
Device Adapter Concept towards Enabling
Plug&Produce Production Environments

Kirill Dorofeev∗, Chih-Hong Cheng∗, Magno Guedes†, Pedro Ferreira‡, Stefan Profanter∗, Alois Zoitl∗
∗fortiss GmbH, An-Institut Technische Universität München, Munich, Germany

{dorofeev, cheng, profanter, zoitl}@fortiss.org
‡Introsys - Integration for Robotics Systems SA, R&D Department, Quinta do Anjo, Portugal

magno.guedes@introsys.eu
†Wolfson School of Mechanical and Manufacturing Engineering Loughborough University, Loughborough, United Kingdom

p.ferreira@lboro.ac.uk

Abstract—Modern manufacturing systems require a transfor-
mation from mass production towards mass customization. This
results in a trend towards more agile production lines. It also
demands a reduction of configuration times when building the
production line as well as faster reconfiguration when adding
new hardware and product variants to the manufacturing line.
This paper introduces the concept of a device adapter that allows
the device to be seamlessly plugged into the agile production
systems. The device adapter wraps the device functionality and
offers it as a service, hiding away the low-level process capability
(skill) implementation and allowing to formally represent the
production steps. Preliminary tests have been performed on
an industrial demonstrator that simulates a real manufacturing
process.

I. INTRODUCTION

One important aspect of Industry 4.0 (I4.0) is the seamless
integration of physical products and processes, and their virtual
representations in one network [1]. Assets represented as I4.0
components autonomously communicate directly with each
other to execute tasks, such as production plans. The logical
concept of administration shell [2] is proposed as an enabler
of such an autonomy, where a machine with an administration
shell software installed is readily capable of performing I4.0
tasks. What is currently missing, however, is how to realize
it in a Plug&Produce scenario, where one needs to (1) define
semantic protocols for upward (Manufacturing Execution Sys-
tems, Enterprise Resource Planning) and downward (the low-
level PLC’s, sensors, actuators) communications and, more-
over, (2) seamlessly integrate existing technology stacks such
as AutomationML [3] and/or OPC Unified Architecture (OPC
UA) to utilize their interoperability.

In this paper, we solve the above mentioned problem by
proposing device adapters as a concrete realization of admin-
istration shell, where the operational requirements are care-
fully derived from multiple intelligent manufacturing scenarios
among different industry sectors: electronics, white goods,
automotive. In the Plug&Produce scenario, the requirements
form a sequence of actions (modes) needed to be realized.
After standard component discovery over the physical pres-
ence, we detail how a device adapter negotiates with the upper
levels of control, e.g., cloud based systems. Subsequently, we
propose a framework by utilizing the concept of skills [4] [5]

[6] for two purposes: (1) to expose the devices functionality
to the upper control level as capabilities, and (2) to allow
high-level control to configure the machine via parameterized
recipes. We use self-description [7] as a way to expose skills,
where we carefully design it in the form AutomationML, and
allow runtime translation into OPC UA information model.
Although there is a natural translation from triggering a skill
to a method call in OPC UA, it is surprisingly underspecified in
the Companion Specification AutomationML for OPC UA [8]
regarding how a skill defined in AutomationML should be
realized in OPC UA. To this end, our translation incorporates
such modeling deficiencies by additionally creating specialized
method calls for each skill.

We experimented the above mentioned concepts on a real
production setup and validated the benefits. The highly het-
erogeneous machines used in the demonstrator show that the
proposed concept is general and can be reused for different
setups. The demonstrator also serves to analyze the potential of
introducing the device adapter to existing production systems.

The rest of the paper is organized as follows. After giving a
related work overview in Section II, Section III describes the
demonstrator mentioned above. Section IV defines the main
requirements derived from the demonstrator use-cases. Section
V describes the solution concept of the device adapter and
surrounding components needed for realizing a Plug&Produce
scenario. The details on how it was realized on the demon-
strator are given in Section VI. We summarize possible further
investigation steps and conclude in Sections VII and VIII
respectively.

II. RELATED WORK

The need for higher levels of production systems flexibility
in the industrial automation domain has been indicated in the
literature for a quite long time. The Plug&Produce concept
introduced in [9] is built upon the splitting of system modules
functionality in self-contained modules. These modules are
then used as building blocks of the production system. The
system module is defined based on the analysis of system
components and identifying the similarity between those,
whereas different modules should be kept independent from
each other [10]. There can be distinguished two types of such

978-1-5090-6505-9/17/$31.00 2017 IEEE

modules, the physical and logical [11]. The modularity of
physical systems is nowadays widely spread in the industrial
automation [11], whereas the logical components for such
agile production systems are under active research. Once
the modules are defined under the context of a modular
architecture, a finite set of modules can potentially deal with
an almost infinite set of changes [10].

