
TUM School of Management

The vehicle routing problem with time windows, flexible
service locations and time-dependent location capacity

Alexander Jungwirth a,b

Markus Frey c

Rainer Kolisch a

a Technical University of Munich, Arcisstraße 21, D-80333 Munich, Germany

b BASF SE, Carl-Bosch-Straße 38, D-67056 Ludwigshafen am Rhein, Germany

c Hilti AG, Feldkircher Strasse 100, 9494 Schaan, Liechtenstein

jungwirth.research@gmail.com

markus.frey@hilti.com

rainer.kolisch@tum.de

May 2020
TUM Technical Report (Operations Management)
OM–2020–01
Copyright c© 2020 Technical University of Munich,

Alexander Jungwirth a,b, Markus Frey c, Rainer Kolisch a

The series TUM Technical Reports (Operations Management) consists of working papers carried out by our members. Most of
these pre-prints have been submitted to peer-reviewed journals. When accepted and published, if necessary, the original pdf is
removed and a link to the published article is added.

The authors are exclusively responsible for the content of their research papers. Copyright and moral rights for the publications
are retained by the authors and the users must commit themselves to recognize and abide the legal requirements associated with
these rights. Thus, users:

• May download and print one copy of any publication from the public portal for the purpose of private study or research;

• May not further distribute the material or use it for any profit-making activity or commercial gain;

• May freely distribute the URL identifying the publication.

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work
immediately and investigate your claim.

TUM Tech Report OM–2020–01 i

Abstract: We introduce a new variant of the well-known vehicle routing problem (VRP): the VRP with
time windows and flexible delivery locations (VRPTW-FL). Generally, in the VRP each customer is served in
one fixed service location. However, in the VRPTW-FL each customer is served in one of a set of potential
service locations, each of which has a certain capacity. From a practical point of view, the VRPTW-FL is highly
relevant due to its numerous applications, e.g. parcel delivery, routing with limited parking space, and hospital-
wide scheduling of physical therapists. Theoretically, the VRPTW-FL is challenging to solve due to the limited
location capacities. When serving a customer, location availability must be ensured at every time. To solve
this problem, we present a mathematical model and a tailored hybrid adaptive large neighborhood search. Our
heuristic makes use of an innovative backtracking approach during the construction phase to alter unsatisfactory
decisions at an early stage. In the meta-heuristic phase, we employ novel neighborhoods and dynamic updates
of the objective violation weights. For our computational analysis, we use hospital data to evaluate the utility
of flexible delivery locations and various cost functions. Our algorithmic features improve the solution quality
considerably. We clearly outperform traditional hospital planning and by trading-off vehicle and customer travel
times we show the economic potential of location flexibility.

Keywords: Routing, Metaheuristic, Location, OR in health services

TUM Tech Report OM–2020–01 1

1 Introduction

Vehicle routing is well-studied in the operations research and management science literature. It has theoretical as

well as practical relevance to scientific communities and industries, such as logistics and healthcare. In the classic

vehicle routing problem (VRP), vehicles traverse a network with the objective to e.g. minimize routing costs or

the number of vehicles used. Each destination in the network corresponds to exactly one customer, and each

customer is visited once. For the VRP, several extensions exist on the demand and delivery side. For example,

on the delivery side assigning capacities to the vehicles leads to the capacitated VRP, while on the demand side

associating customers with time windows leads to the VRP with time windows (VRPTW) (see Desaulniers et al.,

2014).

In this paper, we present an extension of the VRP with substantial enhancement of the demand side: the

VRP with flexible delivery locations (VRP-FL). In this problem, a customer is no longer automatically assigned

to his/her service location. Instead, in the VRP-FL each customer must be served at exactly one capacitated

location among a set of multiple alternatives. In this context, capacitated means that the number of customers,

which can be served at one location at the same time is limited. When, additionally, time windows for customers

are considered, we obtain the VRP with time windows and flexible delivery locations (VRPTW-FL). Note that by

assigning capacities to service locations, the complexity of the problem increases significantly. Non-availability

of locations leads to rerouting of customers to alternative service location. Thus, the location capacity directly

influences the routing decision.

There is little literature on VRPs incorporating flexible customer locations; to the best of our knowledge,

this is the first study of this type of problem with capacitated locations. The VRPTW-FL has been inspired by

a problem in the health care industry, where it is known as the hospital-wide therapist scheduling and routing

problem (see Gartner et al., 2018). Hospital planners have to decide which therapist treats which patient in which

room at which time. Therapists can treat patients either at the ward or in a therapy center. For the VRPTW-FL,

vehicles represent therapists, customers represent patients and locations for the customers represent treatments

rooms. Especially in larger hospitals, the travel times of therapists are considerable. Reducing travel times allows

more time to treat patients, which in the long run reduces the average waiting time for an appointment.

Another application of the VRPTW-FL is flexible parcel delivery. Companies such as DHL and Amazon

have experimented with delivering to different locations depending on the time of the day (Audi AG, 2015). For

example, a parcel can be sent to a customer’s home, the trunk of the customer’s car or to a parcel box.

This paper presents a mixed integer program (MIP) for the VRPTW-FL. As a generalization of the VRP, the

VRPTW-FL is also NP-hard, and as we will show, the VRPTW-FL cannot be described with a limited number

of linear constraints. Both properties make this problem extremely hard to solve to optimality. Therefore, to

tackle the problem we propose a hybrid meta-heuristic based on adaptive large neighborhood search (ALNS) and

guided local search (GLS).

The construction heuristic is based on insertion, and we add a backtracking mechanism to alter unsatisfactory

decisions at an early stage. The solution derived by the construction heuristic is then further improved by the

hybrid ALNS. We extend the self-adaptiveness of the ALNS by allowing feasibility violations which are penalized

in the objective function. The penalty weights are dynamically adjusted following a GLS approach, which adds

robustness to the ALNS, and may make it more suitable for future applications.

In our computational study, we assess our algorithm from a theoretical as well as a practical perspective. In

the theoretical part, we examine the performance of our heuristic procedure in general and its new features in

particular. In the practical part, we test our heuristic against current hospital planning, and we evaluate the

potential benefit of flexibility by applying different cost functions for serving customers in different locations and

put them into relation to the vehicles’ travel costs.

Our results show that the heuristic works well; combining the ALNS with a GLS leads the heuristic to

considerably better regions of the planning horizon, and backtracking provides much better initial solutions than

traditional construction heuristics. When applied to the hospital case, our heuristic clearly outperforms current

hospital planning methods. For practitioners we provide intuition how to trade-off routing costs and customer

preferences. In general, our results encourage planners facing similar problems to consider some degree of location

flexibility whenever possible.

The main contribution of this paper is threefold: (a) we introduce a new variant of the VRP, which is highly

relevant for practice, (b) we extend the self-adaptiveness of the ALNS by a GLS, which guides the algorithm

TUM Tech Report OM–2020–01 2

faster to particular good regions of the solution space, and (c) we show the benefit of allowing location flexibility

by employing a variety of performance metrics.

The remainder of this paper is structured as follows. We begin in §2 with an overview of related work focusing

on VRPs incorporating location decisions. In §3, we develop a mathematical formulation for the VRPTW-FL

and discuss the underlying graph structure. Additionally, we outline how the VRPTW-FL can be extended with

multiple depots, multiple time windows, and profits. In §4, we present the hybrid meta-heuristic procedure used

to solve the problem. We provide evidence of our algorithm’s capabilities in §5 and conclude in §6.

2 Related work

The VRP and its extensions have been studied extensively in the literature. Textbooks include Toth and Vigo

(2002, 2014) as well as Golden et al. (2008), while literature reviews are, e.g. Desrochers et al. (1990); Laporte and

Osman (1995); Desrochers et al. (1999); Cordeau et al. (2002); Eksioglu et al. (2009); Laporte (2009); Lahyani

et al. (2015) and Vidal et al. (2019).

Since the particular feature of the VRPTW-FL are the multiple capacitated service locations for customers,

our review focuses on routing problems incorporating location decisions. The first works considering both location

and routing aspects date back to the 1960s, e.g. Maranzana (1964); von Boventer (1961); Webb (1968); Watson-

Gandy and Dohrn (1973). Since then a multitude of different problems have arisen, all having routing and location

decisions (see e.g. Prodhon and Prins, 2014).

However, to the best of our knowledge we are the first to consider multiple capacitated locations for customers,

and only two routing problems were studied in which serving customers is possible in multiple locations: (1) the

vehicle routing-allocation problem (VRAP) introduced by Beasley and Nascimento (1996), and (2) the VRP with

roaming delivery locations (VRPRDL) introduced by Reyes et al. (2017). The VRAP is a special case of the

location-routing problem (LRP) and the VRPRDL extends the generalized VRP (GVRP).

In this section, we detail what, to the best of our knowledge, are the problems related to the VRPTW-FL,

describe how they are connected with and how they differ from each other. Finally, we show how the VRPTW-FL

generalizes all of these problems. Subsection 2.1 is devoted to LRPs and their extensions, and Subsection 2.2

focusses on GVRPs and their extensions. Figure 1 presents an overview of the evolution and the relations between

the several problems that we describe in the following subsections.

Figure 1: Connections between location and/or routing problems. (The VRPTW-FL generalizes all of them.
The most relevant problems are extensions of the LRP and the GVRP (gray boxes). However, the VRPTW-FL
can also be seen as an extension of the VRPTW.)

2.1 Location-routing problems

The location routing problem (LRP) can be defined as location planning incorporating tour planning (Nagy and

Salhi, 2007). Generally the task is to determine locations for depots and vehicle routes from depots to customers.

This problem has many practical applications, e.g. planning where distribution systems such as factories and

TUM Tech Report OM–2020–01 3

warehouses should be placed for customers to receive their deliveries from those facilities. Reviews of LRPs are,

e.g. Balakrishnan et al. (1987); Min et al. (1998); Nagy and Salhi (2007); as well as Prodhon and Prins (2014).

Clearly the LRP incorporates routing and location decisions since it combines the location allocation problem

(LAP) and the VRP. However, the LRP and the VRPTW-FL differ considerably. While in the LRP customer

locations are fixed and depot locations are flexible, the contrary is the case for the VRPTW-FL. Note that flexible

depot locations could also be introduced to the VRPTW-FL as shown in Section 3.4.

The vehicle routing-allocation problem (VRAP) by Beasley and Nascimento (1996) is an extension of the LRP,

in which customers have multiple service locations, and not all customers must be visited, i.e. a customer can

be assigned to another customer’s location or a customer can be left unserved. Practical applications are, e.g.

routing mobile clinics in rural areas or designing postal collection routes. The location decision for customer

service is very similar to the VRPTW-FL. However, there are no capacity limits for the service locations and no

time windows are assigned to customers.

The VRAP is closely related to VRPs with profits (VRPPs), in which each customer is associated with a

specific profit (see e.g. Archetti et al., 2014), and customers can be left unserved, too. The objective of the VRPP

is to minimize routing costs while maximizing profits. The central difference between the VRAP and the VRPP

is that the latter’s customers have only one fixed service location. In the VRPTW-FL, all customers must be

served. However, the functionality of having profits can easily be added (see Section 3.4).

The vehicle routing with demand allocation problem (VRDAP) introduced by Ghoniem et al. (2013) is a

variant of the VRAP. In the VRDAP, customers are assigned to delivery sites and vehicles visit the delivery sites

from a central depot. In contrast to the VRAP, the delivery sites are different from the customers’ locations.

One application is the distribution of food to people in need where the food is delivered e.g. to parking lots. The

main difference to the VRPTW-FL is that there are no capacities in the delivery sites and no time windows for

customers.

2.2 Generalized VRP

The generalized VRP (GVRP) constitutes the second stream of literature relevant to the VRPTW-FL. The

GVRP is an extension of the VRP in which vehicles visit clusters of potential delivery sites instead of individual

customers. Each cluster has a given demand and only one delivery site in the cluster must be visited; e.g. when

routing vessels in maritime transportation, only one port in a certain region may have to be visited to serve the

entire region. Several more practical applications exist for the GVRP (see e.g. Baldacci et al., 2010; Bektaş et al.,

2011).

The GVRP can be seen as an LRP since there is a location decision to visit a particular site within a cluster.

However, we believe the GVRP should be seen as an extension of the VRP as the main decision involved is the

routing of vehicles, and selecting the location inside the cluster is only a minor aspect.

The GVRP is a special case of the VRPTW-FL, and the VRPTW-FL becomes a GVRP when the following

two conditions are met: (1) all locations of a customer are distinct from all other locations in the problem, and

(2) time windows for the customers span the entire planning horizon. Location capacity does not have to be

considered since in the GVRP multiple visits to a single location are forbidden.

Moccia et al. (2012) introduce the GVRP with time windows (GVRPTW), where a time window is assigned

to each node in the cluster and time windows of the nodes inside a cluster can differ. The VRPTW-FL cannot

be transformed directly into a GVRPTW, since time windows in the VRPTW-FL are customer and not location

specific, i.e. only a single time window exists for all locations of a customer. However, different time windows for

different customer locations can be incorporated (see Section 3.4).

A special case of the GVRPTW that has recently attracted interest is the VRP with roaming delivery locations

(VRPRDL) (Reyes et al., 2017; Ozbaygin et al., 2017). The problem structure is very similar to the VRPTW-FL;

however, the time windows for the nodes in one cluster are disjointed. A practical application of the VRPRDL

is trunk deliveries in which parcels are delivered to a customer’s car which can change locations during the day.

