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Abstract—The routing algorithms used by current operators
aim at coping with the demanded QoS requirements while
optimizing the use of their network resources. These algorithms
rely on the optimal substructure property (OSP), which states that
an optimal path contains other optimal paths within it. However,
we show that QoS metrics such as queuing delay and buffer
consumption do not satisfy this property, which implies that the
used algorithms lose their optimality and/or completeness. This
negatively impacts the operator economy by causing a waste
of network resources and/or violating Service Level Agreements
(SLAs). In this paper, we propose a new so-called Mn taxonomy
defining new metric classes. An Mn metric corresponds to a
metric which requires the knowledge of the n previously traversed
edges to compute its value at a given edge. Based on this
taxonomy, we present three solutions for solving routing problems
with the newly defined classes of metrics. We show that state-of-
the-art algorithms based on the OSP indeed lose their original
optimality and/or completeness properties while our proposed
solutions do not, at the price of an increased computation time.
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I. INTRODUCTION

The new era of telecommunications considers new aspects
such as virtual operators, large number of terminals and users
and wide range of services with heterogeneous Quality of
Service (QoS) requirements. These aspects force operators
to deploy flexible networks able to guarantee all these re-
quirements with an efficient use of their network resources.
This paper shows that, with a strict modeling of classical
QoS parameters such as delay and buffer consumption, link
properties are not static and state-of-the-art algorithms lose
their optimality and/or completeness properties'. As a result,
to prevent Service Level Agreements (SLAs) violations and
ensure optimal use of their network resources, operators need
new solutions.

One important challenge to ensure efficient resources usage
is the optimal routing of data packets. Depending on the type of
route that has to be found, different types of routing problems
have been defined [1], [2]. For example, for a given graph,
finding a path between two nodes and finding a tree from a
node to a set of other nodes are two different routing problems.
Among the set of possible solutions, it is usually also desirable
to define a way for preferentially selecting one solution over
another and for only selecting solutions satisfying a given
set of requirements. For example, among the set of paths
between two nodes, one might want to find the path with
the greatest available bandwidth or simply to find any path

These properties are defined in Sec. I1-4.

- Existing flow
New flow (option #1)
New flow (option #2)

Dijkstra’s path
1 Optimal path

Fig. 1: Example scenario involving an M1 metric. As elaborated in Sec. I-A,
we observe that, in such a situation, Dijkstra finds a sub-optimal path.

with an available bandwidth greater than a given threshold.
With this aim, so-called metric values are associated to each
edge of the graph. For example, if propagation delay is defined
as a metric, one might want to find the path between two
nodes whose total propagation delay is minimal. Algorithms
for solving routing problems using metrics both as constraints
and/or as optimization objectives have been deeply studied [3].

A. Motivation: Violation of the Optimal Substructure Property

State-of-the-art routing algorithms rely on the fact that the
metric values associated to the edges of the graph are sratic
(i.e., constant) for a given routing request [1], [2]. However,
this is not always the case.

Let us examine the example depicted in Fig. 1, which
considers as metric the queuing delay experienced at the
ingress of each link (referred to as delay in this section). Let
us assume that the network carries a flow on path A-B-C-E
(continuous red arrows in Fig. 1). Because there is only one
flow in the network, no queuing occurs at any link and all the
links have the same delay metric value (e.g., 1 in this example).
A new flow has to be routed from A to E. In order to reach
C, the flow can either be routed through A-C or A-B-C. If it
is routed through A-C, the flow may generate queuing at the
egress of C, i.e., at link C-E, because of potential collisions
of packets of the two flows coming from the two different
ingress links of C. This implies that the delay metric value
of C-E should be greater than without collisions (e.g., 5 in
this example). On the other hand, if the new flow is routed
through A-B-C, it will follow the same path as the original
flow, thereby generating no queuing delay at any link>. Hence,
all links keep the same original delay metric value (1 in our

2We assume that the flows arrived in A via the same link and with the same
total delay, thereby generating no queuing delay at the ingress of A-B.



case). We observe that the delay metric value associated to
C—E depends on the previous edge traversed by the new flow.
This is shown in the lower diagram of Fig. 1.

