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ABSTRACT
A common approach of parallelising an agent-based road
traffic simulation is to partition the road network into sub-
regions and assign computations for each subregion to a log-
ical process (LP). Inter-process communication for synchro-
nisation between the LPs is one of the major factors that
affect the performance of parallel agent-based road traffic
simulation in a distributed memory environment. Synchro-
nisation overhead, i.e., the number of messages and the com-
munication data volume exchanged between LPs, is heavily
dependent on the employed road network partitioning al-
gorithm. In this paper, we propose Neighbour-Restricting
Graph-Growing (NRGG), a partitioning algorithm which
tries to reduce the required communication between LPs by
minimising the number of neighbouring partitions. Based on
a road traffic simulation of the city of Singapore, we show
that our method not only outperforms graph partitioning
methods such as METIS and Buffoon, for the synchroni-
sation protocol used, but also is more resilient than stripe
spatial partitioning when partitions are cut more finely.

Keywords
Neighbour-Restricting Graph-Growing; parallel simulation;
agent-based traffic simulation; graph partitioning

1. INTRODUCTION
Agent-based road traffic simulation has become an impor-

tant tool in the evaluation of today’s and future transporta-
tion systems. It is useful in solving many severe problems
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that modern large cities face such as increasing traffic con-
gestion and high CO2 emissions. To this end, simulating en-
tire cities [14, 22] with thousands to millions of agents (i.e.,
vehicles) can give valuable insights, however, at the same
time it poses a major challenge in terms of computational
resources.

Parallel computing techniques can be used to speed-up
these simulations. In a parallel agent-based road traffic sim-
ulation, computational workload is divided and executed by
a group of Logical Processes (LPs), each of which is assigned
to a physical processing unit. To maintain the correctness
of the parallel simulation, inter-process communication is re-
quired due to data dependencies between LPs [4]. This is
referred to as synchronisation and, in distributed memory
environments, is typically achieved by message passing be-
tween the LPs. Due to the synchronisation between the LPs,
it is crucial to consider load-balancing, so that the waiting
time of each LP is reduced. The workload of traffic sim-
ulation is often dynamic, which necessitates dynamic load-
balancing during simulation run-time. Inter-process com-
munication and load imbalance are the two major factors
that affect the performance of parallel simulation, and both
of them are influenced by how the simulation is partitioned.

A common way to parallelise traffic simulation is to de-
compose the road network into multiple spatial subregions
(i.e., partitions) and assign each partition to an LP. The
most straightforward method of achieving this is through the
use of geographical information, e.g., by cutting the network
into stripes, grids, or areas of equal sizes [1, 12, 13, 23]. The
downside of these methods is that they do not consider syn-
chronisation overhead. Another approach is to convert the
road network into a graph (where edges represent road seg-
ments and nodes represent connections between these seg-
ments) and then use graph partitioning algorithms [15, 20].
Graph partitioning algorithms use certain heuristics aim-
ing to reduce edge-cut and thereby the dependencies among
partitions. However, depending on the synchronisation pro-
tocol, minimising edge cut alone may not minimise the total
synchronisation overhead [7].
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In this paper, we propose Neighbour-Restricting Graph-
Growing (NRGG), a graph partitioning algorithm that re-
duces synchronisation overhead by limiting the number of
neighbouring LPs, that is, LPs exchanging messages. Two
partitions are called neighbouring partitions if there exists
at least one road link that connects the two partitions, thus
creating data dependencies between the two LPs that ex-
ecute them. Reducing the number of neighbours for each
partition can therefore reduce the required synchronisation
messages, especially when an asynchronous protocol is used
for synchronisation. We achieve this by developing a two-
step algorithm that first partitions the road network into
stripe-like shaped regions, and then refines the partitions us-
ing a modified Kernighan-Lin (KL) local search algorithm.
Our contributions can be summarised as follows:

• We present Neighbour-Restricting Graph-Growing
(NRGG)1, a novel two-step graph partitioning algo-
rithm for parallel road traffic simulation.

• We show the applicability and performance of our pro-
posed algorithm by applying it to double-blinded [24], a
parallel agent-based microscopic road traffic simulator
for distributed memory environments.

• We compare our method to the existing algorithms
and show that it is not only more scalable than stripe
spatial partitioning, but also leads to fewer synchro-
nisation messages compared to the graph partitioning
methods METIS [9] and Buffoon [18].

The reminder of this paper is organised as follows: Section
2 presents the related work. Section 3 provides some pre-
liminary information for the work in this paper, including
a brief description of the agent-based traffic simulation that
the partitioning algorithm operates on, and the formulation
of the partitioning problem we attempt to solve. Section
4 proposes the partitioning algorithm. Then experiments
are described in Section 5. Lastly, we draw conclusions and
discuss future work in Section 6.

2. RELATED WORK
To split the computational workload between LPs, road

networks can be partitioned in various ways. For example,
the road network can be cut into stripes or grid cells using
coordinate information [12,13]. The resulting subregions do
not necessarily need to have the same geometric area. They
are weighted, e.g., in terms of traffic density to achieve a
low workload imbalance between the LPs. Another method
is recursive coordinate bisection (RCB) [1, 23], where the
road network is cut into two equally sized sub-regions by a
plane orthogonal to one of the coordinate axes. This pro-
cedure is then recursively applied until the desired number
of sub-regions are obtained. The downside of cutting the
road network into stripes, grids or using RCB method is
that they mainly focus on workload balancing and do not
consider the minimisation of synchronisation overhead. In
an environment where message passing is time-consuming,
ignoring synchronisation overhead can be significantly detri-
mental to the performance of parallel simulation.