Thus multiple service locations can exist for a customer, depending on the time of day. Since the VRPRDL is a

special case of the GVRPTW, transforming the VRPRDL into the VRPTW-FL is equivalent to transforming the

GVRPTW into the VRPTW-FL.

TUM Tech Report OM–2020–01 4

3 Model development

In this section, we develop a mathematical model and discuss the underlying graph structure. Section 3.1 gives a

formal problem description and introduces the notation. We follow the standard notation for VRPs and VRPTWs

as presented in Irnich et al. (2014) and Desaulniers et al. (2014), respectively. However, we deviate from their

notation when necessary to model the special properties of the VRPTW-FL. In Section 3.2, we detail the graph

structure of the VRPTW-FL and demonstrate its differences from the graph of the classic VRPTW. Section 3.3

presents a non-linear mixed integer problem formulation for the VRPTW-FL and discusses linearizations. Finally,

we show how the problem can be extended to incorporate multiple depots, multiple time windows as well as profits

in Section 3.4.

3.1 Formal problem description

The classic VRP serves a set of customers I = {1, 2 . . . , I} with specific demand qi > 0 for a single good using

a set of homogeneous vehicles K = {1, . . . ,K} with given capacity Q > 0. A vehicle starts its tour in the depot,

visits a subset of customers S ⊆ I and returns to the depot, which is denoted as dummy customer 0 for the

outward trip, and I + 1 for the return trip. In both cases the demand is assumed to be q0 = qI+1 = 0.

The connections between two customers i and j, including the depot as dummy customers, are associated

with travel cost ctravel
li,lj

with li and lj being the service locations for customer i and j. The aggregated demand of

the customers visited by a single vehicle must be less than or equal to the vehicle’s capacity. The objective is to

minimize the total travel costs over all vehicles while serving all customers.

The VRPTW extends the VRP by assigning a specific service time si and time window [ai, bi] to each customer

i, with ai and bi being the earliest and latest possible start of service, respectively. The travel time between two

customers is denoted as ti,j ≥ 0. Generally a hard time window restriction is used, which means a vehicle can

arrive at the customer before ai but never after bi. In case of early arrival, the vehicle must wait at the site of

customer i until ai.

The VRPTW-FL extends the VRPTW by allowing additional locations for serving the customers. The set of

locations is defined as L = {0, . . . , L} and a customer i can be served in a subset of locations Li ⊆ L\{0} with

location 0 being the depot. Location l ∈ L has a capacity Cl defining the maximum number of customers which

can be served at the same time. For unbounded locations we set Cl = ∞. When serving customer i at location

l, fixed location costs clocation
i,l ≥ 0 are incurred. The location cost can be used to model that customers have

preferences for certain locations. The objective of the VRPTW-FL is to minimize the sum of travel and location

costs, where travel costs ctravel
l,r are defined as the cost of traveling between two locations l, r ∈ L instead of two

customers i, j ∈ I ∪ {0}.

The crucial information in the VRPTW-FL is if a certain location l ∈ L is available for any arbitrary small

time interval τ ∈ [aτ , bτ] with 0 ≤ aτ ≤ bτ or if the location capacity is already fully used. Therefore, we introduce

indicator function I(i, l, k, τ) which is 1 if customer i is served in location l by vehicle k in time interval τ and 0

otherwise. Using this indicator function, we can calculate the number of customers being served at a specific

location in any given time interval.

Therapist scheduling as a practical application of the VRPTW-FL incorporates two additional aspects: prece-

dence relations between customers and heterogeneous vehicles. Certain customers have to be visited before other

customers can be visited. Note, in therapist scheduling a “customer” corresponds to a treatment and multiple

treatments might be required for a single patient during the planning horizon. Some treatments have to be

executed before other treatments can start, e.g. a cast must be removed before a stretching or strengthening

exercise can be done. Therefore, we define set P as the precedence relations between customer tuple 〈i, j〉, in

which customer i must be served before customer j can be served.

Therapists also differ in skills and shift patterns. Each therapist belongs to one of two shift types: regular

shifts or short shifts. Furthermore, each therapist has a certain skill set which defines treatments that can be

carried out by the therapist. Thus, it might be that a therapist is not qualified for a particular treatment or

the shift pattern does not allow for visiting a customer during his/her time window. Therefore, therapists are

modeled by heterogeneous vehicles and each vehicle k can service a subset of customers Ik ⊆ I.

TUM Tech Report OM–2020–01 5

3.2 Structural differences of VRPTW and VRPTW-FL

Having introduced the basic notation, this section examines the structural differences between the VRPTW and

the VRPTW-FL. We derive a graphical representation for the VRPTW-FL and show that the optimal objective

function value of the VRPTW always yields an upper bound for the VRPTW-FL.

To represent the VRPTW-FL as a network, we introduce a directed graph G = (V,A) with vertex set V and

arc set A. In our problem each vertex corresponds to a customer-location tuple 〈i, l〉 ∈ {I ∪ {0}} × Li. For arc

set A ⊆ V × V, we have 〈〈i, l〉, 〈j, r〉〉 ∈ A for 〈i, l〉, 〈j, r〉 ∈ V : i 6= j iff customer i can be served at location l

before customer j is served at location r by the same vehicle k. Each arc is associated with a cost value ctravel
l,r

and a time value ttravel
l,r . Note that for two vertices vi,l and vj,r, only locations l and r are relevant to determine

the travel cost and travel time between the vertices.

Let S ⊆ V be a subset of the vertex set. The in-arcs, having their head node in S, are defined as δ−(S) =

{〈vi,l, vj,r〉 ∈ A : vi,l /∈ S, vj,r ∈ S} and the out-arcs, having their tail node in S, as δ+(S) = {〈vi,l, vj,r〉 ∈ A :

vi,l ∈ S, vj,r /∈ S}. Singleton sets S = {vi,l} are defined as δ+|−(vi,l) := δ+|−({vi,l}). If 〈i, l〉 ∈ δ−(j, r), then

〈j, r〉 ∈ δ+(i, l), meaning if 〈i, l〉 is a predecessor of 〈j, r〉, then 〈j, r〉 is a successor of 〈i, l〉.

If each customer can only be served at one location, then the graph of the VPRTW-FL is equal to the routing

network of the VRPTW. To show the benefit of the VRPTW-FL over the VRPTW, we consider the graph in

Figure 2, which shows a routing network for three customers, three service locations, and the depot. The first

customer has two possible locations L1 = {1, 2}, the second customer has three possible locations L2 = {1, 2, 3}
and the third customer has one possible location L3 = {3}.1 The time windows [ai, bi] are given below the

customer-location tuples. We assume that the travel times equal the travel costs, that the service time si of each

customer is equal to 1, that each customer has a preferred location (marked by bold boxes), and if the customer

is served in the preferred location, location costs of 0 occur and if the customer is served in another location,

location costs of 1 occur. Arcs within the same location have travel costs of 0.

〈0, 0〉
depot

〈I + 1, 0〉
depot

〈i1, 1〉
[2, 3]

location 1(1)

〈i2, 1〉
[4, 5]

2

2

2

2

〈i1, 2〉
[2, 3]

location 2 (1)

〈i2, 2〉
[4, 5]

2

2

2

2

〈i3, 3〉
[6, 8]

location 3 (1)

〈i2, 3〉
[4, 5]

5 5

5

5

3

3

3

3

3

〈i1, l〉
[ai1 , bi1]

location l (Cl)

〈j1, r〉
[aj1 , bj1]

location r (Cr)

〈in, l〉
[ain , bin]

〈jm, r〉
[ajm , bjm]

...
...

tl,r

tl,r

Figure 2: Routing network example: VRPTW vs. VRPTW-FL. Dotted boxes denote locations and include all
customers that can be served at this location. Nodes belonging to the same customer are printed in the same
color. Bold boxes denote that this location is the customer’s preferred location. The dashed arrow displays the
connection that is impossible due to time window restrictions. Service times are not displayed as si = 1 for all
i ∈ I.

1Note that edges between the customer-location tuples are needed to track the sequence in which customers
are served. Tracking would not be possible in a network only consisting of the locations.

TUM Tech Report OM–2020–01 6

If, as in the VRPTW, only one location per customer exists, i.e. for the VPRTW-FL the customers must be

served in their preferred location, a vehicle can either serve customers i1 and i3, or i2 and i3 but never customers

i1 and i2. Thus, two vehicles are required leading to a total travel time of 14. In the VRPTW-FL, however,

serving customer i2 at his/her alternative location 1 guarantees that one vehicle can serve all customers within a

travel time of 10 and additional location swapping cost of 1.

In general, the infeasibility of a VRPTW-FL implies the infeasibility of the corresponding VRPTW, but not

vice versa. Moreover, the objective function of an optimal solution of the VRPTW yields an upper bound for the

VRPTW-FL. To formalize this, we introduce function η : I × L 7→ V mapping the swap of customer i from the

preferred location to another location at cost clocation
i,l . Then, a VRPTW-FL instance is uniquely given by tuple

〈K, I,V, η〉 and Theorem 1 holds.

Theorem 1 Having instances τ1 = 〈K, I,V, η〉 and τ2 = 〈K, I,V ′, η〉, which only differ in the vertex sets V and

V ′ defined by the customer-location combinations, let z∗1 and z∗2 be the optimal solution for instance τ1 and τ2,

respectively. If Vi ⊆ V ′i holds for all V ′i ∈ V ′ and Vi ∈ V with i ∈ I, then z∗2 ≥ z∗1 .

If each customer can be assigned to any location, i.e. all location costs clocation
i,l are 0 and each location is

uncapacitated, then the VRPTW-FL becomes an easy problem because all customers can be served at the

location closest to the depot. However, if the location costs are greater than 0 or the locations’ capacities are

bounded by at least I − 1, the VRPTP-FL is NP-hard.

3.3 Mathematical model

For the VRPTW-FL, we have two decision variables: xi,l,j,r,k = 1, if vehicle k ∈ K serves customer i ∈ I in

location l ∈ Li immediately before serving customer j ∈ I in location r ∈ Lj , and 0 otherwise, and Ti,l,k being

the start time of serving customer i ∈ I in location l ∈ Li by vehicle k ∈ K. Binary variables xi,l,j,r,k constitute

the tours, while continuous variables Ti,l,k yield the scheduling decisions.

To account for heterogeneous vehicles, sets and parameters corresponding to a certain vehicle are indexed by

k, e.g. Vk are all vertices which can be reached by vehicle k. The subset of vehicles which can serve a customer i

are denoted as Ki. Let P define the precedence relations between two customers 〈i, j〉. Customer j can only be

served if customer i has already been served. The VRPTW-FL can now be stated as model (1)-(11):

min
∑
k∈K

∑
〈i,l〉∈Vk\〈I+1,0〉

∑
〈j,r〉∈δ+

k
(i,l)

(
ctravel
l,r + clocation

j,r

)
· xi,l,j,r,k (1)

subject to∑
k∈Ki

∑
〈i,l〉∈Vk

∑
〈j,r〉∈δ+

k
(i,l)

xi,l,j,r,k = 1 ∀ i ∈ I (2)

∑
〈j,r〉∈δ+

k
(0,0)

x0,0,j,r,k = 1 ∀ k ∈ K (3)

∑
〈i,l〉∈δ−

k
(j,r)

xi,l,j,r,k −
∑

〈i,l〉∈δ+
k

(j,r)

xj,r,i,l,k = 0 ∀ k ∈ K, 〈j, r〉 ∈ Vk (4)

∑
〈i,l〉∈δ−

k
(I+1,0)

xi,l,I+1,0,k = 1 ∀ k ∈ K (5)

ai ≤ Ti,l,k ≤ bi ∀ k ∈ K, 〈i, l〉 ∈ Vk (6)

xi,l,j,r,k ·
(
Ti,l,k + si + ttravel

r,l − Tj,r,k
)
≤ 0 ∀ k ∈ K, 〈i, l〉 ∈ Vk\〈I + 1, 0〉, 〈j, r〉 ∈ δ+

k (i, l) (7)

Ti,l,k1 + si + tmin
i,j ≤ Tj,r,k2 ∀ 〈i, j〉 ∈ P, l ∈ Li, r ∈ Lj , k1 ∈ Ki, k2 ∈ Kj (8)

∑
i∈Il

∑
k∈Ki

I(i, l, k, τ) ≤ Cl ∀ l ∈ Lbounded, τ ∈ T bounded
l (9)

TUM Tech Report OM–2020–01 7

∑
(i,l)∈Vk

qi
∑

(j,r)∈δ+
k

(i,l)

xi,l,j,r,k ≤ Qk ∀ k ∈ K (10)

xi,l,j,r,k ∈ {0, 1} ∀ k ∈ K, 〈i, l〉 ∈ Vk, 〈j, r〉 ∈ δ+
k (i, l) (11)

Ti,l,k ≥ 0 ∀ k ∈ K, 〈i, l〉 ∈ Vk (12)

Objective function (1) minimizes the sum of travel and location costs. The VRPTW-FL’s constraint set can be

divided into three parts:

Tour constraints (2)-(5): Constraints (2) ensure that every customer is served exactly once. Constraints (3)-

(5) define the tour of each vehicle: constraints (3) and (5) impose a tour start and end at the depot, while

constraints (4) are the flow conservation constraints.

