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Abstract

Modular robotic systems offer the possibility to create a huge range of different

robots from arbitrary assembly of modules. These robots will have different kine-

matics and dynamics, and generating model-based controllers for all possible as-

semblies of modules a priori is impractical. This is especially critical when no

assumptions are made on the geometry and number of modules used. Decentralized

control, the approach used in most previous work, often leads to complicated con-

trol concepts, or to simple control schemes that do not provide global asymptotic

stability without knowledge of the overall system dynamics. This thesis addresses

the control problem for modular reconfigurable robot manipulators differently, by

designing centralized model-based controllers automatically. Three contributions

are presented: 1) a framework for generating centralized, model-based control for

arbitrary assemblies of modules, 2) the enhancement of this framework for providing

robustness to model uncertainty and input disturbances, and 3) accounting for joint

elasticity in modern compliant actuators when maintaining accurate tracking.

The framework centers around the storage of data within robot modules. Upon as-

sembly, these data are collected and used to generate a model, and hence a controller,

automatically. To provide robustness against uncertainty in model parameters and

in the control input, interval arithmetic is used to compute worst-case closed-loop

perturbations online. These are used as feedback to guarantee closed-loop stability

and user-defined tracking performance despite disturbances.

Finally, inherent compliance in actuators is gaining popularity as a way to limit

damage to the robot and increase safety for nearby humans. To maintain accurate

tracking capabilities even when possible joint elasticity is introduced by modern

compliant actuators, a new global tracking control scheme has been introduced.

In this approach, the basic idea is to combine the efficient numerical computabil-

ity of the classical inverse-dynamics control scheme with the robustness typical of

passivity-based controllers with respect to model uncertainties.



The framework and control approaches demonstrated theoretically and experimen-

tally in this thesis show that robust, centralized control for modular robots is feasible

and practical, even when compliant actuators are employed.



Zusammenfassung

Modulare Robotersysteme bieten die Möglichkeit, aus einer Sammlung von Modu-

len eine große Bandbreite an unterschiedlichen Robotern zu erstellen. Die Kinematik

und Dynamik dieser Roboter wird unterschiedlich sein und es ist nicht praktikabel,

eine modellbasierte Regelung für alle möglichen Konstellationen von Modulen a

priori zu generieren. Besonders gilt dies, wenn keine Annahmen über die Geometrie

und Anzahl an Modulen getroffen werden. Dezentrale Regelung, der überwiegend

verfolgte Ansatz in der bisherigen Forschung, führt oft zu komplizierten Regelungs-

konzepten oder einfachen Reglern, welche ohne Kenntnis der Systemdynamik kei-

ne globale, asymptotische Stabilität garantieren können. Diese Dissertation befasst

sich mit dem Problem der Regelung modularer, wiederkonfigurierbarer, robotischer

Manipulatoren auf andere Weise, indem zentrale, modellbasierte Regler automatisch

entworfen werden. Drei Beiträge werden vorgestellt: 1) ein Ansatz zur automatischen

Herleitung der Regelung arbiträrer Konstellationen vonModulen, 2) die Erweiterung

dieses Ansatzes, um Robustheit gegen Modellunsicherheit und Eingangsstörungen

zu gewährleisten und 3) Methoden zur präzisen Bahnverfolgung trotz Elastizität in

modernen, nachgiebigen Aktoren.

Im Mittelpunkt des Frameworks steht die Speicherung von Daten in den Modulen.

Nach der Montage werden diese Daten gesammelt und zur automatischen Herleitung

eines Modells und damit eines Reglers verwendet. Um Robustheit gegen Unsicherheit

der Modellparameter und des Eingangs zu gewährleisten, werden die Worst-Case-

Störungen des geschlossenen Regelkreises mittels Intervallarithmetik berechnet. Die-

se dienen als Feedback, um sowohl die Stabilität des geschlossenen Regelkreises, als

auch die benutzerdefinierte Performanz der Bahnverfolgung trotz Störungen zu ga-

rantieren.

Mechanische Nachgiebigkeit in Aktoren wird in der Robotik immer häufiger ein-

gesetzt, um Maschinenschäden zu begrenzen und die Sicherheit von Menschen in



der Umgebung zu verbessern. Um präzise Bahnverfolgung trotz möglicher Elasti-

zität in modernen, nachgiebigen Gelenken gewährleisten zu können, wird ein neues,

globales Bahnverfolgungskonzept vorgestellt. Die Grundidee dieses Ansatzes ist es,

die effiziente numerische Berechenbarkeit der klassischen invers-dynamischen Regler

mit der Robustheit zu kombinieren, die für passivitätsbasierte Regelung hinsichtlich

Modellunsicherheit typisch ist.

Dieser Ansatz und die in dieser Dissertation theoretisch und experimentell demons-

trierten Regelungskonzepte zeigen, dass robuste, zentrale Regelung modularer Ro-

boter praktikabel ist und auch angwendet werden kann, wenn nachgiebige Aktoren

zum Einsatz kommen.
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Notations

Conventions

Unless stated otherwise, the following conventions hold: scalar quantities are denoted by plain

letters, vectors are denoted by bold lower-case letters, and matrices are denoted by bold upper-

case letters. Further, arguments of functions are sometimes omitted to increase readability

(e.g., M(q(t)) → M). More specific conventions are introduced directly in the chapters in

which they are employed.

Abbreviations

D-H Denavit-Hartenberg

DLR German Aerospace Center

FPGA field programmable gate array

ffwd-ID/PB feedforward-inverse-dynamics/passivity-based

IA interval arithmetic

ID inverse-dynamics

IAB interval arithmetic based

IANEA(. . . ) interval arithmetic recursive Newton-Euler algorithm

LWA(s) light-weight arm(s)

PB passivity-based

PBAFC passivity-based control with adaptive friction compensation

PD proportional-derivative

PID proportional-integral-derivative

NE Newton-Euler

NEA(. . . ) recursive Newton-Euler algorithm
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NEA∗(. . . ) modified recursive Newton-Euler algorithm

RMMS reconfigurable modular manipulator system

VDC virtual decomposition control

module data set of data that characterize an arbitrary module for

kinematics and dynamics

arm-link link of a modular robot arm assembled from modules

DH table of the D-H parameters of a robot arm

DynPar table of the dynamical parameters of a robot arm

ModRob data structure containing the module data of an assembled

modular robot manipulator

Sχ/Cχ sin(χ)/cos(χ)

Tχ( · )/Rχ( · ) homogeneous transformation matrix of the elementary

translation/rotation along/around the χ axis

λmin(A)/λmax(A) minimum/maximum eigenvalue of a matrix A
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Chapter 1

Introduction

Within the active research areas in robotics, the domain of modular and reconfigurable robots

is one of the most promising and timely exploitable for enhancing flexibility of robotic appli-

cations. Modular robots are mechatronic systems with some degree of autonomy which can be

assembled from a set of interchangeable modules [52]. The modules can be quickly exchanged

and rearranged to generate assemblies with different kinematic chains (see Figure 1.1). Their

reconfigurability allows a user to quickly assemble task specific robots, which are especially use-

ful in flexible environments, where the task or the surroundings of the robots may frequently

change. This is also useful when the environment in which the robots operate cannot be known

a priori. Modular robots introduce several beneficial implications such as easy maintenance,

robustness, and versatility. Some exemplary scenarios that clarify these benefits are pitched in

the following.

In industry, modular robots can be significantly advantageous for both robot manufacturers,

by providing a large portfolio of different robots with a few standard modules, and for customers,

who can adapt their robots for different applications without purchasing new ones. Another

immediately apparent benefit of this technology lies in the reduced down-time that can be

guaranteed for automated cells in the event of faults. In fact, modules that include faulty

components can be quickly exchanged for new ones, without needing to decommission the whole

robot. Similar benefits can be considered for other scenarios in which the fix to be executed can

not be easily or safely performed by humans. In these cases, modular robots introduce simplicity

in the modules’ exchange, in the disposal of the faulty ones, and in the quick recovery of the

nominal functionality. In addition, the reconfigurability of these systems can be exploited for

enabling tasks that are unforeseeable a priori in flexible environments or for optimizing the

1
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Figure 1.1: Illustration of a modular robot setup.

robotic structure e.g., to minimize energy consumption while performing repetitive tasks or

to minimize task execution time. Besides being useful in flexible manufacturing, the above-

mentioned aspects are particularly advantageous in unstructured environments typical of space

operations and exploration [117], automated agriculture [11], and search and rescue scenarios

[112].

In recent decades, several modular robotic manipulators have been proposed by research

groups worldwide. Early developments of such a robotic concept trace back to the ’80s, when

the author in [114] introduced the concept of a manipulator that could be assembled in various

configurations starting from a set of modules (mechanical joints and links). An extension of

this concept was proposed in [85, 93], where the authors introduced the Reconfigurable Mod-

ular Manipulator System (RMMS). This platform included configuration independent control

software and self-contained modules (see Figure 1.2a). Such work represented a fundamental

step forward, since it proved the concept of a modular, reconfigurable, and quickly deployable

robotic system. Other robotic solutions based on this concept were subsequently presented. For

example, a platform composed of two modular reconfigurable arms for experiments of collabora-

tive robot operations was proposed in [51]. Another platform was introduced by T. Matsumaru

from Toshiba Corp. in [72], whose design has been focused on the ease to use and re-assembly

for a user. More recently, a spring-assisted modular robot, which shows enhanced manipulation

and payload capabilities, was proposed in [66].

Among the commercially available modular robots are the Light Weight Arms (LWAs) 4P

2
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Figure 1.2: Examples of modular robot manipulators developed so far (a, b, c, and d) and robots

with strong hardware modularity (f, e, and g). In particular, the figure shows how the modules of

the LBR III arm developed at the DLR (f) have been used to build humanoid platforms such as

(e) and (g). Sources: Carnegie Mellon University [85,93] for (a), SCHUNK GmbH & Co. KG for

(b) and (c), Comau SpA for (d), and German Aerospace Center (DLR) for (e), (f), (g).

and 4D from SCHUNK GmbH & Co. KG (see Figures 1.2b and 1.2c) and the “e.Do” platform

from the robot manufaturer Comau SpA (see Figure 1.2d). Further, despite their design as

fixed-configuration arms, a strong hardware modularity can be observed in other popular and

commercially available robots such as the KUKA light weight arm, from technology developed

at the German Aerospace Center (DLR) [47]. The arm originally developed at the DLR has

a strong hardware modularity that also allows usage of the modules for realizing humanoid

platforms, e.g., [42] (see Figures 1.2f, 1.2e, and 1.2g). Modern modular actuation units with

variable stiffness capabilities based on [25] have interestingly been proposed by QBrobotics R©.

These units can be used for realizing different assemblies by means of link modules of different

geometries. Their variable stiffness actuators can be exploited for creating robots which mimic

the compliant characteristics of humans.

Modular robots provide flexibility at the price of an increased design complexity. For ex-

ample, mechanical design optimization cannot be performed considering the complete robot

since arbitrarily different assemblies can be composed. The reconfigurability of the systems in-

troduces specific communication requirements for control and data exchange between modules.

3



1. INTRODUCTION

Special attention should be paid to the connectors that must be able to properly stand joint

forces and torques without being excessively bulky. Besides the above-mentioned electrome-

chanical design aspects, significant difficulties also arise in the use of these robots. Nontrivial

aspects that complicate the real-world exploitation of these systems are the assembly selection

and the motion-control problems. While the first aspect may prevent the benefits of this class

of robots from being properly exploited, the second may lead to motion performances that are

significantly inferior with respect to classical fixed-configuration robots.

The assembly selection problem is non-trivial due to the complexity of the combinatorial

problem which depends on the task, the set of modules available, and a possibly present cost

function to be minimized. This problem has attracted several reasearchers so far and several

approaches have been proposed (see e.g., [52] for a complete review). One which considers

kinematics only and uses a penalty function for less-likely combinations of modules is proposed

in [22]. The authors of [116] propose a task-based configuration synthesis approach to minimize

the number of degrees-of-freedom of the arm. A recently proposed time-efficient approach,

which is based of subsequent elimination of compositions of modules by means of increasingly

complex tests, can be found in [132]. These tests involve kinematic reachability, static force

constraints, and obstacole and self collision avoidance. This approach has been subsequently

enhanced by considering dynamics and cost-optimal solutions in [53].

The control design of modular robots has been a longstanding problem that traces back to

the first developments of this robotic concept [85,93,114]. The problem is that the overall system

dynamics and kinematics are typically unknown after an arbitrary assembly. The motion-control

performance of controllers designed and tuned before knowing the dynamics of the final assembly

(e.g., with classical, simple approaches like Proportional-Integral-Derivative schemes) may be

significantly poor and even lead to instabilities [127]. Most work in the control of modular

robots proposed the use of advanced decentralized control schemes for controlling such systems

e.g., [62,74,121]. The main motivation behind the development of these decentralized controllers

is the intrinsic difficulty of obtaining the system dynamics for designing centralized model-based

controllers. Unfortunately, forcing modular robots to require advanced decentralized or adaptive

controllers for providing satisfactory control performance makes them significantly unattractive

with respect to classical fixed-configuration robots. This is due to the fact that classical robots

can rely on well-established, high-performance centralized model-based control methods instead

(e.g., computed torque control [29]). In fact, while decentralized control approaches treat

coupling effects as disturbances to be rejected, centralized model-based controllers can exploit

4
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Figure 1.3: Examples of modules: (a) complex joint module, (b) link module, and (c) connectors.

the knowledge of the model for direct compensation, resulting in better performance, especially

when direct drive actuators are employed and fast trajectories are required [96, Chapter 8].

In addition, centralized model-based architectures can also be used beneficially for impedance

control [78], dynamic scaling of trajectories [49], and fault detection [36].

This thesis is focused on the development of centralized model-based control methods that

allow the motion-control performance of modular, reconfigurable manipulators to approach

those of their classical fixed-configuration counterparts. In the following, a more detailed intro-

duction to the control problem for this class of robots is provided. The introduction continues

with a summary of the contribution made by the author to the state of the art and ends with

the outline of the thesis.

1.1 Introduction to the Control Problem

This thesis focuses on the control of modular reconfigurable arms that can be assembled from

heterogeneous modules. This implies that no specific geometry is assumed and arbitrarily

shaped modules may be involved. Throughout this thesis, a module is a rigid object that can

be used as a building block for composing a robot arm. This is possible by means of standardized

connectors that are part of each module. An example can be found in Figure 1.3c. Hereafter,

the connectors considered allow the connection of consecutive modules at only one relative

orientation. This is assumed for the sake of simplicity and does not affect the generality of the

results presented as it becomes evident later. A fundamental distinction considered is between

modules that introduce one or more degrees of freedom to the robotic structure once assembled

5



1. INTRODUCTION

and those that do not. The former are denoted as joint modules: simple joint modules if they

have only one joint axis, and complex joint modules if they have more (see Figure 1.3a). The

modules that do not introduce degrees of freedom to the robotic structure are denoted as link

modules instead (see Figure 1.3b). Joint and link modules are considered to be rigid bodies.

Possible passive compliance is considered, if applicable, to be part of the actuation unit e.g.,

when series elastic actuators [89] are employed.

PSfrag replacements

Assembling of the robot

select modules

Automatic Controller Design

data collection

model-based
controller generation

(automatic)

system in operation

Characterization of each module and
storage of the module data in itself

Figure 1.4: Illustration of the automatic centralized

controller design approach.

In this thesis the motion con-

trol problem of modular reconfigurable

robot arms is addressed, assuming

that a set of heterogeneous modules

of the type described above is avail-

able. This control problem is more dif-

ficult with respect to the case of clas-

sical fixed-configuration robots, since

the robot kinematics and dynamics can

frequently change due to reassembling.

This thesis presents methods that allow

the deployment of model-based con-

trollers automatically, after the modu-

lar arm has been arbitrarily assembled

as illustrated in Figure 1.4. The pre-

sented approaches account for the new

kinematics and dynamics that each new

assembly exhibits to guarantee stability and control performance. To this end, the problem of

automatic (on-the-fly) generation of model-based control for modular robots with rigid compo-

nents and transmissions is first addressed, assuming the dynamical parameters of the modules

can be known precisely. Second, the assumption of having relatively precise knowledge of the

dynamical parameters of the modules is relaxed, and the problem of guaranteeing robust per-

formance when facing model uncertainties and external disturbances is presented. Then, the

assumption of complete rigidity of the assembled robot arm is relaxed, and the problem of the

inclusion compliant joints is tackled.

6
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Tracking Control with Rigid Modules

With the generic modular robot setting described above, and considering the case that

joint modules do not have significant elasticity, modules can be serially connected to realize an

assembly of a rigid robot manipulator. Such assembly can be changed arbitrarily by adding

additional modules or by swapping them for new ones with different shapes. Within the con-

sidered setting, the main motion-control challenge is that the resulting system kinematics and

dynamics may be different for each different assembly of the arm. These models cannot typi-

cally be know a priori, especially when considering a large set of available modules and that new

arbitrarily shaped modules could enter the set already available. The study of each different

assembly, for manually obtaining the respective dynamic and kinematic model, is a nontrivial

and time-consuming task which would limit the benefits from quick reconfigurability introduced

by this class of robots. This thesis first faces the problem of automatically designing model-

based control laws for each new rigid robot assembly, in order to ensure tracking of sufficiently

smooth trajectories in joint- and task-space.

Tracking Control with Model Uncertainties

For the same modular-robotic setting described so far, the control problem that arises from

input disturbance and uncertain dynamical parameters of the modules is also addressed. In

practice, uncertain knowledge is typical for dynamical parameters like inertia tensors, coor-

dinates of the centers of mass, and friction model coefficients. In particular, when the robot

grasps unknown payloads, the dynamical parameters of the last body of the arm (end effector

with grasped payload) can not be known a priori and may vary significantly from the nomi-

nal conditions. For the above-mentioned uncertainties, this thesis focuses on the problem of

automatically designing controllers that provide both robust stability and robust performance.

With the term robust stability, this thesis considers the same meaning and terminology for uni-

form, ultimate boundedness of the error trajectories used in [30]. A controller that guarantees

this practically ensures that the error trajectories will converge to a ball centered at the origin

in finite time and stay within that ball for future times, despite disturbances. Similarly, this

thesis refers to robust performance for a controller that ensures uniform ultimate boundedness

of the error trajectories when a user-defined radius of the ball is specified.

7



1. INTRODUCTION

Tracking Control with Elastic-Joint Modules

The third fundamental control problem considered in this thesis arises from the possible

presence of non-negligible elasticity when compliant actuators are employed. With respect to

the rigid case, elastic joints provide enhanced resiliency to the robotic structure, safer interaction

with the environment and humans, energy storage, or force control capabilities [109]. The most

common compliant actuation units are composed of series elastic actuators [89]. In these cases,

each elastic joint can be seen as a serial connection of the rotor, the transmission, and the

elastic element (see Figure 1.5). For simplicity, the possible elasticity of the transmission can

usually be assumed to be part of the elastic element. The elastic element is then connected to

the rigid link of the robotic arm.

PSfrag replacements
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Figure 1.5: Schematic representation of

a robot arm with series elastic actuators.

The complexity of the motion-control problem in-

creases significantly with respect to the case in which

only rigid components are involved. When consider-

ing a robot arm fully composed of elastic joints, one

can grasp the (conceptual) increase in complexity by

considering that the bodies involved in the motion

with non-negligible dynamics double. Moreover, the

control torque can be directly exerted on a subset of

these bodies only (the rotors). In practice, to prop-

erly model such robots, the state variables have to

be extended (doubled) to capture both motor-side

and link-side dynamics, coupled through the elas-

tic elements. The motor-side dynamics describe the

motion of the ensemble rotor-transmission while the

link-side dynamics describe the motion of the outer

robot structure, which is equivalent to the rigid robot

case.

Within the modular reconfigurable robotic setting subject of this thesis, the presence of

compliant actuators creates a new class of joint modules to be considered (elastic-joint modules).

When the set of available modules has at least one elastic-joint module, a robot (fully or

partially) composed of elastic joints can be assembled. As control designers typically consider

the presence of elasticity (for maintaining precision and closed-loop stability), so too should

any procedure that automatically synthesizes the control after assembly.

8



1.2 Author’s Contribution

When considering the generic scenario of modular reconfigurable robot arms, it is important

to stress that the enumeration of all possible link-side models for arbitrary assemblies becomes

difficult. This aspect represents a fundamental limitation in the control design process, as can

be observed with rigid modules. In summary, the last fundamental problem addressed in this

thesis is to provide controllers that can be automatically synthesized after the assembly of

modules with possibly compliant actuators. In particular, these control schemes should be able

to globally track sufficiently smooth, link-side joint-space trajectories.

1.2 Author’s Contribution

New approaches for providing centralized model-based control of modular robot manipulators

have been proposed by the author. These methods provide: 1) a systemic way for the automatic

design of centralized, model-based controllers after reassembling, 2) automatically deployable ro-

bust performance control despite the presence of model uncertainties and external disturbances,

and 3) a robust scheme for global tracking control in the presence of elastic-joint modules.

Preliminary research results led to a novel method for automatically and systematically

designing centralized model-based control laws of modular robot manipulators. This approach

was first published in [124], then successively extended and applied on a real robot test bed [127].

With this approach, as demonstrated later in this thesis, modular robots can benefit from the

same model-based control schemes available for their fixed structure counterparts, through

automatic modeling and controller design. The automatic modeling approach developed can

also be exploited by optimization procedures for task-based assembly selection as proposed in

the additional contribution [132].

As for all model-based control approaches, it is important to consider that model uncer-

tainties are crucial for motion-control performance. A novel interval-arithmetic-based robust

control method has been developed and was first published in [125]. This approach has been

complemented with the work in [126] to remove its main drawback of a potentially high com-

putational cost. For the first time, these contributions enable the on-the-fly commissioning

of robust model-based controllers for modular reconfigurable robots. Another implication of

the work in [126] is that it enabled the development of robust trajectory scaling and collision

detection strategies as shown in [133]. Interestingly, the proposed approach additionally paved

the way for the development of an effective robust control method for continuum robots, which

has been published in [131].

9



1. INTRODUCTION

The consideration of possible elasticity in the joints that may be introduced by modern

compliant actuators led to the development of a new control scheme that has unique benefits

with respect to the state-of-the-art approaches. This approach is proposed in [128] and allows

merging the robustness typical of passivity-based control schemes with the efficient numerical

computability of inverse-dynamics schemes. A detailed analysis of robustness and additional

experimental results were collected in [129]. Finally, a new framework for enhancing flexibility

in automation, as a result of a combination of the framework of programming by demonstration

and modular robots, has been developed and successfully applied to realistic industrial scenarios

[130].

Throughout this thesis, the phrases “the author’s contribution” and “the author’s work”

refer to works that have been authored or co-authored by the author of this thesis.

1.3 Outline of the Thesis

This thesis is built around the three fundamental control problems previously mentioned. Three

chapters have been provided to describe solutions to these problems. Each of these chapters

starts with an introductory section, which also discusses the state-of-the-art works related to the

respective problems. The core part of Chapter 2 provides a framework for automatic synthesis

of the centralized control that accounts for the kinematics and dynamics of each new robot

assembly. The basic idea is that the task of modeling the entire arm is translated into the task

of modeling each module instead. This has the benefit that the parameters of the modules

are not assembly dependent and can be obtained only once. For this purpose, a systematic

procedure and a novel notation both for kinematics and dynamics are detailed in Chapter 2.

The application of this approach on a real modular robot is described, along with experimental

results that verify its effectiveness.

Starting from the results in Chapter 2, a possible extension is provided in Chapter 3 which

relaxes the assumption of perfect knowledge of modules’ parameters. Here, a new control

method for robust control of robot arms is described. Most robust controllers require empiri-

cal estimation of model perturbations, undermining the quick deployability which is necessary

for modular robots. The new proposed approach solves this problem using interval arithmetic

for automatic online computation of worst-case perturbations due to model uncertainties. In-

terestingly, this method enables the automatic deployment of the robust control with supe-

rior performance compared to earlier solutions. For this approach, the relevant preliminaries,
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the theoretical derivation, a simulation comparison, and experimental results are presented in

Chapter 3.

Chapter 4 describes possible solutions to the automatic synthesis of controllers in the pres-

ence of joint modules with non-negligible elasticity. This is possible by using some existing

approaches for the control of elastic-joint robots in conjunction with the framework described

in Chapter 2. A novel approach which provides enhanced robustness is presented in detail along

with the analysis of its robustness with respect to model uncertainties. Simulation results show

the performances, and the experimental results its real world applicability. Each of the above

mentioned chapters is concluded with a summary section which wraps up the main outcomes.

The conclusion of the thesis is provided in Chapter 5 and includes possible future research

directions.
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Chapter 2

A Framework for Automatic

Centralized Controller Design

After outlining the main works which constitute the state of the art of modular-robot control,

this chapter focuses on a modern approach that aims at removing—at the root—the main

limitations related to the motion-control of this class of robots. With the core content largely

based on the results in [124,127], this chapter presents a framework for automatically designing

model-based controllers of modular manipulators, ranging from module modeling to tracking

task-space trajectories. This chapter includes a description of an experimental application to a

commercially available modular robot manipulator and related experimental results.

2.1 Introduction and State of the Art

The control problem of modular robot manipulators has attracted significant attention in recent

decades. As it is the case for classical fixed-configuration robots, two main trends can also be

observed for controlling modular robots: decentralized and centralized approaches.

2.1.1 Decentralized Control

Most published works for controlling modular robots have focused on decentralized schemes.

The main motivation of all these approaches is the impracticability of obtaining a dynamical

model for all possible assemblies of modular robots for designing a corresponding model-based

controller. This problem becomes more critical the larger the set of available modules, due to

the increase of the number of possible combinations of modules. The probably simplest decen-

tralized controllers that can be employed are the same that have become the most employed in

13
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industry for classical fixed-configuration robots. These approaches are typically based on the

Proportional, Integral, and Derivative (PID) action and are designed for each joint by consid-

ering the dynamics of the actuator only and by assuming the couplings due to the movements

of the whole arm as disturbances to be rejected. A detailed description of such classical ap-

proaches can be found e.g., in [96, Section 8.3]. These simple schemes may provide acceptable

control performance when using sufficiently light-weight modules, in which the resulting cou-

pling effects can be considered as negligible. However, while for classical robots the structure

does not change and fine-tuning can be done only once, there is no guarantee that no insta-

bilities will appear during or after re-tuning when using arbitrary modules and changing the

robot assembly. In practice, the use of simple, model-free decentralized controllers that do not

guarantee global asymptotic stability (e.g., PID) may lead to time consuming tuning phases

that undermine the benefits of the fast reconfiguration capabilities of modular reconfigurable

robots. Approaches that enhance the simple PID structure with nonlinear terms for obtaining

global stability have also been proposed e.g., in [56, 67]. However, the tuning in these cases in

nontrivial as well, since the knowledge of bounds on norms of model terms is necessary. Ob-

taining these bounds is difficult for modular reconfigurable manipulators whose structure can

arbitrarily and frequently change.

Several decentralized control schemes specifically designed for modular robots have been de-

veloped in recent decades. The authors in [74] introduce a scheme based on fuzzy gain tuning of

distributed PID controllers. This scheme addresses the regulation control problem of modular

robots and interestingly requires no knowledge of the dynamic parameters of the manipulator.

The authors in [121] consider the dynamics of the assembled robot arm as those of a set of

interconnected subsystems and design an adaptive control action to cancel the couplings. That

work is strongly related to [106], in which Tang et. al. propose a decentralized robust control

method for mechanical systems with its application to robot tracking control. Liu et. al. in [65]

propose a decentralized control method based on joint torque sensing for compensating model

uncertainties resulting from reconfiguration, which relies on a decomposition-based robust con-

trol scheme [64] for compensating remaining uncertainties, such as friction. Li et. al. in [62]

propose a decentralized and robust control method which combines a linear PD action and a

nonlinear term to provide a controller which has a simple resulting structure and requires low

tuning effort after a reconfiguration. A control scheme based on the use of both the Virtual De-

composition Control (VDC) framework [122] and embedded FPGA devices has been proposed

in [123]. This approach does not require torque sensing and distributes the computations of the
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2.1 Introduction and State of the Art

robot dynamics to the FPGA devices of each actuator. Even though the authors report high

tracking performance in experiments, this method presents high implementation complexity

compared to the previously mentioned decentralized schemes and requires the kinematics to be

computed in a centralized fashion.

2.1.2 Automatic Modeling and Centralized Control

While decentralized control approaches treat coupling effects as disturbance to be rejected,

centralized model-based controllers can exploit the knowledge of the model for direct compen-

sation. This results in better performance, especially when direct drive actuators are employed

and/or fast trajectories are required [96, Chapter 8].

The author’s work in [124, 127] proposes an alternative to the current research trend of

developing decentralized control schemes by fostering the automatic generation of centralized

controllers with a systematic approach, using data that are stored in the modules or in a

database. These data are used to automatically generate the complete model of the arm and

centralized model-based controllers, once gathered at a central control unit after each assembly.

Automating the generation of the centralized model-based control for modular robots has the

remarkable advantage of solving the control-related difficulties at their origin.

For realization of centralized model-based controllers for modular robots, the automatic

derivation of the model of the arm for each new assembly is crucial. It is important to note

that one of the seminal works in modular robotics mentions the use of data stored in the modules

for automatically obtaining the gravity vector in [85], without details on the approach followed

for automatically obtaining the dynamics of the assembled arm. Other authors also focused on

the derivation of complete models from modules such as in [26, 27, 73] based on [86] and the

Product of Exponentials (PoE) formulation. However, these methods have not shown seamless

applicability to arbitrarily shaped modules and are more suitable for modular structures with

specific geometries [16]. On the other hand, the author’s work in [124, 126] is based on an

extension of the standard Denavit-Hartenberg (D-H) convention [41] and has been specifically

developed to be systematically applicable to arbitrary modules. Since the D-H convention is

among the most widely employed methods for kinematic modeling of standard manipulators, a

collateral benefit of extending it instead of relying on the PoE formalism is that most researchers

and practitioners may find it more familiar. Please note that even though beneficial features

have been reported when using the PoE formulation when performing kinematic calibration, the

recent development of an automatic approach for going from the D-H to the PoE formulation
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Figure 2.1: Illustration of the control approach application.

and vice versa in [113] removes the exclusivity of the benefits that have been typically associated

so far with the PoE formulation only.

Being based on an extension to the standard D-H convention, the author’s work in [124,126]

is related to the previous works [14, 16] and [57]. While [57] deals with revolute joints only, in

[14,16] the problem of the D-H convention’s non-uniqueness for some special cases of consecutive

joint axes [96, Section 2.8.2] has not been considered. This is an important aspect because e.g.,

having parallel joint axes is not uncommon and falls into the category of these special cases.

The previously mentioned extension to the standard D-H convention has been proposed in the

author’s work [124] as a solution for these shortcomings. As illustrated in Figure 2.1, the basic

idea of the author’s method starts with the characterization of each module to obtain a set

of data. These data consist of a unique identification number and specific kinematic/dynamic

parameters of the modules that will be described in detail in the next sections. The data are

derived only once at the time of the module development or calibration. They are assembly

independent and will be simply called module data in this thesis. After the robot is assembled,
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the central control unit collects the module data into an array of structures and processes

them for automatic generation of the assembled robot description and centralized model-based

control laws that let the robot operate with global asymptotic stability. After assembly, the

data are gathered by an appropriate communication network which is also used to control the

robot.

In the next Sections 2.3 and 2.4, the author’s systematic method for modeling modular

robots is presented. For both kinematics and dynamics, the approach starts by presenting a

way to characterize arbitrary modules. In both cases, the details on how the data are processed

recursively to obtain the respective kinematic and dynamical model of the assembled arm follow.

The details of the implementation of centralized joint-space control schemes and closed loop

inverse kinematic algorithms for solving numerically online the inverse kinematic problem are

presented in Section 2.5.

