
Technische Universität München
Lehrstuhl für Kommunikationsnetze

Centralized Online Routing
for Deterministic Quality of Service

in Packet Switched Networks

Jochen Walter Guck, M.Sc.

Vollständiger Abdruck der von der Fakultät Elektrotechnik und Informations-
technik der Technischen Universität München zur Erlangung des akademischen
Grades eines

Doktor-Ingenieurs (Dr.-Ing.)
genehmigten Dissertation.

Vorsitzender: Prof. Dr. Andreas Herkersdorf
Prüfer der Dissertation: 1. Prof. Dr.-Ing. Wolfgang Kellerer

2. Prof. Martin Reisslein, Ph.D.

Die Dissertation wurde am 11.01.2018 bei der Technischen Universität München
eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik
am 30.04.2018 angenommen.

ii

Centralized Online Routing
for Deterministic Quality of Service

in Packet Switched Networks

Jochen Walter Guck, M.Sc.

18. Juni 2018

Abstract

The main purpose of industrial networks is to transmit critical messages (e.g.,
the control signals for large automated manufacturing plants). Deterministic
real-time Quality of Service (QoS) is a key requirement for many of these critical
messages Proprietary industrial communication technologies have been deve-
loped to provide this strict QoS. These proprietary technologies are typically
costly and lack a common accepted standardized communication interface. This
work takes up the original ideas from industrial Ethernet of using commodity
hardware to realize industrial real-time communication. To achieve this, mode-
ling techniques have been developed that enable the provision of deterministic
real-time communication using commodity hardware. In addition, optimization
strategies were designed and evaluated, which maximize the number of served
connections.
In this Thesis, the implementation of a centralized deterministic Quality of
Service Framework is presented. It was developed for the industrial real-time
communication use case. To provide this type of communication, a deterministic
end-to-end delay path is needed. To enable fast online routing capabilities in
packet-switched networks, a function split has been introduced. This divides
the global optimization problem into three independent optimization problems,
namely the routing problem, the cost function design, and the resource allocation
problem. These three issues work on the basis of a network resource model. In
this work, several deterministic network resource models are presented.
To evaluate the centralized deterministic Quality of Service control framework,
a stand-alone evaluation of all components was not enough to determine the
best system performance. We use a Monte Carlo-based simulation to create a
record of system configurations. For these configurations, the maximum traffic
intensity and life-cycle time were calculated. The resulting data set was used to
identify a high performance configuration for maximum traffic intensity (more
than 1000 connections on average) and a suitable computational effort (about
one hundred requests per second).
These results show that the implemented centralized deterministic quality of
service control framework based on commodity hardware meets industrial
requirements.

iii

iv

Zusammenfassung

Der Hauptzweck von industriellen Netzwerken besteht darin, kritische Nach-
richten (z.B. die Steuerungssignale für große automatisierte Produktionsanlagen)
zu übertragen. Deterministische Echtzeit Quality of Service (QoS) ist eine Schlüs-
selanforderung für viele dieser kritischen Nachrichten. Proprietäre industrielle
Kommunikationstechnologien wurden entwickelt, um diese strikte QoS bereit-
zustellen. Diese proprietären Technologien sind typisch kostenintensiv und es
fehlt ein einheitliches, akzeptiertes und standardisiertes Kommunikationsinter-
face. Diese Arbeit greift die ursprünglichen Ideen des industriellen Ethernet der
Nutzung von Commodity Hardware auf, um industrielle Echtzeitkommuni-
kation zu realisieren. Um dies zu erreichen, wurden Modellierungstechniken
entwickelt, die die Bereitstellung von deterministischer Echtzeitkommunika-
tion, unter Verwendung von Commodity Hardware, ermöglicht. Zusätzlich
wurden Optimierungsstrategien entworfen und evaluiert, welche die Anzahl
der Echtzeitverbindungen maximieren.
Die vollständige Implementierung eines zentralisierten deterministischen Quali-
ty of Service Frameworks wird in dieser Arbeit vorgestellt. Es wurde für den
industriellen Echtzeitkommunikationsanwendungsfall entwickelt. Um diese
Art von Kommunikation bereitzustellen wird ein Pfad mit deterministischer
Ende-zu-Ende-Verzögerung benötigt. Um schnelle Online-Routing-Fähigkeiten
in paketvermittelten Netzen zu ermöglichen, wurde der Funktionssplit einge-
führt. Dieser unterteilt das globale Optimierungsproblem in drei unabhängige
Optimierungsprobleme, nämlich das Routing-Problem, das Kostenfunktions-
design und das Ressourcenzuordnungsproblem. Diese drei Probleme arbeiten
auf der Grundlage eines Netzwerkressourcenmodells. In dieser Arbeit wurden
mehrere deterministische Netzwerkressourcenmodelle vorgestellt.
Um das zentralisierte deterministische Quality of Service-Kontrollframework
zu bewerten, reichte eine eigenständige Evaluierung aller Komponenten nicht
aus, um die beste Systemleistung zu ermitteln. Eine Monte-Carlo-basierte Simu-
lation wurde verwendet, um einen Datensatz von Systemkonfigurationen zu
erstellen. Für diese Konfigurationen wurden die maximale Verkehrsintensität
und die Lebenszyklus-Laufzeit berechnet. Der resultierende Datensatz wurde
verwendet, um eine Konfiguration mit einer hohen Leistung hinsichtlich der
maximalen Verkehrsintensität (mehr als 1000 Verbindungen im Durchschnitt)
und eines geeigneten Berechnungsaufwands (ungefähr hundert Anfragen pro

v

Sekunde) zu identifizieren.
Die Ergebnisse der Evaluation zeigen, dass die Implementierung eines zentrali-
sierten deterministischen Quality of Service-Kontrollframeworks für auf Basis
von Commodity Hardware möglich ist.

vi

Contents

1 Introduction 1
1.1 Problem Statement . 2
1.2 Contributions . 3
1.3 Thesis Outline . 5

2 Industrial QoS Framework 7
2.1 Context: Industrial QoS Framework 7
2.1.1 Ethernet/IP-based QoS . 8
2.1.1.1 Integrated Services (IntServ) . 8
2.1.1.2 Differentiated Services (DiffServ) . 9
2.1.1.3 Queue Scheduling . 9
2.1.1.4 Active Queue Management (AQM) 11
2.1.1.5 Traffic Shaping . 11
2.1.2 Industrial Ethernet . 12
2.1.3 Time Sensitive Networking (TSN) 12
2.1.4 Software Defined Networking (SDN) 14
2.2 Putting It All Together . 15
2.3 Formal Problem Formulation . 17
2.4 Function Split . 18
2.5 Building Blocks for Implementing the Function Split 20

3 State of the Art Analysis 25
3.1 Centralized QoS Networking Frameworks 25
3.1.1 High-Level Architectural Proposals 25
3.1.2 OpenFlow Extensions . 25
3.1.3 TDMA Solutions . 26
3.1.4 QoS Frameworks based on Data Rate Allocation 26
3.1.5 Measurement-based Frameworks 26
3.1.6 Model-based Frameworks . 27
3.2 Centralized Routing Algorithms . 27
3.2.1 Basic Definitions for QoS Routing Algorithms 27
3.2.1.1 Definitions and Terminology . 27

vii

Contents

3.2.1.2 Goals of QoS Routing . 30
3.2.2 Overview of Shortest Path (SP) Algorithms 31
3.2.3 Overview of k Shortest Path (kSP) Algorithms 32
3.2.4 Survey of (Multi-)Constrained Shortest Path (Constrained Short-

est Path (CSP) and Multi-Constrained Shortest Path (MCSP))
Algorithms . 33

3.2.4.1 Elementary Algorithms . 33
3.2.4.2 Algorithms Based on a Priority Queue 34
3.2.4.3 Algorithms Based on Bellman-Ford (BF) 35
3.2.4.4 Algorithms Based on the Lagrange Relaxation 36
3.2.4.5 Algorithms Following the Least-Cost (LC) and Least-Delay (LD)

Paths . 42
3.2.4.6 Other Approaches . 45

4 Network Resource Modeling: Deterministic Services (DetServ) 49
4.1 Interface of the Network Model . 50
4.2 Network Calculus . 51
4.2.1 Basics: Theory Principles . 51
4.2.2 Selected Results: Priority Scheduling 53
4.3 Notations . 54
4.4 Requirement for the Models: Fixed Per-Queue Delay 56
4.5 Multi-Hop Model (MHM) . 56
4.5.1 Network Calculus Developments 57
4.5.2 Model Operations . 58
4.5.3 Limitations of the Multi-Hop Model 58
4.6 Threshold-Based Model (TBM) . 60
4.6.1 Model Operations . 60
4.6.2 Shortcomings of the Threshold-Based Model (TBM) 62
4.7 Computation of the Burst Increase 63
4.8 Input Link Shaping (ILS) . 64
4.8.1 Towards Lower Bounds . 64
4.8.2 Input Link Shaping (ILS) Does Not Contradict Network Calculus 65
4.8.3 Adapting the Multi-Hop Model (MHM) 66
4.8.4 Adapting the TBM . 67
4.8.5 Impact on the Performance of the MHM 70
4.8.6 Impact on the Performance of the TBM 70

5 Optimization Problems 73
5.1 Routing Problem . 74
5.2 Cost Function design Problem . 75
5.2.1 Static Cost Functions . 77

viii

Contents

5.2.2 Dynamic Cost Functions . 77
5.2.3 Discussion . 79
5.3 Resource Allocation Problem . 79
5.3.1 Elementary Resource Allocation Algorithm 80
5.3.2 Tunable Resource Allocation Algorithm (TRAA) 82

6 Evaluation 85
6.1 CSP Algorithm Evaluation . 86
6.1.1 Four-Dimensional (4D) Evaluation Framework 88
6.1.1.1 Topology and Scaling . 88
6.1.1.2 Delay Constraint Tightness . 90
6.1.1.3 Evaluation Procedure and Metrics 90
6.1.1.4 Algorithms Selection . 91
6.1.2 Evaluation Results . 91
6.1.2.1 Fingerprints: Influence of the Delay Constraint Tightness 92
6.1.2.2 Heatmaps: Impact of Network Topology and Scale 97
6.1.2.3 Which Algorithm is Best? . 102
6.2 Function Split Evaluation . 103
6.2.1 Network Set-up and Traffic Mixes 104
6.2.2 Routing Cost Functions . 105
6.2.3 Evaluation Procedures . 105
6.2.3.1 Online Routing and Admission Control 105
6.2.3.2 Offline Resource Allocation . 106
6.2.3.3 Comparison Benchmark: Mixed Integer Program (MIP) Solution 106
6.2.4 Computation Time . 107
6.2.5 Utilization of Links, Buffers, and Delay Limits 107
6.2.6 Conclusion . 111
6.3 Industrial QoS Framework Evaluation 111
6.3.1 Scenario . 112
6.3.2 System Evaluation Framework . 114
6.3.2.1 Metric Computation . 115
6.3.2.2 Search Space limitation . 116
6.3.3 High Level Sensitivity Analyses . 116
6.3.4 Solution space reduction . 120
6.3.5 Analysis of the best configuration 126
6.3.6 Analysis of the topology impact . 127

7 Conclusion and Outlook 129
7.1 Conclusion . 129
7.2 Future Work . 131

ix

A Appendix 133
A.1 Implementation . 133
A.1.1 System Overview . 133
A.1.2 Component Model . 133
A.1.3 Industrial QoS Framework Architecture 134

Abbreviations 137

Mathematical Notations 141

Bibliography 145

List of Figures

2.1 The concept of network function split in Software Defined Net-
working . 14

2.2 Overview of the industrial QoS framework concept 15
2.3 Q-Link topology example . 16
2.4 Control system overview picture . 19
2.5 Function split illustration . 21
2.6 Overview of the heuristic building blocks 22

3.1 Model based vs. measurement based architectures 26
3.2 Illustration of Lagrange functions 37
3.3 Illustration of the operation of the Lagrange Relaxation based

Aggregate Cost (LARAC) algorithm 39
3.4 Delay cost space vizualisation . 40
3.5 Example Topology Delay-Constrained Unicast Routing (DCUR) . 43

4.1 Control system overview picture . 49
4.2 Network Calculus example . 52
4.3 MHM algorithm listing . 59
4.4 TBM algorithm listing . 61
4.5 Imput link shaping network calculus example 65
4.6 Imput link shaping network calculus extended example 68
4.7 TBM with ILS algorithm listing . 69

5.1 Control system overview picture . 73

x

5.2 Generic resource allocation algorithm listing 81
5.3 Specific resource allocation algorithm listing 82
5.4 Tunable Resource Allocation Algorithm (TRAA) listing 83

6.1 4D evaluation illustration . 86
6.2 Topologies for routing algorithm evaluation 89
6.3 Fingerprints for routing algorithm evaluation 93
6.4 Heatmaps for routing algorithm evaluation 100
6.5 Illustration complexity evaluation topology 104
6.6 Comparison of the average link (rate) utilization 108
6.7 Comparison of the average buffer utilization 109
6.8 Comparison of the average time utilization 111
6.9 Example state space diagram . 114
6.10 High Level Sensitivity Analyses . 118
6.11 Solution space reduction . 123
6.12 Detailed analysis of the best configuration. 126
6.13 Evaluation of the topology impact. 128

A.1 Overview over the two main system functions 134
A.2 Overview of the developed module structure. 135

List of Tables

1.1 Overview of contributions mapped to initial problem statements . 5

2.1 Overview of standardization activity inside Time Sensitive Net-
working (TSN) [160, 159] . 13

3.1 Conceptual comparison of QoS routing problem types. 28
3.2 Comprehensive routing algorithm matrix 47

4.1 Summary of Main Notations . 71

6.1 Comprehensive routing algorithm matrix (repetition) 87
6.2 Traffic characteristics of the complexety evaluation 105
6.3 Performance Comparison . 107
6.4 Number of system setting combinations 114

xi

1. Introduction

Industrial networks carry critical messages, e.g., control signals, for large auto-
mated production facilities. Many of these critical messages must be delivered
with tight deterministic real-time Quality of Service (QoS) [42] requirements.
A wide gamut of proprietary industrial communications technologies have
emerged to provide this strict QoS [44]. These proprietary technologies are
typically costly and lack a uniformly accepted standardized communication
framework.
To understand the need of this proprietary solution the networking QoS capa-
bilities have to be studied. State of the art QoS mechanisms try to adapt the
allocation of the network resources to the demands of services running over
this network. The goal is to provide each service with the required network
resources given the possibly limited overall available resources. Unfortunately,
these services have different QoS requirements, such as latency, jitter, error-rate,
throughput, and redundancy. It is difficult to design a system that addresses
all the requirements. Two standardized frameworks attempt to overcome these
problems [117] in the Internet. Integrated Services (IntServ) [138] was the first
framework to provide network QoS. With IntServ, the network is able to provide
end-to-end QoS connections per flow. However, the computational effort for
establishing these end-to-end connections is huge. As a result, the scalability of
this framework is poor. The next step in the standardization process was Dif-
ferentiated Services (DiffServ) [139]. This framework is designed for scalability
but has low granularity in flow control. Furthermore, the implementation of
DiffServ is highly proprietary, leading to difficulties in its management [140].
As a result both standardized QoS frameworks do not provide the features to
enable deterministic QoS for large automated production facilities.
Decotingie [15] provided a broad overview of Ethernet-based real-time com-
munication, including deterministic Ethernet standards. The opportunity of
cost reduction by using off-the-shelf commodity hardware for real-time com-
munication instead of specialized proprietary communication systems was one
trigger for the shift to Ethernet-based technology [44, 119]. However, com-
modity hardware does not fulfill all requirements of real-time communications,
which has led to the development of proprietary Ethernet-based solutions [43].
The proprietary industrial real-time communication solutions that fulfill hard
real-time requirements need changes of the network protocol stack or topology

1

1. Introduction

restrictions or both, leading to expensive hardware and software.
This thesis revisits the initial ideas of industrial Ethernet of using commodity
hardware to realize industrial real-time communications. Therefore, model-
ing techniques are introduced which enable the provisioning of deterministic
real-time communication by using commodity packet switched hardware. In
addition, optimization strategies are designed and evaluated to maximize the
number of served connections.