Scheduling constraints (6)-(8): Constraints (6) set the start times for serving customer i, while constraints (7)

set the time difference between two customers served consecutively by the same vehicle by linking variables xi,l,j,r,k

and Ti,l,k. Constraints (8) ensure the precedence relations.

Location and vehicle capacity constraints (9)-(10): Constraints (9) bound the number of customers served

in time interval τ at location l. Constraints (10) ensure that a vehicle k cannot satisfy more customer demand

than its capacity limit Qk. The variable domains are given in constraints (11) and (12).

Model formulation (1)-(11) is nonlinear due to constraints (7) and (9). Constraints (7) can be linearized

following the approach in Desaulniers et al. (2014). However, for the linearization of constraints (9), an infinite

number of linear constraints is needed, or the planning horizon must be discretized. The number of locations

and customers is finite, but the number of time intervals to serve the customers is infinite due to the continuous

definition of time. Therefore, if cuts were added for every location l ∈ Lbounded, whose capacity can be violated

by a subset of customers S ⊆ I served in a specific time interval τ , an infinite number of cuts would have to be

generated to enforce location capacity at each moment in time.

3.4 Generalizing the VRPTW-FL

The VRPTW-FL already adds substantial flexibility to the VRPTW. However, besides heterogeneous vehicles

and precedence relations, the graph structure presented in Section 3.2 allows for further generalizations without

requiring major changes to its underlying structure. We discuss three extensions: multiple depots, multiple time

windows, and profits.

VRPTW-FL with multiple depots

The multi-depot VRP (MDVRP) has many practical applications (Renaud et al., 1996); for an overview of recent

publications see Vidal et al. (2012). In the MDVRP, vehicles start their tours from more than one depot and each

vehicle ends its tour in the start depot.

Multiple depots can be incorporated into the VRPTW-FL rather easily. The routing network already contains

multiple service locations, and only two vertices would have to be added for each additional depot: one vertex for

outbound trips and one vertex for inbound trips.

VRPFL with multiple time windows

Generally in VRPs, a customer is associated with at most one time window (Desaulniers et al., 2014). However,

a few authors discuss scenarios with multiple time windows (see e.g. Ibaraki et al., 2005; Hashimoto et al., 2013).

In the VRPTW-FL, all customer-location tuples have the same time window for the same customer. However,

without changing the graph structure different time windows can be assigned for the different customer-location

tuples of a customer. In so doing, the time window structure of the GVRPTW (Moccia et al., 2012) and the

VRPRDL (Reyes et al., 2017) can be mapped.

To assign more than one time window to a customer-location tuple, simply |T W| copies of the customer-

location tuple have to be generated where |T W| is the number of time windows for the specific tuple. However,

the size of the graph would expand considerably.

VRPTW-FL with profits

The VRPP is a VRP in which only a subset of customers must be visited (Archetti et al., 2014). Each customer

is associated with a profit, and the objective is to tradeoff the cost of traveling to the customer with the profit

gained from serving the customer.

In the graph of the classic VRP, all vertices must be visited. In the VRPP, however, not all vertices must

be visited. This is similar to the VRPTW-FL in which only a subset of customer-location tuples is visited. If

customers were associated with profits and the constraint that all customer must be visited is relaxed, we would

TUM Tech Report OM–2020–01 8

have a VRPTW-FL with profits without changing the structure of our solution approach, and only updated input

data would be required.

4 Solution methodology

The VRPTW-FL cannot be described with a reasonable number of linear constraints (cf. §3.3), and thus gen-

erating a solution using a standard MIP solver is impossible. Therefore, our solution approach is based on an

adaptive large neighborhood search (ALNS) framework. Using an ALNS, we can keep the continuous structure of

the problem and generate a close to optimal solution relatively quickly.

The ALNS is a well-established framework for solving routing problems. It was originally developed by Ropke

and Pisinger (2006a) and is still used in publications addressing new variants of VRPs (see e.g. Masson et al.,

2013; Kovacs et al., 2014; Azi et al., 2014; Li et al., 2016; Mancini, 2016; Parragh and Cordeau, 2017; Schiffer and

Walther, 2018). The ALNS works well for the VRPTW-FL not only due to its good performance for the VRP,

but also due to the incorporation of other desirable features, such as the simplicity of the underlying concept, its

flexibility with respect to VRP variants, and the possibility of using parallel hardware (Laporte et al., 2014).

The ALNS is an extension of the large neighborhood search introduced by Shaw (1998) and relies on the

ruin-and-recreate principle applied in Schrimpf et al. (2000), which is similar to the rip-up principle of Dees and

Karger (1982). In a first phase, an initial solution is constructed, and then in an improvement phase, the ALNS

iteratively destroys parts of this solution using randomly selected destroy operators and reconstructs the destroyed

solution with randomly selected repair operators. The combination of destroy and repair operators defines the

neighborhood in which the new solution will be sought. If the solution is accepted according to an acceptance

criterion, the current solution is replaced by the new solution and the procedure starts again. The probability of

selecting a particular destroy and a repair operator is adjusted based on the success (or lack thereof) of improving

a temporary solution in the past.

Our ALNS incorporates innovative features in both the construction phase and the improvement phase. In the

former, our heuristic follows the k-regret insertion approach of Potvin and Rousseau (1993), which we extend with

a backtracking mechanism to alter unsatisfactory decisions at an early stage. To counteract infeasible sequences

of subsequently planned customers due to the simple nature of the k-regret procedure, we return to an earlier

stage of the insertion with a given probability, and restart from this stage by inserting another customer.

In the improvement phase, we deviate from the standard ALNS presented by Ropke and Pisinger (2006a)

in three ways: (1) we allow temporarily infeasible solutions, however sanction the infeasibilities in the objective

function with penalties; (2) we dynamically adjust these penalties depending on how often certain features have

been violated in past iterations; and (3) we develop new destroy operators, which exploit the underlying problem

structure of potentially having more than one location per customer.

The generation of temporarily infeasible solutions enables a better traversing of the search space because it

reduces the chance of getting stuck in a local optimum (Cordeau et al., 2002), and by oscillating between feasible

and infeasible regions with the appropriate penalty parameters the border of feasibility is sought, a region which is

very promising for finding high quality solutions (Glover and Hao, 2011; Vidal et al., 2015). For the VRPTW-FL,

we allow three infeasibilities: (1) unscheduled customers, (2) violations of time windows, and (3) violations of

precedence relations. In therapist scheduling, these are precisely the three aspects that a human planner would

relax when faced with a hard scheduling task, where no feasible solution can be obtained manually.

Updating penalties for the violation terms dynamically extends the self-adaptiveness from operator probability

updates to objective function weights, and therefore makes the approach more flexible and robust for dealing with

the problem at hand. From a formal point of view, our approach combines the ALNS with a guided local search

(GLS) as employed in Voudouris and Tsang (1999), and thus leads to a hybrid version of the ALNS. A simpler

version of such an adaptive mechanism was originally formulated by Cordeau et al. (2001) and is e.g. used in

Schiffer and Walther (2018).

In what follows, we first formalize our hybrid ALNS framework in §4.1. In §4.2, we detail the construction

heuristic, including the backtracking mechanism. In §4.3, we provide the reader with information about the

destroy and repair operators used, and the update procedures for the operators and objective function weights.

Finally in §4.4, we provide implementation details focusing on preprocessing and parameter optimization.

TUM Tech Report OM–2020–01 9

4.1 Formal hybrid ALNS framework

Let s be a vector representing any (partial) solution for the VRPTW-FL and let f(s) be the function that returns

the objective function value for s as stated in (1), then our heuristic works on the modified objective function

min fmod(s) = f(s) + λ ·
∑
i∈I

(
pna
i · Ina

i (s) + ptw
i · Itw

i (s) + ppred
i · Ipred

i (s)
)
, (13)

where Ina
i (s), Itw

i (s) and Ipred
i (s) are indicator functions equal to 1, if in a solution s customer i is not assigned to

any vehicle, if the time window of customer i is violated, and if the precedence relation of customer i is violated,

respectively.2 The penalty terms are denoted by pna
i , ptw

i and ppred
i ; see §4.3.2 for how penalties are set and

updated. The weight of penalties compared to routing and location costs is controlled by λ.

Algorithm 1 provides the pseudo code for the hybrid ALNS framework. A solution is represented by s, and

an initial solution sinit from the construction phase serves as input. The initial solution is set equal to the best

global optimum found thus far (see Algorithm 1 line 1).

In the main loop 2 – 14, destroy operator d ∈ Ω− and repair operators r ∈ Ω+ modify the current solu-

tion scurrent. In each iteration h of the main loop, q ≥ 1 pairs of destroy and repair operators are randomly

selected to destroy and repair n ∈ [nh, n̄h] elements in solution scurrent. Parameters nh and n̄h define the lower

and upper bounds of affected elements in each iteration h.

We select q ≥ 1 different pairs of destroy and repair operators in step 3 to make use of parallel computing.

The sets of destroy and repair operators are finite and will be described in detail in §4.3.3 and §4.3.4, respectively.

When deriving these operators, a destroyed solution should be repairable by any repair operator. The probability

of selecting a destroy operator ρ− and a repair operator ρ+ depends on their past success. The update procedure

for the probabilities ρ+ and ρ− is described in §4.3.1.

If the new solution stemp
q improves the best global solution sbest, we update sbest and the current solu-

tion scurrent (see lines 6 - 7). Otherwise, we check whether the temporary solution stemp is accepted as a new

searching point using some criteria defined by the local search framework (see lines 8 - 10). In our case, we use a

Simulated Annealing (SA) framework (see Kirkpatrick et al. (1983)), which defines the acceptance of the solution

and the direction of the destroy and repair operators.

The structure of Algorithm 1 is based on Pisinger and Ropke (2010). However, the main difference is line

13, where the objective penalty terms pna, ptw and ppred are updated (see §4.3.2 for a detailed description). The

algorithm terminates after a stopping criteria has been met, e.g. a total number of iterations or iterations without

improvement, then the best global solution sbest is returned.

Algorithm 1 Hybrid Adaptive Large Neighborhood Search

input: initial solution sinit with objective fmod(sinit) (see §4.2)
1: sbest = scurrent = sinit, ρ−(1, . . . , 1), ρ+(1, . . . , 1)
2: while stopping criteria is not met do
3: select q pairs of destroy and repair operators d ∈ Ω− and r ∈ Ω+ based on ρ− and ρ+ (see §4.3.3

and §4.3.4)
4: for each q do
5: stemp

q = r(d(scurrent))

6: if fmod(sbest) < fmod(stemp
q) then

7: sbest = scurrent = stemp
q

8: else if new solution stemp is accepted then
9: scurrent = stemp

q

10: end if
11: update ρ− and ρ+ (see §4.3.1)
12: end for
13: update objective penalty terms puns, ptw and ppred (see §4.3.2)
14: end while
return: sbest

2Precedence violation of customer i is defined as service of i has started although service of preceding customer
j has not been finished yet.

TUM Tech Report OM–2020–01 10

4.2 Construction phase

Our constructive heuristic is similar to the κ-regret3 approach of Potvin and Rousseau (1993), which can be seen

as a greedy based insertion heuristic with a look ahead perspective (see Algorithm 2). In the VRPTW-FL, the

look ahead perspective becomes even more crucial than in the VRPTW as a good assignment of customers to

vehicle routes may still be infeasible due to a poor assignment of customers to locations.

A route rk for each vehicle k ∈ K is represented by an ordered sequence

rk = [〈i0, l0, T0〉, . . . , 〈imk−1, lmk−1, Tmk−1〉, 〈imk , lmk , Tmk 〉,

〈imk+1, lmk+1, Tmk+1〉, . . . 〈ink , lnk , Tnk 〉]

of customer-location-start time tuples with 〈imk , lmk 〉 ∈ V and Tmk ∈ [aim , bim]. The customers in each route rk

are served according to the order given in the route sequence, i.e. for each position 0 ≤ mk ≤ nk in route rk we

have

Tmk−1 + simk−1 + ttravel
lmk−1,lmk

≤ Tmk . (14)

At the beginning of the construction heuristic, each vehicle route rk contains only tuples for starting and ending

the tour in the depot, i.e. 〈i0, l0, T0〉 = 〈0, 0, 0〉 and 〈ink , lnk , Tnk 〉 = 〈n+ 1, 0, T 〉, respectively.

