tension to be
zero at the open boundaries, as expected for a
straight interface.

. Since Dirichlet conditions for the velocity are
imposed on the whole boundary of the domain, the
pressure is only determined up to a constant. We fix
the pressure in the lower left corner of the domain
to zero.

The simulation is started with a plane interface
according to the wall contact angle, see Figure 2, that
is, cðxÞ ¼ tanhð	ðxÞ=CnÞ. Note that the wall contact
angle �a is not directly enforced as a boundary condi-
tion in the micro simulation. Nonetheless, we expect the
steady-state solution to approach the similarity solu-
tion corresponding to �a away from the contact point.
Correspondingly, the interface will cut the upper
boundary with angle �a. This behavior has been verified
numerically for the final value of U, where approxi-
mately the upper half of the interface in the box is
essentially straight and aligns at �a to within 0.5%.

Numerical implementation of phase field solver

For convenience of implementation, we solve the micro
model for a velocity variable u that satisfies zero
Dirichlet conditions along the whole boundary also in
the moving frame of reference

u ¼ um �Uusim ð10Þ
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where Uusim is the similarity velocity. This introduces
additional forcing due to viscous dissipation of the
similarity velocity.

We discretize the system (2)–(4) and (9) with the
finite element method. To this end, we first write the
system in weak form with inner product (�,�)� defined as
integration over �. The objective is to find functions
u,p,c, in suitable Sobolev spaces (weak first deriva-
tives, boundary conditions according to ‘‘Boundary
conditions for the micro model’’) such that

vc,
@c

@t
þ ðuþUusimÞ � rc

� �
�

þ rvc,S
2r 

� �
�
¼ 0

v , �
3ðc3 � cÞ

2Cn

� �
�

�
3

4
ðCn rv ,rc

� �
�

þ v , cosð�SÞð1� c2ÞÞ�wall

� �
¼ 0

vp,r � u
� �

�
¼ 0

rsvu, 2
r
suð Þ�þU r

svu, 2
r
susimð Þ�

� r � vu, pð Þ�� vu, rcð Þ�¼ 0

ð11Þ

holds for all admissible test functions vc,v ,vp,vu. We
define a smoothly varying non-dimensional viscosity
as 
 ¼ ð1� cÞ þ ��

2 ð1þ cÞ, where �* denotes the viscos-
ity ratio, see ‘‘Physics of the micro model.’’ The domain
is subdivided into rectangular elements and the infinite-
dimensional spaces are approximated by piecewise
polynomial approximations on the elements. For the
Cahn–Hilliard variables c and  , bi-linear basis func-
tions Q1 on the elements are chosen. For the Stokes
system, bi-quadratic Qd

2 elements for velocity and Q1

elements for pressure are chosen, which satisfy the so-
called inf–sup condition, see, for example, Gresbo and
Sani,28 and thus give a stable discretization. Equation
(11) is then enforced on the finite-dimensional
subspaces.

The time derivative is approximated using a back-
ward differentiation formula of order 2 (BDF-2),29 that
is, @cnþ1=@t � ð3cðnþ1Þ � 4cðnÞ þ cðn�1ÞÞ=ð2�tÞ and the
spatial terms are evaluated at time level nþ 1. The cou-
pling between the momentum equation and the Cahn–
Hilliard equation is resolved by an explicit segregation
approach. In one time step, we first solve for the Cahn–
Hilliard equation with a velocity extrapolated to the
new time level, u� ¼ 2uðnÞ � uðn�1Þ, and then the Stokes

equation with new values for c(nþ1) and  (nþ1). This
avoids solving the coupled Cahn–Hilliard/Stokes
system, but introduces a limit on the time step
�t � �

� �x, see Galusinski and Vigneaux.30 The nonli-
nearity in the Cahn–Hilliard equation is resolved with a
Newton iteration that typically takes 1–3 steps to con-
verge. The resulting linear system for the Cahn–Hilliard
equation is solved with the generalized minimum resi-
dual solver and a block preconditioner according to
Axelsson et al.,31 and the linear system for the Stokes
system with a generalized minimum residual solver and
a block Schur complement preconditioner according to
Silvester and Wathen.32 The micro solver is imple-
mented in a high-performance Cþþ code33 based on
the finite element library deal.II34 with efficient
matrix-free solvers.35

