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1 INTRODUCTION

Due to the ever increasing value of data, its continuous protection becomes ever more important. Corresponding
solutions are applicable in many contexts, such as business, military and government secrets, as well as privacy and
copyright protection. In all these cases, the owners of valuable data would like to constrain its future usage.

Data usage control solutions [Park and Sandhu 2004; Pretschner et al. 2006] allow for the specification and enforcement
of policies expressing propositional, temporal, cardinal, and spatial constraints on future data usages. Different to
traditional access control, these policies are enforced even after access was granted.

Reference monitors ensure, or observe, policy compliance by continuously intercepting and monitoring relevant
events. Because data constitutes an abstraction which materializes in different forms, such as files or database entries,
reference monitors must: (i) record the flow of data through the system; (ii) enforce, or observe, policy compliance for
all of the recorded data representations [Pretschner et al. 2012]. In the following, policy enforcement refers to both
detective and preventive enforcement.

Existing approaches fall short in the presence of distributed data sharing and processing, in which case policies
may refer to the storage and processing of data across systems, such as “this data must not reside in more than three
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systems”, or “access this data at most five times”. Hence, policies must be enforced on all systems that store and process
the sensitive data. We investigate two related research questions (RQs):

First, for controlling data usage in distributed systems, it is essential to know all representations of protected data
across all systems. Hence, whenever data is exchanged between systems, its flow must be recorded and its policies must
be made available.

While there exist solutions that track usage controlled data and corresponding policies across systems [Kumari
et al. 2011; Lazouski et al. 2014; Papagiannis and Pietzuch 2012], they rely on particular applications, protocols, or
file types. We deem such tailoring inadequate, as data is continuously transformed and exchanged by a multitude of
applications and protocols. Further solutions exist (see §7), but they (i) limit the number of trackable data and/or policies,
(ii) propagate labels rather than complex policies, (iii) rely on particular hardware, hypervisors, or application(-protocol)s,
or (iv) necessitate the adaptation of existing applications.

Ideally, however, tracking of data flows across systems should be generic and transparent to applications and
operating systems. We thus tackle the research question

RQ1: How can the flow of data across systems be generically and

transparently tracked and how can data usage policies be propagated?
Second, policies referring to distributed data representations and events thereon must be enforced. Information about
data usage must thus be available to the corresponding decision points. While policies could be enforced by a centralized
infrastructure, this poses a single point of failure, privacy concerns, high hypothesized communication and performance
overheads, and availability concerns.

We thus aim for the deployment of distributed monitors, each of them (i) observing local system behavior, (ii) taking
policy decisions, and (iii) communicating essential information to remote monitors. While several solutions aiming at
such decentralization have been proposed (see §7), they (i) present central components, (ii) do not cater to data being
propagated across systems, (iii) do not enforce policies preventively, or (iv) are incompatible with commodity systems.
Hence, we address the research question

RQ2: How can usage control policies be enforced effectively, preventively,

and decentrally if data, events thereon, and policies are distributed?

Solution. Our solution is a generic model and implementation for cross-system data flow tracking, policy propagation,
and distributed policy enforcement. Cross-system data flow tracking and policy propagation are transparent and generic,
i.e., independent of applications, application-protocols, and the operating system (RQ1). Global data usage policies are
enforced in a fully decentralized manner: distributed decisions are decentrally, continuously, and consistently taken,
agreed upon, and enforced (RQ2).

Contributions. Our contributions are:

• A generic and formal model that allows for the explicit distinction of different systems, their individual behaviors, as
well as their interplay. In the usage control context, this is the first operationalized model that allows to reason about
both independent systems as well as the distributed system they form.
• The first model and implementation that transparently and generically tracks data flows and policies across systems.
• The first model and implementation for the fully decentralized and preventive enforcement of usage control policies
that refer to data or events that are distributed.

While some of those results were published earlier [Kelbert and Pretschner 2013; 2014; 2015], original contributions of
the article at hand are:
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• The consolidation, integration, and consistent presentation of the models and formalisms published in [Kelbert and
Pretschner 2013; 2014] (§3).
• A communication-protocol independent approach to track data flows across systems (§3.2), which is more generic
than earlier work [Kelbert and Pretschner 2013].
• A formalization of (i) how the distributed system’s data flow state is composed of the individual systems’ data flow
states (§3.1.3), and (ii) the cross-system data flow semantics of system calls sendto and recvfrom (§3.2.2).
• The detailed description of an architecture and implementation that realizes the proposed concepts (§4). Different to
[Kelbert and Pretschner 2015], we describe the infrastructure up to a level of detail that is consistent with the formal
models.
• Novel evaluation results (§5): Preventive cross-system data flow tracking and policy propagation achieves 21%–54%
performance of native execution (§5.2); Decentralized policy enforcement outperforms a centralized infrastructure in
many situations (§5.3).

Threat Model.We want to prevent or detect data usage that is not compliant with the corresponding policies. Considered
attacker models are: (i) End users without administrative privileges who act intentionally or unintentionally. (ii) A
Man-in-the-Middle eavesdropping both the system’s actual communication as well as our infrastructure’s. (iii) System
administrators accessing and controlling all or most aspects of the system. (iv) Malicious software, such as malware or
misconfigured or corrupted benign software.

Example. Consider an insurance company that provides customers the ability to access services via a web interface,
e.g., to request contract offers and issue damage reports. Internally, the insurance company performs market research
and data analysis to produce valuable reports and predictions. Both the customers’ personal records and the insurance
company’s internal data require protection from misuse and leakage. All of these data flow through different systems
in various formats and is viewed, stored, and processed by several users. Some data is derived from other data, e.g., a
contract being created from the customer’s personal data. All these different distributed representations of the same
data ought to be protected by policies such as:
Policy 1: ‘Exactly one contract offer must be sent to the customer not later than 30 days after a request for a contract

offer has been received.’
Policy 2: ‘If the customer declines a contract offer, then all associated and derived data must not be used anymore.’
Policy 3: ‘Each contract must be reviewed and approved by at least two clerks.’
Policy 4: ‘At each point in time no two clerks might have a local copy of the same customer record.’
As policy 1 shows, usage control can not only enforce constraints on data usage, but also oblige certain events to
improve service. Note that all of the above policies are global policies, meaning that they refer to data and events that
are distributed.

While a centralized infrastructure can enforce these policies, a decentralized approach is more efficient. For example,
consider policy 2: In a centralized approach, every data usage from all clients must be signaled to the central infrastructure
for decision making. If, however, individual clients are aware of decision logics, then most policy decisions can be taken
locally, as clients are aware whether they are handling such derived data.

2 AN EXISTING USAGE CONTROL MODEL

This chapter describes previous work upon which this article builds, i.e. a formal data usage control model (§2.1) and a
corresponding enforcement infrastructure (§2.2).
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2.1 Formal Data Usage Control Model

The model we leverage [Harvan and Pretschner 2009; Hilty et al. 2007; Pretschner et al. 2008, 2012] defines usage control
policies (§2.1.3) as constraints over system traces (§2.1.1) and system states (§2.1.2) as follows.

2.1.1 System Events and System Traces. Events E are defined by a name (set N ) and a set of parameters, which
are, in turn, defined by a name (set N ) and a value (setV): E ⊆ N × P(N ×V). For an event e ∈ E, let e.n denote its
name and e.p its set of parameters. We write (e.n, {(p1, v1), . . . , (pm, vm)}) for the event e ∈ E with m ∈ N parameters
(p1, v1), . . . , (pm, vm) ∈ N ×V .

Each event carries two mandatory parameters, obj, actual ∈ N , which we refer to as e.obj and e.actual: e.obj

denotes the primary object of e, such as a file; e.actual is boolean: e.actual = true indicates that event e has already
happened, while e.actual = false indicates that event e is intended. Hence, we obtain two subsets of E, actual events
EA def
= {e ∈ E | e.actual} and intended events EI def

= E \ EA. As an example event, consider a system call that is initiated
by an application and executed by the OS kernel.

Events might be data usage events EU or data flow events EF . The former process data, while the latter cause data to
migrate between representations. There might exist events that belong to both sets at the same time, hence EU ∩EF , ∅.

For example, event er = (review, {(obj, d), (actual, true), (role, clerk)}) ∈ E denotes that a user with role clerk actually
reviews data d, hence er ∈ E

A. Intuitively, reviewing is considered data usage, hence er ∈ E
A ∩ EU ; er also is a data

flow event if the implementation is such that er leads to the creation of a new representation of d.

Event refinement.When specifying policies (§2.1.3), it is useful to specify only relevant event parameters, quantifying
over unmentioned ones. Hence, ref ⊆ E × E defines a refinement relation: event e1 refines event e2 iff their names are
the same and iff the parameters of e1 are a superset of those of e2 :

∀e1, e2 ∈ E : e1 ref e2
def
⇐⇒ e1.n = e2 .n ∧ e1.p ⊇ e2 .p

System events S are events that are observed at runtime. They are maximally refined, i.e. all parameters are determined:
S

def
= {e ∈ E | �e ′ ∈ E : e ′ , e ∧ e ′ ref e}. We categorize system events S into actual system events SA def

= EA ∩ S,
intended system events SI def

= EI ∩ S, data usage system events SU
def
= EU ∩ S, and data flow system events

SF
def
= EF ∩ S. We further define SA

F
def
= SA ∩ SF . Parameter time ∈ N indicates the event’s time of observation:

∀e ∈ S ∃r ∈ R≥0 : (time, r ) ∈ e.p. We access r by e.time.

Traces Tmodel system runs by mapping abstract points in time i ∈ N to all system events that happened since i − 1:

T : N→ P(S), such that ∀t ∈ T,∀i ∈ N, i > 0,∀e ∈ t (i) : i − 1 < e.time ≤ i

We assume that no two events happen at exactly the same point in time:

∀t ∈ T, i ∈ N, e1, e2 ∈ t (i) : e1.time = e2 .time =⇒ e1 = e2 .

2.1.2 Generic Data FlowModel and System States. At runtime the data to be protected exists in multiple, continuously
evolving, representations. The system’s data flow state captures which data takes which representations at which
point in time. A data flow model [Harvan and Pretschner 2009; Pretschner et al. 2012] (over-)approximates these data
representations. Data flow events SF initiate state transitions.

Within this model,D is the set of data to be protected. Representations containing data are called containers, denoted
by C, and D ∩ C = ∅. D, C and special value nil constitute possible values for event parameter obj: ∀e ∈ E,∃v ∈
Manuscript submitted to ACM
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D ∪ C ∪ {nil} : e.obj = v . Identifiers I identify containers. In practice, system events carry parameters that allow to
identify the container on which the event operates.

The set of all possible data flow states is defined as Σ def
= s × a × n. Each state consists of three mappings: (1) A storage

function s : C → P(D) capturing which containers potentially store which data. (2) An alias function a : C → P(C)
capturing that some containers may implicitly get updated whenever other containers do: If c2 ∈ a(c1) for c1, c2 ∈ C,
then any data written into c1 is immediately propagated to c2 . (3) A naming function n : I→ C mapping identifiers to
containers. For a state σ ∈ Σ, σ .s, σ .a, and σ .n refer to those mappings. The initial state of trace t ∈ T is denoted σ 0

t .
Transition relation R ⊆ Σ × SA

F × Σ defines how the above state changes in correspondence with the execution
of actual data flow system events SA

F . Given a state σ ∈ Σ and a set of events S ∈ {S ′ ⊆ SA
F | ∀e, e ′ ∈ S ′ : e.time =

e ′.time =⇒ e = e ′}, function R̃ : Σ × P(SA
F ) → Σ updates the data flow state:

∀σ ∈ Σ, S ∈ {S ′ ⊆ SA
F | ∀e, e ′ ∈ S ′ : e.time = e ′.time =⇒ e = e ′} :

R̃(σ , S)
def
=


σ if S = ∅

R̃(R(σ , e), S \ {e}) for e ∈ S : � e ′ ∈ S : e ′.time < e.time

For trace t ∈ Tand timestep i ∈ N, the set of system events causing data flows is t (i) ∩ SA
F . Thus, the system’s state

at the end of timestep i ∈ N, i > 0, is computed as σ i
t
def
= R̃(σ i−1

t , t (i) ∩ S
A
F ).