The goal of the heuristic is to sequentially insert one customer-location-start time tuple in one position of

one of the |K| routes (one route for each vehicle) such that the capacities of the locations are satisfied and

inequality (14) holds. However, instead of selecting the best greedy-based position within the routes, the next

route position yielding the highest regret between the 1-st and the κ-th best insertion position between all routes

is selected. A large gap between the best and the κ-st position indicates that a later assignment might be difficult

or infeasible. The difference between our regret approach and Potvin and Rousseau (1993) is that we consider

the κ best insertion positions over all routes while Potvin and Rousseau (1993) consider the κ best routes to insert

a customer. Our construction heuristic works on a simplification of objective function (13) where the penalty

values (costs) for each type of violation are fixed and equal for each customer.

min f simple(s) = f(s) + λ ·
∑
i∈I

(
cna · Ina

i (s) + ctw · Itw
i (s) + cpred · Ipred

i (s)
)
. (15)

Let R be the set of all routes over all vehicles k ∈ K and let gκ(i,R) denote the objective function value,

if customer i is inserted in the κ-th best position of all routes rk ∈ R, i.e. we have gκ(i,R) ≤ gκ+1(i,R) for

all rk ∈ R. For objective function value gκ(i,R), we denote by l(gκ(i,R)), T (gκ(i,R)) and m(gκ(i,R)) the

corresponding location, start time, and insertion position of customer i in routes R. If only one possible insertion

position is left for customer i, i.e. customer i can only be assigned and scheduled in one location and in one route

at one insertion position, we set gκ(i,R) = ∞ for all κ ≥ 2. Let Ina be the subset of customers, which have

not yet been assigned to one route. For all routes rk ∈ R and customer i ∈ Ina we compute the following regret

measure:

∆gκ(i,R) = gκ(i,R)− g1(i,R). (16)

Measure ∆gκ(i,R) yields the difference between the best insertion position for a customer i and its κ-th best

insertion position with respect to all routes. The regret for a customer indicates what can be lost in later insertions,

if the customer is not immediately inserted in the best insertion position. A large regret measure indicates that

the number of interesting alternative positions for inserting the customer is small, and thus this customer should

be considered first. On the other hand, a small regret measure indicates that the customer can easily be inserted

into alternative positions in later iterations without losing much. The customer and vehicle with the greatest

regret measure is given by customer-route combination 〈i∗, rk∗〉 = arg max
i∈Ina

{∆gκ(i,R)}. Thus, customer i∗ is

inserted in route rk∗ ∈ R at position m (g1(i∗, rk∗)); the service of customer i∗ starts at time T (g1(i∗, rk∗)) at

location l (g1(i∗rk∗)). If customer i cannot be inserted into any route, the regret measure ∆g1(i,R) is 0 as we

define that ∞ − ∞ = 0. This is either the result of a bad insertion of one or several customers in previous

iterations or the instance is generally infeasible.

Let us assume that a feasible solution exists. Then, current infeasibility originates either because no insertion

position exists such that inequality (14) holds or because no location is available for customer i. To provide a

repair mechanism, we implement a backtracking-branching procedure.

3To avoid confusing indices k for vehicles and the k-regret approach, we use index κ for the k-regret approach.

TUM Tech Report OM–2020–01 11

Algorithm 2 illustrates the different steps of the constructive heuristic with backtracking. The initial solution

s0, only containing the depot nodes, is added to the solutions set S, which contains all partial solutions that could

not be pruned due to infeasibility (see Algorithm 2 lines 1-2). We randomly remove a customer i1 from the set of

not yet assigned customers Ina, and add customer i1 who will be served in the preferred location l1 to route rk0
(see lines 3-7). To increase diversity, and thus to find potentially better solutions, we start the entire heuristic

multiple times (line 3) and perform the subsequent steps for several κ values (line 8).

While not all customers have been assigned, we calculate the regret measure for inserting every remaining

customer i ∈ Ina in partial solution sh (lines 9-11). If for all remaining customers a positive regret measure exists,

i.e. every customer can be inserted in the partial solution sh, the best insertion position is determined. The set

of not yet assigned customers Ina and the solution set S are then updated (lines 12-16).

However, if for at least one customer no positive regret measure exists, i.e. this customer cannot be inserted

in the partial solution, this solution becomes infeasible. We then remove sh, the partial solution which was earlier

added to the set of partial solutions S, and return to pred(sh), the predecessor of sh. To proceed to another

solution from pred(sh), we store the deleted customer-location-start time tuple and the corresponding route rk

as tuple 〈ih, lh, Th, rkh〉 in a list of forbidden insertions F(pred(sh)) of the partial solution pred(sh) (lines 17-20).

The next insertion will then be the best customer-route combination with respect to regret measure (16) such

that the corresponding customer-location start time route tuple is not contained on forbidden list F(pred(sh)),

i.e. (i∗, r∗k) = arg max
i∈Ina

{
∆gκ(i,R) | (i, l(gκ(i,R)), T (gκ(i,R)),R) /∈ F(pred(sh))

}
.

If again no feasible successor exists, i.e. the regret measure is 0 for at least one customer, we return to pred(sh)’s

predecessor, for which we forbid the corresponding customer-location start time route tuple which would lead

to pred(sh) again. The procedure generates a search tree in a depth-first search manner.

Finally, solution sbest having the minimal objective function value is returned (line 26). A graphic example

of the backtracking mechanism is provided in Figure 3.

Algorithm 2 Construction phase

1: initialize partial solution s0 with rk = [〈0, 0, 0〉, 〈n+ 1, 0, T 〉] ∀ k ∈ K; Ina = I
2: set S = {s0}
3: while max number of restarts not reached do
4: randomly select i ∈ Ina; set Ina = Ina\ {i}
5: if ∆gκ(i,R) > 0 then
6: s1 ← add tuple 〈i1, l1(g(i,R), t1(g(i,R))〉 to position m1(g(i,R)) in route rk0 ∈ R of s0
7: set S = S ∪ {s1}
8: for each regret κ do
9: while Ina 6= ∅ do

10: sh ← select last inserted partial solution in S
11: compute regret measure for all not inserted customers
12: if ∆gκ(i,R) > 0 ∀ i ∈ Ina then
13: (i∗, r∗k)← arg max

i∈Ina
{∆gκ(i,R)}

14: sh+1 ← add tuple 〈i∗h+1, lh+1(g(i∗, r∗k)), th+1(g(i∗, r∗k))〉 to
position mh+1(g(i∗, r∗k)) in route r∗kh+1

, i.e. r∗k =

[〈0, 0, 0〉, . . . , 〈i∗, l(g(i∗, r∗k)), t(g(i∗, r∗k))〉, . . . , 〈n+ 1, 0, T 〉]
15: Ina = Ina\ {i∗}
16: set S = S ∪ {sh+1}
17: else
18: set S = S\ {sh}
19: return to predecessor of pred(sh)
20: set predecessor’s forbidden list F(pred(sh)) = F(pred(sh)) ∪ {〈ih, lh, Th, rkh〉}
21: end if
22: end while
23: end for
24: end if
25: end while
26: sbest ← argmins∈S

{
fmod(s)

}
return: sbest

TUM Tech Report OM–2020–01 12

s0

(a) Partial solution s0

s0

s1

(b) Proceed to partial so-
lution s1, in which added
tuple (i1, l1, T1, rk1) leads
to infeasibility

s0

s1 s2

(c) Backtrack to node s0

and set F(s0) =
{(i1, l1, T1, rk1)}; pro-
ceed to partial solu-
tion s2 with added
tuple (i2, l2, T2, rk2)

s0

s1 s2

s3

(d) Proceed to partial so-
lution s3 with added tu-
ple (i3, l3, T3, rk3)

s0

s1 s2

s3

s4

(e) Proceed to partial solu-
tion s4, in which added tu-
ple (i4, l4, T4, rk4) leads to
infeasibility

s0

s1 s2

s3

s4 s5

(f) Backtrack to
partial solution s2

and set F(s3) =
{(i4, l4, T4, rk4)}; proceed
to partial solution s5,
in which added tu-
ple (i5, l5, T5, rk5) leads
to infeasibility

s0

s1 s2

s3

s4 s5

s6

(g) Backtrack to
partial solution s3

and set F(s3) =
F(s3) ∪ {(i5, l5, T5, rk5)};
no feasible successor left;
backtrack to partial solu-
tion s2 and set F(s2) =
{(i3, l3, T3, rk3)}; proceed
to partial solution s6

with added tuple
(i6, l6, T6, rk6)

s0

s1 s2

s3

s4 s5

s6

s7

(h) Proceed to partial so-
lution s7 with added tu-
ple (i7, l7, T7, rk7)

Figure 3: Example for backtracking in the constructive phase

During our first computational tests of the construction heuristic, we made the following observation: Return-

ing to the direct predecessor of an infeasible partial solution does generally not correct the solution as desired,

especially if only a few customers are left to insert. Many iterations of backtracking are needed, until a feasible

solution is found. The reason is that an insertion influences the insertion position of every subsequently inserted

customer. Thus, customers being inserted earlier have greater influence on the structure of the solution than

customers inserted later. If poor insertion decisions have been made early, it is unlikely to correct these tens of

iterations later by backtracking. Therefore, once a partial solution becomes infeasible, we do not backtrack to its

immediate predecessor but to one of the first n, e.g. n = 5, customers inserted. By doing so, we generate high

quality solutions while saving much computational time.

4.3 Operators and update functions

The algorithmic behavior of an ALNS depends heavily on (a) the destroy operators Ω− and repair operators Ω+

employed, i.e. the neighborhoods that can be searched, and (b) the updates of the operator weights, i.e. how fast

the ALNS adjusts the probabilities of selecting a certain operator. In our hybrid ALNS, the updates of the penalty

terms in the objective function also play a crucial role. In this section, we describe how our update procedures

TUM Tech Report OM–2020–01 13

work and what operators we use. The focus lies on newly developed operators employing specific properties of

the VRPTW-FL, such as multiple locations.

4.3.1 Update operator weights

To adjust the likelihood of selecting a specific operator, we follow the approach of Ropke and Pisinger (2006a).

Initially all operators j ∈ Ω+|− get assigned the same weight wj , e.g. 1, and the probability ρj of selecting an

operator j is:

ρj =
wj∑|Ω|
i=1 wi

(17)

For a given number of iterations, the success of the operators is measured by a score πj with j ∈ Ω+|−. We

distinguish four cases: (1) if a new global best solution is found, the score is raised by σ1; (2) if a new and not

yet visited solution is found with a better objective function value than the current solution, the score is raised

by σ2 < σ1; (3) if a new and unvisited solution did not improve the current solution but is still accepted, the

score is raised by σ3 < σ2; and (4) if a new solution is found, but this solution has already been visited in prior

iterations, the score remains unchanged. Once a certain number of iterations has been reached, the operator

weights are updated according to the recorded scores πj and the counter θj (cf. Equation (18)). The counter θj

measures how often the operator has been applied.

wupdated
j = wj · (1− r) + r · πj

θj
(18)

Reaction factor r controls how fast the weights adapt to the success in the last iterations.

4.3.2 Update objective penalty terms

In the augmented cost function (13), penalty terms are used to penalize feasibility violations. We dynamically

adjust these penalties depending on the frequency of the violation in the past and the severity of the violations.

This approach of dynamically adjusting objective function weights follows the GLS employed in Voudouris and

Tsang (1999) and will be described in the following.

Let fj be a specific feature, e.g. the non-assignment of customer i1, and indicator function Ij(s) is 1, if

solution s has feature fj , and 0 otherwise. Each feature fj , i.e. the violation of a specific constraint, is associated

with a constant cost value cj and a dynamically adjusting penalty value pj for the objective function. All penalty

values are set to 0 initially, i.e. pna
i = ptw

i = ppred
i = 0 ∀ i ∈ I. After a certain number of iterations, the penalty

values are updated for a predefined number of features yielding the highest utility value as defined in Equation

(19), where sh is the current solution at iteration h.

u(sh, fj) = Ij(sh) · cj
1 + pj

(19)

The utility function is used because (a) updating all violated features equally would not change the direction of

the search and lead to very similar solutions, and (b) updating only the penalties of features with the highest cost

would bias the algorithm towards penalizing high cost features. The denominator 1 + pj counteracts the latter

since an increasing penalty pj reduces the utility value. Note that while Voudouris and Tsang (1999) update

the penalties once the heuristic is stuck in a local minumum, we update the penalties after a certain number of

iterations, which is similar to updating the operator weights in an ALNS (cf. §4.3.1).

4.3.3 Destroy operators

A very useful property of the ALNS is that it can incorporate a multitude of neighborhoods to address specific

characteristics of the problem at hand, and thus a multitude of destroy and repair operators have been developed

(see Kovacs et al. (2014) for a good overview). In this section, we describe the destroy operators applied, and

in the subsequent section the repair operators applied. As the VRPTW-FL is a generalization of the VRPTW

(see §3.2), all operators are also applicable for the VRPTW. The effectiveness of the procedures will be shown in

the computational study in §5.3.3. The operators used are largely taken from the literature, and adapted to the

problem setting with flexible delivery locations. Furthermore, we present seven additional operators specifically

designed to deal with flexible delivery locations. The operators we took from the literature and the corresponding

sources are: random destroy, worst destroy (Ropke and Pisinger, 2006a), simplified Shaw (proximity) destroy,

cluster destroy, history based destroy (neighbor graph destroy, request graph destroy) (Ropke and Pisinger,

2006b), related (Shaw) destroy (Shaw, 1998), and random route destroy (Mancini, 2016).

TUM Tech Report OM–2020–01 14

For the VRPTW-FL, the customer-locations are very important. Therefore, we introduce four operators

specifically addressing the spatial arrangement of service locations: location related destroy, cluster k-means

destroy, zone destroy, and subroute destroy. In addition, we use a modified time related destroy and introduce

a start time flexibility destroy. For all operators incorporating some kind of relatedness, we first remove one

customer-location tuple randomly and then determine the relatedness with regards to this tuple to remove further

tuples.