2.1.3 Network Solutions

A suitable network topology for practical implementation of the approach in [124, 127] is a

tree structure, since it supports serial and branch-structured manipulators and is composed

of a coordinator (central control unit), routers (intermediate modules) and end-devices (end

effectors). In principle, with this structure, the coordinator can get measurements (e.g., joint

position and velocity) from the modules, set input commands to the actuators, and set/get

data in/from the memory database of the modules (e.g., the module data). Additionally,

knowing the routing tables enables in principle the central control unit to detect the robot

configuration. SpaceWire1 is an example of a suitable communication network for controlling

modular robot manipulators. Its implementation for controlling a system of this class with

high speed requirements and also with inter-module communication capabilities is described

in [61]. An alternative is EtherCAT2 which has been used in [9], where the actuation units have

strong hardware modularity. When considering EtherCAT for controlling modular robots where

modules can be arbitrarily swapped and replaced, the generation of the network description

for each new assembly is required. However, this does not require significant time delays or

particular low-level control knowledge. A simple communication bus (e.g., CAN bus3) could

also be used. In this case, if the sequence of the modules that compose a new assembly is

1http://spacewire.esa.int/content/Home/HomeIntro.php
2http://www.ethercat.org/
3http://www.can-cia.org/
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not given by the user, additional communication lines should be made available as described

in [115] for self-detection of the configuration of the modules.

2.2 Formulation of the Control Problem

Once assembled, each robot arm has N degrees of freedom, where N is the total number of

joint axes introduced by the joint modules. After assembly, the robot arm does not differ from

a classical fixed-configuration robot. Therefore, using bold symbols for vectors and matrices,

the dynamical model of such a system can be written as follows [96, Chapter 7]:

M (q) q̈+C (q, q̇) q̇+ f (q̇) + g (q) = u, (2.1)

where q ∈ R
N is the vector of the joint positions, M (q) ∈ R

N×N is the symmetric and positive

definite inertia matrix, C (q, q̇) q̇ (with C (q, q̇) ∈ R
N×N ) is the vector of the Coriolis and

centrifugal terms, f (q̇) ∈ R
N is the vector of friction terms, g (q) ∈ R

N is the vector of gravity

terms, and u ∈ R
N is the vector of the actuation forces/torques. It can be shown that with

a suitable factorization of C(q, q̇), the matrix N(q, q̇) = Ṁ(q) − 2C(q, q̇) is skew-symmetric,

and therefore

xTN(q, q̇)x = 0, ∀x ∈ R
N , (2.2)

which can be beneficially used for control design [18, Section 2.1].

Within the considered setting, the main challenge to the design is that (2.1) may be differ-

ent for each different assembly of the arm. These models cannot typically be know a priori,

especially when considering a large set of available modules and that new, arbitrarily shaped

modules could enter the set of modules available. This thesis first faces the problem of automat-

ically designing model-based control laws for each new assembly, to ensure tracking with global

asymptotic stability trajectories in joint-space qd(t), which are at least twice differentiable:

lim
t→∞
‖qd(t)− q(t)︸ ︷︷ ︸

:= e(t)

‖ = 0,

where ‖e (t)‖ is the Euclidean norm of the joint-space tracking error vector. In addition, the

problem of computing the desired joint-space trajectories from task-space ones through inverse

kinematics is also considered, targeting

lim
t→∞

‖ep (t)‖ = 0, lim
t→∞

‖eo (t)‖ = 0,
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where ep ∈ R
3 and eo ∈ R

3 are the tracking error vectors for position and orientation of the end

effector, respectively. For solving this problem, it is assumed that the dynamical parameters

of modules can be obtained with high accuracy (e.g., by using modern CAD software or direct

measurements).

2.3 Kinematic Modeling using Module Data

Automatic modeling of the kinematics can be achieved by relying on a proper characterization

of each module and exploiting an extension of the standard D-H convention [41]. Before pre-

senting the proposed extension, the standard convention is briefly recalled for the sake of clarity.

Standard D-H Convention

The forward kinematics for serial robot manipulators is commonly derived by multiplying the

homogeneous transformation matrices relating consecutive link-fixed reference frames, from the

base to the end-effector. The D-H convention provides a systematic method for the assignment

of the link-fixed frames. According to the standard D-H convention (see Figure 2.2a), for the

ith link, zi is placed along the axis of the joint at the connection with linki+1. The xi axis lies

along the common normal between the axis zi−1 and zi pointing toward linki+1. The origin

oi of the frame fixed to linki is set at the intersection of the common normal with zi. Finally,

the yi axis completes the right-handed coordinate system (which is not shown in Figure 2.2).

To define the relative transformation of coordinates of subsequent frames, four parameters are

introduced: ai, di, αi, θi. With reference to Figure 2.2a, ai is the distance between oi′ and oi

along the common normal between the axis zi−1 and zi, di is the distance between oi−1 and oi′

along zi−1, θi is the angle between xi−1 and xi′ about zi−1, and, finally, αi is the angle between

zi and zi−1 about xi. Among these parameters, di is variable when the joint is prismatic, and

θi when the joint is revolute. By adopting this convention and using Sχ/Cχ as abbreviations of

sin(χ)/cos(χ), the homogeneous transformation matrix relating the frame of linki to the one

of linki−1 is [96, Section 2.8.2]

Ai−1
i =


Ri−1

i Ui−1
i

0T 1


 =




Cθi −SθiCαi
SθiSαi

aiCθi

Sθi CθiCαi
−CθiSαi

aiSθi

0 Sαi
Cαi

di

0 0 0 1




. (2.3)
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Figure 2.2: Representation of a link of a manipulator, showing the parameters for kinematics

using (a) the standard D-H convention and (b) its extension introduced in [124].

2.3.1 An Extended D-H Convention

To address the automatic nature of the presented approach, it is important to resolve the prob-

lem that the standard D-H convention is not unique. In fact, for some relative orientations of

subsequent joint axes (i.e., parallel, intersect, or overlapped) the modeler has partial freedom

to place the link-fixed frames. Even though this freedom is usually exploited to simplify the

modeling procedure, it represents a problem for an automatic approach that requires a deter-

ministic rule for assigning the frames. The frames can also be set deterministically in these

cases by extending the standard D-H convention. In particular, with reference to Figure 2.2b:

• when the z axes intersect, the xi unit vector is obtained from their cross product;

• when the z axes are parallel, the xi unit vector is set along the common normal between

them and the origin oi is set at the joint connection PJi;

• when the z axes are superimposed, the xi unit vector is aligned with xi−1 and the origin
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oi is set at the joint connection PJi.

In addition to the standard D-H parameters for each link, as shown in Figure 2.2b, two addi-

tional parameters are present (pi and ni) that are needed to completely describe the transfor-

mations of coordinates from one joint to the successive one. These parameters are also required

for automated derivation of the set of D-H parameters for each link as it is clarified later. The

parameter pi is the z coordinate of the point PJi−1 measured from oi′ , and the parameter ni is

the z coordinate of the point PJi measured from oi. Considering the joint variable qi, noticing

in Figure 2.2b that the following relations hold is straightforward:

di =

{
ni−1 − pi, (revolute joint),

ni−1 − pi + qi, (prismatic joint).
(2.4)

Furthermore, to consider a possible angular offset between consecutive x axes when the joint is

in zero position (qi = 0), a parameter γi is introduced and simply included as follows:

θi =

{
γi + qi, (revolute joint),

γi, (prismatic joint).
(2.5)

It is not difficult to notice that given ai, αi, γi, pi, ni, and the type of the joint actuation for

each link of the manipulator, the parameters di and θi of the standard D-H convention can be

easily computed by using (2.4) and (2.5), while ai and αi simply remain the same.

The above-described extension of the D-H convention is applicable to any serial manipula-

tor and can be used to model the kinematics in a systematic and unique way. The automatic

modeling approach described in this section uses this extension in two cases. One is after the

robot is assembled and the module data for kinematics are collected at the central control unit.

In fact, in this case the set of parameters of the extended D-H convention for the assembled

manipulator are automatically obtained, from which the derivation of the standard D-H pa-

rameters follows directly as described above. The second case when this extended convention

is employed is to define a notation for characterizing heterogeneous modules and thus provide

a systematic way for deriving the module data for kinematics of arbitrary modules.

2.3.2 Definition of the Module Data for Kinematics

In general, the kinematic characterization of the modules allows one to parametrize the trans-

formation of coordinates from a frame placed at the input connector of a module to a frame

placed at the output one. This is described for joint modules first, and then for link modules.

Considering that every link of an assembled modular manipulator (arm-link) is composed of
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modules, a procedure for the synthesis of the module data for kinematics to obtain the param-

eters of the extended D-H convention (ai, αi, γi, pi, ni) is also necessary, and is later presented

in Subsection 2.3.3.

The procedure for characterizing a joint module can be described by considering the exem-

plary joint module represented in Figure 2.3a. The first step is to fix a frame of reference for

the proximal part and the distal part, located in the center of the interfaces of the input and

output connector, respectively. The axes xin and xout are aligned with a unique and standard-

ized direction on the connection interface such that, when subsequent modules are connected,

the x axis of the output frame of one module is superimposed onto the x axis of the input

frame of the consecutive one. The z axes are normal to the respective connector interfaces: zin

points in towards the input connector, and zout points outwards from the output one
(
see Fig-

ures 2.3b and 2.3c
)
. The y axes are selected to complete the respective right-handed frames of

reference (not shown in the figure). To characterize both the proximal and the distal parts with

a set of parameters, a similar approach of the extended D-H convention described previously

is employed, and four parameters for the proximal part (apl, αpl, ppl, npl) and for the distal

part (adl, αdl, pdl and ndl) are obtained
(
see Figures 2.3b and 2.3c

)
. These parameters depend

on the geometry of the module and can be inferred considering two auxiliary frames for both

the proximal and the distal parts. For the proximal part, with reference to Figure 2.3c, the

first auxiliary frame has its origin at o′pl, the intersection of the common normal between zin

and the joint axis with zin. The axis x′
pl is set along the common normal pointing towards the

distal part, and z′pl is set along zin. The y axes are not shown because they simply complete

the respective right-handed reference frames. The second auxiliary frame of the proximal part

has its origin in o′′pl, at the intersection of the common normal with the joint axis; its axis x′′
pl is

set along the common normal and points towards the distal part, and z′′pl is set along the joint

axis. The four parameters for the proximal part have the following meanings:

• apl is the distance between o′pl and o′′pl along the common normal;

• αpl is the angle between the axis zin and the joint axis around x′′
pl;

• ppl is the z coordinate of the input connection point oin from o′pl;

• npl is the z coordinate of the joint connection point PJ from o′′pl.

For the distal part illustrated in Figure 2.3b, two auxiliary frames are analogously introduced

and the four parameters for the distal part can be similarly obtained. These parameters indeed

have similar meanings:

• adl is the distance between o′dl and o′′dl, along the common normal;
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Figure 2.3: Kinematic notation for characterizing a simple joint module. The connectors are

indicated in light-grey color, (a) is the entire module, (b) the distal part, and (c) the proximal

part.

• αdl is the angle between the joint axis and zout around x′′
dl;

• pdl is the z coordinate of the joint connection point PJ from o′dl;

• ndl is the z coordinate of the output connection point oout from o′′dl.

The complete parametrization of the transformation of coordinates from the input frame to the

output one of a joint module requires three additional parameters: δpl, δdl, δJ . With reference

to Figures 2.3c and 2.3b: δpl is the angle between x′
pl and xin, δ

dl is the angle between x′′
dl and

xout, and δJ is the angle between x′′
pl and x′

dl when the joint is in its zero position. Please note

that all the angles of this notation are positive counterclockwise.

The same systematic approach used for joint modules can be employed for characterizing

link modules with a set of parameters. With reference to the exemplary link module of Fig-

ure 2.4, the input and output frames are first placed at the respective connectors with the
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same procedure followed for joint modules. Once these frames are fixed, two auxiliary frames

should be considered analogously to the procedure for the distal (or proximal part) of joint

modules. The first one has its origin at o′l, the intersection of the common normal between zin

and zout with zin. The axis x′
l is set along the common normal pointing towards the output

connector, z′l is set along zin, and y′l completes the right-handed frame of reference. The second

auxiliary frame has its origin in o′′l at the intersection of the common normal with zout. Its axis

x′′
l is set along the common normal and points in the same direction of x′

l, z
′′
l is set along zout,

and finally, y′′l completes the right-handed frame of reference. As for the proximal or distal

parts of joint modules, the parameters of a link module can now be obtained from the module’s

geometry:

• al is the distance between o′l and o′′l along the common normal;

• αl is the angle between the axis zin and zout about x
′′
l ;

• pl is the z coordinate of the input connection point oin from o′l;

• nl is the z coordinate of the output connection point oout from o′′l .

Finally, the parametrization of the transformation of coordinates from the input frame to the

output one is completed with the angle δl,in between x′
l and xin, and the angle δl,out between

x′′
l and xout. Please note that end-effector modules can be considered as link modules once the

output frame is fixed on the end effector body in a pose convenient for the user.

For characterization of both joint and link modules, particular cases of the relative orien-

tation between subsequent z axes (e.g., parallel, intersect, or overlap) are handled similarly to

the presented extension of the standard D-H convention. The only difference is that in the pre-

viously described convention one refers to the relative orientation of two subsequent joint axes

(since it applies to manipulators), while for characterizing the modules the axes considered are

the two subsequent z axes of the auxiliary frames. For example, when these two axes intersect,
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Joint Module

Proximal apl αpl ppl npl δpl

Distal adl αdl pdl ndl δdl

Joint δJ Joint type

Link Module al αl pl nl δl,in δl,out

Table 2.1: Module data for kinematic modeling.

the auxiliary frames have the same origin. Consequently, the parameter apl/adl/al is zero, and

the x axes of the auxiliary frames are parallel and oriented as the cross product between the

considered z axes.

Table 2.1 collects the parameters to characterize a joint or a link module for kinematics.

These parameters constitute the part of the module data for kinematics that are required to

be stored in each module or in a database. Once the robot is assembled and these data are

collected, the kinematic model of the robot can be automatically obtained by means of the

procedure described next. Please note that this approach can be straightforwardly applied to

modules with multiple input and/or output connectors by obtaining a set of parameters for

each possible combination of such connectors.

2.3.3 From the Module Data to the Kinematic Model

It is now possible to introduce the procedure for automatically obtaining the extended set of

D-H parameters (ai, αi, γi, pi, ni) for every link of an assembled manipulator (hereafter denoted

as arm-link for brevity), using the data collected from the modules that compose the arm-link

itself. We stress that the standard D-H parameters (and therefore the forward kinematics) can

be easily obtained once the extended set of parameters and the joint types are known for each

link of the manipulator.

As it can be observed from Figure 2.2b, the parameters can be obtained by considering each

pair of joint axes from the base to the end of the robot arm. The automatic procedure for

obtaining these parameters from module data follows the same approach. Figure 2.5 shows a

generic link of an assembled modular manipulator and is useful for describing the procedure in

detail. This exemplary case shows the connection of two joint modules through a non-negative

number k ∈ N of link modules. To automatically obtain the parameters of the arm-link, we

first compute a homogeneous transformation matrix Fi, which describes the pose of a frame

parallel to the D-H one and located at PJi from a frame parallel to the first auxiliary frame of
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Figure 2.5: Synthesis of the extended D-H parameters for the ith constituted link with j being

the number of modules connected to the arm starting from the basis.

the distal part of modulej−1 with origin PJi−1 (see Figure 2.5). In the following, this matrix

is referred to as a synthesis matrix. The synthesis matrix plays a crucial role in this procedure

since it can be computed using module data, and its entries can be analytically related to the

parameters of the extended D-H convention as shown next.

The synthesis matrix can be obtained in a two steps approach. First, an auxiliary homo-

geneous transformation matrix F′
i is computed. This matrix describes the pose of a frame

parallel to the second auxiliary frame of the proximal part of modulej+k, with respect to the

frame parallel to the first auxiliary frame of the distal part of modulej−1 and located at PJi−1.

Second, an additional rotation φi about z is applied to align the frame with the one of the

extended D-H convention.

The computation of F′
i is implemented using only the module data for kinematics of the

modules that compose the arm-link under study. This is performed by means of homogeneous

transformation matrices of elementary translations/rotations. In the following, the homoge-

neous transformation matrix of the elementary translation/rotation along/around the χ axis

are compactly denoted by Tχ( · )/Rχ( · ). With reference to Figure 2.5, the homogeneous trans-

formation matrices of the distal part Adl
j−1, of the k link modules Al

j,j+k, and of the proximal

part of the module that completes the arm-link Apl
j+k, are obtained. These matrices can be

directly used for computing F′
i as

F′
i = Adl

j−1 A
l
j,j+k A

pl
j+k =


R′

i U′
i

0T 1


 , (2.6)
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where

Adl
j−1 = Tz(−p

dl
j−1)Tx(a

dl
j−1)Rx(α

dl
j−1)Tz(n

dl
j−1)Rz(δ

dl
j−1),

Apl
j+k = Rz(−δ

pl
j+k)Tz(−p

pl
j+k)Tx(a

pl
j+k)Rx(α

pl
j+k)Tz(n

pl
j+k),

and

Al
j,j+k =

{∏j+k−1
h=j Rz(−δ

l,in
h )Tz(−p

l
h)Tx(a

l
h)Rx(α

l
h)Tz(n

l
h)Rz(δ

l,out
h ), if k > 0,

I4×4, otherwise.

The transformations of F′
i allow the pose of a frame parallel to the second auxiliary frame

of the last joint module in the arm-link to be reached, but not the one of the D-H frame. As

previously mentioned, to obtain Fi an additional rotation φi about zi has to be considered.

This angle is computed considering the previously discussed particular cases for the subsequent

joint axes as follows:

i. When the consecutive joint axes overlap: φi = 0.

ii. When the axes are parallel1:

φi = atan2(vy, vx), from V = [vx, vy, vz]
T = R′T

i U′
i. (2.7)

iii. When the axes are skew or intersect:

φi = atan2(vy, vx), from V = [vx, vy, vz ]
T = R′T

i V′ and V′ = zi × zi−1. (2.8)

The detection of these cases is performed using U′
i and the unit vector of the z axis in R′

i from

(2.6), which contains information about the relative orientation of two consecutive joint axes

(see e.g., Algorithm 1).

Once F′
i and φi have been obtained, the synthesis matrix is computed as follows:

Fi = F′
iRz(φi) =




rxi
sxi

txi
uxi

ryi
syi

tyi
uyi

rzi szi tzi uzi

0 0 0 1




, (2.9)

from which the parameters of the extended D-H convention for the corresponding arm-link

of the manipulator can be obtained. In fact, considering the extended D-H parameters of an

1atan2(a, b) is the function that gives the arc tangent of a
b
, considering the proper quadrant of the point

[a, b].
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arm-link and an auxiliary rotation φ′
i
1, the same transformation of Fi can be written as:

Li =Tz(−pi)Rz(φ
′
i)Tx(ai)Rx(αi)Tz(ni)

=




Cφ′

i
−Cαi

Sφ′

i
Sαi

Sφ′

i
aiCφ′

i
+ niSαi

Sφ′

i

Sφ′

i
Cαi

Cφ′

i
−Sαi

Cφ′

i
aiSφ′

i
− niSαi

Cφ′

i

0 Sαi
Cαi

niCαi
− pi

0 0 0 1




. (2.10)

By equating (2.10) and (2.9), we obtain the relations to infer the parameters of the extended

D-H convention for the ith constituted link (ai, αi, γi, pi, ni):

ai = uxi
rxi

+ uyi
ryi

, αi = atan2(szi , tzi), (2.11)

γi =

φ′

i︷ ︸︸ ︷
atan2(ryi

, rxi
) + δJi−1 − φi−1. (2.12)

If szi 6= 0:

ni =
(uxi

ryi
− uyi

rxi
)

szi
, pi =

(uxi
tzi ryi

− uzi szi − uyi
tzi rxi

)

szi
. (2.13)

If szi = 0:

ni = 0, pi = −uzi . (2.14)

While the obtainment of the analytical relations (2.11) and (2.13) follows directly from

equating (2.10) and (2.9), the choice of (2.14) follows from the extended D-H convention for

the case of parallel consecutive joint axes. Instead, (2.12) is obtained from a slightly more

articulated reasoning that can be explained as follows. Starting from the axis xi−1 one can

subtract the angle φi−1 and add δJi−1 to reach a frame parallel to the first auxiliary frame of

modulej−1. The relation for γi is obtained by additionally adding the rotation φ′
i that brings

the x axis of that auxiliary frame to match the one of the extended D-H frame.

The procedure described above for processing the module data and automatically obtaining

the table of the (extended) D-H parameters for an assembled arm is compactly presented in

Algorithm 1. An implementation of this procedure has been made available with the function

ModRob2DHext(. . . ) in the repository OTFCtrlModRob downloadable from [44].

1The additional auxiliary angle φ′

i is the rotation about z of the first auxiliary frame of modulej−1 that is

required in order to let the x axis of this auxiliary frame match the one of the respective extended D-H frame.
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Algorithm 1 Algorithm for obtaining the extended D-H parameters of each subsequent pair

of joints of an assembled modular robot using module data.

Input: Module data for kinematics

Output: Extended D-H parameters

1: φ0 ← 0

2: for the ith pair of subsequent joint modules do

3: zi−1 ← [0, 0, 1]T

4: F′

i ← use (2.6) and the module data for kinematics

5: [R′

i, U
′

i] ← extract from F′

i as in (2.6)

6: zi ← R′

i(:, 3)

7: if ‖zi × zi−1‖ == 0 and ‖U′

i(1 : 2, 1)‖ == 0 then ⊲ joint axes are overlapped

8: φi ← 0

9: else if ‖zi × zi−1‖ == 0 then ⊲ joint axes are parallel

10: V ← R′T
i U′

i

11: φi ← atan2(vy, vx)

12: else ⊲ joint axes are skew or intersect

13: V′ ← zi × zi−1

14: V ← R′T
i V′

15: φi ← atan2(vy, vx)

16: end if

17: Fi ← F′

iRz(φi)

18: [ai, αi, γi, pi, ni] ← use equations (2.11)-(2.14) with elements of Fi

19: end for

2.4 Dynamic Modeling using Module Data

The large body of research results on modeling classical fixed-configuration manipulators can

be leveraged to model the dynamics of an assembled arm. In this section, the module data for

the dynamics of each module that may compose an arm-link are first defined. Subsequently,

the procedure to process the module data of an assembled arm and obtain the dynamical

parameters of each arm-link is devised. Once the parameters of each arm-link are obtained,

classical algorithms for the dynamics of fixed-configuration robots can be used. A comprehensive

survey of robot dynamics can be found in [43]. Among the most popular approaches are the

Lagrange and the Newton-Euler (N-E) formulations. While the first one is based on the study

of the kinetic and potential energy of the arm, the second one is based on the balance of

forces/torques of the fundamental equations of motion for each arm-link. A computationally

efficient (recursive) variant of the Newton-Euler method has first been proposed in [71] with a

complexity that grows in a linear fashion with the number of the joints. A comparative study

between a recursive Lagrangian and a recursive N-E approach can be found in [48], in which the

29



2. A FRAMEWORK FOR AUTOMATIC CENTRALIZED CONTROLLER
DESIGN

latter is superior in terms of computational efficiency. Enhanced versions of this algorithm have

been presented: for example, in [94] the authors consider inertia effects of the rotors, and in [34]

the authors provide a modified version of the algorithm for fault detection and passivity-based

control. The latter is an important result for efficient implementation of passivity-based control

methods that are among the most effective model-based trajectory tracking controllers.

The recursive N-E scheme can be directly used for numerically computing the dynamical

model so that no software for symbolic variables manipulation is required. This characteristic

makes this class of algorithms an ideal choice for the scope of this thesis. We briefly recall the

basic idea of this algorithm to initialize the notation and because it is crucial for subsequent

analysis.

Recalls on the Recursive N-E Formulation

The algorithm is composed of two recursions, one for kinematics (forward recursion) and

one for the balance of forces and torques (backward recursion) for each link of the arm. Since

the kinematics are required for the forward recursion, the kinematic description of the arm

automatically obtained with the procedure described in Section 2.3 can be exploited. This

recursion computes the linear acceleration of the center of mass of the links, starting from the

base to the end effector. For the backward recursion, the algorithm is based on the balance of

forces/torques of the fundamental equations of motion for translation and rotation of each ith

arm-link, considered as a rigid body. In fact, the backward recursion is based on the following

equations [96, Section 7.5]:

f ii − f ii+1 = miC̈
i
i, (2.15)

ni
i + f ii × (riDi−1,Di

+ riDi,Ci
)− ni

i+1 + f ii+1 × riDi,Ci
= Iiiω̇

i
i + ω

i
i ×
(
Iiiω

i
i

)
, (2.16)

where (with reference to Figure 2.6a) the vectors f ii /f
i
i+1 and ni

i/n
i
i+1 are action-reaction force

and torque vectors exerted on the ith link, ωi
i is the angular velocity of the link, C̈i

i is the linear

acceleration of the center of mass, and riDi−1,Ci
/riDi,Ci

are the vectors from the application

point of the forces f ii /f
i
i+1 to the center of mass. Further, mi is the mass of the link, and Iii

its inertia tensor. The superscript of vectors denotes in which frame they are defined. The

force vector due to gravity is not present in (2.15), since it is assumed that the contribution

of gravitational acceleration is included in the base frame’s acceleration during initialization of

the forward recursion. A complete description of the standard recursive N-E algorithm can be

found in the Appendix A.1.

30



2.4 Dynamic Modeling using Module Data

PSfrag replacements

(a)

(b)

ni
i

−ni
i+1

f ii
−f ii+1

Di−1

Di

zi−1

zi

Ci

riDi−1,Di

riDi,Ci

xi

yi

jth connection

ith link of the assembled manipulator (arm-link)

routCdlj−1

Cdlj−1

zoutj−1

xoutj−1

rinClj

Clj

xinj

zinj

zoutj

xoutj

Cplj+k
zinj+k

xinj+k

rinCplj+k

modulej−1

modulej

modulej+k

ith link
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manipulator (a), involving parameters for dynamics. Connectors are indicated in light-grey.

2.4.1 Definition of the Module Data for Dynamics

With the above recalls made, it is now evident that the algorithm considered for computing

the arm dynamics require the mass of each link mi, its inertia tensor Iii, the coordinates of

the center of gravity, and the coordinates of the application point of forces. More specifically,

as shown in Figure 2.6a, a link-fixed frame with origin in Di and assumed to be that of the

resulting extended D-H frame is considered. With respect to this frame, the coordinates of

the center of mass riDi,Ci
and the coordinates of the connection point with the previous joint

riDi−1,Di
are required. The above-mentioned parameters for dynamics are those of an assembled

link of the manipulator. Such a link, however, is composed of modules as shown in the generic

connection of Figure 2.6b.

In the generic connection shown in the exploded-view of Figure 2.6b, modulej−1 (joint mod-

ule), k link modules, and a subsequent modulej+k (joint module) are involved for establishing
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Joint Module

Proximal mpl Iinpl rinCpl

Distal mdl Ioutdl routCdl

Joint f(q̇) σm Im σr

Link Module ml Iinl rinCl

Table 2.2: Module data for dynamic modeling.

the connection of the ith arm-link. As explicated from (2.15) and (2.16), the dynamical pa-

rameters of each ith link of the manipulator are required. Therefore, the module data that are

required for dynamics are the dynamical parameters of the rigid bodies that compose the link:

mass, coordinates of the center of mass, and the inertia tensor of the distal part (mdl, routCdl,

Ioutdl ), of the proximal part (mpl, rinCpl, I
in
pl ), and of the link modules (ml, rinCl, I

in
l ). As denoted

by the superscripts, the coordinates of the center of mass and the inertia tensor for proximal

parts and link modules are expressed with respect to the input frame. For distal parts, instead,

they are expressed with respect to the output frame. This choice allows a simple implementa-

tion of a recursive procedure to synthesize the module data and obtain the parameters of each

arm-link. This procedure is detailed in the following subsection.

The parameters described so far allow a description of the dynamics of the arm for its

principal structure. However, this is typically not sufficient due to non-negligible contributions

to the dynamics from the actuation unit components, such as friction and rotor inertia effects.

In this thesis the actuation units are part of joint modules. Thus, parameters to model these

dynamic effects have to be included as well in the module data for joint modules. Therefore,

the friction model f(q̇) (or the corresponding coefficients) should be included in the module

data. Additionally, to capture the inertia effects of the rotor, it is common practice to include

its inertia Im by adding it to the diagonal of the robot inertia matrix through the square of the

gear ratio σr [5, 94]. Further, since the typical control signal of electric motors is current, the

respective torque constant σm is required. Finally, the complete set of data for each module

required for dynamics are collected in Table 2.2.

For example, if all numerical entries of the modular parameters for both kinematics and

dynamics were single format, the memory required for storing the module data of a simple joint

module would be 148 bytes, or 64 bytes for a link module.
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2.4.2 From the Module Data to the Dynamical Model

Using the module data for kinematics and dynamics previously defined, the automatic procedure

for obtaining the dynamical parameters of each constituted link of a modular manipulator will

now be devised. With reference to the generic connection of modules in Figure 2.6b, it is

convenient to first consider that the modulej (a link module) gets connected to the distal part

of modulej−1 (a joint module). This is realized through the jth connection shown in Figure

2.6b. Once this connection is performed, the distal part of modulej−1 and the modulej together

create a new auxiliary distal part. Denoting with “io” the matched input-output frame of the

connection, the dynamical parameters of the new auxiliary distal part can be computed as

follows:

ma
j = mdl

j−1 +ml
j, Iioaj

= Ioutdlj−1
+ Iinlj , rioCaj

=
mdl

j−1 r
out
Cdlj−1

+ml
j r

in
Clj

ma
j

. (2.17)

These parameters are those of the new auxiliary distal part and are denoted with the label a.

The above computed inertia tensor and coordinates of the center of mass are expressed in the

matched input-output frame and should now be transformed, to be expressed in the output

frame of the auxiliary distal part. This can be done by using homogeneous transformations and

Steiner’s theorem [96, Appendix B.2]. Given the homogeneous transformation matrix of the

coordinate transformation of the output frame with respect to the matched “io” frame that is

computed as follows:

A
io,aj

out,aj
= Rz(−δ

l,in
j )Tz(−p

l
j)Tx(a

l
j)Rx(α

l
j)Tz(n

l
j)Rz(δ

l,out
j ) =


R

io,aj

out,aj
U

io,aj

out,aj

0T 1


 , (2.18)

the coordinates on the center of mass with respect to the output frame can be obtained from


routCaj

1


 =

(
A

io,aj

out,aj

)−1


rioCaj

1


 . (2.19)

Further, the inertia tensor expressed in the output frame can be computed as follows:

Ioutaj
=
(
R

io,aj

out,aj

)T(
Iioaj
−ma

j S
T (rioCaj

)S(rioCaj
)
)
R

io,aj

out,aj
+ma

j S
T (routCaj

)S(routCaj
), (2.20)

where S( · ) denotes a skew-symmetric matrix of the type

S(U) =




0 −uz uy

uz 0 −ux

−uy ux 0


 , U =

(
ux uy uz

)T
.
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Now, still referring to Figure 2.6b as a generic connection, an additional modulej+1 (link

module) could be present. In this case it is now easy to see that a new auxiliary distal part is

established, once this new link module is connected to the previously obtained auxiliary distal

part. The same operations described above can be applied (mutatis mutandis) to obtain the

dynamical parameters of this second auxiliary distal part. Following this approach, a forward

recursion can be implemented for the k link modules that compose the arm-link under study

when k > 0.

