
PI-REM: Policy Improvement with REsidual
Model learning

Matteo Saveriano1, Yuchao Yin1, Pietro Falco1, and Dongheui Lee1,2

1Human-centered Assistive Robotics, Technical University of Munich,
Karlstrasse 45, 80333 Munich, Germany

{matteo.saveriano,yuchao.yin,pietro.falco,dhlee}@tum.de
2Institute of Robotics and Mechatronics, German Aerospace Center (DLR),

Münchenerstrasse 20, 82234 Weßling, Germany

Abstract. In this work, we analyze the benefits of combining policy ini-
tialization and residuals learning to speed-up the policy search in model-
based reinforcement learning. In particular, we leverage the Policy Im-
provement with REsidual Model learning (PI-REM), a model-based and
data-efficient approach for reinforcement learning. PI-REM employs a
simplified model of the system, in the form of a dynamical system, to
search for an initial control policy. Moreover, the approach exploits sen-
sory data to fit a probabilistic model of the residual difference between
the measured state and the state of the simplified model. The learned
residual model is then combined with the simplified dynamics to predict
the real state of system and to search for an optimal policy. Simulation
results show that the proposed approach effectively reduces the number
of rollouts required to find an optimal control policy.

1 Introduction

The Reinforcement Learning (RL) framework allows a robot to learn a task by
self-practice [10], i.e. by performing a number of trials (rollouts) and exploiting
sensory data to improve its behavior. The effectiveness of RL is demonstrated
in a variety of challenging robotics applications, including jumping [9], pancake
flipping [16], and variable impedance control [12]. However, when applied to
robotics and control problems, RL suffers from two main disadvantages [10]:
i) state and action spaces are continuous-valued and high dimensional and ii)
performing a rollout on real devices is extremely time consuming. A common
approach to overcome problem i) is to employ parameterized control policies with
a discrete number of parameters [4,9,16,19]. A possible way to alleviate problem
ii) is to provide a good initial policy, for example via kinesthetic teaching [13].
Despite the possibility of properly initializing the policy, reducing the rollouts
required to find an optimal policy is still an open problem.

Recent advances in RL research [2, 5, 15] show that model-based approaches
can be effectively exploited to significantly reduce the number of rollouts. Model-
based RL approaches employ sensory data to fit a model of the system to control.

2 Matteo Saveriano1, Yuchao Yin1, Pietro Falco1, and Dongheui Lee1,2

xa

Simulation

Approximate Policy
πa

Real Experience Loop

xr

Real System

πn

Δx

πr, xr

πa, xa

Approximate Model

+

θn

Real Policy fk

+

Learning Residual Dynamics

xa

xr Policy Improvement

Fig. 1. Overview of the PI-REM algorithm.

The learned model is then exploited to predict the behavior of the system, re-
ducing the number of iterations on the real robot required to find the optimal
policy. It is known that model-based approaches suffer from the model–bias prob-
lem [11, 14, 17], since they assume that the learned model accurately represents
the real robot. However, the model–bias problem can be significantly alleviated
by explicitly considering uncertainty in the system model [2, 15].

The work in [5] employs an approximate model of the system to control and
optimal control techniques to find a proper initial control policy. Such initial
policy is a good starting point to search for a control policy for the real system,
which is obtained by using model-free RL. This combination of model-based
initialization and model-free learning significantly reduces the number of needed
rollouts. Similarly, the algorithm in [2] exploits optimal control to find an initial
policy, but it also learns a locally linear model of the system from sensory data.

The approach in [15], namely the Probabilistic Inference for Learning Control
(PILCO), exploits Gaussian Processes (GP) [18] to learn a probabilistic model
of the system from sensory data. Hence, PILCO assumes that model uncer-
tainties are Gaussian distributed. Model uncertainties are explicitly considered
in the long-term predictions used to evaluated the current policy, which allows
PILCO to outperform several state-of-the-art approaches in terms of required
rollouts [15]. Nevertheless, PILCO can find the optimal policy if the learned
model reliably represents the system to control. In order to rapidly fit an accu-
rate model, the state space is explored as much as possible in the first rollouts
by applying a random policy. Despite the random initialization, PILCO needs

PI-REM: Policy Improvement with REsidual Model learning 3

several samples to fit a reliable GP model which increases the computation time
and reduces the scalability to high dimensional problems.