1.1. Problem Statement

There are two big challenges in real-time communication. The first issue is that
of simultaneousness, meaning that all devices have to be time-synchronized
to fulfill their task. There are several time synchronization protocols specified
by the IEEE which could be used for this purpose (NTP,PTP). Therefore, time
synchronization is out of scope of this thesis. The second challenge is timeliness;
all information that is important for the system has to be transmitted before
a particular deadline. A violation of this deadline could cause damage to the
factory site. The usual communication partners in industrial scenarios are the
Programmable Logic Controllers (PLCs) which run the automation software
and the remote-I/O which is connected it via industrial Ethernet. The remote-
I/O provides interface to the sensors and actuators connected to it. Each PLC
remote-I/O connection requires a specific QoS. To design a proper industrial
real-time communication which enhances the state of the art, the following
seven problems have to be solved:

Problem 1 (Deterministic end-to-end delay guarantees): The main challenge of
industrial real-time systems is to provide guarantees on the end-to-end delay. This
guarantees are needed because industrial real-time connections usually carry control
information of a real physical process. If there are violations of the delay requirements
the proper operation of the entire industrial facility is in danger.

Problem 2 (Online flow management): Since not all industrial scenarios allow a
beforehand communication planning the industrial real-time system has to deal with
online requests. Those requests are defined as a dynamic adding and removal of real-time
flows.

Problem 3 (Sufficient flow capacity): The amount of supported flows has to be
sufficient for nowadays industrial scenarios. An amount of 100 to 1000 real-time
connections per PLC will provide a sustainable performance that also holds for the
future.

2

1.2. Contributions

Problem 4 (No topology limits): Since the communication technology should not
restrict the installation, the industrial real-time system should be able to deal with all
kind of topologies.

Problem 5 (Commodity Hardware): The current Ethernet based real-time commu-
nication systems have to extend the standard Ethernet to meet real-time requirements.
This leads to expensive special purpose solutions. To decrease the cost it is necessary to
use commodity hardware only.

Problem 6 (Cross traffic): The communication system should support non real-time
traffic in parallel. This enables a shared infrastructure which reduces the costs.

Problem 7 (Large topologies): Since future industrial real-time systems could cover
whole factory sites, the system should handle more than 100 network nodes. But not
only switches and routers are networking nodes in a industrial scenario. PLCs and
remote-I/Os could also contain an internal switch, which makes them also part of the
network.

Problem 1 is well known in the state of the art. There are several approaches
which provide deterministic end-to-end delay bounds. However, providing
these bounds only is not enough to meet a broad area of industrial use cases.
Therefore, we introduce problems 2-7. These additional problems ensure that
our solution to Problem 1 can be applied to more general scenarios.

1.2. Contributions

In this thesis we present a solution for all problems raised in section 1.1. We
have designed, implemented and evaluated a centralized QoS framework which
meets the requirements of our problems. The main contributions of this work
are:

Function Split: the concept of a function split is introduced to break down the
computational complexity. Therefore, the network resource management
and the routing process itself are split into two separate problems. This split
enables a fast online routing process. To increase the overall performance,
a background optimization of the resource allocation is proposed.

Deterministic Services (DetServ) network models: a set of network calculus
based network resource models are defined in this thesis. These models
provide different accuracy levels of their worst case bounds, increasing the
maximum number of connections at the cost of a higher model complexity.

3

1. Introduction

Analysis of Constrained Shortest Path (CSP) routing algorithms: since the
state of the art of CSP algorithms provide already a broad variety of prob-
lem solutions, a performance evaluation of 26 algorithms is presented
in this thesis. This analysis is done for industrial real-time scenarios, in
particular.

Simple forwarding plane requirements: the only requirements for achieving
deterministic real-time communication is that every switch has a priority
scheduler for every outgoing link and provides an interface which enables
to install queue based forwarding rules. These two assumptions match to
a broad range of commodity networking hardware.

Proof of concept implementation: The four main building blocks (Resource
Model, Routing, Cost Function and Resource allocation) were implemented
to validate the capabilities of a function split based real-time communica-
tion system.

System Evaluation: Since all building blocks have cross dependencies with an
impact on their performance, a combined evaluation of all implementation
parameter is needed. Therefore, a Monte-Carlo method based simulation
was used to identify the building blocks and parameter, which have a
significant performance impact.

Practical Test: during the VirtuWind [127] project, the work presented in this
thesis was used to provide the intra domain real-time communication. As
part of this project, there was a field trial at a wind park performed by a
colleague.

Patent submissions: the results of this work has led to three patent submis-
sions [7, 8].

Table 1.1 links the contributions of this section to the problems defined in sec-
tion 1.1. We provide more details about this linking in the following.
The Function Split tackles problem 1,2 and 5. Since providing deterministic
end-to-end real time connections on commodity hardware leads to a problem
that consists of multiple NP-hard problems, the function split was introduced
to reduce the computational complexity. Indeed, the Function Split breaks the
overall problem down to a single CSP search which is still NP-hard but well
researched in state of the art.
The DetServ models are a result of the Function Split. They model the network
resources in a way which enables the provisioning of deterministic end-to-end
real time connections by using CSP algorithms for the path computation. By
providing this feature, the DetServ models contribute to problem 1,2 and 5. In

4

1.3. Thesis Outline

Pro
blem

1

Pro
blem

2

Pro
blem

3

Pro
blem

4

Pro
blem

5

Pro
blem

6

Pro
blem

7

Function Split X X X
DetServ network models X X X X X

Analysis of CSP routing algorithms X
Simple forwarding plane requirements X

Proof of concept implementation X X X X X X X
System Evaluation X X X X X X X

Practical Test X X X X X X X
Patent submissions X X

Table 1.1.: Overview of contributions mapped to initial problem statements

addition the models are not limited to any topology which is demanded from
problem 4. And furthermore they are tolerant to cross traffic, which is required
by problem 6.
Since CSP algorithms provide the paths used by the QoS framework, they are
the main influence on the runtime. The performance comparison of state of
the art algorithms will show which of those are suitable for our online scenario
(problem 2).
Since the DetServ models are designed to work on commodity hardware, the
requirements on the forwarding plain are quite low. There is plenty of hardware
available fulfilling this necessary requirements, so problem 5 is covered.
The complete proof of concept implementation of the QoS framework allows a
full evaluation. In addition, a practical test as part of the VirtuWind project was
performed by a colleague. This shows that all seven problems are covered by
the QoS framework.
The research activity to solve problem 1 and 2 led to three patent submission.

1.3. Thesis Outline

This thesis consists of six chapters, in addition to this introductory section. We
will outline the remaining chapters in this section.

Chapters 2 "Industrial QoS Framework": Within this chapter an overview of
existing Ethernet based QoS measures, with respect to the industrial use
case is provided. Since no existing industrial Ethernet solution could pro-
vide deterministic end-to-end real-time QoS without any extension to the
Ethernet standard, the structure of our novel industrial QoS framework is

5

1. Introduction

blueprinted. The Function Split presented and its underlying subproblems
are introduced.

Chapters 3 "State of the Art Analysis": We focus our state of the art section
on two main topics. The first main topic covers the research field of cen-
tralized QoS frameworks. Therefore, we classify and outline the most
relevant work. The second research field is the existing work of CSP rout-
ing. Therefore, we provide an extensive survey of CSP algorithms suitable
for a centralized QoS framework.

Chapters 4 "Network Resource Modeling: DetServ": The network resource
models are designed to provide deterministic end-to-end delay guarantees
and to eliminate any queue based packet loss. Furthermore, it enables a
CSP algorithm to find paths which will provide this QoS.

Chapters 5 "Optimization Problems": The Function Split subdivides the over-
all path embedding problem into three subproblems. First, a state of the art
CSP algorithm (Section 5.1: Routing Problem) solves the overall problem
partly. The solution of the CSP is a route through a network which is
optimal in terms of its edge based cost. A cost function has to be designed
to maximize the amount of real-time flows in the network (Section 5.2:
Cost Function design Problem). The network resource modeling needs a
preallocation of resources to achieve a deterministic runtime behavior. This
preallocation has to be adapted to the current network state to maximize
the performance (Section 5.3: Resource Allocation Problem).

Chapters 6 "Evaluation": This chapter covers three evaluation targets. The
first evaluation (Section 6.1: CSP Algorithm Evaluation) provides a per-
formance comparison of 26 state of the art CSP algorithms. This evaluation
is the most extensive comparison of state of the art CSP algorithms. The
second evaluation (Section 6.2: Function Split Evaluation) focuses on the
performance implications of the function split. Therefore, the Function
Split based online solution is compared with a Mixed Integer Program
(MIP) based solution. The last evaluation (Section 6.3: Industrial QoS
Framework Evaluation) targets an overall analysis of the different imple-
mentation options of the industrial QoS framework.

Chapters 7 "Conclusion and Outlook": Finally, we provide a conclusion and
a future work outlook.

6

2. Industrial QoS Framework

Industrial Quality of Service (QoS) networking with a centralized controller
poses the general problems of path computation (routing) and resource man-
agement. The joint solution of the combined routing and resource management
problem is NP-hard. This can be derived from the observation that the path
computation problem corresponds to the well-known Constrained Shortest Path
(CSP) routing problem [93], which is NP-complete. Thus, the combined problem,
which adds the resource management problem to the CSP problem, is also NP-
hard. The combined routing and resource allocation problem can be formulated
(with simplifications of some quadratic equations [1]) as a Mixed Integer Pro-
gram (MIP). The MIP solves both the routing and resource allocation problems
jointly but incurs prohibitive computation times already for small networks (see
comparisons in Section 6.2). The monolithic MIP solution approach cannot be
employed for run-time decisions in realistic-sized industrial networks.
In order to reduce the computational effort for solving the general routing and
resource management problem so as to operate centralized industrial QoS net-
works at run-time, we split the problem into two functions: an online function
for CSP routing [137] and an offline function for resource allocation. We op-
erate the online routing (as explained in Section 2.5) so that no QoS relevant
information has to be measured at the forwarding plane.
In Section 2.1 the context of our QoS framework is described. Based on the
analysis of the context the basic concept of the industrial QoS framework is
presented in Section 2.2. A generic problem formulation (Section 2.3), which
covers the objectives of this thesis in a formal way, is presented. Since this basic
problem is too complex the Function Split is introduced in section 2.4. In Section
2.5 implementation insights are provided. This chapter is based on our work
presented in [1, 2, 3].

2.1. Context: Industrial QoS Framework

This section covers four topics relevant for the industrial QoS framework. First
an overview of Ethernet/IP-based QoS measures is provided. In addition, the
relevance of these measures is discussed in the context of industrial real-time
communication. The second topic is Industrial Ethernet itself. Mainly the
shortcomings of the Industrial Ethernet solutions are discussed. Time Sensitive

7

2. Industrial QoS Framework

Networking (TSN) (third topic) is the latest standardization activity tackling
these shortcomings. Finlay, Software Defined Networking (SDN) is introduced.
Additionally the usage of SDN for QoS applications is discussed.

2.1.1. Ethernet/IP-based QoS

Ethernet/IP-based QoS mechanisms try to adapt the allocation of the network
resources to the demands of services running over a network. The goal is to
provide each service with the required network resources given the possibly
limited overall available resources. Unfortunately, these services have different
QoS requirements, such as latency, jitter, error-rate, throughput, and redun-
dancy. It is difficult to design a system that addresses all requirements. Two
standardized frameworks (Integrated Services (IntServ) - Section 2.1.1.1, Differ-
entiated Services (DiffServ) - Section 2.1.1.2) attempt to overcome these problems
[117] in the Internet. Alongside these frameworks, standardization methods
were developed to support QoS at the forwarding plane. There are three main
methods which are common sense. First, there is packet based scheduling (Sec-
tion 2.1.1.3), second there is Active Queue Management (AQM) (Section 2.1.1.4)
and third there is traffic shaping (Section 2.1.1.5). Alongside with each section
the applicability of each IP-based QoS method will be discussed.