When the above mentioned recursion is completed, the last connection to consider is between

the kth auxiliary distal part and the proximal part of modulej+k. This situation is equivalent

to the case of k = 0, which implies that no link modules are involved in the assembly of the

arm-link. In fact, the last connection to consider is between a distal part (which is an auxiliary

one when k > 0) and a proximal part of two joint modules. This last connection establishes

the ith arm-link under consideration. The last operations to perform aim at obtaining the

dynamical parameters of the arm-link, required for running the recursive N-E algorithm as

described at the beginning of Subsection 2.4.1: mi, I
i
i, r

i
Di,Ci

, riDi−1,Di
. These parameters can

now be computed as follows:

mi = mdl
j−1+k +mpl

j+k, Iioi = Ioutdlj−1+k
+ Iinplj+k

, rioCi
=

mdl
j−1+k r

out
Cdlj−1+k

+mpl
j+k r

in
Cplj

mi
,

(2.21)
riDi,Ci

1


 =

(
Aio

i

)−1


rioCi

1


 , (2.22)

where

Aio
i = Rz(−δ

pl
j )Tz(−p

pl
j )Tx(a

pl
j )Rx(α

pl
j )Tz(n

pl
j )Rz(φi)Tz(−ni) =


Rio

i Uio
i

0T 1


 , (2.23)

and

Iii = RioT

i

(
Iioi −mi S

T (rioCi
)S(rioCi

)
)
Rio

i . (2.24)

The vector riDi−1,Di
can be computed with the synthesized parameters for kinematics of the arm-

link. This information can be extracted from the homogenous transformation matrix describing

the pose of the D-H frame of the arm-link i− 1 (see Figure 2.6a) with respect to the D-H frame

of the arm-link i. This homogenous transformation matrix is denoted by Ai
i−1 and computed

using (2.3) as follows:

Ai
i−1 =

(
Ai−1

i

)−1
=


Ri

i−1 Ui
i−1

0T 1


 . (2.25)
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Finally, from the last column of the matrix in (2.25), the last parameter is obtained as

riDi−1,Di
= −Ui

i−1 =
(
ai diSαi

diCαi

)T
. (2.26)

Please note that the procedure described above for processing the module data and obtaining

the dynamical parameters of the arm is simpler than the one for kinematics. Therefore, its

presentation with an algorithm environment is not included in this thesis. However, an imple-

mentation of this procedure has been made available with the function ModRob2Dynpar(· · · )

in the repository OTFCtrlModRob downloadable from [44].

Obtainment of the dynamical model follows directly. Starting from the module data, a table

of the D-H parameters DH is computed (as described in Section 2.3). Second, the dynamical

parameters of all arm-links are obtained with the procedures described in this section and are

included in a table DynPar, which additionally contains the actuator-related parameters (see

third row of Table 2.2). With this information at hand, the standard recursive N-E algorithm

NEAg

(
· · ·
)
reported in Appendix A.1 can be directly used for obtaining the dynamical model:

M(q)q̈+ c(q, q̇) + f(q̇) + g(q) = NEAg

(
q, q̇, q̈,DH,DynPar

)
. (2.27)

2.5 Motion Control

This section details how the motion control problem is solved in the presented framework. It

is worth stressing that all the methods discussed next start from the module data and exploit

the procedures described in the previous sections for obtaining the assembled robot description

automatically. Therefore, the centralized controller is automatically deployed without user

intervention starting from the module data. The control architecture of the framework of this

chapter is illustrated in Figure 2.7. In addition to the blocks of kinematic and joint-space

control as in a classical structure (see e.g., [95]), the blocks for processing the module data are

added to deliver the assembled-robot data. This combination enables the automatic generation

of the control of the arm, once the robot is assembled and a data structure containing the

module data of the arm (ModRob) is created. This architecture is simple: it allows tracking

of task space trajectories by solving the inverse kinematic problem online (using closed loop

inverse kinematics schemes) to obtain the reference trajectories in joint space (qd, q̇d, q̈d) that

are tracked by means of a joint-space tracking controller. Both the kinematic control and joint-

space control are automatically deployed using the automatically generated robot description.

The following subsections detail how the kinematic and joint-space control can be implemented.
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Figure 2.7: Architecture of the automatically deployable tracking controller.

2.5.1 Joint-Space Control

As mentioned in the problem statement of this thesis, the main aim is to have an automat-

ically generated controller which can globally track sufficiently smooth trajectories. Thanks

to the automatic obtainment of the robot description, this framework can directly consider

two of the most effective model-based joint space controllers, which can be directly imple-

mented: inverse-dynamics control (see e.g., [96, Section 8.5.2]) and passivity-based control (see

e.g., [102, Section 8.4]). While the first one relies on the perfect knowledge of the overall sys-

tem dynamics for compensating the nonlinear and coupling terms through feedback, the second

one exploits the property in (2.2) and avoids the direct inversion of the dynamics with better

robustness against model uncertainties [29]. The latter is also particularly suitable for adaptive

control [98] and robust control schemes [104] [125]. To properly handle assembly dependent

friction model uncertainties, a version of the passivity-based tracking controller with an adap-

tive friction compensation action is also fostered. Effectiveness of all these controllers has been

verified with experiments, as presented in Section 2.6.

Inverse-Dynamics Control

The inverse dynamics control scheme is simple. It exploits the model knowledge to di-

rectly cancel couplings through feedback and obtain a linear and decoupled system from a

new auxiliary control input variable. This new auxiliary input vector y is selected to provide

asymptotically stable dynamics of the error in joint space. The inverse dynamics control law is
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implemented using:

uID = M (q)y + c (q, q̇) + f (q̇) + g (q) (2.28)

for the system in (2.1), which provides q̈ = y. A typical choice of y is

y = q̈d +KDė+KPe, (2.29)

which provides

ë+KDė+KPe = 0, (2.30)

where KP , KD are diagonal positive definite gain matrices of proper dimensions. Please note

that integral action to reject constant input disturbance can be included by simply adding

KI

∫ t

0
e dτ on the right-hand side of (2.29) with an additional gain matrix KI [18, Section 2.4].

By using the automatically generated robot description as described in the previous section,

this controller can be efficiently implemented as follows:

uID = M(q)y + c(q, q̇) + f(q) + g(q) = NEAg

(
q, q̇,y,DH,DynPar

)
. (2.31)

In light of the fact that each coordinate of (2.30) is a second-order linear system, the tuning is

simple and can be done by selecting a user-defined natural frequency ωn and damping ratio ζ.

This is performed by using e.g., KP = ωnI and KD = 2ζωnI. This scheme makes the tuning

independent from the specific robot configuration so that, in principle, no user intervention is

required after a reconfiguration.

Passivity-Based Control

Contrary to the inverse dynamics control scheme, passivity-based tracking controllers do not

rely on the complete cancellation of all couplings through feedback. Instead, they exploit the

property in (2.2), which can be obtained from the conservation of energy as shown in [98]. This

control approach is expected to provide better robustness to model uncertainty with respect

to the inverse dynamics controller since it does not rely on the perfect cancellation of the

couplings [18, 29]. The classical passivity-based tracking controller is implemented using

uPB = M(q)q̈a +C(q, q̇)q̇a + f(q̇) + g(q) +Λr, (2.32)

with q̇a = q̇d +Kre, r = ė+Kre, and where Λ and Kr are diagonal positive definite matrices

of proper dimensions. By applying the passivity-based control law in (2.32) to the system in

(2.1), the following closed loop system is obtained:

M(q)ṙ+C(q, q̇)r+Λr = 0. (2.33)
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Global asymptotic stability follows by exploiting property (2.2) as described e.g., in [18, Section

2.3]. Integral action to reject constant input disturbance can be included by simply adding

KI

∫ t

0
r dτ on the right-hand side of (2.32) with an additional positive definite matrix KI of

proper dimensions as described in [18, Section 2.4].

Within the framework presented in this chapter, this controller is implemented numerically

using a recursive Newton-Euler algorithm. The structure of (2.32) does not allow the direct

use of the algorithm NEAg

(
· · ·
)
because of its inability to compute the term C(q, q̇)q̇a. A

modified version of this algorithm that solves this shortcoming has been proposed in [34],

where the authors consider robots with revolute joints. A small extension of it for considering

prismatic joints is described in [128]. This modified algorithm that can handle both revolute

and prismatic joints is detailed in Algorithm 2 of Appendix A.1, and is denoted in this thesis

by NEA∗
g

(
· · ·
)
to provide

M(q)q̈a +C(q, q̇)q̇a + f(q̇) + g(q) = NEA∗
g

(
q, q̇, q̇a, q̈a,DH,DynPar

)
. (2.34)

With this algorithm at hand, DH, and DynPar automatically computed after assembly, the

passivity based control is directly implemented as follows:

uPB = M(q)q̈a +C(q, q̇)q̇a + f(q̇) + g(q) +Λr = NEA∗
g

(
q, q̇, q̇a, q̈a,DH,DynPar

)
+Λr.

(2.35)

Passivity-Based Control with Adaptive Friction Compensation

In light of the fact that the load at the joints of a robot may affect the friction model (as

reported e.g., in [110] and shown in Figure 2.12), special attention should be paid in the frame-

work of this chapter. This becomes clear when considering that the parameters of the friction

model (that are part of the module data) enter directly in DynPar and are usually obtained

when the intended robot configurations are not yet known. After the modules are characterized

singularly, they can compose arbitrary assemblies. The load at the joints cannot be assumed to

be known a priori. As a result, the use of the module data with friction parameters estimated

for the modules alone during initial characterization may lead to a friction model that is sig-

nificantly different from the real one after assembling the robot. This aspect can be addressed

by introducing an adaptive term to the passivity-based feedback control law.

In order to introduce a term to the feedback control law for having an adaptive friction

compensation, the work of [98] can be tailored to this application by assuming that the model
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uncertainty is significant only with respect to the friction model parameters. By considering

the following friction model

f(q̇) = βvq̇+ βcsign(q̇), (2.36)

with viscous and static friction coefficients (βv and βc, respectively), and assuming that only

nominal parameters β0v,i and β0c,i for each ith joint are available for control, the passivity-based

control command with adaptive friction compensation is computed as

uPBAFC = M(q)q̈a +C(q, q̇)q̇a + f̂(q̇) + g(q) +Λr, (2.37)

where

f̂i(q̇i) = β̂v,i(t)q̇i + β̂c,i(t)sign(q̇i), ∀i ∈ {1, . . . , N} (2.38)

and β̂v,i(0) = β0v,i, β̂c,i(0) = β0c,i. Using (2.37) in (2.1), after rearrangement it can be shown

that the following relation holds:

M(q)ṙ+C(q, q̇)r+Λr = f̂(q̇)− f(q̇) = Y(q̇)∆β , (2.39)

where

Y(q̇) =




q̇1 sign(q̇1) . . . 0 0

0 0
. . . 0 0

0 0 . . . q̇N sign(q̇N )


 , ∆β = β̂(t)− β =




β̂v,1(t)− βv,1

β̂c,1(t)− βc,1

...

β̂v,N(t)− βv,N

β̂c,N(t)− βc,N




.

Global asymptotic stability follows from a similar argument of [96, Section 8.5.4], where the

main difference is in the choice of Y(q̇), provided that the parameters β̂v,i(t) and β̂c,i(t) are

computed using the following adaptive law:

∆̇β = ˙̂
β(t) = K−1

∆β
Y(q̇)T r.

2.5.2 Kinematic Control

The only missing component for generating a complete controller is the consideration of the

solution of the inverse kinematic problem. This problem is typically solved by means of analyt-

ical and numerical solutions. As it has been analyzed in [88] in detail, an analytical solution of

the inverse kinematic problem can be found only for manipulators that are sufficiently simple

and have specific geometries. Since a modular robot can assume, in principle, an arbitrary
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geometry and can become redundant, analytical solutions for the inverse kinematic problem

are not suitable. Numerical approaches can instead be employed by exploiting the differential

kinematics, and are not limited to specific robotic structures or non-redundant manipulators.

As shown in Figure 2.7, the kinematic control aims at solving online the inverse kinematic

problem, given time varying trajectories of the desired pose of the end effector, to provide the

reference trajectories for the joints. The latter can then be tracked by one of the previously

mentioned joint-space controllers [95]. A large body of works addressed this problem and many

classical effective approaches are well documented in books e.g., [96]. Further, a description of

the most effective methods for kinematically redundant robots can be found e.g., in [92].

A clear distinction among inverse kinematics algorithms can be made based on the type of

description they employ for orientation. They can be divided into those that use a minimal

description of the orientation (Euler angles), those based on the axis-angle representation, and

those based on the unit quaternion (Euler parameters). A detailed comparison of these ap-

proaches can be found in [24]. From that comparison, the use of the unit quaternion is superior

when considering computational efficiency and representation singularities. These singularities

arise from the incapability of uniquely mapping a rotation to the minimal representation cho-

sen for some particular orientations. The same issue can also appear when using an axis-angle

representation [96, Sections 2.4 and 2.5].

In practice, the use of the unit quaterion for describing the end effector orientation and

for computing the orientation error feedback of the kinematic control schemes has unique ad-

vantages with respect to Euler angles and axis-angle representation. In fact, it removes the

risk of encountering representation singularities, and can be implemented by directly using the

geometric Jacobian in place of the analytical one whose obtainment is computationally more

expensive [28]. These features make it an ideal choice for the automatic controller genera-

tion. Indeed, as it will be presented next, the approaches considered in this framework only

require the computation of the 6 × N geometric Jacobian J(q) = [Jp(q)
T , Jω(q)

T ]T and its

derivative J̇(q, q̇). These computations can be done numerically online by using q, q̇, and the

automatically obtained kinematic description of the robot as described in Appendix A.3. An

implementation of the algorithm can be found in the repository OTFCtrlModRob [44] with the

function dJacobian(. . . ).

Closed-loop inverse kinematics schemes are usually separated into first and second-order

ones. First-order schemes provide the joint velocities and positions which let the end effector

track a task space trajectory. Drift is counteracted by employing a feedback control loop on joint
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positions. A description and experimental application of the latter using the unit quaternion can

be found in [28]. However, for the purpose of this framework, the computation of the reference

joint acceleration is required. In the case that a first order scheme is employed, a practical way

for computing the joint acceleration is via numerical differentiation. In contrast, second order

methods allow direct computation of the joint reference accelerations. Joint velocities and joint

positions are then obtained through integration. Drift is counteracted by employing a feedback

control loop on both joint velocities and positions.

Hereafter, a unit quaternion is denoted as a vector of four components e.g., Q = [η, ǫT ]T =

[η, ǫx, ǫy, ǫz]
T , where η is the scalar part of the quaternion and ǫ = [ǫx, ǫy, ǫz]

T its vectorial

part. By considering the required trajectory of the end effector frame specified for positions

pr ∈ R
3, orientations Qr = [ηr, ǫr]

T ∈ R
4, linear velocities and accelerations (ṗr, p̈r), and

angular velocities and accelerations (ωr, ω̇r), the following closed loop inverse kinematic scheme

can be implemented:

q̈d = J†(qd)
(
ν − J̇(qd, q̇d)qd

)
− κ
(
I− J†(qd)J(qd)

)
q̇d, (2.40)

with

ν =


p̈r +Kv(ṗr − Jp(qd)q̇d) +Kp(pr − pfk(qd))

ω̇r +Kω(ωr − Jω(qd)q̇d) +Koeo(qd)


 . (2.41)

In (2.40), J† is the Jacobian pseudo-inverse (or damped least-squares inverse [23] near the

kinematic singularities). In (2.40) and (2.41), κ, Kv, Kp, Kω, and Ko are positive gains,

pfk(qd) is the position of the end effector computed with the forward kinematics, and finally,

eo = ηfk(qd)ǫr − ηrǫfk(qd)− S(ǫr)ǫfk(qd) (2.42)

is the quaternion-based orientation error feedback vector [118]. In (2.42), ηfk(qd) and ǫfk(qd)

are the components of the unit quaternion for the orientation of the end effector computed

using the forward kinematic function and the current joint variables of the inverse kinematic

solution. The feedback variables qd, q̇d are obtained by integrating q̈d. In the event that the

assembled robot is redundant, second order schemes suffer from floating null-space motions

[50]. To account for these cases, the last term on the right-hand side of (2.40) is added to

introduce damping in the null space as in [37]. For the considered scheme, asymptotic stability

of both positional and orientational error dynamics can be shown by Lyapunov arguments

(see e.g., [24, 118]). It is worth stressing that in principle no user intervention is required

after reassembling the robot with this scheme, since the kinematic description of the robot
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Figure 2.8: Modular robot test bed used in the experiments.

can be automatically obtained and directly used for computing the geometric Jacobian. An

implementation of (2.40) has been made available in the repository OTFCtrlModRob [44] with

the function invkin 2d(. . . ).

Even though no saturation limits of the actuators have been considered so far, this is clearly

a crucial aspect to consider for a practical implementation. One possibility is to make sure

that the required joint-space trajectories are sufficiently slow to let the robot comply with the

actuation limits while tracking the trajectories. For this purpose, the scheme presented here can

be used in conjunction with the recursive N-E algorithm to find the appropriate time-scaling

factor for the task-space trajectories exploiting the results in [49].

2.6 Experimental Application

This section presents experiments of the proposed framework using a modular robot manipu-

lator. In particular, after a description of the modular robot test bed used in the experiments,

this section explains how the characterization of the modules from the available set can be

performed to obtain the module data according to the notation described in Subsections 2.4.1

and 2.3.2. Once the module data are obtained, for each different assembly, the model and

model-based controllers of the assembled arm can be automatically computed. An experimen-

tal validation of these models is then presented. The section is concluded with experiments

that show the tracking performance obtained with the proposed framework.
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Figure 2.9: Illustration of the modules available for experiemnts (a) and a subset of the possible

resulting robot assemblies (b).

2.6.1 Description of the Modular Robot Test Bed

The test bed considered for this application is shown in Figure 2.8. It is composed of a Schunk

LWA 4P modular robot manipulator with an end effector module and three additional 3D

printed modules. These additional modules have been designed for enhancing the reconfigura-

tion capabilities of the original, commercially available arm. The set of modules available is

shown in Figure 2.9a. This set is composed of a base, five link modules, three complex joint

modules, and one end-effector. These joint modules are complex because they introduce two

joint axes. Particular considerations are necessary for characterizing such modules, as detailed

next in 2.6.2. In Figure 2.9b, a subset of all possible robot assemblies with the available set of

modules is illustrated.

The central control unit that implements the presented framework is a Speedgoat Real-

Time target PC, equipped with an Intel Core i7-3770K clocked at 3.5 GHz and 4 GB of RAM.

The communication with the robot is done via CAN-bus. The communication bus limits the

sampling rate that can be used for centralized control at 500Hz when assembling a six-axes

robot. The controller has been developed using Matlab/Simulink 2015b and implemented on

the target machine via automatic code generation.

2.6.2 Derivation of the Module Data

It is now possible to describe how the notation presented in Subsections 2.4.1 and 2.3.2 can be

applied to the real scenario with the modules in Figure 2.9a. Even though the complex joint

modules differ from the module definiton assumed so far (that has only one joint axis), the
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Figure 2.10: Characterization of the modules using simple modular units. The models of the

components have been derived using the CAD data available from the website of Schunk GmbH

& Co. KG.

notation proposed is still applicable since multiple simple joint module units (like the one in

Figure 2.3(a)) can be used in sequence for characterizing more complex modules. In this way,

the proposed notation can be used to characterize modules with an arbitrary number of joints.

By considering first the complex joint modules, as shown in the top-left of Figure 2.10, one

can decompose it into two simple joint model units (unit A and unit B). To parametrize these

two units, the corresponding input and output frames should first be placed. Then, the relevant

parameters can be extracted according to the notation described in Subsection 2.3.2 for each

proximal and distal part. It is important to notice that unit B in Figure 2.10 can be considered

fictitious and is introduced with relevant parameters for kinematics at zero to properly describe

the geometry of the physical module (the sphere-like body), complementing the use of unit A.
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Figure 2.11: Assemblies used for tests.

For characterizing the link modules, the procedure described in Subsection 2.3.2 can be directly

applied: the input and output frames are first set, then the auxiliary frames are identified and

the kinematic parameters are extracted.

The required module data can be obtained from CAD software and data sheets from the

robot manufacturer. It is important to notice that parameters for dynamics of fictitious units

can also be set to zero. For example, according to the modeling of the available joint modules

using simple joint units (see top-left of Figure 2.10), the mass, the coordinates of the center

of mass, and the inertia tensor of the sphere-like body is associated to the distal part of the

unit A. The other parts of the modular units (the proximal and distal parts of unit B and the

proximal part of unit A) are considered to be fictitious with zero mass and inertia. Please note

that even though the mass properties of the sphere-like body have been concentrated in the

simple modular unit A, the unit B must still carry the data for kinematics and dynamics of its

joint (i.e., type of joint, friction parameters, torque mapping, gear ratio, and rotor inertia). The

data relative to the actuators such as friction parameters and rotor inertia can be estimated by

performing simple identification of each joint module. Ideally, this can be performed at the time

of the module development without applying the distal part on the module. For this simple

identification procedure, the following model can be considered:

:=Ieq︷ ︸︸ ︷
Im σ2

r q̈i + βv,isign(q̇i) + βc,isign(q̇i) = ui.
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Figure 2.12: Results of the friction identification procedure for all joint modules. This figure

additionally shows the influence of the load for the first joint axis. Joint axes numbering is referred

to in Figure 2.11.

In light of this model, the parameters can simply be estimated by using the following regression

offline when k samples are obtained from a test motion as follows:

[Ieq, βv,i, βc,i]
T = (ΦTΦ)−1ΦTb,

where1

Φ =




q̈i(1) q̇i(1) sign(q̇i(0))
...

...
...

q̈i(k) q̇i(k) sign(q̇i(k))


 , b =




ui(1)
...

ui(k)


 .

The results of the identification for the joint modules available in this experimental evaluation

are shown in Figure 2.12, where the numbering refers to the joint numbers in Figure 2.11.

Please note that the same approach can be used with a more complex friction model provided

that linearity in the parameters is maintained. Even if the equivalent inertia of the rotor can

be obtained from motor data-sheets, the info of auxiliary components e.g., mounting flanges

could be missing. This motivated the additional inclusion of the estimation of the equivalent

inertia in the identification scheme presented above.

1The acceleration can be obtained offline from zero-phase-shift digital filtering [79].
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2.6.3 Validation of the Automatically-Generated Models

The models automatically obtained with the approaches presented in this framework can now

be verified. This is possible by letting the robot follow a trajectory and by processing offline

the measured joint positions, velocities, and applied control torques. In fact, by comparing the

torque applied by the actuators with respect to the predicted torque obtained by using the au-

tomatically generated models, the model quality can be observed. The predicted torque can be

computed using the recursive N-E algorithm. This algorithm takes as input the automatically

generated kinematic/dynamic description of the assembled robot, the measured joint position,

velocity, and acceleration vector. Even though the joint accelaration vector is typically not

available, it can be computed offline by processing the measured joint position data through

numerical differentiation and zero-phase-shift digital filtering [79]. The details on the trajecto-

ries used for this test can be found in Table B.1 of Appendix B and have been selected using

fifth order polynomials, such that the maximum joint velocities are approached for all axes.

The assemblies from I to VI shown in Figure 2.11 have been tested. The results of these

tests are collected in Figure 2.13, in which the comparison between the measured applied torque

and the predicted one is shown. These plots show a significantly good model matching and

verify the effectiveness of the automatic modeling approach proposed in this framework.
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passivity-based control (PB) for different assemblies.

2.6.4 Evaluation of the Control Performance

The considered approaches for motion control that are part of this framework are now com-

pared. For the same trajectory used in Subsection 2.6.3 and reported in Appendix B, the

tracking performance of different joint space controllers are evaluated. The results of these

experiments are collected in Figure 2.14, which shows remarkable insensitivity of the track-

ing error with respect to changes in the assembly. These plots also show that passivity-based

control performs better than inverse dynamics control. Even though a fair comparison among

nonlinear controllers for robots is usually difficult due to different nonlinear mapping, tuning

parameters have been selected in a fair way by maintaining a similar measurement noise am-

plification observed in the torque commands as shown in Figure 2.15. The gains used for the

inverse-dynamics controller have been selected such that the error dynamics of each axis has

ωn = 35 and ζ = 0.65. The gains used for the passivity-based controller have been chosen as

Kr = Λ = 42 diag([1, 1, 1, 1, 0.5, 0.5]). Please note that no user intervention has been required

when changing the assembly.

The action of the adaptive friction compensation is shown by performing a test with a

roughly-tuned version of the automatically generated passivity-based controller and a wrong

initial guess for the friction parameters. This is executed by setting them to zero, which is

surely not the case in reality. Figure 2.16 shows the results of this test. From this figure, the

beneficial action of the adaptive friction compensation can be observed by noting the reduction

48



2.6 Experimental Application

PSfrag replacements

3030

6060

4040

4040

8080

8080

0
0

0
0

0
0

0
0

0
0

0
0

66

66

66

1212

1212

1212

1818

1818

1818

‖
u
‖
(N

m
)

‖u‖ (Nm)

‖
u
‖
(N

m
)

‖u‖ (Nm)

‖
u
‖
(N

m
)

‖u‖ (Nm)

80

40

30

60

time (s)time (s)

Assembly I Assembly II

Assembly III Assembly IV

Assembly V Assembly VI

ID
PB

Figure 2.15: Control torque commands required when using inverse dynamics control (ID) and

passivity-based control (PB) for the trajectory tracking test of Figure 2.14.

of the norm of the tracking error over time. It is worth mentioning that the event of having

a wrong initial guess for the friction coefficients, and a roughly-tuned controller, could happen

in practice when quick commissioning of the robot with a new assembly is required. In this

experiment the following gains have been used: Kr = Λ = 30I, K∆β
= I.

An additional performance comparison is presented in this thesis to show the benefit of using

automatically generated models for control, with respect to the use of a simple model-free ap-

proach. The simple approach considered is based on distributed proportional-integral-derivative

schemes with decentralized feedforward actions at the joints (PIDs). These decentralized con-

trollers are designed independently for each axis. They allow the closed-loop for each axis

to be considered as a second-order linear system with user-defined natural frequency ωn and

damping ratio ζ. This is typically done by considering the actuator dynamics only and by

leaving the couplings as disturbances to be rejected (see e.g., in [96, Section 8.3.1]). This

performance comparison has been executed for assemblies I, II, and III of Figure 2.11. The

gains of the controllers have been fairly selected by setting ωn = 50 (rad/s) and ζ = 0.65 for

both inverse-dynamics control and the PIDs. The passivity-based control law with adaptive

friction compensation has been tuned such that the tracking performance with assembly I are

comparable with the other controllers: Kr = Λ = 50I, K∆β
= I. The results of these tests

are collected in Figure 2.17. While the first column of plots of this figure shows a comparable

development of the tracking error over time when using assembly I, the control performance

of the PIDs dramatically decreases when changing the robot assembly without re-tuning. This
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changing the assembly of the robot. ID denotes the inverse dynamics controller, PBAFC the

passivity-based control with adaptive friction compensation, and PID the scheme with decentral-

ized PID controllers.

may frequently happen for the modular reconfigurable robotic setting considered in this thesis.

While instabilities are observed for the decentralized PIDs when increasing the complexity of

the robotic assembly, the automatically generated model-based controllers show a remarkable

insensitivity. It is worth mentioning that the PIDs could be made stable again by manual

re-tuning after assembly. However, this would require additional user intervention contrary to

the proposed automatic controller design approach.

Now, experimental results of tracking task-space trajectories when using the complete ar-

chitecture of Figure 2.7 are presented. The task of writing on a white-board has been required

for the arm with different assemblies. In particular, for the same task, the robot has been

reconfigured from assembly III to VI (with reference to Figure 2.11). For each different assem-

bly the task-space trajectory tracking controller has been automatically generated. The results

of these experiments are collected in Figures 2.18, 2.19, 2.20, and 2.21. The figures show the
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position and orientation error of the inverse kinematic solver on the left. These plots show

that the inverse kinematic problem is solved with high precision for all the different assemblies

used. On the right of these figures, the task-space tracking performance can be observed. The

main limiting factor here is the limited precision of the joint-space controller. Improvements are

expected when using a higher sampling rate (which was not possible with the available setup).

In light of these results, we can conclude that the tracking performances (both task-space and

joint-space) are not significantly affected when changing the assembly of the robot, thanks to

the use of the proposed control framework. Finally, it is worth reporting that the maximum

total execution time experienced for computing the model-based control commands in these

experiments was less than 50 microseconds. The gains used for the experiments of Figures

2.18, 2.19, 2.20, and 2.21 are the following: Kr = Λ = 55 diag([1, 1, 1, 1, 0.5, 0.5]), KI = 20I,

κ = 200, Kv = 200, Kp = 1002, Kω = 10, and Ko = 200.

2.7 Summary

A new framework for controlling modular robot manipulators has been presented in this chapter.

Contrary to existing methods that unnecessarily force modular robots to require decentralized

control schemes, we show both theoretically and with experiments that centralized control is

possible instead. The approach that has been proposed to achieve this is systematic and allows

the automatic obtainment of the robot description after arbitrary assembly of modules. Thanks

to this approach, the large body of results proposed so far for controlling classical robots can

also be used for modular reconfigurable robots. Thus, the criticism typically associated with

modular robot manipulators regarding their difficult control problem is removed at the root. In

fact, the experimental results lead to the conclusion that the motion-control performance of a

modular robot manipulator can be made assembly independent with the proposed framework.

The proposed framework is complete since it covers everything from modeling the single

modules to the automatic deployment of motion-control schemes in joint-space and task-space.

In particular, it has been shown that minimal assumptions on the module geometries have been

considered (basically only that they have standardized connectors). This aspect is particularly

important because it makes the framework suitable for modular robot setups with heterogeneous

modules, contrary to other existing approaches.

Besides the implementation of existing approaches for optimal exploitation of possible null-

space motions or impedance/admittance control, this framework would certainly benefit from
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the development of automatically deployable kinematic control schemes with hard constraints

on obstacle avoidance and joint limits. Another interesting extension of this framework could

be the consideration of joint modules with multiple input and output connectors that would

enable the realization of assemblies with kinematic loops.
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Figure 2.18: Task-space trajectory tracking experiment for assembly III.
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Figure 2.19: Task-space trajectory tracking experiment for assembly IV.
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Figure 2.20: Task-space trajectory tracking experiment for assembly V.
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Figure 2.21: Task-space trajectory tracking experiment for assembly VI.
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Chapter 3

Automatic Design of Robust

Controllers

This chapter focuses on the design of controllers that can guarantee robust stability and perfor-

mance under model mismatches and input disturbances. To this end, the state-of-the-art works

that approach this problem are first reviewed, paying particular attention to their applicability

for robust control of modular arms. Then, this chapter presents a new approach for robust

control using interval arithmetic, which allows one to automatically deploy robust controllers.

Simulation and experimental results which verify effectiveness and applicability of this approach

are also presented. This chapter is largely based on, and extend, the author’s work in [125,126].

3.1 Introduction and State of the Art

In light of the results presented in the previous chapter, the automatic deployment of model-

based controllers for modular arms has shown to be a practically viable option. As is typical for

model-based controllers in general, the achievable tracking performance strongly depends on the

quality of the model available. For modular manipulators this is clearly related to the accuracy

of the module data with respect to the real module parameters. In practice, the matching

between the model that can be obtained from module data and the real arm dynamics is always

imperfect. In particular, the mismatch can easily become significant when unknown payloads

are involved. Modifications to the control laws (e.g., after performing system identification

procedures or several tuning iterations), are a possible solution for classical fixed-configuration

robots in order to achieve and maintain good motion-control performance. However, when
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considering modular robot arms, these procedures are time consuming and would clearly limit

their swift reconfigurability.

The problem of designing controllers for robot arms with uncertain dynamics has attracted

numerous researchers since the late ’70s. A survey that provides an overview of early works on

this subject can be found in [1], and classical approaches can be found in textbooks such as [40,

96,102]. Among existing methods, the authors in [105] consider the use of a simplified model for

feedback linearization and complete the control law with a robustifying linear compensator that

ensures a bounded norm of the trajectory tracking error. This controller relies on the assumption

that model mismatches can be bounded. A completely linear state feedback approach, where

gains are selected on the base of initial conditions and a suitable polynomial function that

bounds the perturbations on the closed-loop system, is proposed in [90] and ensures boundedness

of the tracking error norm. Methods that exploit an optimal control framework for solving the

robust control problem can be found e.g., in [63, 87].