In such a setting, the least delay path from A to E is
A-B-C-E, with a delay of 3. However, the Dijkstra algo-
rithm [4], an optimal algorithm for the least-delay (i.e., shortest
path) problem, finds the path A-C-D-F-E, with a delay of 4.
Indeed, Dijkstra performs a breadth-first search and keeps only
track of the best path to reach each node. While finding a path
from A to E, Dijkstra will store A-C as the best path to reach
C because it has a total delay of 1, which is lower than 2, the
delay of A—B-C, the only other path to reach C. Then, Dijkstra
will have two possibilities to reach the destination. Either using
C-E with a delay of 5, or following C-D-F-E with a delay
of 3. Since C-D-F-E has a lower delay, Dijkstra will choose
it and return A-C-D-F-E, with a total delay of 4, as final
solution. We observe that, in this situation, Dijkstra is not able
to find the optimal path. We will show in Sec. III-B3 that this
is due to the fact that the optimal substructure property (OSP),
stating that an optimal path contains other optimal paths within
it, is not satisfied.

Sec. II-C2 and Sec. III-C3 present other scenarios for
which state-of-the-art algorithms based on the OSP (ie.,
nearly all state-of-the-art routing algorithms) lose either their
optimality or their completeness property, or both. Currently,
operators solve this problem by allowing sub-optimality or by
having a looser modeling of QoS parameters, thereby wasting
network resources, or, in the worst case, by having a too
optimistic modeling of QoS parameters, thereby potentially
leading to SLAs violations. As a result, new optimal and
complete algorithms for dealing with this type of metrics are
needed.

B. Contributions: Mn Taxonomy and Corresponding Solutions
The contribution of this paper is twofold.

First, in Sec. IlI, we propose the Mn taxonomy, a new
taxonomy defining new classes of routing metrics depending
on the amount n of previous edges needed to compute their
value at a given edge. We will see that this taxonomy allows to
determine whether or not state-of-the-art algorithms based on
the OSP lose their optimality and/or completeness properties
(see Tab. I).

Second, for the new classes of metrics introduced by the
taxonomy, new optimal and complete algorithms are needed.
Hence, in Sec. IV, we present three solutions: A*Prune, edge-
based Dijkstra (EBD) and a graph transformation algorithm
(GTA). On the one hand, A*Prune [5], a state-of-the-art algo-
rithm, and EBD, a newly proposed extension of the Dijkstra
algorithm [4], are algorithms for the specific, respectively,
multi-constrained shortest path (MCSP) and shortest path
(SP) problems, which keep their optimality and completeness
properties for the new defined classes of metrics. On the other
hand, GTA can be used for any routing problem. Indeed,
GTA is an extension that can be applied to any state-of-the-
art algorithm for recovering its optimality and completeness
properties.

In Sec. V, through evaluations, we show that state-of-the-
art algorithms based on the OSP indeed lose their optimality

and/or completeness properties depending on the Mn classi-
fication of the considered metric. Further, we show that our
proposed solutions are indeed complete and optimal for their
respective problems. However, this comes at the price of an
increased runtime.

II. ROUTING METRICS: DEFINITION

Depending on the type of route that has to be found (e.g.,
a simple path from a single source to a single destination,
multiple paths from a single source to a single destination, or
a tree from a single source to several destinations), there exist
a wide range of different routing problems. There is usually
more than one possible solution to a given routing problem.
In order to prefer one solution over another, or to provide
additional requirements regarding the solutions to be accepted,
so-called routing metrics are introduced. Each metric defines
a value, referred to as a metric value, for each edge of the
subject graph. These values can be updated for each routing
request. The metrics can then be used in three different ways
for selecting one or several of the available solutions.

1) Local Constraint Metrics: First, the edges that can be
used by the solutions can be restricted to those satisfying a
given condition based on a metric value. We refer to such
metrics as local constraint metrics. For example, in order to
ensure enough bandwidth is available for a given video stream,
one might want to use only links whose bandwidth is greater
than the bit rate of the video stream.

2) Global Constraint Metrics: Secondly, in order to further
restrict the set of solutions that can be returned, the values of
a metric at each edge of a solution can be combined using a
so-called link combination operator [6], e.g., the sum or the
multiplication, whose result must satisfy a given constraint. We
refer to such metrics as global constraint metrics. For example,
in order to ensure that the packets of a critical unicast flow
arrive on time, one might want to find a path for which the
sum of the delays of each of its constituting links is lower than
a given threshold.