Instantiations of this model, including semantics of R, exist, among others, for Unix [Harvan and Pretschner 2009],
X11 [Pretschner et al. 2009], and Microsoft Windows [Wüchner and Pretschner 2012]. Upon their application at runtime,
storage function σ .s reflects at each point in time which data resides in which containers.

In the insurance company example, D represents the set of all customer data, contracts, and the insurance’s business
secrets. Containers C are, e.g., workstations, emails, files, database records, and data processing software. This clear
distinction between abstract data (D) and their concrete technical representations (C) allows for flexible and generic
data flow tracking by means of updating their mapping (σ .s) in correspondence with observed system events (S).1 §3.2
instantiates this model for processes, files, and sockets (C) and system calls (S). Further, state transitions (R) for system
calls are defined to model how system calls propagate data between containers, thereby modifying σ .s.

Relation refΣ ⊆ (S × Σ) × E describes event refinement in the presence of a given state. The rationale is that system
events S always operate on containers, while policies (§2.1.3) might be specified in terms of data. Hence, state σ ∈ Σ

determines whether an event refines another: (e1,σ ) refines e2 if either both e1 and e2 operate on the same container
and if e1 ref e2 , or if e1 operates on some container c ∈ C and e2 operates on some data d ∈ D within c (d ∈ σ .s(c))
and e1 ref e2 when ignoring parameter obj:

∀e1 ∈ S, e2 ∈ E,σ ∈ Σ : (e1,σ ) refΣ e2
def
⇐⇒ ∃c ∈ C : e1.obj = c ∧ e2 .obj = c ∧ e1 ref e2

∨ ∃c ∈ C, d ∈ D : e1.n = e2 .n ∧ e1.obj = c ∧ e2 .obj = d

∧ d ∈ σ .s(c) ∧ e1.p \ {(obj, c)} ⊇ e2 .p \ {(obj, d)}

On this basis, §2.1.3 defines the syntax and semantics of data usage policies.

1While conservatively tracking flows, this model leads to overapproximations of the data analysis. This problem has been tackled elsewhere in terms of
increasing precision by considering multiple abstraction layers [Lovat et al. 2016], data structure [Lovat and Kelbert 2014], and data quantities [Lovat
et al. 2014].
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2.1.3 Specification of Data Usage Policies. We specify policies using the Obligation Specification Language (OSL),
an extension of linear temporal logics [Hilty et al. 2007; Pretschner et al. 2008, 2012]. Previous work by Kumari and
Pretschner [2013] showed how OSL policies can be translated into Event-Condition-Action (ECA) rules for enforcement
purposes. Hence we focus on the latter. Their semantics are as follows: If a system event e ′ ∈ S refining the trigger Event
is observed at timestep i and if the execution of this event wouldmake theCondition true, then additionalActionsmight be
performed at timestep i+1. These include allowance, delaying, and inhibition of event e ′, as well as execution of additional
events. ECA conditions Φ are specified in terms of past linear temporal logics. [Lichtenstein et al. 1985]. Their syntax is:

Ψ def
= true | false | E

Ω def
= notIn(D,P(C)) | combined(D,D,P(C)) | maxIn(D,N,P(C))

Φ def
= (Φ) | Ψ | Ω | not(Φ) | Φ and Φ | Φ or Φ | Φ since Φ | Φ before N | repmin(N,N, E) | repmax(N,N, E) | always(Φ) | evalExt(Γ)

Γ
def
= Ψ | N | op | String | . . .

For brevity, we omit the description of the formal semantics which are provided in [Kelbert and Pretschner 2014;
Pretschner et al. 2012]. Intuitively they are as follows. Ψ refers to constants true, false, and events E. An event operator
e ∈ E evaluates to true iff, given the current data flow state, an event refining e happens in the current timestep (see
refΣ ). Ω defines state-based operators that constrain the data flow state: notIn(d,C) is true iff data d is not in any of
the containers C; combined(d1, d2 ,C) is true iff there exists at least one container in C that contains both data d1 and
d2 ; maxIn(d,m,C) is true iff data d is contained in at mostm containers in C . Given a state σ ∈ Σ, operators Ω thus
constrain which data items D must or must not be contained in particular containers C, i.e., they constrain the set of
‘allowed’ states σ . Φ defines propositional, temporal, and cardinality operators. The semantics of not, and and or are
intuitive; α since β is true iff β was true some time earlier and α was true ever since, or if α was always true; α before j

is true iff α was true exactly j timesteps ago; repmin(j,m, e) is true iff event e happened at leastm times in the last j
timesteps. Further, repmax(j,m, e) ≡ not(repmin(j,m + 1, e)), and always(α) ≡ α since false. Operator evalExt allows
to incorporate external specification and evaluation logics, e.g. to specify conditions that refer to subject and object
attributes or environmental conditions, such as (absolute) time and location. We leave the semantics of evalExt and its
parameters Γ (including operations op) unspecified. Earlier implementations leveraged XPath for such purposes [Feth
and Pretschner 2012; Wüchner and Pretschner 2012].

For trace t ∈ T, timestep i ∈ N, and condition φ ∈ Φ, notation (t , i) |= φ denotes that trace t satisfies φ at time i.
Table 1 expresses the example policies from §1 as ECA rules. Rule 1a notifies the manager about data d if 30 days ago

there was a contract offer request involving d ((requestOffer, {(obj, d)}) before 30) and if no contract offer involving d

was sent meanwhile (repmax(30, 0, (sendOffer, {(obj, d)}))). Rule 1b inhibits sending of a contract offer involving data d if
there was no corresponding contract request in the last 30 days (repmax(30, 0, (requestOffer, {(obj, d)}))) or if a contract
offer was already sent (repmin(30, 1, (sendOffer, {(obj, d)}))). Rule 2 inhibits any usage of customer data d that was part of
a declined contract offer at some earlier point in time (not(always(not((declineOffer, {(obj, d)}))))). Rule 3 inhibits sending
of contract d if it was not reviewed (repmax(30, 1, (review, {(obj, d)}))) or approved (repmax(30, 1, (approve, {(obj, d)})))
more than once. Rule 4 inhibits events that lead to a state in which customer data d is in more than one of the clerk’s
workstations.

The above policies constitute templates: To protect a certain data item, the corresponding policies must be instantiated
and deployed for this particular data item.
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Policy 1 Event: < any >

(a) Condition: ((requestOffer, {(obj, d)}) before 30) and repmax(30, 0, (sendOffer, {(obj, d)}))
Action: (notifyManager, {(obj, d)})
Event: (sendOffer, {(obj, d)})

(b) Condition: repmax(30, 0, (requestOffer, {(obj, d)})) or repmin(30, 1, (sendOffer, {(obj, d)}))
Action: inhibit

Policy 2 Event: (use, {(obj, d)})
Condition: not(always(not((declineOffer, {(obj, d)}))))

Action: inhibit
Policy 3 Event: (sendOffer, {(obj, d)})

Condition: repmax(30, 1, (review, {(obj, d)})) or repmax(30, 1, (approve, {(obj, d)}))
Action: inhibit

Policy 4 Event: (< any >, {(obj, d)})
Condition: not(maxIn(1, d, CWorkstation))

Action: inhibit
Table 1. Example policies from §1 as ECA rules.

2.2 Enforcement Infrastructure

To enforce the above concepts, technical infrastructures (i) monitor system events S, (ii) track the flow of data on
the basis of SF , R, and Σ, (iii) decide whether data usage system events SU ought to be allowed, modified, inhibited,
delayed, or whether compensating actions need to be taken, (iv) enforce the decisions [Hilty et al. 2007; Kumari et al.
2011; Neisse et al. 2011b; Pretschner et al. 2009, 2012].

2.2.1 Architecture Overview. All of the cited infrastructures are implemented along the following lines: Initially, the
Policy Management Point (PMP) deploys the ECA rules to be enforced at the Policy Decision Point (PDP). System-layer
specific Policy Enforcement Points (PEPs) intercept system events S, temporarily block them from execution, and
signal them to the PDP. The PDP first forwards these events to the Policy Information Point (PIP), which maintains the
system’s data flow state σ ∈ Σ in correspondence with the signaled data flow system events. The PDP then evaluates
the signaled event against all deployed ECA rules, possibly involving the PIP’s state. Finally, the decision is sent back to
the PEP, which enforces it and continues execution of the original event. Because PEPs are stateless, every such event
must be evaluated by the PDP.

and

(sendOffer,{(obj,d)})

(requestOffer,{(obj,d)})

before
j = 30

repmax
j = 30, m = 0

Fig. 1. Expression tree of the condition of
ECA rule 1a.

2.2.2 Policy Decision Point. The PDP must ensure compliance with any
deployed ECA rules. The PDP thus continuously evaluates them, considering
conditions φp ∈ Φ as expression trees as depicted in Fig. 1: Leaves represent
constants true and false, events E, state-based operators Ω, and evalExt. In-
ternal nodes represent operators such as not, and, before, since, and repmin.
The tree’s nodes are stateful, storing whether the operator’s state changed
during the current or previous timesteps.

Now, consider an ECA rule with condition φp ∈ Φ to be deployed at the
PDP and that some PEP signals a system event e ∈ S. The PDP first forwards
e to the PIP, which updates the data flow state as detailed in §2.2.3. The
subsequent policy evaluation thus grounds on an up-to-date data flow state.
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If e is a data usage event, e ∈ SU , then the PDP first updates the states of all leaf nodes of the expression tree
representing φp . The states of operators true and false are invariant. For a leaf representing event e ′ ∈ E, the leaf’s state
is a counter indicating howmany events refining e ′ happened within the current timestep. This counter is incremented if
(e,σ ) refΣ e ′, where σ ∈ Σ denotes the current data flow state. For leaf nodes representing state-based operators Ω, this
update process is delegated to the PIP. For nodes of type evalExt, the update process is delegated to the corresponding
external framework. In sum, the tree’s leaves track how often events happened and whether state-based operators or
operators of type evalExt changed their state.

After updating the leaf nodes, evaluation of the entire condition φp may be triggered for two reasons: (1) If the
signaled event e refines the trigger event ep , i.e. (e,σ ) refΣ ep , then it must be evaluated whether e complies with the
policy; (2) If a timestep has passed, then it must be evaluated whether all temporal constraints are satisfied. In both
cases, the expression tree of φp is evaluated recursively from the root. We denote the evaluation result by eval(φp). It
reflects (t , i) |= φp with t ∈ Tbeing the executing trace and i ∈ N the current point in time. If eval(φp) = true then p’s
actions ap are applied. Otherwise, the signaled event e is allowed.

Recursive evaluation of operators not, and, and or is trivial: the corresponding nodes are stateless and their result is
computed by combining the results of their child nodes. We explain the evaluation of selected complex operators in the
following.

For e ′ ∈ E, eval(e ′) returns true if at least one event refining e ′ happened within the current timestep. The state is
reset if evaluation takes place at the end of a timestep.

For φ = α before j, an array stores the evaluation results of α of the last j timesteps. The result of eval(φ ) corresponds
to the value that was stored j timesteps ago. When evaluating at the end of a timestep, the result of eval(α) overwrites
the oldest entry.

For φ = repmin(j,m, e ′), an array stores the number of refinements of e ′ for the last j timesteps. eval(φ ) returns true

if the sum of those values is greater than or equal tom.