3.1.1 Discontinuous, Smoothed, and Continuous Schemes

Robust control methods that can theoretically guarantee asymptotic convergence of the trajec-

tory tracking error to zero are based on discontinuous control laws [30, 45]. The discontinuity

makes these schemes difficult to implement in practice because they introduce undesired chat-

tering behavior [97]. Chattering is usually a highly undesired effect because it may excite

unmodeled dynamics, such as those due to the elasticity of the transmissions and the flexibility

of the links e.g., when lightweight components are used. Classical robust control schemes have

recently been revised in [10], where the model uncertainty has been represented in a way such

that it avoids the influence of the controller gains. In practice, with classical approaches, in-

creasing the gains would also increase the bounds on the perturbations from model uncertainty

which would clearly make tuning more complicated. However, in the description of [10], the

control law presented is discontinuous, thus exposing the closed-loop system to the previously-

mentioned risk of chattering. Continuity of these control laws can be provided by smoothing

the discontinuous robust control action as proposed e.g., in [30, 97]. However, this procedure

has the consequence that asymptotic convergence to zero of the tracking error can no longer

be ensured. For this aspect, the authors in [30] defined a practical stability notion of uncertain

systems, by introducing the concept of uniform ultimate boundedness of the trajectories. This

stability notion has subsequently become widely adopted.
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Among the most effective methods that adopt the smoothing concept is the work in [104],

which is also particularly easy to implement. In fact, by exploiting the property that the

dynamical model of a manipulator can be made linear in the dynamical parameters (see e.g., [96,

Section 7.2.2]), the perturbations due to model uncertainty can be directly considered by the

dynamical parameters instead of considering bounds on a highly nonlinear state-dependent

perturbation function. The effectivenenss of this approach has been experimentally evaluated

in [54] on a directly-actuated planar arm with two degrees of freedom. In that paper, an

experimental comparison is provided where another theoretically interesting controller is also

tested, which is intrinsically continuous since it does not rely on smoothing a discontiuous

control law. Such a controller is called a “r-α” tracker and has been proposed in [120]. The

name r-α tracker comes from its capability of ensuring user defined bounds of the tracking error

norm r, which can be reached with a convergence rate α. The approaches in [104] and [120]

have unique benefits in principle: the former does not require the computation of bounds on

nonlinear state-dependent perturbation terms, while the latter does. However, the latter can

explicitly guarantee that a user-defined robust performance on the tracking error can be met.

The r-α tracker may require very high control gains and introduce chattering when considering

realistic sampling effects, as shown in the numerical simulations presented next and in [125].

It is important to mention the scheme in [18, Section 2.4.2] that is inspired by [104]. This

controller exploits the property of linearity in the dynamical parameters and is intrinsically

continuous without the need of resorting to the smoothing approach.

3.1.2 Removal of Implementation Difficulties

The estimation of bounds of perturbations, which many proposed robust control techniques

require, is not easy to perform in practice. One possible practical shortcut is to consider these

bounds as parameters to be adjusted during tuning procedures. This aspect is particularly

critical for modular robots that can be frequently and arbitrarily reconfigured, since the change

of the model due to reconfiguration may change the perturbations from model uncertainties

as well. To address this issue, a novel approach for robust control that does not require the

estimation of bounds of nonlinear state-dependent perturbation terms has been introduced in

the author’s work [125]. This paper proposes the idea of using interval arithmetic for automatic

online computation of worst-case perturbations that has the additional benefit of providing

guaranteed overapproximative results. Such an interval-arithmetic-based robust control ap-

proach, contrary to [104] and [18, Section 2.4.2], does not exploit the property of linearity in
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the robot model’s parameters and therefore does not require the computation of the regres-

sor matrix. Even though in [125] the computation of worst-case perturbation using interval

arithmetic was still performed in a computationally expensive way, the author’s subsequent

results in [126] removed this issue. In fact, this last work proposes a method for highly efficient

computability of the perturbations with interval arithmetic. This novel control approach is

suitable for automatically deploying robust controllers for classical fixed configuration and for

modular reconfigurable robot manipulators. It has also been recently applied with success for

addressing the robust control problem of more exotic continuum robot arms, as presented in the

author’s contribution in [131]. After the formulation of the control problem and fundamental

preliminaries, a complete description of the interval-arithmetic-based robust control approach

follows in the next sections.

3.2 Formulation of the Control Problem

A robot arm assembled from modules with N serially connected links with uncertain dynamical

parameters is considered. Hereafter, the real unknown dynamical parameters of the arm are

considered to be collected in a vector as

∆ = (m1 . . . , mN , cx,1, . . . , cz,N , Ixx,1, . . . , Izz,N , βv,1 . . . , βv,N ,

βc,1 . . . , βc,N , Im,1 . . . , Im,N )T ,

where the mass, the coordinates of the center of mass, and the inertia tensor of the ith link are

respectively denoted by

mi, rDi,Ci
=




cx,i

cy,i

cz,i


 and Ii =




Ixx,i −Ixy,i −Ixz,i

∗ Iyy,i −Iyz,i

∗ ∗ Izz,i


 .

Further, Im,i is the moment of inertia of the rotor, βv,i the viscous friction coefficient, and βc,i

the static one.

The dependency on the dynamical parameters of the assembled arm is now made explicit

for the sake of clarity of the subsequent description. The mathematical model that describes

the dynamics of the considered system can be rewritten as

M(q,∆)q̈+

:=n(q,q̇,∆)︷ ︸︸ ︷
C(q, q̇,∆)q̇+ f(q̇,∆) + g(q,∆) = u+ d, (3.1)
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where d ∈ R
N is a bounded input disturbance vector. For control design purposes, it is

assumed that the model structure and a nominal guess ∆0 of the real unknown vector ∆ are

available. This is possible to assume considering the results of the framework presented in

Chapter 2, which provides the automatic generation of a (nominal) model. In that case, the

model structure is defined by the kinematics of the assembled robot arm, whose description

can be obtained automatically by processing module data. A vector of dynamical parameters

can also be obtained. Clearly, the outcome of this procedure can only provide some nominal

values. An additional practical assumption is that the amount of uncertainty for each element

of ∆ is known, so that certain bounds for each parameter can be considered. Finally, the input

disturbance is assumed to have bounded norm βd. Both the cases that βd is known a priori and

that it is unknown are considered.

This chapter focuses on the problem of ensuring that an automatically generated controller

for a modular robot provides

‖e‖ < ǫ, ∀ t ≥ t1, (3.2)

for a finite time t1 ≥ 0 and a finite ǫ > 0. We denote this result as ultimate robust performance

if ǫ is defined by the user; otherwise, we simply refer to ultimate robust stability. An illustration

of the targeted evolution of the tracking error over time is shown in Figure 3.1.
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3.3 Preliminaries on Interval Arithmetic

Interval arithmetic [55, 75, 76] is a tool from applied mathematics that enables one to bound

possible solutions of mathematical problems involving uncertain parameters, with absolute

certainty. In fact, with interval arithmetic the operations are not limited to real numbers

only, but instead can involve sets of real numbers. This is especially useful for analyzing

physical systems whose parameters are uncertain. Software packages are currently available for

performing computations with interval arithmetic e.g., in [4, 91].

The author’s proposed approach for robust control in [125,126] exploits the automatic com-

putation of closed-loop perturbations from highly-nonlinear uncertain robot dynamics, using

interval arithmetic. This control approach is detailed in the upcoming sections. To maintain

clarity of the subsequent description, the following definitions are introduced.

Definition 1 (Multidimensional interval). A multidimensional interval is defined as a set of

real numbers:

[x] := [x,x], x ∈ R
n, x ∈ R

n, xi ≤ xi, ∀ i ∈ {1, . . . , n}.

The scalar case is simply denoted by [x] instead of [x], with x for denoting its infimum and x

its supremum.

Definition 2 (Degenerate interval). A degenerate interval is an interval [x] whose infimum x

and supremum x are equal. This case is simply denoted by x.

Definition 3 (Interval-valued function). An interval-valued function can be seen as an exten-

sion of a real-valued function evaluated with one or more interval arguments. More precisely,

given a generic real-valued function z : Rn → R
m, its interval evaluation over a set [x] is defined

as

z([x]) := {z(x) | x ∈ [x]}.

The operations between intervals that are used in this thesis are now defined as set-based

addition, subtraction, multiplication, and division as follows.

Definition 4 (Set-based operations). Let IR be the set of all scalar intervals. For [x] ∈ IR and

[y] ∈ IR, the result of the binary operations ∗ ∈ {+, −, · , /} is defined as

[x]⊛ [y] := {x ∗ y | x ∈ [x], y ∈ [y]}.

The above-mentioned operations can be straightforwardly implemented as follows (see e.g.,
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[76, Appendix B]):

[x]⊕ [y] = [x+ y, x+ y],

[x]⊖ [y] = [x− y, x+ y],

[x]⊙ [y] = [min(xy, xy, xy, xy), max(xy, xy, xy, xy)],

[x]⊘ [y] = [x]⊙ [iy], where [iy] = [1/y, 1/y], 0 /∈ [y].

When multidimensional intervals are involved, set-based addition and subtraction are ap-

plied element-wise. Contrary, interval matrix/scalar-matrix multiplication requires a definition.

Definition 5 (Interval matrix/scalar-matrix multiplication). Given [X] ∈ IR
n×m, [Y] ∈

IR
m×p and [a] ∈ IR, the results of a matrix and scalar-matrix multiplication are defined re-

spectively as

([X]⊙ [Y])ij =
n⊕

k=1

(
[X]ik ⊙ [Y]kj

)
, ([a]⊙ [X])ij = [a]⊙ [X]ij ,

where
n⊕

k=1

denotes the interval version of the summation symbol involving set-based additions.

Finally, the set-based cross-product is defined, as it will be required for robot dynamics

computations. Please note that set-based multiplications and divisions bind more strongly

than additions and subtractions.

Definition 6 (Set-based cross-product). Given two interval vectors [x] ∈ IR
3×1 and [y] ∈

IR
3×1, the result of the set-based cross product between them is defined as

[x]⊗ [y] =




[x]2 ⊙ [y]3 ⊖ [x]3 ⊙ [y]2

[x]3 ⊙ [y]1 ⊖ [x]1 ⊙ [y]3

[x]1 ⊙ [y]2 ⊖ [x]2 ⊙ [y]1




.

3.4 Interval-Arithmetic-Based Robust Control

The use of interval arithmetic for robust control of robot manipulators, as proposed in the

author’s work [125], has the benefit of removing the need for nontrivial, time-consuming, and

often empiric procedures for estimating bounds of closed-loop perturbations arising from model

uncertainties. The basic idea is that, starting from known uncertain bounds for the physical

parameters of the arm-links (e.g., masses, inertia tensors, and coordinates of the centers of

mass), the effect of the propagation of the parametric uncertainty through the nonlinear dy-

namical model (which creates the closed-loop perturbations) can be directly computed with
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interval arithmetic in the form of certain bounds. This has the clear advantage of making the

robust control quickly deployable, with positive implications for the automatic generation of

the robust control of modular manipulators.

In the following subsections, the theoretical derivation of Interval-Arithmetic-Based (IAB)

robust controllers is first presented. Then, a method to enable the efficient (online) computation

of IAB robust controllers is described, followed by a description of the application of this

control approach for modular reconfigurable arms. The two closing sections of this chapter

present numerical comparative simulations and experimental results that verify the approach’s

applicability.

3.4.1 Derivation of the Controllers

The problem of achieving robust stability and robust performance is addressed in this sub-

section using interval arithmetic. Even if some uncertainty in the knowledge of the dynamical

parameters of the arm-links is present, model-based trajectory tracking controllers can be im-

plemented by using nominal model data. Nominal model parameters are denoted hereafter with

0 as a subscript. A nominal vector of dynamical parameters ∆0 can now be considered, which

collects the nominal dynamical parameters of the arm-links as:

∆0 = (m01 . . . , m0N , cx,01, . . . , cz,0N , Ixx,01, . . . , Izz,0N , βv,01 . . . , βv,0N ,

βc,01 . . . , βc,0N , Im,01 . . . , Im,0N )T .

Hereafter, bounds of uncertainty of the parameters for each ith arm-link are considered as

available. Using these bounds, the interval vector of the uncertain dynamical parameters can

be defined as

[∆] = ([m1] . . . , [mN ], [cx,1], . . . , [cz,N ], [Ixx,1], . . . , [Izz,N ], [βv,1] . . . , [βv,N ],

[βc,1] . . . , [βc,N ], [Im,1] . . . , [Im,N ])T ,

such that ∆0 ∈ [∆].

Two different interval-arithmetic-based robust controllers are formulated in the following.

The type depends on the nominal tracking control law employed. First, the case of using inverse-

dynamics nominal control is described, followed by the case of using passivity-based nominal

control. These two schemes will be denoted next by Interval-Arithmetic Inverse-Dynamics (IA-

ID) control, and Interval-Arithmetic Passivity-Based (IA-PB) control, respectively. For com-

pactness of the following description the model terms computed with nominal model parameters
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are also denoted with 0 as a subscript. For example, the nominal mass matrix M (q,∆0) will

be simply denoted by M0 (q). The same applies for all other model terms.

Interval-Arithmetic Inverse-Dynamics Control

The inverse-dynamics control law with explicit dependence of the nominal parameters can

be written as

u = M0 (q)

=y︷ ︸︸ ︷(
q̈d +KDė+KP e

)
+

:=n0(q,q̇)︷ ︸︸ ︷
C0 (q, q̇) q̇+ f0 (q̇) + g0 (q)− ν, (3.3)

where n0 contains the nominal contributions due to centrifugal, Coriolis, friction, and gravity

terms. Further, in (3.3) the vector y is the same as in (2.29), and ν is an auxiliary input vector

that allows the introduction of the interval-arithmetic-based robust control action. By applying

this control law to (3.1), the system

M(q,∆)q̈ = M0(q)y + n0(q) − n(q,∆)− ν + d (3.4)

is obtained. Now, the subtraction from both sides of (3.4) of the term M(q,∆)(q̈d +KDė +

KP e), yields

M(q,∆)(ë+KDė+KPe) = wID(q, q̇,y,∆0,∆,d) + ν, (3.5)

where

wID(q, q̇,y,∆0,∆,d) =
(
M(q,∆)−M0(q)

)
y + n(q,∆)− n0(q)− d (3.6)

is a perturbation term arising from imperfect knowledge of the dynamical model parameters

and external disturbance.

From the position of (3.5), the interval-arithmetic-based robust control action can be intro-

duced through ν. To this end, a function that always maximizes the worst-case perturbation

can be defined as

ρ([ΦID]) = max
(
|ΦID|, |ΦID|

)
, (3.7)

in which the max operator is applied element-wise and where

[ΦID] = wID(q, q̇,y,∆0, [d], [∆]),

from the interval-valued function wID(. . . , [d], [∆]). By considering Definition 3, it is not

difficult to see that

wID(q, q̇,y,∆0,∆,d) ∈ [ΦID] = wID(q, q̇,y,∆0, [∆], [d]), ∀q, q̇, y, ∆0 and ∆ ∈ [∆], d ∈ [d]
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holds, which provides

ρi([ΦID]) ≥ |wID,i(q, q̇,y,∆0,∆,d)|, ∀q, q̇, y, ∆0 and ∆ ∈ [∆], d ∈ [d]. (3.8)

The result in (3.8) can be simply shown by contradiction. For example, suppose instead that

ρi([ΦID]) < |wID,i(q, q̇,y,∆0,∆,d)|. Then, from (3.7)

max
(
|ΦID,i|, |ΦID,i|

)
< |wID,i(q, q̇,y,∆0,∆,d)|

would also follow. However, this contradicts the definition of the interval-valued function that

provides [ΦID] and implies that

ΦID,i ≤ wID,i(. . . ,∆,d) ≤ ΦID,i. (3.9)

The completion of the Interval-Arithmetic Inverse-Dynamics (IA-ID) control law follows by

directly using ρ([ΦID]) for feedback control. To describe this step, the following closed-loop

error-dynamics (which is derived from (3.5)) can be considered for

ξ = (eT , ėT )T , (3.10)

ξ̇ = A ξ +BM−1ν +BM−1w, (3.11)

where

A =


 0 I

−KP −KD


 , B =


0

I


 . (3.12)

From the position of (3.11), the task is now to exploit both the interval arithmetic tools

introduced earlier and ν, for counteracting the perturbation term w. The following derivation is

inspired by [18, Section 2.4.2] and introduces the use of interval arithmetic for feedback control

inspired by the author’s work [125]. In the following, λmin(χ) and λmax(χ) are used to denote

the minimum and the maximum eigenvalue of a matrix χ, respectively.

By considering a symmetric positive definite matrix P such that

ATP+PA = −Q (3.13)

with Q positive definite, the following Lyapunov function candidate can be used:

V = ξTP ξ. (3.14)

Taking the derivative over time of (3.14), along the trajectories of the system in (3.11), yields

V̇ = − ξTQ ξ + 2 ξTPBM−1
(
ν +w

)
(3.15)

(3.8)

≤ − ξTQ ξ + 2 ξTPBM−1ν + 2 ‖ξTPB‖‖M−1‖‖ρ
(
[ΦID]

)
‖. (3.16)

64



3.4 Interval-Arithmetic-Based Robust Control

By selecting the robustifying term of the controller as

ν = −κP ‖ρ
(
[ΦID]

)
‖2BTPξ, (3.17)

where κP > 0 is a tuning parameter, (3.16) becomes

V̇ ≤ −ξTQ ξ − 2 κP ‖ρ
(
[ΦID]

)
‖2 ξTPBM−1BTPξ + 2 ‖ξTPB‖‖M−1‖‖ρ

(
[ΦID]

)
‖. (3.18)

Now, by considering that

λmin

(
M−1

)
‖x‖2 ≤ xTM−1x ∀ x ∈ R

N ,

λmin

(
M−1

)
=

1

λmax

(
M
) ≥ 1

λM
∀ q ∈ R

N ,

and that

‖M−1‖ =
1

λmin

(
M
) ≤ 1

λm
∀ q ∈ R

N ,

for some finite positive constants λm, λM , the inequality (3.18) can be rewritten as

V̇ ≤ − ξTQ ξ −
2κP

λM
‖ξTPB‖2‖ρ

(
[ΦID]

)
‖2 +

2

λm
‖ξTPB‖‖ρ

(
[ΦID]

)
‖

≤ − ξTQ ξ +
2κP

λM
‖ξTPB‖‖ρ

(
[ΦID]

)
‖
( λM

κPλm
− ‖ξTPB‖‖ρ

(
[ΦID]

)
‖
)
. (3.19)

It is now possible to observe from (3.19) that when ‖ξTPB‖‖ρ
(
[ΦID]

)
‖ ≥ λM

κPλm
, V̇ < −ξTQ ξ,

while for ‖ξTPB‖‖ρ
(
[ΦID]

)
‖ < λM

κPλm
the following inequalities are obtained:

V̇ ≤ − ξTQ ξ +
2

λm
‖ξTPB‖‖ρ

(
[ΦID]

)
‖

≤ − λmin(Q)‖ξ‖2 +
2λM

κPλ2
m

. (3.20)

Since (3.20) always holds, uniform ultimate boundedness of the error trajectories follows. Fur-

ther, the bound that is ultimately reached can be computed as

‖ξ‖ ≤

√
λmax(P)

λmin(P)

2λM

κPλ2
m

. (3.21)

Both these results can be shown mutatis mutandis from e.g., [60, Theorem 4.18].

In principle, from the relation (3.21) the designer can infer the minimum value of κP required

to achieve a specific user defined tracking performances, provided that λM and λm are known.

If these values are not known a priori, specific desired tracking performance can be reached by

tuning κP . The block diagram of the complete control scheme is presented in Figure 3.2.
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Figure 3.2: Block diagram of Interval-Arithmetic Inverse-Dynamics (IA-ID) control.

An important remark on (3.17) is that it is continuous, and it does not approach a dis-

continuous control action when the required tracking performances (and thus κP in this case)

is increased, contrary to e.g., [104]. Continuity follows from the fact that (3.8) is contin-

uous, as the same argument of [125, Proposition 1] applies here. In particular, given that

[ΦID] = w(q, q̇,y,∆0, [∆], [d]), for given q, q̇, y, one can choose d∗ ∈ [d] and ∆∗ ∈ [∆]

such that ΦID is maximal (or ΦID is minimal). Since w(q, q̇,y,∆0,∆
∗,d∗) is continuous, it

guarantees in turn continuity of |ΦID| (or |ΦID|). Then, since the max operator between two

continuous functions preserves continuity, ρ([ΦID]) is continuous.

Interval-Arithmetic Passivity-Based Control

An alternative interval-arithmetic-based robust controller can be obtained using the nominal

passivity-based tracking scheme. This control law is first derived for the case of known bounds

of the external disturbance vector d. Subsequently, this assumption is relaxed. The following

control scheme is employed:

u = M0(q)q̈a +C0(q, q̇)q̇a + f0(q̇) + g0(q) − ν, (3.22)

in which the term ν ∈ R
N is exploited to enhance robustness. For the sake of clarity, it is

recalled that

q̇a = q̇d +Kre, e = qd − q, (3.23)

with Kr being a diagonal positive definite matrix of proper dimensions.
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Applying the control law of (3.22) to (3.1) yields

M(q,∆)ṙ+C(q, q̇,∆)r = ν +wPB(q, q̇, q̇a, q̈a,∆0,∆,d), (3.24)

where

r = ė+Kre, (3.25)

and wPB(q, q̇, q̇a, q̈a,∆0,∆,d) is a disturbance vector due the external disturbance input and

the imperfect knowledge of the system dynamics. This term can be expressed as

wPB(q, q̇, q̇a, q̈a,∆0,∆,d) = M̃(q,∆)q̈a + C̃(q, q̇,∆)q̇a + g̃(q,∆) + f̃ (q̇,∆)− d, (3.26)

where

M̃(q,∆) = M(q,∆)−M0(q), C̃(q, q̇,∆) = C(q, q̇,∆)−C0(q, q̇),

g̃(q,∆) = g(q,∆) − g0(q), f̃ (q̇,∆) = f(q,∆) − f0(q̇).

By proceeding in a similar way as for the inverse-dynamics version, the following relation can

be written:

wPB(q, q̇, q̇a, q̈a,∆0,∆,d) ∈ [ΦPB] = wPB(q, q̇, q̇a, q̈a,∆0, [∆], [d]), (3.27)

where the set membership relation of (3.27) can be straightforwardly inferred from Definition 3.

The worst-case perturbation is then measured with [ΦPB] as

ρ([ΦPB]) = max
(
|ΦPB |, |ΦPB|

)
. (3.28)

From the same arguments as for the inverse-dynamics variant, it holds that

ρi([ΦPB]) ≥ |wPB,i(q, q̇, q̇a, q̈a,∆0,∆,d)|, ∀q, q̇, q̇a, q̈a, ∆0 and ∆ ∈ [∆], d ∈ [d]. (3.29)

In this case as well, ρ([ΦPB ]) can be directly used for feedback control. To formulate the

derivation of such a control law, it is convenient to start from the storage function

V (r) =
1

2
rTM(q,∆)r, (3.30)

whose derivative along the coordinates of (3.24) can be written as

V̇ (r) = rTM(q,∆)ṙ+
1

2
rT Ṁ(q,∆)r

(3.24)
= rT

(
ν +wPB(q, q̇, q̇a, q̈a,∆0,∆,d)

)
+

1

2
rT
(
Ṁ(q,∆)− 2C(q, q̇,∆)

)
r

(2.2)
= rTν + rTwPB(q, q̇, q̇a, q̈a,∆0,∆,d). (3.31)
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From this relation, the term ν can now be selected as

ν = −
(
κ(t) ‖ρ

(
[ΦPB]

)
‖+ ϕ(t)

)
r. (3.32)

where κ(t) and ϕ(t) are two positive increasing functions with κP ≥ 1 and ϕP ≥ 1 as their

respective minimum. This choice in (3.31) yields

V̇ (r) = −ϕ(t) ‖r‖2 − κ(t) ‖ρ
(
[ΦPB]

)
‖ ‖r‖2 + rTw(q, q̇, q̇a, q̈a,∆0,∆,d)

≤ −ϕP ‖r‖
2 − κP ‖ρ

(
[ΦPB ]

)
‖ ‖r‖2 + ‖r‖‖w(q, q̇, q̇a, q̈a,∆0,∆,d)‖

(3.29)

≤ −ϕP ‖r‖
2−κP‖ρ

(
[ΦPB]

)
‖ ‖r‖2 + ‖r‖‖ρ

(
[ΦPB ]

)
‖

︸ ︷︷ ︸
=:h1(r)

. (3.33)

By factoring out ‖r‖ in h1(r), it follows that for ‖r‖ ≥ 1
κP

, V̇ (r) < 0 since h1(r) ≤ 0. From

this result, uniform ultimate boundedness of the error trajectories is proven in a similar way as

in [40, Section 2.4.2]. To show this, without loss of generality, one can consider that the state

lies outside a ball Bκ−1

P
of radius 1

κP
, at t = 0. Subsequently, since V̇ (r) < 0, the trajectories

will converge to the ball Bκ−1

P
and there will be a finite time t1 such that ‖r(t1)‖ =

1
κP

. Until

the trajectories reach the edge of the ball, h1(r) ≤ 0 and thus V̇ (r) ≤ −ϕP ‖r‖
2 from (3.33).

Consequently,

V (r(t1))− V (r(0)) ≤

∫ t1

0

−
ϕP

κ2
P

dt = −t1
ϕP

κ2
P

. (3.34)

Now, given that the norm of the inertia matrix always has upper and lower bounds we can

write

λm ‖x‖
2 ≤ xT M(q,∆)x ≤ λM ‖x‖

2, ∀x ∈ R
N ,

where λm = λmin(M(q,∆)) > 0 and λM = λmax(M(q,∆)) < ∞ represent the minimum and

maximum eigenvalue of the matrix M(q,∆) ∀ q, respectively. Recalling (3.30), it can now be

shown that t1 is finite. Given

∀t : γ1(r) ≤ V (r) ≤ γ2(r), (3.35)

where γ1(r) = 1
2 λm ‖r‖

2 and γ2(r) = 1
2 λM ‖r‖

2. Since V (r(0)) ≤ γ2(r(0)) and V (r(t1)) ≥

γ1(r(t1)), using (3.34) yields

γ1(κ
−1
P ) ≤ V (r(t1)) ≤ γ2(r(0)) − t1

ϕP

κ2
P

,

Therefore, t1 is finite, given that κP is finite, as

t1 ≤
1

2

λM κ2
P ‖r(0)‖

2 − λm

ϕP
.
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Figure 3.3: Block diagram of Interval-Arithmetic Passivity-Based (IA-PB) control.

Once the trajectories enter the ball Bκ−1

P
, they could leave it at a finite time t2, since there is

no guarantee that V̇ (r) < 0. Assuming now that they do leave the ball, the same reasoning

of the time frame 0 ≤ t ≤ t1 applies for t > t2 and therefore there will be a finite t3 at which

trajectories re-enter Bκ−1

P
. Considering (3.35) and the time interval for t2 < t ≤ t3,

1

2
λm ‖r‖

2 ≤ V (r(t)) < V (r(t2)) ≤
1

2

λM

κ2
P

,

which leads to the conclusion that the trajectories r are ultimately bounded by

‖r‖ ≤
1

κP

√
λM

λm
.

It is now important to highlight that the boundedness of the trajectories r imply bounded-

ness of the tracking error trajectories e as well, with Kr properly chosen. This can be seen by

considering the system in (3.25), with r as its bounded input. In fact, with Kr being diago-

nal and positive definite, this system is a set of first-order linear systems that asymptotically

reach |ei| ≤
|ri|
Kr,i

for each coordinate i. It is worth mentioning that the overall controller can

ultimately reach any desired tracking performance with the selection of large enough gains of

the matrix Kr and κP . In addition, ultimate robust performance can be achieved analytically

once λM and λm are known, as it is the case for the inverse-dynamics variant. With respect to

the inverse-dynamics version, however, tuning is simpler in this case since there is no need for

computing the matrix P. The block diagram of this control law is presented in Figure 3.3.

Contrary to the robust controllers based on [30] (such as [104]), in this approach, the tracking

performance can be increased without approaching a discontinuous feedback control law by
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increasing ϕP , κP and/or the gains of Kr. Increasing these gains, the tracking error can be

made arbitrarily close to zero in principle. However, in practice there will be an upper limit of

these gains due to the finite sampling rate of real applications and measurement noise.

From the above description, it follows that robust controllers which provide ultimate uniform

boundedness of the error trajectories can be automatically deployed thanks to the use of interval

arithmetic. Very practical tuning knobs for directly increasing the tracking performance have

also been given. Now, by properly selecting the functions κ(t) and ϕ(t), a controller which

ultimately guarantees robust performance can be devised. In particular, this is possible without

the need for finding specific large enough gains of Kr and the knowledge of λM , λm. Further,

the assumption of the knowledge of the bound on the norm of the external disturbance vector

βd is now relaxed.

Assuming that the bound of the external disturbance vector norm is not known, it cannot

be included in ρ([ΦPB ]). In this case, for computing ρ([ΦPB]) based on (3.27) one would

use [ΦPB ] = wPB(q, q̇, q̇a, q̈a,∆0, [∆],0). Therefore, the same argument used previously for

ultimate boundedness of the trajectories r does not directly hold. Considering (3.31) and

noticing that wPB(q, q̇, q̇a, q̈a,∆0,∆,d) = wPB(q, q̇, q̇a, q̈a,∆0,∆,0) − d, the derivative of

(3.30) can now be written in a slightly different form:

V̇ (r) = −ϕ(t) ‖r‖2 − κ(t) ‖ρ
(
[ΦPB]

)
‖ ‖r‖2 + rTwPB(q, q̇, q̇a, q̈a,∆0,∆,0)− rT d

≤ −ϕ(t) ‖r‖2 − κ(t) ‖ρ
(
[ΦPB]

)
‖ ‖r‖2 + ‖r‖‖wPB(q, q̇, q̇a, q̈a,∆0,∆,0)‖+ ‖r‖βd

(3.29)

≤ −ϕ(t) (1 − δ) ‖r‖2−
(
ϕ(t) δ + κ(t)‖ρ

(
[ΦPB ]

)
‖
)
‖r‖2 +

(
‖ρ
(
[ΦPB]

)
‖+ βd

)
‖r‖

︸ ︷︷ ︸
=:h2(r)

,

(3.36)

where δ is a scalar such that 0 < δ < 1, which has been introduced for simplifying the subsequent

description. By factoring out ‖r‖ in h2(r), it is not difficult to see that h2(r) ≤ 0 for

‖r‖ ≥
‖ρ
(
[ΦPB]

)
‖+ βd

ϕ(t) δ + κ(t)‖ρ
(
[ΦPB]

)
‖
. (3.37)

From the right-hand side of (3.37), the following inequalities can be written:

∀t :
‖ρ
(
[ΦPB ]

)
‖+ βd

ϕ(t) δ + κ(t)‖ρ
(
[ΦPB ]

)
‖
≤ max

( βd

ϕ(t) δ
,

1

κ(t)

)
≤ max

( βd

ϕP δ
,
1

κP

)
.

Assuming that βd is finite, it is now possible to claim that ultimate uniform boundedness of

the trajectories r follows from the same arguments used previously, when βd is known. In
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particular, following that same approach and provided that a ball of radius max
(

βd

ϕP δ ,
1
κP

)
is

now considered, the trajectories are ultimately bounded by

‖r‖ ≤ max
( βd

ϕP δ
,
1

κP

)√λM

λm
.