The work in [8] exploits black-box optimization and parallel computation to
significantly reduce the learning time. However, multi-core processors suitable
for parallel computation are not always available on robotic devices. The work
in [6,7] encode prior information on the robot model in a non-zero GP mean. In
particular, [7] considers a linear prior, while [6] assumes a GP prior.

The Policy Improvement with REsidual Model learning (PI-REM), originally
proposed in [3], leverages an approximate model of the robot to find a proper
initial control policy, and it exploits sensory data to learn a model of the residual
difference between approximate and real models (see Fig. 1). PI-REM assumes
that the approximate model is easy to analytically derive, while it relies on
machine learning to compensate for unmodeled (or hard to model) dynamics.
This work aims at showing that PI-REM quickly converges towards an optimal
policy because it combines policy initialization and residual dynamics learning in
a fruitful manner. To this end, we compare PI-REM and PILCO in two simulated
scenarios, measuring the learning time and performed rollouts. Moreover, to
show that learning residual dynamics is crucial for the performance of PI-REM,
PILCO is initialized either with a random policy or with the same initial policy
used by PI-REM. Obtained results show that, on average, PI-REM spends less
rollouts than PILCO to find an optimal policy.

2 The PI-REM Approach

As for any RL algorithm, the goal of PI-REM is to find a control policy u = π(x)
that minimizes the expected return

Jπ(θ) =

N∑
t=0

E[c(xt)], (1)

where E[·] indicates the expected value, c(xt) is the cost of being in state x at
time t, θ are the parameters used to represent the continuous policy function
π(x,θ). PI-REM assumes that the system to control is modeled using a non-
linear dynamical system, i.e.

xrt+1 = fr(xrt ,u
r
t), (2)

where xr ∈ Rd is the state of the system, ur ∈ Rf is the control input, fr ∈ Rd is
a continuous and continuously differentiable function. As in [3], the superscript
r indicates that (2) is the real (exact) model of the system.

2.1 Residual Dynamics: Definition and Learning

Deriving the exact model in (2) can be complicated in real cases. Hence, PI-REM
assumes that the function fr(·, ·) in (2) has i) a deterministic and known part
and ii) an additive unknown part. These assumptions allow us to rewrite (2) as

xrt+1 = fa(xrt ,u
r
t) + fu(xrt ,u

r
t) +w, (3)

4 Matteo Saveriano1, Yuchao Yin1, Pietro Falco1, and Dongheui Lee1,2

where fa(·, ·) is a known and deterministic function, fu(·, ·) +w is an unknown
and stochastic term, and w ∈ Rd is an additive Gaussian noise. The so-called
approximate model

xat+1 = fa(xat ,u
a
t) (4)

describes the known part of (3) and it is known a priori. PI-REM exploits the
approximate model (4) in two ways. First, it finds in simulation a control policy
ua = πa(xa) for (3). πa is a good starting point to search for a control policy πr

for the real robot. Second, PI-REM uses sensory data to adjust the approximate
model in order to obtain a reliable representation of the system to control.

In particular, the unknown additive dynamics fu(·, ·) +w in (3) is learned
using Gaussian Processes (GP) [18]. More specifically, it holds that

fu(x̃rt) +w ≈ GP(x̃at , ∆t), (5)

where ∆t = (∆xt, ∆ut), ∆xt = xrt − xat , ∆ut = urt − uat , x̃rt = (xrt ,u
r
t), and

x̃at = (xat ,u
a
t). To derive the result in (5) we leverage the zero-order Taylor series

expansion and the relationship x̃rt = x̃at +∆t to rewrite (3) as

fr(x̃at +∆t) = fa(x̃at) + ra(∆t) + fu(x̃at) + ru(∆t) +w, (6)

where ra(∆t) and ru(∆t) are the residual errors committed by stopping the
Taylor series expansion at the zero-order. Given (6), the difference between the
real (3) and approximate (4) dynamics becomes