Graph partitioning algorithms try to not only equalise the
workload of partitions, but also minimise edge cut among

1Source code of implementation in C++ is available at
https://github.com/xu-yadong/nrgg.

partitions. Cutting an edge in a road network means that
connected road segments geographically lie in two parti-
tions, therefore requiring communication between the two
responsible LPs. The graph partitioning problem is NP-
hard, therefore heuristics are required to obtain approximate
results. Various graph partitioning algorithms can be found
in the literature [7, 9, 10, 18]. An example is the well-known
multilevel partitioning approach [7,9,10]. In multilevel par-
titioning, the graph is first recursively coarsened to a smaller
graph. Then a graph partitioning algorithm such as spectral
bisection [16] or evolutionary algorithm [3,17,18] partitions
the smaller graph. Finally, the smaller graph is uncoarsened
back to the original graph. At each level of uncoarsening,
local search refinement is commonly used to improve the
quality of partitions. The Kernighan and Lin algorithm [10]
is the classic algorithm for local refinement, where two ver-
tices at the boundary of two neighbouring partitions are
exchanged to reduce edge cut.

METIS is a widely used set of programs for partitioning
graphs. It adopts the multi-level approach and has been
used to parallelise traffic simulation [15, 20]. It was shown
that graph partitioning outperforms spatial partitioning al-
gorithms in terms of edge cut, which potentially reduces
synchronisation overhead between LPs. Buffoon [18] is also
a multi-level graph partitioning algorithm which uses nat-
ural cuts in road networks as a preprocessing technique to
obtain a coarser graph. It is able to generate less edge cut
compared to METIS for road networks. However, the algo-
rithm is slower than METIS, which may make it unsuitable
for dynamic partitioning at simulation run-time. To receive
a better understanding of the performance of NRGG, we
compare our proposed method to both METIS and Buffoon
in Section 5.

The discussed graph partitioning algorithms in this sec-
tion have in common that they aim at minimising edge cut.
However, depending on the synchronisation protocol, reduc-
ing edge cut does not always lead to minimising synchro-
nisation overhead, as also pointed out by Hendrickson and
Kolda [7]. To address this problem, we extend the state
of the art by also considering the number of neighbouring
partitions to reduce synchronisation overhead.

3. PRELIMINARIES
In this section, we introduce the parallel agent-based traf-

fic simulation platform that we use. The synchronisation
protocol is described, which motivates our partitioning al-
gorithm. We also formulate the partitioning problem.

3.1 Agent-based Road Traffic Simulation

3.1.1 Simulation space
A road network, containing links and nodes, is a spatial

network that forms the simulation space. Links represent
roads in the real world and can have one or more lanes, and
nodes contain the connectivity information of links. Nodes
possess geographical coordinate information, i.e., longitudes
and latitudes. An agent always has to be situated on a link,
making links effectively a container of agents.

3.1.2 Agents
An agent in the simulation represents a driver-vehicle unit.

The behaviour of agents is usually modelled using car-following
models [5,21] and lane-changing models [6,11]. Car-following
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models calculate the velocity and acceleration of a vehicle
according to the characteristics of the driver and the vehi-
cle, and the surrounding traffic conditions. Commonly, car-
following models adjust the velocity of an agent to maintain
or reach a desired safety gap to the vehicle in front. Lane-
changing models calculate whether an agent should change
lanes, e.g., based on the current speed and on vehicles on
other lanes. These models require agents to have a sens-
ing range, which is the area in the road network around the
agent within which other agents may have an effect on the
agent’s behaviour. The agent needs to examine the traffic
conditions within its sensing range to make acceleration and
lane-changing decisions. This is challenging in parallel traf-
fic simulation when the sensing range is reaching into other
partitions as it then potentially requires synchronisation be-
tween the responsible LPs.

3.1.3 Agent state variables
Each agent has a state at a particular virtual simula-

tion, represented by state variables. Agent states poten-
tially change upon executing time-stamped events scheduled
by agent models. The simulation advances by executing
these events in the ascending time-stamp order. State vari-
ables can be classified into two types depending on their
visibility: Agent-based state variables belong to the agent
as a whole and are visible to other agents, e.g., velocity and
geographical location; while component-based state variables
belong only to the models inside the agent and are not vis-
ible to other agents, e.g., state-of-charge of vehicle battery.
We assume that agent-based state variables are updated pe-
riodically with a fixed interval, which is called an update
interval, a.k.a., time-step. The events that change agent-
based state variables may have an effect on other LPs, thus
they affect the synchronisation between LPs. Other events
that change component-based state variables are internal to
an LP.

3.2 Parallelisation and Synchronisation of
Logical Processes

3.2.1 Parallelisation
To parallelise the simulation, the road network is decom-

posed into multiple spatial subregions, i.e., partitions. The
network is divided by cutting links. Links that are cut and
therefore lie in two partitions are named boundary links. A
boundary link is evenly divided between two partitions.

An LP is responsible for executing the events for the
agents (e.g., moving the agent along a link) in one subre-
gion. An agent is local to an LP if it is inside the subregion
that belongs to the LP.

There are data read and write dependencies between neigh-
bouring LPs. During the simulation, when an agent moves
beyond the boundary of partition i and enters the area of
partition j (i 6= j), the agent migrates from LPi to LPj .
The migration of agents incurs a data write dependency be-
tween the two LPs. Migrated agents are destroyed in the
original LP and recreated with all their state variables in
the new LP. If there is an agent A in LPi inside the sensing
range of another agent B in LPj , agent B should be aware
of the agent-based state variables of agent A. To achieve
this, a proxy agent is created in LPj that mirrors agent A.
It possesses exactly the same agent-based state variables as
agent A. Hence, the agent-based state variables of agent A

lin
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Figure 1: Road network partitioning with boundary
cut on link2.

should be sent by LPi to LPj to keep the state of the proxy
agent updated. In this case, there is a data read dependency
between LPi and LPj . The agent-based state variables of
agent A are shared states.