Interestingly, by properly choosing the functions ϕ(t) and κ(t), this control scheme can also

guarantee that a user defined tracking performance is ultimately met (robust performance). In

fact, with the use of the complete feedback control law composed of (3.22), (3.32), and

ϕ(t) =
(
ϕP + ϕI

∫ t

0

f(‖e‖) dτ
)
,

κ(t) =
(
κP + κI

∫ t

0

f(‖e‖) dτ
)
,

where κI , ϕI > 0, Kr diagonal and positive definite, and

f(‖e‖) =

{
0 if ‖e‖ < ǫ,

‖e‖ otherwise,

any user-defined tracking precision ǫ > 0 can ultimately be met. This result can be shown by

contradiction. For this purpose one can suppose that

6 ∃ t1, ∀ t, t > t1 : ‖e‖ < ǫ. (3.38)

With this supposition, the increasing functions κ(t) and ϕ(t) grow for all t due to their integral

action. As a consequence, the maximum value of ‖r‖ such that V̇ (r) is surely negative decreases

because in (3.36) the term h2(r) is non-positive for ‖r‖ ≥ max
(

βd

ϕ(t) δ ,
1

κ(t)

)
. Then, there will

be a large enough t2 > t1 such that max
(

βd

ϕ(t2) δ
, 1
κ(t2)

)
is small enough, since

‖r‖ ≤ max
( βd

ϕ(t2) δ
,

1

κ(t2)

)√λM

λm
< max

( βd

ϕ(t1) δ
,

1

κ(t1)

)√λM

λm
,

to guarantee that for t ≥ t2 the trajectories r ultimately stay within a ball small enough such

that ‖e‖ < ǫ for any selection of the gains Kr. This contradicts the supposition (3.38) and

proves the result.

The proposed robust control schemes have important implications for the robust control of

modular robot manipulators, thanks to the fact that the need for time-consuming and non-

formal procedures for estimating bounds of perturbations from model uncertainties is removed.

With the proposed approaches, a measure of the worst-case closed-loop perturbation is com-

puted automatically using interval arithmetic. This measure is then directly used online for
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feedback control. Additionally, thanks to the last result presented of robust performance con-

trol, accurate tuning of Kr is not required since the increase of κ(t) and ϕ(t) automatically

meets the tracking performance. Particular attention should be paid when implementing the

integral actions of κ(t)/ϕ(t) in practice. This aspect is detailed in Section 3.6, which is devoted

to experimental application.

3.4.2 Efficient Computation of the Controllers

The price to pay for the benefits introduced by the interval-arithmetic-based robust controllers

is the increase of computational complexity with respect to conventional schemes. For both the

inverse-dynamics and the passivity-based version, a simple way to implement the controller is

to use a software with symbolic manipulation capabilities and obtain the perturbation functions

wID/wPB analytically. Then, software packages which support interval arithmetic computa-

tions can be used for evaluating these functions with the interval arguments. This approach

has been employed in [125] for the comparison using simulations. In that case, only a planar

two degrees of freedom robot has been considered.

With the increase of the complexity of the robotic structure (e.g., when more degrees of

freedom are present), the computational complexity for analytically obtaining and for evaluating

the perturbation functions ρ([ΦID])/ρ([ΦPB]) increases significantly. In fact, the increase of

computational complexity for the evaluation of the perturbation functions as interval valued

functions endangers the online applicability of the interval-arithmetic-based robust controllers,

especially for robots with a large number of degrees of freedom. In addition, considering the

desired automatic deployment of the control for the modular robotic setting considered in this

thesis, the central control unit would require expensive computational resources, such as those

for handling symbolic algebraic manipulation.

In this subsection, an algorithm that removes the above mentioned threats is described. This

approach has been first presented in [126] and allows one to perform the computations required

for obtaining ρ([ΦID])/ρ([ΦPB]) efficiently. They can be carried out numerically online for

robots with many degrees of freedom as well, without the need for software with symbolic

variable manipulation capabilities.

The proposed approach allows the computation of formally guaranteed over-approximative

sets of perturbing torques/forces, arising from imperfect knowledge of dynamic model param-

eters. This is obtained by simply combining the use of the recursive Newton-Euler algorithm
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with the set-based operations from Definitions 4, 5, and 6. Starting from Algorithm 3 in Ap-

pendix A.1, set-based operations are included. The resulting interval-arithmetic-based Newton-

Euler algorithm denoted by IANEA∗
g(q, q̇, q̇a, q̈,DH, [∆]) is presented in Appendix A.2. The

use of set-based operations in this algorithm allows one to handle multidimensional inter-

val vectors of the dynamical parameters to directly compute over-approximative sets of joint

torques/forces as

IANEA∗
g(q, q̇, q̇, q̈,DH, [∆]) = [u].

It is now possible to show in detail how ρ([ΦID])/ρ([ΦPB]) can be computed efficiently

by using the proposed algorithm. The worst-case perturbation for the IA-ID controller can be

computed by considering that

wID(q, q̇,y,∆0,∆,d)
(3.6)
= M(q,∆)y + n(q, q̇,∆)−M0(q)y + n0(q, q̇)− d

= IANEA∗
g(q, q̇, q̇,y,DH,∆)

−NEA∗
g(q, q̇, q̇,y,DH,∆0)− d.

By introducing the non-degenerate interval for uncertain dynamic parameters, the following

holds ∀d ∈ [d], ∆ ∈ [∆]:

wID(q, q̇, q̇,y,∆0,∆,d) ∈ [ΦID] = IANEA∗
g(q, q̇, q̇,y,DH, [∆])

⊖NEA∗
g(q, q̇, q̇,y,DH,∆0)⊖ [d]. (3.39)

Similarly, the worst-case perturbation of the passivity-based variant is computed by considering

the following relation

wPB(q, q̇, q̇a, q̈a,∆0,∆,d)
(3.26)
= M(q,∆)q̈a +C(q, q̇,∆)q̇a + g(q,∆)

−
(
M0(q)q̈a +C0(q, q̇)q̇a + g0(q)

)
− d

= IANEA∗
g(q, q̇, q̇a, q̈a,DH,∆)

−NEA∗
g(q, q̇, q̇a, q̈a,DH,∆0)− d.

Introducing [∆] yields ∀d ∈ [d], ∆ ∈ [∆]:

wPB(q, q̇, q̇a, q̈a,∆0,∆,d) ∈ [ΦPB] = IANEA∗
g(q, q̇, q̇a, q̈a,DH, [∆])

⊖NEA∗
g(q, q̇, q̇a, q̈a,DH,∆0)⊖ [d].

(3.40)

The linear computational complexity of IANEA∗
g and NEA∗

g in the number of joints is

carried over to (3.39) and (3.40). The proposed approach qualifies for online use, due to the
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Joint Module

Proximal [mpl] [Iinpl ] [rinCpl]

Distal [mdl] [Ioutdl ] [routCdl]

Joint [βv] [βc] [Im]

Link Module [ml] [Iinl ] [rinCl]

Table 3.1: Additional module data for robust control design.

intrinsic computational efficiency and because there is no need for symbolic variable manipula-

tion. With [ΦID] (or [ΦPB]) efficiently computed, the measure of the worst-case perturbation

ρ([ΦID]) (or ρ([ΦPB])) that can be used for feedback control is straightforwardly obtained

using (3.7) (or (3.28)).

3.4.3 Application to Modular Robot Manipulators

A small extension of the framework presented in Chapter 2 and the interval-arithmetic-based

robust control approach enables the automatic deployment of robust controllers for modular

robot manipulators. This is possible by simply enlarging the set of parameters of the modules

to be stored within them or in a central database.

The additional data required are the lower and upper bounds of each parameter of the

module data for dynamics. This additional set of required parameters is compactly collected

in Table 3.1. For each assembled arm, when the module data are processed for obtaining the

arm-link parameters as described in Subsection 2.4.2, an equivalent procedure can be performed

to compute the interval in which these values can lie. This can be done by employing the set-

based operations in the Definitions 4 and 5. For the ith assembled link (with reference to the

procedure described in Subsection 2.4.2 and Figure 2.6b), subsequent auxiliary distal parts are

recursively considered first if one or more link modules are present. By considering interval

variables, the operations in (2.17), (2.19), and (2.20) simply become

[ma
j ] = [mdl

j−1]⊕ [ml
j ], [Iioaj

] = [Ioutdlj−1
]⊕ [Iinlj ],

[rioCaj
] =

(
[mdl

j−1]⊙ [routCdlj−1
]⊕ [ml

j ]⊙ [rinClj ]
)
⊘ [ma

j ],


[routCaj

]

1


 =

(
A

io,aj

out,aj

)−1

⊙


[rioCaj

]

1


 ,
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and

[Ioutaj
] =

(
R

io,aj

out,aj

)T
⊙
(
[Iioaj

]⊖ [ma
j ]⊙ ST ([rioCaj

])⊙ S([rioCaj
])
)
⊙R

io,aj

out,aj

⊕ [ma
j ]⊙ ST ([routCaj

])⊙ S([routCaj
]),

where A
io,aj

out,aj
, R

io,aj

out,aj
are computed as in (2.18). Once this recursion is completed, the re-

maining connection to be considered is between the last auxiliary distal part obtained and the

proximal part of the joint modules that concludes the assembled arm-link. In this case, with

reference to Figure 2.6b, an equivalent approach described in Subsection 2.4.2 can be followed

using (2.21), (2.23), and (2.24) with interval variables, which provide the following relations:

[mi] = [mdl
j−1+k]⊕ [mpl

j+k], [Iioi ] = [Ioutdlj−1+k
]⊕ [Iinplj+k

],

[rioCi
] =

(
[mdl

j−1+k]⊙ [routCdlj−1+k
]⊕ [mpl

j+k]⊙ [rinCplj ]
)
⊘ [mi],


[riDi,Ci

]

1


 =

(
Aio

i

)−1
⊙


[rioCi

]

1


 ,

and finally

[Iii] = RioT

i ⊙
(
[Iioi ]⊖ [mi]⊙ ST ([rioCi

])⊙ S([rioCi
])
)
⊙Rio

i ,

where Aio
i , Rio

i are computed as in (2.22).

The interval parameters obtained ([mi], [I
i
i], [r

i
Di,Ci

]) can be directly used to compose [∆].

This vector, together with the vector of parameters ∆0 that can be computed using the proce-

dure in Subsection 2.4.2 and nominal module data, can be directly used to automatically deploy

the interval-arithmetic-based robust control.

3.5 Performance Evaluation using Simulations

In this section, simulation results of the implementation of the interval-arithmetic-based con-

trol schemes are shown. The simulations involve a comparison with existing robust control

approaches: a classical method for robust control of rigid robots and the method of Zenieh and

Corless [120], which can provide ultimate robust performance control. The simulations have

been performed using MATLAB and Simulink R2015b. The Interval Laboratory [91] has been

used for performing computations with interval arithmetic due to the simplicity of the consid-

ered case study. After a description of the simulation test bed, the essence of both the classical

approach for robust control of robot manipulators and the method of Zenieh and Corless are
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Figure 3.4: Illustration of the two links robot manipulator example.

recalled. Then, the simulation results are presented and discussed.

Simulation Test Bed

A simple two links planar robot manipulator with revolute joints that moves in the vertical

plane (and thus is subject to gravity) is considered. Such a system is a popular case study

for illustrating and testing control laws for robots. A representation of this arm is shown in

Figure 3.4, and the terms of its dynamical model can be found in (3.41), (3.42), and (3.43).

For brevity, friction is not considered in the simulations. Perfect knowledge of the dynamical

parameters is assumed for the first link, while uncertainty is considered for the second one. The

dynamical parameters of the links, and the considered amount of the uncertainty, are collected

in Table 3.2.

M(q,∆) =


M11 M12

M21 M22


 , (3.41)

M11 = I1 + I2 +m1 lc1 +m2 (l
2
1 + lc22 + 2 l1 lc2 cos(q2)),

M12 = M21 = I2 +m2 (lc
2
2 + l1 lc2 cos(q2)), M22 = I2 +m2 lc

2
2.

C(q, q̇,∆) =


C11 C12

C21 C22


 (3.42)

C11 = −m2 l1 lc2 sin(q2) q̇2, C12 = −m2 l1 lc2 sin(q2) (q̇1 + q̇2),

C21 = m2 l1 lc2 sin(q2) q̇1, C22 = 0.
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Link 1 Link 2 Uncertainty

Mass (kg) 10 5 + δm 0 ≤ δm ≤ 5

Inertia (kg m2) 10/12 10/12 + δI 0 ≤ δI ≤ 15/12

Center of mass (m) 0.5 0.5 + δc 0 ≤ δc ≤ 0.025

Table 3.2: Dynamical parameters of the links for the simulation test bed.

g(q,∆) =


g1

g2


 , (3.43)

g1 = (m1 lc1 +m2 l1) g cos(q1) +m2 lc2 g cos(q1 + q2),

g2 = m2 lc2 g cos(q1 + q2).

The simulations include one ideal case (Scenario 1) where no sampling effects and no input

disturbances are considered. Then, a more realistic case (Scenario 2) is assumed, which includes

the sampling rate at 1 kHz, as well as additive Gaussian noise on the velocity readings. Scenarios

1 and 2 are used to test the controllers that provide robust stability: a classical robust control

scheme (recalled next in Subsection 3.5.1) and the IA-ID control. Two additional scenarios

are considered. Scenario 3 includes uniformly distributed input disturbances and a sampling

rate at 10 kHz, while Scenario 4 includes additive Gaussian noise on the velocity readings

and a sampling rate of 1 kHz. Sampling effects have been included by using zero-order hold

blocks. Scenarios 3 and 4 are used for testing controllers that provide robust performance: the

r-α tracker (recalled next in Subsection 3.5.2) and the IA-PB control. The details of all the

considered scenarios are collected in Table 3.3. In this table, µ denotes the mean of the additive

Gaussian noise considered, and σ its standard deviation. For simulating all scenarios, the real

(unknown for control design purposes) dynamical parameters of the second link are set to be

m2 = 10 kg, I2 = 25/12 kg m2, and lc2 = 0.525 m. In all the simulations shown, the following

initial conditions have been used: q(0) = 2 · 10−2 (1 − 1)T , q̇(0) = (0 0)T . The bounds on

the input disturbance are assumed unknown for the deployment of the IA-PB control. The

simulations are performed using the test trajectory

qd(t) =
(π
4

sin (π t/2) sin (π t) −
π

8
sin (π t/2) sin (π t)

)T
, (3.44)

which is represented in Figure 3.5, and has qd(0) = 0 and q̇d(0) = 0.
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Input Sampling Required Velocity meas.

disturb. (Nm) time (s) performance (rad) noise (rad/s)

Scenario 1 (ideal) none none ‖e‖ < 10−2 none

Scenario 2 none 10−3 ‖e‖ < 10−2 µ = 0, σ ≈ 3 · 10−3

Scenario 3 ‖d‖ ≤ 10 10−4 ‖e‖ < 10−2 none

Scenario 4 ‖d‖ ≤ 10 10−3 ‖e‖ < 10−2 µ = 0, σ ≈ 10−2

Table 3.3: Simulation scenarios.
PSfrag replacements
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Figure 3.5: Test trajectory used in the simulations. The first component of qd(t) is shown in

light-gray and the second in black.

3.5.1 Classical Robust Control

Among the most popular approaches for designing the robust control of robot manipulators is

the enhancement of a nominal inverse-dynamics control scheme by means of a robust control

term obtained from Lyapunv’s second method [96]. Such schemes typically rely on the following

assumptions:

0 < Bm ≤ ‖M(q,∆)−1‖ ≤ BM <∞ ∀q, ∆ ∈ [∆],

‖I−M(q,∆)−1M0(q)‖ ≤ αcr ≤ 1 ∀q, ∆ ∈ [∆],

‖n0(q, q̇)− n(q, q̇,∆)‖ < ηcr ∀q, q̇, ∆ ∈ [∆],

max(‖q̈d‖) < QM <∞ ∀q̈d,

for some positive constants Bm, BM , αcr, ηcr, QM . A classical robust control law that can be

employed is

u = M0 (q)
(
q̈d +KDė+KPe+ ν

)
+ n0 (q, q̇) .
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From this position, the inverse dynamics control law can be enhanced by introducing the fol-

lowing robustifying action:

ν =

{
ρcr(ξ)
‖z‖ z, ‖z‖ ≥ δ,

ρcr(ξ)
δ z, ‖z‖ < δ,

(3.45)

with δ > 0, z = BTPξ and

ρcr(ξ) ≥
1

1− αcr
(αcrQM + αcr‖ (KP , KD) ‖‖ξ‖+BMη + βd) .

Please note that in the above, the terms ξ, P, and B are the same as in (3.10), (3.12) and

(3.13). Additionally, it is worth stressing that none of the interval-arithmetic-based controllers

introduced earlier require a switching function like (3.45).

With this robust control approach, it can be shown that the error trajectories are uniformly

ultimately bounded and that the bounds depend on δ, i.e., the larger δ is, the larger the resulting

bounds on the tracking error norm [96]. While this implies that such a control scheme achieves

robust stability, when robust performance is desired, the phenomenon of chattering may arise.

This becomes clear when considering that the increase of the tracking performance is achieved

by reducing δ, but by reducing δ a discontinuous control law is approached. Even though global

asymptotic stability can theoretically be shown for δ = 0, the chattering phenomenon may be

problematic for real world deployment. Additionally, this robust control approach is typically

conservative due to the need for obtaining the considered bounds for the entire, practically

reachable state space.

It is worth mentioning that a more recent revision of this approach has been presented

in [10], which aims at reducing conservativity of the robustifying term. However, this approach

has not been described in this thesis because of a practical inconsistency experienced in its

deployment. In fact, during the attempt to implement it, it was difficult to find meaningful

constants α0, α1, and α2 used in [10] that should guarantee

‖n0(q, q̇)− n(q, q̇,∆)‖ ≤ α0 + α1‖ξ‖+ α2‖ξ‖
2,

since the function n0(q, q̇)− n0(q, q̇,∆) does not depend on the tracking error.

This brief description of the classical robust control approach for robot manipulators may

have now shed additional light on the difficulty that such an approach would introduce when

considering a required quick robot deployment. In practice, the required procedures for es-

timating the bounds of uncertainties, and the selection of the smoothing parameter to avoid

chattering, may result in a significant limitation especially when automatic deployment is de-

sired, e.g., for a modular robot manipulator right after assembly.
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To apply this scheme to the considered simulation scenarios, a procedure for estimating the

required bounds has been implemented. This estimation has been performed for 0 ≤ qi ≤ 2 π,

0 ≤ q̇i ≤ π for i = 1, 2, 0 ≤ δm ≤ 5, 0 ≤ δI ≤ 15/12, and 0 ≤ δc ≤ 0.025 using 105 samples

(units are SI) and provides the following bounds:

Bm = 0.029, BM = 1.158, αcr = 0.977, ηcr = 128.35, QM = 10.3.

3.5.2 r-α Tracking Control

The r-α tracker is an approach proposed by Zenieh and Corless in [120], in which the resulting

controller is remarkably simple. After a study of the uncertain model components for obtaining

specific uncertainty bounds, the control law can be implemented without requiring model-

based computations online. Such a control scheme guarantees tracking of a desired trajectory

with a prescribed rate of convergence α within a user-defined bound r. Since the bound r

can be directly selected by the user, the approach qualifies for providing control with robust

performance. The controller design process starts from the computation of the uncertainty

bounds βi for i ∈ {0, . . . , 3}, for all q, q̇, d ∈ [d] and ∆ ∈ [∆] such that

λmin (M(q,∆)) ≥ β0 ≥ 0, λmax (M(q,∆)) ≤ β1,

‖C(q, q̇,∆)‖ ≤ β2‖q̇‖, ‖g(q,∆)− d‖ ≤ β3.

For the estimation of β2, as proposed in [120], one can consider that β2 ≥
√∑N

i=1 ‖Li(q,∆)‖2,

where Li(q,∆) is a square matrix such that for y := C(q, q̇,∆)v, yi = q̇TLi(q,∆)v. Once

these bounds are computed, an additional tuning parameter δzc and two symmetric positive

definite matrices (Λ, Q) are selected such that

λmin (Λ) ≥ α, λmin (Q) ≥ αβ1, δzc ≤ (α r)2λmin (Q) β0/β1.

The r -α tracking controller can then be easily implemented as in [120]:

u = Qr+ (‖ρzc r‖+ δzc)
−1

ρzcr,

ρzc = β1‖q̈a‖+ β2‖q̇a‖‖q̇‖+ β3.

In the above equation, the terms r and q̇a are the same as in (3.25) and (3.23).

Similar to the classical robust control case, a sampling procedure for estimating the required

bounds has been implemented, for applying this approach to the considered simulation scenario.

This estimation has been performed for 0 ≤ qi ≤ 2 π, −βd ≤ di ≤ βd for i = 1, 2, 0 ≤ δm ≤ 5,
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Figure 3.6: Simulation of the tracking performance of the interval-arithmetic inverse-dynamics

controller (IA-ID), with respect to a classical robust control approach (CR) and the nominal

inverse-dynamics controller (ID). No sampling effects have been considered in this test (Scenario

1 in Table 3.3).

0 ≤ δI ≤ 15/12, and 0 ≤ δc ≤ 0.025 using 105 samples (units are SI). The procedure gives the

following bounds:

β0 = 0.86, β1 = 34.27, β2 = 9.95, β3 = 210.65.

3.5.3 Performance Comparison

In this subsection, the performance of the proposed and recalled controllers for the scenarios

in Table 3.3 are shown and discussed. Controllers that are able to provide robust stability are

first considered, followed by the comparison of those that can provide robust performance.

Controllers Providing Robust Stability

Among the presented controllers, those that do not directly take a user-defined tracking

performance at the time of their deployment into account are the IA-ID and the classical
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controller (IA-ID), with respect to a classical robust control approach (CR) and the nominal

inverse-dynamics controller (ID). Sampling effects (1ms sampling time) and additive noise on the

joint velocity measurements have been considered in this test (Scenario 2 in Table 3.3).

robust control scheme. Theoretically, the parameter κP , which let the controller achieve a

specific user defined performance, can be found for the former; this, however, would require

knowing the inertia matrix bounds (ruining the benefit that no knowledge of bounds are required

for IAB robust controllers). For the latter, the parameter δ needs to be selected so that

it is small enough. However, the smaller this parameter, the higher the risk of introducing

chattering, which makes it difficult to use a δ analytically found that is typically affected by

large conservativity. In practice, these two controllers provide ultimate uniform boundedness

of the trajectories whose bounds are reduced by increasing/reducing κP /δ as manual tuning

parameters.

These two control schemes have been tested for Scenarios 1 and 2. Figure 3.6 and Figure

3.7 show the results for the simulations with Scenarios 1 and 2, respectively. In both figures,

the norm of the tracking error and of the control command is shown for three cases: no robust
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control action is added to the nominal inverse-dynamics control (gray), a classical robust control

scheme is employed (orange), and an IA-ID controller in used (blue). By observing first Figure

3.6, the performance of the controller with no robust control action are shown to exceed the

desired tracking performance bounds (set to 0.01 rad). With the use of the robust control terms,

both the classical robust control and the interval-arithmetic-based one can achieve the required

performance, after tuning of κP /δ. In fact, these two parameters have been manually tuned

such that the controllers provide similar performance in this ideal case (Scenario 1). Thanks

to the ideal scenario considered and the simulation environment, this tuning procedure has

not been difficult. However, as soon as the scenario becomes more realistic as in Scenario 2,

the problem of high amplification of the measurement noise becomes clear, e.g., by observing

Figure 3.7. Even though the tracking performance provided by the two robust controllers are

still similar, Figure 3.7 shows that the classical robust control scheme is much more conservative

with respect to the IA-ID scheme. Fair tuning of κP /δ has been ensured since they have been

selected to provide similar tracking performance for the ideal case. At the bottom of Figure

3.6 and Figure 3.7 the evolution over time of the perturbation vector’s components are shown

to be bounded by those computed on-line using interval arithmetic. The gains of the IA-ID

controller and the classical robust control scheme have been selected as

ωn = 40, ζ = 0.9, KP = ω2
n I2, KD = 2 ζωn I2, κP = 3.5, Q = I2, δ = 0.04.

Controllers Providing Robust Performance

The schemes that are now considered are the IA-PB control and the r-α tracker. Interest-

ingly, these two controllers can directly take into account and (theoretically) meet any user-

defined tracking performance. The simulations with these two robust performance controllers

have been implemented considering Scenarios 3 and 4 in Table 3.3. The respective results

are shown in Figure 3.8 and Figure 3.9. As shown in Figure 3.8, the r-α tracker (orange)

is conservative for the specified tracking performance, introducing high-gains and letting the

tracking error become significantly smaller than required. As a consequence of the high gains

used, when sampling effects are considered, the control commands show chattering, which is a

typical phenomenon also found when using discontinuous controllers. On the other hand, even

when considering the sampling effects, these simulations show a smooth behavior of the IA-PB

scheme (blue) that meets the tracking performance still using smooth control commands. It

is important to mention that the r-α tracking controller has been experimentally evaluated for

a similar robot arm in [54]. In that work, such problematic chattering effects have not been
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Figure 3.8: Tracking performance comparison between the interval-arithmetic passivity-based

control (IA-PB) and the r−α tracker. Sampling effects (0.1ms sampling time), input disturbance,

and no additive noise on the joint velocity measurements have been considered in this test (Scenario

3 in Table 3.3).

encountered, but the system considered in this thesis has more uncertainty and the resulting

uncertainty bounds are thus larger. More importantly, gravity in [54] is also not considered

since the robot arm in that work is constrained to move in the horizontal plane. The inclusion

of gravity would significantly increase the conservativity of the r-α tracker.

The proposed IA-PB control law shows less conservatism, providing performances that are

ultimately closer to the actual requirement. In particular, when switching from Scenario 3 (Fig-

ure 3.8) to 4 (Figure 3.9), the IA-PB controller shows remarkable insensitivity to the decrease

of the sampling rate from 10kHz to 1kHz, contrary to the r-α tracker. The latter instead

fails to meet the required performance because of chattering. At the bottom of both Figures

3.8 and 3.9, the bounds of the perturbation vector [ΦPB], which have been computed online

using interval arithmetic are shown to include the actual perturbation wPB . These bounds are
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control (IA-PB) and the r − α tracker. Sampling effects (1ms sampling time), input disturbance,

and additive noise on the joint velocity measurements have been considered in this test (Scenario

4 in Table 3.3).

significantly close to the actual perturbation values, implying that non-excessive conservativity

is introduced. The tuning parameters of the IA-PB controller that have been employed are

ǫ = 10−2, κP = 2, κI = 2, Kr = 30 I2, ϕP = 100, ϕI = 100,

and those of the r − α tracker are

r = 10−2, α = 1, Λ = I, Q = 35 I, δzc = 7 · 10−5.

In summary, these simulations show that the interval-arithmetic-based robust controllers

solve practical difficulties of other existing methods for robust control. The price is usually paid

in more computational complexity; this, however, is solved by using the algorithm proposed

in [126], as discussed in Subsection 3.4.2.
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3.6 Experimental Application

In addition to numerical simulations, the usefulness of the approach is demonstrated by real-

world experiments in this section. The robot used for these experiments is Assembly III in

Figure 2.11. For this evaluation, uncertainty in the modular parameters is considered as neg-

ligible for all modules, except for the end effector that can grasp different objects. The exact

dynamical parameters of these objects are assumed to be unknown at the time of the con-

troller’s deployment. Only bounds for the parameters of the end effector are given, and they

are supposed to bound the cases for the different grasp scenarios. For these tests, one payload

of 0.5 kg and one of 1 kg are used. The nominal parameters for kinematics and dynamics are

collected in Table 3.4, where the uncertainty bounds used for the end effector (the last link)

Nominal parameters of links i ∈ {1, . . . , 6}

1 2 3 4 5 6

αi (rad) −π/2 π −π/2 π/2 −π/2 0

ai (m) 0 0.35 0 0 0 0

di (m) 0.1013 0.1013 0.1013 0.3012 0 0.155 Uncertainty

θi − qi (rad) 0 −π/2 −π/2 0 0 0 ∆ ∆

mi (kg) 3.9 1.62 3.9 1 1.8 1.5 m6 (kg) 1.5 3

cx,i (m) 0 -0.175 0 0 0 0 cx,6 (m) 0 0

cy,i (m) 0.018 0 0.018 -0.129 0.012 0 cy,6 (m) 0 0

cz,i (m) 0.019 -0.013 0.019 -0.048 0.012 -0.042 cz,6 (m) -0.042 0.042

Ixx,i
15.3 16.8 15.3 6.6 5.4 1.9

Ixx,6
1.9 3.8

(10−3kgm2) (10−3kgm2)

Ixy,i
0 0 0 0 0 0

Ixy,6
0 0

(10−3kgm2) (10−3kgm2)

Ixz,i
0 0 0 0 0 0

Ixz,6
0 0

(10−3kgm2) (10−3kgm2)

Iyy,i
11.6 24.4 11.6 1.6 4.1 1.8

Iyy,6
1.8 3.6

(10−3kgm2) (10−3kgm2)

Iyz,i
-5.8 0 -5.8 1.8 -1.4 0

Iyz,6
0 0

(10−3kgm2) (10−3kgm2)

Izz,i
9.7 24.7 9.7 5.9 2.9 0.63

Izz,6
0.63 1.26

(10−3kgm2) (10−3kgm2)

βv,i (Nms) 15.68 13.91 17.89 13.63 4.45 4.67

βc,i (Nm) 7.14 5.1 6.84 6.91 2.12 2.33

Im,i
5.23 5.23 5.23 5.23 1.7 1.7

(10−5kgm2)

σr,i 160 160 160 160 100 100

σm,i (Nm/A) 0.0429 0.0429 0.0429 0.0429 0.1 0.1

Table 3.4: Nominal parameters of the robot and uncertainty considered for the last link.
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Figure 3.10: Tracking control test of the interval-arithmetic inverse-dynamics controller (IA-ID)

and the nominal inverse-dynamics scheme (ID), with 0.5 kg unmodeled payload. The bounds of

the perturbation vector computed online using interval arithmetic are shown at the bottom.

are also collected. Considering that from Figure 2.13 in the previous chapter the model of the

arm does not perfectly match (even without loads), an input disturbance is considered. This

disturbance has been assumed as bounded in norm at 10Nm, which has been estimated by

observing the model mismatch from the results in Figure 2.13 for Assembly III.

3.6.1 Interval-Arithmetic Inverse-Dynamics Control

The first experiment presented is about the application of the interval-arithmetic inverse-

dynamics control scheme, which can guarantee control with robust stability. The same trajec-

tory used for tracking tests in the previous chapter and replicated once to double its duration

is employed. The results of this experiment are collected in Figure 3.10 and Figure 3.11. Fig-

ure 3.10 shows the benefit of the inclusion of the interval-arithmetic-based robustifying term

on the tracking error, with respect to the nominal inverse dynamics controller for the case of

0.5 kg unmodeled payload. It should be noted that the amplification of the measurement noise

that can be observed from the development over time of the norm of the current command

vector is not significantly high, which implies that non-excessive conservativity is introduced.
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Figure 3.11: Tracking control test of the interval arithmetic inverse-dynamics controller (IA-ID)

and the nominal inverse-dynamics scheme (ID), with 1 kg unmodeled payload. The bounds of the

perturbation vector computed online using interval arithmetic are shown at the bottom.

This fact can also be observed more directly from the six plots at the bottom of Figure 3.10,

where the bounds [ΦID] of the perturbation function wID that have been computed online are

shown. The approach proposed in Subsection 3.4.2 for efficient computation of the interval-

arithmetic-based robust controllers has been employed. For each of these plots three guesses of

the real, unknown perturbation are also shown. These values have been obtained considering

the known additional mass and the input disturbance fixed to zero, to the maximum, and to

the minimum. The same analysis and conclusions can be made by observing Figure 3.11, which

shows the results for a test with 1 kg payload. The gains that have been used in this experiment

are the following:

ωn = 15, ζ = 0.65, KP = ω2
n I2, KD = 2 ζωn I2, κP = 2, Q = I2,

where κP has been obtained by means of manual tuning. Please note that tuning this parameter

is very intuitive since its increase directly makes the tracking error decrease. On the other hand,

the increase of this parameter increases the effect of the amplification of the measurement noise

on the current commands. The tuning procedure aims at finding a trade-off between tracking

precision and noise amplification. A practical way to automate this procedure can be to use a
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Figure 3.12: Tracking control with the IA-PB controller with 0.5 kg, 1 kg of unmodeled payload,

and initial conditions IC1. The bounds of the perturbation vector computed online using interval

arithmetic are shown at the bottom for both cases of the used payloads: 0.5 kg (gray) and 0.5 kg

(light-orange).

fast Fourier transform on the current command and to stop increasing the parameter κP when

excessively high frequency components of these signals start to become non-negligible.