∆xt+1 = fr(x̃at +∆t)− fa(x̃at) = fu(x̃at) + r(∆t) +w = f̂
u
(x̃at , ∆t), (7)

where we pose r(∆t) = ra(∆t) + ru(∆t). Note that the assumption of additive
Gaussian noise allows to represent the stochastic process (7) as a GP.

Equation (7) shows that the training inputs of the GP are {x̃at , ∆t}N−1
t=0 , while

the training outputs are {yt = ∆xt+1 −∆xt}N−1
t=0 . In order to collect the train-

ing data, at the nth rollout the current policy πn is applied to the approximate
model and to the robot, obtaining X a = {xat ,uat }Nt=0 and X r = {xrt ,urt}Nt=0 re-
spectively. As already mentioned, the procedure is initialized with π1 = πa. The
tuples X d = {∆t = (∆xt, ∆ut)}Nt=0 are then computed through the element-wise
difference X r − X a. Considering N training inputs X̃ = [x̃a1 , ∆1, . . . , x̃

a
N , ∆N],

training outputs y = [y1, . . . , yN]T, and a query point x̃∗ = [(x̃a,∗t)T(∆∗
t)

T]T, the
state ∆xt+1 predicted (one-step) with a GP is specified by mean and variance

µt+1 = ∆xt +K x̃∗X̃

(
KX̃X̃ + σ2

nI
)−1

y,

Σt+1 = k(x̃∗, x̃∗)−K x̃∗X̃

(
KX̃X̃ + σ2

nI
)−1

KX̃x̃∗ ,
(8)

where K x̃∗X̃ = k(x̃∗, X̃), KX̃x̃∗ = KT
x̃∗X̃

, and the generic element ij of the ma-

trix KX̃X̃ is given by Kij

X̃X̃
= k(x̃i, x̃j). The kernel k(·, ·) is usually the squared

exponential covariance function k(x̃i, x̃j) = σ2
k exp

(
− 1

2 (x̃i − x̃j)TΛ−1(x̃i − x̃j)
)
,

where Λ = diag(l21, ..., l
2
D). The tunable parameters Λ, σ2

k and σ2
n are learned

from training data via evidence maximization [18].

PI-REM: Policy Improvement with REsidual Model learning 5

2.2 Control Policy and Cost Function

In robotics applications, the continuous-valued policy π is usually parameterized
by θ ∈ Rp to discretize the searching space. In this work, the policy is

π(x,θ) =

D∑
i

k(x∗, ci)
(
KCC + σ2

πI
)−1

yπ, (9)

that represents the mean of a GP. In (9), x∗ is the current state and C =
[c1, . . . , cD] are the centers of the squared exponential covariance function k(·, ·).
The vector yπ contains the GP training targets, while KCC is defined as in (8).
θ = [C,Λ,yπ] are learnable parameters of the policy (9).

The optimal policy minimizes the expected return Jπ(θ) in (1). This work
employs the saturating cost function

c(xrt) = 1− exp

(
− 1

2σ2
c

‖xrt − xg‖2
)
∈ [0, 1], (10)

where xg denotes the target state and σ2
c is the spread.

2.3 Policy Evaluation using GP Predictions

In order to compute the expected costs and to minimize the expected return in
(1), the long-term predictions p(∆x1|π), ..., p(∆xN , |π), computed from p(∆x0),
are needed. Computing the exact long-term predictions is analytically intractable
[15]. Hence, we approximate the predictive distribution p(∆xt+1|π) with a Gaus-
sian, specified by mean and covariance

µt+1 = µt + µ∆,

Σt+1 = Σt +Σ∆ + cov(∆xt,∆t) + cov(∆t, ∆xt),
(11)

where µ∆ and Σ∆ are computed with the moment matching algorithm in [15],
and the covariance cov(·, ·) is computed as in [20].