An illustration of the above concepts is shown in Figure
1. Link2 is a boundary link between LP1 and LP2. Agent
A in LP2 is inside the sensing range of agent B in LP1,
hence, the agent-based state variables of agent A are shared
states. There is a proxy of agent A in LP1. If agent B
migrates into LP2, the whole agent B, including all state
variables and model parameters should be sent to LP2 by
LP1. Agent B will be destroyed in LP1 and recreated in
LP2. There are read and write dependencies between LP1

and LP2.

3.2.2 Synchronisation
Data read and write dependencies necessitate the com-

munication between LPs. An LP should not progress the
simulation over the point when a read or write dependency
happens until the dependency is fulfilled by exchanging mes-
sages with the relevant LPs. In our use-case, synchronisation
is the sending and receiving of migrating agents and shared
states. We adopt a conservative approach where no viola-
tions of dependencies may ever occur during the simulation.
The synchronisation between LPs is carried out using a Mu-
tual Appointment (MA) protocol [26], which we will now
briefly describe.

The progression of the simulation in LPi using the MA
protocol is shown in Algorithm 1. The simulation iteratively
executes a synchronisation event and an update event for ev-
ery update interval. Associated with each synchronisation
event, there is a set of LPs that currently have appointments
with LPi, denoted as Synt

i. Synt
i may include all, none, or

only a subset of the neighbouring LPs of LPi. For each LPj

in the set Synt
i, LPi sends one compound message containing

migrating agents, shared states and lookahead. Lookahead
of LPi towards LPj (i 6= j) at simulation time t is a time in-
terval in the simulated future within which LPi will not have
data dependencies with LPj . LPs estimate their lookahead
by predicting when there will be agents to migrate and states
to be shared. When Synt

i is empty, no message-passing oc-
curs for LPi at time t. After messages are received, the next
appointment is made according to the lookahead, by adding
the LP to the future Synt+∆t

i set, where ∆t is the mutual
lookahead.

Using the MA synchronisation protocol, the number of
synchronisation messages is affected by the number of neigh-
bouring partitions and lookahead. Communication data vol-
ume is determined by the number of migrating agents and
shared states. Sending synchronisation messages requires a
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Algorithm 1: Simulation progression in LPi using the
MA protocol.

1 Definitions:

2 lti,j lookahead from LPi to LPj at simulation time t

3 Synt
i LPs having appointments with LPi at time t

4 Tend simulation ending time
5 δ update interval

6 initialise t← 0;

7 initialise Syn0
i as all neighbouring LPs of LPi;

8 while t < Tend do
// synchronisation event

9 foreach LPj ∈ Synt
i do

10 send migrating agents, shared states, and

current lookahead (i.e., lti,j) to LPj ;
11 prepare to receive a message from LPj ;

12 end
13 wait for all message sending and receiving to finish;
14 update the local agent set and proxy agent set;

15 foreach LPj ∈ Synt
i do

16 add LPj to Synt+∆t
i , where ∆t = min(lti,j , l

t
j,i);

17 end
// event for updating agent-based states

18 update the states of local agents for this update
interval;

19 t← t+ δ; // time-stamp of the update event

20 end

start-up time and a transmission time. More synchronisa-
tion messages will require more start-up time, and a larger
data volume means longer transmission time. Therefore,
synchronisation overhead should consider both the number
of messages and communication data volume.

3.2.3 Dynamic load-balancing
In addition, workload imbalance also affects the perfor-

mance of parallel simulation in a distributed memory en-
vironment. Workload refers to the processing of the agent
events. A workload imbalance can occur if some LPs are re-
sponsible for more agents (namely, the events of the agents)
than others, which in turn leads to idle waiting times at the
synchronisation stage of the simulation. The way the road
network is partitioned has a considerable influence on both
synchronisation overhead and workload distribution. Thus,
the deployed partitioning algorithm plays an essential role
in the performance of parallel agent-based road traffic sim-
ulation.

Often, the workload of LPs changes in traffic simulation
as new agents are created and agents migrate between LPs.
This necessitates dynamic load-balancing during the simula-
tion, which can be achieved either by completely reapplying
the partitioning algorithm to partition the simulation, or by
incrementally changing the shapes of partitions (i.e., diffu-
sive methods) [19].

The problem of dynamic load-balancing is a challenge on
its own and it involves additional considerations such as
workload exchange and initiation rules for load-balancing
operations [2]. In this paper, we focus on the partition-
ing problem, meaning should dynamic load-balancing be re-
quired, we reapply the partitioning algorithm to partition
the road network.

3.3 Partitioning Problem

3.3.1 Preprocessing
To use a graph partitioning algorithm, the road network

needs to be converted to a weighted graph G=(E, V ) first,
where E and V are the sets of edges and vertices, respec-
tively. One node in the road network is mapped to one ver-
tex in the graph. The links between two nodes in the road
network are mapped to one edge between two vertices. Af-
ter the graph is decomposed, the partitions are then mapped
back to the road network.