2.1.1.1. Integrated Services (IntServ)

IntServ [138] was the first framework to provide network QoS. With IntServ, the
network is able to provide end-to-end QoS connections per flow. Three working
modes can be reserved via Resource reSerVation Protocol (RSVP). The first mode
is a simple best effort mode. The second mode is a bandwidth reservation mode
where all switches along the path provide if possible the needed bandwidth for a
flow exclusively. The last mode provides a delay guarantee to the flow. Therefore,
the delay requirement and the token bucket characteristics (avg. data rate r;
burstiness b) have to be transmitted via RSVP. Parekh and Gallager[151, 150]
provided a method to calculate worst case delay bounds under the assumption
that all IntServ nodes can provide a per flow Generalized Processor Sharing
(GPS). However, the computational effort for establishing these end-to-end
connections is huge. As a result, the scalability of this framework is poor [140].
In general, IntServ provides the features needed to instantiate industrial real
time communication within a network. Therefore, the following problems
(Problem 1: Deterministic end-to-end delay guarantees, Problem 2: Online flow
management,Problem 4: No topology limits and Problem 6: Cross traffic) are
solved properly. However, there is a main problem which is not resolved. Since

8

2.1. Context: Industrial QoS Framework

IntServ never reached a high market penetration [140] there is no cheap com-
modity hardware available. So even if IntServ is fully standardized, Problem 5:
Commodity Hardware stays unresolved.

2.1.1.2. Differentiated Services (DiffServ)

The next step in the standardization process was DiffServ [139]. This framework
is designed for scalability but has low granularity in flow control. To achieve
high scalability, DiffServ provides QoS on a flow class basis. Particular flows
will be mapped to a flow class when they enter the network. While traversing
the network, all QoS measures (i.e. queuing, traffic shaping) will be applied to
the flow class aggregate. This reduces the complexity of a DiffServ network, in
contrast to an IntServ network. However, the implementation and configuration
of DiffServ forwarding devices is highly proprietary, leading to difficulties in its
management [140].
Since DiffServ handles only flow aggregates the Problem 7: Large topologies is
handled properly. There is plenty of commodity DiffServ hardware available. So
DiffServ will solve Problem 5: Commodity Hardware. However, solving Prob-
lem 1: Deterministic end-to-end delay guarantees will require a fine granular
per flow management which is hard to achieve.

2.1.1.3. Queue Scheduling

Alongside with development of DiffServ, network hardware vendors developed
queue scheduling disciplines to support differentiated service classes in large
IP networks. The main task of queue scheduling algorithms in packet switched
networks is to decide which packet has to be sent next on the output port.
There are many different scheduling disciplines which are a trade-off between
complexity, control, and fairness [152]. Unfortunately there is no industrial
standard. However, there are some common base disciplines, which are used
by the vendors to create more complex scheduling disciplines [152]. In the
following the following base disciplines are introduced:

First-in, First-out (FIFO) Scheduling is the most basic scheduler implemen-
tation. The packets will be transmitted in the order they arrive. The
complexity of this scheduling scheme is very low. Because pure FIFO
Scheduling does not differentiate flows or service classes there is no con-
trol. FIFO Scheduling cannot provide fairness between busty and non
busty traffic since both traffic classes will experience packet loss because of
the burstiness [152].

9

2. Industrial QoS Framework

Priority Queuing (PQ) is the basic implementation of a service class based
scheduler. The flows which should be transmitted are classified. Based on
this classification the packets of these flows will be put into FIFO queues of
different priority. The packet on the head of a queue will be only sent next
if all higher priority queues are empty. The complexity of this scheduling
scheme is also very low. PQ provides control over the packet handling
for different service classes. While high priority flows are not effected by
low priority flows, low priority flows could suffer (high delay, jitter, packet
loss) from the misbehavior of high priority flows. This could influence the
service fairness negatively [152].

Weighted Round Robin (WRR) Scheduling provides the same classification
mechanisms as PQ. The scheduler traverses the queues always in the same
order. Every time a queue is visited, a predefined amount of packets is sent.
If no packets are left the scheduler will continue at the next queue. WRR
Scheduling provides only a little higher complexity than PQ. Therefore,
it can also be implemented in high speed networks. It provides control
(as PQ) over the packet handling for different service classes. WRR as-
sures that every service class receives a minimum amount of bandwidth,
which enables a better fairness than PQ. Please note that the bandwidth
distribution is packet-size dependent [152].

Fair Queuing (FQ) is a Round Robin (RR) scheduler on a per flow basis. Each
flow is directed to its own queue which is scheduled by a RR scheduler. This
approach provides fairness trough an equal distribution of the available
bandwidth to each flow. On th other hand this implementation is packet
size dependent. Flows with smaller packets will receive a smaller portion
of the bandwidth. The implementation of this discipline is rather complex
and therefore done in software. It provides control by definition since
every flow will be handled separately [152].

Weighted Fair Queuing (WFQ) is an enhancement of FQ. The main change
is the replacement of the RR scheduler with a GPS system. By doing
this it becomes possible to allocate a minimum data rate per flow. This
also resolves the packet size dependency of FQ. WFQ treats all flows fair
depending on their data rate configuration. The implementation of WFQ
is more complex than FQ. The control behavior is the same. Please note
that there is the Class-based WFQ implementation which does not handle
every flow within one queue. Instead flows are based on their classification
direct into a small amount of queues. Fore these queues a minimum rate
is configured. So the complexity is decreased at the cost of fairness, since
now fairness is only valid for service classes [152].

10

2.1. Context: Industrial QoS Framework

Since PQ, WRR and class based WFQ are implementable with reasonable ef-
fort, due to their low complexity, they are available in commodity hardware.
The usage of these strategies would solve Problem 5: Commodity Hardware.
However, since flows are handled as aggregates there is no straightforward way
to address Problem 1: Deterministic end-to-end delay guarantees with these
simple schedulers.

2.1.1.4. Active Queue Management (AQM)

AQM was introduced to improve the behavior of the network in terms of buffer
overflows. In order to wait until the buffer is full and the packets which arrive in
this state get dropped, more intelligent schemes are applied [153]. There are two
possible actions, an AQM algorithm can perform. Either selected packets will
be dropped earlier to force Transmission Control Protocol (TCP) to throttle the
transmission speed, which should resolve the congestion. Or the corresponding
upstream nodes are notified to throttle their transmission speed. Achieving a
deterministic communication service (Problem 1) is, due to the dynamic nature
of both actions, hard to reach. Therefore, AQM is out of the scope of this thesis.

2.1.1.5. Traffic Shaping

Beside queue scheduling and AQM, traffic shaping is the third well known
technique used for QoS provisioning. It is used to force a flow or an aggregate
of flows into a specific traffic pattern. There are two traffic pattern which are
widely used:

Leaky Bucket: A leaky bucket shaper could be seen as a queue with a speci-
fied service rate R. The maximum sending rate is limited to R for flows
traversing this shaper. The flow(s) will experience some delay waiting
for transmission, but therefore the burstiness is upper bounded by R after
leaving the leaky bucket.

Token Bucket: A token bucket is a more advanced shaping mechanism. There
is one queue and one bucket. One queue stores the packets of the incoming
flows. The bucket stores tokens which represent a number of bits which are
allowed to be transmitted. Only if the amount of bits in the bucket is bigger
than the packet size the packet will be send. Tokens will be generated with
a data rate R. The maximum amount of tokens is limited to a burstiness
B. The flow(s) will experience some delay waiting for transmission, but
therefore the burstiness is upper bounded by R on the long run. In addition
there is a burst of B bytes allowed. This allows the modeling of more
dynamic traffic which is still upper bounded.

11

2. Industrial QoS Framework

The usage of a token or leaky bucket shaper would not contradict Problem 5:
Commodity Hardware because they are common in todays networking hard-
ware. They are a corner stone for solving Problem 1: Deterministic end-to-end
delay guarantees with commodity hardware. Because only if the arriving traffic
is upper bounded it is possible to calculate any worst case bounds [151, 150].

2.1.2. Industrial Ethernet

Initially, proprietary solutions (like Profibus, Interbus or CAN) have been specif-
ically developed for real-time industrial communications [121, 130]. These
solutions often come with a complete proprietary communication stack, which
requires specialized and expensive hardware.
Later, Ethernet data transfer rates increased and Ethernet became ubiquitous
in local area networks (LANs) and the Internet. Therefore, it attracted a lot of
attention for industrial deployments. However, because of its non-deterministic
medium access control (MAC) scheme, Ethernet was initially not considered
as a suitable solution. The usage of full duplex point-to-point links along with
Ethernet switches instead of shared buses and hubs allowed to avoid collisions
and hence the negative impact of the Ethernet MAC protocol [15]. Nevertheless,
this introduces buffering and possibly overflows, which were still considered to
be a source of non-determinism [15]. Despite this, using Ethernet in industrial
environments has major benefits, including simple and cheap deployment, easy
connectivity towards office networks, the Internet or more generally any IP
traffic, and usage of off-the-shelf communication hardware. Hence, many indus-
trial control system manufacturers decided to develop proprietary extensions
of Ethernet to achieve determinism [112, 121]. A broad overview of Ethernet-
based real-time technologies, including deterministic Ethernet standards, was
provided by Decotignie [15]. Unfortunately, these solutions require changes
within the network protocol stack or impose topology restrictions or both, which
leads to more expensive forwarding devices than for standard Ethernet.
So all Industrial Ethernet solutions available which solve Problem 1 (Determin-
istic end-to-end delay guarantees) will fail in solving Problem 5: Commodity
Hardware. In this thesis we will show a methodology which enables solving
both problems together. By doing this it is possible to enable the cheap commod-
ity hardware to carry industrial real-time communication which was the initial
goal of Industrial Ethernet.

2.1.3. Time Sensitive Networking (TSN)

The IEEE 802.1 working group is currently developing TSN as a set of standards
which define mechanisms for time-sensitive transmissions over Ethernet. TSN

12

2.1. Context: Industrial QoS Framework

Standard Name Release
802.1Qbu Frame Preemption Published
802.1Qbv Enhancements for Scheduled Traffic Published
802.1Qca Path Control and Reservation Published
802.1AS-Rev Timing and Synchronization for Time-Sensitive

Applications
Draft

802.1CB Frame Replication and Elimination for Reliability Draft
802.1Qcc Stream Reservation Protocol (SRP) Enhancements

and Performance Improvements
Draft

802.1Qch Cyclic Queuing and Forwarding Draft
802.1Qci Per-Stream Filtering and Policing Draft
802.1Qcj Automatic Attachment to Provider Backbone

Bridging (PBB) services
Draft

802.1CM Time-Sensitive Networking for Fronthaul Draft
802.1Qcp YANG Data Model Draft
802.1Qcr Asynchronous Traffic Shaping Draft

Table 2.1.: Overview of standardization activity inside TSN [160, 159]

is the successor/extension of the Audio Video Bridging (AVB) standard. TSN
consists of twelve (planned) standards (see Table 2.1). However, currently there
only three of them are published. The published standards are IEEE 802.1Qbu,
IEEE 802.1Qbv and IEEE 802.1Qca. IEEE 802.1Qbu and IEEE 802.1Qbv are
mainly targeting enhancements of the forwarding plane, while IEEE 802.1Qca
tackles the control plane. We provide a short overview and a discussion of the
applicability in this work for the three published standards:

802.1Qbu standardizes the way frame preemption could be implemented.
Frame preemption would enable to stop the transmission of one Ethernet
frame to the favor of an other. Since this feature increases the Generalized
Processor Sharing (GPS) character of an Ethernet link, it becomes highly rel-
evant feature to achieve good QoS performance. GPS based QoS measures
[151, 150] could benefit from less pessimistic assumptions and provide a
better resource usage.

802.1Qbv standardizes a new scheduling mechanism. It is manly based on a
accurate time synchronization between all the network nodes done with
802.1AS-Rev. The synchronized time base is used to control gates which
could prevent queues to forward their packets. With this function it is
possible to build up TDMA like scheduling schemes, which could provide
a better resource usage in QoS scenarios.

13

2. Industrial QoS Framework

Network
Element

SDN Controller

Network
Element

Network
Element

Network
Element

Network
Element

SDN control plane

SDN forwarding plane

Figure 2.1.: The concept of network function split in Software Defined Networking

802.1Qca standardizes a new control protocol which allows to specify an ex-
plicit path trough the network. This path is provided by a Path Computa-
tion Element (PCE). By doing this, the standard implements a centralized
management interface for TSN.

However, since the TSN standards are not finalized now we decide not to rely
on beneficial technology like IEEE 802.1Qbv and IEEE 802.1Qbu. Since there
is no hardware available the use of TSN would even prevent the solution of
Problem 5: Commodity Hardware.

2.1.4. Software Defined Networking (SDN)

SDN is a new paradigm to increase the flexibility of networks. It introduces a
standardized interface to access the forwarding plane of network nodes remotely.
The OpenFlow protocol [125] is one candidate standard technology realizing
SDN. The principle idea of SDN is to split a router or network switch into a
forwarding plane and a control plane (Figure 2.1). The forwarding plane is
located inside the network and is able to provide basic forwarding functionality
such as classification, marking, metering and scheduling. The control plane is
located on one or more servers and manages the forwarding plane remotely.
This split changes the way in which network functionality can be designed.
In legacy networks, all algorithms have a decentralized character. With SDN,
control functions have a centralized view and can be implemented in software
in a centralized manner. In summary, the key features of SDN are flexibility, a
centralized view and programmability [125, 141, 22].
SDN could be used to realize various QoS scenarios. Policy Cop [19], for exam-
ple, implements IntServ and DiffServ like functionality using the SDN paradigm.
This functionality is managed by a policy-based management system. VSDN
[128] and other QoS routing frameworks [142] follow a centralized routing ap-
proach to improve video experience in a network. The disadvantage of the
current state of the art is that these new SDN applications implement only those
QoS management functions that are already available. These projects strongly

14

2.2. Putting It All Together

Figure 2.2.: Overview of the industrial QoS framework concept

correspond to the IntServ and DiffServ approach, with the advantage of having a
standardized interface to the network hardware. However, all these SDN based
QoS schemes do not provide a proper solution for Problem 1: Deterministic
end-to-end delay guarantees.
We will show in this thesis that it is possible to implement a deterministic
real-time communication system with SDN. This is also a contribution to SDN
itself, because it demonstrates the flexibility by addressing a use-case that is not
feasible with standard network hardware.