Given the long-term predictions, the estimated real state is computed as
xrt = xat + ∆xt. Note that, by substituting ∆xt = xrt − xat into (10), it is
possible to write

c(xrt) = 1− exp

(
− 1

2σ2
c

‖xrt − xg‖2
)

= 1− exp

(
− 1

2σ2
c

‖∆xt − (xg − xat)‖2
)

= 1− exp

(
− 1

2σ2
c

‖∆xt −∆xg,t‖2
)

= c(∆xt).

Hence, the expected long-term cost can be expressed as Jπ(θ) =
∑N
t=0 Exr

t
[c(xrt)]

=
∑N
t=0 E∆xt

[c(∆xt)]. The approximate state xat is computed off-line by apply-
ing the initial policy πa. This implies that the ∆xg,t for t = 1, . . . , N can be
pre-calculated. In other words, by minimizing c(∆xt) the real system is forced to

6 Matteo Saveriano1, Yuchao Yin1, Pietro Falco1, and Dongheui Lee1,2

follow the same trajectory of the approximate model. Having assumed a Gaus-
sian predictive distribution p(∆xt|π) = N (∆xt|µt,Σt), the real expected cost
in (1) becomes

E∆xt
[c(∆xt)] =

∫
c(∆xt)N (∆xt|µt,Σt)d∆xt, (12)

where µt and Σt are defined as in (11). As shown in [15], the integral in (12) can
be analytically computed and it is differentiable. This permits the adoption of
gradient-based approaches to improve the current policy. The PI-REM algorithm
is summarized in Algorithm 1.

Algorithm 1 Policy Improvement with REsidual Model learning (PI-REM)

1: Learn a policy πa for the approximate model (4)
2: Compute the target set ∆xg,t = xg − xat and initialize πn = πa

3: while task learning is not completed do
4: Apply πn to the real robot and to the approximate model
5: Calculate new training data X d = X r −X a
6: Learn GP model for the dynamics (7)
7: while Jπ(θ) not minimized do
8: Policy evaluation using (11) and (12)
9: Gradient-based policy improvement [15]

10: end while
11: return θ∗

12: end while
13: return π∗

3 Results

Presented results show that the combination of policy initialization and residual
dynamics learning exploited by PI-REM significantly reduces the number of roll-
out performed on the real system. PI-REM is here applied to learn a pendulum
swing-up and a cart–pole swing-up task (see Fig. 2). The presented approach is
compared with PILCO [15]. For a fair comparison, the same parameters for PI-
REM and PILCO are used. Moreover, PILCO is initialized both with a random
policy and with the initial policy πa used by PI-REM. This aims at showing
that a good policy initialization is not sufficient to achieve the performance of
PI-REM. The performance of each approach is measured in terms of rollouts
performed on the real system, total time duration of the rollouts (real experi-
ence), and total training time (simulation and real). PI-REM and PILCO are
implemented in Matlab R©. In all the tests, the experted reward is measured using
the saturating cost function in (10). The control policy in (9) is bounded in the

interval [−umax, umax] by the squashing function σ(x) = umax
9 sin (x)+sin (3x)

8 .

PI-REM: Policy Improvement with REsidual Model learning 7

fk

θ

m

l

u
+

(a)

θ

m

l

u
fk

+

(b)

Fig. 2. Experimental setups. (a) The pendulum interacting with an elastic environ-
ment. (b) The cart–pole system connected to a spring.