Each link in the road network has some workload infor-
mation and data dependency information, e.g., based on the
expected traffic density and flow, or the length and the num-
ber of lanes. Based on this, we add weight to vertices and
edges of the graph. Edges have weights which encode the
communication data volume due to data dependencies, if the
the edges are cut. Traffic density and traffic flow on their
corresponding links in the road network can be used for cal-
culating the weights. Vertices have weights which encode
the workload on the connecting links of their corresponding
nodes. Traffic density on the links in the road network can
be used for calculating the weights. For a more detailed ex-
planation of the pre-processing steps, we refer readers to [25].

When repartitioning is required during the simulation due
to dynamic workload, weights of vertices and edges are re-
calculated using run-time traffic density and flow informa-
tion on the road network.

3.3.2 Partitioning as an optimisation problem
A graph partitioning algorithm cuts G into I disjoint par-

titions, G = {G0, G1, ..., GI−1}. Edges of the weighted
graph are cut. Let the set of vertices in partition Gi (0 ≤
i < I) be Vi, then V=∪I−1

i=0 Vi and Vi∩Vj=∅ (0≤j<I, i 6=j).
In order to increase the performance of the parallel simula-
tion, we consider the following three optimisation objectives
during the partitioning process:

The first objective is to minimise workload imbalance. Let
Wi be the total weight of the vertices in Vi. Then, the first
objective can be formulated as:

Obj 1 = arg min
G

(
max

0≤i<I
(Wi)−W

)
(1)

where W is the average weight of all partitions.
The second objective is to minimise the total number of

neighbouring partitions. To the best of our knowledge, this
requirement has not yet been considered in other graph par-
titioning algorithms for traffic simulation. We minimise the
number of neighbouring partitions to reduce the synchro-
nisation overhead in road traffic simulation. Let N=(ni,j),
0≤i<I, 0≤j<I, be a matrix of connectivity of partitions. If
Gi and Gj are neighbours, ni,j=1. Otherwise, ni,j=0. The,
the second objective can be formulated as:

Obj 2 = arg min
G

( I−2∑
i=0

I−1∑
j=i+1

ni,j

)
(2)

The third objective is to minimise edge cut which is the
total weight of edges between all partitions. Let the weight
of all edges between partition Gi and Gj be Wi,j (i6=j).
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Then, the third objective is formulated as:

Obj 3 = arg min
G

( I−2∑
i=0

I−1∑
j=i+1

Wi,j

)
(3)

Since the optimisation problem is multi-objective and NP-
hard, finding the optimal solution may be impractical. A
common approach is to use heuristics to obtain a reasonably
good result.

4. NEIGHBOUR-RESTRICTING
PARTITIONING

We now present the main contribution of this paper, which
is the graph partitioning algorithm NRGG, short for, Neigh-
bour-Restricting Graph-Growing. It contains an initial par-
titioning phase and a refinement phase. The initial parti-
tioning phase cuts the road network, trying to achieve Obj 1

and Obj 2. The refinement phase tries to achieve Obj 3, as
well as improve Obj 1 if Obj 1 achieved in the initial parti-
tioning phase is unsatisfactory, e.g., an imbalance threshold
is exceeded.

4.1 Graph-grow Partitioning

4.1.1 Graph-growing algorithm
The graph generated from the road network is first par-

titioned by graph-growing. Starting from an initial vertex,
subgraphs are grown one by one along the edges of the graph.
It can be easily proven that for a 2D space, cutting the space
into stripes generates the smallest number of neighbouring
partitions. In order to limit the number of neighbouring
partitions, we apply this idea for partitioning a graph, i.e.,
generate stripe-like partitions.

The graph-growing algorithm is shown in Algorithm 2.
The first step is to select an initial vertex for graph-growing.
The initial vertex should be an extreme point of the graph,
so it is the furthest vertex along the graph-grow direction.
It can be determined using the geographical coordinates of
the vertex.

Then, the second step is to grow graphs starting from the
initial vertex. A priority queue is used to control the order
of vertices to be visited. The initial vertex is pushed into
the priority queue (line 13) and marked as enqueued (line
14). Then, vertices are iteratively popped from the front of
the queue (line 16). Based on the cumulative weight and
the current vertex weight, it is determined whether a new
partition should be initiated (lines 17 - 24). If the number
of already generated partitions does not exceed the targeted
total number (i < I), a new partition is initiated under two
conditions (line 18):

1. the accumulated weight of vertices is equal to or greater
than the average weight; or

2. the accumulated weight plus the weight of the current
vertex is greater than the average weight, and a ran-
domly generated number in the range [0, 1] is less than
0.5 (the exact average weight cannot be achieved, thus
the current vertex is assigned randomly to either the
current or a new partition, i.e., a new partition is ini-
tiated with a probability of 0.5 in this case).

Then, the current or the new partition id i is assigned
to the vertex (line 25). All adjacent vertices of the current

Algorithm 2: Partitioning a weighted graph into I par-
titions with graph-growing.

1 Definitions:
2 i id of the partition
3 I total number of partitions
4 Wi total weight of vertices in the partition Gi

5 W average total weight of vertices per partition

6 W̃ cumulative weight of the current partition i
7 wv weight of vertex v in the graph
8 Q priority queue in which the tuples are ordered
9 according to the partition the vertices connect to

10 and the coordinates of the vertices

11 initialise i← 0, W̃ ← 0, Q← ∅;
12 determine the initial vertex vinit for graph-growing;
13 push tuple (i, vinit) into Q;
14 mark vinit as enqueued ;
15 while Q is not empty do
16 pop a tuple from Q, and let the vertex be v;
17 generate a random double number rdm in the range

[0,1];
18 if

(W̃ ≥W ∨ (W̃ +wv > W ∧ rdm < 0.5))∧ i < I − 1
then

19 Wi ← W̃ ; // new partition is initiated

20 W̃ ← wv;
21 i← i+ 1;

22 else

23 W̃ ← W̃ + wv;
24 end
25 assign vertex v to the ith partition;
26 foreach vertex u, where e(u, v) ∈ E do
27 if u has not been enqueued before then
28 push tuple (i, u) into Q; // sorted

29 mark u as enqueued ;

30 end

31 end

32 end

vertex that have not been enqueued before are pushed to the
queue and marked as enqueued (lines 26 - 31). A vertex is
enqueued together with partition id i, forming a tuple (lines
13 and 28). Partition id i in the tuple marks that the vertex
being enqueued has an adjacent vertex that has already been
assigned to partition i. This information is used to reduce
neighbouring partitions (details will be explained later in
this section).