Time related destroy In the time-related destroy operator, we select those customers i and j which have a

strong relation to each other with respect to possible service times. We measure relatedness Dtime(i, j) between

two customers as follows:

Dtime(i, j) =
T(

α1 · T̄i,j + α2 · |Ti − Tj |
) , (20)

where T̄i,j is the average time difference between all possible start times of i and j:

T̄i,j =

∣∣∣∣ai + bi
2

− aj + bj
2

∣∣∣∣ , (21)

and |Ti − Tj | is the time difference between the start times of customers i and j in the current solution. At first,

one customer i is removed at random, and then the n− 1 customers who are most related to i are removed. This

logic also applies to the other related destroy operators.

Location related destroy Similar to the time related destroy, this operator removes vertices, which are very

similar in terms of their locations (cf. Equation (22)). The location relatedness Dloc(i, j) between two customers i

and j is the number of common possible service locations divided by the number of locations available for the

customer with less location flexibility (min{|Li|, |Lj |}).

Dloc(i, j) =
|Li ∩ Lj |

min{|Li|, |Lj |}
(22)

Location and time related destroy We also use the weighted combination of the location related destroy

and the time related destroy:

Dloc,time(i, j) = β1 ·Dloc(i, j) + β2 ·Dtime(i, j). (23)

If β1 = 0 the operator is equal to the time related destroy, if β2 = 0 the operator is equal to the location related

destroy.

Cluster destroy k-means While Ropke and Pisinger (2006b) describe a cluster destroy based on the mini-

mum spanning tree algorithm by Kruskal (1956), we introduce a cluster destroy based on the very popular k-means

clustering. The goal of k-means clustering is to partition a set into k disjoint subsets, such that the sum of the

squared deviations (distances) from the positions xj of all elements j in the clusters Si to the clusters’ centers µi

is minimal. Mathematically this is:

min

k∑
i=1

∑
j∈Si

(xj − µi)2 . (24)

For a recent overview of clustering algorithms and a more detailed description of k-means clustering, see Jain

(2010). Depending on the underlying real-world application, it might not be possible to calculate geometric center

for a subset of points. For therapist routing we use the modified Equation (25):

min
k∑
i=1

∑
j∈Si

(
tlj ,lcenterj

)2

. (25)

minimizing the travel time from the most centrally located location lcenter
j to all other locations lj in the cluster.

Once the clusters have been generated, clusters are randomly selected and all customers in the selected clusters are

removed until the desired number of removals has been performed. The number of cluster k can be set arbitrarily.

Zone destroy Similar to the simplified Shaw destroy, the zone destroy operator randomly selects one customer

i with his/her location li. We then remove all customers, who could be assigned to one location within a given

distance around location li. If the number of removed customers is below n, we increase the distance around li

until n customers have been removed. Thereby, we do not only consider customers who are already close to one

another but also customers who are currently served in another location but could also be served in the zone.

Subroute destroy A customer-location tuple is randomly selected and then, starting from this tuple, a

virtual route of length n is constructed in a greedy fashion. Afterwards, all tuples in this virtual route are

removed from the existing routes in the temporary solution.

TUM Tech Report OM–2020–01 15

Start time flexibility destroy In the hospital setting, customers have very different time window lengths.

Outpatients generally have fixed appointments and thus a fixed start time, and some of the inpatiens have quite

large time windows. The start time flexibility destroy first removes those customers who have the most flexibility

in terms of possible start times. These customers are more likely to find another insertion position, while customers

with fixed start times might already have a good position in the current solution.

4.3.4 Repair operators

To reinsert the removed customers, we employ two types of repair operators, namely greedy repair and κ-regret

repair operators with κ ranging from 2 to 6. For the κ-regret repair, the same regret measure is used as in the

construction heuristic (cf. Equation (16) in §4.2).

4.4 Implementation details

During the execution of the algorithm, feasibility must be checked frequently. Testing for capacity violations is

computationally expensive; however, it does not have to be done for all customer-location combinations. Because

of the start time windows and the service duration, we know for some customers that serving them in a specific

location will never lead to a capacity violation, since not enough other customers exist, who could be served in

this location at this specific time. Therefore, to accelerate the algorithm, we determine in a preprocessing step

all locations and corresponding time intervals which could have capacity violations. During the execution of our

heuristic, we only test location capacity for those customer-location combinations which could potentially lead to

capacity violations.

5 Computational study

In this section, we investigate the performance of our algorithm. In particular, we describe in §5.1 how the data

used in our computational experiments has been generated, and in §5.2 we detail how we adjusted the parameters

of our algorithm. We evaluate our newly introduced algorithm features in §5.3. In particular, we investigate the

value of (a) the backtracking procedure in the construction phase, (b) the GLS, and (c) the newly introduced

destroy operators. Finally, we compare our heuristic to current hospital planning in §5.4. In addition to evaluating

the solution quality, we also study the value of flexibility, i.e. how solutions change depending on different cost

functions for customer travel times. Thereby, we are able to trade off customer and vehicle travel times. Finally, in

§5.5, we show the performance of our algorithm for the VRPTW on the Solomon benchmark instances (Solomon,

1987).

Our algorithms were coded in JAVA using Amazon Corretto 11 as JDK and executed on a Windows 10

platform employing an Intel Core i7-4790 CPU @ 3.60GHz with 16 GB of RAM.

5.1 Data and instance generation

Since no benchmark instances exist for the VRPTW-FL, we created instances based on data provided by a

cooperating hospital. To account for different problem sizes and to ensure reliability of our results, we developed

an instance generator to create generic problem instances.4 Three components define an instance: (a) the network

layout representing the hospital, (b) the demand scenario representing customers (treatments), and (c) the fleet

of vehicles representing therapists.

Network layout We distinguish three layouts, which are defined by the number of buildings B ∈ {1, 2, 6}
and the number of floors per building F ∈ {1, 3, 6}. Each floor has a certain number of rooms (locations)

R ∈ {6, 7, . . . , 10} drawn from a discrete uniform distribution. One of the buildings contains the therapy centers,

which has a capacity between 2 and 6. The capacity at the ward rooms is always unlimited since patients cannot

be scheduled to other patients’ ward room. The travel time between two buildings is drawn at random from the

set {10, 15, 20} minutes. The travel time between neighboring floors is assumed to be 5 minutes, and the travel

time between two rooms on the same floor is either 5 or 10 minutes.

Demand scenarios We distinguish six demand scenarios having 20, 40, 60, 80, 100 and 120 treatments. A

10% probability exists that the patient is an outpatient, i.e. he/she can only be treated in a therapy center and

the start time for the treatment is fixed. Ten percent of the patients are bedridden, i.e. the patient must not

4The problem instances are available in JSON format upon request from the corresponding author.

TUM Tech Report OM–2020–01 16

be moved and can only be treated in his/her room at the ward. However, these latter patients have a rather

wide start time window of 90 minutes. The remaining patients are regular inpatients, of which 50% have location

flexibility, i.e. the patient can be treated at the ward and in the therapy centers; however, a preference for one

location exists, generally the ward room. The start time window length of these patients varies between 30 and

45 minutes. Thirty percent of the patients receive multiple treatments (2 or 3) in one day.

Every treatment job has a duration of 10 to 45 minutes and requires a certain skill level. We assume hierarchical

skills ranging from 1 (lowest) to 3 (highest). The probabilities that a job requires a certain skill are 60%, 30%

and 10% for skills 1, 2 and 3, respectively.

Vehicles We use a heterogeneous fleet, since therapists differ in their skills as well as their shift patterns.

The skills are the same as for the jobs; however, the probabilities of having skill 1, 2 and 3 are 10%, 60% and

30%. A therapist has a regular (long) shift with 80% probability. Otherwise, the therapist has a short shift with

50% probability of being a morning or evening shift. We assume that therapists start and end their shifts in the

break room (depot), which is 5 minutes away from the therapy centers.

Final instance set We generate two sets of data: a training set and a test set. The training set is used to

pre-test the features of the heuristic and to tune its parameters, and the test set is used for the numeric study.

Each set consists of 5 · 3 · 6 = 90 instances, as we create five instances for each combination of the three layouts

and six demand scenarios.

5.2 Hyper-parameter optimization

The performance of the ALNS strongly depends on how its parameters are adjusted, e.g. how many customers

are removed in each iteration, how many parallel pairs of destroy and repair operators are evaluated, and how

often the operator and penalty weights are updated. Ideally all combinations of reasonable parameter values are

tested on training data, and the combination with the best performance is selected and applied to the test data.

Evaluating all combinations is practically impossible. Therefore, we change only the value of one parameter in

predefined steps while keeping the other parameters fixed. Once the best parameter value has been determined,

the next parameter is tested, again keeping the other parameters fixed. This process could be repeated as many

times as wanted. However, generally it is stopped after all parameters have been processed once (cf. Ropke and

Pisinger, 2006a). We also stopped after one iteration, and our final parameters used in the numeric studies in

§5.3 and §5.4 are stated in A.

5.3 Evaluation of algorithmic features

We have introduced three essential features for the ALNS: backtracking in the construction heuristic, a GLS to

penalize violations of constraints, and new destroy operators specifically tailored for a problem structure, where

multiple service locations exist for customers. For each feature, we first evaluate the benefit of the individual

features by comparing the performance of the heuristic with and without the feature, and then we evaluate the

performance of all features combined.

5.3.1 Value of backtracking

Our backtracking mechanism adds a look-ahead perspective to the construction heuristic to alter unsatisfactory

decisions during the insertion process (cf. §4.2). To evaluate the value of backtracking, we compare the construction

heuristic including backtracking to a version without backtracking, i.e. the best solution generated by the greedy

and κ-regret insertions with κ = {2, 3, . . . , 6}. For backtracking, we allow stepping back to the first five inserted

customers with the following probabilities 1.0, 0.6, 0.3, 0.2 and 0.1, i.e. a 10% probability exists to step back to

the fifth customer, and if this is rejected, we step back to the fourth customer with a probability of 20%, etc.

These probabilities are independent of one another, i.e. for each stage to which we can backtrack, a new random

number is drawn if backtracking was rejected in the prior stages.

The result of the comparison of the construction heuristic with and without backtracking can be found in

Table 1. For each combination of layout (B, F) and demand scenario (|I|), we display the average values over

five instances and three runs for the objective function value f(s∗) of the best solution found s∗, the number of

not assigned customers in that solution |Ina(s∗)|, the number of precedence violations |Ipred(s∗)|, the percentage

of feasible solutions nfeas, and the number of backtrackings nbt.

By enabling backtracking, the solution quality after the construction phase could be increased substantially.

On average, the objective function value was improved by 2.4%, the numbers of not assigned customers by 70.2%,

TUM Tech Report OM–2020–01 17

T
a

b
le

1
:

C
o

m
p

ar
is

o
n

o
f

co
n

st
ru

ct
io

n
h

eu
ri

st
ic

w
it

h
a

n
d

w
it

h
o

u
t

b
a

ck
tr

a
ck

in
g

.
F

o
r

ea
ch

va
ri

a
n

t,
th

e
o

b
je

ct
iv

e
fu

n
ct

io
n

va
lu

e
(E

q
u

a
ti

o
n

(1
5

))
,

th
e

n
u

m
b

er
o

f
n

o
t

a
ss

ig
n

ed
cu

st
o

m
er

s,
th

e
n

u
m

b
er

o
f

p
re

ce
d

en
ce

vi
o

la
ti

o
n

s
a

n
d

th
e

p
er

ce
n

ta
g

e
o

f
fe

a
si

b
le

so
lu

ti
o

n
s

is
d

is
p

la
ye

d
.

F
o

r
th

e
b

a
ck

tr
a

ck
in

g
va

ri
a

n
t,

a
d

d
it

io
n

a
lly

th
e

n
u

m
b

er
o

f
b

a
ck

tr
a

ck
in

g
s

is
d

is
p

la
ye

d
.

E
a

ch
ro

w
re

p
re

se
n

ts
th

e
a

ve
ra

g
e

va
lu

es
o

f
a

ll
fi

ve
in

st
a

n
ce

s
p

er
se

tt
in

g
,

ea
ch

ra
n

th
re

e
ti

m
es

.

|I
|

B
F

w
it

h
ou

t
b

ac
k
tr

ac
k
in

g
w

it
h

b
ac

k
tr

ac
k
in

g

f
(s

∗)
|I

n
a
(s

∗)
|
|I

p
re
d
(s

∗)
|

n
fe
a
s

f
(s

∗)
|I

n
a
(s

∗)
|
|I

p
re
d
(s

∗)
|

n
fe
a
s

n
b
t

20
1

6
8
4.

67
4.

8
0

0.
73

84
.4

7
1
.0

0
10

7.
8
0

2
3

83
.6

0
3.

8
7

0.
73

80
.3

3
1
.0

0
96

.6
7

6
1

81
.1

3
3.

4
7

0.
80

76
.6

7
1
.0

0
11

0.
0
7

40
1

6
1
4
7.

47
2
4.

2
0

0.
33

14
1.

93
14

.2
7

0
.6

0
87

.8
0

2
3

1
4
3.

33
2
6.

9
3

0.
27

13
2.

53
2.

27
0.

9
3

11
3.

0
7

6
1

1
4
1.

13
2
5.

9
3

0.
20

12
5.

73
11

.8
0

0
.6

7
78

.6
7

60
1

6
2
0
1.

87
3
7.

7
3

0.
27

20
5.

73
17

.5
3

0
.6

7
1
14

.2
0

2
3

2
1
5.

80
1
1.

4
7

0.
40

0.
60

20
7.

87
1
.0

0
1
28

.0
7

6
1

2
1
5.

00
4
4.