Micro results

In order to exemplify the numerical algorithm, we pro-
vide computational results for water and oil in the next
subsections, using thematerial parameters given in Table
1. The table also indicates the mesh resolution and time
step size used in the experiments throughout this section.
We use non-dimensional quantities in the simulation.
Note that the Cahn number Cn¼ 1.90 is within the
range Cn� 4S identified in Yue et al.8 for convergence
at contact points. Since themicro simulation is performed
in dimensionless units, its resultmust be transformed into
dimensional values before usage in the macro model. A
dimensional contact point velocity is obtained through
the relationUdim ¼ U �

�1
, whereU is the non-dimensional

velocity determined by the micro model.

Functional relation for contact point velocity

The algorithm outlined in ‘‘Numerical implementation
of phase field solver’’ simulates the time-dependent
dynamics of two-phase flow for given material param-
eters and boundary conditions. In our case, we have to
find a contact point velocity U for which the phase field
simulation reaches a steady state in the moving frame
of reference, given an input angle �a. This is a problem
of inverse type in the control variable U (see Chapter 1
of Hinze et al.36). To identify steady state in a simula-
tion framework, we define a functional expression

Table 1. Parameters for the oil–water case. Note that only the given non-dimensional numbers are used in the computations.

The static contact angle is measured from the oil side, that is, water is wetting.

�1 �2 �1 �2 � �* Cn �S L �x �t
kg
m3

� �
kg
m3

� �
kg
ms

� �
kg
ms

� �
kg
s2

� �
– – [degrees] — – –

1000 730 0.001 0.00334 0.054 0.299 1.90 140 30 0.5 0.5
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f¼ f(U) that evaluates to zero for a contact point vel-
ocity U that gives steady state. When the velocity U is
too high or too low, a positive and negative value of f
is desired, respectively.

To this end, the function f is defined as the motion of
the contact point relative to the moving frame of refer-
ence as depicted in Figure 3. As sketched, the contact
point moves to the right when the wall velocity U is too
low, and to the left if the wall velocity is too high.
Figure 4 shows simulation results for the interface
shape in the steady-state case, which is the output of
the secant method described below. Note that the inter-
face is not planar at the top boundary, but the curva-
ture of the interface increases towards the lower
boundary in Figure 4.

Figure 5 illustrates the behavior of the phase field
solution over time for a wall contact angle of 80 degrees
and the water–oil material combination. The solid red
line shows the time evolution for the numerically com-
puted contact point velocity that yields a steady state,
together with two contact point velocities that are too
small (contact point drifts to the right) and two cases
where the contact point velocities are too large (contact
point drifts to the left). Figure 5 also includes the values
of function f as the measured contact point velocity
against the moving frame of reference for the same
situation. The function is monotone in the contact
point velocity and there is a distinct zero value, guar-
anteeing robustness of a root-finding algorithm. We
emphasize that the steady state found by our algorithm
does not depend on the particular choice of the func-
tion f(U). Other one-dimensional quantities that take
up the motion of the interface based on the concentra-
tion variable c are also possible.

Since system (11) is time-dependent, we need to iden-
tify a suitable time for when to record f(U). As can be
seen from Figure 5(a), an initial transient is present in
the system where the interface changes from the wall
contact angle towards the prescribed static contact
angle. From non-dimensional time t&300 onwards,
an approximately linear behavior of the contact point
position develops. Therefore, it is reasonable to meas-
ure the contact point speed during this phase. We
choose the final time for the micro simulation to be
10 times the time interval of initial transients, that is,
time 3000, when evaluating f(U).

Secant method

For finding the contact point velocity U given a
wall contact angle �a, the root to the following

Figure 4. Velocity field for phase field simulation using a static contact angle of 140 degrees and a wall contact angle of 80 degrees for

the steady state velocity U with f(U)¼ 0. The interface is indicated by a thick solid line, and the two thin lines give the location of the

�0.9 andþ0.9 contour lines in the concentration c. The color displays the magnitude of the total velocity field um ¼ uþ Uusim.