Graph-growing terminates when every vertex is assigned
a partition id. Graph-growing can reach all vertices, because
the weighted graph is a connected graph. The complexity of
this graph-growing algorithm is O(|E|+ |V | · log2 |Q|), where
|E| and |V | are the number of edges and vertices in the graph
respectively, and |Q| is the average queue length. Each edge
or vertex is visited exactly once, so traversing the graph
takes O(|E| + |V |) time. The time for sorting the priority
queue can be achieved in O(log2 |Q|) whenever a tuple is
pushed, thus the total time for sorting is O(|V | · log2 |Q|).
Due to the low time complexity, heuristics to decrease the
size of the graph for reducing the partitioning time, such as
multi-level coarsening [9], are not required.
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4.1.2 Sorting rules of vertices during graph-growing
The essence of graph-growing lies in sorting the vertices

in the priority queue. Each item in the priority queue is in
fact a tuple (i, v) consisting of the partition id a vertex is
assigned to and the vertex itself. The vertices are sorted
primarily according to the partition ids marked in their tu-
ples and secondarily according to their coordinates. Rules
for comparing vertices are as follows: for two tuples (i, va)
and (j, vb), (i, va) ranks in front of (j, vb) in the queue, if

1. i < j; or

2. i = j and |va.crd − vinit .crd| < |vb.crd − vinit .crd|,
where vx.crd is the coordinate of vertex vx along the
graph-grow direction and vinit is the initial vertex; or

3. i = j and |va.crd− vinit .crd| = |vb.crd− vinit .crd| and
va.λ < vb.λ, where vx.λ is another attribute of vertex
vx that can break the tie between the two vertices.

The first rule has a direct effect on the number of neigh-
bouring partitions: According to Algorithm 2, when the
(i+1)th partition is initiated, there exists a set of vertices
in the queue marked with tuple partition ids equal to (or
less than) i. These vertices are adjacent to the vertices at
the boundary of the previous partition (or partitions). They
will be ranked higher than any vertices pushed later to the
queue, namely, vertices whose adjacent vertices are in the
previous partitions are popped first and grouped into as few
partitions as possible.

The second rule sorts vertices by their coordinates if they
have the same associated partition id in tuples. Vertices
that are closer to the initial vertex along the graph-grow
direction are ranked higher. The graph-grow direction, as
the name indicates, is a general line along which partitions
expand. The use of one-dimensional distances along this
line leads to stripe-like shaped partitions. For example, if
coord is the coordinate in the horizontal direction, resulting
partitions are positioned generally next to each other along
the horizontal direction.

The third rule states another customisable rule in order
to deterministically sort two vertices if they have equal par-
tition ids and coordinates. For instance, it can be the degree
or the id of the vertices.

4.1.3 Comparison with stripe spatial partitioning
The presented graph-growing algorithm is different from

simply cutting the graph directly into stripes. A comparison
is shown in Figure 2, where a small graph is partitioned into
three partitions. Each partition contains two vertices.

Figure 2(a) shows the result when applying the proposed
graph-growing algorithm. Vertex 1 is the initial vertex. We
assume the cutting direction to be horizontal from left to
right, i.e., vertices further left rank higher than those on
the right side. Hence, the vertex visiting order of our al-
gorithm is 1, 2, 5, 4, 6, and 3. In Figure 2(b), the graph
is simply cut into three partitions vertically. This straight-
forward approach leads to the situation where the leftmost
and rightmost partitions also become neighbouring parti-
tions due to the long edge e(1, 4). This is undesirable as it
would introduce additional data dependencies between the
partitions. For a larger and more complex road networks,
the edges in the graph may considerably differ in lengths
(e.g., expressways versus smaller roads). Simply cutting the
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Figure 2: Comparison of the proposed partitioning
algorithm with stripe spatial partitioning, where a
simple graph is divided into three partitions (assum-
ing vertices have equal weights).

graph into stripes can therefore lead to a higher number of
neighbouring partitions.

4.2 Refinement with Local Search
After the initial partitioning, partitions are refined in or-

der to reduce edge cut (i.e., Obj 3), as well as to alleviate
workload imbalance in case there is severe imbalance.

We propose a local search refinement heuristic similar
to Karypis and Kumar’s boundary refinement heuristic [8],
which is a variation of the original heuristic of Kernighan
and Lin [10]. A distinct feature of our proposed local search
refinement heuristic is to restrict neighbouring partitions.
The procedure is described below.