Pendulum swing-up The goal is to find a control policy that balances the
pendulum in Fig. 2(a) in the vertical position (θg = −π rad), starting from
θ0 = 0 rad. Apart from swinging-up, the pendulum has to compensate for the
external forces fk generated by the interaction with an elastic environment.
The interaction forces are generated by a spring placed at the vertical position
θ = π rad. We use the standard pendulum model θ̈t(

1
4ml

2 + I) + 1
2mlg sin (θt) =

ut−bθ̇t as approximate model, neglecting the external forces fk. The parameters
of the pendulum are: the mass m = 1 kg, the length l = 1 m, the moment of
inertia of the pendulum around the midpoint I = 1

12ml
2, the friction coefficient

b = 0.01 sNm/rad, and the gravity acceleration g = 9.81 m/s2. ut is the control
torque. The vector x = [θ̇, θ]T is the state of the pendulum, while the aim is to
reach the goal xg = [0,−π]T. The elastic force fk is assumed proportional to
the stiffness of the spring. Results for three different stiffness values, namely 100,
200, and 500 N/m, are reported Tab. 1. It is worth noticing that the time of real
experience in Tab. 1 is a multiple of the number of rollouts, since the duration
of each rollout is fixed. On the contrary, the learning time does not grow linearly
with the rollouts. This is because the time to train a GP model is not linearly
growing with the size of the training data. In Tab. 1, PILCO+πa indicates
PILCO initialized with the policy πa, i.e. in the first rollout PILCO+πa uses
the policy learned for the approximate model instead of a random policy.

Stiffness 100 N/m: In this case, the control input is bounded to umax = 5 Nm,
the total duration of each rollout is T = 4 s, sampled at dt = 0.1 s. As reported
in Tab. 1, PI-REM needs 340 s of simulated time to find the policy πa for the
approximate model. Recall that πa is used to perform the first rollut on the real
system (see Algorithm 1). The time to find πa depends on the used approach.
One can exploit either a reinforcement learning or an optimal control technique
to search for πa. For simplicity, in this work we exploit PILCO to search for
a control policy for the approximate model. However, being the approximate
model known, other choices like optimal control techniques are better suited in

8 Matteo Saveriano1, Yuchao Yin1, Pietro Falco1, and Dongheui Lee1,2

Table 1. Results for the pendulum swing-up.

Stiffness Real rollouts Real experience Simulation time Real time
[N/m] [#] [s] [s] [s]

PI-REM 100 2 8 340 212

PILCO 100 6 24 0 1306

PILCO+πa 100 5 20 340 992

PI-REM 200 3 12 410 410

PILCO 200 4 16 0 624

PILCO+πa 200 4 16 410 624

PI-REM 500 2 4 602 602

PILCO 500 3 6 0 821

PILCO+πa 200 3 6 602 821

0

-1

-2

-3

-4

[r
ad

]

0 1 2 3 4
Time [s]

predicted
real

(a)

0.6

0.5

0.4

0.3

0.2

1 2 3 4
Rollouts [#]

[r
ad

]

5 6

0.1

0

PI-REM
PILCO
PILCO+

(b)

Fig. 3. Pendulum model learning results (stiffness 100 N/m). (a) State predicted and
measured after one iteration of PI-REM. (b) Root mean square of the state prediction
error obtained for PI-REM and PILCO in different rollouts.

this case. It is worth noticing that the simulation time does not require any
human supervision and it is less expensive than performing rollouts on the real
device. Regarding the interactions with the real system, PI-REM needs only 2
rollouts and 8 s of real experience to find a control policy, while PILCO spends 6
iterations and 24 s of real experience. Initializing PILCO with the optimal policy
πa computed for the approximate model slightly improves the performance of
PILCO in terms of real rollouts and experience. However, the performance are
worse than PI-REM. Indeed, PI-REM exploits approximate model and residual
learning to reduce the state prediction error, rapidly finding a reliable model.
This result is shown in Fig. 3. In particular, Fig. 3(a) shows that the approximate
model properly represents the system until the pendulum touches the spring. As
illustrated in Fig. 3(b), PI-REM properly estimates the state after 2 iterations.
On the contrary, PILCO and PILCO+πa need 4 and 5 iterations respectively
to learn a proper model of the system. The policy found by PI-REM after 2
iterations is depicted in Fig. 4(a). As expected, the policy is bounded (u(x) ∈
[−5, 5] Nm) and it is able to swing-up the pendulum and keep it in the unstable