Figure 3. Schematic illustration of reaction to different wall

velocities. If the wall velocity U is too low or too high, the

interface moves to either right or left. We denote the velocity for

which steady state is reached by Us. Figure 4 shows computa-

tional results for this situation. The static contact angle �S is

assumed to be 140 degrees and the wall contact angle �a equals

80 degrees in this illustration.
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one-dimensional nonlinear equation must be found

f ðUÞ ¼ 0 ð12Þ

To this end, the secant method is applied. We choose an
initial velocity U0 (result from a simulation with slightly
different material parameters, result from a simulation
at a neighboring wall contact angle, or simply zero),
and a perturbed velocity, for example, U1¼U0þ

0.001. The iteration to find the next velocity is then

Ukþ1 ¼ Uk � f ðUkÞ
Uk �Uk�1

f ðUkÞ � f ðUk�1Þ
, k ¼ 1, 2, . . .

ð13Þ

We stop the iteration as soon as the update Ukþ1�Uk

is smaller than a given tolerance of 10�5. Since we solve
the Stokes linear system only approximately with an
iterative method, the function value f(U) contains a
certain degree of noise, which affects the secant

method for small tolerances. We found that solving
the Stokes systems to an absolute residual about two
orders of magnitude smaller than the secant method
tolerance eliminates this influence. In all the experi-
ments reported below, the secant method converged
in three to seven steps, which means that not more
than eight function evaluations f(Uk) were necessary
to find the correct contact point velocity. These good
convergence properties are due to the distinct zero in
f(U), see Figure 5(b).

Tabulation of micro results

In order to use the micro model for simulations, its
information needs to be integrated into a macro simu-
lator. As discussed in the introduction, the approach to
measure the angle in the macro model in each time step
and then finding U on the fly is very expensive. It
involves solving several time-dependent phase field
problems in order to find the correct contact point vel-
ocity, even when starting with good initial guesses.
Therefore, we pre-compute the contact point velocity
for a range of wall contact angles and collect the results
in a table as Uð�kaÞ, k ¼ 1, . . . ,N. From the table, one
can compute U(�) for an arbitrary � by interpolation.
The resulting graph for water and oil is shown in
Figure 6.

Convergence behavior of micro model

In order to obtain accurate results for the contact point
velocity U in the micro solver, we need to ensure that
the discretization resolves the physical features of the
flow and that the diffusion along the contact point is
captured by the diffuse Cahn–Hilliard interface, as
explained in Yue et al.8 We performed extensive con-
vergence studies to verify that the chosen values of �x
and �t adequately resolve the interface dynamics of the
phase field parameters given in Table 1 with deviations
in the resulting contact point velocity of 0.2% or less.
In a second set of computations, we analyze the
dependence of the contact point velocity on the height
of the micro box L while keeping S, Cn, Ca fixed.
Figure 6 shows the resulting contact point velocity U
for three particular values of the height, L¼ 20, L¼ 30,
and L¼ 45. The solutions for L¼ 30 and L¼ 45 are in
close agreement, especially in the region between 120
and 140 degrees.

Figure 7 shows the contact point velocity for the
apparent contact angle of 80 degrees over a larger
range of the box height. The plot demonstrates that
the computed contact point velocity converges to a
value that is independent of box size as the box size
increases, which supports omitting the weak logarith-
mic dependence of the angle in the matching procedure.

(a)

(b)

Figure 5. Development of the interface position at the wall

boundary in terms of the given slip velocity U. The materials

considered are water and oil with static contact angle equal to

140 degrees (measured from the oil side), and the wall contact

angle is equal to 80 degrees. The velocity U¼�0.1235 is the

solution from the secant method (13). (a) Time evolution of

interface position. (b) Functional relation f(U).
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In terms of the results presented in Figure 13 later, an
increasing box size gives a larger region which matches
with the similarity solution. We observe a similar con-
vergence behavior for other apparent contact angles
and material parameters. We have also seen that con-
vergence in the far field to the similarity solution
seemed to be enhanced by increasing the box size.