3) Global Optimization Metrics: Finally, in order to rank
solutions and search for the preferred one(s), the values of
a metric at each edge of a solution can be combined using
a given link combination operator whose result is used for
ordering the solutions. We refer to such metrics as global
optimization metrics. For example, in order to ensure that data
from a unicast request is transferred as fast as possible, one
might want to find the path for which the sum of the delays
of each of its constituting links is minimal.

4) Optimality and Completeness Properties: An algorithm
is said complete if it always finds a solution, if one exists,
satisfying both the local and global constraints. In case of a
single global optimization metric, an algorithm is said optimal
if the solution it finds is always the optimal one.

III. THE Mn TAXONOMY

In this section, we present our novel routing metric tax-
onomy, the Mn taxonomy, classifying metrics into classes
based on the amount of previous edges needed for computing
their value at a given edge. We refer to a metric requiring
the knowledge of the n previously traversed edges as an Mn
metric.



/ [ Mo [ M1 [ Mn - [ Moo |
Local constraint (Sec. 1I-1) CcCoO cCoO CcCoO CcC O
Global constraint (Sec. 11-2) CcC O CcC o CcC o CcC o
Global optimization (Sec. 11-3) CcC o cCo cCo cCo

TABLE I: Impact of Mn metrics on the completeness (C) and optimality (O)
of state-of-the-art algorithms based on the OSP.

A. MO Metrics: No Additional Information Required

MO metrics correspond to the traditional metrics considered
in the state-of-the-art. The metric value associated to an edge
depends only on the edge itself and requires no information on
the other edges previously traversed. Examples of M0 metrics
are the propagation delay and the total capacity of a link.

B. M1 Metrics: Values Depending on the Previous Edge

1) Definition: M1 metrics correspond to metrics whose
value at a given edge depends on the previous edge used to
reach the given edge.

2) Motivation: Queuing Delay: The example developed in
Sec. I-A (and illustrated in Fig. 1) corresponds to an M1
metric. Indeed, depending on which ingress link to C is used,
the queuing delay at the egress of C is different. As a result,
the metric value of C-E depends on the previously traversed
edge and the metric is an M1 metric.

3) Impact as Global Optimization Metric: The example
developed in Sec. I-A (and illustrated in Fig. 1) corresponds to
an M1 metric used as global optimization metric for a shortest
path (SP) problem. We have seen that the Dijkstra algorithm
loses its optimality. The reason for this is that Dijkstra relies
on the optimal substructure property (OSP), which states that
sub-paths of optimal paths are also optimal [7]. While the
OSP is satisfied for MO metrics, it is not necessarily satisfied
anymore for M1 metrics. Other routing algorithms typically
also rely on the OSP, either because they are based on Dijkstra
itself, or because they are based on dynamic programming
or greedy approaches which are themselves based on the
OSP [7]. Consequently, other optimal SP algorithms such as
Bellman-Ford [8]-[10] and A* [11] are also affected. Hence,
when an M1 metric is used as optimization metric, state-
of-the-art algorithms based on the OSP lose their optimality
property. Note that, as the metric is only used for optimization,
completeness is not impacted. This is summarized in Tab. I and
will be confirmed in our evaluations (Sec. V-C).

4) Impact as Global Constraint Metric: Let us consider the
M1 metric in Fig. 1 as global constraint metric (with a bound of
3.5) and further define the hop count (an MO metric) as global
optimization metric. This corresponds to a constrained shortest
path (CSP) problem. CBF [12], an optimal CSP algorithm, is
similar to Dijkstra. It performs a breadth-first search and keeps
only track of the best path at each node. However, it discovers
paths in order of the constraint metric and stops once the bound
is reached. In our example, CBF would hence also find A-C
as the best path to reach C. From this path, the destination
E cannot be reached within the deadline. Hence, CBF will
conclude that no path is available. However, A-B-C-E, with
a delay of 3, is a valid solution. As a result, CBF is incomplete.
It can easily be shown that, with a bound of 4.5, CBF would
find A-C-D-F-E, with a delay of 4, which is sub-optimal
(A-B-C-E, with a delay of 3, still being the optimal path).