PI-REM: Policy Improvement with REsidual Model learning 9

u
[N

m
]

0 1 2 3 4
Time [s]

[r
ad

]

-5

0
5

Control policy

Pendulum angle

-2

0

-4

(a)

PI-REM
PILCO

1 2 3 4 5
Rollouts [#]

10

20

30

40

6 7

PILCO+

(b)

Fig. 4. Results for the pendulum swing-up (stiffness 100 N/m). (a) Pendulum angle and
control policy obtained with PI-REM after 2 iterations. The black solid line represents
the goal. (b) Evolution of the expected return Jπ(θ) for different rollouts (mean and
std over 5 executions).

position. The policy found by PILCO is not shown because, having used the
same parameterization and cost function for the two approaches, PILCO and
PI-REM learn (almost) the same policy. The evolution of the expected return
for PI-REM, PILCO, and PILCO+πa is illustrated in Fig. 4(b).

Stiffness 200 N/m: To properly simulate the system with a stiffness equal to
200 N/m, we reduce the sampling time to 0.05 s. This value is sufficient to avoid
numerical instabilities in the integration of the real model dynamics. Moreover,
the maximum control input is set to 15 Nm in order to fulfill the task. As shown in
Tab. 1, PI-REM finds the control policy in 3 iterations and 12 s of real experience.

Stiffness 500 N/m: In this case, we further reduce the sampling time to
0.0125 s. The prediction horizon is also reduced to 2 s to speed-up the learning,
while the maximum control input is set to 25 Nm. PI-REM finds the control
policy in 2 iterations and 4 s of real experience.

Cart–pole swing-up The goal is to find a control policy that balances the
pendulum on the cart in the inverted position (θg = −π rad), starting from
θ0 = 0 rad. The policy is the horizontal force ut that makes the cart moving to
the left or to the right. The cart–pole model

(mc +mp)p̈t +
1

2
mplθ̈t cos (θt)−

1

2
mplθ̇

2
t sin (θt) = ut − bṗt,

2lθ̈t + 3p̈t cos (θt) + 3g sin (θt) = 0,

serves as an approximate model. The real cart–pole system, instead, is connected
to a wall through a spring (see in Fig. 2(b)). Hence, the approximate model
neglects the additive elastic force fk. The mass of the cart is mc = 0.5 kg,
while the pendulum has mass mp = 0.5 kg and length l = 0.5 m. The state of

the cart–pole system is x = [p, ṗ, θ, θ̇]T, where p and ṗ are the position and

10 Matteo Saveriano1, Yuchao Yin1, Pietro Falco1, and Dongheui Lee1,2

Table 2. Results for the cart–pole swing-up.

Stiffness Real rollouts Real experience Simulation time Real time
[N/m] [#] [s] [s] [s]

PI-REM 25 2 8 996 218

PILCO 25 5 20 0 996

PILCO+πa 25 5 20 996 996

PI-REM 50 3 12 405 405

PILCO 50 6 24 0 1415

PILCO+πa 50 6 24 405 1415

PI-REM 120 15 30 405 2328

PILCO 120 23 46 0 6816

PILCO+πa 120 21 42 405 5623

the velocity of the cart, while θ and θ̇ are the angle and the angular velocity
of the pendulum respectively. Hence, the state of the cart–pole system is four
dimensional, i.e. double the dimension of the single pendulum state. Results for
three different stiffness values, namely 25, 50, and 120 N/m, are shown in Tab. 2.
As for the pendulum case, the time of real experience is a multiple of the number
of rollouts, while the learning time does not grow linearly with the rollouts. In
Tab. 2, PILCO+πa indicates PILCO initialized with the policy πa.

Stiffness 25 N/m: In this case, the control input is bounded to umax = 10 N,
the total duration of the task is T = 4 s, sampled at dt = 0.1 s. As reported
in Tab. 2, PI-REM finds a control policy in 2 iterations and 8 s of real experi-
ence. For comparison, PILCO and PILCO+πa need 5 iterations and 20 s of real
experience.