Figure 8 compares the contact point velocity for our
method using L¼ 30 with Cox’ relation37 for oil and
water. A scaling parameter " ¼ 1

4 was used in the
expression ln("�1) of Cox’ relation (7.22)37 to obtain
the same slope around the static angle of 140 degrees
as our method. The result shows that our method
produces a considerably smaller slope than Cox’ rela-
tion for large deviations from the static contact angle.
This can be explained by the relatively large value of
" in Cox’ relation necessary to fit the slope of our
results around �¼ 140 degrees. On the other hand, we
expect our method to include more physical mechan-
isms than the Cox model which is based on lubrication
theory.

Capillary driven channel flow

In this section we relate the results of the micro simu-
lation to a full phase field simulation of capillary domi-
nated channel flow. We consider capillary rise in a
horizontal channel. For the test, non-dimensional
quantities are set in the solver as m¼ 1, �1¼ 1,
�2¼ 0.73, �1¼ 0.3, �2¼ 1, �¼ 1 with the static contact
angle �s¼ 140	, measured from fluid 2 (compare with
physical data in Table 1). We will consider channel
height d¼ 20,40. In both cases the regions near the
wall where the mass diffusion is important are of size
�1, and are smaller than the full channel width. The
channel length is denoted by L. The pressure is fixed to
zero at the inlet and outlet and no gravity acts on the
fluids. Initially the interface between the two fluids is a
straight line at x¼ 25 with fluid 1 placed to the left of
the interface. After an initial transient, the system
develops into a quasi-steady state where the interface

(a)

(b)

Figure 6. Contact point velocities for oil/water material com-

bination for different sizes of the simulation domain L. The mesh

size is set to h¼ 0.5 and the time step �t¼ 0.5. (a) Full range of

contact angles. (b) Zoom around static contact angle.

Figure 7. Contact point velocity U for different sizes of the

micro box L for apparent contact angle equal to 80 degrees.

The mesh size is set to h¼ 0.5 and the time step size �t¼ 0.5.

Figure 8. Contact point velocity U for our method at L¼ 30

and the prediction by Cox’ law.
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moves with a fixed velocity. The steady-state flow is
determined by a balance of the capillary forces against
the viscous stress in the fluids. The longer the channel,
the slower the contact point velocity. Figure 9 displays
the measured contact point velocity as a function of
time for the length L¼ 120 for the d¼ 20 case. Note
that the acceleration of the contact line in the later stage
of the simulation is because the more viscous fluid 2 is
displaced by the less viscous fluid 1. The mesh size is
chosen as h ¼ 20

512 � 0:04 (giving around a million elem-
ents), the Cahn number is Cn¼ 0.11 and the time step
size �t¼ 0.1.

Angle-velocity relation

We have also measured the apparent angle and contact
point velocity in the full phase field solver for compari-
son with our computed relation from the micro solver.
The velocity of the interface is easily computed as the
motion of the contact point along the wall according to
Figure 9. The apparent angle is more difficult to assess.
The interface is bent close to the contact point due to
the diffusive mass transport. Therefore, the measure-
ment of the contact angle must be based on the shape
of the interface at some distance away from the contact
point.

We can compute the curvature at different positions
along the interface by considering the position of the
zero contour in the phase field variable c as a function
of the vertical coordinate y. Since the simulation output
of the interface are line segments, a higher order inter-
polation needs to be done first. We achieve this by
computing a cubic spline interpolation s(y) of the inter-
face data, which gives the interface curvature by

�ð yÞ ¼
s00ð yÞ

1þ ðs0ð yÞÞ2
� �3=2 ð14Þ

Figure 10 displays the interface curvature (14) for five
simulation settings in the d¼ 20 case. Note that in
Figure 10 the interface is essentially circular in the cen-
tral part of the domain, at least for the larger lengths of
the channel, which correspond to small or moderate
velocities of the contact point. This is not surprising
as a circle is a steady-state solution. Based on an aver-
aged curvature ��, measured at a distance yþ¼ yþ 10
between 8 and 12, a circle is constructed. In the
d¼ 20 case this corresponds to the central part of the
domain, and the interface angle is computed from this
circle extrapolated to the domain boundary

�a ¼ arcsin ð10 ��Þ

where 10 is the half channel height. In the d¼ 40 case
we base the angle on a circle constructed from the shape
of the interface at the same distance yþ from the wall.