Note: If the PEP signaled an intended event, then the changes made to φp’s expression tree’s nodes’ states, as well as all
changes made to the PIP’s data flow state are rolled back after the above evaluation of φp . This is because the PDP and
PIP simulate how the allowance of the intended event would change their states. However, since the event was not
actual, any such changes have not happened in the real system.

2.2.3 Policy Information Point. The PIP maintains the system’s data flow state and evaluates state-based operators.
Whenever the PDP signals a system event e ∈ S, the PIP evaluates whether there exists a corresponding state transition,
i.e. whether ∃σ ,σ ′ ∈ Σ, e ′ ∈ SF : (σ , e ′,σ ′) ∈ R ∧ (e,σ ) refΣ e ′. If so, then the data flow state is updated according to
the semantics defined by (σ , e ′,σ ′) ∈ R.

To evaluate event refinement refΣ , the PDP can query the PIP for all data contained in a specific container c , i.e.
σ .s(c). Using this result set, the PDP is able to evaluate whether d ∈ σ .s(c) for any d ∈ D, and consequently whether
(e1,σ ) refΣ e2 .

The PDP delegates evaluation of state-based operators Ω to the PIP. The PIP evaluates those on the basis of their
semantics (see §2.1.3) and the current data flow state using simple set operations. The PDP uses the result to update the
state-based operator’s state within the expression tree of the condition being evaluated.
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3 DISTRIBUTED DATA USAGE CONTROL

The model and infrastructure from §2 are monolithic, as they refer to one single trace and system state: One single
PDP/PIP regulates the execution of all system events. This necessitates communication with the central PDP/PIP for
every observed system event. However, such a centralized approach is expected to be impractical for distributed system
setups [Basin et al. 2015; Janicke et al. 2008]: Vital central components might not be able to scale and communication
delays might significantly impact performance.

Example. We revisit policy 2 from the insurance company example. Assume that the company set up a centralized PDP
and that the customer’s data is used and stored on multiple systems, e.g. the web, email, and data analysis server. Since
those systems’ PEPs are stateless, they signal every event to the PDP—even if (i) the event does not operate on any
customer data, and if (ii) the policy does not apply for other reasons, e.g. because the customer has not declined the offer.
If, instead, local PDPs could decide whether events comply with the policy, then no communication would be required.

This section presents a model that deploys local PDPs close to PEPs. The local PDPs retain enough information to take
many decisions independently and conclusively, thus avoiding communication with a central PDP. We hypothesize
that taking policy decisions locally decreases the overall communication and performance overheads—even though
synchronization between the distributed PDPs becomes necessary.

We formalize a distributed system model (§3.1), on the basis of which we track data flows across systems (§3.2, RQ1)
and decentrally enforce global policies (§3.3, RQ2).

3.1 Distributed System Model

We extend the model from §2.1 by modeling different systems, their individual behaviors, and their interplay. We refer
to the monolithic system from §2 as the distributed system, in which multiple PDPs/PIPs observe disjoint parts. We
formalize how these individual decentral observations reassemble the observations of one single central PDP/PIP. This
allows us to use the policy language from §2.1.3 within a distributed environment.

3.1.1 Individual Systems. Systems Y constitute autonomous parts of the distributed system. We define a system to
be a non-empty set of system layers whose PEPs share the same PDP and PIP. Systems communicate via the network
and may in themselves be distributed, as PEPs sharing the same PDP/PIP may reside on different hosts.

For any system y ∈ Y, Sy ⊆ S denotes its unique set of system events, Cy ⊆ C its unique set of containers, Iy ⊆ I
its unique set of identifiers, Ty ⊆ T its set of all possible system runs, and Σy ⊆ Σ its set of all possible data flow states:

∀y ∈ Y : Ty ⊆ T : N→ P(Sy ) and Σy ⊆ Σ : (Cy → P(D)) × (Cy → P(Cy )) × (Iy → Cy )

Each system event e ∈ Sy is required to carry parameter sys ∈ N with value y ∈ Y. State transitions R, specifying
how data flows between systems, are defined in §3.2.2.

In practice, individual systems run in parallel and produce independent system traces and data flow states: The PDP of
system y ∈ Y (PDPy ) observes trace ty ∈ Ty , while the corresponding PIP (PIPy ) observes data flow states σty

∈ Σy . It
is the union of these local observations that one single global PDP/PIP (PDPY /PIPY ) would observe.

3.1.2 Sets of Systems. We want to reason about the distributed system as a whole as well as subsets thereof. We
therefore define for a set of systems Y ⊆ Y: (i) its set of system events SY

def
=

⋃
y∈Y Sy , (ii) its set of containers

CY
def
=

⋃
y∈Y Cy , (iii) its set of identifiers IY

def
=

⋃
y∈Y Iy , and (iv) its set of all possible system runs TY : N→ P(SY ).
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PIPA

PDPA

PIPB

PDPB

PIPC

PDPC

PIPY

PDPY

Time

System A System B System C Combined trace

with Y = {A, B, C } ⊆ Y,
τ ∈ TA × TB × TC ,
∀y ∈ Y : tτy ∈ Ty ,

tτY ∈ TY ,
and {e1, e2 } ⊆ SA ,

{e3, e4 } ⊆ SC .

Fig. 2. Three systems and the combination of their traces.

3.1.3 Relating Individual Systems with Sets of Systems. Running systems in parallel produces independent system
traces and data flow states (§3.1.1). Because the policy language (§2.1.3) only considers one single system trace and data
flow state, we formalize how multiple decentralized system runs and data flow states correlate with the observations of
a single central PDP/PIP.

Let
∏

denote the Cartesian product. Then τ ∈
∏

y∈Y Ty is a tuple of traces of all systems; tτy ∈ Ty refers to the
trace of system y ∈ Y. We define tτY ∈ TY as the combined trace of systems Y ⊆ Y. For each timestep i ∈ N, the set of
system events observed in Y corresponds to the union of the system events observed in all single systems y ∈ Y . This
corresponds to what a central PDP would observe; see Fig. 2 for an example:

∀Y ⊆ Y, i ∈ N,τ ∈
∏
y∈Y

Ty , tτY ∈ TY : tτY (i)
def
=

⋃
y∈Y

tτy (i)

Analogously, we combine the individual systems’ data flow states to a single global data flow state σtτY
, resembling

what a central PIP would observe. We obtain σtτY
by unifying the mappings of the individual systems’ storage, alias,

and naming functions:

∀Y ⊆ Y, i ∈ N,τ ∈
∏
y∈Y

Ty , y ∈ Y , tτY ∈ TY , t
τ
y ∈ Ty ,σ

i
tτY
∈ ΣY ,σ

i
tτy
∈ Σy , c ∈ Cy , j ∈ Iy :

ΣY ⊆ Σ : (CY → P(D)) × (CY → P(CY )) × (IY → CY )

with σ i
tτY
.s(c) def= σ i

tτy
.s(c) ∧ σ i

tτY
.a(c) def= σ i

tτy
.a(c) ∧ σ i

tτY
.n(j) def= σ i

tτy
.n(j)

In summary, tτY and σtτY
reflect the trace and state of a set of systems Y , respectively. This allows to reason about the

behavior of individual systems, sets of systems, their interrelations, and the distributed system as a whole. Our models
for cross-system data flow tracking (§3.2) and decentralized policy enforcement (§3.3) rely on these definitions.

3.2 Cross-System Data Flow Tracking

To protect all sensitive data copies across all systems, the enforcement infrastructure must know all data representations
at all times. With the model from §3.1, each system y ∈ Y records its internal trace ty ∈ Ty and associated data flow
states σty

∈ Σy , recording which data resides in which containers at which point in time. Earlier work used this model
to track data within Unix systems [Harvan and Pretschner 2009] and Microsoft Windows [Wüchner and Pretschner
2012], e.g. by following the flow of data from a file into a process and back to another file. In a distributed system, the
infrastructure must further be aware of all data copies across systems.
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Example. In our example, policy 2 inhibits the execution of any events that use data that is associated with, or was
derived from, a declined contract offer. Consider such a declined contract offer d that was archived in a database. Clerks
requesting copies of (parts of) the declined contract offer do not violate the policy. To keep the clerks from using these
copies of data d and thus violating the policy, all such (partial) copies of d must be tracked across all of the insurance
company’s systems at all times.

We instantiate the data flow tracking model (§2.1.2) for distributed systems. Cross-system data flows are recorded within
the involved systems’ data flow states. Our approach is independent of the communication protocol and transparent to
applications and the operating system. This allows to track data for a multitude of applications and protocols. E.g., in
the insurance company example, data is exchanged using applications and protocols such as email, web, and possibly
proprietary protocols.

Our model integrates with aforementioned works that track data within single systems. We detail some aspects of
intra-system tracking to outline the models’ integration.

Addresses. Communication methods such as the Internet Protocol (IP) use addresses to identify network participants.
Multiple addresses may be assigned to each system, reflecting that a system may in itself be distributed (see §3.1.1).
We assume addresses A to be globally unique: no address may be assigned to more than one system over time. The
integration of localhost addresses, NAT and DHCP is explained in [Kelbert and Pretschner 2013]. Each system y ∈ Y is
defined by its set of unique addresses: ∀y1, y2 ∈ Y ⊆ P(A) \ {∅} : y1 = y2

def
⇐⇒ y1 ∩ y2 , ∅.

3.2.1 Model Instantiation. To be transparent to applications, we track data flows in correspondence with system
calls e ∈ S. Because these might be intercepted before or after execution by the kernel, they might be intended (e ∈ SI )
or actual (e ∈ SA).

Of interest are system calls whose semantics are such that they influence the data flow state. Transition relation
R reflects these semantics and has been defined for system-internal system calls in [Harvan and Pretschner 2009].
E.g., system calls creat, pipe, and fork create new containers (files, pipes, and processes) and assign corresponding
identifiers (filenames, file descriptors, process ids), thus modifying naming function σ .n. Others (e.g., open, dup) create
new identifiers (file descriptors) for existing containers. System calls such as read and write migrate data between
containers, thereby modifying storage function σ .s. E.g., if a process reads from a file, then σ .s is updated such that all
data within the file is also considered to be within the reading process’ memory.

For the data flow state σ to correctly reflect (more precisely: overapproximate) the distribution of data within the
system, transition relation R must correctly (and possibly conservatively) define for every system call how it changes
mapping σ .s, σ .a, and σ .n. §3.2.2 provides corresponding definitions for networking-related system calls; these are
based on system calls’ manpage descriptions and observable behaviours.

We base cross-system data flow tracking on the fact that processes (i) send data to the network by writing data from
their process memory to a socket (system call sendto or equivalent), and (ii) receive data from the network by reading
from a socket into their process memory (recvfrom or equivalent). Thus, two sets of containers are of particular interest:
process memory CProc ⊆ C and sockets CSock ⊆ C.

We identify process memory CProc by a system-relative process id IPid , i.e., (ISys × IPid ) ⊆ I, with Y = ISys . Sockets
CSock are identified via process-relative file descriptors IFdsc , (ISys ×IPid ×IFdsc) ⊆ I, as well as via addressesA = IAddr

and ports IPort , i.e., by the address (A = IAddr ) and port (IPort ) of the sender and the receiver (local socket name and
remote socket name, respectively): ((IAddr × IPort ) × (IAddr × IPort )) ⊆ I.
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To formalize how data propagates between processes via sockets, we need additional notation: For sets S,T , mappings
m,m′ : S → T and x ∈ X ⊆ S , define m[x ← expr]x ∈X = m′ such that m′(y) = expr if y ∈ X and m′(y) = m(y)

otherwise.