4.2.1 Gains of moving vertices
First, the internal costs and external costs of the ver-

tices at the boundaries of partitions are calculated using
the weights of the connected edges. For a vertex v in par-
tition Gi, its internal cost is the total weight of all edges
that connect vertex v and its adjacent vertices in the same
partition. Let Sv be the set of adjacent vertices of v in the
same partition Gi. Then, the interval cost can be calculated
as:

Iv =
∑
u∈Si

we(v,u) (4)

where we(v,u) is the weight of edge e(v, u).
The external cost of vertex v towards partition Gj (as-

suming Gi and Gj are neighbouring partitions) is the total
weight of the edges connecting v and its adjacent vertices

in partition Gj . Let S
(j)
v be set of adjacent vertices of v in

partition Gi. Then, the external cost is calculated as:

E(j)
v =

∑
k∈S(j)

v

we(v,k) (5)

A vertex can have only one internal cost, but multiple
external costs if it has adjacent vertices in more than one
neighbouring partitions. The external cost indicates the
data volume of communication between neighbouring LPs.
Therefore, the external costs of vertices should be reduced
in the refinement phase.

The gain of moving a vertex from one partition to another
is calculated according to the costs. It is the reduction of
total external costs if a vertex is moved. To move a vertex
means to change the partition id assigned to it. The gain of
moving a vertex v from Gi to Gj is the difference between
its external cost towards Gj and its internal cost, that is,

gaini→j
v = E(j)

v − Iv (6)
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When E
(j)
v > Iv, gaini→j

v > 0, moving vertex v from Gi to
Gj can reduce the total external cost (i.e., the total weight of

cut edges). However, if E
(j)
v < Iv the gain will be negative.

Gains are computed for each potential partition a vertex
could be moved to.

4.2.2 Moving rules
After the gains of boundary vertices are computed, the

vertices are examined for moving from their current parti-
tions to neighbouring partitions. The order of examination
is from the higher gains to the lower gains. A vertex v
will be moved from its origin partition Gi to a neighbouring
partition Gj in two cases: i) when the external cost can be
reduced; and ii) when there is severe weight imbalance that
needs to be alleviated. The first case needs to satisfy all the
following criteria:

1. gaini→j
v > 0

2. Wi > Wmin after v is moved, where Wmin is the min-
imum weight an LP must contain, that is, the weight
of the origin partition is above a low threshold after
moving the vertex, for example, Wmin = 0.9 ·W

3. Wj < Wmax after v is moved, where Wmax is the max-
imum weight an LP can contain, that is, the weight of
the target partition is below an upper threshold after
moving the vertex, for example, Wmax = 1.1 ·W

4. ∀k, l such that if ni,k=0 and nj,l=0 (i, j, k, l being four
partition ids, and ni,j the indicator whether i and j are
neighbours), then ni,k and nj,l have to remain 0 after
v is moved, that is, moving vertex v does not create
new neighbouring partitions

The second case needs to satisfy all the following criteria:

1. Wi > Wmax before the move, that is, the weight of the
origin partition has exceeded an upper threshold

2. Wj < Wi after v is moved, that is, the move is only
from a partition with more weights to another parti-
tion with less weights

3. wv > 0

4. ∀k, l such that if ni,k=0 and nj,l=0, ni,k and nj,l re-
main to be 0 if v is moved (in line with the fourth
criterion in the first case)

The fourth criterion in both cases is a neighbour-restricting
constraint, which is illustrated with an example in Figure 3.
G2 is a neighbouring partition of both G1 and G3. Vertices
1 and 2 in G2 have external costs with both other partitions.
However, it is forbidden to move either of them to G1 or G3

according to the neighbour-restricting constraint, because
G1 and G3 are not neighbouring partitions. Moving vertex
1 or 2, however, would make G1 or G3 neighbours.

Whenever a vertex is moved, its internal cost and exter-
nal costs are updated, as well as the costs of its adjacent
vertices. A pass of refinement is finished when all boundary
vertices are examined for moving. At the end of each pass,
the boundary vertex set is updated. Then, a new pass be-
gins. This process repeats until there is no vertex movement
in a pass or the number of passes has reached a pre-defined
maximum value. The complexity of the refinement phase is
O(B · log2 B ·P ) where B is the number of boundary vertices
and P is the maximum number of passes. The factor log2 B
is for sorting the vertices according to their gains.

1

2

3 4

G2G1 G3

Figure 3: A simple graph in three partitions. Due to
the neighbour-restricting constraint, vertices 1 and
2 are not allowed to be moved to G1 or G3.

5. EXPERIMENTS
The performance of the proposed partitioning algorithm

was investigated in a parallel agent-based traffic simula-
tion, double-blinded [24]. The simulation is implemented
using C++. The communication between LPs is realised
using OpenMPI. Comparison with stripe spatial partition-
ing, and graph partitioning methods, i.e, METIS [9] and
Buffoon [18] is performed. We compare our algorithm, de-
noted as NRGG, to stripe spatial partitioning (denoted as
Stripe), to METIS partitioning (denoted as METIS) and to
Buffoon partitioning (denoted as Buffoon). Parameter set-
tings of METIS and Buffoon are the default values provided
in their software packages. Since the simulation involves
stochastic elements, the simulation was run multiple times
for each method.

5.1 Simulation Configuration

5.1.1 Data and models
The data used in the experiments is based on real-world

data, including the road network and origin-destination ma-
trix of agents. The experiment scenario is set up as follows:
The road network is the network of Singapore city that con-
sists of approximately 43,000 nodes and 84,000 links in our
representation. The origin-destination matrix of agents is
derived from the data of the 2008 Household Interview and
Travel Survey (HITS). Agents move according to the intelli-
gent driver car-following model [21] and a simple rule-based
lane-changing model. The traffic of 19 hours from 5am to
midnight of one day is simulated. The maximum number of
agents during the peak traffic hours of the day is approxi-
mately 73,000.