3.6.2 Interval-Arithmetic Passivity-Based Control

The second experiment aims to show the applicability of the IA-PB controller, which can

guarantee control with robust stability and robust performance. The same experimental test

bed, payloads, and desired trajectory used in the previous experiment are considered. In this
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Figure 3.13: Tracking control with the IA-PB controller with 0.5 kg, 1 kg of unmodeled payload,

and initial conditions IC2. The bounds of the perturbation vector computed online using interval

arithmetic are shown at the bottom for both cases of the used payloads: 0.5 kg (gray) and 0.5 kg

(light-orange).

experiment, the following initial conditions (IC1 and IC2) have been tested:

IC1 :=





q(0) = (0 0)T

q̇(0) = (0 0)T ,
IC2 :=





q(0) = 2 ǫ (1 − 1)T

q̇(0) = (0 0)T .

The desired tracking performance is set to ǫ = 10−2.

Figure 3.12 and Figure 3.13 show the results for IC1 and IC2, respectively. For both

cases of initial conditions and payloads, the controller shows its ability to approach the desired

robust performance as expected. The IA-PB controller has been shown to perform significantly

better with respect to the inverse-dynamics variant. It allows one to obtain better performance,
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given comparable amplification of the measurement noise affecting the current commands. The

bounds of the perturbation vector computed online are shown at the bottom of Figures 3.12

and 3.13. The same approach has been followed for presenting the guesses of the real unknown

perturbation, which is included in the bounds. The approach described in Subsection 3.4.2

has also been employed here in order to compute the control commands and no significant

excess of conservativity is shown. It is important to mention that particular attention should

be paid when deploying such a robust performance control scheme. In particular, this is due to

the possible increase of the functions κ(t) and ϕ(t) to values that may excessively amplify the

measurement noise. The impact of measurement noise has not been considered in the theoretical

derivation of this control scheme, but it is important to consider for its practical implementation.

In fact, as can be observed from Figure 3.12 and Figure 3.13, the integral action in κ(t) and ϕ(t)

leads to an increase of the high-frequency components in the control commands (observable at

about 32 seconds in the plot), which is due to the amplification of the measurement noise. This

effect may become a problem in practice since it introduces the risk of chattering. Figure 3.14

shows the mentioned problem, in which a large error in the initial conditions is tested, setting

them as ten times those of IC2. In this figure, the performances of the IA-PB controller with

naively implemented integral action (orange) and with deactivated integral action (κI = ϕI = 0,

blue) are shown. As mentioned previously for the inverse-dynamics variant, a possible practical

solution can be to include a fast-Fourier transform block for the control commands signals

that stops the integration when excessively high-frequency components start becoming non-

negligible. The integration should also be stopped before the error norm enters the desired

bounds for the first time, which happens for initial conditions that let the tracking error be

outside of the desired performance bounds at the start. Clearly, stopping the integral action

implies that excessively high robust performance may not be achievable anymore, since the

physical limits of the system would be reached. On the other hand, if the designer does not want

to pay particular attention to the discussed integral action, the safest option is to deactivate

it and settle for the provided robust stability. In this case, the tuning parameters κP , ϕP ,

and Kr can be selected intuitively, keeping in mind that their increase directly increases the

tracking performance. Finally, it is worth reporting that the maximum total execution time

required for computing the commands of the interval-arithmetic-based robust controllers is

about 2 · 10−5 s [126].
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Figure 3.14: Tracking control test to show the possible phenomenon of chattering that may

appear when no particular attention is paid to stopping the integral actions in κ(t) and ϕ(t). The

test has been executed with a 1 kg unmodeled payload and significantly wrong initial conditions

(set at ten times the ones in IC2). In this case, the test with the naively implemented integral

action had to be stopped due to severe chattering.

3.7 Summary

In this chapter, control schemes that are robust to model uncertainties and external distur-

bances have been presented. After a literature review, a novel approach for robust control of

robots was given. This method allows one to automatically deploy robust controllers which are

continuous and do not need the estimation of state-dependent perturbation bounding functions

that other methods require. This has been shown to be possible by exploiting interval arith-

metic for automatic online computation of closed-loop perturbations. The over-approximative

estimates obtained with interval arithmetic are directly used as a feedback for closed-loop con-

trol. This practice has been shown both theoretically and experimentally to provide control

with ultimate robust stability and performance. This approach is especially useful for modular

robot manipulators, which require quickly deployable controllers, as well as for classical rigid

robots since the robust control implementation process is simplified.

The inclusion of interval arithmetic for automatically deploying a robust controller has been

applied to the case in which the inverse-dynamics control scheme is used as a nominal controller

and also for the case in which a passivity-based controller is used. The real world experiments

have shown that the former can provide ultimate robust stability while the latter can provide

ultimate robust performance. Simulation and real experiments additionally show that these

schemes outperform other existing methods, as they are less conservative. The use of a recently

proposed interval-arithmetic-based Newton-Euler algorithm for efficient numerical computation
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of the robust controllers ensures online computability.

Even though the proposed interval-arithmetic-based controllers are continuous, the noise and

the limited sampling rate of real applications can introduce chattering effects for excessively high

required performance. The issue may be solved by carefully defining the behavior of the tuning

functions κ(t) and ϕ(t), which could be driven by the power spectrum of the control signal,

for example. A proper behavior of these functions would ideally allow sacrificing performance

when necessary to avoid chattering. This aspect surely represents an interesting direction to

investigate for future research, together with the application of this approach to other nonlinear

systems with uncertain dynamics.
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Chapter 4

Control Design with Elastic-Joint

Modules

This chapter focuses on the control design of flexible robot arms which enjoy an increasing

popularity. In particular, the focus is on the case where the elasticity is introduced by the

joints, e.g., by means of series elastic actuators. State-of-the-art approaches for addressing this

control problem are first reviewed. Special attention is paid to their applicability and quick

deployability for controlling modular reconfigurable robots. As in the previous chapter, inverse-

dynamics (ID) and passivity-based (PB) tracking control are reviewed in more detail. Then, the

author’s recently proposed method [128, 129] is presented. This approach combines mutually

exclusive benefits from the ID and PB control schemes: the efficient numerical computability of

the former and the intrinsic robustness of the latter. Sections dedicated to a detailed robustness

analysis, simulation, and experimental results complete this chapter. This chapter is largely

based on the author’s work in [128, 129].

4.1 Introduction and State of the Art

The intentional inclusion of elasticity in the structure of robots has gained large popularity in

recent decades. This is often realized by using compliant components, e.g., elastic links, series

elastic actuators, and variable stiffness actuators. With the use of these compliant structural

elements, the aim is to obtain robots that are safe and resilient for tasks that may involve

desired or undesired contact with the surrounding environment or humans [109]. Another

collateral benefit provided by this modern practice is the possibility to exploit the intrinsically
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rich resulting dynamics, e.g., highly dynamic movements that were not possible with classical

rigid structures [46].

Possible scenarios in which elasticity in the robotic structure is not negligible are elastic

links, elastic joints, the mix of the two, and the mix of these cases with rigid components as

well. For all these cases, specialized control algorithms should be deployed. Otherwise, when no

particular attention is paid to the elasticity introduced by compliant components, the motion-

control performance may be negatively affected, and undesired oscillatory behaviors or even

instabilities may appear. Hereafter, the focus is narrowed to the case that the elasticity is

introduced by elastic joints. The modular reconfigurable robotic scenario considered so far can

thus be extended to the case of having joint modules equipped with series elastic actuators.

As described in Section 4.2, this case can generate robot arms fully or partially composed of

elastic joints. This second case can be approached as if the robot were fully composed of elastic

joints as described in [31], provided that the missing motor-side dynamics of the rigid joints are

virtually realized by the controller.

The control problem of elastic-joint robots has attracted numerous researchers since the ’80s.

Fundamental classical methods can be found e.g., in [39, 100], and more modern approaches

in [33, 84]. A usual distinction that can be made is between the control schemes that provide

regulation control of the joint positions to a constant desired value, and those that provide

tracking of time-varying trajectories. Since the latter are usually complex control solutions, the

former can be a very practical choice to keep the controller complexity low when high tracking

precision is not required.

4.1.1 Regulation and Tracking

A simple regulator based on the use of a Proportional-Derivative (PD) and gravity compensation

action has been proposed in [107]. This scheme uses feedback of motor-side position and velocity,

and includes the gravity compensation term as a constant evaluated at the desired reference

position. The author of [107] also provides a robustness analysis with respect to uncertain model

parameters and evaluates the control performance using simulations. An enhancement of the

previously mentioned PD regulator has been proposed in [38], where the authors introduce the

use of an online-computed term for gravity compensation using a gravity-biased estimation of

the motor-side position, still using only motor-side feedback variables. This results in more

flexibility during the tuning phase and allows one to achieve better transient behavior. Exact

cancellation of gravity is obtained by employing the scheme proposed in [35], which is more
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complex and requires readings of joint positions and velocities both from motor-side and link-

side. A class of passivity-based regulators is defined in [80], in which the requirement of joint

velocity measurements is eliminated. Regulators that do not rely on limited sensing capabilities

but exploit the full state feedback, e.g., [2,3,83], can provide better damping of residual link-side

oscillations.

The more complex control problem of the precise tracking of time-varying trajectories has

also received significant attention from the research community. Without making any sim-

plifying assumptions on the elastic-joint robot model, dealing with tracking control becomes

very complex. For such a scenario one can resort to the approach proposed in [70], where the

authors introduce a method that uses a dynamic feedback approach to obtain input-output

decoupling and linearization. However, many existing tracking controllers rely on the popular

simplifying “Spong’s assumptions”, introduced in [105]. In that work it is first assumed that

the contributions to the kinetic energy of each rotor are negligible, except those due to its own

rotation only. The second assumption made is about the symmetric distribution of the mass of

the rotor/gears about its axis of rotation. These assumptions are very reasonable in practice,

especially for the large class of actuators with high gear ratios.

With Spong’s assumptions, the tracking control problem simplifies significantly. They lead

to a reduced model that enables the realization of static feedback linearizing controllers (inverse-

dynamics) as well as the development of controllers based on the singular perturbation approach

[103]. The latter schemes rely on the time-scale separation between the motor-side (fast) and

link-side (slow) dynamics, for sufficiently weak joint elasticity. An experimental comparison of

the feedback linearization and the singular perturbation technique for controlling a single link

elastic joint arm can be found in [101]. From this study it emerges that the approach based

on singular perturbation is effective for weakly elastic joints. Instead, one should resort to

the more complex inverse-dynamics scheme to directly cancel modeled nonlinearities for highly

flexible joints.

An effective, practical solution to the tracking control problem is to use a simple PD feed-

back control law controlling motor-side variables and a feedforward action as proposed in [32].

This scheme ensures local stability only, but has the benefit of using only motor-side feedback

variables. This approach can also be enhanced by including torque readings as in [3]. Please

note that joint position and velocity readings on the motor side are typically less noisy with

respect to the readings on the link side, given the same encoder. This is due to the presence

of the suppression of noise by the gear ratio. A scheme that provides semiglobal tracking is
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presented in [69], where the control law has the merit of not requiring feedback of the link-side

jerks, which is instead common for global trackers.

A description of pioneering global tracking controllers for elastic joint robots can be found

in [19], where schemes based on decoupling, backstepping, and passivity are compared. In

that work, an effective static passivity-based tracking controller is also presented. Among

more recent global trackers are the schemes in [7, 8, 68], where the authors consider lossless

systems and interestingly achieve uniform global stability without requiring measurements of

joint velocities. Additionally, recent passivity-based tracking controllers that provide global

stability and damping assignment with nonlinear elastic-joints can be found in [58, 59].

4.1.2 Efficient Implementability and Robustness

Among the above mentioned global tracking schemes, the inverse-dynamics approach is partic-

ularly interesting thanks to specialized recursive algorithms that have been recently proposed

for its efficient numerical computation in [20, 21, 77]. However, inverse-dynamics controllers

rely on the perfect cancellation of nonlinear coupling terms of the system dynamics and may

be sensitive to even small model uncertainties. Besides similar arguments by other authors,

e.g., in [19, 105], this issue can be observed from the simulation results in [128]. Instead, it

is widely acknowledged that approaches which avoid complete feedback linearization, such as

passivity-based schemes, can be more robust [18, 34, 81]. On the other hand, most passivity-

based global trackers require high-order derivatives of the model terms which prevents their

efficient numerical computability, as it is available instead for the inverse-dynamics schemes.

An approach that allows one to combine the typical enhanced robustness of passivity-based

controllers with the efficient numerical computability of inverse-dynamics control schemes using

modern recursive algorithms has been introduced in the author’s work in [127]. The proposed

scheme is a combined Inverse-Dynamics/Passivity-Based (ID/PB) controller, based on the par-

tial cancellation of modeled system dynamics and the exploitation of passivity-related properties

of the robot model to ensure stability. This approach has been shown to be effective in simu-

lation and real experiments. Further, an extension of this method has been developed which

exploits a feedforward inverse-dynamics action. A detailed robustness analysis and additional

experimental results are included in the author’s work [129].
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4.2 Formulation of the Control Problem

The control problem can be formulated by considering a robot manipulator composed of N links

serially connected through elastic joints. By adopting the popular “Spong’s assumptions” [99],

the following model can be used for describing the system dynamics:

M(q)q̈ + h(q, q̇) +K(q− θ) = τ ext, (4.1a)

Jθ̈ + f(θ̇) +K(θ − q)︸ ︷︷ ︸
:= τe

= u. (4.1b)

In the relations above, (4.1a) models the link-side dynamics and (4.1b) models the motor-

side dynamics. Further, q ∈ R
N is the vector of link-side joint position variables, θ ∈ R

N is

the vector of motor-side joint position variables, M(q) ∈ R
N×N is the inertia matrix of the

rigid links assembly, J ∈ R
N×N is the constant diagonal matrix of the rotor inertia moments

through the square of the respective gear ratios, K ∈ R
N×N is the diagonal joint stiffness

matrix, u ∈ R
N is the vector of control input forces/torques, f(θ̇) ∈ R

N is the vector of the

motor-side friction terms, τ e ∈ R
N is the elastic torque vector, and τ ext ∈ R

N is a vector

of external forces applied to the manipulator mapped onto the joint space. The centrifugal,

Coriolis, gravitational, and link side friction contributions are collected in the following term:

h(q, q̇) = C(q, q̇)q̇+Dq̇+ g(q), (4.2)

where g(q) ∈ R
N is the vector of the gravity terms, D ∈ R

N×N is the matrix of the link-side

viscous damping coefficients, and C(q, q̇) q̇ ∈ R
N is the vector of Coriolis and centrifugal terms,

with C(q, q̇) ∈ R
N×N being a matrix such that the property in (2.2) holds. Please note that the

model in (4.1) is not able to properly describe the dynamics of an assembled arm with mixed

rigid/elastic joints. However, this model does not limit generality since any mixed rigid/elastic

joint robot can be modeled by (4.1) provided that missing motor-side dynamics are virtually

realized (see e.g., [31]).

The control problems considered in this chapter are different if the aim is simple regulation

or if it is trajectory tracking. Regulators should be able to stabilize the robot at a specific

constant link-side desired pose. Trackers instead should be able to provide global convergence

to zero of link-side joint-space error (e(t) → 0 for t → ∞) for desired trajectories that are

sufficiently smooth (in this chapter at least four times differentiable). However, in the event

that uncertainty in the assembled robot description is non-negligible, a more practical stability
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target is considered. In this case, the design aims at providing ultimate boundedness of the

error trajectories:

‖e(t)‖ < ǫ, ∀ t ≥ t1,

for a finite positive ǫ and a finite time t1.

With reference to the model in (4.1), no external forces are assumed in the following (i.e.,

τ ext = 0), except in Section 4.6, where robustness with respect to external disturbances and

model mismatches is considered.

4.3 Regulation

When simplicity of the control-loop is desired and tracking performance is not of primary

importance, simple regulators are deployed. One of the simplest approaches is to use the

following control law for the system in (4.1):

u = KP (θd − θ)−KDθ̇ + g(qd), (4.3)

where KP and KD are symmetric positive-definite matrices of proper dimensions and

θd = qd +K−1g(qd).

This scheme has been introduced in [107], where authors show that global asymptotic stability

of the equilibrium state q = qd, θ = θd and q̇ = θ̇ = 0 is provided if the following condition is

satisfied:

λmin

(
K̂
)
>

∥∥∥∥
∂g(q)

∂q

∥∥∥∥ ∀q, K̂ =


 K −K

−K K+KP


 . (4.4)

As proposed in [38], an improvement of this scheme providing better transient behavior can

be implemented with the following control law:

u = KP (θd − θ)−KDθ̇ + g(θ̃), (4.5)

where

θ̃ = θ +K−1g(qd).

Differently from (4.3), the gravity compensation term in (4.5) is computed using the measured

motor-side position in θ̃. Under the condition in (4.4), this controller also guarantees global

asymptotic stability of the equilibrium state q = qd, θ = θd and q̇ = θ̇ = 0, as shown in [38].
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These regulators are interesting due to their implementation simplicity. In fact, they can be

simply deployed once the gravity term of the dynamical model and the joint stiffness coefficients

are available. The suitability of these laws to the case of a modular reconfigurable arm with

elastic joints is immediately apparent when considering the results presented in Chapter 2. In

fact, with that framework the gravity compensation term can be automatically obtained for

arbitrary assemblies, based on module data (see Chapter 2). In this case, the module data

for joint modules should be augmented to include the values of the joint stiffness. For a quick

automatic deployment of the control law, without the use of symbolic toolboxes for computing

∂g(q)
∂q analytically, manual tuning is required in practice to increase KP until a satisfactory

closed-loop behavior is obtained. It is worth mentioning that the more advanced regulator

in [35] realizes exact cancellation of gravity and the tuning is simpler since there is no need to

fulfill the condition in (4.4). However, the significant increase in complexity, which becomes

similar to the case of trajectory tracking controllers, makes it rather unattractive for regulation

purposes with respect to the simple schemes described above.

4.4 Tracking

In this section, effective methods that can be employed for solving the trajectory-tracking

control problem of elastic joint robots are described: feedforward/feedback, inverse-dynamics,

passivity-based, and combined inverse-dynamics/passivity-based trackers. The first three schemes

have been respectively proposed in [19,32,105]. Their presentation is a precursor to the author’s

most recent results [127,129]. While the first scheme provides local stability, the others guaran-

tee it globally. The applicability of these schemes for controlling modular robot manipulators

will be described in the next section, where the efficient implementability of the controllers is

discussed.

Hereafter, the mathematical description is kept succinct by omitting the time dependence

of time-varying variables and the variable dependencies of the model terms. For example, the

matrix M
(
q(t)

)
is simply denoted by M, its first time derivative Ṁ

(
q(t), q̇(t)

)
by Ṁ, and

its second time derivative M̈
(
q(t), q̇(t), q̈(t)

)
by M̈. The subscript d is used for the model

terms that are evaluated along the desired trajectory. For example, we denote the model term

M(qd(t)) simply by Md, Ṁ(qd(t), q̇d(t)) by Ṁd, and M̈(qd(t), q̇d(t), q̈d(t)) by M̈d. Further,

the derivatives dn

dtnx(t) with n ∈ {3, 4} are denoted by x[n]. The same notation is employed for

the other model terms.
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4.4.1 Feedforward/Feedback Tracking Control

A very practical tracking controller can be implemented by using a PD control action on motor-

side feedback variables, enhanced by a feedforward term to approximately cancel high-order

nonlinear couplings as proposed in [32]. For the system in (4.1), this control law is implemented

as follows:

u = ud +KP

(
θd − θ

)
+KD

(
θ̇d − θ̇

)
. (4.6)

In the equation above, ud is the feedforward term that can be obtained by evaluating (4.1b)

along the desired trajectory, which yields

ud = Jθ̈d + f(θ̇d) +Mdq̈d + hd. (4.7)

In both (4.6) and (4.7) the presence of the motor-side desired trajectories can be noticed. Since

the user usually defines the desired trajectory on the link-side variables, motor-side quantities

must be properly computed. The required relations can be obtained by rearranging (4.1a),

differentiating it once and twice with respect to time, and by evaluating the resulting relations

along the desired link-side trajectory qd, q̇d, q̈d, q
[3]
d , and q

[4]
d . With this approach, the terms

θd, θ̇d, and θ̈d, can be computed respectively as

θd = qd +K−1
(
Mdq̈d + hd

)
, (4.8)

θ̇d = q̇d +K−1
(
Mdq

[3]
d + Ṁdq̈d + ḣd

)
, (4.9)

θ̈d = q̈d +K−1
(
Mdq

[4]
d + 2 Ṁdq

[3]
d + M̈dq̈d + ḧd

)
. (4.10)

4.4.2 Inverse-Dynamics Tracking Control

Similar to the inverse-dynamics control of rigid robots, the version for elastic-joint arms also

aims at canceling nonlinear and coupling terms through static feedback. This control scheme

was first introduced in [99] and can be implemented using the following control command:

uID = JK−1
[
My + 2 Ṁq[3] + M̈ q̈+ ḧ

]
+ [M+ J] q̈+ h+ f , (4.11)

with

ḧ = (C+D)q[3] + C̈q̇+ 2 Ċq̈+ g̈, (4.12)

and where y ∈ R
N is an auxiliary control input from which the system can be seen as linear

and decoupled. In fact, by rewriting (4.1) as

Mq̈+ h = u− f − Jθ̈, (4.13)

102



4.4 Tracking

and by using (4.11) with

θ̈ = K−1
[
Mq[4] + 2 Ṁq[3] + M̈ q̈+ ḧ

]
+ q̈, (4.14)

a linear decoupled system is obtained:

q[4] = y.

The inverse-dynamics control law can now be completed by assigning asymptotically stable

dynamics of the trajectory tracking error through y such as

y = q
[4]
d +KID3e

[3] +KID2ë+KID1 ė+KID0 e, (4.15)

where KIDi with i ∈ {0, 1, 2, 3} are typically diagonal gain matrices with KIDijj being the jth

element of the diagonal, such that

idj(s) := s4 +KID3jj s
3 +KID2jj s

2 +KID1jj s+KID0jj , ∀j ∈ {1, . . . , N}, (4.16)

are Hurwitz polynomials. From this, exponential stability of the error dynamics follows directly.

Please note that even though the dependence of model terms from the joint variables and

their derivatives has been omitted for brevity, (4.11) requires feedback of link-side joint accel-

erations and jerks. These quantities can be obtained in principle with existing sensing devices

such as precise encoders, tachometers, and/or torque sensors. For example, assuming availabil-

ity of an encoder for the link side and another for the motor side, q and θ are directly measured,

while q̇ and θ̇ can be obtained by their respective numerical differentiation1. Then, the joint

accelerations and jerks can be computed using (4.1a) and its first derivative as

q̈ = M−1
(
τ e − h

)
, (4.17)

q[3] = M−1
(
τ̇ e −

(
Ṁ q̈+ ḣ

))
, (4.18)

where τ e = K (θ − q) and consequently τ̇ e = K (θ̇ − q̇).

4.4.3 Passivity-Based Tracking Control

A static controller that does not aim at obtaining a linear decoupled system through perfect

cancellation of modeled nonlinearities and provides global tracking has been proposed in [19].

1The numerical differentiation can be seen as a cheaper, practical solution to the use of tachometers which

is very effective in practice, provided that modern precise encoders are employed.
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This scheme relies on the passivity-based control approach and can be formulated using the

following terms:

M =


M 0

0 J


 , C =


C 0

0 0


 , K =


 K −K

−K K


 , (4.19)

u =


0

u


 , f =


fq

fθ


 , g =


g

0


 , (4.20)

where fq = Dq̇ is the link-side friction term (assumed to be only viscous), and fθ is the motor-

side friction term which can have both static and viscous components. In addition, the following

vectors are introduced:

x =


q

θ


 , xd =


qd

θd


 , e = xd − x =


eq

eθ


 , KV =


KV,q 0

0 KV,θ


 , (4.21)

r = ė+KV e =


rq

rθ


 , ẋa =


q̇a

θ̇a


 = ẋd +KV e. (4.22)

With the extended vectors and matrices of (4.19)-(4.22), the model in (4.1) can be rewritten as

Mṙ+Cr+Λr+Ke = ψ, (4.23)

where Λ =


Λq 0

0 Λθ


 is a positive definite matrix of proper dimensions and

ψ = u−
(
Mẍa +Cẋa +Kxd + f + g

)
+Λr.

Now, it can be shown by algebraic manipulation that the perturbation ψ is set to zero by

employing the following static controller

uPB = J
(
θ̈d +KV,θ

(
θ̇ − θ̇d

))
−K(qd − θd)−Λθ rθ + fθ, (4.24)

with

θd = qd +K−1 (Mq̈a +Cq̇a +Dq̇+ g−Λq rq) , (4.25)

θ̇d = q̇d +K−1
(
Mq[3]

a + Ṁ q̈a + Ċ q̇a +Cq̈a +Dq̈+ ġ−Λq ṙq

)
, (4.26)

θ̈d = q̈d +K−1
(
Mq[4]

a + 2 Ṁq[3]
a + M̈ q̈a +Cq[3]

a + C̈ q̇a + 2 Ċ q̈a +Dq[3] + g̈ −Λq r̈q

)
.

(4.27)

With the above controller, since ψ = 0 in (4.23) and given that the matrices KV,q, KV,θ are

chosen to be equal, diagonal, and positive definite, global convergence to zero of the tracking
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error directly follows as shown in [19], since (4.23) defines an output-strictly-passive mapping

(see e.g., [82]) ψ → r with the storage function

V =
1

2
rTMr+

1

2
eTKe. (4.28)

It is important to point out that to compute (4.24) with (4.25), (4.26), and (4.27), high-

order derivatives of the model terms arise as for the inverse-dynamics scheme. However, an

important difference with respect to the inverse-dynamics scheme is that in this case, the first

and second derivatives of the matrices M and C that fulfill property (2.2) are also required.

This significantly complicates the implementation as clarified in section 4.5. Additionally, the

controller requires feedback of the link-side accelerations and jerks, which can be obtained with

the same approach used for the inverse-dynamics scheme.

4.4.4 Combined Inverse-Dynamics/Passivity-Based Tracking Control

The novel idea of combining the benefits of the inverse-dynamics and the passivity-based con-

trol methodologies has been recently proposed by the author in [128]. The aim is to obtain

robustness with respect to model mismatches typical of passivity-based controllers, but still

maintain efficient numerical computability available today for the inverse-dynamics schemes.

The approach that can be adopted for efficient computability is described in detail in Section

4.5, while a detailed robustness analysis of this novel control approach is detailed in Section 4.6.

The nominal formulation of the combined inverse-dynamics/passivity-based (ID/PB) tracking

controller (i.e., assuming perfect knowledge of the robot model) follows.

The basic idea is to mimic the cancellation of model nonlinearities in a similar way as the

inverse-dynamics scheme does, with the difference that not all of them are canceled. In fact,

the nonlinear coupling terms that allow the controller to be completed with the passivity-based

methodology are left and exploited so that passivity-based control principles can be used to

ensure stability and performance. The controller can be formulated by following similar lines

of the description of the pure inverse-dynamics version. By using (4.14) with

ḧ = (C+D)q[3] + C̈q̇+ 2 Ċq̈+ g̈, (4.29)

in (4.13), the following relation is obtained:

JK−1
(
Mq[4] + 2 Ṁq[3] + M̈ q̈+ ḧ

)
+
(
M + J

)
q̈+ h+ f = u. (4.30)
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The derivation of the combined ID/PB controller can now be seen as a modification of

(4.11). In fact, including a new auxiliary vector ν, expanding ḧ in (4.11) with (4.29), and

removing the terms My and Cq[3], yields

uIDPB = JK−1
(
2 Ṁq[3] + M̈ q̈+Dq[3] + C̈q̇+ 2 Ċq̈+ g̈

)
+
(
M+ J

)
q̈+ h+ f + ν. (4.31)

Now, by applying (4.31) to (4.30), the complete cancellation of the overall system dynamics is

avoided, and the following relation is obtained:

JK−1
(
Mq[4] +Cq[3]

)
= ν. (4.32)

From the position of (4.32), the combined ID/PB control scheme can be completed by using

ν = JK−1
(
Mq[4]

a +Cq[3]
a +Λr

)
, (4.33)

where Λ is any positive definite matrix of proper dimensions and

r = e[3] +KHY 3ë+KHY 2ė+KHY 1 e, (4.34)

q[3]
a = q

[3]
d +KHY 3ë+KHY 2ė+KHY 1 e,

q[4]
a = q

[4]
d +KHY 3e

[3] +KHY 2ë+KHY 1 ė,

with KHY 3, KHY 2, KHY 1 being properly chosen gain matrices. By inserting the control law

(4.31) with (4.33) into the system (4.30), the following closed-loop relation is obtained:

Mṙ+Cr+Λr = 0. (4.35)

Since no perturbation is assumed so far, the right-hand side of (4.35) is zero. This implies

that r will globally and asymptotically converge to zero as theoretically shown in the literature

on passivity-based control (see e.g., [82]). The tracking error converges to zero for a proper

selection of the diagonal gain matrices KHY 3, KHY 2, and KHY 1. In particular, this is ensured

provided that the gains are selected so that the following are Hurwitz polynomials:

hyj(s) := s3 +KHY 3jj s
2 +KHY 2jj s+KHY 1jj , ∀j ∈ {1, . . .N},

where KHY ijj with i ∈ {1, 2, 3} denote the jth elements of the diagonal of these matrices. This

requirement can simply be understood by applying the Laplace transform to each coordinate

of (4.34). In fact, by doing so using the Laplace variable s, the transfer function from rj(s) to

ej(s) can be observed in the following

ej(s) =
1

s3 +KHY 3jj s
2 +KHY 2jj s+KHY 1jj

rj(s), (4.36)
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which is stable for the gains selected as mentioned above. In addition, for computing (4.31),

the feedback of acceleration and jerk vectors is necessary and can be obtained as previously

described for the pure inverse-dynamics controller.

Combined Feedforward-ID/PB Control

Even if the model-based approach for obtaining the joint accelerations and jerks is theoreti-

cally viable, it can provide poor estimates in practice. In particular, this may be the case when

the knowledge of the model is limited, or when noisy and biased torque readings are available.

A more robust approach to the estimation of these quantities can be done by using an observer.

For example, a practical approach was implemented in [128] where the model knowledge is

assumed to be accurate, but the torque readings noisy. When the model knowledge is also poor

and systematic errors are observed for the acceleration estimates, one can resort to using a

simple kinematic Kalman filter as in [13]. However, the designer should not forget that filter-

ing operations applied online introduce an estimation error/delay that endangers stability and

deteriorates the global tracking properties.

The combined ID/PB controller is based on the partial cancellation of nonlinear coupling

terms through feedback, and these terms depend on the estimates of accelerations and jerks.

Errors in their estimation produce a perturbation which affects the closed-loop and the control

performance directly. A practical improvement in such cases has been introduced in the author’s

work [129], in which a feedforward action for the inverse-dynamics part of the combined scheme

is used. This provides the following combined feedforward-ID/PB scheme:

uffwdIDPB = ud,ID(qd, q̇d, q̈d,q
[3]
d ) + f(θ̇) + JK−1

(
M(q)q[4]

a +C(q, q̇)q[3]
a +Λr

)
, (4.37)

where

ud,ID(qd, q̇d, q̈d,q
[3]
d ) = JK−1

(
2 Ṁd q

[3]
d + M̈d q̈d +Dq

[3]
d

+ C̈dq̇d + 2 Ċdq̈d + g̈d

)
+
(
Md + J

)
q̈d + hd.