Figure 11 compares measurements of the velocity
and interface angle in the full phase field simulation

Figure 9. Contact point velocity U as a function of time for the

channel length L¼ 120.
Figure 10. Curvature according to equation (14) as a function

of the vertical position y.

Figure 11. Comparison between micro model and actual phase

field results.
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with the results from the micro simulation in Figure 8.
The five red points are based on d¼ 20 and the four dif-
ferent channel lengths L as depicted in Figure 10 are
L¼ 60, L¼ 120, L¼ 240, and L¼ 480. For the case
L¼ 120, the angle–velocity relation is recorded at two
different instants in time, one at t¼ 100 and one at
t¼ 1200 where the interface is located around x¼ 29.0
and x¼ 58.4, respectively. At the later time, the amount
of the more viscous fluid has decreased, increasing the
contact point velocity and reducing the apparent contact
angle as visible from Figure 10. The comparison shows
that the measured velocities at the contact point are in
close agreement with the prediction of the micro model.

Figure 11 also includes results of a second phase field
simulation employing a larger channel height d¼ 40,
given by the black points. As mentioned above, the
angle measurements are based on a fit of a circle at
wall distance between 8 and 12. As before, four channel
lengths L¼ 120, 240, 480, 960 as well as two different
times for checking the velocity at L¼ 240 and L¼ 480
have been selected, giving six data points. The results
again show very good agreement with the micro
simulation.

Quasi-steady state

After the initial transient the phase field solution
approaches a quasi-steady state, see Figure 12. We com-
pare the velocity field from the phase field simulation
with a corresponding similarity solution in Figure 13.
The phase field simulation shows a good qualitative
agreement of velocity directions. There are two main
deviations between the two fields. Firstly, the diffuse
transport around the interface for the phase field model
removes the singularity in the similarity velocity and con-
tributes to a smooth transition of no slip at the wall (cor-
responding to velocity fields pointing to the left in the
moving frame of reference) and the static interface pos-
ition. Secondly, the true interface is not flat, and there-
fore deviates from the flat similarity solution interface.

Conclusions

We have presented an algorithm for computing a rela-
tion between the contact point velocity and the wall
contact angle, to be used as a boundary condition for
simulation of the flow of two immiscible incompressible
fluids with moving contact lines, on scales significantly
larger than micrometers.

The relation between the contact point velocity and
the wall contact angle was determined by considering a
so-called micro model, which is based on the response
of the flow to the molecular forces induced by the
macroscopic contact angle. The dimensions of our
micro simulation can be adjusted to physical length

Figure 13. Velocity fields in moving frame of reference,

comparing the Huh–Scriven similarity velocity field3 attached

to the numerically computed contact point position and apparent

contact angle of 137.41 degrees with the actual velocity field in

a phase field simulation. The three black lines show the location

of the 
0.9 and 0 contour lines of the phase field variable c.

(a) Similarity velocity field.3 (b) Phase field simulation of velocity

field.

Figure 12. Velocity field and interface position as the contact

point passes x¼ 50.
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scales over which contact point diffusion occurs by
choosing appropriate non-dimensional material param-
eters in the micro model. The micro model was used to
tabulate the relation between the contact point velocity
and the wall contact angle for a given material com-
bination. The results of the micro simulation have
been validated by comparing with full phase field
simulations.

Our approach enables incorporation of the effects of
small scale physical diffusion processes around the con-
tact point at real material parameters into conventional
macroscale techniques like the level set method, with-
out the high resolution requirements of a straight for-
ward full phase field simulation. Important to note is
that considerably coarser meshes can be used for the
macroscale simulations than for comparable global
phase field simulations, which gives tremendous
improvements in computational efficiency.
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