5.1.2 Partitioning and dynamic load-balancing
settings

We use run-time dynamic partitioning to achieve dynamic
load-balancing. Workload of LPs is examined periodically
every 10 minutes of simulation time. When the imbalance
exceeds 500 agents (value obtained from our previous work
in [25]) the road network is repartitioned by a partition-
ing algorithm, including recalculation of vertex and edge
weights. After that, agents are re-distributed to their new
partitions.

To partially solve the problem that the choice of initial
vertex for graph-growing affects the partitioning result, we
run the proposed partitioning algorithm twice concurrently
by two LPs using two different initial vertices. One is the
vertex furthest to the east, and the other is the vertex fur-
thest to the west. The partitioning result with less edge cut
is chosen as the final result.

In the refinement phase, the workload thresholds for mov-
ing vertices, Wmin and Wmax, are 0.9 ·W and 1.02 ·W , re-
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(a) Partitioning result using NRGG

(b) Partitioning result using METIS

Figure 4: Partitioning of the Singapore road net-
work into 16 partitions.

spectively. A maximum of 8 refinement passes are allowed,
based on the observation that additional passes did not lead
to significant improvement on edge cut.

5.1.3 Hardware
The experiments were run on a cluster consisting of three

compute nodes each of which has the following hardware
configurations: two Octacore Intel(R)Xeon(R) CPUs with
2.60 GHz clock frequency (i.e., 16 physical processors), and
192 GB RAM. The compute nodes are connected via 56
Gbps InfiniBand. Each LP in a parallel simulation is bonded
to one physical CPU core.

5.2 Results
A visual representation of the difference between our al-

gorithm and METIS is given in Figure 4. The road net-
work of Singapore is divided into 16 partitions. Different
colours represent different partitions. Stripe and Buffoon
are not shown since they generate similar shapes as NRGG
and METIS, respectively.

As expected, the partitions generated from NRGG (Fig-
ure 4(a)) are in roughly striped shapes with saw-toothed
boundaries, because the vertices are sorted by their longi-
tudes, whereas METIS (and Buffoon) create more irregular
shapes (Figure 4(b)).

5.2.1 Workload Imbalance
The first indicator of the quality of partitioning algorithms

is the workload imbalance of the simulation. We measure
the imbalance with the number of agents assigned to the
LPs, since every agent has roughly the same computational
workload. The imbalance was captured every 4 seconds of
simulation time. The average for the entire simulation is
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Figure 5: Average load imbalance per update inter-
val in terms of number of agents. Smaller is better.

shown in Figure 5. We observe that all partitioning methods
have achieved similar balancing results, except Buffoon that
has a higher imbalance with 32 and 48 LPs. The reason is
that the workload change of LPs is more severe for partitions
generated by Buffoon. The load-balancing operation was
also triggered more often using Buffoon as a result of a more
dynamic workload, as shown in Table 1.

5.2.2 Synchronisation Messages
The second indicator is the number of messages sent through-

out the simulation. The average number of neighbouring
partitions per partition and the total number of synchroni-
sation messages are shown in Figure 6.

We can observe from Figure 6(a) that the average number
of neighbouring partitions increases as the number of LPs
increases for all partitioning methods. NRGG has gener-
ated the smallest average number of neighbouring partitions.
Stripe has a similar result for 8 LPs, but not 16 and 32 LPs.
The reason is that when a spatial graph is cut into a large
number of partitions using Stripe, long edges tend to span
further than two partitions and lead to more neighbouring
partitions (see Figure 2(b)). Thus, we conclude that NRGG
is more resilient than Stripe when partitions are cut more
finely. Buffoon and METIS generate a much larger number
of neighbouring partitions, because they do not consider the
minimisation of the number of neighbouring partitions.

Consequently, NRGG is able to keep the number of mes-
sages the lowest in all the cases above, as shown in Figure
6(b). Using Buffoon and METIS, we observe a considerable
higher number of synchronisation messages, resulting from
the larger number of neighbouring partitions. Looking at
the lookaheads of LPs, we observe that Buffoon and METIS
have around 40 percent larger lookahead than NRGG and
Stripe. This is an advantage because larger lookahead leads
to fewer synchronisation messages. The larger lookahead is a
result of fewer boundary links between partitions, which gen-
erate less data dependencies. However, this larger lookahead
did not compensate the disadvantage of the larger number
of neighbouring partitions.

5.2.3 Communication Data Volume
The third indicator for the quality of partitioning algo-

rithms is the communication data volume. It is quanti-
fied using the number of migrated agents and the num-
ber of shared states. The results are shown in Figure 7.
Smaller values mean lower transmission time for synchroni-
sation messages.

It can be observed from Figure 7(a) that NRGG has a
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Figure 6: Statistics on synchronisation overhead be-
tween LPs. Smaller values are better.

considerably larger number of migrated agents and shared
states than METIS and Buffoon. This is because edge cut
is not minimised in the initial partitioning phase, and the
local search refinement can only reduce edge cut to a cer-
tain extent. Buffoon leads to the lowest number of migrated
agents and shared states in all cases, which shows that the
natural cut heuristic improves the quality of edge cut in par-
titioning road networks. Stripe performs similar to NRGG.
In the cases of 32 and 48 LPs, NRGG is slightly worse than
Stripe, which shows that to restrict neighbouring partitions
may sacrifice some edge cut quality.

We also investigated the possibility of using multi-level
refinement to increase the search space of local search. It
can reduce the number of migrated agents and shared states
by approximately 10 percent when using 8 LPs. However,
for a higher numbers of LPs, no obvious improvement was
observed. The reason may be that for a large number of par-
titions, the search space cannot be increased by the multi-
level approach, and the neighbour-restricting constraint lim-
its the search space. Hence, multi-level refinement can be
considered for a small number of partitions to reduce com-
munication data volume.