Recent developments [4] [5] [12] have provided the base for
the definition of a configuration methodology by defining the
hierarchical skill model that allows the logical configuration
of such systems. This model is in line with an open standard,
which enables the definition of modular systems, such as
Automation ML [12]. Moreover, in [13] it is shown how
the AutomationML model can be operationalized by means
of OPC UA, a family of technologies intended to provide a
communication between field devices and upper control levels
[14]. This, however, requires some extensions in order to make
it create agile production lines [5].

III. RUNNING EXAMPLE

The system under analysis, showed in Figure 1, is deployed
at the Introsys facility and consists of two robotic spot welding
cells that represent actual production lines from the automotive
industry. The main actor of each cell is a 6-DoF robotic arm,
equipped with a custom gripper designed to handle a body
part of a car (a longeron). Motion control and safety routines
are managed by an industrial field PLC. An additional vision-
based quality inspection system allows to identify potential
imperfections on the weld. Finally, an energy monitoring
module collects and registers the energy consumed by all
equipment.

Fig. 1. Robotic Spot Welding Cells at Introsys

The assembly process executed is identical for both cells
and consists of the following steps: (1) the robotic arm picks
a car part from the fixture, (2) a spot welding operation is
performed, (3) the robot takes the finished part to the visual
inspection system and (4) the welded and inspected part is
dropped back to the fixture. The difference between cells lies
on the vendor standard adopted. These standards are currently

used by major car manufacturers and regulate not only the
equipment, but also the industrial communication protocols,
electrical wiring, safety devices, software and human-machine
interface used within the workstations.

Raw parts are delivered to the cells, according to production
needs, by means of an Automated Guided Vehicle (AGV). The
AGV has an on-board localization mechanism to safely navi-
gate through pre-defined paths without interfering with the in-
frastructure. This aspect is important for having Plug&Produce
enabled transportation systems as possible trajectories can be
created, deleted and modified by software only and without
the need for installing physical guidance mechanisms (e.g.
magnetic tape or inductive wire). The backbone of the AGV
runs a Robot Operating System (ROS) environment. For the
current demonstration needs we use the Gazebo Simulator1

that allows to simulate multiple vehicles. All AGV’s are
supervised by a central transportation management system
(TMS) that is also responsible for determining the best routes
and available units to meet transportation requirements.

IV. OPERATIONAL REQUIREMENTS

To achieve a Plug&Produce system [9] four phases need to
be completed successfully:

Discovery Phase. During this phase, a new device being
plugged into the system broadcasts its presence to the middle-
ware controller that initiates the communication and defines
the registration procedure. Activities conducted in this stage
are highly related to discovery services and can be imple-
mented using specific protocols and different communication
technologies such as OPC UA. Then the middleware is in-
formed about the device existence, and is able to communicate
with it. The middleware and the device should also keep track
of any change in the system topological information, leading
to changes in the process execution and system capabilities
overall. After completing the Discovery Phase, the device is
connected to its virtual representation in the cloud.

Configuration Phase. The goal of this phase is to configure
the inserted device such that it can perform product-specific
production tasks. Each newly inserted machine can provide
its capabilities as skills, hiding the low-level implementation.
Then the production execution can be triggered by calling an
appropriate skill and by adjusting corresponding parameters.
It is important to have a formalized approach for the definition
of skills, to make them interpretable for both device and
the cloud system communicating with each other. The skill
configuration instances, the recipes, are also created during this
phase and are validated to ensure that the system executes only
acceptable action sequences, whenever the recipe is triggered.
Overall, this phase can be seen as a process that transforms a
product specification to a machine configuration [15].

Production Phase. This phase covers the manufacturing of
products, new products introduction, changes in the planning,
dynamic system adjustments, routing the product through the
workstations, and storing of the production data. The majority

1http://gazebosim.org/

http://gazebosim.org/

of the activities here are dealt automatically by the system
components. Users are expected to have limited intervention
in this phase. Users can deploy new products as well as opti-
mized recipes (thus directly enforcing certain recipes), approve
recipes or trigger exceptions in the operation. It is important
to note that the system should have the ability to deploy new
recipes during the Reconfiguration Phase, as specified in the
later phase, based on the available production data, which can
be constantly stored in the cloud. The exception handling is
another big issue, which should be considered when building
such systems.