Stiffness 50 N/m: In this case, the maximum control input has to be set to
15 N. PI-REM finds the policy in 3 rollouts and 12 s of real experience.

Stiffness 120 N/m: To properly simulate the system with a stiffness equal
to 120 N/m, we reduce the sampling time to 0.05 s. This value is sufficient to
avoid numerical instabilities in the integration of the real model dynamics. The
prediction horizon is also reduced to T = 2 s to speed-up the learning process.
With this settings PI-REM finds the control policy in 15 iterations and 30 s
of real experience, as shown in Tab. 2. Figures 5(a) and 5(b) show that the
learned policy drives the cart–pole system towards the goal xg = [0, 0, π, 0]T.
As expected, the control policy is bounded to u(x) ∈ [−15, 15] N (see Fig. 5(c)).
PILCO and PILCO+πa need 23 and 21 rollouts respectively to find the optimal
policy. The policy found by PILCO is not shown because, having used the same
parameterization and cost function for the two approaches, PILCO and PI-REM
learn (almost) the same control policy. The evolution of the expected return for
PI-REM, PILCO, and PILCO+πa is illustrated in Fig. 5(d).

In the considered simulations, PI-REM performs better than PILCO in terms
of interactions with the real system. Hence, PI-REM increases the simulation
time, where human intervention is not required, to significantly reduce the real
time. In terms of rollouts on the real system, PI-REM takes from 25% to 67%

PI-REM: Policy Improvement with REsidual Model learning 11

0 1 2 3 4
Time [s]

Cart velocity

Cart position

-4

0

4

-0.4

0

0.4

[m
]

[m
/s

]

(a)

0 1 2 3 4
Time [s]

[r
ad

]
[r

ad
/s

]

-10
0

10
20

Pendulum angular velocity

Pendulum angle

-2
0
2
4

(b)

0 1 2 3 4
Time [s]

0

-15

15

u
[N

]

(c)

155 10 21 23
Rollouts [#]

20

30

40

1

50
PI-REM
PILCO
PILCO+

(d)

Fig. 5. Results for the cart–pole swing-up (stiffness 120 N/m). (a)–(b) State of the
cart–pole system and (c) learned control policy after 15 iterations of PI-REM. The
black solid line represents the goal. (d) Evolution of the expected return Jπ(θ) for
different rollouts (mean and std over 5 executions).

less iterations than PILCO. Consequently, the time of real experience is reduced
from 25% to 67%, i.e. from a minimum of 2 s to a maximum of 16 s less than
PILCO. Interestingly, results show that initializing PILCO with a proper policy,
i.e. πa, is not sufficient to reach the performance of PI-REM. In other words,
the combination of a proper policy initialization and residual dynamics learning
is essential to rapidly converge to an optimal policy.

4 Conclusion and Future Work

This work demonstrated that combining a proper policy initialization and resid-
ual dynamics learning is beneficial to quickly find an optimal control policy. Such
a combination is the key idea of PI-REM, the model-based and data-efficient
reinforcement learning approach exploited in this study. PI-REM leverages a
simplified model to find an initial policy, and sensory data to model the residual
difference between simplified and real systems. In this work, PI-REM is compared
with PILCO, a prominent approach for model-based reinforcement learning. Ob-
tained results confirm our claim that a proper policy initialization alone is not
sufficient to reach the performance of PI-REM in terms of performed rollouts.
As summarized in Tab. 1 and 2, even when initialized with the control policy

12 Matteo Saveriano1, Yuchao Yin1, Pietro Falco1, and Dongheui Lee1,2

found for the approximate model, PILCO needs more rollouts than PI-REM to
find a control policy.

Our future research will investigate how accurate the approximate model has
to be in order to maintain enhanced performance. We expect that a very inaccu-
rate model will significantly affect the performance of PI-REM. In this case, the
performance of PI-REM will be similar or slightly worse than classical black-box
approaches for policy search like PILCO. Nevertheless, a formal quantification of
the inaccuracies that the learning framework can tolerate without compromising
the performance is still an open problem to investigate.