3.2.2 Data Propagation. Processes propagate data across systems in three steps: (1) socket creation, (2) sending
of data to a socket, (3) receiving of data from a socket. Assume that process p ∈ IPid on system yp ∈ ISys has read
sensitive data d ∈ D into its process memory cp ∈ CProc . System-internal data flow tracking reflects this as follows:
cp = σ .n((yp, p)) and d ∈ σ .s(cp) [Harvan and Pretschner 2009]. Once process p writes to a network socket, the data
written might include datad . Our model conservatively assumes that a process always writes all sensitive data associated
with its memory.

(1) Socket creation. Each communication partner first creates a socket using system call socket. The returned file
descriptor enables the calling process to write to and read from the socket. With cl ∈ C representing the newly created
socket, fd ∈ IFdsc its file descriptor, and p the calling process on host yp , transition relation R models this behaviour by
updating the data flow state with mapping cl = σ .n((yp, p, fd)). Formally:

∀σ ,σ ′ ∈ Σ,∀yp ∈ ISys,∀p ∈ IPid ,∀fd ∈ IFdsc,∀cl ∈ CSock :

(σ , (socket, {(obj, cl), (sys, yp), (proc, p), (ret, fd)}),σ ′) ∈ R

=⇒ σ ′.s=σ .s ∧ σ ′.a = σ .a ∧ σ ′.n = σ .n[(yp, p, fd) ← cl]

The socket can only be used for communication after it has been assigned a (local) socket name, i.e., a IP address and
port (al , ol) ∈ (IAddr × IPort ) ⊆ I. Depending on the communication protocol, this assignment may be implicit (upon
first communication) or explicit (using system call bind). The assigned socket name can later be obtained from the
operating system or from the parameters of system calls sendto and recvfrom.

(2) Sending data. Consider a process pA ∈ IPid on host ypA ∈ ISys that calls sendto on file descriptor fdA ∈ IFdsc

identifying socket cA = σ .n((ypA , pA, fdA)). This leads to a data flow from the process memory of process pA to socket
cA. With σ representing the old data flow state and σ ’ the updated data flow state, transition relation R models this
data flow by updating the storage function of cA to contain all previous data plus all data associated with process pA:
σ ′.s(cA) = σ .s(cA) ∪ σ .s(σ .n((ypA , pA))). With (aA, oA) representing the local socket name of cA and (aB, oB) the name
of the remote socket to which pA sends data, R further creates a new identifier for cA, cA = σ ′.n(((aA, oA), (aB, oB))).
Formally, (σ , (sendto, < params >),σ ′) ∈ R is defined as:

∀σ ,σ ′ ∈ Σ,∀ypA ∈ ISys,∀pA ∈ IPid ,∀fdA ∈ IFdsc,∀aA, aB ∈ IAddr ,∀oA, oB ∈ IPort :

(σ , (sendto, {(obj,σ .n((ypA , pA, fdA))), (sys, ypA ), (proc, pA), (fdscr, fdA), (lname, (aA, oA)), (rname, (aB, oB))}),σ
′) ∈ R

=⇒ σ ′.s = σ .s [σ .n((ypA , pA, fdA)) ← σ .s(σ .n((ypA , pA, fdA))) ∪ σ .s(σ .n((ypA , pA)))]

∧σ ′.a=σ .a ∧ σ ′.n = σ .n[((aA, oA), (aB, oB)) ← σ .n((ypA , pA, fdA))]

(3) Receiving data. Process pB on host ypB then receives data from socket cB ∈ CSock by issuing system call recvfrom on
file descriptor fdB ∈ IFdsc . Consequently, all data sent by the remote process is propagated into the process memory of
pB . Transition relation R reflects this data flow by updating the storage function of the process memory of pB to contain
all previous data plus all data contained in the remote socket identified by ((aA, oA), (aB, oB)): σ ′.s(σ .n((ypB , pB))) =

σ .s(σ .n((ypB , pB))) ∪ σ .s(σ .n(((aA, oA), (aB, oB)))). Formally, (σ , (recvfrom, < params >),σ ′) ∈ R is defined as:
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∀σ ,σ ′ ∈ Σ,∀ypB ∈ ISys,∀pB ∈ IPid ,∀fdB ∈ IFdsc,∀aA, aB ∈ IAddr ,∀oA, oB ∈ IPort :

(σ , (recvfrom, {(obj,σ .n((ypB , pB, fdB))), (sys, ypB ), (proc, pB), (fdscr, fdB), (lname, (aB, oB)), (rname, (aA, oA))}),σ
′) ∈ R

=⇒ σ ′.s=σ .s [σ .n((ypB , pB)) ← σ .s(σ .n((ypB , pB))) ∪ σ .s(σ .n(((aA, oA), (aB, oB))))] ∧ σ ′.a = σ .a ∧ σ ′.n = σ .n

In combination with intra-system data flow tracking, these definitions track data flows within and across systems. They
ensure soundness by overapproximating data flows. While overapproximations might lead to policies being enforced
for containers that in reality do not contain sensitive data, they are required because system calls can not capture
process internal data flows. Higher precision can be achieved by application internal data flow tracking. In practice,
overapproximations are limited for two reasons: (i) Sockets are identified by the local and remote socket name. Data
written to a socket thus only affects the communicating processes. (ii) Server applications often fork worker processes to
process requests. The parent process remains untainted and keeps forking untainted workers. We discuss and evaluate
overapproximations in §5.1 and §5.2.2.

We defer cross-system policy propagation and further implementation details to §4.2. With the above models, policy
propagation boils down to attaching the corresponding policy whenever a cross-system data flow is detected. §5.2
provides evaluation results.

3.3 Coordinating Policy Decisions Across Systems

After protected data was distributed to multiple sytems, the corresponding policies must be consistently enforced. We
envision PDPs to be decentrally deployed, thus overcoming the drawbacks of a centralized infrastructure by taking
policy decisions locally, efficiently, conclusively, and consistently.

Example. Consider again policy 2 from our example and a situation in which (i) the customer has declined the
corresponding contract offer and (ii) multiple clerks have local copies of associated, possibly derived, data d. Using a
centralized enforcement infrastructure, all data usage events on any data from all clerks must always be evaluated by
the central PDP/PIP. This is because local PEPs lack any logic and knowledge to decide whether a particular event
handles protected data. If PDPs and PIPs were decentralized, then events not involving data d can always be allowed
locally. Events that do involve d only necessitate coordination with other PDPs if the contract offer was never declined;
otherwise local PDPs can instantly deny any such events.

Enforcing global policies in a decentralized manner introduces the necessity for coordination: Each PDP’s decisions
might depend on past decisions and observations of other PDPs. While each PDP could reveal all its information to
all other PDPs, such a solution imposes significant runtime and communication overheads. We limit the coordination
effort by identifying a minimal and complete set of systems necessary to evaluate a given policy. §3.3.1 provides a first
(over-)approximation of the set of systems relevant for evaluating a given policy; §3.3.2 identifies situations in which
coordination between such relevant systems can be safely omitted without compromising policy enforcement.

3.3.1 Identifying Relevant Systems. This section identifies an overapproximation of the set of systems relevant for
evaluating a given ECA rule p. We define auxiliary functions:

(1) knowC : P(C) → P(Y). Given a set of containers, knowC returns the set of systems in which one of those
containers resides: ∀C ⊆ C : knowC(C) def= {y ∈ Y | Cy ∩C , ∅}.

(2) knowD : P(D)×N×
∏
T→ P(Y). Given a set of data items, a point in time, and a tuple of concurrently executing

traces, knowD relies on the systems’ data flow states to return the set of systems in which there exists a container
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containing at least one of the data items:
∀D ⊆ D, i ∈ N,τ ∈ ∏y∈Y Ty : knowD(D, i,τ ) def= {y ∈ Y | ∃c ∈ Cy , tτy ∈ Ty ,σ

i
tτy
∈ Σy : D ∩ σ i

tτy
.s(c) , ∅}.

knowD is parameterized in time because data keeps being propagated across systems.
(3) happens : E × N ×

∏
T→ P(Y). Given an event, a point in time, and a tuple of concurrently executing traces,

happens returns the set of systems in which an event refining e happens:
∀e ∈ E, i ∈ N,τ ∈

∏
y∈Y Ty : happens(e, i,τ ) def= {y ∈ Y | ∃tτy ∈ Ty , e

′ ∈ tτy (i),σ
i
tτy
∈ Σy : (e ′,σ i

tτy
) refΣ e}.

Taken together, knowC, knowD, and happens allow to identify the set of systems that ‘know’ a certain container or
data, or in which a particular event happened. On this basis, we define function relevant : Φ ×N ×

∏
T→ P(Y). For an

ECA rule p, relevant identifies the set of systems that potentially contribute to the evaluation of p’s condition φp ∈ Φ

at a given point in time i ∈ N and given a set of concurrently executing traces τ ∈
∏

y∈Y Ty . The observation behind
the definition of relevant is that solely atomic operators of φp (E, combined, notIn, maxIn, repmin) determine which
systems are relevant2:

∀φ ∈ Φ, i ∈ N,τ ∈
∏
y∈Y

Ty : relevant(φ , i,τ ) def= {y ∈ Y |

((φ = true ∨ φ = false) =⇒ Y = ∅)

∨ ∃e ∈ E • (φ = e =⇒ Y = happens(e, i,τ ))

∨ ∃d ∈ D,m ∈ N,C ⊆ C • ((φ = notIn(d,C) ∨ φ = maxIn(d,m,C)) =⇒ Y = knowD({d}, i,τ ) ∩ knowC(C))

∨ ∃d1, d2 ∈ D,C ⊆ C • (φ = combined(d1, d2 ,C) =⇒ Y = knowD({d1}, i,τ ) ∩ knowD({d2}, i,τ ) ∩ knowC(C))

∨ ∃α ∈ Φ • (φ = not(α) =⇒ Y = relevant(α , i,τ ))

∨ ∃α , β ∈ Φ • ((φ = α and β ∨ φ = α or β) =⇒ Y = relevant(α , i,τ ) ∪ relevant(β , i,τ ))

∨ ∃α , β ∈ Φ • (φ = α since β =⇒ Y =
i⋃
j=0
(relevant(α , j,τ ) ∪ relevant(β, j,τ )))

∨ ∃α ∈ Φ, j ∈ N • (φ = α before j =⇒ Y = relevant(α , i − j,τ ))

∨ ∃j,m ∈ N, e ∈ E • (φ = repmin(j,m, e) =⇒ Y =

min{i, j }−1⋃
k=0

happens(e, i − k,τ )) }

The rationale is as follows: Trivial formulas of φ = true and φ = false can always be evaluated locally. For φ = e,
relevant systems are those in which an event refining e happens at the current timestep. For operators notIn(d,C) and
maxIn(d,m,C), relevant systems know data d and some c ∈ C. For combined(d1, d2 ,C), relevant systems are those that
know d1, d2 , and some c ∈ C. For repmin(j,m, e), relevant systems are those in which an event refining e has happened
in the last j timesteps. For not, and, or , since and before, relevant systems are determined recursively.

Our goal was to identify a minimal and complete set of systems necessary to evaluate a given policy. The following
theorem states that relevant(φ , i,τ ) is complete. Intuitively: systems Y \ relevant(φ , i,τ ) do not change the policy
evaluation result. The proof is provided in [Kelbert and Pretschner 2014]:

Theorem. ∀φ ∈ Φ, i ∈ N,∀τ ∈
∏
y∈Y

Ty ,Y = relevant(φ , i,τ ),X ⊆ Y \ Y : (tτY , i) |= φ ⇐⇒ (tτY∪X , i) |= φ .

2Here and in the following we omit the description of the underspecified policy operator evalExt. Given one concrete framework realizing evalExt,
similar complementary analyses would need to be performed.
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Due to the above disambiguity, we will write tτ
Y
to refer to trace tτrelevant(φ, i,τ ).