Reconfiguration Phase. For an intelligent production unit,
the device adapter should be designed to process multiple
products. This implies that the change of production for
known products, where recipes and parameters for those are
already stored, does not require any reconfiguration. However,
whenever there are new modules introduced in the system, or
there is a need to insert a new product recipe into the system,
a corresponding change phase should be implemented.

Some of the key operational requirements to be fulfilled
during designing such systems are the following:

Auto-discovery. After the device is being plugged in the
production system, the device adapter should start the commu-
nication to the middleware. The adapter should be informed
about: (1) the IP address of the middleware controller, (2) the
entities who initiate the communication, and (3) the methods
how to perform registration. Activities conducted in this stage
are highly related to discovery services and can be protocol
specific being implemented in communication technologies
such as OPC UA [16].

Fast configuration & adaptation. Reduction of the ini-
tial build and reconfiguration effort through the use of
Plug&Produce devices with standardized interfaces and built-
in control capabilities should be achieved. This allows such
devices to be rapidly connected together and be dynami-
cally configured to achieve different assembly processes. The
plugged machine is able to configure itself such that it can
perform product-specific tasks, i.e., fulfill the process that
creates a machine configuration out of product specification.
Overall, this means that the production system as a whole
should be able to react faster to new product variants and
scheduling modifications, adapting to the market fluctuation,
e.g., change in required production quantity, and production
emergent situations, or re-planning and stoppages. Some of
key factors to achieve are the ability to dynamically route
products, load-balancing between different stations, and the
real-time changes in systems functionality in response to new
product variants.

Triggering production tasks. After the component gets all
required information, it should start the execution, enabling
corresponding actions to accomplish its task. For doing that,
the device adapter should be able to interact with the middle-
ware system that does the orchestration.

Components reconfiguration, including hardware and com-
munication reconfiguration. Perform job switch when new pro-
duction task arrives, or if there is a change in communication

parameters, or if there is a change in hardware setup. This
allows rapid integration and adaptation of different devices
and assembly stations.

Self-description. Each Plug&Produce device should have an
embedded description that provides, among other information,
the information about its skills, data and different analysis that
it does, whereas each product should comprise wireless self-
identification procedures.

V. SOLUTION CONCEPT

In this section, we present our solution concept realized
within the device adapter, together with its surrounding envi-
ronment components to enable Plug&Produce. The high-level
workflow for realizing intelligent Plug&Produce is shown in
Figure 2. The manufacturing service bus (MSB) provides a
uniform communication framework at the shop floor layer,
integrating all components involved [17]. The MSB is in
charge of all vertical and horizontal communications within
the system, providing a high degree of flexibility, where the
devices can be easily plugged in and plugged out without
harming the overall system functionality. Knowing the under-
lying topology and being in charge of any communications,
MSB can handle routing, and protocol translation between
devices. The device adapter is the interacting element between
the hardware being controlled, and is in charge of harmonizing
the devices and workstations with the existing network when
plugged in. The device adapter makes the low level devices
capable for communication with the entire network of other
devices, workstations and MSB.

A. Skills

The manufacturing system is composed of several equip-
ment, which can be (1) workstations composed of any number
of submodules and devices, e.g., gripper, robot and (2) trans-
port units, responsible for moving the workpieces between the
stations. Each unit in the manufacturing system is responsible
for executing a certain task for completing the production,
defined as device skills. In this way each manufacturing unit
can be considered as a service provider that offers its skills via
the means of MSB. Skills represent the control equivalent to
hardware modules and follow the object oriented approach of
encapsulating reusable functionality. Skills define the process
capabilities offered by the equipment units to complete the
required manufacturing process steps. Overall the skills can
be seen as services in Service Oriented Architecture (SOA)
or methods in programming. The skills have a parameter set,
which can be either fixed or dynamically generated for the
operation of a manufacturing system. Thus, to execute the skill
it should be defined, what are the parameters for its execution.
These settings can be defined in the form of a skill recipe
concept which should prescribe how a skill requirement can
be achieved by a skill.