Fig. 2: Example scenario involving an Moo metric. As elaborated in
Sec. III-C4, we observe that the new flow will be rejected or accepted at
C-E depending on where it is coming from.

As for Dijkstra, this is due to the fact that the OSP is not
satisfied anymore. Hence, other optimal CSP algorithms [13],
which are all based on Dijkstra and hence on the OSP, are also
affected. Consequently, when an M1 metric is used as a global
constraint metric, state-of-the-art algorithms based on the OSP
lose both their completeness and optimality properties. This
is shown in Tab. I and will be confirmed in our evaluations
(Sec. V-D).

5) Impact as Local Constraint Metric: It can also be easily
shown that M1 local constraint metrics also lead to the sub-
optimality and incompleteness of state-of-the-art algorithms
based on the OSP (see Tab. I). Indeed, the OSP is also not
necessarily satisfied.

C. Moo: Values Depending on the Complete Path

1) Definition: Moo metrics correspond to metrics whose
value at a given edge depends on the complete path traversed
to reach the current edge.

2) Motivation: Buffer Management: Let us consider a
metric representing the buffer consumption of a flow. While
traversing a given path, the burstiness of a flow is increased
at each hop by an amount depending on the flow and on the
hop characteristics [14], [15]. The buffer consumption of a
flow at a given node depends, among other things, on the
burstiness of this flow. Hence, the buffer consumption of a
flow at a given hop depends on all the previously traversed
links. Consequently, such a metric, which should be used for
per-node strict buffer management [16], is an Moo metric.

3) Motivation: Routing through Service Function Chains:
Let us consider a metric representing the total bandwidth
consumption of a flow at each link. While routing through
service function chains (SFCs), loops can be introduced.
Hence, the total bandwidth consumption of a flow at a given
link depends on how many times the flow already visited the
given link. As a result, all the previously visited links have to
be known and this corresponds to an Moo metric.

4) Impact as Local Constraint Metric: Let us consider the
example developed in Sec. III-C2 (illustrated in Fig. 2) and
the problem of routing a flow from A to E (Fig. 2) through
the least-hop path (MO metric). We consider a local constraint
metric rejecting flows consuming too much buffer space. In
Fig. 2, each link is labeled with its queuing delay (generated
by already embedded flows). Note that this queuing delay is
not used as a metric. As per network calculus [14], [15], the
burstiness of the flow, i.e., its buffer consumption, will increase
approximately proportionally to the delay it experiences along
its path. Fig. 2 shows the two options for routing the new flow.
The width of the arrows represent the buffer consumption of
the flow. While routing, Dijkstra will save the path A-C, with



Fig. 3: Example scenario involving an Moo metric. As elaborated in
Sec. III-C4, the bandwidth consumption of the new flow at a link depends
on whether or not it visited this link before. Hence, acceptance of the new
flow at a link depends on all the previously visited links.

a hop count of 1, as the best path towards C. However, because
the queuing delay experienced at A-C is 5, the burstiness of the
flow greatly increased and it cannot be accepted at link C-E.
As a result, Dijkstra would either find no solution (thereby
losing completeness) or find A-C-D-F-E, with a hop count
of 4, if the latter has enough buffer space available. However,
A-B-C-E, with a hop count of 3, has a low delay, thereby
only slightly increasing the burstiness of the flow and hence
allowing it to use C—-E. In this case, Dijkstra is hence sub-
optimal. This is again due to the fact that the OSP is not
satisfied.

Let us further consider the example developed in
Sec. III-C3 (illustrated in Fig. 3) and the problem of routing
a flow on the least-hop path (MO metric) from A to G (Fig. 3)
visiting the two virtual network functions (VNFs) E and F in
the specified order. The flow consumes 700 Mbps and each link
has 1 Gbps available bandwidth. Hence, the flow can only visit
each link once. A least-hop algorithm would first reach the first
VNEF, i.e., E, through the least-hop path, i.e., A-C—E. Then, it
would visit the second VNEF, i.e., C, through the least-hop path
from E, i.e., E—C. Finally, it would try to reach the destination
with the least-hop path from C, i.e., C-E-G. However, this
would imply visiting a second time C—E, which is not allowed.
If the algorithm does not notice that the access to C-E is
refused (e.g., if it cached the result of the access control when
it first traversed the link), it will return an invalid path and
hence be incomplete. If the algorithm notices that the access to
C-E is refused, it would follow the second least-hop path, i.e.,
C-B-D-F-E, thereby finding A-C-E-C-B-D-F-E, with a
hop count of 7, as final solution. However, A-B-D-E-C-E-G
is a valid path with a hop count of 6. Hence, the algorithm
loses its optimality.