In summary, if |relevant(φ , i,τ )| ≤ 1 then decisions can be taken locally. Otherwise, PDPs and PIPs must reveal all event
occurrences and state changes to all systems relevant(φ , i,τ ). This already improves over revealing all information to
all systems Y. §3.3.2 further identifies situations in which communication with even fewer systems is needed, thus
working towards a minimal set of systems.

3.3.2 Omitting Unnecessary Communication. Given a set of systems Y ⊊ relevant(φ , i,τ ), it is generally not possible
to conclusively evaluate formula φ ∈ Φ at time i ∈ N: the evaluation of φ might depend on information unavailable
within Y . However, in certain situations, φ can be evaluated even if some information is unavailable. We identify such
situations to further reduce the required communication.

Given τ ∈
∏

y∈Y Ty , there might exist a formula φ ′ ∈ Φ such that Y satisfies φ ′, and this implies global satisfaction
of φ . Formally: (tτY , i) |= φ

′ =⇒ (tτ
Y
, i) |= φ . Whether such Y and φ ′ exist depends on the characteristics of φ . We first

define formula projections, ‘hiding’ parts of φ that are unknown within Y ⊊ relevant(φ , i,τ ), i.e. parts that can only be
evaluated by systems Y \ Y . We define the projection φY ∈ Φ of φ ∈ Φ as:

∀φ ∈ Φ,Y ⊊ relevant(φ , i,τ ),∃φY :

((φ = true ∨ φ = false) =⇒ φY = φ )

∨ ∃e ∈ E • (φ = e =⇒ φY = e)

∨ ∃d ∈ D,C ⊆ C • (φ = notIn(d,C) =⇒ φY = notIn(d,C ∩ CY ))

∨ ∃d1, d2 ∈ D,C ⊆ C • (φ = combined(d1, d2 ,C) =⇒ φY = combined(d1, d2 ,C ∩ CY ))

∨ ∃d ∈ D,m ∈ N,C ⊆ C • (φ = maxIn(d,m,C) =⇒ φY = maxIn(d,m,C ∩ CY ))

∨ ∃α ∈ Φ • (φ = not(α) =⇒ φY = not(αY ))

∨ ∃α , β ∈ Φ • (φ = α and β =⇒ φY = αY and βY )

∨ (φ = α or β =⇒ φY = αY or βY )

∨ (φ = α since β =⇒ φY = αY since βY )

∨ ∃α ∈ Φ, j ∈ N • (φ = α before j =⇒ φY = αY before j)

∨ ∃j,m ∈ N, e ∈ E • (φ = repmin(j,m, e) =⇒ φY = repmin(j,m, e))

These projections allow to identify and formalize situations in which only a subset of relevant systems is sufficient to
evaluate a given formula. Consequently, coordination is only required among a subset of all relevant systems, thus
reducing communication.

This fact is captured by predicate Sat ⊆
∏
T×P(Y)×N×Φ, which is shortly defined to hold true iff for τ ∈

∏
y∈Y Ty

and Y ⊊ relevant(φ , i,τ ), trace tτY ∈ TY satisfies φY at time i ∈ N ((tτY , i) |= φY ) and if this implies global satisfaction of
formula φ ∈ Φ at the same point in time ((tτ

Y
, i) |= φ ):

Theorem. ∀τ ∈
∏
y∈Y

Ty ,Y ⊊ relevant(φ , i,τ ), i ∈ N,φ ∈ Φ : (tτY , i) |= φY ∧ Sat(τ , Y , i,φ ) =⇒ (tτ
Y
, i) |= φ
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Intuitively: if φY is satisfied locally and if Sat(τ , Y , i,φ ) holds, then the set of systems Y can conclusively infer the global
evaluation result of formula φ . No communication with any other systems is thus required.

The definition of Sat is based on three observations: (i) some atomic operators (e.g., E, combined), are satifisfied
globally if they are satisfied in at least one system; (ii) some atomic operators (e.g., notIn, maxIn) are violated globally if
they are violated in only one system; (iii) the global satisfaction of compound operators (e.g., and, since) depends on
their semantics as well as the local satisfaction of the nested operators.

To define Sat, we demand φ ∈ Φ to be given in disjunctive normal form (DNF). The reason is that for atomic operators
the results of Sat should be different depending on whether they are ‘encapsulated’ in an even or an odd number
of negations. When φ is in DNF, then negations only occur next to atomic operators. The following definition only
enumerates cases for which Sat = true; other cases yield Sat = false. Proofs of correctness of the above theorem are
provided in [Kelbert and Pretschner 2014].

∀τ ∈
∏
y∈Y

Ty ,Y ⊆ Y, i ∈ N,φ ∈ Φ :

Sat(τ , Y , i,φ )
def
⇐⇒ φ = true ∨ φ = false ∨ relevant(φ , i,τ ) ⊆ Y

∨ ∃e ∈ E • (φ = e)

∨ ∃d ∈ D,C ⊆ C • (φ = not(notIn(d,C)))

∨ ∃d1, d2 ∈ D,C ⊆ C • (φ = combined(d1, d2 ,C))

∨ ∃d ∈ D,m ∈ N,C ⊆ C • (φ = not(maxIn(d,m,C)))

∨ ∃α , β ∈ Φ • ((φ = α and β ∧ Sat(τ , Y , i,α) ∧ Sat(τ , Y , i, β))

∨ (φ = α or β ∧ ((tτY , i) |= αY ∧ Sat(τ , Y , i,α) ∨ (tτY , i) |= βM ∧ Sat(τ , Y , i, β)))

∨ (φ = α since β ∧ ((∃j ∈ [0, i] : (tτY , j) |= βY ∧ Sat(τ , Y , j, β)

∧ ∀k ∈ (j, i] : (tτY , k) |= αY ∧ Sat(τ , Y , k,α))

∨ (∀k ∈ [0, i] : (tτY , k) |= αY ∧ Sat(τ , Y , k,α)))))

∨ (φ = not(α since β) ∧ ((∀j ∈ [0, i] : (tτY , j) |̸= βY ∧ Sat(τ , Y , j, not(β))

∧ ∃k ∈ (j, i] : (tτY , k) |̸= αY ∧ Sat(τ , Y , k, not(α)))

∨ (∃k ∈ [0, i] : (tτY , k) |̸= αY ∧ Sat(τ , Y , k, not(α))))))

∨ ∃α ∈ Φ, j ∈ N • (φ = α before j ∧ Sat(τ , Y , i − j,α) ∨ φ = not(α before j) ∧ Sat(τ , Y , i − j, not(α)))

∨ ∃e ∈ E, j,m ∈ N • (φ = repmin(j,m, e))

In summary, predicate Sat identifies situations inwhich no coordination between systems is required despite |relevant(φ , i,τ )| > 1.
§4.3 details how our implementation leverages these results. §5.3 shows how the above considerations improve both
performance and communication overheads when enforcing global data usage policies.

4 ARCHITECTURE AND IMPLEMENTATION

In line with §3, we present an architecture and implementation that (i) tracks data flows across systems and propagates
the corresponding policies (§4.2), and (ii) preventively, efficiently, and consistently enforces global policies (§4.3).

Manuscript submitted to ACM



Data Usage Control for Distributed Systems 17

PMP

IPep2Pdp IPdp2Pip IPmp2Pip

Communication Manager

Distributed
Database

IPmp2Pdp IDmp2Dmp

IPmp2Pdp

IPmp2Dmp

Controller

IPdp2Pip

IPdp2Dmp

IPmp2Pip IPip2Dmp

IDmp2Pip

IDmp2Pmp

PEP

RequestHandler

PIP ServerPDP Server DMP Server

PIPPDP DMP

Fig. 3. Our architecture and its most important components and interfaces.

4.1 High-level Architecture

By definition (see §3.1.1), a system consists of multiple PEPs sharing the same PDP/PIP. The fact that these PEPs might
be distributed makes our architecture (see Fig. 3) highly flexible: our system might be deployed (i) on each physical
system to implement a fully decentralized infrastructure, (ii) as a single central component, (iii) in a hybrid fashion.

The architecture is composed of PEPs, a Controller, and a distributed database. The Controller features the PDP,
PIP, and PMP, and coordinates their internal communication. We minimize changes to existing local enforcement
infrastructures by introducing a Distribution Management Point (DMP). The DMP organizes cross-system data flow
tracking and policy propagation in a peer-to-peer manner (§4.2) and leverages a distributed database to coordinate
distributed policy decisions (§4.3).

The CommunicationManager manages all external communication and runs servers that exhibit the components’
functionalities to the outside. Most importantly, the PdpServer provides the interface for PEPs to request data usage
control decisions. Additional servers allow to deploy PDP, PIP, and PMP remotely from one another, thus catering
to complex deployment requirements. The DmpServer enables the communication with remote DMPs. We secure all
communication using TLS and assume the integrity and mutual authentication of remote Controllers; this is discussed
in §5.1.

The RequestHandler organizes the sequential and in-order processing of requests arriving at the servers, thus
avoiding event reordering and race conditions.

We implemented the above infrastructure in Java. To support its flexible deployment, the internal components can
communicate both via function calls as well as via the provided servers. A straightforward strategy is to deploy one
single central Controller, thus mimicking the behavior of a centralized infrastructure. However, our rationale is to
deploy PDPs and PIPs locally, e.g. per machine or department. This way, PEPs query their local PDP and each PIP keeps
a local data flow state.

We further implemented a Linux PEP on the basis of strace [Kranenburg and Levin 2015]. The PEP intercepts system
calls both before and after their execution by the kernel [Harvan and Pretschner 2009], thus signaling both intended
and actual system calls to the PDP. Note that our architecture supports existing PEPs, e.g. for Microsoft Windows
[Wüchner and Pretschner 2012] and Android [Feth and Pretschner 2012].

Several interfaces organize the communication between the components:
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The PDP provides interfaces IPmp2Pdp and IPep2Pdp, providing methods to deploy and retrieve policies, as well as
to signal system events and await policy decisions.

At the PIP, the PDP uses interface IPdp2Pip to evaluate state-based operators, retrieve all data within a given
container, and signal data flow system events. The PMP uses interface IPmp2Pip to inform the PIP about initial data
representations (see §4.2). Interface IDmp2Pip is used by the DMP in case cross-system data flows occur.

The PMP provides interface IDmp2Pmp, which is used by the local DMP to deploy policies and to retrieve currently
deployed policies.

The DMP provides four interfaces: (1) IPip2Dmp allows the PIP to inform the DMP about data flows to remote socket
containers. (2) IPdp2Dmp enables the coordination of policy decisions across PDPs. This includes methods to (i) notify
that an operator’s state has changed, (ii) query whether the state of some operator has changed at remote PDPs, and
(iii) synchronize the points in time in which policies are evaluated. (3) IPmp2Dmp allows the PMP to register policies at
the DMP. (4) IDmp2Dmp provides functionalities for cross-system data flow tracking and policy propagation between
remote DMPs.

In the following, we assume one fully functional Controller to be deployed per system. §4.2 describes how we achieve
cross-system data flow tracking and policy propagation, while §4.3 describes the coordination of distributed policy
decisions.

4.2 Cross-System Data Flow Tracking and Policy Propagation

Socket communication involves two communication partners. We call these a client and a server process, albeit there is
no technical difference once communication was initiated. Our approach applies transitively for larger numbers of
processes. We focus on the case in which the client and the server process are remote in the sense that different PIPs are
responsible for tracking the processes’ data flows. We describe a communication protocol independent implementation
in line with §3.2.