Atomic and composite skills. The skill concept [5] [6] takes
the advantage of existing concepts within the manufacturing
domain, which provide a hierarchical structure of manufac-
turing processes. The concept provides the means to structure

Cloud based System
Monitoring and Optimization
Layer

Controller Controller Controller
Device Adapter

Production

Controller Programming
Language Layer

Hardware Layer

Manufacturing Service Bus

In
te

lli
ge

nt
 P

lu
g&

Pr
od

uc
e

de
vi

ce

In
te

lli
ge

nt
 P

lu
g-

an
d-

pr
od

uc
e

de
vi

ce

In
te

lli
ge

nt
 P

lu
g-

an
d-

pr
od

uc
e

de
vi

ce

Product
Requirements

Trigger low-level
functions

Device Adapter

Trigger low-level
functions

Trigger low-level
functions

Expose skills

Execute recipes

Expose skills

Execute recipes

Expose skills

Execute recipes

Device Adapter

Fig. 2. Concept Overview

and define higher and lower level processes with the ability to
describe their composition, inter-dependencies and parametric
constraints. It should be possible to create a sequence of low
level skills, combining those into more complex skills. To
separate these two cases, we define two types of skills: (1)
atomic, which are defined as elementary skills at the lowest
level of granularity, and (2) composite, which are defined
as an ordered set of elementary or lower level composite
skills. A composite skill should have exactly the same main
characteristics as the atomic skill, in fact from an outside
point of view there should be no difference. The difference
consists in the existence of a structured definition for its
lower level of granularity. This definition establishes both
the internal process sequence and the information flow which
results in the composite skill [4]. The composite manufacturing
process can have different combinations of composite and
atomic skills and/or different set of parameters that fulfill
the skill requirements. In other words, there can be multiple
recipes fulfilling the requirements of one skill. The skill can be
seen as an IEC 61499 function block, having its event inputs
that allows to represent the execution sequence of different
skills. The role of data inputs and outputs is to provide the
parameters to each of the skill, i.e., instantiate it for executing
a specific task. These parameters are not mandatory for all
skills, but some manufacturing sequences might require an
information flow between different manufacturing processes.
In other words, this provides the means for information flow
of a given manufacturing process configuration.

B. Recipes

The execution of skills is driven by skill recipes. Recipes
are an aggregation of input parameters for the execution of a
skill. Before the recipe can be executed during the Production
Phase, it should be validated during the Configuration Phase
and deployed defining not only the skill’s parameter ports
but also the event ports which define the sequence of skills
being executed. The recipe concept enables the execution of
the skills to fulfill a certain skill requirement. This means
that the process of matching the skill requirements, which
will be defined by the product, to the skills, which are
defined by the equipment, will result in the creation of a skill
recipe. The different sets of product parameters that describe
different product variants should be mapped onto the machine
parameters that execute the low level skill. The device adapter
should interpret the product specific parameters provided by
a production management service and map from product-
specific to internal, skill-specific configurations. Recipes can
also serve as the basis for improvements. For example, for
a given product there might exist multiple recipes that are
valid for its production. Subsequently, during the runtime
one of the existing recipes can be chosen to optimize the
current execution, e.g., execute Recipe fast to speed up the
whole production or Recipe slow to optimize the energy
consumption. Existing recipes can be also optimized and tuned
during Reconfiguration Phase. The optimized (tuned) parame-
ters should be validated by the user and subsequently returned
to the device adapter to supersede the previous version of the

recipe.
Similarly to the skill concept, recipes can also be atomic or

composite, since they define the input parameters for atomic
or composite skills respectively. A composite recipe can be
an aggregation of both atomic recipes and composite recipes,
which describes the manufacturing process with respective
precedencies. An atomic recipe has the set of parameters to
execute a skill. One should note that the same recipe can
be executed any number of times with a different parameter
set. For doing that, the recipe update can be done during the
Reconfiguration Phase.

C. Execution

Bringing together these concepts of atomic skills, composite
skills and skill recipes, it is possible to describe the overall
view of execution of such a manufacturing system. In Figure
2 the device adapter plugged into the system offers the skills of
the underlying devices to the MSB. The MSB can afterwards
use one of the recipes, pre-validated during the Configuration
Phase, and download them back to the device adapter. The
product, arriving at the workstation, using the product ID , e.g.,
using Radio-frequency identification (RFID), triggers then the
execution of the corresponding recipe that is translated into
the low-level function call by the device adapter. Anytime a
new recipe can be introduced into the system. This means
that at different moments in time the same product ID can
be executed with different recipes. This allows changing of
running recipes, e.g., for optimizing the process in terms of
production speed or energy consumption.