5
3

0.
20

20
1.

73
21

.2
7

0
.6

0
94

.9
3

80
1

6
2
7
2.

33
3
3.

3
3

0.
13

0.
47

27
1.

13
4.

33
0.

9
3

13
8.

4
0

2
3

2
9
5.

00
1
9.

9
3

0.
73

29
2.

07
1
.0

0
11

8.
4
0

6
1

2
6
7.

73
2
3.

2
7

0.
67

26
3.

20
12

.6
7

0
.8

0
1
02

.1
3

10
0

1
6

3
7
3.

60
1
8.

4
7

0.
80

37
1.

47
1
.0

0
13

1.
9
3

2
3

3
4
3.

20
7.

0
0

0.
87

33
2.

27
1
.0

0
12

0.
8
0

6
1

3
3
8.

73
0.

53
0.

80
32

6.
93

14
.1

3
0.

8
0

8
7.

3
3

12
0

1
6

4
5
4.

67
1.

00
44

0.
27

1
.0

0
12

4.
8
7

2
3

4
2
4.

20
7.

3
3

0.
93

41
8.

27
1
.0

0
11

4.
8
7

6
1

4
1
7.

80
3
7.

2
0

0.
60

41
9.

67
1
.0

0
15

0.
3
3

A
v
g.

25
0
.0

7
18

.3
0

0.
06

0.
61

24
4.

02
5.

46
0.

0
0

0.
8
9

1
12

.2
4

∆
-2

.4
%

-7
0.

2%
-1

00
.0

%
+

4
5.

5
%

TUM Tech Report OM–2020–01 18

and precedence violations were completely eliminated. The fraction of instances for which feasible solutions were

found increased by 45.5% up to 89%. The number of backtrackings used per instance averaged at 112.24.

5.3.2 Value of ALNS+GLS

We tested a standard ALNS working on objective function (15) against an ALNS working on objective function

(13), which dynamically adjusts penalizing infeasibilities. Since both version use different objective functions, we

use the development of the best feasible solution as the metric for fair comparison. Figure 4 shows the development

for all runs on a logarithmic scale. For each iteration the gap to best known solution states how far the best

feasible solution of the current run is apart from the best feasible solution over all runs for the same instance.

The ALNS with GLS is able to get into much better regions of the solution space and is able to improve feasible

Figure 4: Comparison of ALNS (above, blue lines) and ALNS+GLS (below, orange lines). Thin lines represent
the percentage gap to the best feasible solution found over all runs. The bold lines represent the average
percentage gap.

solutions even in later iterations.

Table 2 shows the percentage gaps after n iterations. The gap between the two algorithms increases with

increasing number of customers. The gap also increases slightly with the number of iterations, from 21.15% at

n = 10, 000 to 27.77% at n = 50, 000.

5.3.3 Value of new operators

To specifically tackle the underlying problem structure, we have developed several new neighborhoods (cf. §4.3.3).

We investigated their impact by analyzing the probability of selecting a specific operator over time. The more

successful a certain operator has been in earlier iterations, the more likely it will be selected in later iterations.

The results for the destroy operators are given in Figure 5 and the results for the repair operators are given in

Figure 6. The graphics are both organized in the same way. Each tile highlights the selection probability for one

operator averaged over all instances and all runs.

Most of the operators generally used in the literature perform well and most of our newly developed operators

can add additional value. The k-means clustering is a valid alternative to clustering based on Kruskal’s minimal

spanning trees. Only the subroute destroy fails consistently with a probability of being used below 1%.

To our surprise, the location-related and location-and-time-related destroy operators did not perform well.

A possible explanation might be, that the location that is shared most by customers is the therapy center.

The therapy center, however, is capacitated which limits the amount of customers, which can be placed in this

neighborhood.

With the exception of the subroute destroy, all the averaged results are close together. The main reason

is that the individual performance equals out over 90 instances repeated three times. However, performance in

TUM Tech Report OM–2020–01 19

Table 2: Achieved gap reduction in percent after n iteration by using ALNS+GLS compared to ALNS. Each
row represents the average values of all five instances per setting, each ran three times.

|I| B F ∆gap
n=10,000 ∆gap

n=20,000 ∆gap
n=30,000 ∆gap

n=40,000 ∆gap
n=50,000

20 1 6 9.96 9.87 9.97 9.59 9.98
2 3 5.04 4.26 3.95 3.75 3.65
6 1 6.17 6.05 5.96 5.75 5.21

40 1 6 22.21 26.70 27.34 27.59 28.23
2 3 19.56 20.48 19.90 19.42 19.50
6 1 8.01 9.40 9.66 9.46 9.52

60 1 6 16.44 24.18 27.85 28.25 32.12
2 3 20.25 22.47 22.77 23.15 23.82
6 1 14.22 22.46 23.42 25.30 26.90

80 1 6 26.46 32.11 31.78 32.42 33.09
2 3 25.26 29.48 32.69 33.32 33.64
6 1 21.70 25.80 27.59 27.81 28.55

100 1 6 46.44 52.12 54.76 55.34 55.97
2 3 23.21 28.13 29.38 29.94 30.30
6 1 20.61 24.26 24.75 25.46 25.48

120 1 6 39.35 49.02 53.06 54.67 55.52
2 3 29.83 36.84 38.49 39.44 39.97
6 1 26.01 34.39 36.52 37.18 38.45

Avg. 21.15 25.45 26.66 27.10 27.77

Figure 5: Probabilities of drawing the destroy operators over 50, 000 iterations. Each subplot displays the average
probability of an operator over the 90 instances. Black thin lines represent operators from the literature. Blue
thick lines represent our operators. Light gray lines represent the operators which are not the focus of the
subplot. Above average performance is displayed by solid line segments while dotted lines represent under
average performance.

the individual runs varies significantly. To present a typical example, Figure 7 displays the distribution of the

individual runs for the location-related destroy.

The solution qualities of the ALNS with and without the new operators are similar. However, we observe for

bigger instances (100, 120 customers) slightly better performance when using the new operators. The number of

TUM Tech Report OM–2020–01 20

Figure 6: Probabilities of drawing the repair operators over 50, 000 iterations. Each subplot displays the average
probability of an operator over the 90 instances. Black thin lines represent operators from the literature. Light
gray lines represent the operators which are not the focus of the subplot. Above average performance is
displayed by solid line segments while dotted lines represent under average performance.

Figure 7: Distribution of the probability developments over time for the location-related destroy. Thin gray
lines represent the individual runs, while the bold black line represents the average over all runs.

unscheduled customers decreases from 2.79 to 1.03 (−36.92%) and the ratio of feasible solutions found increases

from 93.33% to 95.5% (+2.27%).

5.3.4 Value of all features

After having tested the algorithmic features individually, it is important to examine how the features interact

when used together. The results of testing a standard ALNS against one with backtracking in the construction,

GLS and new operators are displayed in Table 3.

Significant improvements are achieved when using all features. In 98% feasible solutions are generated (+4.3%

over standard ALNS). The objective function value was improved by 24.9% mainly be consistently reducing the

number of unscheduled customers (−99%). The number of precedence violations was also reduced by 32.5%,

however in the standard ALNS it is already at a very low level of 0.02 violations per run.

5.4 VRPTW-FL applied to hospital-wide therapist scheduling and routing

After investigating the algorithmic features in the last part, this part focusses on the hospital case and the value

our ALNS can add to current planning practice.

5.4.1 VRPTW-FL compared to manual planning

To compare our ALNS to current hospital planning, we use the sequential allocation heuristic (SAH) as described

in Gartner et al. (2018). According to Gartner et al. (2018) this approach resembles manual planning. The central

idea of the SAH is to separate customers with fixed start times, which are assigned first, from those with flexible

start times, which are assigned later. Sorting is used to facilitate assignment of customers to good tours, e.g.

vehicles are sorted in order of increasing shift start times and customers are sorted by earliest start time.

TUM Tech Report OM–2020–01 21

T
a

b
le

3
:

C
o

m
p

ar
is

o
n

o
f

b
a

si
c

A
L

N
S

w
it

h
o

u
t

n
ew

fe
a

tu
re

s
a

n
d

A
L

N
S

w
it

h
a

ll
n

ew
fe

a
tu

re
s

(i
.e

.,
b

a
ck

tr
a

ck
in

g
in

co
n

st
ru

ct
io

n
,

a
d

d
it

io
n

a
l

d
es

tr
o

y
o

p
er

a
to

rs
,

a
n

d
G

L
S

).
F

o
r

ea
ch

va
ri

a
n

t,
th

e
o

b
je

ct
iv

e
fu

n
ct

io
n

va
lu

e
(E

q
u

a
ti

o
n

(1
5

))
,

th
e

n
u

m
b

er
o

f
n

o
t

a
ss

ig
n

ed
cu

st
o

m
er

s,
th

e
n

u
m

b
er

o
f

ti
m

e
w

in
d

o
w

vi
o

la
ti

o
n

s,
th

e
n

u
m

b
er

o
f

p
re

ce
d

en
ce

vi
o

la
ti

o
n

s
a

n
d

th
e

p
er

ce
n

ta
g

e
o

f
fe

a
si

b
le

so
lu

ti
o

n
s

is
d

is
p

la
ye

d
.

E
a

ch
ro

w
re

p
re

se
n

ts
th

e
a

ve
ra

g
e

va
lu

es
o

f
a

ll
fi

ve
in

st
a

n
ce

s
p

er
se

tt
in

g
,

ea
ch

ra
n

th
re

e
ti

m
es

.

|I
|

B
F

b
a
si

c
A

L
N

S
A

L
N

S
w

it
h

al
l

n
ew

fe
a
tu

re
s

f
(s

∗)
|I

n
a
(s

∗)
|
|I

T
W

(s
∗)
|
|I

p
re
d
(s

∗)
|

n
fe
a
s

f
(s

∗)
|I

n
a
(s

∗)
|
|I

T
W

(s
∗)
|
|I

p
re
d
(s

∗)
|

n
fe
a
s

20
1

6
7
7.

00
1.

00
70

.5
3

1.
0

2
3

6
8.

87
1.

00
66

.1
3

1
.0

6
1

6
9.

00
1.

00
65

.8
0

1
.0

40
1

6
1
4
9.

53
6.

0
7

0.
87

11
8.

73
1.

0
2

3
1
2
7.

73
1.

00
10

7.
27

1.
0

6
1

1
1
5.

60
3.

9
3

0.
80

10
1.

87
1.

0
60

1
6

1
8
8.

67
16

.7
3

0.
67

15
2.

97
0.

1
7

0.
8

2
3

1
7
8.

47
1.

00
14

0.
53

1.
0

6
1

2
0
6.

53
1.

00
15

6.
60

1.
0

80
1

6
2
5
7.

00
1.

00
18

3.
53

1.
0

2
3

2
5
4.

33
1.

00
19

5.
67

1.
0

6
1

2
4
3.

00
3.

0
0

0.
93

18
7.

13
1.

0
1
00

1
6

36
2
.0

7
1
6
.3

3
0.

80
23

5.
73

1.
0

2
3

2
8
2.

33
1.

00
21

4.
73

1.
0

6
1

2
8
5.

93
0.

4
0.

80
22

6.
33

0.
47

0.
2
7

0.
8

1
20

1
6

43
9
.3

3
1.

00
27

6.
93

1.
0

2
3

3
5
5.

20
1.

00
26

8.
07

1.
0

6
1

3
7
6.

87
1.

00
26

5.
40

1.
0

A
v
g.

22
4
.3

0
2
.5

6
0
.0

0
0.

02
0.

94
16

8.
55

0.
03

0.
0
1

0.
0
2

0.
9
8

∆
-2

4.
9%

-9
9.

0%
-3

2.
5
%

+
4.

3
%

TUM Tech Report OM–2020–01 22

The results for the SAH and our ALNS are given in Table 4. Our approach clearly outperforms the SAH

by increasing the ratio of feasible solutions found by 29% up to 98%. Our ALNS leaves almost no customers

unscheduled and reduces the number of precedence violations by 97.9%. Reducing precedence violations is highly

relevant for practice because in most cases, medical reasons exist for those precedence relations.

5.4.2 Value of flexibility

Being able to assign customers to different locations provides more flexibility for the planner. Flexibility can be

used to adjust the plan to the specific situation. E.g., if many outpatients are waiting for an appointment, a

hospital might want to use therapists as efficient as possible, while in other cases hospitals want to avoid that

patients walk unaccompanied from the ward to the therapy center and thus would be willing to accept travel times

of therapists. In order to consider different situations, we evaluated four cost functions for assigning patients to

a location different from the preferred location: (a) no costs, (b) small constant costs of 1 unit, (c) costs equal to

the distance between preferred location and assigned location (tr,l), and (d) costs equal to this distance squared

(tr,l)
2.

Table 5 summarizes the results for the different cost functions. As expected, as changing locations becomes

more expensive, more patients are treated in the preferred locations, which leads to longner travel distances for

therapists. In particular, when comparing the extreme cases costs of 0 and costs of (tr,l)
2, the average ratio of

patients treated in the preferred location increases by 255% from 37.8% to 96.2%, and the travel costs of the

therapists increase by 224% from 71.4 to 160.04.

Figure 8 displays this causal relationship grouped by the different demand scenarios (number of customers).