As a result, when an Moo metric is used as a local
constraint metric, state-of-the-art algorithms based on the OSP
lose both their completeness and optimality properties (Tab. I).

5) Impact as Global Optimization or Constraint Metric:
As an M1 metric is also an Moo metric, it can easily be shown
that the impact as global optimization and constraint metric is
the same for both M1 and Moo metrics (Tab. I).

D. Mn: Values Depending on the n Previous Edges

As a generalization, we further introduce the class of Mn
metrics. Mn metrics correspond to metrics whose value at a
given edge depend on the n previous edges used to reach the
current edge.

Obviously, for the same reasons as for Moo metrics, the
impact of state-of-the-art algorithms based on the OSP is the
same as for M1 metrics. This is shown in Tab. I.

IV. SOLUTIONS FOR THE Mn TAXONOMY

In this section, we present three opportunities (Sec. IV-A,
IV-B and IV-C) to optimally and completely solve problems
with Mn metrics, n > 0.

A. Existing Solution: A*Prune

A*Prune [5] is a complete and optimal state-of-the-art
algorithm able to solve the shortest path (SP) and multi-
constrained shortest path (MCSP) problems. Although similar
to Dijkstra, A*Prune does not rely on the OSP but is only
faster when it is satisfied. Hence, it keeps its optimality and
completeness properties for both Mn and Moo metrics. The
reason for this is that it does not keep track of only one
best path to reach each node. Instead, all feasible paths are
kept in memory and the best ones are extended first. Path
extension is stopped only once the next path to extend has an
optimization metric value higher than the current best path for
the destination.

In the example of Fig. 1, as Dijkstra, A*Prune will first find
the path A-B—C—E with a total metric value of 7. However, the
next path to extend, namely A-C, has a total metric value of
4, which is lower than the current best path to the destination.
Hence, A*Prune will further extend A-C and thereby find
A-C-E, which is optimal.

Unfortunately, this optimality for any type of Mn and Moo
metric comes at the price of a poor scalability behavior. This
will be shown in our evaluations (Sec. V).

B. New Solution: Edge-based Dijkstra (EBD)

In the particular case of the SP problem with an M1
optimization metric, Dijkstra can be slightly adapted. Instead
of keeping track of the best path towards each node, our
proposed adaptation keeps track of the best path towards each
edge. We refer to this algorithm as edge-based Dijkstra (EBD).

In the example of Fig. 1, instead of keeping track of the
best path towards node C, EBD will keep track of the best path
towards A—C (which is A-C itself) and towards B—C (which is
A-B-C). Then, when extending these paths to obtain the best
path towards C-E, both paths will be considered and the path
A-C-E, missed by the normal Dijkstra, will be found. Once
EBD stops, the final solution then corresponds to the best path
among those stored at all the ingress links to the destination
node.

Because the amount of edges in a graph is usually higher
than the amount of nodes, EBD keeps track and extends more
paths than the traditional Dijkstra and the usage of EBD for
M1 metrics hence results in a runtime increase compared to a
normal Dijkstra run. This will be confirmed in Sec. V-C.

C. New Solution: Graph Transformation Algorithm (GTA)

In this section, we propose a graph transformation algo-
rithm (GTA) which transforms a graph with Mn metrics to
an equivalent graph with MO metrics such that any routing
problem with Mn metrics can be solved with a state-of-the-art
algorithm for the given routing problem with traditional MO
metrics.
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Fig. 4: Illustration of the GTA procedure for M1 metrics. From the original
graph with M1 metrics (the M1 graph), the algorithm creates a new graph
(the MO graph) with MO metrics on which any state-of-the-art algorithm can
run to solve the original M1 problem.