D. Architecture concept overview

All the communication is done through the MSB. The
devices with the device adapter being connected to MSB are
able to advertise their skills. The device level requires atomic
devices that are aggregated up to workstation level, the highest
level of granularity. This means all devices internal to a work-
station will require communication with the ability to expose
services to make their skills available. This communication
will be critical for the performance of the system, as it implies
the ability to execute skills, and therefore requires a higher
level of priority. Parallel to the workstation, the transport
is considered at the same level of granularity as changes
to the transport would not require human interventions. The
existence of these two device types establishes the need for an
interaction between the transport and the workstation, which
represents the movement of the product from the transport to
the workstation. The device data for every device in the system
will be stored in the cloud and is subsequently available for
any further analysis and decision-making processes.

VI. IMPLEMENTATION

For implementing the above described concept we chose
Automation Markup Language (AutomationML) for devices
self-description and OPC UA as a communication protocol.
AutomationML supports object-oriented approach and allows
modeling of plant components as data objects, not only

Fig. 3. Informational Model

capturing information of different domains, as their properties
within the hierarchical plant topology, but also the associations
with other objects [3]. The AutomationML modeling approach
is compatible with the required component-based, modular
structure of Plug&Produce systems. OPC UA is an open,
cross-platform, SOA-oriented machine to machine communi-
cation protocol for industrial automation. It was chosen as an
approach for implementation of a communication layer in the
Reference Architectural Model RAMI 4.0 [2]

AutomationML model. The AutomationML for a worksta-
tion is an aggregation of all the device self-descriptions files.
These are also AutomationML, which is based on XML,
and therefore easily joint as aggregated nodes. The self-
description file for each device requires common terminologies
and concepts for both the Role Class and Interface libraries
[3]. This will establish the available skill types and interfaces
to be used on the description of the devices. The first step
for defining the self-description file, is to create the generic
device description in the system unit class library. Once this
is done, one can simply create an instance of generic device
in the Instance Hierarchy to define the specific device. This
node is communicated to the next hierarchal level where
it is aggregated, and so on until reaching the highest level
(workstation or transport), as it can be seen in Figure 3. It is
also important to note that a device description has approved
recipes that can be used to fulfill requirements, from both
products and composite skills.

All the information, defined in AutomationML description
is passed up to the cloud based system towards having a virtual
representation of an I4.0-compliant component.

Recipe ’Produce A’ Skill Requirements
Transport A to WS AGV Load()

AGV Route(A, WS)
AGV Unload()

Execute TaskFull Robot Pick(speed=75%)
Robot Weld(speed=15%, program=14)
Vis Inspect(tolerance=0.5mm)
Robot Drop(speed=75%)

TABLE I
DEMONSTRATOR RECIPES

The recipe execution process looks as follows: whenever
there is a demand for a new product, either triggered by an
operator or by schedule, the MSB captures this request along-
side with the respective product ID and informs the device
adapter correspondent to the workstation, which previously
advertised the skill, to handle such a product. The device
adapter consequently retrieves the skill recipe and product
parameters for the received product ID. Then it iterates through
each skill enclosed in the recipe, finds the required parameters
and sends them to the underlying functional interface to
execute the skill.

As it is shown in Figure 4, at first, the user creates and
validates the recipes to be used by the production system
during the Configuration Phase. At the same time the device
adapter should get the self-description of the device(s) it is
controlling. Then the device adapter is able to expose the skills
of the underlying devices to the MSB. Subsequently, after user
triggers the production, the MSB sends the commands to the
corresponding device adapter to invoke the low-level functions
to process the required skill.

The following is an example using the herein described
device adapter concept to enable the production of a welding
operation on a longeron, as described in Section III. In this
case, the longeron should receive reinforced welding and be
inspected for weld spot misplacement with a tolerance below
0.5 mm. The recipes, validated in the system are given in the
Table VI.

For the above mentioned example, the process starts when
the adapter receives an order from the MSB to process a
new product (A), which is already delivered by the AGV
(Transport A to WS completed). The adapter then matches
the recipe, retrieved from the ’Recipe List’, which allows
the execution of product ID A and delivers the list of skill
requirements to the ’Skill Executor’ for iteration. Inside
of the ’Skill Executor’, InterpretRecipe first executes
Robot Pick(speed=75%) to that is in charge of executing
Robot Pick(), and subsequently Robot Weld(speed=15%,
program=14), Vis Inspect(tolerance=0.5mm) and
Robot Drop(speed=75%) to other EquipmentModule-
Runtime that are in charge of these skills. The ’program’
parameter from the Robot Weld() corresponds to an
identifier of the robot program that must be executed to
perform the weld operation for that skill, which includes the
number and position of the weld spots. Other parameters are
self-explanatory.