When costs are (tr,l)
2, deviating from the preferred locations is avoided whenever possible, only in cases of limited

capacity in the therapy center an alternative location is assigned. Increasing the cost for alternative locations from

0 to 1 does only have a very small impact on the travel costs of therapists. For costs of 1, location preferences are

almost entirely neglected, i.e. patients will be scheduled to alternative rooms although this only slightly improves

the travel distances of the therapists. In our opinion, a good trade-off in hospital planning is to use location costs

equivalent to the distance between the preferred location and the assigned locations. However, this might not

generalize to other routing contexts with very different underlying network structures.

Figure 8: Travel costs of therapists (vehicles) in blue and fraction of treatments in preferred locations in orange
for different location costs (0, 1, tr,l, (tr,l)

2). Each line groups the results for different instances sizes (20, 40,
. . . , 120 customers).

5.5 ALNS on Solomon Instances

To show the general capabilities of our algorithm, we evaluated its performance for the VRPTW on the well-

known Solomon benchmark instances (Solomon, 1987). Note that we did not tune our parameters for the Solomon

instances, instead we used the parameters obtained by tuning for the hospital instances as described in §5.1. The

results for the 29 instances of the first class with relatively narrow time windows is given in Table 6. Considering

that our algorithm is not tuned for these instances, it performs well. For the 25-customer instances, we reach

optimality in all cases, for 50 customer in 7, and for 100 customers in 2 cases. The optimality gaps are larger

TUM Tech Report OM–2020–01 23

T
a

b
le

4
:

C
o

m
p

ar
is

o
n

o
f

h
o

sp
it

a
l

p
la

n
n

in
g

a
n

d
A

L
N

S
.

F
o

r
ea

ch
va

ri
a

n
t,

th
e

o
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(E
q

u
a

ti
o

n
(1

5
))

,
th

e
n

u
m

b
er

o
f

n
o

t
a

ss
ig

n
ed

cu
st

o
m

er
s,

th
e

n
u

m
b

er
o

f
ti

m
e

w
in

d
o

w
vi

o
la

ti
o

n
s,

th
e

n
u

m
b

er
o

f
p

re
ce

d
en

ce
vi

o
la

ti
o

n
s

a
n

d
th

e
p

er
ce

n
ta

g
e

o
f

fe
a

si
b

le
so

lu
ti

o
n

s
is

d
is

p
la

ye
d

.
E

a
ch

ro
w

re
p

re
se

n
ts

th
e

a
ve

ra
g

e
va

lu
es

o
f

a
ll

fi
ve

in
st

a
n

ce
s

p
er

se
tt

in
g

,
ea

ch
ra

n
th

re
e

ti
m

es
.

|I
|

B
F

h
os

p
it

a
l

p
la

n
n

in
g

A
L

N
S

+
G

L
S

f
(s

∗)
I
n
a

i
(s

∗)
I
T
W

i
(s

∗)
I
p
re
d

i
(s

∗)
n
fe
a
s

f
(s

∗)
I
n
a

i
(s

∗)
I
T
W

i
(s

∗)
I
p
re
d

i
(s

∗)
n
fe
a
s

20
1

6
1
0
3.

2
0
.2

0.
8

70
.5

3
1
.0

2
3

9
9.

0
1.

0
66

.1
3

1
.0

6
1

9
2.

6
1.

0
65

.8
0

1
.0

40
1

6
2
0
0.

6
2
.2

11
8.

73
1
.0

2
3

1
7
9.

8
1
.2

0.
4

10
7.

27
1
.0

6
1

1
7
5.

2
0
.8

0.
8

0.
2

10
1.

87
1
.0

60
1

6
2
8
0.

4
2
.0

1.
2

15
2.

97
0
.1

7
0.

8
2

3
2
7
6.

4
0
.2

0.
8

0.
6

14
0.

53
1
.0

6
1

2
7
8.

4
2
.6

0.
8

15
6.

60
1
.0

80
1

6
3
3
8.

0
1
.2

0.
4

0.
2

18
3.

53
1
.0

2
3

3
7
0.

6
2
.0

0.
4

0.
4

19
5.

67
1
.0

6
1

3
5
5.

8
2
.4

0.
4

0.
2

18
7.

13
1
.0

1
0
0

1
6

48
4
.2

3
.0

1.
6

23
5.

73
1
.0

2
3

4
4
1.

8
1
.6

0.
8

0.
4

21
4.

73
1
.0

6
1

4
2
9.

8
1
.0

2.
0

0.
2

22
6.

33
0.

47
0
.2

7
0.

8
1
2
0

1
6

56
0
.2

1
.8

1.
2

27
6.

93
1
.0

2
3

5
2
6.

4
1
.8

0.
8

0.
2

26
8.

07
1
.0

6
1

5
2
1.

2
3
.2

1.
2

26
5.

40
1
.0

A
v
g
.

3
1
7.

42
1
.5

1
0
.0

0
0.

71
0.

29
16

8.
55

0.
03

0.
0
1

0
.0

2
0.

9
8

∆
-4

6.
9%

-9
8.

3%
-9

7.
9
%

+
23

8.
5
%

TUM Tech Report OM–2020–01 24

Table 5: Value of flexibility. For each setting we state the distance travelled by therapists and the fraction
of treatments in preferred locations. Four different location cost functions are evaluated: no costs (0), small
constant costs of 1, cost equivalent to the distance between preferred location and location of treatment tr,l,
and costs equivalent to the squared distance (tr,l)

2. Each row represents the average values of all five instances
per setting, each ran three times.

|I| B F distance therapists frac. preferred locations
0 1 tr,l (tr,l)

2 0 1 tr,l (tr,l)
2

20 1 6 28.60 28.87 55.73 65.80 0.29 0.34 0.82 0.96
2 3 29.60 29.60 47.00 69.27 0.37 0.45 0.71 0.93
6 1 32.33 32.87 47.00 68.40 0.40 0.44 0.71 0.98

40 1 6 70.73 74.47 95.60 113.27 0.53 0.62 0.85 0.94
2 3 64.53 65.33 86.67 106.07 0.60 0.64 0.84 0.96
6 1 71.40 72.80 86.47 102.93 0.65 0.71 0.86 0.97

60 1 6 75.50 77.08 123.08 139.67 0.48 0.56 0.87 0.94
2 3 60.80 63.27 113.67 136.80 0.36 0.48 0.86 0.97
6 1 77.53 79.47 115.47 155.00 0.46 0.53 0.80 0.97

80 1 6 73.53 78.20 149.53 175.53 0.34 0.47 0.85 0.94
2 3 80.07 83.33 163.07 187.13 0.32 0.42 0.89 0.97
6 1 80.80 85.13 138.87 178.47 0.34 0.45 0.83 0.98

100 1 6 92.93 97.33 193.00 226.13 0.30 0.41 0.88 0.97
2 3 82.47 87.80 163.60 201.13 0.30 0.46 0.85 0.97
6 1 85.17 88.83 157.08 205.50 0.30 0.42 0.81 0.97

120 1 6 101.67 106.20 219.87 258.80 0.27 0.37 0.86 0.96
2 3 87.40 87.80 188.73 246.20 0.27 0.38 0.82 0.97
6 1 90.07 95.20 193.07 244.67 0.24 0.36 0.82 0.96

than e.g. in Vidal et al. (2013), which is expected as our algorithm was developed to cope with the very distinct

properties of the VRPTW-FL.

Table 6: Performance of our ALNS on Solomon benchmark instances. The types are clustered (C), random (R),
partially random/clustered (RC), optimum is the optimal solution, ALNS is the average result achived by the
ALNS over five runs, gap is the relative gap between ALNS and the optimal solution, and n optimal states how
often the optimal solution was found for each instance.

type customers optimum ALNS gap n optimal

C 25 190.59 190.59 0.0 9 / 9
50 361.69 373.83 0.03 5 / 9

100 826.70 944.36 0.14 1 / 9
R 25 463.37 463.37 0.0 12 / 12

50 766.13 777.02 0.02 2 / 12
100 1173.61 1258.68 0.08 0 / 12

RC 25 350.24 350.78 0.0 6 / 8
50 730.31 736.14 0.01 0 / 8

100 1334.49 1444.39 0.09 0 / 8

6 Conclusion and future work

The VRPTW-FL is a relevant and highly complex problem. Considering multiple possible service locations in

routing problems receives increasing interest in the VRP community and to the best of our knowledge we are

the first to address location capacities in the service locations. The VRPTW-FL occurs in scheduling physical

therapists for which we have developed our solution approach. We built on an ALNS framework and enhance

it with several innovative ideas, i.e. (a) a backtracking procedure in the construction phase to correct poor

TUM Tech Report OM–2020–01 25

assignment of customers to vehicles, (b) a guided local search that dynamically adjusts how infeasibilities are

penalized, and (c) new neighborhoods exploiting the underlying problem structure.

We evaluated the algorithm on a set of generic instances designed to represent different hospital layouts and

different demand scenarios. Our computation results show that the developed enhancements add value to better

solving the VRPTW-FL. We generated insights how different cost functions for assigning customers to location

different from the preferred location affect the overall planning. These insights can be used by hospital managers

to decide which cost function to be used depending on their healthcare system and/or customer preferences.

We believe that VRPTW-FL and related problems will receive more attention in near future. Savelsbergh

and Woensel (2016) describe these problems as an opportunity in city logistics and we believe that for many

applications location capacities become a limiting factor, e.g. limited parking space availabilities are so far

completely ignored in the OR literature.

Appendix

A Overview ALNS Paramters

Table 7: ALNS parameters

ω = 50, 000 Number of total iterations
τ = 100 Number of iterations per segment, number of iterations before probability update of

operators
r = 0.1 Reaction parameter (roulette parameter)
σ1 = 33 Score if new global best solution was found
σ2 = 13 Score if new and unvisited solution was found with better objective function value

than current solution
σ3 = 9 Score if new and unvisited solution, not better than current objective value, but still

accepted
c = 0.9975 Cooling rate
∆ = 0.05 Deterioration parameters of initial solution; used to calculate start temperature
Ω = 0.5 Parameter for acceptance of initial solution; used to calculate start temperature
T start Start temperature T start = − ∆

ln Ω
· f(s0)

tPercent Auxiliary parameter to determine the end temperature

T end End temperature T end = T start · tPercent

cna = 3 Costs of not assigning a customer
ctw = 0.5 Costs of violating a time window by one time unit

cpred = 10 Costs of violating a precedence relation

qlb = 4 Lower bound on number of nodes that are removed from current solution

qub
1 = 0.4 Auxiliary value to determine upper bound on number of nodes that are removed from

current solution

qub
2 = 100 Auxiliary value to determine upper bound on number of nodes that are removed from

current solution

qub Upper bound on number of nodes that are removed from current solution. qub =
min

{
|I| · qub

1 , qub
2

}
5 Number of features for penalty update
25 Iterations between penalty updates
1 Penalty initial value
1 Penalty increase if feature is violated
0.0125 Penalty reduction if feature is not violated
5 Maximum time window violation expressed in time units

0.5 Threshold for time flexibility. Only customers i with bi−ai
T
≤ 0.5 are allowed to have

time window violations.
15 Upper bound on the number of feasible solution objects that are stored
100 Number of solutions that are considered when calculating the request graph. Needed

for request graph (historic) destroy operator.
4 Zone-destroy increase factor

B Abbreviations, sets, parameters and decision variables

TUM Tech Report OM–2020–01 26

Table 8: Abbreviations

ALNS Adaptive large neighborhood search
GLS Guided local seach
GVRP Generalized vehicle routing problem
GVRPTW Generalized vehicle routing problem with time windows
LAP Location allocation problem
LRP Location routing problem
MDVRP Multi-depot vehicle routing problem
PLRP Periodic location routing problem
SAH Sequential allocation heuristic
VRAP Vehicle routing-allocation problem
VRDAP Vehicle routing with demand allocation problem
VRP Vehicle routing problem
VRP-FL Vehicle routing problem with flexible delivery locations
VRPP Vehicle routing problem with profits
VRPTW Vehicle routing problem with time windows
VRPTW-FL Vehicle routing problem with time windows and flexible delivery locations

Table 9: Sets, indices, parameters

δ+ Out-arcs defined as δ+(S) = {〈vi,l, vj,r〉 ∈ A : vi,l ∈ S, vj,r /∈ S}
δ− In-arcs defined as δ−(S) = {〈vi,l, vj,r〉 ∈ A : vi,l /∈ S, vj,r ∈ S}
δ+
k Out-arcs for vehicle k ∈ K
δ−k In-arcs for vehicle k ∈ K
ρ+ Probability of a repair operator
ρ− Probability of a destroy operator
Ω+ Set of repair operators
Ω− Set of destroy operators
A Set of arcs in graph G
ai Earliest start for serving customer i ∈ I
bi Latest start for serving customer i ∈ I
Cl Capacity of location l ∈ L
clocation
i,l Cost for serving customer i ∈ I in location l ∈ L
cna Cost not assigned customer

cpred Cost for precedence violation

ctravel
l,r Cost for traveling from location l ∈ L to location r ∈ L
ctw Cost for time window violation
d(·) Destroy method (operator) d ∈ Ω−

f(s) Objective function value of a solution s

fmod(s) Objective function value of a solution s for the modified objective

f simple(s) Simplified version of fmod(s) used during the construction phase and within ALNS if
GLS is not used