4.2.1 Communication Initiation. When the server process s (resp. client process c) executes system call socket,
the implementation creates a socket container cs ∈ CSock (resp. cc ∈ CSock) and an auxiliary proxy socket container

cp
c ∈ CProxy ⊆ CSock (resp. cp

s ∈ CProxy ). Proxy socket containers constitute local placeholders for the actual remote
socket container and they are identified via the same identifier. For the server, cp

c represents remote container cc . For
the client, cp

s represents remote container cs . Upon connection initiation, the two responsible PIPs, PIPS and PIPC,
bidirectionally alias cs with cp

c and cc with cp
s . Note that this does not incur communication between the two PIPs.

4.2.2 Data Transmission and Policy Propagation. The two processes then exchange data by writing to and reading
from the sockets. The DMPs track those data flows and transfer the corresponding policies. We describe how the
implementation reflects a data transfer from a client process pc on system C to a server process ps on system S.

First, PEPC intercepts the client process’ intended sendto(o, ypc , pc, fd, (ac, oc), (as, os)) (see §3.2.2) and signals it to
PDPC. In case PDPC allows the event’s execution, PIPC detects the intended cross-system data flow. This is the case
if the current state σ ∈ Σ is such that data D = σ .s(σ .n((ypc , pc, fd))) is propagated to a container of type CProxy , i.e.
if ∃i ∈ ((IAddr × IPort ) × (IAddr × IPort )), c

p
s ∈ CProxy such that σ .n(i) = cp

s and cp
s ∈ σ .a(σ .n((ypc , pc, fd))). PIPC then

informs DMPC about the intended remote data flow, conveying data D as well as the destination container’s identifier i .
DMPC then retrieves from PMPC the set of policies P that constrain the usage of any data within set D. DMPC then

contacts DMPS, conveying policies P and the fact that data D is about to flow into the container identified by i. DMPS
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informs PIPS about the incoming data flow, which updates the storage function of the container identified by i with D.
DMPS also informs PMPS about policies P and PMPS deploys them at PDPS.

After this call to DMPS succeeded, the actual sendto system call is executed and the payload data flows. Once the
server process ps invokes recvfrom on the socket, PDPS and PIPS are already aware of the data flow and enforce policies
P on the server’s system.

The PDPs’ and PIPs’ states should only evolve persistently in the presence of actual system events (§2.2.2). This,
however, leads to race conditions if sendto and recvfrom interleave. We mitigate this problem by conservative modeling:
whenever the PDP allows an intended sendto, both the PDPs’ and PIPs’ states immediately evolve persistently.

4.3 Taking Distributed Policy Decisions

Global policies must be enforced across all systems. Based on §3.3, we detail the practical evaluation of conditions
Φ. We take the view of the PDP of system A, PDPA, which enforces ECA rule p with trigger event ep ∈ E, condition
φp ∈ Φ, and action ap .

Any event signaled to PDPA potentially changes the state of leaves within the expression tree of φp (see §2.2.2).
Since such state changes are of potential importance for other PDPs as approximated by function relevant, PDPA must
inform them about any such state changes. Hence, whenever state changes occur at PDPA, it informs its DMP, DMPA.
DMPA makes these state changes available to other PDPs via their DMPs.

§4.3.1 abstractly describes decision coordination, assuming that DMPs are consistently, reliably, and timely informed
about state changes. §4.3.2 describes technicalities.

4.3.1 Coordinating Distributed Policies. ECA rule p is evaluated whenever a timestep has passed or whenever an
event matches p’s trigger event ep (see §2.2.2). In any case each PDP first evaluates φp locally, yielding eval(φp) as
described in §2.2.2.

If eval(φp) = true = Sat(τ , Y , i,φp), i.e. if local satisfaction of φp implies its global satisfaction, then no further
coordination is necessary: action ap will be executed. Similarly, if eval(φp) = false = Sat(τ , Y , i,φp), then local violation
of φp implies the global violation of φp and no coordination is required; action ap will not be executed. Hence, no
coordination is required if eval(φp) = Sat(τ , Y , i,φp).

If, however, eval(φp) , Sat(τ , Y , i,φp), then the evaluation result of φp might depend on other PDPs’ state changes.
PDPA re-evaluatesφp with the help of DMPA, reflecting the definition of predicate Sat: For leaf operators o ∈ {E, combined, repmin},
PDPA queries DMPA if (i) o is not negated and if eval(o) = false, or if (ii) it is negated (not(o)) and if eval(not(o)) = true.
For leaf operators o′ ∈ {notIn,maxIn}, PDPA queries DMPA if (i) o′ is not negated and if eval(o′) = true, or if (ii) it is
negated (not(o′)) and if eval(not(o′)) = false. If any of those queries yields a result different from (eval(φp)), then φp is
re-evaluated, considering this newly available information.

To obtain consistent decisions for time-based policies, the PDPs coordinate policy evaluation times via the DMPs.
While such synchronization is subject to scheduling and clock synchronization issues, our implementation synchronizes
clocks using NTP. We did not experience any evaluation inconsistencies.

4.3.2 Implementation using Cassandra. We synchronize decisions using the distributed database Cassandra. Here,
the set of all nodes is called a cluster. The data is organized via keyspaces and each table is associated with exactly one
keyspace. Each keyspace is configured with a replication strategy, defining among which nodes its tables are replicated.
Hence, data with the same replication requirements is organized within the same keyspace. In our context, PDPs need
to enforce several policies and for each the set of coordinating PDPs might differ. Hence, we represent each policy by
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one dynamically adjusting keyspace. E.g., for policy p constraining the usage of data d with representations in systems
A and B, we employ keyspace kp with replication strategy kr

p = {A,B}. If PDPA notifies a state change of p to DMPA,
then this information is made available within kp and replicated to DMPB.

We achieve strong data consistency by performing all queries with consistency level Quorum. Each query is thus
acknowledged by at least half of the nodes. This avoids inconsistent states and race conditions when evaluating policies.
Because queries might fail due to network partitions, it is configurable how often failed queries are retried. If queries
keep failing, the PDP takes a fallback decision as configured within the policy.

Bootstrapping and Cross-System Data Flows. Once the first policy p, protecting data d, is deployed at system A, PMPA
(i) informs PIPA about the initial representation of d as configured within p, (ii) registers policy p at DMPA, which
prepares keyspace kp with kr

p = {A}, and (iii) deploys p at PDPA. For now, PDPA can independently evaluate p.
Once system A shares data d with system B (see §4.2), the latter might influence evaluation p. DMPB thus adapts

keyspace kp to incorporate the Cassandra node of system B: kr
p = {A,B}. Subsequently, all information in kp is replicated

to both DMPA and DMPB. If data d is further shared with system C, DMPC adapts the keyspace to kr
p = {A,B,C}, thus

replicating all information in kp to nodes A, B, and C.

Connecting Nodes. In Cassandra, nodes join the cluster by contacting well-known seed nodes. Since our infrastructure
ought to be fully decentralized, we proceed as follows.

Reconsider the scenario in which policy p, protecting data d, is deployed only at PDPA. Later, d, and hence p,
is transferred to system B. Earlier we assumed that system B’s Cassandra node already participated in the cluster.
Otherwise, Cassandra node B must join the cluster without any well-known seed nodes. We do so by starting each
Cassandra node only once the first global policy must be enforced: Once DMPB is informed about some cross-system
data flow from DMPA, it gets to know address a of system A’s Cassandra node. Cassandra node B is then started, using
a as a seed node.

Consider an extended scenario in which systems A and B enforce policy p, protecting data d, while system C enforces
policy p’ protecting data d’. Since the sets of systems enforcing p and p’ are disjoint, the overall cluster is partitioned.
Once data d is transferred from system A to system C, we merge these partitions by starting a temporary Cassandra
node, which uses both Cassandra nodes A and C as seed nodes. Once the previously autonomous parts merged, the
temporary node is taken down again.

5 EVALUATION

We perform a security analysis of our infrastructure (§5.1) and evaluate which communication and performance
overheads our solution introduces (§5.2 and §5.3).

5.1 Security Analysis

Since our infrastructure enforces compliance with data usage policies, we primarily consider attacks trying to obtain
unprotected data copies. We further consider attacks on the integrity and availability of our infrastructure and usage
controlled data.

5.1.1 Possible Attacks and Countermeasures. We assume that all aspects of our infrastructure were modeled and
implemented correctly. To ensure soundness, we conservatively modeled data flow tracking (§3.2) and the identification
of relevant systems (§3.3).
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Privilege Escalation.Attackers might leverage vulnerabilities in our infrastructure, the operating system, cryptographic
libraries and access control mechanisms to escalate their privileges. If successful, they may tamper with the usage
control infrastructure and disable policy enforcement or data flow tracking. We consider the mitigation of such security
vulnerabilities an orthogonal problem that we do not address in this work.

Copy Data at Rest. Attackers might try to create unprotected copies of usage controlled data that has been stored
to disk or other storage media. Since our PEP mediates system calls, our infrastructure thwarts such attacks that
originate from system layers above the operating system. In particular, usage control policies can keep users from
saving protected data to removable storage media [Feth and Pretschner 2012]. Attacks can therefore only be performed
at or below the operating system layer. Disk-encryption software can keep users and administrators from physically
unmounting the harddisk and accessing the protected data on non-usage-controlled systems. Encryption keys must then
only be accessible to the usage control infrastructure, see §7. Usage control metadata, such as policies and configuration
files, can be secured alike.

Share Data with Unmonitored Systems. Attackers might try to use application-layer protocols to share usage controlled
data with systems that do not run a usage control infrastructure. Once our infrastructure detects such an intended
cross-system data flow, it contacts the remote system’s infrastructure (see §4.2.2). Our prototype denies sharing of usage
controlled data with non usage controlled systems by inhibiting cross-system data flows if the remote infrastructure
does not respond according to the protocol. Mechanisms such as remote attestation can further secure this procedure
[Agreiter et al. 2007], see §7. Future solutions might also allow to release protected data after it was encrypted with a
key that is only known to the usage control infrastructure.

Eavesdrop Data in Transit. A Man-in-the-Middle might eavesdrop sensitive payload data if applications transfer
usage controlled data via plaintext protocols such as HTTP. Such attacks can be prevented by (i) disallowing plaintext
protocols for protected data, e.g. using firewalls or deep packet inspection, or by (ii) tunneling such traffic over secure
protocols such as VPN or SSH. Both deep packet inspection and protocol tunneling may be implemented in a transparent
manner as part of the usage control infrastructure. We protect any of our infrastructure’s remote communication via
the TLS protocol.

Infrastructure Integrity. Attackers may try to tamper with the infrastructure, e.g. by modifying its binaries. The
infrastructure’s integrity must therefore be protected by digital signatures and corresponding verification procedures.
While such techniques are increasingly implemented in commodity systems, we consider this an orthogonal issue.

Data and System Availability. Attackers might taint large parts of the system with sensitive data by ‘leveraging’ data
flow tracking overapproximations (§3.2). If the data’s policy disallows any data usage, no further usage of any tainted
parts of the system would be possible. However, such attacks are limited to resources for which the attacker has write
permissions, since sensitive data can only be propagated to those data containers. To mitigate such attacks, data flow
tracking models must be refined to track data at a finer granularity. Corresponding solutions that track data within
web browsers, databases, email clients and windowing systems have been proposed [Kumari et al. 2011; Lienert 2012;
Lörscher 2012; Pretschner et al. 2009, 2012].

Denial of Service attacks may be mounted by issuing massive amounts of system events, leading to system overload
and to (temporary) unavailability of usage controlled data. Mutual authentication between all infrastructure components,
e.g., using certificates or remote attestation, may thwart such attacks and introduce liabilities. Sophisticated distributed
denial of service attacks are hard to counteract to date.