1) Reasoning: For M1 metrics, edges can have as many
different metric values as ingress links (plus one for the “null”
ingress link when the flow starts at the given edge). This is
shown in Fig. 1. The idea of GTA is to duplicate links as many
times as they have different metric values such that each new
edge has a static MO metric value. Let us refer to the original
graph with Mn metrics as the Mn graph and to the transformed
graph with only MO metrics as the M0 graph. Each edge in the
MO graph then corresponds to (i) an edge of the original Mn
graph, and (ii) a set of n previous edges. In this way, edges
in the MO graph have only one metric value (i.e., the metric
is now an MO metric) and state-of-the-art algorithms based on
the OSP can operate properly.

2) Algorithm Description for M1 Metrics: The GTA algo-
rithm for M1 metrics is illustrated in Fig. 4. The blue circle
nodes correspond to the original M1 graph. From this graph,
each node is copied and then duplicated as many times as it
has ingress links. Each MO node (green square nodes in Fig. 4)
then corresponds to an original M1 node and to one ingress
link of this node (including the “null” ingress link). Then, M0
edges are obtained by creating edges towards the created MO
nodes from all the MO nodes corresponding to the source of the
original edge to which the destination MO node corresponds.
Each MO edge then corresponds to (i) an edge of the M1
graph, and (ii) an ingress link to this edge. Hence, each M0
edge can be assigned a static MO metric value corresponding
to the metric value of the original edge when the given ingress
edge is used to reach it. We refer to this procedure as GTA().

3) Request and Result Transformation: In order for the
original algorithm to run on the transformed graph, the orig-
inal request has to be mapped. First, the source nodes now
correspond to their MO equivalent which have no ingress
link. Secondly, the destination nodes have now several MO
equivalents. To overcome this problem, so-called sink nodes
have to be created. All the MO nodes corresponding to the
same original M1 node have to be connected to the same
sink node with edges whose metric value does not change
the metric value of the overall solution (that is, e.g., 0 for
an additive metric). The destination(s) of the original request
then become(s) the corresponding sink node(s). We refer to the
procedure of creating the sink nodes as ADDSINKS(). Once the
algorithm found a solution on the M0 graph, the solution on the
M1 graph can be recovered by taking all the M1 equivalents
of the elements of the MO solution returned by the algorithm.

4) Algorithm Description for Mn Metrics: In order to
transform a graph with Mn metrics, the GTA() procedure
described in Sec. IV-C2 simply has to be applied n times and
followed by the addition of sink nodes (Fig. 5). Indeed, as

D ADDSINKS(MO0)

)(:L\(M(u 1))
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Fig. 5: Illustration of the GTA procedure for Mn metrics. The procedure
described in Fig. 4 simply has to be applied n times, provided that the sinks
are only added at the end.
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Fig. 6: Evolution of the amount of nodes and edges for the Internet Topology

Zoo [17] topologies for different amount of executions of GTA (including the
sinks creation).

GTA() duplicates edges for each ingress link, applying it n
times will duplicate edges for each possible set of n ingress
links and hence lead to an MO graph.

5) Cost of the Transformation: The size of the MO graph
increases with n. Fig. 6 shows the evolution of the amount
of nodes and edges for all the topologies from the Internet
Topology Zoo [17]. We can observe that the amount of nodes
and edges increases by up to one order of magnitude for
each application of the GTA() procedure. That is, while GTA
allows to optimally solve any problem with Mn metrics using
algorithms for MO metrics, this comes at the price of a huge
increase in the graph size. An insight on the runtime impact
will be given in Sec. V.

V. EVALUATION

The goal of the evaluation is to observe the impact of
M1 and Moo metrics on the optimality and completeness of
state-of-the-art algorithms based on the OSP and to show that
our proposed solutions are correct. In particular, we show
the influence of M1 and Moo metrics on one SP and one
CSP algorithm both with and without GTA. Algorithms are
compared to A*Prune, which provides a benchmark for both
completeness and optimality.

A. Setup

1) Topologies: We use the topologies from the Internet
Topology Zoo [17] which are connected and have more than
10 nodes. Further, because A*Prune poorly scales both in
terms of memory consumption and runtime [13], we filter out
topologies with more than 100 nodes or 200 edges.

2) Requests: For a given topology, source and destination
nodes for requests are randomly selected from the whole set
of nodes of the topology.