G A graph with G = (V,A)
L Set of locations
Li Set of potential locations for serving customer i ∈ I
Lbounded Set of locations with bounded capacities
I Set of customers
Ik Set of customers that can be served by vehicle k ∈ K
Il Set of customers that can be served in location l ∈ L
I(·) Indicator function
Ina
i (s) Indicator function equal to 1, if customer i is not visited in solution s

Ipred
i (s) Indicator function equal to 1, if precedence relation of customer i is violated in solu-

tion s
Itw
i (s) Indicator function equal to 1, if time window of customer i is violated in solution s
K Set of vehicles
Ki Set of vehicles which can serve customer i ∈ I
P Set defining the precedence relations between two customers (i, j), i.e. service of

customer i must be finished before service of customer j can start
pna Penalty weight not assigned customer

ppred Penalty weight for precedence violation
ptw Penalty weight for time window violation
Qk Capacity of vehicle k ∈ K
r(·) repair method (operator) r ∈ Ω+

TUM Tech Report OM–2020–01 27

Sets, indices, parameters (continued)

rk Route of vehicle k ∈ K
S Subset of customers with S ⊆ V
s Some solution

sbest Global best solution
scurrent Currently best solution
sinit Initial solution
si Duration for serving customer i ∈ I
tmin
i,j Shortest travel time from customer i ∈ I to customer j ∈ I
ttravel
l,r Travel time from location l ∈ L to r ∈ L location

T bounded
l Set of continuous time intervals in which location l ∈ L has bounded capacity
V Set of vertices (customer-location combination)
vi,l Graph node representing customer-location combination (i, l) for customer i ∈ I

being served in location l ∈ L
Vk Set of vertices reachable by vehicle k ∈ K

Table 10: Decision variables

Ti,l,k Start time of serving customer i ∈ I in location l ∈ L by vehicle k ∈ K
xi,l,j,r,k 1, if vehicle k ∈ K serves customer i ∈ I in location l ∈ L right before serving

customer j ∈ I in location r ∈ L, 0 otherwise

References

Archetti, C., Speranza, M.G., Vigo, D., 2014. Chapter 10: Vehicle Routing Problems with Profits. Society for

Industrial and Applied Mathematics, Philadelphia, PA. pp. 273–297.

Audi AG, 2015. Audi, dhl and amazon deliver convenience. URL: https://www.audi-mediacenter.com/en/

press-releases/audi-dhl-and-amazon-deliver-convenience-347.

Azi, N., Gendreau, M., Potvin, J.Y., 2014. An adaptive large neighborhood search for a vehicle routing problem

with multiple routes. Comput. Oper. Res. 41, 167–173.

Balakrishnan, A., Ward, J.E., Wong, R.T., 1987. Integrated facility location and vehicle routing models: Recent

work and future prospects. American Journal of Mathematical and Management Sciences 7, 35–61.

Baldacci, R., Bartolini, E., Laporte, G., 2010. Some applications of the generalized vehicle routing problem.

Journal of the Operational Research Society 61, 1072–1077.

Beasley, J.E., Nascimento, E.M., 1996. The vehicle routing-allocation problem: A unifying framework. TOP 4,

65–86.

Bektaş, T., Erdoğan, G., Røpke, S., 2011. Formulations and branch-and-cut algorithms for the generalized vehicle

routing problem. Transportation Science 45, 299–316.

von Boventer, E., 1961. The relationship between transportation costs and location rent in transportation prob-

lems. Journal of Regional Science 3, 27–40.

Cordeau, J.F., Gendreau, M., Laporte, G., Potvin, J.Y., Semet, F., 2002. A guide to vehicle routing heuristics.

Journal of the Operational Research Society 53, 512–522.

Cordeau, J.F., Laporte, G., Mercier, A., 2001. A unified tabu search heuristic for vehicle routing problems with

time windows. Journal of the Operational Research Society 52, 928–936.

Dees, Jr., W.A., Karger, P.G., 1982. Automated rip-up and reroute techniques, in: Proceedings of the 19th Design

Automation Conference, IEEE Press, Piscataway, NJ, USA. pp. 432–439.

Desaulniers, G., Madsen, O.B., Ropke, S., 2014. Chapter 5: The Vehicle Routing Problem with Time Windows.

Society for Industrial and Applied Mathematics, Philadelphia, PA. pp. 119–159.

Desrochers, M., Jones, C., Lenstra, J., Savelsbergh, M., Stougie, L., 1999. Towards a model and algorithm

management system for vehicle routing and scheduling problems. Decision Support Systems 25, 109 – 133.

Desrochers, M., Lenstra, J., Savelsbergh, M., 1990. A classification scheme for vehicle routing and scheduling

problems. European Journal of Operational Research 46, 322–332.

Eksioglu, B., Vural, A.V., Reisman, A., 2009. The vehicle routing problem: A taxonomic review. Computers &

Industrial Engineering 57, 1472–1483.

https://www.audi-mediacenter.com/en/press-releases/audi-dhl-and-amazon-deliver-convenience-347
https://www.audi-mediacenter.com/en/press-releases/audi-dhl-and-amazon-deliver-convenience-347

TUM Tech Report OM–2020–01 28

Gartner, D., Frey, M., Kolisch, R., 2018. Hospital-wide therapist scheduling and routing: Exact and heuristic

methods. IISE Transactions on Healthcare Systems Engineering 8, 268–279.

Ghoniem, A., Scherrer, C.R., Solak, S., 2013. A specialized column generation approach for a vehicle routing

problem with demand allocation. Journal of the Operational Research Society 64, 114–124.

Glover, F., Hao, J.K., 2011. The case for strategic oscillation. Annals of Operations Research 183, 163–173.

Golden, B., Raghavan, S., Wasil, E.A. (Eds.), 2008. The vehicle routing problem: Latest Advances and New

Challenges. Springer US, Boston, MA.

Hashimoto, H., Yagiura, M., Imahori, S., Ibaraki, T., 2013. Recent progress of local search in handling the time

window constraints of the vehicle routing problem. Annals of Operations Research 204, 171–187.

Ibaraki, T., Imahori, S., Kubo, M., Masuda, T., Uno, T., Yagiura, M., 2005. Effective local search algorithms for

routing and scheduling problems with general time-window constraints. Transportation Science 39, 206–232.

Irnich, S., Toth, P., Vigo, D., 2014. Chapter 1: The Family of Vehicle Routing Problems. Society for Industrial

and Applied Mathematics, Philadelphia, PA. chapter The Family of Vehicle Routing Problems. pp. 1–33.

Jain, A.K., 2010. Data clustering: 50 years beyond k-means. Pattern Recognition Letters 31, 651 – 666.

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., 1983. Optimization by simulated annealing. Science 220, 671–680.

Kovacs, A.A., Parragh, S.N., Hartl, R.F., 2014. A template-based adaptive large neighborhood search for the

consistent vehicle routing problem. Networks 63, 60–81.

Kruskal, J.B., 1956. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings

of the American Mathematical Society 7, 48–50.

Lahyani, R., Khemakhem, M., Semet, F., 2015. Rich vehicle routing problems: From a taxonomy to a definition.

European Journal of Operational Research 241, 1 – 14.

Laporte, G., 2009. Fifty years of vehicle routing. Transportation Science 43, 408–416.

Laporte, G., Osman, I.H., 1995. Routing problems: A bibliography. Annals of Operations Research 61, 227–262.

Laporte, G., Ropke, S., Vidal, T., 2014. Chapter 4: Heuristics for the vehicle routing problem. Society for

Industrial and Applied Mathematics, Philadelphia, PA. pp. 87–116.

Li, Y., Chen, H., Prins, C., 2016. Adaptive large neighborhood search for the pickup and delivery problem with

time windows, profits, and reserved requests. European Journal of Operational Research 252, 27 – 38.

Mancini, S., 2016. A real-life multi depot multi period vehicle routing problem with a heterogeneous fleet:

Formulation and adaptive large neighborhood search based matheuristic. Transportation Research Part C:

Emerging Technologies 70, 100–112.

Maranzana, F.E., 1964. On the location of supply points to minimize transport costs. OR 15, 261–270.

Masson, R., é, F.L., Péton, O., 2013. An adaptive large neighborhood search for the pickup and delivery problem

with transfers. Transportation Science 47, 344–355.

Min, H., Jayaraman, V., Srivastava, R., 1998. Combined location-routing problems: A synthesis and future

research directions. European Journal of Operational Research 108, 1 – 15.

Moccia, L., Cordeau, J.F., Laporte, G., 2012. An incremental tabu search heuristic for the generalized vehicle

routing problem with time windows. Journal of the Operational Research Society 63, 232–244.

Nagy, G., Salhi, S., 2007. Location-routing: Issues, models and methods. European Journal of Operational

Research 177, 649 – 672.

Ozbaygin, G., Karasan, O.E., Savelsbergh, M., Yaman, H., 2017. A branch-and-price algorithm for the vehicle

routing problem with roaming delivery locations. Transportation Research Part B: Methodological 100, 115 –

137.

Parragh, S.N., Cordeau, J.F., 2017. Branch-and-price and adaptive large neighborhood search for the truck and

trailer routing problem with time windows. Computers & Operations Research 83, 28 – 44.

Pisinger, D., Ropke, S., 2010. Large Neighborhood Search. Springer US, Boston, MA. pp. 399–419.

Potvin, J.Y., Rousseau, J.M., 1993. A parallel route building algorithm for the vehicle routing and scheduling

problem with time windows. European Journal of Operational Research 66, 331 – 340.

Prodhon, C., Prins, C., 2014. A survey of recent research on location-routing problems. European Journal of

Operational Research 238, 1 – 17.

Renaud, J., Laporte, G., Boctor, F.F., 1996. A tabu search heuristic for the multi-depot vehicle routing problem.

Computers & Operations Research 23, 229 – 235.

TUM Tech Report OM–2020–01 29

Reyes, D., Savelsbergh, M., Toriello, A., 2017. Vehicle routing with roaming delivery locations. Transportation

Research Part C: Emerging Technologies 80, 71 – 91.

Ropke, S., Pisinger, D., 2006a. An adaptive large neighborhood search heuristic for the pickup and delivery

problem with time windows. Transportation Science 40, 455–472.

Ropke, S., Pisinger, D., 2006b. A unified heuristic for a large class of vehicle routing problems with backhauls.

European Journal of Operational Research 171, 750–775. Feature Cluster: Heuristic and Stochastic Methods

in Optimization Feature Cluster: New Opportunities for Operations Research.

Savelsbergh, M., Woensel, T.V., 2016. 50th anniversary invited article - city logistics: Challenges and opportuni-

ties. Transportation Science 50, 579–590.

Schiffer, M., Walther, G., 2018. An adaptive large neighborhood search for the location-routing problem with

intra-route facilities. Transportation Science 52, 331–352.

Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., Dueck, G., 2000. Record breaking optimization results using

the ruin and recreate principle. Journal of Computational Physics 159, 139 – 171.

Shaw, P., 1998. Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems.

Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 417–431.

Solomon, M.M., 1987. Algorithms for the vehicle routing and scheduling problems with time window constraints.

Operations Research 35, 254–265.

Toth, P., Vigo, D., 2002. The Vehicle Routing Problem. Society for Industrial and Applied Mathematics,

Philadelphia, PA.

Toth, P., Vigo, D., 2014. Vehicle Routing. Society for Industrial and Applied Mathematics, Philadelphia, PA.

Vidal, T., Crainic, T.G., Gendreau, M., Lahrichi, N., Rei, W., 2012. A hybrid genetic algorithm for multidepot

and periodic vehicle routing problems. Operations Research 60, 611–624.

Vidal, T., Crainic, T.G., Gendreau, M., Prins, C., 2013. A hybrid genetic algorithm with adaptive diversity

management for a large class of vehicle routing problems with time-windows. Computers & Operations Research

40, 475 – 489.

Vidal, T., Crainic, T.G., Gendreau, M., Prins, C., 2015. Time-window relaxations in vehicle routing heuristics.

Journal of Heuristics 21, 329–358.

Vidal, T., Laporte, G., Matl, P., 2019. A concise guide to existing and emerging vehicle routing problem variants.

European Journal of Operational Research .

Voudouris, C., Tsang, E., 1999. Guided local search and its application to the traveling salesman problem.

European Journal of Operational Research 113, 469 – 499.

Watson-Gandy, C., Dohrn, P., 1973. Depot location with van salesmen - a practical approach. Omega 1, 321 –

329.

Webb, M.H.J., 1968. Cost functions in the location of depots for multiple-delivery journeys. Journal of the

Operational Research Society 19, 311–320.

	Introduction
	Related work
	Location-routing problems
	Generalized VRP

	Model development
	Formal problem description
	Structural differences of VRPTW and VRPTW-FL
	Mathematical model
	Generalizing the VRPTW-FL

	Solution methodology
	Formal hybrid ALNS framework
	Construction phase
	Operators and update functions
	Update operator weights
	Update objective penalty terms
	Destroy operators
	Repair operators

	Implementation details

	Computational study
	Data and instance generation
	Hyper-parameter optimization
	Evaluation of algorithmic features
	Value of backtracking
	Value of ALNS+GLS
	Value of new operators
	Value of all features

	VRPTW-FL applied to hospital-wide therapist scheduling and routing
	VRPTW-FL compared to manual planning
	Value of flexibility

	ALNS on Solomon Instances

	Conclusion and future work
	Overview ALNS Paramters
	Abbreviations, sets, parameters and decision variables