2.2. Putting It All Together

Software Defined Networking (SDN) provides fine-granular access to the for-
warding (data) plane through an SDN controller (see Figure 2.2). The SDN
controller allows to specify for each flow on each hop which queue should be
used. This fine-granular forwarding plane control can serve as the basis for the
operation of real-time QoS communication mechanisms, including admission
control, scheduling, and resource allocation mechanisms. Specifically, for achiev-
ing industrial real-time communication based on SDN it is first necessary to
define a model for all forwarding elements in the network. This network model
creates an abstraction layer between SDN hardware and SDN applications. This
abstraction should allow for the development of QoS-aware SDN applications
independently from the network hardware.
We employ deterministic network calculus [118] to bound the maximum (worst-
case) delay per queue (see Figure 2.2). The deterministic network calculus
model for the worst-case delay allows for relatively easy admission control.
In particular, due to the allocation of worst-case delay budgets to the priority
queues , the models of the different priority queues at a given link (hop) are

15

2. Industrial QoS Framework

5 1 2

4

3 6
Queue link topology

Physical topology

5 1 2

4

3 6

Figure 2.3.: Illustration of the queue link topology concept: A queue link models the outgoing
queue for an actual physical link. For instance, the bi-directional physical link between nodes 2
and 3 has two distinct queues in each direction; correspondingly there are two queue links from
node 2 to node 3 and two queue links from node 3 to node 2.

independent. Thus, admission decisions of low-priority queues do not have to
be recalculated every time a flow is added to a high-priority queue.
We employ non-preemptive static priority scheduling, which transmits a packet
from a given priority class (queue) only if all higher priority queues are empty,
but does not interrupt an ongoing packet transmission. Static priority schedul-
ing is simple as it does not not require any parameter configuration beyond
the number of priority queues, yet supports a broad range of delay bounds.
We assume for this Thesis that the (computational) processing delay of each
forwarding element (hence simple forwarding comes with processing delay
around 10−6s [156]) is negligible.
Along its path, a packet suffers from different types of delays [39]: processing,
queuing, transmission and propagation delays. Since the link characteristics are
assumed to be known, the propagation delay for each link is known. Upper
bounds on the queuing and transmission delays can, for their part, be computed
using the network calculus results presented in Sec. 4.2. The sum of all these
components along the route a flow is following makes up the total deterministic
end-to-end worst-case delay bound for the flow.
Obviously, the (queuing) delay a packet will experience on its way to its destina-
tion does not only depend on the path the packet follows but also on how the
packet is scheduled at each output link.
From this, the route selection process for a flow must consider both the physical
links the flow will traverse and the queues at which the flow will be buffered at
each output link. As a consequence, we [2, 3] introduced a queue link network
topology. This is illustrated in Fig. 2.3. From the physical network topology,
each directed physical link (u, v) is replaced by |Eq

(u,v)
| queue links, where u and

v are the source and destination nodes of the link and |Eq
(u,v)
| is the number of

priority queues at the scheduler of the link. The outgoing links of end hosts are

16

2.3. Formal Problem Formulation

assumed to have only one priority queue and are hence left unchanged. Each
link in the queue link network topology hence represents a physical link and
a given queue at the ingress of this physical link, i.e., a different QoS level of
transmission over this physical link. Route selection on this queue link network
thus determines both the path that a flow takes through the physical network as
well as the queue in which the flow will be buffered at each physical link.
Performing route selection on the queue link topology allows a flow to be
assigned different priorities at each node, thereby increasing flexibility compared
to other legacy [115] and SDN [18, 17, 113] approaches which usually assign
fixed priorities to flows along their complete path. However, the amount of
edges of the graph on which route selection is performed is highly increased,
thereby slowing down the routing procedure.
One benefit of using Ethernet for guaranteeing industrial-grade QoS is the
interoperability with other IP networks such as a company’s office network or
the Internet itself. The traffic exchanged with these networks might not have
such QoS requirements as the industrial traffic. The lowest priority queue of
each link can be used for serving this so-called best-effort traffic. In this manner,
the real-time traffic, which is only flowing through the higher priority queues,
is not influenced by the best-effort traffic which is then only allowed to use
resources which are left unused by the real-time flows.
Since best-effort traffic is allocated to a single queue at each link, the correspond-
ing queue link topology is the same as the physical topology and the best-effort
traffic can hence be routed using traditional SDN controller modules for routing
(e.g., layer-two learning switch).

2.3. Formal Problem Formulation

The main goal of this thesis is to provide a deterministic real time communication
service which can handle communication requests online. A deterministic real
time communication service provides strict guarantees to the end-to-end delay.
A accepted flow will never exceed its delay bound. The terminology of "online"
describes that the set of requests is not known in advance and can change over
the runtime of the system. Such kind of a system is similar to the traditional
telecommunication systems.
The network is represented by G representing a graph consisting of a set of nodes
(N) and a set of edges (E). In addition there is F which represents a set of flows
(f) embedded in the Graph G. Please note that F varies over time due to the
online character of the problem. There should be no restrictions on the topology
layout. Nevertheless a suboptimal topology could have influence on the system
performance. A real time communication request consisting of an origin (of),

17

2. Industrial QoS Framework

a destination (df) and a deadline constraint (tf) of a flow (f). To increase the
performance we introduce a routing based on queues. For each flow a path Pf
has to be selected which is an element of the set of possible paths P(o,d).

Pf ∈ P(of ,df) ∀f ∈ F . (2.1)

While having an end to end delay of a path Pf (D(Pf)) smaller or equal the per
flow delay constraint tf .

D(Pf) ≤ tf ∀f ∈ F . (2.2)

In addition the end to end loss probability of a path Pf (L(Pf)) should be zero

L(Pf) = 0 ∀f ∈ F . (2.3)

We only count buffer tail drops as source for packet loss. Other sources of packet
loss are neglected in this work. The two end-to-end metrics loss and delay can
be calculated with Network Calculus. Please note that delay and loss depend on
the routing of the set of flows F . If a solution for this problem exists, all flows
will experience a deterministic end-to-end connection.
The optimal solution of this problem will lead to the highest possible utilization
of the topology by providing the needed QoS. Unfortunately, this problem is
NP-hard and has to be recomputed every time a new flow is added to F . As
a result of the complexity increase due to the high number of edges in the
graph on which route selection is performed, solving the problem using a MIP
formulation leads to intractable runtime. Already hundreds of seconds or more
are needed to solve the problem for small networks (see. Section 6).

2.4. Function Split

To solve this problem in reasonable time it is necessary to shrink the problem
size. The performance of the optimal solution (Section 2.3) suffers most from the
fact that for each new flow an optimization over the set of flows F is done. A
greedy solution that covers only the new flow will break down the complexity:

Pf ∈ P(of ,df)
D(Pf) ≤ tf

L(Pf) = 0

(2.4)

This simple change of Equations 2.1, 2.2 and 2.3 will lead to an algorithm which
takes a path out of the set of paths which fulfill the delay and loss constrains.

18

2.4. Function Split

However, to approximate optimal formulation nicely the path has to be selected
which enables a high amount of future path embeddings. To enable this selection
a the minimization of a cost function as a objective has to be introduced:

min
Pf∈P(o,d)

Cost(Pf)

D(Pf) ≤ tf

L(Pf) = 0.

(2.5)

This cost function mainly impacts the overall performance (maximum number
of flows) of the greedy algorithm.
Finding a least cost path, which fulfills an end-to-end delay constraint is a well
known problem in the state of the art. It is called DCLC problem or more general
CSP problem. CSP routing algorithm finds the path (Pf) out of the set of paths
which leads from origin to destination (P(o,d)) with the smallest end-to-end costs
(Cost(Pf))

min
Pf∈P(o,d)

Cost(Pf), (2.6)

while not violating the deadline (tf)

D(Pf) ≤ tf . (2.7)

This algorithm could serve each routing request successively.

Network
Resource
Modeling

Routing

Cost
Function

Resource
Allocation

Figure 2.4.: dependencies of Delay-Constrained Least-Cost (DCLC) Routing, Resource Allocation
and Cost Function

19

2. Industrial QoS Framework

The greedy routing approach needs a static delay for each edge. If the edge delay
would change because of the embedding of a new flow, the other flows might
violate their deadline. This will cause a new routing request which tries to find
a new valid path. Such a behavior will lead to a potential unstable system. The
network resource model has to cover this demand. The only way which allows
a static delay is to preassign resources to the edges and only allow new flows if
these resources are available. By doing this a delay calculation is possible.
Unfortunately, this preassignment is not optimal for each situation in the net-
work. The goal of the resource allocation is to adapt the preassignment of the
resources to maximize the amount of flows the system can carry.
In summary, a split of the problem defined in Section 2.3 has to be implemented.
In total, we divide the overall problem into four parts as shown in figure 2.4.
These parts are the routing, the cost function the resource allocation and the
network resource modeling. The routing algorithm depends on the cost func-
tion. The cost function depends on the resource allocation. And the resource
allocation needs the input form the routing algorithm. All three functions need
an underling network resource model.

2.5. Building Blocks for Implementing the
Function Split

As a result of this online approach, QoS routing is initiated by a query of the data
plane (new flow arrow in Fig. 2.5). This can be done by contacting the Northbound
Interface (NBI) of the SDN controller or by means of a PACKET_IN OpenFlow
message [126]. The query should at least contain the flow characteristics (e.g.,
in our case, source, destination(s), burst, rate and maximum packet size) and
QoS requirements (e.g., in our case, maximum delay). In case of queries coming
from PACKET_IN messages, these parameters can be inferred from the packet
header (port numbers, transport protocol, etc.). Based on this input and on the
current state of the network (get arrow in left diagram of Fig. 2.5) routing can
then be performed. When this is done, the corresponding OpenFlow rules are
pushed to the data plane (embedding arrow in left diagram of Fig. 2.5).
When a route is found by the routing algorithm, it updates (right update arrow
in Fig. 2.5) the state variables through the model in order to reflect the new
flow embedding. The guarantees provided to previous flows do not have to be
checked because the routing algorithm made sure that they will not be violated
by checking the availability of resources at each queue link it followed. The idea
is illustrated by the two independent loops in Fig. 2.5. The resource allocation
algorithm runs continuously in the background, trying to allocate resources to

20

2.5. Building Blocks for Implementing the Function Split

State RoutingRes. allo.

Model

Network

getget

em
bedding

update

rerouting

update

lo
gy

to
po

- ne
w

flo
w

Control plane

Data plane

Figure 2.5.: Solving the problem by splitting it into two independent subproblems: resource
allocation and routing. The resource allocation algorithm (left loop) continuously optimizes the
allocation of resources to each queue and the routing algorithm (right loop) finds a route with
enough resources for each incoming flow request. This process requires no interaction with the
data plane.

queues (left update arrow in Fig. 2.5) in a way that maximizes the number of
flows that can still be embedded, while ensuring that the guarantees of already
embedded flows can still be satisfied. The routing algorithm, for its part, runs
upon the receipt of a flow request (new flow arrow in Fig. 2.5) as well as upon an
update of the resources allocation by the resource allocation algorithm (rerouting
arrow in Fig. 2.5), since this might require some flows to be rerouted.
So fare we describe the controller design on a process level. From an information
flow perspective the interconnection of the four sub problems gets visible (see
Fig. 2.6):

• The cost function (Chapter 5.2) transforms the network state, characterized
for instance by data rates, buffer consumption, and already embedded
flows, into a cost metric for each edge. The cost metric should maximize
the number of flows that the network can serve.

• The resource allocation (Chapter 5.3) module adapts the allocation of re-
sources (e.g., data rates) to the different queues in order to maximize the
total number of flows that can be accepted in the network.

• The network resource model (Chapter 4) implements access control and worst-
case delay computation based on the resources allocated to the different
queues in the network. The network resource model tracks the consump-
tion of resources by the embedded (already accepted) flows. To achieve
a deterministic system behavior, the resource model is based on a mathe-
matical traffic model, thus avoiding measurements of the actual network
utilization. Since the scheduling delay experienced by a flow at a node de-
pends on the queue at which it is buffered, worst-case delays are computed

21

2. Industrial QoS Framework

per queue. More specifically, the maximum (worst-case) delay per queue is
bounded through deterministic network calculus modeling [118, 111]. The
resource allocation pre-allocates worst-case delay budgets to the priority
queues, which are scheduled according to the non-preemptive static pri-
ority policy. This ensures that the models of the different priority queues
at a given link (hop) are independent [3]. Thus, admission decisions of
low-priority queues do not have to be recalculated every time a flow is
added to a high-priority queue.

• The QoS routing (Chapter 5.1), e.g., DCLC routing, finds the least-cost path
satisfying the end-to-end delay requirement of a connection request. The
network resource model in [3] provides delays per queue, thus, routing
has to be performed on a so-called queue-link topology illustrated in Fig. 2.3,
where a given edge (link) of the physical topology is modeled by as many
queue links as it has distinct QoS queues. In such a way, routing chooses
both the links followed by a flow and the queues at which the flow will be
buffered.

The remainder ot this thesis is organized in the flowing way. In Chapter 3
an analysis of the state of the art is provided. Chapter 4 - 5.3 describe each

Network
Resource
Model

QoS
Routing

Cost
Function

Resource
Allocation

flow request

flow termination
deregister path

edge
cost

edge
delay

edge
access

register
path

network state

parameters
update

Figure 2.6.: Overview of the different function blocks of QoS networking framework [3]. The
network resource model provides, through detailed queue modeling, deterministic delay bounds
and implements access control that guarantees isolation of flows. The cost function indicates
which edges should preferentially be used to maximize the probability of future flows to be
accepted. The resource allocation adapts the allocation of resources to the different queues in order
to maximize the probability of future flows to be accepted. QoS routing is then responsible for
routing incoming requests on a path satisfying the end-to-end delay requirement of the request.

22

2.5. Building Blocks for Implementing the Function Split

heuristic building block. The cost function (Chapter 5.2), the network resource model
(Chapter 4) and the resource allocation (Chapter 5.3) provide as a contribution
the implementation of this building blocks. A Evaluation of the interplay of the
heuristic building blocks is described in Chapter 6.