When all skills required by the recipe are executed, the
device adapter resets its productID variable to NULL to
avoid duplicate execution and informs the MSB about all
Key Performance Indicators (KPIs), e.g., power consumption,
execution time, during this production task. Finally, the device
adapter notifies the MSB controller that the task execution
has been finished. The MSB then triggers the corresponding
transport unit to execute the product transfer, such that further
processing over the product may be conducted by other
machines.

It is also worth mentioning that for evaluation purposes the
link between the adapter and the low-level devices is carried
out using third-party solutions (KepServerX for the field PLC,
Unified Automation Wrapper for the robotic arm and energy
module) and a custom implementation based on the open62541
library2 for the visual inspection system. These allow the
exchange of triggers, control flags and data between the
devices and adapter to start execution of skills, coordinate the
execution process and receive back the relevant information
(KPIs). This additional layer is what allowed to seamlessly
integrate and adopt the Plug&Produce concept introduced by
the device adapter in the legacy devices that were not designed
or meant to at first place for this kind of functional paradigm.

Mapping between AutomationML and OPC UA. For the
evaluation we used Java Eclipse Milo project3 (licensed under
EPL-1.0). As the AutomationML standard has been estab-
lished and the focus now is towards applicability and the
connection to other standards we have implemented the cre-
ation of OPC UA Information Model out of Automation ML
description following the Companion Specification Automa-
tionML for OPC UA [8] [13]. The specification describes how
to model AutomationML based information sets using OPC-
UA information model and how to transmit them. We take
the AutomationML to OPC UA conversion companion, and
create a reference converter implementation, where one can
automatically convert the model description in AutomationML
to Java code for Eclipse Milo OPC UA Server Information
model. This implementation allows end-users to concentrate
on developing models in AutomationML format, and the code
generation feature is automatically handled by our converter
software.

After running through the described procedure using the
companion specification [8], a created OPC UA Server con-
tains a bunch of Objects, ObjectTypes and Variables that map
to the AutomationML model. However, we identified that there
is no mapping described between AutomationML model and
an OPC UA method call. For providing an interface to trigger
the underlying workstation function, the device adapter should
offer the capabilities of the low level device that it controls via
method calls. For doing so, while parsing an AutomationML
file, we create a method node for each skill, defined in the
description file. The input parameters for each method can
also be automatically generated from the AutomationML file,

2http://open62541.org/
3https://github.com/eclipse/milo/

http://open62541.org/
https://github.com/eclipse/milo/

Adaptor
Device

Adapter 1

Low-level
device 1.1User / Cloud

Expose skill1

Create and validate recipe

Adaptor
Device

Adapter 2
Low-level
device 2.1

Expose skill2

loop

alt

If skill == skill2

if skill == skill1
Trigger skill1

Invoke low-level function

Execute recipe/production

Trigger skill2

Invoke low-level function

Create
self-

descrip
tion

MSB

Create
self-

descrip
tion

Fig. 4. Sequence Diagram

as it defines the parameters needed for the skill execution.
Thus, after generating the definition of an OPC Server out of
AutomationML model, there is a ready interface for triggering
the production from the MSB. Moreover, a workstation can
have tasks, i.e. the sequences of particular skills. These are
defined in AutomationML and will be device adapter server
methods which can be called to execute multiple skills at a
time.

Figure 5 describes the implementation of the proposed
device adapter concept realized in the demonstration exam-
ple. (1) The device adapter for the workstation generates
the description of an OPC UA server out of workstation
description AutomationML file. This server contains OPC
UA server method nodes that represent the skills of the
workstation devices. (2) The OPC UA server discovers the
MSB and registers there. The MSB is then able to create an
OPC UA client that communicates back to the device adapter
OPC UA server and triggers the production by executing the
production recipe. (3) The device adapter instantiates the OPC
UA clients to communicate with different system components
and translates the skill call to the corresponding low-level
command.