3) Metrics: We define one MO, one M1 and one Moo
metric. The metric values are random values between 1 and 2.
For the M0 metric, the values are defined for each edge. For
the M1 metric, the values are defined for each combination of
edge and previous edge. For the Moo metric, the values are
defined for each path.
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Fig. 7: Runtime and optimality ratio of A*, A* with one GTA transformation
(A*-GTA) and A*Prune for the SP problem with MO, M1 and Moo optimiza-
tion metrics.

B. Measurement Environment

In both SP and CSP scenarios, each algorithm is ran 20.000
times for each topology and metric type. Prior to these 20.000
runs, 1.000 warm-up runs are used to prevent the Java Hotspot
optimizer from influencing the runtime measurements. The
evaluation ran on an Intel Core 17-4790 CPU @ 3.60GHz.

C. Shortest Path: Optimality Influence

1) Setup: We observe the runtime and optimality of
A* [11] (an optimal SP algorithm) and A* with GTA applied
once (referred to as A*-GTA) for MO, M1 and Moo metrics
using A*Prune as a benchmark. The guess values for both
A*Prune and A* correspond to the hop count.

2) Results: Runtime: The left plot of Fig. 7 shows the
empirical cumulative distribution function (ECDF) of the ob-
served running times during the simulation®. We can observe
that the GTA transformation for A* leads to an increase in
runtime of around half an order of magnitude. Even though big
topologies were not used, the figure also illustrates the poor
scalability of A*Prune. Indeed, while A*Prune is sometimes
significantly faster than A*-GTA (around 40% of the cases for
the MO metric, around 30% of the cases for the M1 metric
and around 20% of the cases for the Moo metric) its runtime
becomes very high for bigger topologies. Note that the runtime
increase for each algorithm for the M1 and Moo metrics is
mostly due to the increased complexity of the metric values
computation.

3) Results: Optimality Ratio: The right plot of Fig. 7 shows
the ECDF of the optimality ratio observed for each algorithm
and metric types. The optimality ratio is defined per topology
as the percentage of requests that the algorithm was able to
solve optimally. As expected, both A* and A*-GTA are always
optimal for MO metrics and show a sub-optimal behavior for
Moo metrics. However, while A* presents a sub-optimal be-
havior for M1 metrics, A*-GTA does not. The sub-optimality
of A* for M1 metrics corresponds to the behavior described
in Sec. I-A and Fig. 1. This confirms that GTA allows state-
of-the-art algorithms based on the OSP to keep their original
properties for M1 metrics. For Moo metrics, though GTA
does not guarantee optimality for A*, we can observe that
it improves its optimality ratio. All algorithms were complete,
confirming that an M1 or Moo global optimization metric does
not impact the completeness of algorithms (see Tab. I).

3Note that, for GTA, the graph creation is not taken into account. Indeed,
it can be done once for all the requests.
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Fig. 8: Optimality and completeness ratios of LARAC, LARAC with one GTA
transformation (LARAC-GTA) and A*Prune for the CSP problem with MO,
M1 and Moo global constraint metrics and an MO optimization metric.
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4) Results: Conclusions: M1 and Moo global optimiza-
tion metrics indeed lead to the sub-optimality of A*. While
A*Prune provides optimality for any type of metric, it presents
a problematic scalability behavior. For its part, GTA allows A*
to optimally solve problems for M1 metrics and improves its
optimality ratio for Moo metric, at the price of a reasonable
increased runtime. Note that EBD led to an identical optimality
behavior and a similar runtime behavior as A*-GTA.

D. Constrained Shortest Path: Completeness Influence

1) Setup: Because CBF, the optimal CSP algorithm,
presents an exponential runtime behavior [12], we use
LARAC [18]-[21], a sub-optimal but fast and complete CSP
algorithm. We then observe the optimality and completeness
of LARAC and LARAC with GTA applied once (referred to as
LARAC-GTA) for M0, M1 and Moo metrics, using A*Prune
as benchmark. Note that, because of the poor scalability of
A*Prune and the higher runtime required by a CSP search
compared to an SP search, we further reduced the topologies
to those with less than 50 nodes and 100 edges.

2) Metrics and Constraint Bounds: For the optimization
metric, we use an MO metric. The constraint metric upper
bound is randomly distributed among all the possible values
(between the minimum and the maximum values).

3) Results: Runtime: Because of space constraints and
because the runtime impact of GTA appeared to be the same
as for the SP problem, we omit the runtime values for the CSP
problem.