23

2. Industrial QoS Framework

24

3. State of the Art Analysis

This chapter is structured as follows. Section 3.1 explores the existing work of
centralized Quality of Service (QoS) frameworks. This state of the art is relevant
for the work of this thesis, since providing QoS through a central entity is the
abstraction of the goal of this thesis. Therefore, an overview of this topic is
provided to point out the novelty of the industrial QoS framework.
The overview of existing work on QoS routing algorithms is provided in Sec-
tion 3.2. Since the industrial QoS framework enables use of state of the art QoS
routing algorithms a survey of those is needed. The goal is to provide a list of
algorithms suitable for centralized QoS frameworks. This list could be found at
the end of this chapter.

3.1. Centralized QoS Networking Frameworks

The emergence of SDN as a new networking paradigm providing a global view
of the network in a centralized control entity provides a new opportunity for
smart traffic engineering and QoS provisioning. Hence, a wide range of work
has been considering the usage of SDN for QoS networking. In this Section, we
present an overview of the state-of-the-art in QoS provisioning using SDN and
highlight the contributions of this thesis with respect to the existing literature.
We classify the existing approaches in six different categories for which we list a
few representative examples.

3.1.1. High-Level Architectural Proposals

Several proposals mainly focus on architectural issues such as interface design,
software role modeling, and requirements analysis [131, 16, 15, 128, 114]. These
approaches mention that a method for access control and resource reservation
is needed but do not tackle this problem. The models we propose in this thesis
could be used as part of such frameworks.

3.1.2. OpenFlow Extensions

Other approaches consider the enhancement of the OpenFlow protocol with
QoS-related features [123, 40, 128]. Because of the lack of standardization, this

25

3. State of the Art Analysis

Model-based

State Routing

Model

Network

get

em
bedding

update

lo
gy

to
po

- ne
w

flo
w

Measurement-based

State Routing

Network

get

em
bedding ne

w
flo

w

po
lli

ng

Control plane

Data plane

Figure 3.1.: Keeping a model of the network in the control plane allows to avoid the control loop
(thick arrows) to go through the data plane, thereby reducing the request processing time.

potentially leads to higher cost and/or effort. In contrast, we propose models
which can be used with any SDN protocol providing standard enqueuing and
forwarding programming primitives.

3.1.3. TDMA Solutions

Systems making use of time division multiple access (TDMA) on top of Ethernet
have also been proposed [133, 134]. These solutions can potentially lead to an
optimal utilization of resources. However, because of the need for synchro-
nization, changes in the protocol stack of endpoints might be needed, thereby
leading to expensive solutions in terms of cost and effort.

3.1.4. QoS Frameworks based on Data Rate Allocation

Another class of proposals, mainly tailored for Internet QoS, map QoS require-
ments to equivalent minimum data rates [116, 17, 113, 122]. Such systems
typically do not consider the limited capacity of buffers and hence packet loss
and queuing delay. These approaches provide the scalability and QoS level
needed for wide-area networks but are not sufficient for industrial scenarios.

3.1.5. Measurement-based Frameworks

A wide range of proposals build the network state by retrieving it from the data
plane (polling arrow in the right diagram of Fig. 3.1) [123, 132, 19, 18, 20, 124, 122].
This step adds a non-negligible delay to the flow request processing. Besides,
these approaches suffer from possible measurement errors. Thus, they can only
provide soft guarantees. While this is an efficient solution for multimedia traffic,
it does not fulfill the requirements of industrial communications.

26

3.2. Centralized Routing Algorithms

3.1.6. Model-based Frameworks

The present thesis falls into the category of model-based frameworks where a
model of the resources usage is kept in the control plane [116, 113, 120]. The
state of the network can then be retrieved from the model itself (see left diagram
of Fig. 3.1), avoiding the control loop to go through the data plane, thereby
reducing the request processing time. This is illustrated by the thick arrows,
representing the QoS control loops for both model-based and measurement-
based systems, in Fig. 3.1. The model only has to communicate with the data
plane at topology change events (topology arrow in left diagram of Fig. 3.1). While
stochastic modeling could be used for soft QoS requirements, a deterministic
model is needed for providing real-time guarantees. Duan [116] and Tomovic
et al. [113] proposed models based on data rate allocation which, as elaborated
in Sec. 3.1.4, is not suitable for industrial applications. King et al. [120] detail
a deterministic model but which requires a flow embedding procedure that
can lead to high request processing time. The Deterministic Services (DetServ)
models we propose in this thesis are deterministic models that can be used as
part of a model-based QoS framework for fast request processing in industrial
scenarios.

3.2. Centralized Routing Algorithms

Given the key importance of routing for communication networks, routing
algorithms have been extensively studied for a wide range of network settings
and applications. This thesis presents a comprehensive up-to-date survey of
unicast QoS routing algorithms within this section. The content of this section is
manly based on [4].

3.2.1. Basic Definitions for QoS Routing Algorithms

In this section we first briefly review the main terminology and definitions for
unicast QoS routing algorithms and then outline the goals that good QoS routing
algorithms should strive for.

3.2.1.1. Definitions and Terminology

Unicast QoS routing refers to the problem of routing a flow from a single source
to a single destination so as to fulfill the flow’s QoS requirements. Depending on
the QoS requirements, different problems can be defined. The most commonly
encountered problems are defined as follows and contrasted in Table 3.1.

27

3. State of the Art Analysis

Table 3.1.: Conceptual comparison of QoS routing problem types.

Number of Number of

Problem Type Optimized Constrained

(Acronym) Metrics Metrics

Shortest Path (SP) 1 0

Constrained Shortest Path (CSP) 1 1

Multi-Constrained Shortest Path (MCSP) 1 M

Multi-Constrained Path (MCP) 0 M

• Shortest Path (SP): The route has to minimize a unique end-to-end QoS
metric.

• Constrained Shortest Path (CSP): The route has to minimize an end-to-end
QoS metric while keeping another metric below a prescribed bound.

• Multi-Constrained Shortest Path (MCSP): Constrained Shortest Path (CSP)
problem with multiple end-to-end metrics that are constrained by individ-
ual bounds.

• Multi-Constrained Path (MCP): problem without optimization metric,
i.e., the route only has to keep end-to-end QoS metrics below prescribed
bounds.

These problems can be extended to k path versions that find k distinct paths.
We refer to these extended problems as k Shortest Path (kSP), k Constrained
Shortest Path (kCSP), k Multi-Constrained Shortest Path (kMCSP), and k Multi-
Constrained Path (kMCP), respectively. It is also possible to define multi-
objective problems that optimize more than one metric [37, 63, 35, 38, 36]. These
multi-objective problems are beyond the scope of this thesis.
We refer to the metrics that have to be optimized (or minimized) by the routing
algorithm as the costs. On the other hand, we refer to the metrics that have to
be kept below prescribed bounds as the constraints. The maximum end-to-end
values below which these constraints have to be kept are then referred to as
the constraint bounds. Note that the term metric can refer to either a cost or
a constraint. Any metric is always associated to all the individual edges of
the network. Depending on how an end-to-end QoS metric is computed from
the metric values for individual links, three different categories of end-to-end
QoS metrics can be defined: additive, multiplicative, and concave metrics. The

28

3.2. Centralized Routing Algorithms

end-to-end values of these three metric categories are, respectively, the sum,
the product, and the minimum (or the maximum) of the metric values for the
individual links. Delay, packet loss probability, and bandwidth are examples of
additive, multiplicative and concave metrics, respectively.
Consider routing to be performed on a network graph G = {V,E}, whereby
V is the set of vertices (network nodes) and E is the set of directed edges
(with |E| denoting the number of edges in the network). The vector of costs
of the edges is denoted by c, c ∈ R|E|+ . Let d, d ∈ RM

+ , denote a vector with
M elements that represent the bounds for the constrained metrics. Let D, D ∈
RM×|E|

+ , denote a matrix of the constraint values for the individual edges. Let
Psd, Psd ⊆ {0, 1}|E|, denote the set of paths from source node s to destination
node d (whereby a value of 1 for an edge means that the edge belongs to the
path). For additive metrics, the Shortest Path (SP), CSP, and Multi-Constrained
Shortest Path (MCSP) problems can be mathematically formulated as:

zopt = min
x∈Psd

cTx (3.1)

s.t. Dx ≤ d. (3.2)

The SP, CSP, and MCSP problems correspond to the cases M = 0, M = 1, and
M > 1, respectively.
An optimal algorithm is an algorithm that always finds the optimal path with
cost zopt. A heuristic is an algorithm that finds a possibly sub-optimal path, i.e., a
path with cost z′ ≥ zopt. The Cost Inefficiency (CI) of an algorithm, measured in
%, is defined as

CI =
z′ − zopt
zopt

× 100. (3.3)

An optimal algorithm therefore always has a CI of 0 %. An algorithm is said to
be complete if it always finds a feasible solution if one exists. Completeness does
not imply optimality.
QoS networking contexts (including the QoS networking framework [3], see
Section 2) typically require the QoS routing algorithm to find a least-cost path
satisfying an end-to-end delay constraint. This corresponds to a CSP problem
with two additive metrics. This subset of CSP problems is also commonly
referred to as Delay-Constrained Least-Cost (DCLC) routing problem. For
this reason, we will often refer to the optimized QoS metric as cost and to the
constrained metric as delay. The routing algorithm for QoS networking has to be
complete. Indeed, if a connection request can actually be accommodated in the
network, then the request should not be rejected.
In this thesis, we survey existing unicast CSP routing algorithms for additive
metrics. Moreover, since MCSPalgorithms can be used for solving CSP prob-
lems, we also present MCSPalgorithms. While Multi-Constrained Path (MCP)

29

3. State of the Art Analysis

algorithms can find feasible solutions for CSP, MCP algorithms do not optimize
the cost metric and we therefore do not consider MCP algorithms in this survey.

3.2.1.2. Goals of QoS Routing

We proceed to summarize the key goals of a good QoS routing algorithm for
centralized network control:

• The algorithm should be complete. Indeed, we do not want to reject a
connection request if it can actually be accepted.

• Generally, the Delay-Constrained Least-Cost (DCLC) problem is NP com-
plete [137]. Therefore, there is a fundamental trade-off between cost opti-
mality and low runtime. Thus, a QoS routing algorithm should achieve a
short runtime as well as a good cost optimality. Indeed, since routing is
triggered upon receipt of a connection request and cost minimization leads
to a network that can accept more flows, both short runtime and good cost
optimality are important for good and fast request handling.

• The algorithm should be able to accommodate real values for the metrics
and should not be based on value space reductions. Algorithms that only
accommodate integer values may incur quantization errors and are outside
the scope of this study.

• The hop count should not be considered for optimization. Indeed, we are
primarily interested in low resource usage, which is completely represented
by the cost function.

• The algorithm has exact up-to-date knowledge of the state of the network,
which can be readily acquired with the centralized network control.

• There is no relationship between cost and delay.

• Cost and delay values may change during the runtime of the real system.
Thus, results of computations for prior QoS routing runs, e.g., SP trees,
cannot be stored and re-used for future QoS routing runs.

• The constraint must be guaranteed by the algorithm. We strive for strict
requirements. Soft constraints that may be violated with a small probability
are an interesting direction for future work.

• The connections are unicast connections. Multicast is outside the scope of
this survey.

30

3.2. Centralized Routing Algorithms

3.2.2. Overview of Shortest Path (SP) Algorithms

DCLC algorithms often make use of underlying SP and kSP algorithm mecha-
nisms; therefore, we briefly review SP and kSP algorithms in this section and in
Section 3.2.3. Shortest path algorithms have been studied for a long time and
the best algorithms are now well-known [77]. The Dijkstra algorithm [72] is
a centralized algorithm that computes the SP from a single source node to all
other nodes (i.e., an SP tree) in a graph with non-negative edge costs.
The Dijkstra algorithm is a priority queue based algorithm. That is, it maintains
a queue containing a set of partial paths, i.e., paths starting from the source
node and reaching an intermediate destination node which is not the ultimate
destination. At each iteration, it takes the least-cost path among the paths in
the queue and generates n new paths by extending this partial path with the n
outgoing edges of the node at which the given path terminates. Among those
paths, only paths with lower cost than the current least-cost path in the queue
towards the same destination are added back to the queue. That is, the Dijkstra
algorithm relaxes based on the cost values. In other words, the Dijkstra algorithm
performs a breadth-first search and maintains the current best path found to
each destination node. Nodes with least-cost distance from the source node are
expanded first, thereby ensuring that any node has to be visited only once.
The Bellman-Ford (BF) algorithm [74, 41, 75, 76, 73] is a distributed algorithm
that computes an SP tree in a graph, including graphs with negative edge costs.
The algorithm maintains the current best path found to each node and runs
|V | − 1 (where |V | is the number of nodes in the network) iterations updating,
for each node, the current best path to all neighbor nodes based on the current
best path to the presently considered node. Since the path to any node is at most
|V | − 1 hops long, all SPs will eventually be found. Note that, in the case of a
centralized implementation, if an iteration yields no update, the algorithm can
be immediately terminated, as subsequent iterations will not lead to any change.
Also, as proposed by Yen [79] for centralized implementations, if the cost of the
current best path to a node has not changed since the last iteration, then the
outgoing edges of this node can be skipped since they will not lead to any new
changes.
Both the Dijkstra and the BF algorithms can be used for finding the SP to a
single destination. In such a case, the Dijkstra algorithm can be stopped as
soon as the destination node is reached. In contrast, the BF algorithm cannot
be stopped earlier than in the SP tree case (when SPs to all network nodes are
found). Both algorithms can be adapted to compute the SP from any node to
a single destination. These versions are called the Reverse Dijkstra and Reverse
Bellman-Ford algorithms, respectively, and are simply obtained by considering
incoming edges rather than outgoing edges when going from one node to the

31

3. State of the Art Analysis

next node(s).
Hart et al. [78] proposed an improvement to the Dijkstra algorithm, the A*
algorithm, for finding a single-destination SP by introducing a so-called guess
function. At each node, this guess function provides a guess for the cost of the
SP from this node to the destination node. Paths out of the priority queue with
least projected cost (i.e., sum of the current cost to the last node of the path and
of the guess value at this node) are expanded first. To ensure the correctness
and optimality of the A* algorithm, the guess values have to be lower than the
real values. The closer the guess values are to the real values, the faster the A*
algorithm will reach the destination. At one extreme, the A* algorithm with
an exact guess function will directly traverse the SP to the destination. At the
other extreme, the A* algorithm with a guess function of zero corresponds to
the original Dijkstra algorithm. The overhead introduced by computing the
guess function and the benefit of this guess function constitute the trade-off
introduced by the A* algorithm. A straightforward guess function corresponds
to the least-hop count multiplied by the cost of the least-cost edge. Such a guess
function has to be recomputed upon any topology change. In our evaluations,
we do not consider topology changes. Thus, the guess function can be computed
offline, ensuring that the A* algorithm is, in any case, at least as fast as the
Dijkstra algorithm.
We note that some more complex improvements for centralized implementations
of the Bellman-Ford algorithm exist, e.g., [79, 80]. However, the centralized Dijk-
stra algorithm performs generally better for finding an SP tree than distributed
algorithms [108]. Similarly, the A* algorithm performs generally better than
distributed algorithms for finding an SP.
Therefore, we only consider the Dijkstra algorithm for finding an SP tree and
the A* algorithm for finding an SP as underlying algorithms for the QoS routing
algorithms in Table 3.2. A detailed quantitative comparison that includes the
BF algorithm, its other improvements, SP heuristics [81], and other A* guess
functions [82] are left for future research.