Side Channels and Media Breaks are out of scope of this work. Once data is printed or displayed, we can no longer
guarantee its protection. Corresponding protection mechanisms are being researched, e.g., [Echizen et al. 2015].
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5.1.2 Provided Guarantees. In the light of the above attacks and countermeasures, our usage control infrastructure
provides the following security guarantees.

End Users. In a number of scenarios end users do not have administrative privileges on the devices on which they store
and process sensitive data. This includes employees of companies, governments, and other organizations, as well as
most end users of today’s integrated and embedded devices, mobile phones, and tablet computers. In any of these
scenarios our solution prevents both intentional and accidental policy violations. Software and malware running on
behalf of the end user falls into the same category.

For example, clerks might try to use and/or share ‘quarantined’ customer records (§1, policy 2), send out contract
offers before they were approved (policy 3), or create additional copies of customer records (policy 4). By implementing
the PEP at the system call layer, any such policy violation attempts can be detected independent of the applications
being used. Through the use of both system-internal and cross-system data flow tracking, the end user is not able to
obfuscate such attacks, e.g., by first creating local or remote copies or derivations of the protected data: any such data
copies/derivations are detected, tracked, and protected just as the original data.

Administrators. If end users do have administrative privileges, our infrastructure reliably prevents illegitimate data
usage as long as the user does not deliberately turn off the usage control infrastructure. For example, our infrastructure
can prevent the user, misconfigured applications, or malware from misusing protected data or from releasing sensitive
personal data on the Internet.

To defend against intentional attacks from users with administrative privileges, our infrastructure necessitates
integration with protection mechanisms below the operating system layer. We discuss such technologies on the basis of
trusted hardware in §7.

Summary. Our infrastructure prevents illegitimate data misuse and leakage as long as it is not deliberately disabled by
administrators. We argue that these guarantees are sufficient in many scenarios: Large parts of the world’s sensitive
data is collected, processed and stored in environments in which end users are unable to disable security solutions that
operate with administrative privileges at the operating system layer.

5.2 Cross-System Data Flow Tracking and Policy Propagation

In §5.2.1 we evaluate the performance of cross-system data flow tracking and policy propagation. §5.2.2 analyzes the
precision of our data flow tracking system.

5.2.1 Performance. We evaluate the performance of cross-system data flow tracking and policy propagation by
measuring (i) the maximumHTTPS request throughput of the Apache web server, (ii) the maximum network throughput
of Iperf, and (iii) FTPS file transfer times of the Vsftpd FTP server. We evaluate both the preventive and detective
policy enforcement mode of our infrastructure. Detective enforcement provides better performance, since the PEP can
continue execution once an event was signaled to the Controller. Instead, for preventive enforcement the PEP must
block upon all events and wait for a decision by the PDP. We also evaluate which parts of our infrastructure cause
which overheads, thus separating (i) event processing and signaling by the PEP, and (ii) data flow tracking and policy
propagation by the Controller.

Setup. We connected several machines via a 10Gbit network, each featuring a 2x2.6GHz CPU and 4GB RAM. Each
machine ran Ubuntu 14.04 and a Controller. One machine hosted the server application (Apache, Iperf, Vsftpd) that
was monitored by the PEP. The PEP signaled both intended and actual system calls to the local Controller. The
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clients ran benchmarks against the server, with their Controllers answering all of server’s Controller’s requests as
described in §4.2. In particular, this includes the remote communication for cross-system data flow tracking and policy
propagation.

Apache HTTPS.We used the ApacheBench benchmark to request files of size 1KB and 1MB from Apache. We performed
all experiments with both persistent and non-persistent connections. For all experiments we were limited by the server’s
CPU.

1KB Files. Using non-persistent connections, Apache serves 1KB files at a native baseline comparison rate of 543req/s
(Fig. 4a, ). Signaling events from the PEP to the Controller imposes a performance penalty for both preventive
and detective policy enforcement. This is because of the expensive JNI communication between the PEP and the
Controller. Signaling of events to the Controller, i.e., without further processing and data flow tracking, degrades
performance to 239req/s (44.0% of native throughput) and 257req/s (47.3%) for preventive and detective enforcement,
respectively (Fig. 4a, , ). With data flow tracking and policy propagation, the respective resulting throughputs are
153req/s (28.2%) and 218req/s (40.1%) (Fig. 4a, , ).

With persistent connections, native Apache achieves 2823req/s (Fig. 4b, ). Event signaling for preventive and
detective enforcement results in throughputs of 1556req/s (55.1%) and 2034req/s (72.0%), respectively (Fig. 4b, , ).
With data flow tracking and policy propagation, the respective resulting throughputs are 595req/s (21.1%) and 1188req/s
(42.1%) (Fig. 4b, , ).

1MB Files. For larger files of 1MB, persistent connections did not improve performance. We thus combine the results of
persistent and non-persistent connections. Native Apache achieves 66.3req/s (Fig. 4c, ). Event signaling for preventive
and detective enforcement results in throughputs of 44.4req/s (66.8%) and 48.2req/s (72.7%), respectively (Fig. 4c, ,
). With data flow tracking and policy propagation, the respective resulting throughputs are 27.5req/s (41.4%) and

44.7req/s (67.3%) (Fig. 4c, , ).
In sum, our infrastructure achieves 21%–41% throughput of native Apache when operating in preventive enforcement

mode and 40%–44% when in detective mode.

Iperf Bandwidth.We use Iperf, a network throughput benchmark, to further measure the impact of our infrastructure
on network throughput. Native Iperf achieves a throughput of 9.1Gbps (Fig. 5, ). Event signaling for preventive and
detective enforcement results in throughputs of 5.2Gbps (56.9% of native throughput) and 6.7Gbps (73.4%), respectively
(Fig. 5, , ). With data flow tracking and policy propagation, we achieve throughputs of 3.3Gbps (36.6%) and 5.0Gbps
(54.7%) (Fig. 4a, , ).
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Vsftpd FTPS.We evaluate the impact of our infrastructure on FTPS file transfer times by measuring download/upload
times for 1KB and 16MB files from/to the Vsftpd server.

1KB Files. Since download and upload times for 1KB files are similar (see Fig. 6a and Fig. 6b), we only detail results
for file downloads. Native Vsftpd achieves a baseline transfer time of 240ms (Fig. 6a, ). Event signaling for preventive
and detective enforcement results in file download times of 328ms (36.7% increased download time) and 300ms (25.0%),
respectively (Fig. 6a, , ). With data flow tracking and policy propagation, download times are 437ms (82.1%) and
331ms (38.1%) (Fig. 6a, , ).

16MB Files. Native Vsftpd serves 16MB files in 513ms (Fig. 6c, ). Event signaling for preventive and detective
enforcement results in download times of 835ms (62.9%) and 621ms (21.2%), respectively (Fig. 6c, , ). With data flow
tracking and policy propagation, download times are 1,405ms (174%) and 729ms (42.1%) (Fig. 6c, , ).

For 16MB files, native Vsftpd achieves upload times of 595ms (Fig. 6d, ). The overhead imposed by our infrastructure
is higher than for file downloads: Event signaling for preventive and detective enforcement results in upload times
of 1,642ms (176%) and 1,147ms (92.9%), respectively (Fig. 6d, , ). With data flow tracking and policy propagation,
upload times are 3,252ms (446%) and 1,304ms (119%) (Fig. 6d, , ). The higher overhead results from Vsftpd issuing
approximately 3× more system calls when compared to file downloads. Since our infrastructure intercepts and analyses
all of these system calls, this results in longer file transfer times.

Summary. On the basis of the above experiments, our overall infrastructure operates at a network throughput between
21% and 41% of native execution when performing cross-system data flow tracking and policy propagation in a preventive
manner. We achieve a throughput of 40%–54% of native execution when operating in detective enforcement mode. File
transfer times for FTPS increase by 82%–446% when in preventive mode and by 38%–119% for detective enforcement.

The evaluation shows that signaling of events from the PEP to the Controller amounts for large parts of the overhead.
This is due to the JNI communication between the PEP, which is necessarily written in C, and the Controller, which
was written in Java due to its complexity. The evaluation of Vsftpd shows that our infrastructure imposes less overhead
if the monitored application issues less system calls. For I/O intensive applications, this overhead can be reduced by
increasing the application’s I/O buffer sizes, thereby decreasing the amount of required system calls. Overall, it depends
on use case scenarios whether the imposed overheads are acceptable in practice.

5.2.2 Precision. We analyze the precision of data flow tracking by serving static and dynamic resources via an
Apache web server. We use the Apache mpm_prefork module, which allows for the flexible configuration of Apache
worker processes. With this module, Apache pre-forks a given amount of worker processes, each of which sequentially
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handles incoming requests. For the experiment, we attach individual policies to the resources and observe how they
propagate to the clients.

Static Resources. The first client requesting any static resource is served with exactly the policy that was attached to
the requested resource. Further clients suffer from overapproximations: They are not only served the policy of the
requested resource, but also a subset of the policies that were served to other clients before. The reason is that each
worker process accumulates all policies of all resources that it has ever served. To ensure soundness, all of these policies
are then always propagated to all clients.

There exist two immediate and simple means to remedy these overapproximations: (i) Configure Apache to kill
each worker process after it served one connection (via the MaxConnectionsPerChild 1 directive). This, however,
significantly impacts performance; (ii) Enrich the data flow propagation semantics of the shutdown system call (which
shuts down socket connections, see [Kelbert and Pretschner 2013]) with minimal application specific semantics: If the
process p calling shutdown on a socket is Apache, then clear the process’ storage function, i.e. set σ .s((yp, p)) = ∅. As a
consequence, the following request will only be associated with policies of resources that are accessed from then on.

Dynamic Resources. We further set up an Apache/MySQL/PHP-based Drupal content management system to serve
dynamic web pages. Serving such dynamic resources, we observe data flow tracking overapproximations beyond those
of static resources. The reason is a combination of the following: (i) We associate policies with fine-grained Drupal
data items such as articles or contact form submissions; (ii) Drupal stores this content within the MySQL database;
(iii) MySQL stores all content of a database within a file; (iv) the system call PEP operates at a granularity of files.
Consequently, whenever Drupal serves content from one particular MySQL database, the requesting client receives all
policies associated with any data stored within that database.

While these overapproximations are an essential limitation of tracking data flows at the system call layer, specialized
solutions compatible with our infrastructure have been proposed: Lienert [2012] formalizes and implements data
flow tracking for MySQL at a granularity of single cells; Lovat et al. [2016] provide a more generic approach to track
data flows across different system layers. Using information provided by such application-specific data flow tracking
solutions, it is possible to improve the granularity of cross-system data flow tracking in the presence of complex software
such as Drupal.

5.3 Distributed Policy Decisions

We evaluate the communication and performance overheads when decentrally enforcing global policies. For this, we
enforce several policies on multiple systems simultaneously and compare the results with a centralized infrastructure.

Setup.We use eleven systems as detailed in §5.2 and a twelfth system with 16GB RAM. For the centralized setup, the
latter hosts the one and only Controller. For the decentralized setup, each of the eleven former systems is equipped
with one Controller.

The following parameters influenced the results: (i) the policy (policies 1, 2 and 3 from §2.1.3); (ii) the number of usage
controlled systems (3 ≤ t ≤ 11); (iii) the number of systems enforcing the policy (e ≤ t ); (iv) the global event frequency
in events per second (f ≤ 167Ev/s); (v) the percentage of events relevant for data flow tracking and/or policy evaluation
(0% ≤ r ≤ 100%). For each measurement, we fixed all parameters and randomly generated event traces that matched
f and r . Each event was randomly assigned to one of the t usage controlled systems and the policy was evaluated at
every trigger event as well as for a timestep interval of one second. In the centralized case, all t systems must signal
every event to the central Controller to take policy decisions (see §3). In the decentral case, the e policy-enforcing
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(a) Five out of eleven systems enforce the policy. (b) All eleven systems enforce the policy.