In the current evaluation activities carried out for deploy-
ing the device adapter, we used physical legacy equipment,
where the current industrial standards were met. Such legacy
systems are still designed to operate under very strict and
static procedures, with fixed topology and predictive execution

timing. This means that low-level data and protocols could
only be changed to some extent to facilitate the integration of
Plug&Produce concept and unified semantic model. The result
is an additional interfacing wrapper for the device adapter that,
currently, still needs manual mapping of server function calls
to client functions to be called in low level devices.

VII. FUTURE WORK

While introducing skills to the existing system, the programs
that execute the production tasks in our demonstrator had to
be rewritten to realize each skill as a standalone subprogram.
Each of those subprograms has an interface consisting of
multiple data inputs and outputs to interact with the device
adapter. Subsequently, the system loses in the performance
compared to the initial control program, where the control was
seen as a one complete program. On the other hand, the agility
of the system increases. As one of the further steps we want
to assess how much we lose in the performance compared to
the dedicated system.

One other aspect to explore would be a generation of the
device subprograms out of the recipes, defined in the Automa-
tionML file, during the Configuration and Reconfiguration
Phases without the need for manual programming.

We will also investigate how the proposed approach deal
with heterogeneous communication interfaces being used on
the device level and explore more about the Plug&Produce
concept on the communication layer. We could show how

Adaptor

Device Adapter 1

Low-level device 1.1

Manufacturing Service Bus

Low-level device 2.1

LDS-MEClient

Client Client

Server Server

Server 1

2

2

2

3

3 3

Fig. 5. Implementing the Proposed Concept in Demonstrator Example

heterogeneous platforms can be seamlessly integrated into a
system and configured for use in the factory.

VIII. CONCLUSION

We propose the semantic protocol of realizing the admin-
istration shell concept that can be reimplemented in multiple
ways using different technologies. The universal concept of the
device adapter can be then created and extended for different
setups.

Creation of an OPC UA information model out of existing
AutomationML data allows to reduce configuration effort and
enables re-usability of information over the time. This also
simplifies the re-engineering and maintenance process. Once
the AutomationML description is changed, the device adapter
changes its OPC UA server automatically. Overall it leads to
more agile, more adaptable production systems.

The concept proposed aims not only to serve as a basis for
the future production lines, but also to allow the integration
of the legacy systems in the future Industry 4.0. To enable
the pluggability of devices, an embedded discovery service
is provided to ensure that current legacy devices, such as
industrial robots and PLCs, automatically register themselves
in MSB after being connected to the whole system. Device
adapter also serves to expose low-level device functionality as
skills to the upper control layers, reducing the initial build and
reconfiguration effort. Each module gets its description, which
is a part of a common semantic model, allowing various mod-
ules to inter-operate in a standardized way. AutomationML is
used to describe not only the device information, but also its
execution workflow. This makes the reconfiguration as easy as
deploying a new recipe into the system.

On the other hand, the proposed approach means bigger
initial effort when executing the system, requiring a definition

of the devices. However, our approach will allow to decrease
the overall operational time during the system life cycle due
to re-usability and fast change-over process.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union’s Horizon 2020 research and inno-
vation programme under grant agreement No 680735, project
openMOS (Open Dynamic Manufacturing Operating System
for Smart Plug-and-Produce Automation Components).

REFERENCES

[1] Plattform Industrie 4.0 Interaction Model for Industrie 4.0
Components. [Online]. Available: http://www.plattform-i40.de/
I40/Redaktion/EN/Downloads/Publikation/interaction-model-I40-
components.pdf? blob=publicationFile&v=8

[2] Implementation Strategy Industrie 4.0 Report on the results
of the Industrie 4.0 Platform. 2016. [Online]. Available:
https://www.zvei.org/fileadmin/user upload/Presse und Medien/
Publikationen/2016/januar/Implementation Strategy Industrie 4.0 -

Report on the results of Industrie 4.0 Platform/Implementation-
Strategy-Industrie-40-ENG.pdf

[3] AutomationML consortium. Whitepaper AutomationML Part 1 - Archi-
tecture and general requirements. 2014.

[4] P. Ferreira, and N. Lohse. Configuration model for evolvable assembly
systems. 4th CIRP Conference On Assembly Technologies And Systems,
2012.

[5] M. Onori, N. Lohse, J. Barata, and C. Hanisch The IDEAS project: Plug
& produce at shop-floor level. Assembly Automation 32(2), pp. 124-134,
2012.