3.2.3. Overview of k Shortest Path (kSP) Algorithms

A very well known kSP algorithm, which is also one of the initial proposals for
the kSP problem, is Yen’s algorithm [83]. Yen’s algorithm consists of two main
parts. First, the SP is found using a traditional SP algorithm. Then, subsequent
SPs are found based on the knowledge of this initial path. The (k + 1)th SP is
found by starting at intermediate nodes of previously found paths, blocking
the next edge forces the algorithm to find another path, and running an SP
algorithm from there. The Least-Cost (LC) path out of all these new paths is the
(k + 1)th SP.

32

3.2. Centralized Routing Algorithms

Yen’s algorithm does not need to know the value of k when starting. We refer
to this type of kSP algorithms as Iterative k Shortest Path (IkSP) algorithms.
In contrast, Chong’s algorithm [87] requires k to be known in advance. The
algorithm is then identical to the Dijkstra (or A* in our case) algorithm, but
keeps, at each node, the current k best paths found. Once the destination(s) has
(have) been visited k times, the algorithm can stop. We refer to kSP algorithms
which have to know the value of k in advance as Static k Shortest Path (SkSP)
algorithms. Note that any IkSP algorithm can also be used as a SkSP algorithm.
We will see that for dense topologies with many edges (e.g., queue-link topolo-
gies with an edge for each outgoing QoS queue, see Section 2.2), algorithms
using an underlying IkSP algorithm have poor performance. Indeed, while they
could possibly perform well for sparse topologies, the high number of edges
in dense topologies increases the number of paths that have to be traversed to
reach the desired optimality. Consequently, we only consider Yen’s algorithm as
IkSP algorithm. The study of the possible performance increase introduced by
the usage of other IkSP algorithms, e.g., [45, 84, 85, 86], is left for future work.
We are not aware of SkSP algorithms other than Chong’s, and will therefore only
consider Chong’s algorithm as an SkSP algorithm.

3.2.4. Survey of (Multi-)Constrained Shortest Path (CSP and
MCSP) Algorithms

This section provides a comprehensive up-to-date survey of Constrained Short-
est Path (CSP) and Multi-Constrained Shortest Path (MCSP) algorithms which
can be employed for QoS routing. We categorize these QoS routing algorithms
according to the underlying algorithm strategy into five main categories: 1) el-
ementary algorithms, 2) algorithms based on a priority queue, 3) algorithms
based on BF, 4) algorithms making use of the Lagrange relaxation optimization
technique, as well as 5) algorithms making use of the knowledge of the Least–
Cost (LC) and Least-Delay (LD) paths in the network. These five main categories
of QoS routing algorithms are summarized in Table 3.2.

3.2.4.1. Elementary Algorithms

Joksch [57] provided the initial Integer Linear Programming (ILP) formulation
of the CSP problem along with a proposal to solve it optimally using dynamic
programming. Unfortunately, dynamic programming techniques can only be
used with integers. The algorithm is hence not suitable for real valued costs and
delays.
Aneja et al. [56] presented an optimal solution for the MCSP problem. Their

33

3. State of the Art Analysis

algorithm performs pre-processing and is based on an implicit enumeration of
all possible paths and is therefore computationally complex.
An elementary algorithm to find a feasible solution to the DCLC problem is to
return the LD path, which can be found with a single SP algorithm run. We
will refer to this algorithm as the Least Delay Path (LDP) algorithm. The LDP
algorithm does not consider the cost parameter; thus, the cost inefficiency may
be high.
A way to take the cost into account while still keeping the algorithm simple
has been proposed by Lee et al. [98] as the Fallback (FB) algorithm. The FB
algorithm first computes the Least-Cost (LC) path using an SP algorithm and
checks if it is feasible. If yes, then it can be returned. If not, then the LD path is
computed and returned. The algorithm can be extended for solving the MCSP
problem by running the SP algorithm successively with the different metrics (first
with the cost and then with the different constraints) as cost until a feasible path
is found. While the algorithm is complete for the CSP problem, it is not anymore
for the MCSP problem. Indeed, for the CSP problem, running an SP algorithm
with the constraint as cost will ensure finding a path satisfying the bound of this
constraint (if one exists). On the other hand, for the MCSP problem, minimizing
one of the constraints does not ensure that the other constraint bounds will be
met.
Another simple idea utilizes LC paths as follows. Rather than switching to
the LD path if the LC path is not feasible, search for the subsequent LC paths
(using an IkSP algorithm) until a feasible path is found. Such an algorithm can
also be applied for the MCSP problem and, since it discovers paths in order of
increasing cost, is optimal in both cases. We will refer to this algorithm as the k
Multi-Constrained Shortest Path (kMCSP) algorithm. Obviously, by continuing
its search after finding the first feasible path, this algorithm is also able to solve
the kCSPand kMCSPproblems.

3.2.4.2. Algorithms Based on a Priority Queue

A widely considered algorithm for optimally solving the CSP problem is due to
Widyono [129], who proposed the Constrained Bellman-Ford (CBF) algorithm.
Despite its name, the algorithm is not similar to the original BF algorithm. CBF
performs a breadth-first search. While keeping track of the LC path to each
visited node, CBF discovers paths in increasing order of delay, stopping once the
constraint is violated. As the algorithm is actually an extension of the Dijkstra
algorithm, it is also sometimes referred to as the Constrained Dijkstra (CD)
algorithm. Indeed, similar to the Dijkstra algorithm, the CD algorithm is based
on a priority queue and relaxes based on the cost values. However, paths are
retrieved from the priority queue in increasing value of delay, instead of cost.

34

3.2. Centralized Routing Algorithms

The discovery process can stop when the delay of the paths to further discover
is higher than the deadline, since then no additional feasible paths can be found.
Since the relaxation is done based on the cost, the LC path with delay lower than
the deadline was found, i.e., the algorithm is optimal.
Liu and Ramakrishnan [89] proposed the A*Prune algorithm for solving the
MCSP problem. As its name suggests, the A*Prune algorithm is in principle
similar to the A* algorithm (see Section 3.2.2). The A*Prune algorithm assumes
that a guess function is available for each metric (i.e., for the cost and all the con-
straints), discovers paths (i.e., takes paths out of its priority queue) by increasing
value of projected cost (see Section 3.2.2), and prunes (i.e., removes from the set
of paths to further extend) those paths for which a projected constraint value
exceeds the corresponding end-to-end bound. Once the destination node is
reached, the MCSP has been found. Note that, unlike the Dijkstra, A*, and CBF
algorithms, the A*Prune algorithm does not keep a single path per node. In
other words, its way of reducing the number of paths to further extend is not
based on the destination node of these paths but on their projected constraint
values. The A*Prune algorithm has the additional feature of being able to solve
the kMCSP problem. Indeed, the extension of paths can be continued after the
destination has been reached. Once the destination node is reached for the kth
time, the optimal kth MCSP has been found. The A*Prune algorithm also solves
the CSP and MCSP problems optimally.

3.2.4.3. Algorithms Based on Bellman-Ford (BF)

Jia and Varaiya [88] combined the search strategy of the BF algorithm with
the Delay-Constrained Unicast Routing (DCUR) algorithm (which is based on
LC and LD paths and will be reviewed in Section 3.2.4.5) to define the Delay-
Constrained Bellman-Ford (DCBF) algorithm. DCBF first computes a reverse
LD tree. Then, it runs the BF algorithm, but updates the best path at a node only
if it has a lower cost and if the sum of (i) the delay of the path built so far, (ii) the
delay of the next edge, and (iii) the delay of the LD path from the terminal node
of the next edge (i.e., the node reached via the next edge) to the destination is
lower than the delay bound. We will refer to this test as the projected delay test. Jia
and Varaiya also propose an extension to this algorithm, k Delay-Constrained
Bellman-Ford (kDCBF), keeping track of the kd best paths for the reverse LD
tree run and keeping the best kc paths at each node for the forward BF run.
Cheng and Ansari [105] proposed the dual extended Bellman-Ford (DEB) al-
gorithm, an algorithm similar to FB (see Section 3.2.4.1). Instead of running
an SP algorithm for the LC and LD searches, DEB runs a so-called extended
Bellman-Ford (EB) algorithm which is able to find, for every possible hop count
h, the optimal h-hop constrained path. For both runs, the path considered is

35

3. State of the Art Analysis

then the best path among all those found.

3.2.4.4. Algorithms Based on the Lagrange Relaxation

Background on Lagrange Relaxation In mathematical optimization, the
Lagrange relaxation technique allows to remove some constraints of the original
problem and to introduce them in the optimization objective [137, 34, 109]. For
example, the Lagrange relaxation of problem (3.1)–(3.2) is

L(u) = min
x∈Psd

cTx + uT(Dx− d), (3.4)

where u ∈ RM
+ is called the Langrangian multiplier. The minimized function is

called the Lagrange function of path x and is also denoted as L(u, x). It can be
shown that, if the original problem is feasible, then there is an optimal solution
to

zL = max
u∈RM

+

L(u), (3.5)

i.e., a feasible solution of the original problem. Problem (3.5) is referred to as
the Lagrangian dual of the original problem (3.1)–(3.2), which is then referred to
as the primal problem. Because solving the dual problem does not necessarily
optimally solve the primal problem, we say that there is a duality gap.

LARAC without and with Gap Closing (GC) Solving the dual problem re-
quires to solve the relaxed problem (3.4) several times. The interesting aspect of
this procedure is that, for the CSP problem, the relaxed problem corresponds
to an SP problem with a modified cost function cu = c + ud. This concept is
illustrated in Fig. 3.2. Each line in Fig. 3.2 corresponds to the Lagrange function
of a path in the network. Lines with null or negative slopes correspond to
feasible paths while lines with positive slopes correspond to infeasible paths.
The intercept of a line corresponds to the cost of the path. In our example, the
optimal path (with cost zopt) is highlighted in red. Since L(u) is a piecewise-linear
concave function [110], the u value maximizing L(u) can be found using a binary
search and always keeping track of a best feasible and a best infeasible paths,
starting with the LC and LD paths (shown in blue in Fig. 3.2). As these two
paths have slopes of different signs1, they intersect at a point u1. This point is
then used as the Lagrange multiplier for the next SP run. This run will find a
new path. If the path is primal feasible (resp. infeasible), it replaces the current
best feasible (resp. infeasible) path. The new pair of best feasible and infeasible

1If this is not the case, either the problem is infeasible (both paths have positive slopes) or LC
path is optimal and can be returned (both paths have negative slopes).

36

3.2. Centralized Routing Algorithms

u

L(u, x)

zLD

zLC

z′

zL

zopt

u1 u2u30

Figure 3.2.: Illustration of Lagrange functions L(u, x) of paths in a network as a function of
Lagrange multiplier u. The Lagrange Relaxation based Aggregate Cost (LARAC) algorithm [68,
69, 70, 71] finds the maximum of the lower boundary of this set of curves through a binary search,
always keeping track of a best feasible (negative slope) and a best infeasible (positive slope)
path. The search starts with the LD and LC paths, found by simple SP searches, and continues
with further SP searches with a modified cost function cu = c+ ud, where u is obtained as the
intersection of the current best feasible and infeasible paths. From mathematical optimization
theory, this is an approximation of the optimal solution of the original DCLC problem.

paths defines a new point u2. The procedure then continues until the Lagrange
multiplier does not change. The stored best feasible path at this point is then
returned. In the example of Fig. 3.2, we can see that the found path (which
corresponds to z′ and u3) is sub-optimal (z′ > zopt).
Aneja and Nair [68] initially proposed this algorithm as an optimal algorithm.
They did not notice the duality gap. Later, Handler and Zang [69] proposed to
close the gap as follows. At the end of the execution of the algorithm [68], the
Lagrange value zL of the found path is a lower bound on the optimal cost zopt.
Similarly, the cost z′ of this path is an upper bound of the optimal cost zopt. The
gap can then be closed by running an IkSP algorithm with the last Lagrange
multiplier, i.e., u3 in our example. Figuratively speaking, the intersections are
not relevant for the gap closing; rather, the gap closing traverses the vertical line
at u3 from bottom to top. For each path found by the IkSP algorithm, the upper
and lower bounds on the optimal cost are updated. When the lower bound
gets greater than the upper bound, i.e., when the Lagrange value of the new
path is greater than the cost of the best path found so far, it is ensured that no
better path can be found. The best feasible path found so far is then the optimal

37

3. State of the Art Analysis

solution. In the example of Fig. 3.2, the IkSP algorithm finds the optimal path as
the third SP for u3 and has to find the fifth SP (which is actually the LD path) to
notice that no better path exists.
Handler and Zang [69] also introduced a parameter δ to stop the gap closing
when the relative distance between the lower and upper bounds is less than δ.
As this relative distance is an upper bound on the CI, the δ parameter allows to
ensure that the cost inefficiency of the algorithm is always lower than δ. Blokh
and Gutin [70] also proposed the algorithm without gap closing. Finally, Jüttner
et al. [71] proposed again the same algorithm (without gap closing) and gave it
a name: LARAC. They also introduced a maximal difference (MD) parameter. The
binary search is then stopped when the relative distance between the cost of the
current best feasible path and the cost of the current best infeasible path is less
than MD. We will refer to the LARAC algorithm with gap closing as Lagrange
Relaxation based Aggregate Cost Gap Closing (LARACGC).