Fig. 7. Communication overhead when enforcing ECA rule 3.

systems evaluate the policy locally and coordinate those decisions with all other e − 1 policy-enforcing systems. The
remaining t − e systems do not evaluate any policy and do thus not exchange any information.

For the performance evaluation it was of importance whether the policy was evaluated upon actual or intended
events. To obtain worst case results, we triggered the (expensive) distributed policy evaluation upon actual events. We
obtain best case results by not triggering any policy evaluation upon intended events.

Different values for r reveal the effect of the optimizations proposed in §3.3. Without these, the results for our
decentralized approach would coincide with r = 100%.

We detail results for enforcing ECA rule 3 within eleven usage controlled systems (t = 11). Out of those, five or
eleven systems enforce the policy (e1 = 5, e2 = 11). Results for other policies and amounts of systems are described in
[Kelbert 2016]. While absolute numbers differ, the general trends are similar to what we describe here.

5.3.1 Communication Overhead. For the central system setup, each event caused 1170 Bytes to be exchanged between
the PEP and the central Controller. The communication overhead is thus linear in the event frequency (Fig. 7, ).
The percentage of relevant events r and the number of policy-enforcing systems e did not influence the results: as the
PEPs are stateless, they must signal every event to the central PDP/PIP.

Fig. 7a and Fig. 7b show the communication overhead if five and eleven systems enforce the policy, respectively.
First, Cassandra causes some base ‘noise’ to keep the database in a consistent state. Hence, the centralized approach
performs inexorably better for very low event frequencies. The decentralized approach performs better the lower the
percentage of relevant events: for low percentages of relevant events ( (r = 10%), (25%)), policies can often be
conclusively evaluated locally, and few state changes must be coordinated. Traces with many relevant events (
(75%), (100%)), in contrast, necessitate the exchange of many state changes between PDPs.

Comparing Fig. 7a and Fig. 7b, we observe that the communication overhead of the decentralized approach is lower
if less usage controlled systems do enforce the policy: If only five systems enforce the policy, then (i) events and state
changes must only be coordinated between five systems; (ii) any events issued by the six remaining systems will never
trigger any coordination. In sum: the lower the fraction of systems enforcing the policy, the less state changes must be
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Fig. 8. Performance overhead when enforcing ECA rule 3.

coordinated across less systems. For policy 3 and t = 11, the decentralized approach performs better than the centralized
approach if e = 5 ∧ f ≥ 30Ev/s, or e2 = 11 ∧ r ≤ 10% ∧ f ≥ 70Ev/s, or e2 = 11 ∧ r ≤ 25% ∧ f ≥ 140Ev/s.

5.3.2 Performance Overhead. Fig. 8 shows the performance overhead for signaling events from the PEP to the
Controller and their evaluation by the PDP/PIP. Fig. 8a shows the results for actual system events, while Fig. 8b
shows those for intended system events. Since our policies were configured to be evaluated only for actual events,
Fig. 8a yields worst case results, while Fig. 8b yields best case results. We do not further differentiate whether the policy
was enforced by five or by eleven systems, as the performance overheads differed only insignificantly. Note: if the
policy is enforced by all eleven systems, no inactive systems, as depicted in Fig. 8a and Fig. 8b, exist.

Fig. 8a shows that the performance of the distributed approach is bad when evaluating actual events within active
systems (i.e., systems that actually enforce the policy) in combination with a low event frequency (f ≲ 50Ev/s) and
many relevant events (50% ( ), 75% ( ), 100% ( )). In this case, many state changes must be written to the
database, resulting in wait times for the acknowledgements of remote nodes. Some of this overhead is due to code
warm up, as the code of both Cassandra and our infrastructure must be warmed up on eleven systems. For higher
event frequencies (f ≳ 80Ev/s), the reliance on Cassandra is advantageous. The decentralized approach is benevolent
towards inactive systems that do not enforce the policy: no remote communication is ever required for those systems
and hence performance overheads are low.

Fig. 8b shows that for intended events the decentralized approach outperforms the centralized approach in all
situations. In this case no policy evaluation was ever performed, making deployment of a decentralized approach
particularly beneficial.

Summary. Communication and performance overheads of our decentralized infrastructure depend on three main factors:
(i) the percentage of relevant events, (ii) the fraction of policy-enforcing systems, and (iii) the event frequency. As our
experiments show, the decentralized approach performs best for (i) low percentages of relevant events: less relevant
events cause less policy evaluations and thus less state changes to be coordinated; (ii) a low fraction of policy-enforcing
systems, thus causing less relevant system events and thus less policy evaluations and state changes; and (iii) high
event frequencies in combination with a low amount of relevant events.

6 ORTHOGONAL AND FUTUREWORK
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Policy Specification and Deployment.We did not discuss particularities of policy specification, translation, and derivation
in distributed environments, e.g., which entities should be allowed to specify, deploy, and modify policies for which
data. Existing works [Hilty et al. 2007; Kumari and Pretschner 2013] focus on single systems only.

Integration with Solutions for Single Systems. Our approach is compatible with many solutions for single systems
[Feth and Pretschner 2012; Harvan and Pretschner 2009; Pretschner et al. 2009, 2012; Wüchner and Pretschner 2012].
It remains to build an encompassing infrastructure that integrates these works, thus allowing for comprehensive
intra-system and cross-system usage control enforcement.

Granularity of Data Flow Tracking. Tracking data flows on the basis of system calls comes at the cost of overapprox-
imations, since data contents within processes, files, sockets, etc. can not be distinguished. Cross-system data flow
tracking granularity could be improved by integrating with fine-grained data flow tracking at the application-layer.

Dedicated Solutions for Distributed Policy Decisions. Cassandra introduces communication overheads even in case no
policy coordination is required. It stands to reason that a tailored implementation would significantly improve upon
these overheads.

7 RELATEDWORK

Usage control was first introduced by Park and Sandhu [2004], which proposed to evaluate authorizations, obligations,
and environmental conditions both before and during the usage of an object. Hilty et al. [2005] generalize this concept
to distributed systems, differentiating between observable and non-observable events. Their concepts lay the grounds
for preventive and detective policy enforcement [Pretschner et al. 2007]. Hilty et al. [2007] introduce the Obligation
Specification Language, while Pretschner et al. [2008] propose consumer-side enforcement mechanisms. Harvan and
Pretschner [2009] and Pretschner et al. [2012] integrate these works with data flow tracking.

Cross-System Data Flow Tracking and Policy Propagation.Many approaches that track data flows across systems and
propagate policies have limitations not present in our approach: (1) They are hard to deploy in commodity systems:
DataSafe [Chen et al. 2012] builds upon custom hardware; CloudFilter [Papagiannis and Pietzuch 2012] and the work
by Zhang et al. [2011] necessitate the adaptation of existing applications; Neon [Zhang et al. 2010] requires a particular
hypervisor. (2) They are tailored to specific application( protocol)s, e.g. CloudFilter and the work by Janicke et al. [2012].
(3) They only support the propagation of labels rather than complex policies, including CloudFence and Taint-Exchange.
(4) Lastly, Taint-Exchange, CloudFence, and Neon are limited in the number of distinct labels or policies that can be
tracked.

Decentralized information flow control (DIFC) [Myers and Liskov 1997] prevents information flows from trusted to
untrusted data locations. After labelling data and data locations, data may only flow towards higher-labeled locations.
Zeldovich et al. [2008] track labels across hosts similar to our approach and determine whether cross-system data flows
are permissible. Data usage control policies can express similar constraints; DIFC mechanisms and their lattice model
can be integrated via operator evalExt.

Distributed Policy Decisions. Existing works that aim for the decentralized enforcement of policies impose limitations
not present in our approach: (1) For some, the decision process is not entirely distributed, as they rely on single
components: E.g., Gay et al. [2012] delegate decisions whenever local knowledge is insufficient. Their static mapping of
conflicting events to the same automaton introduces a single point of failure. Lazouski et al. [2014] fix one PDP/PIP for
the entire lifetime of each data. (2) Chadwick et al. [2008] and Alzahrani et al. [2010] do not consider dynamic data
propagation, thus protecting only static resources. (3) Basin et al. [2014; 2013; 2015] and Bauer and Falcone [2012] focus
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on the detection of policy violations. Our approach, instead, allows for both preventive and detective enforcement.
Similar to our approach, Basin et al. identify situations in which the evaluation of partial logs suffices because their
satisfaction/violation implies satisfaction/violation of the overall log.

Further Approaches. SafeShare [Thilakanathan et al. 2013] introduces encrypted containers containing both protected
data and policies. Once a user accesses the container, a background process starts and monitors compliance with the
policy.

xDUCON Russello and Dulay [2009] enforces data sharing agreements across organizations. It supports ongoing
conditions and may revoke access rights during long-lived accesses. Sensitive resources and policies are shared and
coordinated via shared storage.

FlowwolF [Hicks et al. 2010] enforces Mandatory Access Control (MAC) for web applications at multiple layers of
the software stack. The solution integrates DIFC, MAC reference monitors, and cross-system policy propagation. Our
solution is independent of the application layer and enforces more expressive policies even across systems.

Securing Data Usage Control Infrastructures. Solutions to secure infrastructures as ours build upon the Trusted Plat-
form Module (TPM), measuring the platform’s components and the usage control infrastructure at boot time. If the
measurements differ from a set of known good values, Zhang et al. [2008] disallow access to protected data.

Agreiter et al. [2007] address distributed aspects: Data providers only release protected data after data requestors
proved the presence of ‘good’ TPM measurements. Neisse et al. [2011a] detect modifications of remote cloud infrastruc-
ture configurations.

UCLinux [Kyle and Brustoloni 2007] stores usage controlled files and policies on an encrypted file system. The
decryption key is sealed to a trusted TPM configuration, ensuring that it is only accessible to a valid software stack.
UCLinux uses a modified version of TLS to perform remote attestation upon data distribution.

Digital Rights Management (DRM, e.g. [Liu et al. 2003]) influenced early usage control work by Park and Sandhu [2004]
due to the insight that DRM is insufficient if digital media is not only consumed but also re-used, combined, and
extended [Iannella 2000].

DRM primarily aims at the protection of copyrighted content which is encrypted upon distribution. Once a user
obtains a license, the content is decrypted. Client-side applications enforce compliance with granted usage rights and
payment obligations.

The proprietary nature of DRM hinders interoperability and leads to lock-in effects. This was addressed by Koenen
et al. [2004] and Taban et al. [2006]. Recently, HTML5 provides interoperable streaming of protected media. Usage
control is not limited to proprietary file types and enables the re-use, combination, and extension of data.

8 CONCLUSIONS

Recently, many works addressed the enforcement of data usage control policies within individual systems. However, the
enforcement of policies that refer to data and data usage events that are distributed has not been researched in depth. We
overcome the drawbacks of a centralized infrastructure by providing a model, an architecture, and an implementation
of a fully decentralized usage control enforcement infrastructure.

Our model allows for the explicit distinction of different systems, their individual behaviors, as well as their interplay.
We showed how these individual observations can be reassembled in order to mimic the behavior of classical centralized
systems.
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We modeled and implemented the tracking of data flows across systems in a manner that is independent of file types,
applications, protocols, and hardware. By leveraging system call interpositioning techniques, we avoid modifications to
applications and the operating system, achieving a throughput of 21%–54% of native execution.

Further, we modeled and implemented mechanisms that allow for the fully decentralized, efficient, and preventive
enforcement of global data usage policies. We identify systems that are potentially relevant to enforce a given policy,
as well as situations in which coordination of policy decisions can be safely omitted. The evaluation revealed that—
depending on concrete parameters of the scenario considered—our decentralized approach is able to outperform a
centralized approach.
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