Even though global tracking properties are lost, this control scheme has been shown to be very

effective in practice. The effectiveness of this variant of the combined ID/PB controller has

been verified through experiments, which are presented in Section 4.8.
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4. CONTROL DESIGN WITH ELASTIC-JOINT MODULES

4.5 Efficient Computation of the Control Commands

An important aspect to consider for modern robot manipulators that have many degrees of

freedom (typically 6 or more) is the computational complexity required for implementing and

evaluating the above presented controllers. This is particularly critical for modular robot ma-

nipulators requiring automatic deployment of the control after their assembly. Possible compu-

tational threats are immediately apparent when considering that the presented global tracking

controllers require not only the standard link-side model terms, but also their first and second

derivatives.

Starting from the fundamental work in [71] and the more recent results in [17], the authors

in [20, 21] present a novel algorithm for efficient computation of inverse-dynamics tracking

controllers for elastic-joint robots. This algorithm is denoted by the Elastic Joint Newton-Euler

Algorithm (EJNEA) and takes as input the vectors of joint positions, velocities, accelerations,

jerks, and snaps, to provide the following relation:

EJNEA(q, q̇, q̈,q[3],q[4]) = JK−1
(
Mq[4] + 2 Ṁq[3] + M̈ q̈+ ḧ

)
+ [M+ J] q̈+ h+ f .

From this algorithm it is trivial to extract reduced versions (NEA′ and NEA′′) which provide

NEA′(q, q̇, q̈,q[3]) = Mq[3] + Ṁq̈+ ḣ,

NEA′′(q, q̇, q̈,q[3],q[4]) = Mq[4] + 2 Ṁq[3] + M̈ q̈+ ḧ.

With these three algorithms and the standard recursive Newton-Euler one (for NEA, see

also Appendix A.1) at hand, the feedforward/feedback controller presented in Subsection 4.4.1

and the inverse-dynamics scheme described in subsection 4.4.2 can be efficiently computed. In

particular, the feedforward/feedback tracking controller can be simply implemented using

uffwd/fbk = ud +KP

(
θd − θ

)
+KD

(
θ̇d − θ̇

)
,

where

ud = Jθ̈d + f(θ̇d) + NEA(qd, q̇d, q̈d),

and

θd = qd +K−1NEA(qd, q̇d, q̈d),

θ̇d = q̇d +K−1NEA′(qd, q̇d, q̈d,q
[3]
d ),

θ̈d = q̈d +K−1NEA′′(qd, q̇d, q̈d,q
[3]
d ,q

[4]
d ).
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4.5 Efficient Computation of the Control Commands

Concerning the inverse-dynamics controller, its efficient implementation is straightforward

when the EJNEA is available. In fact, with this algorithm at hand, the inverse-dynamics

tracking controller can be numerically computed online with

uID = EJNEA(q, q̇, q̈,q[3],y),

where y is computed as in (4.15). Please note that q̈ and q[3] can be also computed efficiently

from (4.38) and (4.39) as follows:

q̈ = M−1
(
τ e −NEA(q, q̇,0)

)
, (4.38)

q[3] = M−1
(
τ̇ e −NEA′(q, q̇, q̈,0)

)
. (4.39)

The computation of the mass matrix can be done by extracting each column singularly, or by

using a specialized algorithm as described in further detail in [20, Section IV].

Contrary to many other passivity-based controllers, the combined ID/PB scheme presented

in Subsection 4.4.4 can be efficiently implemented in a similar way as inverse-dynamics control

schemes can. This can be done by directly using the EJNEA and the modified recursive Newton-

Euler algorithm with neglected gravity (for NEA∗
0, see Appendix A.1) as follows:

uIDPB = EJNEA(q, q̇, q̈,q[3],0) + JK−1
(
NEA∗

0(q, q̇,q
[3]
a − q[3]

︸ ︷︷ ︸
= r

,q[4]
a ) +Λr

)
+ f(θ̇). (4.40)

Consequently, the combined feedforward-ID/PB variant is simply computed as

uffwdIDPB = EJNEA(qd, q̇d, q̈d,q
[3]
d ,0) + JK−1

(
NEA∗

0(q, q̇,q
[3]
a − q[3]

︸ ︷︷ ︸
= r

,q[4]
a ) +Λr

)
+ f(θ̇).

(4.41)

Once the accelerations and jerks are efficiently computed, the algorithms mentioned in

this section can be used online and have linear computational complexity. The combined

inverse-dynamics/passivity-based control laws clearly inherit these features in light of (4.40) and

(4.41). On the other hand, many other globally stable passivity-based trackers (e.g., [19, 58])

cannot be implemented in the same computationally efficient way. This limitation is due to

the required matrices M and C and their first and second time derivatives. Instead, with the

efficiently implementable schemes discussed above, such contributions are already included in

the numerical computations of the EJNEA.

All the algorithms mentioned in this section require as input the kinematic description

and the dynamical parameters (e.g., DH and DynPar with reference to Chapter 2). Their

presence as arguments of the algorithms has been omitted in this subsection for brevity. Of
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4. CONTROL DESIGN WITH ELASTIC-JOINT MODULES

course, by extending the set of module data necessary for an elastic joint module, the automatic

deployment of the controller can also be realized for the more general case of elastic joints. The

additional parameter required for each elastic-joint module is simply the joint stiffness.

4.6 Robustness of the Combined Inverse-Dynamics/Passivity-

Based Control

In this section, the assumption of perfect knowledge of the dynamical model in (4.1) is relaxed.

Moreover, it is considered that the external torque vector τ ext can be different from zero. Since

model uncertainties are considered, the model data available to the designer are only nominal.

Hereafter, the nominal model terms are denoted by a subscript 0, while the perturbation from

the respective real values are denoted by a subscript δ. For example, for any real unknown

model term or feedback vector Ξ, the following relations hold:

Ξ = Ξ0 +Ξδ, and consequently Ξδ = Ξ−Ξ0. (4.42)

In the following analysis, the dynamical parameters of the link-side dynamics are considered

as uncertain while the ones of the motor-side, such as J and K, are considered to be known with

high precision. This can be easily justified since these parameters can be precisely estimated

when the actuation unit is calibrated, before it equips the robot.

Considering the model in (4.1) and following the same procedure described in Subsection

4.4.4 to obtain (4.30) for the more general case in which τ ext 6= 0, the following can be obtained:

JK−1
(
Mq[4] +Cq[3] + η

)
+ β = u+ JK−1d, (4.43)

where

η = 2 Ṁq[3] + M̈ q̈+Dq[3] + C̈q̇+ 2 Ċq̈+ g̈,

β =
(
M+ J

)
q̈+ h+ f , and d = KJ−1τ ext + τ̈ ext.

In the above equation, the external torque vector that is part of d is considered to be sufficiently

smooth and bounded so that ‖d‖ < κd, for some positive constant κd.

Given that only nominal model information is available, the combined ID/PB control law

for the system in (4.43) can be rewritten as follows:

uIDPB0
= JK−1η0 + β0 + JK−1

(
M0 q

[4]
a0 +C0 q

[3]
a0 +Λr0

)
, (4.44)
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4.6 Robustness of the Combined Inverse-Dynamics/Passivity-Based Control

where

η0 = 2 Ṁ0 q
[3]
0 + M̈0 q̈0 +D0 q

[3]
0 + C̈0q̇+ 2 Ċ0q̈0 + g̈0,

β0 =
(
M0 + J

)
q̈0 + h0 + f0.

It is important to notice that in (4.44) the vectors containing the accelerations and jerks are

also denoted as nominal. This is important because their model-based (or observer-based)

estimation will be certainly imperfect for the uncertainty scenario considered. This mismatch

is an additional source of perturbation that affects the closed-loop performance. The nominal

feedback vectors available can be written as

r0 =
(
q
[3]
d − q

[3]
0

)
+KHY 3

(
q̈d − q̈0

)
+KHY 2ė+KHY 1 e,

q
[3]
a0 = q

[3]
d +KHY 3

(
q̈d − q̈0

)
+KHY 2ė+KHY 1 e,

q
[4]
a0 = q

[4]
d +KHY 3

(
q
[3]
d − q

[3]
0

)
+KHY 2

(
q̈d − q̈0

)
+KHY 1 ė.

It is worth mentioning that no prior work considers this crucial aspect for analyzing robustness

of controllers with high-order derivatives, to the best knowledge of the author.

By using the control law in (4.44) for the system in (4.43), and after performing algebraic

manipulations that involve the use of the rule in (4.42), the following closed-loop relation can

be obtained:

Mṙ+Cr+Λr = ψ, (4.45)

where

ψ = Λrδ +Mq
[4]
aδ +Cq

[3]
aδ +Mδq

[4]
a0 +Cδ q

[3]
a0 + ηδ +KJ−1βδ − d. (4.46)

In the above equation, ψ is a perturbation vector that affects the closed-loop. It is important

to notice that (4.45) defines an output-strictly-passive operator ψ → r with storage function

V = 1
2r

TMr, provided that Λ is positive definite.

Now, in light of the composition of ψ expressed in (4.46), additional assumptions are intro-

duced subsequently.

Assumption 1. There exist positive constants κMδ
, κCδ

, and κηβδ
that bound the deviation

between the nominal and the real model terms as follows:

‖Mδ‖ < κMδ
, ‖Cδ‖ < κCδ

, ‖ηδ +KJ−1βδ‖ < κηβδ
. (4.47)

This assumption implies that the mismatch between the real model terms involved and the

nominal ones is not expected to be unbounded in practice.
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4. CONTROL DESIGN WITH ELASTIC-JOINT MODULES

Assumption 2. There exist positive constants κaδ and κjδ that bound the deviation between

the real and the estimated accelerations and jerks as follows:

‖q̈δ‖ < κaδ, ‖q
[3]
δ ‖ < κjδ . (4.48)

This assumption is reasonable in practice once the estimator of the accelerations and jerks is

properly calibrated and when considering that real actuators have speed and saturation limits.

Please note that the boundedness of the deviation in the estimation of the accelerations and

jerks should always be evaluated before one can use them for feedback control. This assumption

implies that

‖q
[4]
aδ‖ < κasδ, ‖q

[3]
aδ‖ < κajδ, (4.49)

for some positive constants κasδ and κajδ, which can be shown by considering that the following

relations hold

q
[4]
aδ

(4.42)
= −KHY 3q

[3]
δ −KHY 2q̈δ, q

[3]
aδ

(4.42)
= −KHY 3q̈δ.

Assumption 3. There exist positive constants κM and κC so that

‖M‖ ≤ κM , ‖C(q, q̇)‖ ≤ κC‖q̇‖. (4.50)

This assumption is usual in control of robot manipulators; the interested reader can refer

to fundamental books (such as [18]) for further detail.

With these assumptions it is now possible to show that any user defined tracking precision

can be met in principle, provided that the gains (Λ, KHY 3, KHY 2, KHY 1) are properly selected.

This can be shown using the storage function

V =
1

2
rTMr,

whose derivative is

V̇ = rT
(
−Λr+ψ

)
≤ −λmin(Λ) ‖r‖2 + ‖r‖‖ψ‖. (4.51)

The assumptions made so far allow one to define the following perturbation bounding function

ρ = κ+ κν‖q̇‖+ κMδ
‖q

[4]
a0‖+ κCδ

‖q
[3]
a0‖+ ϕp, (4.52)

where

κ = κMκasδ + κηβδ
+ κd, κν = κCκaj , ϕp > 0.
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By considering the assumptions, (4.46), (4.52), and the selection of Λ = ρI, with I being the

identity matrix of proper dimensions, it can be shown that the following inequality holds:

(1 + ‖rδ‖)ρ > ‖ψ‖.

Now, the inequality in (4.51) can be rewritten as

V̇ < ρ‖r‖(−‖r‖+ ‖rδ‖+ 1).

The above inequality implies that V̇ < 0 for

‖r‖ ≥ κjδ + ‖KHY 3‖κaδ + 1 ≥ ‖rδ‖+ 1,

since

rδ
(4.42)
= −q

[3]
δ −KHY 3q̈δ. (4.53)

From this result, uniform ultimate boundedness of the trajectory r follows. In particular, since

the inertia matrix is quadratically bounded by

λm‖x‖
2 ≤ xTMx ≤ λM‖x‖

2,

where λm > 0 and λM < ∞ are the respective minimum and maximum eigenvalues of the

inertia matrix (∀q), the trajectory r is ultimately bounded by

‖r‖ ≤ (‖rδ‖+ 1)

√
λM

λm
,
(4.53)

≤ (κjδ + ‖KHY 3‖κaδ + 1)

√
λM

λm
. (4.54)

This follows from the same arguments presented for the robust PB controller in Subsection 3.4.1.

The relation in (4.54) shows that the bounds of r do not necessarily shrink by increasing

the gains. In particular, the increase of KHY 3 is counterproductive and enlarges these bounds.

Although there is no known means to shrink the bounds of r, the bounds on the trajectory

tracking error e can still be made arbitrarily small. This can be seen by considering (4.36). In

fact, considering this transfer function as the result of a series of first order passive low pass

filters for each coordinate j as

Gj(s) =
ej(s)

rj(s)
=

1

(s+KG)3
=

1

s3 + 3KG s2 + 3K2
G s+K3

G

,
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with a positive KG, results in the gains KHY 3 = 3KG I, KHY 2 = 3K2
G I, and KHY 1 = K3

G I.

With these gains and ‖r‖ ultimately bounded by (4.54), it follows that

‖ej‖ ≤
(κjδ + ‖KHY 3‖κaδ + 1)

K3
G

√
λM

λm

≤
(κjδ + 3KGκaδ + 1)

K3
G

√
λM

λm

≤
((κjδ + 1)

K3
G

+
3κaδ

K2
G

)√λM

λm
,

for the jth coordinate. This relation shows that the bounds of the tracking error can be made

arbitrarily small by selecting a large enough tuning parameter KG.

It should be noted that other choices of the gains can be made (e.g., KHY 2 = (3K2
G + δ2) I

and KHY 1 = (K3
G + δ1) I) for some positive δ1 and δ2 that still maintain the transfer function

(4.36) stable and sufficiently input-output suppressing (i.e., with sufficiently low H∞ norm).

Please note that although the meaning of all bounds considered has been detailed, obtaining

the exact function (4.52) is not simple in practice. One possible shortcut is to find a large

enough constant ρ from tuning iterations that provides satisfactory tracking, along with a large

enough KG.

4.7 Performance Evaluation using Simulations

This section presents simulation results of the comparison of global tracking controllers that

can be automatically deployed, thanks to their efficient numerical computability. The com-

parison is between the combined ID/PB scheme and the classical inverse-dynamics controller.

The tracking performance and the sensitivity to small mismatches of the system dynamics are

considered. After describing the simulation test bed, a practical solution for estimating joint

accelerations and jerks using an observer is described. Then, simulation results that also show

the influence of the observer are discussed.

4.7.1 Simulation Test Bed

Two simple planar robots with two and six revolute joints (2R and 6R, respectively) composed

of cylindrical links and working in the vertical plane are considered. The link-side assembly of

the 2R robot is equivalent to the one in Figure 3.4, while the assembly of the 6R robot is a

straightforward extension of it with four more links.
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Figure 4.1: Required joint-space trajectory using sin2 profiles.

The nominal parameters of the ith link used are the length li = 0.5m, the radius of the

enclosing cylinder ri = 0.025m, and its mass mi = 2.5 kg. The parameters considered for the

motor-side dynamics are the rotor inertia Ji = 0.5 kgm2 and the elastic-joint stiffness coefficient

Ki = 4650Nm/rad. In addition, the sampling time of 1ms is introduced using zero-order hold.

Sensitivity to uncertain model parameters is assessed by simulating small mismatches of the

actual mass (and inertia) of the last link of the considered arms.

The trajectory to track is defined in joint space, using a sequence of smooth sin2 profiles as

in [111, Section 6.3]; the maximum acceleration is set to 3 rad/s2 and the maximum velocity is

set to 1.5 rad/s. The resulting trajectory used for these simulations is shown in Figure 4.1.

4.7.2 Estimation of Joint Accelerations and Jerks

In practice, the use of an observer to obtain better estimates with respect to those obtained

by means of (4.38) and (4.39) may be necessary. This is typically necessary when the torque

readings are very noisy or when the model mismatch is significant. Better estimates can be

obtained following the idea of the kinematic Kalman filter proposed in [13].

When considering precise model knowledge but noisy torque readings, the estimation of

accelerations and jerks with (4.38) and (4.39) may be affected by an excessive amount of noise.

With the state vector x(t) = [q q̇ q̈ q[3]]T , the following model can be used for designing the

filter:

ẋ(t) = Ax(t) + Γw(t), y(t) = Cx(t) + e(t),

where w(t) is an unbiased white process noise with covariance c, y(t) the vector of the available

measurements, and e(t) is the vector of unbiased white measurement noise having covariance

matrix R. Now, by assuming availability of measurements of joint positions, velocities (us-

ing tachometers or numerical differentiation of position measurements), and noisy joint accel-
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Figure 4.2: Simulation comparison of tracking performance and torque commands between ID

control and combined ID/PB control for a 2R planar arm. The performances of the classical

ID control (ID) are compared with those of the combined ID/PB control (Comb. ID/PB). The

simulations have been performed considering perfect model information (first column of plots), an

additive 5% mismatch for the second link mass (second column of plots), and finally an additive

10% mismatch for the second link mass (third column of plots).

erations from (4.38), the following system matrices can be considered:

A =




0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0




, Γ =




0

0

0

1




, C =




1 0 0 0

0 1 0 0

0 0 1 0


 .

Please note that one can simply resort to the use of position and velocity measurements for

the filter, if significant systematic errors in the estimate of the accelerations using (4.38) is

present. Such a version of the filter is simply adapted by removing the third row of C. Using

similar arguments as in [12], w(t) can be seen as a surrogate of q[4] and its covariance c as a

filter-tuning parameter since the above mentioned stochastic model can only approximate the

actual robot motion. This alternative version does not require model knowledge and can be

directly implemented in each elastic-joint module.

4.7.3 Simulation Results

The first simulation results presented involve the 2R robot for which model mismatch has been

introduced. The mismatches considered are 5% and 10% of unexpected additional mass for
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Figure 4.3: Effect of Λ on the tracking performance of the combined ID/PB controller for a 2R

planar arm considering an additive 10% mismatch for the second link mass and keeping the other

gain matrices fixed.

the second link. The results of these simulations are collected in Figure 4.2. This figure shows

the tracking performance of the classical inverse-dynamics scheme and the combined inverse-

dynamics/passivity-based control scheme for three cases: perfect model information and the two

scenarios including model mismatch. By observing the development in time of the tracking error

for the increasing model mismatch (second and third columns of plots), the combined ID/PB

control scheme has remarkable insensitivity with respect to the model mismatch compared to

the classical inverse-dynamics controller. As it is noticeable from the first column of plots in

Figure 4.2, the gains for the two controllers under test have been selected in a fair way, by tuning

them to provide equivalent performance when perfect model information is assumed. Please

note that the sampling effects considered in these simulations prevent the tracking error from

approaching the numerical precision of the solver as one would otherwise expect for the case

of perfect model knowledge. For these simulations, the joint accelerations and jerks have been

estimated using (4.38) and (4.39). The consequences from using an observer for their estimation

are presented next. The gains that have been used for ID control and for combined ID/PB

control are respectively: KID3 = 150I, KID2 = 7 · 103I, KID1 = 140 · 103I, KID0 = 1 · 106I,

and KHY 3 = 150I, KHY 2 = 6, 5 ·103I, KHY 1 = 40 · 103I, Λ = 9I, where I is the 2 × 2 identity

matrix.

An additional benefit of the combined ID/PB controller is its easy tunability using the gain

matrix Λ. This gain matrix has an intuitive influence on the tracking error since it allows one to

directly inject damping in (4.45). This results in the direct reduction of the tracking error when

increasing entries of Λ, without having to consider the roots of the polynomials (4.4.4) for a
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required increase of tracking performance. The effect of this intuitive tuning knob is presented

in Figure 4.3, which shows the development in time of the tracking error for three cases of Λ.

Of course, the matrices KHY 1, KHY 2 and KHY 3 have not been modified for these simulations,

and the same values of the previously mentioned simulations have been used.

The effect of the use of an observer for estimating joint accelerations and jerks has also been

evaluated using simulations. For this purpose, position/velocity measurement noise has been

introduced such that the following covariance matrix is used: R = diag{10−9, 10−7, 20}. The

results of all tracking tests have been collected in Figure 4.4. For this evaluation, both the 2R

(first column of plots) and the 6R (second column of plots) planar robots have been considered.

For all cases, a 10% mismatch of the mass of the last link has been introduced. The three

rows of plots correspond to the case of no observer and no noise present, noise and observer

(with c = 20), and noise and observer (with c = 16), respectively. By observing the results

in these rows, it clearly appears that the introduction of the observer significantly robustifies

the ID controller and leads to comparable performance for the 2R case between the classical

ID and the combined ID/PB control. For the 6R case, higher error peaks can be noticed for

the classical ID controller. The second and third rows of plots show the effect of the reduction

of the filter parameter c. Its reduction increases the noise suppression at the expense of more

delayed estimates. The simulation results show that the ID controller is more sensitive to the

delayed estimation from the filter with lower values of c, with the increase of the complexity of

the robot considered. Therefore, the combined ID/PB scheme is still preferred. The gains used

for these simulations are the same as the ones used in the previously mentioned simulations

with Λ = 9I.
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Figure 4.4: Simulation comparison showing the effect of the observer for a 2R planar robot

(left column of plots) and for a 6R planar robot (right column of plots). The performance of the

classical ID control (ID) are compared with those of the combined ID/PB control (Comb. ID/PB).

Each plot represents a simulation with 10% added mass mismatch at the last link of each arm.

The first row of plots collects results for a scenario without noise and without observer in use.

The second row considers measurement noise and the use of the observer with c = 20 and the last

row considers measurement noise and the use of the observer with c = 16.

4.8 Experimental Application

In addition to the numerical results presented so far, real-world experiments have also been

performed to verify the effectiveness of the combined ID/PB control schemes and their efficient

numerical computability. In this section, the robot test beds used for the experiments and the

achieved tracking control performance are presented.

Two different robots have been employed. One is a simple reconfigurable platform which

is composed of link modules and two elastic-joint modules. This platform is especially suit-

able for demonstrating the efficient automatic implementation of global trackers. The second

platform used is a fixed-configuration seven degrees-of-freedom robotic arm with four elastic

joints. This robots is used to demonstrate the combined ID/PB control variants on a complex

robot arm. The control design of this arm needs special considerations since it is composed of

mixed rigid/elastic joints. Even though the second test bed is based on a fixed-configuration

arm, the results presented are still useful to understand how the controller would behave for a

reconfigurable robot. This is possible since the approach described in Chapter 2 can be used
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elastic-joint modules (b). The legend in the bottom shows the frame notation used for compactness,

where the y axis is omitted and assumed to complete the right-handed coordinate system.

for automatically obtaining the link-side models of arbitrary assemblies.

4.8.1 2R Reconfigurable Elastic-Joint Robot

This robot test bed is composed of aluminum profiles as link-modules and elastic-joint-modules

illustrated in Figure 4.5. The available measurements provided by each motor driver board are

the motor-side joint position, the deflection of the elastic element, and the rate of change of these

quantities. Therefore, knowing the elastic-joint stiffness, the elastic torque τ e = K(θ − q) and

its rate of change τ̇ e = K(θ̇−q̇) can be directly obtained. The control laws under test have been

implemented using Simulink Real Time 2015b and an embedded target PC (PC/104) equipped

with 2 GB RAM and an Intel Core 2 Duo CPU running at 1.86 GHz. The sampling time is 1ms.

Derivation of the Module Data

The first step for characterizing the modules is to set the input and the output coordinate

frames. While for the available joint modules only one pair of input-output connectors is

considered, multiple output connectors (OutA, OutB, OutC, OutD) can be defined for these

link modules (see Figure 4.5a). This enlarges the set of possible resulting assemblies of the

robot arm. The input-output frames, as shown in Figure 4.5, are assigned such that the output

frame of one module matches the input frame of the subsequent one (as in Chapter 2), when

a connection is realized. Once these frames are assigned, the set of kinematic and dynamic

parameters of the module data for each pair of input-output frames can be obtained applying
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al αl pl nl δl,in δl,out

in-outA H3 0 −H4 0 0 0

in-outB H3 −π/2 −H4/2 H1 0 0

in-outC H3 −π 0 0 0 0

in-outD H3 π/2 −H4/2 H1 0 0

Table 4.1: Kinematic module data of link-module Lκ, with reference to Figure 4.5a.

Proximal Part Distal Part Joint

apl αpl ppl npl δpl adl αdl pdl ndl δdl δJ Joint type

H5 0 −H6/2 0 0 0 0 −H6/2 0 0 0 Revolute

Table 4.2: Kinematic module data of joint-module Jκ, with reference to Figure 4.5b.

the notation described in detail in Chapter 2. The generic kinematic parameters derived for

this selection of input-output frames and this module geometry are collected in Table 4.1 and

Table 4.2. In addition to the kinematic parameters, the dynamic ones (mass, inertia tensor,

and coordinates of center of mass) for link modules and the proximal part of joint modules

are expressed with respect to the input frame, while the parameters for the distal part of the

joint module are expressed with respect to the output frame. We obtain these kinematic and

dynamic parameters using CAD data. The motor-side friction parameters of the joint modules

as well as the rotor inertia have been estimated by a simple identification procedure equivalent

to the one applied in Subsection 2.6.2. In all the experiments with this test bed the motor-

side friction terms have been compensated by feedforward control. The elastic-joint stiffness is

about 4650Nm/rad, which has been estimated by locking the rotor and by applying different

known loads at the link-side to measure the corresponding joint deflection.
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Validation of the Models

For each configuration of the robot, the model-based controller is automatically generated.

The quality of the automatically obtained robot models can be evaluated by measuring the

elastic joint torques τ e while the robot performs movements and by comparing them with the

torques predicted with the automatically generated model. Figure 4.6a and Figure 4.6b show

the match between the model and the actual torque measurements, where two different robot

assemblies are considered. From these figures, a significantly good match is shown during the

motion.

Evaluation of the Control Performance

Using the robot test bed of Figure 4.6a, both the classical ID control and the combined

ID/PB control have been tested. The results of these experiments are shown in Figure 4.7. This

figure contains the results of tracking control for two different cases. The first case assumes

the robot dynamics to be close to the available ones from the nominal model. The second case

involves a significant model mismatch that has been introduced by adding 2 kg of unmodeled

payload (i.e., assumed as unknown for the control). The tracking performance for the former

scenario can be observed in the first column of plots of Figure 4.7, while the latter case is shown

in the second column of plots of the same figure. For a fair comparison, the tuning of the two

controllers has been performed so that they have comparable performance (tracking error and

amplification of the measurement noise) for the case of no payload. The mentioned fairness can

be seen in the first column of plots in Figure 4.7 where a smooth tracking behavior for both
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ID control Comb. ID/PB control

Maximum (10−4s) 1.445 1.449

Mean (10−5s) 5.32 5.39

Standard deviation (10−5s) 2.61 2.63

Table 4.3: Comparison of the total execution time of the controller outputs used in the experi-

ments with the 2R reconfigurable elastic-joint robot.

controllers is shown, as well as by observing the development of the torque commands over time.

For these tests the same trajectory has been used as for the previously mentioned simulations.

It is interesting to notice that Figure 4.7 also shows acceptable performance for the loaded

robot, for both controllers. This is consistent with the simulation results discussed previously,

thanks to the robustifying effect introduced by the observer for the 2R robot. The use of the

observer has been necessary for performing experiments with this robot for dealing with noisy

torque readings. While these experiments show real-word applicability of the tested controllers,

it is important to mention that the global tracking properties of the considered schemes are

not necessarily guaranteed when the observer is used. In general, even though the observer can

be a practical solution for estimating the accelerations and jerks, it is preferable not to use it

from a theoretical point view, if torque readings and the model available are sufficiently precise.

Finally, in these experiments no significant computational effort has been required for either

tested controllers, as shown in Table 4.3.
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Figure 4.8: Picture (left) and dimensions in mm (right) of the bi-manual robotic platform [9]

serving for the experimental evaluation of the proposed controllers.

4.8.2 7R Mixed Rigid/Elastic Joint Robot

Next, the proposed approach is demonstrated by a 7 degrees of freedom arm, which is the

right arm of the humanoid robot torso shown in Figure 4.8. Technical details of the actuation

units employed are collected in Table 4.4. While the first four joints of the kinematic structure

have a stiffness of about 6000 Nm/rad, the last three are much more rigid and have a stiffness

of 21000 Nm/rad, which is in the order of the harmonic drive flexibility. Because of this

significant difference, the last three joints are considered to be rigid. The arm can be seen as a

mixed rigid/elastic joint manipulator, implying that the dynamics cannot be directly modeled

by (4.1). However, the implementation of the controllers described in this chapter is still

possible, provided that the elastic joints dynamics are virtually created in the controller itself

as described in [31]. This has been realized by including dynamic feedback terms that emulate

the presence of the virtual motor-side dynamics in the controller, so that the whole arm can

virtually be seen as fully composed of elastic joints. The controllers for these experiments have

been implemented using Simulink Real Time 2015b and an Intel NUC with 3 GB DDR-3 RAM

and a Core i5-3427U processor (3M cache) running at 1.8 GHz.

For all the experiments described in this subsection, the desired trajectories have been

computed using 7th order polynomials for point to point motions in joint space. The details of

these trajectories can be found in Appendix B.

For the above mentioned test bed, the tracking performance of the combined ID/PB control

and its variant with feedforward ID action are presented next. The tests performed involved fast
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type

gear joint velocity peak sensor

ratio index max. torque stiffness

[rad/s] [Nm] [Nm/rad]

Medium A 160 1, 2 5.7 147 6 000

Medium B 160 3, 4 8.2 147 6 000

Small A 100 5, 6 11.6 55 21 000

Small B 100 7 20.3 27 21 000

Table 4.4: Actuator specifications for right arm. Joint indices refer to Figure 4.8.

trajectory tracking and unknown payloads of significant magnitude. In addition, a test where

the gains are reduced is also presented, to evaluate the behavior of the feedforward-ID/PB

controller with respect to a simple PD-based scheme, showing the benefits of using a model.

Validation of the Model

The link-side model of this robot has been derived using CAD data, while the motor-side

parameters (with the exception of the friction parameters) have been obtained from the motor

data sheets. A simple identification procedure has been used for estimating the motor-side

friction coefficients and is described next. The following simple friction model is used:

fi(θi) = βv,iθ̇ + βc,isign(θ̇),

for the ith joint axis, where βv,i and βc,i are the viscous and static friction coefficients, respec-

tively. The friction coefficients have been obtained by performing the following regression for

each ith axis with an elastic joint and using k samples:

(
βv,i βc,i

)T
= (ΦTΦ)−1ΦTb,

where

Φ =




θ̇i(1) sign(θ̇i(1))
...

...

θ̇i(k) sign(θ̇(k))


 , b =




ui(1)− τe,i(1)− Jiθ̈i(1)
...

ui(k)− τe,i(k)− Jiθ̈i(k)


 .

The acceleration data required for the regression have been obtained using zero-phase digital

filtering [79] on the double numerical differentiation of the joint position data. For estimating

the friction coefficients of the axes with rigid joints, the same approach is used; however, the

model of the rigid-link assembly using a recursive Newton-Euler algorithm is evaluated in place
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Figure 4.9: Evaluation of model accuracy for a closed-loop trajectory tracking control test. The

model prediction is computed offline by using the recursive Newton-Euler algorithm for which we

use zero-phase digital filtering for estimating the acceleration.

of the measured τe in this case. In all the experiments, the motor-side friction terms have been

compensated by feedforward action.