LARAC Variations and Extensions Santos et al. [100] proposed an algorithm
similar to LARACGC. The difference is that, after having computed the LC and
LD paths, Santos et al. directly close the gap without performing the binary
search. In particular, Santos et al. use a specific Lagrange multiplier computed
based on the knowledge of the delay bound as well as the costs and delays of the
LC and LD paths. From the name of its authors, we will refer to this algorithm
as Santos Coutinho-Rodrigues Current (SCRC). The algorithm has the same
stopping condition as LARACGC and is therefore optimal.
Jia and Varaiya [88] then proposed k Lagrange Relaxation based Aggregate
Cost (kLARAC), an extension of LARAC that uses a SkSPalgorithm at each
iteration, instead of an SP algorithm. The set of k paths found for a given u either
contains only feasible paths, only infeasible paths, or a mix of both. As long
as only feasible and infeasible sets are found, the new Lagrange multiplier is
computed as for LARAC using the LC paths of the two sets. Once a mixed set
is found, the LC feasible path of the set is returned. Jia and Varaiya show that
the algorithm is always at least as good as LARAC in terms of cost inefficiency.
Since k is a parameter of the algorithm, an SkSP algorithm can be used.
The LARAC algorithm can also be visualized in the delay-cost space, see Fig. 3.3,
where a point corresponds to a given path in the network. At each iteration, the
Lagrange multiplier defines the search direction of the SP run to be perpendicu-
lar to the line connecting the current best feasible and infeasible paths. This is
shown by the small arrows perpendicular to the solid lines in Fig. 3.3. An SP
run in a given direction finds the first point that the corresponding solid line
would hit if pushed in this direction starting from point (0, 0).
In the example of Fig. 3.3, LARAC will find the LD and LC paths, then a, then

38

3.2. Centralized Routing Algorithms

cTx

Dx

a

b

LC

LD

d

0

Figure 3.3.: Illustration of operation of LARAC algorithm in the delay (Dx)-cost (cTx) space: At
each iteration, LARAC runs an SP search in the direction defined by the Lagrange multiplier.
Here, the algorithm will first find LC and LD. Then, based on the Lagrange multiplier computed
with these two paths (which corresponds to the normal to the line connecting these two paths),
a will be found. Similarly, b will then be found. Then, a or b will again be found, meaning that
the Lagrange multiplier will not change. Hence, the algorithm will stop and the best feasible
path, i.e., a, will be returned.

b, and the algorithm will then stop and return a. We see that the optimal path,
shown in red, is missed. Korkmaz and Krunz [59] argued that this is due to the
fact that the search direction is linear in the delay-cost space (Fig. 3.4a). They
hence proposed an algorithm called Heuristic for Multi-Constrained Optimal
Path (H_MCOP) which tries to search simultaneously in the delay and cost
directions (Fig. 3.4c). To do so, the algorithm first finds the LD paths from any
node to the destination using a reverse SP tree algorithm. Then, it runs an LC
forward SP search but updates the best path at a node only when the new path is
feasible or has a lower delay than the previously stored best path. The feasibility
of the new path is checked using the LD paths stored from the reverse SP tree
run. A new path is then considered feasible if it passes the projected delay test.
The best path is hence sometimes updated based on the delay and sometimes
based on the cost, which is how the algorithm tries to simultaneously follow the
search directions shown in Fig. 3.3. The algorithm is nevertheless not optimal
because this depends on how fast the delay and cost directions are respectively
explored.

As its name suggests, the H_MCOP algorithm is also valid for the MCSP prob-
lem. While the explanation of the algorithm for the MCSP problem is more
complicated (and is not included because we focus on the CSP problem in this
thesis), the algorithm still tries to scan the multi-dimensional cost-constraints

39

3. State of the Art Analysis

cTx

Dx

(a) Linear search direction
(λ = 1).

cTx

Dx

(b) Quadratic search direc-
tion (λ = 2).

cTx

Dx

(c) Non-linear search direc-
tion (λ→∞).

Figure 3.4.: When running an SP (or kSP) algorithm with an aggregated cost, the type of
aggregation of the initial metrics influences the search direction of the SP algorithm. In the case
of two metrics, linearly combining the metrics leads to the linear search direction shown in
Fig. 3.4a. In some cases, including DCLC routing, one may want to explore the delay-cost space
simultaneously in both directions. To do so, the initial can be combined in a non-linear fashion.
For example, if the aggregated cost is computed by combining each metric to the power of two,
a search direction similar to Fig. 3.4b is obtained. By increasing the power used to combine the
metrics, one can reach the desired search direction shown in Fig. 3.4c. Unfortunately, once the
metrics are not linearly aggregated, the optimal sub-structure property does not hold anymore;
thus, classical SP and SkSPalgorithms (e.g., Dijkstra, A* [78], and Yen [79]) are not optimal
anymore.

space simultaneously in all directions. However, to do so, an additional parame-
ter λ has to be introduced and is defined as the power value used to combine
the original constraints into an aggregated cost. λ = 1 corresponds to a linear
search direction (Fig. 3.4a) and increasing λ towards infinity leads to the search
direction shown in Fig. 3.4c. Besides, in the MCSPcase, the algorithm is not
complete anymore [59, 107]. Korkmaz and Krunz [59] then also proposed to use
Chong’s SkSP algorithm for the forward run in order to continue searching in
both directions until k paths have been found, thereby possible finding better
paths. We will refer to this algorithm as k Heuristic for Multi-Constrained
Optimal Path (kH_MCOP). Obviously, this does not solve the incompleteness
problem of the algorithm in the MCSPcase [59].
H_MCOP can be used to solve the MCP problem by observing the directions of
all the constraints simultaneously and returning the first path found [59, 107].
It is then referred to as Heuristic for Multi-Constrained Path (H_MCP) and
is incomplete [59]. Feng et al. [91] proposed Nonlinear Relaxation Delay
Constraind Least Cost (NR_DCLC), an algorithm using H_MCP as underlying
MCP algorithm, although NR_DCLC works with any other MCP algorithm.
The LC and LD paths are first computed to check for infeasibility or for LC as
elementary solution. Then, the cost of the LD path is set as first cost bound and

40

3.2. Centralized Routing Algorithms

the delay bound is the one of the original DCLC problem. Then, H_MCP finds
an MCP path within these constraints. The cost of the path found is then used
as new cost bound. This process is repeated until H_MCP does not find any
path. To avoid H_MCP to return the path found at the previous iteration, the
cost bound for the next iteration is always set to a value a little bit smaller than
the actual cost of the found path.
Feng et al. [107] then proposed a variation of NR_DCLC. Instead of running
H_MCP with the cost of the LD path as bound, H_MCP is run with the cost
of the path found by H_MCOP as bound. As this algorithm improves on the
solution found by H_MCOP, the authors refer to it as Modified Heuristic for
Multi-Constrained Optimal Path (MH_MCOP). The authors also introduce a
parameter to limit the amount of MCP iterations. We will refer to this parameter
as H. MH_MCOP can also solve the MCSP problem but, as it is based on
H_MCOP, is not complete for it. On the other hand, NR_DCLC cannot solve the
MCSP problem. Indeed, it’s initial LD search can only deal with one constraint.
Feng et al. [107] additionally proposed an optimal algorithm, Exact Multi-
Constrained Optimal Path (E_MCOP), similar to SCRC. E_MCOP first runs
Exact Multi-Constrained Path (E_MCP), a complete MCP algorithm. E_MCP
first runs an SP search for each constraint. If one of them cannot be met, it
terminates. Otherwise, it runs an IkSP algorithm with the sum of the individual
constraints, individually divided by the difference between their bound and
their least value, as an aggregated cost. E_MCP returns the first feasible path
found or stops once a path with an aggregated cost higher than the cost obtained
by considering that each constraint reaches its bound is found. If E_MCP found
no path, E_MCOP concludes that there is no solution. Otherwise, E_MCOP
considers the found path as the current solution, uses its cost to define a cost
border and runs an SP search for the cost to find its least value. From these
two values, E_MCOP restarts an E_MCP search with the cost added to the
aggregated cost (also divided by difference between its bound and its least
value). The algorithm returns the current solution once the IkSP algorithm finds
no path or when it finds a path with an aggregated cost higher than the cost
obtained by considering that each metric reaches its bound. When a path is
found by the IkSP algorithm, it replaces the current solution if it is feasible and
has a lower cost. This algorithm is optimal for both the CSP and MCSPcases
[107].
Guo and Matta [99] elaborated on the idea of using an underlying MCP algo-
rithm in their delay-cost-constrained routing (Delay-Cost-Constrained Rout-
ing (DCCR)) algorithm. DCCR behaves similarly to NR_DCLC, but runs the
MCP algorithm only once. For this to be effective, they use an MCP algorithm
that takes the costs of paths into account. This MCP algorithm can hence also be
viewed as a DCLC algorithm which needs a cost bound. The algorithm runs an

41

3. State of the Art Analysis

SP search where the cost of a path is defined as

delay of the path

1− original cost of the path
cost bound

, (3.6)

which also tries to emulate the simultaneous scan of the delay-cost space in both
directions. Nevertheless, with such a function, the cost of a path is not anymore
the sum of the cost of its constituting edges and classical SP algorithms cannot
solve the problem optimally. Therefore, Chong’s algorithm is used to increase
the probability of keeping track of good solutions. Instead of using the cost of
the LD path as cost bound, Guo and Matta propose to use the cost of the path
found by LARAC. This algorithm is then referred to as Search Space Reduction
Delay-Cost-Constrained Routing (SSR+DCCR). Since the algorithm improves
the solution returned by LARAC, it is closing the duality gap, similarly to
LARACGC, but only partially. In order to provide a cost bound, LARAC does
not have to run until the end. Therefore, Guo and Matta define a parameter,
which we will refer to as L, that limits the number of iterations (i.e., the number
of SP runs excluding the LC and LD searches) of the LARAC run.
Agrawal et al. [64] proposed E-LARAC, an extension of LARAC that addition-
ally considers a constraint on the maximum number of hops by using a modified
BF subroutine. Because the number of hops is not a constraint in many QoS
networking scenarios, we do not consider E-LARAC in our evaluation.
The Lagrange relaxation has also been used by Ribeiro and Minoux [104] for
solving the double-sided constrained SP problem, i.e., the problem of finding
an SP whose delay (or any other metric) is lower than a upper bound but also
greater than a lower bound. We do not consider this double-sided problem in
our evaluation.

3.2.4.5. Algorithms Following the LC and LD Paths

Instead of computing a delay-constrained path from SP searches with modified
costs, Salama et al. [92, 93] proposed to solve the DCLC problem from the
knowledge of the LC and LD trees towards the destination. The algorithm
builds the path node by node. At each node, the algorithm chooses between the
edge belonging to the LC path towards the destination and the edge belonging
to the LD path towards the destination. The LC edge is chosen if it satisfies the
projected delay test; otherwise, the LD edge is chosen. It can happen that a loop
is created. In such a situation, the algorithm backtracks to a node that chose the
LC edge and then chooses the LD edge instead. Salama et al. show that this
backtracking ensures the removal of the loop. This algorithm is called DCUR.
Fig. 3.5 shows an example graph with the corresponding LC (red) and LD
(yellow) trees towards the destination node d. Starting from the source node s,

42

3.2. Centralized Routing Algorithms

d

s

1

2

3

4

5

6

7

8

LC
LD

cost/delay

2/
3 1/7

2/2 2/
2

2/
54/2

3/
1

3/2

2/2

5/21/3

4/3

2/33/
5

4/3

2/4

3/
1

4/4

3/5

Figure 3.5.: Least-Cost (LC)and Least-Delay (LD) paths from any node to a given destination
in an example graph with links denoted by cost/delay. DCUR, DCR, and IAK are algorithms
combining these paths in order to find a Delay-Constrained Least-Cost (DCLC). In this example,
with a deadline of 10, DCUR, which alternates between using the LC and LD edges, finds the
path s-2-3-6-d with cost 9 and delay 10. DCR, which follows LD edges and switches once to the
LC edges, finds the path s-3-6-d with cost 8 and delay 8. Finally, IAK, which follows LC edges
and switches once to the LD edges, finds the path s-2-3-4-d with cost 11 and delay 8.