In conclusion, it can be observed that NRGG trades a
higher number of migrated agents and shared states to achieve
a considerably lower number of neighbouring partitions and
synchronisation messages. Whether this improves the over-
all performance of the parallel simulation compared to other
algorithms depends on which indicator plays a more impor-
tant role in the synchronisation overhead. The execution
time of the simulation using the various partitioning meth-
ods will be presented later in this section.
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5.2.4 Partitioning Overhead
The total overhead of partitioning using the partitioning

methods are shown in Table 1. Results of multiple runs were
recorded and the averages were taken.

Table 1 shows that the overhead of NRGG partitioning
is almost negligible compared to the total execution time of
the simulation, which is shown in Figure 8a. The overhead
of NRGG is less than 0.5 percent for all LP configurations.
This results from its low complexity. Low overhead also ap-
plies to Stripe and METIS. Stripe takes the least time since
only one traverse of the vertices is needed for partitioning.
The overhead of Buffoon is higher than other three methods,
however, Buffoon partitioning generated the lowest edge cut.
The large overhead is a result of the more complex coarsen-
ing and partitioning algorithms in Buffoon.

Table 1: Dynamic load-balancing count and total
overheads of the partitioning algorithms in dynamic
load-balancing.

8 LPs 16 LPs 32 LPs 48 LPs

NRGG count 48±2 41±1 30±2 25±2

Time (s) 4.42±0.16 4.94±0.18 5.00±0.27 4.02±0.02

Stripe count 47±1 40±2 31±2 28±2

Time (s) 1.20±0.07 1.33±0.04 1.23±0.07 1.20±0.07

Buffoon count 53±3 42±2 43±5 62±3

Time (s) 91.9±2.38 94.3±3.48 185.1±11.0 421.4±25.0

METIS count 47±2 41±1 31±3 27±1

Time (s) 4.57±0.62 6.25±0.23 4.21±0.54 3.9±0.2
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5.2.5 Overall Execution Time of the Simulation
The overall execution time of the parallel simulation is

shown in Figure 8a. The execution time of the sequential
simulation is around 9,000 seconds. The speed-up of paral-
lel simulation relative the sequential simulation is shown in
Figure 8b.
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Figure 8: Overall execution time and speed-up of
the simulation using various partitioning methods.

Figures 8a and 8b show that the simulation using NRGG
always provides the lowest execution time and thus the best
speed-up. With 8 and 16 LPs, Stripe has similar perfor-
mance as NRGG. This is because Stripe is able to generate
comparable neighbouring partitions as NRGG with such a
small number of LPs. However, with 32 and 48 LPs, the
performance of Stripe degrades faster due to the increasing
number of neighbouring partitions generated by Stripe (see
Figure 6(b)). Thus, NRGG has much better resilience than
Stripe based on our experiment.

In our simulated road network, Buffoon had the longest
execution time. Taking 16 LPs as an example, it spends ap-
proximately 40 percent more time than NRGG and 9 per-
cent more than METIS. According to the figures of load
imbalance and synchronisation overhead indicators, Buffoon
should have similar performance as METIS. However, longer
execution time is incurred because of its much higher over-
head for dynamic partitioning (see Table 1).

5.2.6 Discussion
The performance of a parallel simulation depends on many

factors: load balance, number of synchronisation messages,
and data volume of communication. Compared to the ex-
isting methods, we have shown that for conventional micro-
scopic agent-based traffic simulation, NRGG improves the

overall performance of the simulation by considering the ob-
jective of reducing the number of neighbouring partitions.
This demonstrates that general graph partition algorithms
may not work best in some parallel applications.

NRGG emphasizes more on minimising the number of
neighbouring partitions than minimising edge cut. How-
ever, there is a trade-off between the two objectives. In a
setting where communication data volume plays a more crit-
ical role in the synchronisation overhead than the number of
messages, METIS and Buffoon may provide better perfor-
mance. One example for such a setting is that the increased
communication data volume using NRGG may activate the
rendezvous protocol of MPI, thereby tremendously increas-
ing the synchronisation overhead. In addition, depending
on the synchronisation protocol, the number of synchroni-
sation messages may not be heavily affected by the number
of neighbouring partitions. In these cases, NRGG may not
achieve the best performance. For our microscopic agent-
based traffic simulation, however, NRGG has been shown to
outperform the existing approaches.

6. CONCLUSION AND FUTURE WORK
We have proposed Neighbour-restricting Graph-Growing

(NRGG), a graph partitioning algorithm for reducing the
total execution time of parallel agent-based road traffic sim-
ulation. In addition to minimising the imbalance of parti-
tions and minimising edge cut, NRGG particularity focuses
on reducing the number of neighbouring partitions. It makes
use of a graph-growing algorithm, followed by a modified KL
local search refinement algorithm. The essence of the pro-
posed algorithm is that it tries to constrain the number of
neighbouring partitions of each partition in both the graph-
growing phase and the refinement phase, guided by both
connectivity information and the geographical information
of the road network. Our approach is able to considerably
reduce the number of synchronisation messages. Experi-
ments using our parallel agent-based traffic simulation have
shown that NRGG outperforms stripe spatial partitioning
and both the popular graph partitioning methods, METIS
and Buffoon.

Future work can be conducted from the following aspects:
i) for different settings of traffic simulation and for other
types of parallel applications, the trade-off between the three
objectives can be tuned for optimised performance, depend-
ing on their respective significance; and ii) for dynamic load-
balancing, neighbour-restricting diffusion can be investigated,
where partitions incrementally change their shapes instead
of repartitioning.
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