The quality of the available model can be observed in Figure 4.9, which shows the match

of the model prediction derived using CAD data, motor data-sheets, and identified friction

coefficients with respect to the real torque measurements for the axes equipped with elastic

joints. Further, the applied actuation torques (from current signals) in comparison with the

model prediction is shown for the axes with rigid joints. This figure shows a satisfactory

match. Better results are expected if dedicated identification procedures are performed (see

e.g., [6, 15, 108]). However, this is not desirable for a modular reconfigurable scenario since it

would be time consuming and limit swift reconfigurability. One of the additional purposes of

these experiments is to show applicability of the combined ID/PB control schemes for cases in

which the model is simply derived from CAD data. In fact, this would be the case if the robot to

control were an assembly of a reconfigurable arm running the framework described in Chapter 2.

Practical Estimation of Joint Accelerations and Jerks

The finite precision of the available model and the noisy torque readings make the estimates

of joint accelerations and jerks using (4.38) and (4.39) not sufficiently accurate. For this imple-

mentation, a simple kinematic Kalman filter of the type described in Subsection 4.7.2 has been

used, for the case in which C = (I2×2, 02×2). Additional filtering by a first-order low-pass

filter with cutoff frequency at 5 rad/s has been included for an additional practical suppression

of undesired spectral components. The results of a test for showing the estimation quality of
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during a trajectory tracking control test.

the acceleration and jerk for an exemplary axis is presented in Figure 4.10. These results are

relative to the second axis only since the ones of the other axes do not differ significantly.

Evaluation of the Control Performance

The first results presented aim at verifying the tracking performance of the combined ID/PB

control and its variant with feedforward inverse dynamics, when fast trajectories are required.

Further, the two controllers are compared with a simpler, model-free PD controller which results

from removing all link-side model terms as well as the accelerations and jerks feedback from

the combined ID/PB law:

uPD = −JK−1Λ (KHY 2ė+KHY 1 e) + f(θ̇).

The results of this first series of experiments are presented in Figure 4.11. From this figure

the performance of the controllers can be observed by considering the development over time of

the tracking error norm. The zoomed part of the tracking error plot in Figure 4.11 highlights

the behavior of the controllers when the trajectory becomes fast. In this case, the improved

performance of the combined ID/PB schemes can be observed. In particular, the controller that

provides better performance is the combined feedforward-ID/PB. This is due to the filtering
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Figure 4.11: Experiments of tracking control with fast desired trajectory. The dashed lines in

the bottom right plot represent the current commands required from the controllers for the first

joint (uc,1), where a saturation is experienced. The trajectory used for this test is in the appendix.

procedure used for obtaining the accelerations and jerks which introduces an unavoidable phase

lag that can also be seen from Figure 4.10. Please note that this experiment has been executed

with a trajectory that has led the robot to reach the physical actuation limits. This can also

be observed in the bottom right of Figure 4.11, where the desired actuation current and its

saturated execution for the first axis of the robot are shown. The gains used in this experiment

are

KHY 3 = 103diag([60, 120, 120, 120, 2000, 2000, 2000]),

KHY 2 = 103diag([2, 3.5, 3.5, 3.5, 50, 50, 50]),

KHY 1 = diag([50, 50, 50, 50, 375, 375, 375]),

Λ = diag([70, 40, 40, 40, 20, 20, 20]). (4.55)

The performance of the combined ID/PB controllers have been additionally tested for dif-

ferent unmodeled payloads. The results of these tests are shown in Figure 4.12, where the

different payloads used can be noticed. By observing the trajectory tracking error norms in

Figure 4.12, smooth evolutions over time are shown from both controllers, without any sign of

instability and oscillations. The performance of the combined ID/PB controller and that of its

feedforward-ID/PB variant are not easily distinguishable due to the relatively slow speed of the

desired trajectory. This is expected since for sufficiently slow trajectories the delay introduced

by the acceleration and jerk filtering becomes negligible. The maximum speed of this trajec-

tory has been limited to comply with the physical limits of the robot for reliably carrying a 4kg

payload. The gains have not been modified from the previously described experiments.
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An additional experiment has been executed to evaluate the effect of the gain reduction on

the tracking performance. The aim is to show the benefit of the feedforward-ID/PB controller

with respect to its reduced PD version when manually reducing the gains. The reduction of

the gains may be desired for achieving movements with low impedance, but this would not be

practical if the tracking performance were significantly corrupted. For this test, the desired tra-

jectory has been selected such that the robot can perform a fast sawing motion. The oscillatory

behavior of the error can observed in Figure 4.13, where a significant increase in amplitude for

the case of the PD control is noticed. In this test, all entries of Λ have been decreased to 50%

and 25% of their original values in (4.55) (orange and red areas in Figure 4.13, respectively).

The peak-to-peak value of the oscillations raises from about 0.128 rad to 0.205 rad when the

model-free PD scheme is used. In contrast, the peak-to-peak error of the feedforward-ID/PB

control is not significantly affected and raises only from 0.046 rad to 0.065 rad. The reduced

amplitude oscillations allow more precise movements and lead to safer conditions for letting

e.g., a human establish a physical interaction with the arm. Finally, it is important to report

that the maximum total execution time required from the combined ID/PB controllers on the

available target machine was about 0.14 ms, which allowed real-time computations.
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4.9 Summary

In this chapter, existing and novel controllers for elastic-joint robots have been presented,

with a special focus on modular reconfigurable arms. For this reason, the efficient numerical

implementability of the schemes has been considered to be a necessary condition, to allow the

automatic controller design in conjunction with the framework of Chapter 2.

Simple regulators have been recalled because they represent an attractive solution due to

their implementation simplicity, when high precision tracking is not required. Instead, when

considering precise trajectory tracking control, available methods that can be efficiently im-

plemented are the feedforward/feedback control approach, the classical inverse-dynamics, and

the recently proposed combined ID/PB schemes. While the first provides local stability, the

others can guarantee global tracking. Among the control approaches that provide tracking with

global stability, the combined ID/PB approach has been shown to provide remarkable robust-

ness to model mismatches with respect to the classical inverse-dynamics scheme in simulations.

Thanks to the fact that both have the same efficient numerical computability, the combined

ID/PB control approach is the preferable choice. The low total execution time experienced in

the experiments with a complex robot arm with 7 degrees-of-freedom has additionally shown

the online applicability of these model-based schemes with current technology.

Even though global tracking controllers should be generally preferred, the locally stable

trackers presented in this chapter are surely attractive, since they are very effective when accu-

rate acceleration and jerk feedback is not available. However, worse performances in terms of the
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damping of residual link-side oscillations are expected for the feedforward/feedback approach

that uses feedback of motor-side variables only.

From simulations and experiments, the importance of the accurate estimation of accelera-

tions and jerks clearly emerged. Practical solutions have been adopted in this thesis with good

results. However, the development of robust observers that can guarantee bounded estimation

errors when considering the actuator limitations is certainly an important improvement that

can be considered for future research.
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Chapter 5

Conclusion and Future Directions

Conclusion

New methods for solving fundamental problems in the control of modular robot manipu-

lators have been presented. Contrary to most previously published approaches that foster the

application of decentralized control techniques, this thesis shows that the applicability of cen-

tralized model-based techniques is possible. In particular, it was shown both theoretically and

with experiments that this is possible in a systematic way, even when modules are significantly

different from one another (heterogeneous), when there are external disturbances, when mod-

ules have significant uncertainty in their parameters, and when non-negligible elasticity in the

joints is present.

The core control framework, which provides a systematic way for automatic centralized con-

troller design, has also been shown to allow the use of model-based control schemes for modular

robots which can be frequently and arbitrarily re-assembled. The framework introduced here

has the benefit of being complete and systematic. Its completeness is achieved because it in-

cludes kinematics (accounting also for special cases which have not been completely handled by

previous approaches), dynamics, and control aspects. Its systematicity is provided by the fact

that it can be implemented as a step-by-step procedure for different modular robot setups with

heterogeneous modules. The experimental results have shown applicability of the framework

with different modular setups and commercially available hardware, thus showing readiness of

this approach for applications outside research as well. The combination of this framework with

algorithms for quickly finding the task-optimal assembly such as [132] [53], and for program-

ming by demonstration such as [119], enables the realization of a novel framework for flexible

manufacturing as shown in [130].
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With the aim of guaranteeing robustness to the automatically generated control schemes

with the above mentioned framework, a novel approach for robust control has been introduced.

The benefit of this new robust control approach exceeds the domain of modular reconfigurable

robots and also has implications for the robust control of classical rigid robots. In fact, the

approach presented allows the automatic deployment of a controller with guaranteed robust

performance, without the need for empirical and time-consuming estimations of bounds of non-

linear model terms (which are also state dependent and complicate the problem in practice

significantly). Such bounds can instead be computed automatically using interval arithmetic,

starting from known intervals in which the real dynamical parameters of the arms can lie.

Interestingly, with the aim of reducing the computational complexity of this scheme, a new

interval-arithmetic-based Newton-Euler algorithm has been introduced. Thanks to this algo-

rithm, the computational complexity of the overall robust control scheme has been made linear

in the number of joints. Performance of this approach has been shown to overcome those

of existing reference methods in terms of reduced conservativity and deployment simplicity.

Real world applicability and effectiveness has been verified with experiments. The interval-

arithmetic-based Newton-Euler algorithm has also been shown to be useful as the base for

robust scaling of trajectories and for sensor-less collision detection strategies. The first results

in this direction have been collected in [133].

The recent trend of the intentional inclusion of elasticity in the joints has significantly in-

creased the complexity of the motion control problem of modern robot arms. A large number

of results have been presented in the literature for such control problems so far. In this the-

sis, the most suitable existing approaches that can be used for modular arms in conjunction

with the framework of Chapter 2 have been described. Of particular importance for a control

scheme to be considered for automatic controller generation is the possibility for its efficient

numerical implementation. In contrast, symbolic manipulation requirements would impose sig-

nificant computational resources and dedicated software packages, typically not available for a

central control unit of a robot. While efficient numerical computability of control schemes has

been possible for regulation control purposes as for the rigid joint ones, the efficient numer-

ical computability of global tracking control schemes has been enabled only recently. Latest

algorithms for this purpose indeed enable the efficient numerical implementation of inverse-

dynamics controllers for elastic-joint robots as the standard N-E algorithm did for rigid robots

in former times. Particularly relevant for global tracking control is a new control scheme that

has been presented in this thesis, which provides enhanced robustness with respect to the
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classical inverse-dynamics scheme. This new controller merges the efficient computability of

the inverse-dynamics schemes with the enhanced robustness from passivity-based control. The

robustness of the resulting combined inverse-dynamics/passivity-based controller has been an-

alyzed in detail. Remarkably, this analysis has shown that a suitable selection of the gains

can theoretically make the tracking error to become arbitrarily small, even though model un-

certainties and input disturbances are considered. The application of this novel scheme to a

reconfigurable robot test bed and to a 7 degrees-of-freedom arm has verified its effectiveness

and real-world applicability.

Future Directions

Logical continuations of this work may involve the application of the framework proposed for

automatic centralized controller design to deploy automatically advanced control schemes such

as impedance, admittance, and hybrid force-position controllers. In addition, the problem of

automatic deployment of computationally efficient inverse kinematics schemes that beneficially

exploit possible redundancies and globally consider avoidance of obstacles, self-collisions, and

joint limits is as challenging as important for future research. Clearly, for this purpose the auto-

matically generated models could be used for solving optimal control problems after assembly.

The interval arithmetic robust control approach presented in this thesis would benefit from the

development of strategies for properly stopping the integral actions that may cause excessive

amplification of measurement noise. It would additionally be interesting to consider this novel

control approach for the robust control of other systems having highly nonlinear, coupled, and

uncertain dynamics. The basic idea is that the use of interval arithmetic for computing worst

case perturbations online may allow the automatic deployment of formally robust controllers

for other engineering fields as well. Enhancement of the combined inverse-dynamics/passivity-

based controller proposed could be introduced by considering the case of nonlinear springs and

the use of interval arithmetic to simplify tuning when dynamics are uncertain. In addition, the

simulations, experiments, and the theoretical robustness analysis highlighted the importance

of having robust observers for the estimation of joint accelerations and jerks given position,

velocity readings, and an uncertain robot model. Having a method that can formally guarantee

small bounds for the estimation errors of accelerations and jerks would simplify tuning efforts

significantly.
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Appendix A

Efficient Recursive Algorithms

A.1 Standard and Modified Recursive Newton-Euler Al-

gorithms

The Newton-Euler method for modeling the dynamics of robots is based on the balance of the

fundamental equations of motion of each body that composes the structure. A computation-

ally efficient (recursive) variant of the Newton-Euler method was first proposed in [71] with

a complexity that grows linearly in the number of the joints
(

O(N)
)
. The standard recursive

Newton-Euler algorithm (NEA) studies the manipulator link by link and is composed of two

recursions, one for kinematics (forward recursion) and one for the balance of forces and torques

(backward recursion). An implementation of the standard algorithm is detailed next in Algo-

rithm 2, which has been adapted from [96, Section 7]. This algorithm receives as input the

vectors of joint positions q, velocities q̇, accelerations q̈, the gravity vector g, the DH table

DH, and the dynamical parameters of the arm DynPar. It provides as output the vector of

forces/torques u, which results in

M(q)q̈+ c(q, q̇) + f(q̇) + g(q) = u = NEAg

(
q, q̇, q̈,DH,DynPar

)
.

In Algorithm 2, with reference to (2.15), (2.16), and Figure 2.6a, f ii and ni
i are action-

reaction force and torque vectors exerted on the ith link, ωi
i is its angular velocity, aii is the

linear acceleration of the link-fixed frame, aic,i is the linear acceleration of its center of mass,

riDi−1,Di
is the vector between two consecutive frames, mi is the mass, and Iii is the inertia

tensor. Further, fi(q̇i), σr,i, and Im,i are the friction model, the gear ratio, and the rotor

inertia, respectively. The superscript of vectors denotes in which frame they are defined. The
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A. EFFICIENT RECURSIVE ALGORITHMS

influence of gravity is included in the base frame’s acceleration during initialization of the

forward recursion (line 3). The presence of gravity can be neglected by setting g = 0 in the

algorithm; such a case is denoted as NEA0 in this thesis.

Enhanced versions of this algorithm have been presented: for example, in [94] the authors

consider inertia effects of the rotors and in [34] the authors provide a modified version of the

algorithm for fault detection and passivity-based control. In particular, the algorithm proposed

in [34] allows the computation of the matrix C(q, q̇) that satisfies the property in (2.2). As

originally proposed, the approach is suitable for robots with revolute joints. A small extension

to handle prismatic joints in addition has been introduced in the author’s work [126]. This

algorithm is presented next in Algorithm 3. Its structure is equivalent to the standard algorithm

except for the introduction of auxiliary angular velocity vectors (q̇a and ωa), which are used

to split the quadratic dependence of the term c(q, q̇) = C(q, q̇)q̇ into c(q, q̇, q̇a) = C(q, q̇)q̇a.

The models generated by the proposed extension for prismatic joints allow the property

in (2.2) to be fulfilled; this verification was perfomed by adopting a similar testing approach

that authors in [34] use for revolute joints. The fully general symbolic models were tested

for all combinations of revolute and prismatic joints (up to 4 degrees-of-freedom for the high

computational burden) using the Symbolic Math Toolbox R© in MATLAB. With this approach,

all tests have been successful. The modified recursive N-E algorithm (NEA∗) described in

Algorithm 3 provides

M(q)q̈ +C(q, q̇)q̇a + f(q̇) + g(q) = u = NEA∗
g

(
q, q̇, q̇a, q̈,DH,DynPar

)
.

Algorithm 2 Standard recursive N-E algorithm: NEAg(q, q̇, q̈,DH,DynPar).

Input: q, q̇, q̈, DynPar, DH, and the gravity vector g

Output: u

1: Initialize number of links N (from DH )

2: Initialize ω0
0, ω̇

0
0, and a00 to zero and z0 ← [0, 0, 1]T

3: Include effect of gravity a00 ← a00 − g

4: for i = 1 to N do

5: Ri−1
i ← compute (2.3) using DH and qi

6: Ri
i−1 ← transpose

(
Ri−1

i

)

7: zi ← Ri
i−1z0

8: riDi−1,Di
← compute (2.26) using DH and qi

9: end for
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10: for i = 1 to N do ⊲ Start of forward recursion

11: if ith joint is revolute then

12: ωi
i ← Ri

i−1

(
ωi−1

i−1 + q̇iz0
)

13: ω̇i
i ← Ri

i−1

(
ω̇i−1

i−1 + q̈iz0 + ω
i−1
i−1 × q̇iz0

)

14: aii ← Ri
i−1a

i−1
i−1 + ω̇

i
i × riDi−1,Di

+ ωi
i ×
(
ωi

i × riDi−1,Di

)

15: else ith joint is prismatic

16: ωi
i ← Ri

i−1ω
i−1
i−1

17: ω̇
i
i ← Ri

i−1ω̇
i−1
i−1

18: aii ← Ri
i−1a

i−1
i−1 + ω̇

i
i × riDi−1,Di

+ ωi
i ×
(
ωi

i × riDi−1,Di

)
+ 2ωi

i × q̇izi + q̈izi

19: end if

20: aic,i ← aii +
(
ω̇i

i × riDi,Ci

)
+

(
ωi

i ×
(
ωi

i × riDi,Ci

))

21: end for

22: Initialize fN+1
N+1 , n

N+1
N+1, and RN

N+1

23: for i = N to 1 do ⊲ Start of backward recursion

24: Fi
i ← mia

i
c,i

25: f ii ←
(
Ri

i+1f
i+1
i+1

)
+ Fi

i

26: ni
i ←

(
Ri

i+1n
i+1
i+1

)
+
(
riDi,Ci

× Fi
i

)
+
(
riDi−1,Di

× f ii

)
+
(
Iiiω̇

i
i

)
+

(
ωi

i ×
(
Iiiω

i
i

))

27: if ith joint is revolute then

28: ui ← transpose
(
ni
i

)
zi + fi(q̇i) + σ2

r,iIm,iq̈i

29: else ith joint is prismatic

30: ui ← transpose
(
f ii
)
zi + fi(q̇i) + σ2

r,iIm,iq̈i

31: end if

32: end for

Algorithm 3 Modified recursive N-E algorithm: NEA∗
g(q, q̇, q̇a, q̈,DH,DynPar).

Input: q, q̇, q̇a, q̈, DynPar, DH, and the gravity vector g

Output: u

1: Initialize number of links N (from DH )

2: Initialize ω0
a,0, ω

0
0, ω̇

0
0, and a00 to zero and z0 ← [0, 0, 1]T

3: Include effect of gravity a00 ← a00 − g

4: for i = 1 to N do

5: Ri−1
i ← compute (2.3) using DH and qi

6: Ri
i−1 ← transpose

(
Ri−1

i

)

7: zi ← Ri
i−1z0

8: riDi−1,Di
← compute (2.26) using DH and qi

9: end for

139
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10: for i = 1 to N do ⊲ Start of forward recursion

11: if ith joint is revolute then

12: ωi
i ← Ri

i−1

(
ωi−1

i−1 + q̇iz0
)

13: ωi
a,i ← Ri

i−1

(
ωi−1

a,i−1 + q̇a,i z0
)

14: ω̇i
i ← Ri

i−1

(
ω̇i−1

i−1 + q̈iz0 + ω
i−1
a,i−1 × q̇iz0

)

15: aii ← Ri
i−1a

i−1
i−1 + ω̇

i
i × pi

i−1,i + ω
i
i ×
(
ωi

a,i × riDi−1,Di

)

16: else ith joint is prismatic

17: ωi
i ← Ri

i−1ω
i−1
i−1

18: ωi
a,i ← Ri

i−1ω
i−1
a,i−1

19: ω̇i
i ← Ri

i−1ω̇
i−1
i−1

20: aii ← Ri
i−1a

i−1
i−1 + ω̇

i
i × riDi−1,Di

+ ωi
i ×
(
ωi

a,i × riDi−1,Di

)

+ωi
a,i × q̇izi + ω

i
i × q̇a,izi + q̈izi

21: end if

22: aic,i ← aii +
(
ω̇i

i × riDi,Ci

)
+

(
ωi

i ×
(
ωi

a,i × riDi,Ci

))

23: end for

24: Initialize fN+1
N+1 , n

N+1
N+1, and RN

N+1

25: for i = N to 1 do ⊲ Start of backward recursion

26: Fi
i ← mia

i
c,i

27: f ii ←
(
Ri

i+1f
i+1
i+1

)
+ Fi

i

28: ni
i ←

(
Ri

i+1n
i+1
i+1

)
+
(
riDi,Ci

× Fi
i

)
+
(
riDi−1,Di

× f ii

)
+
(
Iiiω̇

i
i

)
+

(
ωi

a,i ×
(
Iiiω

i
i

))

29: if ith joint is revolute then

30: ui ← transpose
(
ni
i

)
zi + fi(q̇i) + σ2

r,iIm,iq̈i

31: else ith joint is prismatic

32: ui ← transpose
(
f ii
)
zi + fi(q̇i) + σ2

r,iIm,iq̈i

33: end if

34: end for

A.2 Interval-Arithmetic-Based Recursive Newton-Euler Al-

gorithm

In the author’s work [126], the idea of enhancing a recursive N-E algorithm with interval

arithmetic computations has been proposed. This approach allows one to obtain guaranteed

over-approximative sets of joint torques/forces arising from uncertain dynamic parameters of

the robot links in a computationally efficient way. Considering the preliminaries of Section

3.3, the enhanced algorithm is presented next in Algorithm 4. This algorithm shares the same

algorithmic complexity and structure of the standard and modified recursive N-E algorithms

presented in Appendix A.1, being composed of two recursions. While the first recursion (start-
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ing at line 10) computes the kinematic relations between subsequent links from the basis to

the end effector, the second recursion (starting at line 25) runs backward from the end effector

to the basis to compute the balance of forces and torques of the Newton-Euler equations of

dynamics. Over-approximative estimations of the torques/forces intervals from uncertain dy-

namic parameters are obtained by direct inclusion of set based operations for those that involve

uncertain dynamical parameters. This is included in lines 22-32 of Algorithm 41.

Algorithm 4 Interval-arithmetic-based N-E algorithm: IANEA∗
g(q, q̇, q̇a, q̈,DH, [∆]).

Input: q, q̇, q̇a, q̈, [∆], DH, and the gravity vector g

Output: [u]

1: Initialize number of links N (from DH )

2: Initialize ω0
a,0, ω

0
0, ω̇

0
0, and a00 to zero and z0 ← [0, 0, 1]T

3: Include effect of gravity a00 ← a00 − g

4: for i = 1 to N do

5: Ri−1
i ← compute (2.3) using DH and qi

6: Ri
i−1 ← transpose

(
Ri−1

i

)

7: zi ← Ri
i−1z0

8: riDi−1,Di
← compute (2.26) using DHtab and qi

9: end for

10: for i = 1 to N do ⊲ Start of forward recursion

11: if ith joint is revolute then

12: ωi
i ← Ri

i−1

(
ωi−1

i−1 + q̇iz0
)

13: ωi
a,i ← Ri

i−1

(
ωi−1

a,i−1 + q̇a,i z0
)

14: ω̇
i
i ← Ri

i−1

(
ω̇

i−1
i−1 + q̈iz0 + ω

i−1
a,i−1 × q̇iz0

)

15: aii ← Ri
i−1a

i−1
i−1 + ω̇

i
i × riDi−1,Di

+ ωi
i ×
(
ωi

a,i × riDi−1,Di

)

16: else ith joint is prismatic

17: ωi
i ← Ri

i−1ω
i−1
i−1

18: ωi
a,i ← Ri

i−1ω
i−1
a,i−1

19: ω̇i
i ← Ri

i−1ω̇
i−1
i−1

20: aii ← Ri
i−1a

i−1
i−1 + ω̇

i
i × riDi−1,Di

+ ωi
i ×
(
ωi

a,i × riDi−1,Di

)

+ωi
a,i × q̇izi + ω

i
i × q̇a,izi + q̈izi

21: end if

22: [aic,i]← aii ⊕
(
ω̇

i
i ⊗ [riDi,Ci

]
)
⊕

(
ωi

i ⊗
(
ωi

a,i ⊗ [riDi,Ci
]
))

23: end for

1Please note that ∆ was used instead of DynPar for maintaining consistency with the description in

Chapter 3.
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24: Initialize [fN+1
N+1 ], [n

N+1
N+1], and RN

N+1

25: for i = N to 1 do ⊲ Start of backward recursion

26: [Fi
i]← [mi]⊙ [aic,i]

27: [f ii ] ←
(
Ri

i+1 ⊙ [f i+1
i+1 ]

)
⊕ [Fi

i]

28: [ni
i]←

(
Ri

i+1 ⊙ [ni+1
i+1]

)
⊕
(
[riDi,Ci

]⊗ [Fi
i]
)

⊕
(
pi
i−1,i ⊗ [f ii ]

)
⊕
(
[Iii]⊙ ω̇

i
i

)
⊕

(
ωi

a,i ⊗
(
[Iii]⊙ ω

i
i

))

29: if ith joint is revolute then

30: [ui]← transpose
(
[ni

i]
)
⊙ zi

31: else ith joint is prismatic

32: [ui]← transpose
(
[f ii ]
)
⊙ zi

33: end if

34: end for

A.3 Computation of the Geometric Jacobian and its Deriva-

tive

The classical algorithm for computing the geometric Jacobian composes the matrix column by

column as follows

J =


JP1

. . . JPN

Jω1
. . . JωN


 ,

where JPi
, JOi

∈ R
3, for i ∈ {1, . . . , N}, and exploits the following relation [96]:


JPi

Jωi


 =





(
zi−1 × (pN − pi−1)

zi−1

)
, (revolute joint),

(
zi−1

0

)
, (prismatic joint).

(A.1)

In the above relations, zi−1 is the third column of the matrix R0
i−1, pN is the position vector

of the end effector frame from the base frame, and pi−1 is the position vector of the frame

i− 1 from the base frame. These vectors are all functions of the joint positions; the dependence

has been omitted for the sake of brevity. They are computed by subsequently multiplying

homogeneous transformation matrices relating subsequent link-fixed frames. This can be found

in lines 4-6 of Algorithm 5.

The derivative of the geometric Jacobian over time can be simply computed by applying
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the time derivative of (A.1) as follows:

J̇ =


J̇Pi

J̇ωi


 =





(
(ωi−1 × zi−1)× (pN − pi−1) + zi−1 × (ṗN − ṗi−1)

ωi−1 × zi−1

)
, (revolute joint),

(
ωi−1 × zi−1

0

)
, (prismatic joint).

To compute the above, the following relations are used:

ωi =

{
ωi−1 + q̇i zi−1, (revolute joint),

ωi−1, (prismatic joint),

ṗi =

{
ωi × (pi − pi−1) + ṗi−1, (revolute joint),

ωi × (pi − pi−1) + ṗi−1 + q̇izi−1, (prismatic joint).

Algorithm 5 Algorithm for efficiently computing the geometric Jacobian and its derivative:

dJacobian(q, q̇,DH).

Input: q, q̇, DH

Output: J̇(q, q̇), J(q)

1: Initialize number of links N (from DH )

2: Initialize p0 to zero, T0 ← I4×4, and z0 ← [0, 0, 1]T

3: for i = 1 to N do

4: Ti ← Ti−1A
i−1
i from (2.3) using DH and qi

5: pi ← Ti(1 : 3, 4)

6: zi ← Ti(1 : 3, 1 : 3) z0

7: end for

8: for i = 1 to N do

9: if ith joint is revolute then

10: Jp,i ← zi−1 × (pN − pi−1)

11: Jω,i ← zi−1

12: J(:, i) ← [JT
p,i, J

T
ω,i]

T

13: ωi ← ωi−1 + q̇izi−1

14: ṗi ← ωi × (pi − pi−1) + ṗi−1

15: else ith joint is prismatic

16: Jp,i ← zi−1

17: Jω,i ← 0

18: J(:, i) ← [JT
p,i, J

T
ω,i]

T

19: ωi ← ωi−1

20: ṗi ← ωi × (pi − pi−1) + ṗi−1 + q̇izi−1

21: end if

22: end for
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23: for i = 1 to N do

24: if ith joint is revolute then

25: J̇p,i ← (ωi−1 × zi−1)× (pN − pi−1) + zi−1 × (ṗN − ṗi−1)

26: J̇ω,i ← ωi−1 × zi−1

27: J̇(:, i) ← [J̇T
p,i, J̇

T
ω,i]

T

28: else ith joint is prismatic

29: J̇p,i ← ωi−1 × zi−1

30: J̇ω,i ← 0

31: J̇(:, i) ← [J̇T
p,i, J̇

T
ω,i]

T

32: end if

33: end for
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Appendix B

Test Trajectories

The experiments presented in Subsections 2.6.3 and 2.6.4 have been executed with point-to-

point motions in joint space using 5th order polynomials with null initial/final velocity and

acceleration. The specification of these trajectories is collected in Table B.1.

Time q1 q2 q3 q4 q5 q6

(s) (rad) (rad) (rad) (rad) (rad) (rad)

0 0 0 0 0 0 0

2 - π/8 π/4 −π/8 π/8 −π/4

3 −π/2 - - - - -

4 - π/4 π/8 π/8 −π/4 −π/8

6 π/8 −π/8 0 −π/4 −π/2 0

8 - π/4 π/8 π/8 −π/4 π/4

9 −π/4 - - - - -

10 - 0 −π/8 π/6 0 −π/8

12 0 π/10 0 π/4 π/8 −π/6

14 - −pi/3 pi/8 0 pi/4 0

15 π/2 - - - - -

16 - −π/8 π/4 −π/4 0 π/6

18 0 0 0 0 0 0

Table B.1: Specifications of the point-to-point motions for the experiments related to Fig-

ures 2.13, 2.14, and 2.15.
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The reference trajectories used for the experiments in Subsection 4.8.2 are a result of point-

to-point motions in joint space using 7th order polynomials with null initial/final velocity,

acceleration, and jerk. The points are specified in Tables B.2, B.3, and B.4 for the experiments

related to Figures 4.11, 4.12, and 4.13 respectively.

Time q1 q2 q3 q4 q5 q6 q7

(s) (rad) (rad) (rad) (rad) (rad) (rad) (rad)

0 0 0.1 0 0 0 0 −π/8

2 0 π/8 0 0 0 0 −π/8

4 π/2 π/4 0 π/2 −π/2 π/4 −π/4

6 π/4 π/2 π/2 π/2 π/2 −π/4 −π/8

8 −π/4 π/4 π/4 π/4 −π/4 π/4 −π/4

9 π/2 π/4 0 π/8 π/4 −π/4 −π/10

10 π/2 π/2 π/2 π/2 π/4 π/4 −π/4

11 0 π/8 0 0 0 0 −π/8

Table B.2: Specifications of the point-to-point motions for the experiment related to Figure 4.11.

Time q1 q2 q3 q4 q5 q6 q7

(s) (rad) (rad) (rad) (rad) (rad) (rad) (rad)

0 0 0.1 0 0 0 0 −π/8

2 0 π/8 0 0 0 0 −π/8

5 π/2 π/4 0 π/2 −π/2 π/4 −π/4

8 π/4 π/2 π/2 π/2 π/2 −π/4 −π/8

11 −π/4 π/4 π/4 π/4 −π/4 π/4 −π/4

14 π/2 π/4 0 π/8 π/4 −π/4 −π/10

17 π/2 π/2 π/2 π/2 π/4 π/4 −π/4

20 0 π/8 0 0 0 0 −π/8

Table B.3: Specifications of the point-to-point motions for the experiment related to Figure 4.12.
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Time q1 q2 q3 q4 q5 q6 q7

(s) (rad) (rad) (rad) (rad) (rad) (rad) (rad)

0 −π/4 π/8 0 π/2 π/6 π/4 −π/8

0.5 π/12 π/8 0 π/4 π/6 π/8 −π/8

1 −π/4 π/8 0 π/2 π/6 π/4 −π/8
...

...
...

...
...

...
...

...

20 π/12 π/8 0 π/4 π/6 π/8 −π/8

Table B.4: Specifications of the point-to-point motions for the experiment related to Figure 4.13

(sawing motion).
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