[6] J. Pfrommer, M. Schleipen, and J. Beyerer. PPRS: production skills and
their relation to product, process, and resource. In IEEE 18th Conference
on Emerging Technologies & Factory Automation (ETFA), pp. 1-4, 2013.

[7] M. Schleipen, A. Lder, O. Sauer, H. Flatt, and J. Jasperneite Requirements
and concept for Plug-and-Work Automatisierungstechnik 63(10), pp.801-
820, 2015.

[8] Companion Specification AutomationML for OPC UA. 2016. [Online].
Available: https://opcfoundation.org/news/opc-foundation-news/bridging-
the-gap-between-communication-and-semantics-for-industrie-4-0-
companion-specification-automationml-for-opc-ua

[9] T. Arai, Y. Aiyama, Y. Maeda, M. Sugi, and J. Ota. Agile Assembly System
by Plug and Produce. CIRP Annals Manufacturing Technology, vol. 49,
pp. 1-4, 2000.

[10] Z.M. Bi, L. Wang, and S.Y.T. Lang. Current status of reconfigurable
assembly systems. International Journal of Manufacturing Research 2(3):
p. 303 - 328, 2007.

[11] P. Ferreira. An Agent-based Self-Configuration Methodology for Modular
Assembly Systems. In Department of Mechanical, Materials and Manu-
facturing Engineering, The University of Nottingham, 2011.

[12] B. Brandenbourger, M. Vathoopan, and A. Zoitl. Engineering of Au-
tomation Systems using Metamodel implemented in AutomationML. In
International Conference on Industrial Informatics (INDIN), pp.363-370,
2016.

[13] R. Henssen, and M. Schleipen. Interoperability between OPC UA and
AutomationML. 8th International Conference on Digital Enterprise Tech-
nology DET 2014 Disruptive Innovation in Manufacturing Engineering
towards the 4th Industrial Revolution, pp. 297-304, 2014.

[14] A. Frejborg, M. Ojala, L. Haapanen, O. Palonen, and J. Aro OPC UA
Connects your Systems - Top 10 reasons why to choose OPC UA over
OPC. Finnish Society of Automation, Biannual seminar no. XX, 2013.

[15] C.-H. Cheng, T. Guelfirat, C. Messinger, J. Schmitt, M. Schnelte, and P.
Weber. Semantic Degrees for Industrie 4.0. Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, pp. 1010-1013,
2015.

[16] S. Profanter, K. Dorofeev, and A. Zoitl. Device Adapter Concept
towards Enabling Plug&Produce Production Environments. In Emerging
Technologies And Factory Automation (ETFA), Limassol, 2017.

[17] C. Morariu, O. Morariu, T. Borangiu, and S. Raileanu. Manufacturing
Service Bus Integration Model for Implementing Highly Flexible and
Scalable Manufacturing Systems. Proceedings of the 14th IFAC Sym-
posium on Information Control Problems in Manufacturing, 2012.

http://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/interaction-model-I40-components.pdf?__blob=publicationFile&v=8
http://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/interaction-model-I40-components.pdf?__blob=publicationFile&v=8
http://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/interaction-model-I40-components.pdf?__blob=publicationFile&v=8
https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2016/januar/Implementation_Strategy_Industrie_4.0_-_Report_on_the_results_of_Industrie_4.0_Platform/Implementation-Strategy-Industrie-40-ENG.pdf
https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2016/januar/Implementation_Strategy_Industrie_4.0_-_Report_on_the_results_of_Industrie_4.0_Platform/Implementation-Strategy-Industrie-40-ENG.pdf
https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2016/januar/Implementation_Strategy_Industrie_4.0_-_Report_on_the_results_of_Industrie_4.0_Platform/Implementation-Strategy-Industrie-40-ENG.pdf
https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2016/januar/Implementation_Strategy_Industrie_4.0_-_Report_on_the_results_of_Industrie_4.0_Platform/Implementation-Strategy-Industrie-40-ENG.pdf
https://opcfoundation.org/news/opc-foundation-news/bridging-the-gap-between-communication-and-semantics-for-industrie-4-0-companion-specification-automationml-for-opc-ua
https://opcfoundation.org/news/opc-foundation-news/bridging-the-gap-between-communication-and-semantics-for-industrie-4-0-companion-specification-automationml-for-opc-ua
https://opcfoundation.org/news/opc-foundation-news/bridging-the-gap-between-communication-and-semantics-for-industrie-4-0-companion-specification-automationml-for-opc-ua