4) Results: Optimality Ratio: The left plot of Fig. 8 shows
the ECDF of the optimality observed for each algorithm.
LARAC and LARAC-GTA present exactly the same behavior
for the MO metric (the yellow curve being hidden in Fig. 8).
As expected, LARAC is not optimal for the M0 metric. For
LARAC, the M1 metric reduces its optimality ratio. However,
the Moo metric does not appear to further reduce this optimal-
ity ratio. For LARAC-GTA, the M1 metric does not have a big
influence on its optimality. However, the Moo metric appears
to further reduce this optimality ratio. It is interesting to notice
that this behavior is different for LARAC and LARAC-GTA.

5) Results: Completeness Ratio: The right plot of Fig. 8
shows the ECDF of the completeness ratio observed for each
algorithm. The completeness ratio is defined per topology as
the percentage of requests for which the algorithm was able
to find a solution. The same conclusions as for the optimality
ratio of the SP simulations can be drawn. Indeed, GTA allows



LARAC to be complete for the M1 metric and improves on
its completeness ratio for the Moo metric.

6) Results: Conclusions: The M1 and Moo global con-
straint metrics indeed lead to the incompleteness of LARAC.
GTA allows LARAC to completely solve problems for the M1
metric and improves its completeness ratio for the Moo metric.

VI. APPLICABILITY OF THE SOLUTIONS

A*Prune and EBD can only be used for the SP/MCSP and
SP problems, respectively. On the other hand, GTA can be
applied to any routing algorithm. That is, GTA can be used
for any routing problem (unicast, multicast, multipath, etc.)
and amount of optimization and constraint metrics as long as
a state-of-the-art algorithm for the corresponding problem with
MO metrics exists. However, we identify that multipath routing
requires small adaptations. Indeed, after a GTA transformation,
disjointness on the transformed graph does not guarantee
disjointness of the corresponding elements on the original
graph and multipath routing algorithms might hence return
disjoint paths on the transformed graph which are not disjoint
on the original graph. To circumvent this problem, the GTA
transformation can be adapted by adding an intermediate sink
edge to which all the transformed edges corresponding to an
identical original edge connect. In this way, if the algorithm
finds two paths that use different edges corresponding to the
same original edge, it will have to use the same sink edge
and will hence conclude that these paths are not disjoint. This
additional procedure however again comes at the price of an
increased amount of nodes and edges in the transformed graph.

VII. CONCLUSIONS

State-of-the-art routing algorithms are optimal and com-
plete when using metrics that satisfy the optimal substructure
property (OSP). However, we have shown that relevant QoS
metrics such as delay or buffer consumption do not satisfy this
property. Hence, the algorithms lose their optimality and/or
completeness. This causes operators to violate Service Level
Agreements (SLAs), hence incurring penalties, as well as to
inefficiently use their network resources.

In order to still guarantee optimal and complete results,
we first proposed a new Mn metric taxonomy for classifying
routing metrics based on the amount n of previously traversed
edges needed to compute their value at a given edge. Based
on this taxonomy, we presented solutions guaranteeing opti-
mality and completeness. First, we presented A*Prune [5],
a state-of-the-art algorithm that can deal with any type of
Mn and Moo metric for solving the shortest path (SP) and
multi-constrained shortest path (MCSP) problems. Second,
we proposed edge-based Dijkstra (EBD), a newly proposed
modification of Dijkstra for solving SP problems with M1
metrics. Finally, because A*Prune and EBD can only be used
for particular problems and metric types, we proposed a graph
transformation algorithm (GTA) that allows any state-of-the-
art algorithm for any routing problem (e.g., unicast, multicast,
multi-constrained, etc.) to solve problems with Mn metrics.
While A*Prune is the only opportunity for optimally solving
a problem with Moo metric, we have shown that it presents
a poor scalability behavior. Besides, on the example of the
A* [11] and LARAC [18]-[21] state-of-the-art algorithms, we

have shown that GTA indeed recovers their properties for Mn
metrics, at the cost of an increased running time.

The effective impact of the completeness and optimality
behavior of state-of-the-art algorithms and of the proposed
algorithms on the network resources usage of operators is an
interesting future research direction and is left for future work.
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