Acknowledgements

This work has been partially supported by the Technical University of Munich,
International Graduate School of Science and Engineering, and by the Marie
Curie Action LEACON, EU project 659265.

References

1. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics - Modelling, Planning
and Control. Springer, Heidelberg (2009)

2. Levine, S., Abbeel, P.: Learning Neural Network Policies with Guided Policy Search
under Unknown Dynamics. In: NIPS, pp. 1071–1079 (2014)

3. Saveriano, M., Yin, Y., Falco, P., Lee, D.: Data-Efficient Control Policy Search using
Residual Dynamics Learning. In: IROS, pp. 4709–4715 (2017)

4. Peters, J., Muelling, K., Altun, Y.: Relative Entropy Policy Search. In: Conference
on Artificial Intelligence (AAAI), pp. 1607–1612 (2010)

5. Farshidian, F., Neunert, M., Buchli, J.: Learning of Closed-Loop Motion Control.
International Conference on Intelligent Robots and Systems, pp. 1441–1446 (2014)

6. Cutler, M., Jonathan P.H.: Efficient reinforcement learning for robots using infor-
mative simulated priors. In: ICRA, pp. 2605–2612 (2015)

7. Bischoff, B., Nguyen–Tuong, D., van Hoof, H., McHutchon, A., Rasmussen, C.E.,
Knoll, A., Peters, J., Deisenroth M.P.: Policy Search For Learning Robot Control
Using Sparse Data. In: ICRA, pp. 3882–3887 (2014)

8. Chatzilygeroudis, K., Rama, R., Kaushik, R., Goepp, D., Vassiliades, V., Mouret,
J.-B.: Black-Box Data-efficient Policy Search for Robotics. In: IROS, pp. 51–58
(2017)

9. Theodorou, E., Buchli, J., Schaal, S.: A generalized path integral control approach
to reinforcement learning. J. of Mach. Lear. Res. 11, 3137–3181 (2010)

10. Kober, J., Bagnell, D., Peters, J.: Reinforcement learning in robotics: a survey.
The International Journal of Robotics Research 32(11), 1238–1274 (2013)

11. Atkeson, C.G., Santamaria, J.C.: A Comparison of Direct and Model-Based Rein-
forcement Learning. In: ICRA, pp. 3557–3564 (1997)

12. Winter, F., Saveriano, M., Lee, D.: The Role of Coupling Terms in Variable
Impedance Policies Learning. In: HFR (2016)

13. Saveriano, M., An, S., Lee, D.: Incremental Kinesthetic Teaching of End-Effector
and Null-Space Motion Primitives. In: ICRA, pp. 3570–3575 (2015)

PI-REM: Policy Improvement with REsidual Model learning 13

14. Atkeson, C.G., Schaal, S.: Robot Learning From Demonstration. In: International
Conference on Machine Learning, pp. 12–20 (1997)

15. Deisenroth, M.P., Fox, D., Rasmussen, C.E.: Gaussian Processes for Data-Efficient
Learning in Robotics and Control. TPAMI 37(2), 408–423 (2015)

16. Calinon, S., Kormushev, P., Caldwell, D.: Compliant Skills Acquisition and Multi-
optima Policy Search with EM-based Reinforcement Learning. Robotics and Au-
tonomous Systems 61(4), 369–379 (2013)

17. Schneider, J.G.: Exploiting Model Uncertainty Estimates for Safe Dynamic Control
Learning. In: NIPS, pp. 1047–1053 (1996)

18. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT
Press (2006)

19. Kober, J., Peters, J.: Policy Search for Motor Primitives in Robotics. In: Advances
in Neural Information Processing Systems, pp. 849–856 (2009)

20. Deisenroth, M.P.: Efficient Reinforcement Learning using Gaussian Processes. KIT
Scientific Publishing (2010)