DCUR chooses, at each node, between the red and yellow outgoing edges of
the node depending on the result of the projected delay test. In this example,
with the delay constraint set to 10, DCUR would choose LC-LD- LC- LC (no
loop occurs), thereby finding the path s-2-3-6-d with cost 9 and delay 10. Indeed,
when at node 2, DCUR cannot follow the LC edge. If it did, it would reach node
5 with a delay of 7. Since the LD path from node 5 to the destination has a delay
of 5, it would not be possible anymore to reach the destination with a delay
lower or equal to 10. Note that this is sub-optimal as the optimal path (that, e.g.,
CBF would find) in this example is s-3-6-d with cost 8 and delay 8.
Sun and Langendörfer [94] then proposed a solution, called Distributed delay
Constrained Routing (DCR), to avoid the creation of loops and hence to prevent
the algorithm from having to backtrack, thereby reducing runtime. DCR follows
the LD path until the sum of (i) the delay of the path so far and (ii) the delay of
the LC path from the current node to the destination is lower or equal to the
delay bound. Starting from this point, the algorithm then follows the LC path
until the end, since it is ensured that it will satisfy the delay constraint. Since the
LD path is only followed from the source node, it can be computed by a simple
SP run.
In the example of Fig. 3.5, still with the delay constraint of 10, DCR follows

43

3. State of the Art Analysis

the LD edge until node 3 as the sum of the delay of the path so far (no path
and hence delay of 0) and the delay of the LC path from the current node (s) to
the destination (path s-2-5-6-d with delay 15) is greater than the delay bound
(0 + 15 > 10). Indeed, following the LC edges already from node s would lead
to an infeasible path. Then, starting from node 3, DCR switches to the LC path
as the sum of the delay of the path so far (path s-3 with delay 3) and the delay
of the LC path from the current node (3) to the destination (path 3-6-d with
delay 5) is lower than the delay bound (3 + 5 < 10). Indeed, DCR is now sure
that following the LC edges until the destination will lead to a feasible solution.
Hence, DCR finds the path s-3-6-d, which is actually the optimal path. This
example shows that, while DCR is simpler than DCUR, it can still provide, in
some circumstances, a path closer to optimality.
Ishida et al. [96] then proposed the opposite strategy, i.e., to first follow the LC
path and to switch to the LD path as soon as following the LC path would lead
to a node from which the delay constraint cannot be satisfied anymore. For
the same reason as for DCR, the LC path can be computed by a simple SP run.
Based on the author names of [96], we refer to this algorithm as Ishida Aman
Kannari (IAK).
In the example of Fig. 3.5, still with the delay constraint of 10, IAK follows the
LC edge until node 2 as this edge has a delay of 4 and the LD path from node 2
to the destination has a delay of 4, thereby ensuring that the delay constraint can
still be met. From node 2, for the same reason as for DCUR, IAK cannot follow
the LC edge anymore. Indeed, it would not be possible anymore to reach the
destination with a delay lower or equal to 10. Hence, IAK switches to the LD
edges and finds the path s-2-3-4-d with cost 11 and delay 8.
DCUR, DCR, and IAK have been proposed with a distributed implementation
in mind and allow only a limited range of choices at each node. Two algorithms
have been proposed with the objective of enlarging the set of paths that can
be found. First, Sriram et al. [95] proposed that each node maintains a list
of ordered preferred output links. When path construction reaches a node, it
selects its preferred output link for which the delay of the new path satisfies the
delay constraint and that does not introduce a loop. A node may not have a
preferred output link that satisfies these constraints. Then, path construction is
backtracked to the previous node, which then selects its next preferred output
link. If all preferred output links have been exhausted, then path construction
is also backtracked to the previous node. Once the destination is reached,
the algorithm terminates. Based on the author names of [95] we will refer to
this algorithm as Sriram Manimaran Siva (SMS). The list of preferred link is
computed according to a heuristic function. In order to reduce runtime, the
algorithm allows to limit the size of the list of preferred links at each node to
a given parameter p. Nevertheless, depending on the heuristic function, this

44

3.2. Centralized Routing Algorithms

makes the algorithm incomplete. The algorithm is complete only if p is, at each
node, greater or equal to the degree2 of the node, thereby ensuring that all links
are considered. If ∆(G) denotes the maximum degree of the nodes in graph G,
the algorithm is complete if

p ≥ ∆(G). (3.7)

Sriram et al. [95] define three heuristic functions: (1) Residual Delay Maximizing
(RDM), ordering links by their cost divided by the delay constraint minus the
projected delay of the link (and ensuring that the edges belonging to the LC
and LD paths towards the destination are included in the list), (2) Cost Delay
Product (CDP), ordering links by their cost times their projected delay, and
(3) Partition-Based Ordering (PBO), ordering links by cost value. RDM requires
one SP tree run (LD), CDP two, and PBO none.
If the heuristic function is not efficient, the algorithm could explore an excessive
number of paths before reaching the destination. This is especially true for dense
topologies with many possible paths. To avoid this, Liu et al. [97] proposed
Selection Function Delay Constraind Least Cost (SF_DCLC), an algorithm
similar to SMS. At each node, instead of computing a list of links and trying
them one after the other, the algorithm chooses one output link based on a
selection function (SF) which is proven to avoid loops and to lead to a solution if
one exists. The links are assigned a weight equal to their cost plus (i) the cost of
the LC path to the destination if the latter passes the projected delay test, or, if
not, (ii) the cost of the LD path. Links for which the LD path is infeasible are not
considered. The least-weight link is then chosen.

3.2.4.6. Other Approaches

For completeness, we briefly review in this section other QoS routing approaches
that we do not include in our evaluation for the various reasons noted for the
following algorithms. In order to the reduce the runtime of optimal algorithms,
several fully polynomial ε-approximation algorithms have been proposed, e.g.,
[62, 58, 66, 60, 61, 65, 90]. The ε-approximation algorithms ensure to find a path
whose cost is at most (1 + ε) times higher than the cost of the optimal path.
Unfortunately, ε-approximation algorithms consider only integral costs and/or
delays and are therefore not suitable for QoS routing with real-valued costs
and/or delays.
Several algorithms have been proposed to accommodate imprecise state infor-
mation, e.g., [67, 48, 53, 52, 51, 54]. In centralized network architectures, such as
Software Defined Networking (SDN), is it reasonable to assume that the state is

2In a graph, the degree of a node corresponds to the number of edges connected to this node.
In our scenario, we define the degree of a node as the number of outgoing edges the node has.

45

3. State of the Art Analysis

well-known and we hence do not consider the class of algorithms for imprecise
state information. Also, note that algorithms considering imprecise information
cannot provide strict (hard) QoS guarantees, rather these algorithms can only
provide soft QoS guarantees. Similarly, algorithms based on probing techniques,
e.g., [50, 48, 49, 53, 54], or relaxing the constraint, e.g., [55], can also only pro-
vide soft QoS guarantees. Our focus is on QoS routing algorithms that can
provide strict QoS guarantees and we do therefore not consider the algorithms
for imprecise state information, probing, or relaxed constraints in detail in this
survey.
Algorithms based on genetic algorithms (GA) [101, 102] and on artificial bee
colony optimization techniques [103] have also been proposed. Such random-
ized algorithms have typically a fairly high runtime and are therefore not well
suited for online routing decisions. Our focus is on QoS routing algorithms that
are suitable for online routing decisions and we do therefore not cover these
algorithms in detail.
Pornavalai et al. [46, 47] simplify the bandwidth-jitter-delay constrained prob-
lem into an SP problem with maximum number of hops (i.e., a problem that can
be solved in polynomial time) by using relationships between bandwidth, delay,
jitter, and buffer capacity in weighted fair queuing (WFQ) set-ups. Our focus is
on QoS routing algorithms that accommodate independent optimization and
constraint metrics and we do therefore not consider [46, 47] in detail.

46

3.2. Centralized Routing Algorithms
Ta

bl
e

3.
2.

:C
om

p
re

he
ns

iv
e

lis
to

fC
on

st
ra

in
ed

Sh
or

te
st

P
at

h
(C

SP
)a

nd
M

u
lt

i-
C

on
st

ra
in

ed
Sh

or
te

st
P

at
h

(M
C

SP
)a

lg
or

it
hm

s,
w

hi
ch

ca
n

be
em

pl
oy

ed
fo

r
D

el
ay

-C
on

st
ra

in
ed

Le
as

t-
C

os
t(

D
C

LC
)Q

oS
ro

ut
in

g.
T

he
al

go
ri

th
m

s
ar

e
ca

te
go

ri
ze

d
ac

co
rd

in
g

to
th

e
un

de
rl

yi
ng

al
go

ri
th

m
ic

st
ra

te
gy

in
to

al
go

ri
th

m
s

ba
se

d
on

pr
io

ri
ty

qu
eu

es
,B

F,
L

ag
ra

ng
e

re
la

xa
ti

on
,a

s
w

el
la

s
L

ea
st

-C
os

t(
L

C
)a

nd
L

ea
st

-D
el

ay
(L

D
)p

at
hs

.F
or

ea
ch

al
go

ri
th

m
,w

e
in

di
ca

te
th

e
ty

pe
(s

),
i.e

.,
C

SP
or

M
C

SP
or
k

pa
th

ve
rs

io
ns

th
er

eo
f,

as
w

el
la

s
ot

he
r

ke
y

ch
ar

ac
te

ri
st

ic
s,

in
cl

u
d

in
g

op
ti

m
al

it
y

p
ro

p
er

ty
an

d
th

e
ac

ce
p

te
d

p
ar

am
et

er
s.

W
e

in
d

ic
at

e
th

e
nu

m
be

r
of

u
nd

er
ly

in
g

al
go

ri
th

m
ru

ns
,e

.g
.,

It
er

at
iv

e
k

Sh
or

te
st

P
at

h
(I
k

SP
)a

nd
St

at
ic
k

Sh
or

te
st

P
at

h
(S
k

SP
)a

lg
or

it
hm

s
(s

ee
Se

ct
io

n
3.

2.
1

fo
r

d
efi

ni
ti

on
s)

.W
he

n
th

e
ex

ac
tn

u
m

be
r

of
ru

ns
d

ep
en

d
s

on
th

e
sp

ec
ifi

c
sc

en
ar

io
,t

he
p

os
si

bl
e

nu
m

be
rs

of
ru

ns
ar

e
in

d
ic

at
ed

th
ro

u
gh

a
co

m
m

a-
se

p
ar

at
ed

lis
t

or
a

ra
ng

e
(w

it
h

th
e

ar
ro

w
(→

)s
ym

bo
l)

w
it

hi
n

pa
re

nt
he

se
s.

U
nb

ou
nd

ed
nu

m
be

rs
of

ru
ns

ar
e

in
di

ca
te

d
w

it
h

th
e

gr
ea

te
r

or
eq

ua
l(
≥

)s
ig

n.
W

e
no

te
th

at
an

al
go

ri
th

m
us

in
g

a
Sk

SP
al

go
ri

th
m

ca
n

be
im

pl
em

en
te

d
w

it
h

an
Ik

SP
al

go
ri

th
m

.

A
lg

or
it

hm
Ty

pe
N

um
be

r
of

ru
ns

of
un

de
rl

yi
ng

al
go

ri
th

m
s

O
pt

im
al

C
om

pl
et

e
D

is
tr

.
Pa

ra
m

.
Ik

SP
Sk

SP
tr

ee
Sk

SP
SP

tr
ee

SP
El

em
en

ta
ry

A
lg

or
ith

m
s

(S
ec

.3
.2

.4
.1

)
LD

P
C

SP
1

X
if

SP
is

FB
[9

8]
C

SP
,M

C
SP

(1
→
M

+
1)

if
C

SP
k

M
C

SP
(k

)C
SP

,(
k)

M
C

SP
1

X
X

Pr
io

ri
ty

Q
ue

ue
Ba

se
d

A
lg

or
ith

m
s

(S
ec

.3
.2

.4
.2

)
C

BF
[1

29
]

C
SP

X
X

A
*P

ru
ne

[8
9]

(k
)C

SP
,(

k)
M

C
SP

X
X

A
lg

or
ith

m
s

Ba
se

d
on

BF
(S

ec
.3

.2
.4

.3
)

D
C

BF
[8

8]
C

SP
1

X
X

k
D

C
BF

[8
8]

C
SP

1
X

X
k
d
,k
c

D
EB

[1
05

]
C

SP
X

A
lg

or
ith

m
s

Ba
se

d
on

th
e

La
gr

an
ge

R
el

ax
at

io
n

(S
ec

.3
.2

.4
.4

)
LA

R
A

C
[6

8,
69

,7
0,

71
]

C
SP

≥
1

X
M
D

LA
R

A
C

G
C

[6
9]

C
SP

(0
,1

)
≥

1
if
δ

=
0

X
δ

SC
R

C
[1

00
]

C
SP

(0
,1

)
(1

,2
)

X
X

k
LA

R
A

C
[8

8]
C

SP
≥

1
X

k
H

_M
C

O
P

[5
9]

C
SP

,M
C

SP
1

(0
,1

)
if

C
SP

λ
k

H
_M

C
O

P
[5

9]
C

SP
,M

C
SP

(0
,1

)
1

if
C

SP
λ

,k
N

R
_D

C
LC

[9
1]

C
SP

≥
0

≥
1

X
M

H
_M

C
O

P
[1

07
]

C
SP

,M
C

SP
(1
→
H

+
1)

(0
→
H

+
1)

if
C

SP
H

E_
M

C
O

P
[1

07
]

C
SP

,M
C

SP
(0
→

2)
(1
→
M

+
1)

X
X

D
C

C
R

[9
9]

C
SP

(0
,1

)
(1

,2
)

X
k

SS
R

+D
C

C
R

[9
9]

C
SP

(0
,1

)
(1
→
L

+
2)

X
L

,k
A

lg
or

ith
m

s
Ba

se
d

on
LC

an
d

LD
Pa

th
s

(S
ec

.3
.2

.4
.5

)
D

C
U

R
[9

2,
93

]
C

SP
(1

,2
)

X
X

D
C

R
[9

4]
C

SP
(0

,1
)

1
X

X
IA

K
[9

6]
C

SP
1

(0
,1

)
X

X
SM

S-
R

D
M

[9
5]

C
SP

1
if
p
≥

∆
(G

)
X

p
SM

S-
C

D
P

[9
5]

C
SP

2
if
p
≥

∆
(G

)
X

p
SM

S-
PB

O
[9

5]
C

SP
if
p
≥

∆
(G

)
X

p
SF

_D
C

LC
[9

7]
C

SP
(1

,2
)

X
X

47

3. State of the Art Analysis

48

4. Network Resource Modeling:
Deterministic Services (DetServ)

This chapter emphases the network modeling aspects of this thesis. There are
plenty of algorithms, as seen in the state of the art section, capable solving the
DCLC or Constrained Shortest Path (CSP) problem. These algorithms provide
a foundation for a efficient Quality of Service (QoS) framework. As seen in
Figure 4.1 the optimization process covers the cost function and the resources
allocation, in addition. All these three sub problems influences the overall
performance of the framework.
However, the interfacing to a deterministic network model is not a straightfor-
ward task. We describe in section 4.1 the interface requirements and the interface
itself. Afterwards we provide a short introduction of Network Calculus (Sec-
tion 4.2) focusing on modeling priority queuing schedulers. The basic notation
and definitions are provided in section 4.3. Based on these notations we discuss
the realization of static delay bounds (Section 4.4). This interface is implemented
by our deterministic network resource models, the so called DetServ models.

Network
Resource
Modeling

Routing

Cost
Function

Resource
Allocation

Figure 4.1.: dependencies of Delay-Constrained Least-Cost (DCLC) Routing, Resource Allocation
and Cost Function

49

4. Network Resource Modeling: DetServ

There are two main modeling opportunities:

• Multi-Hop Model (MHM) - Section 4.5

• Threshold-Based Model (TBM) - Section 4.6

In addition to this we provide models for considering the burst increase (Sec-
tion 4.7) and Input Link Shaping (ILS) (Section 4.8) for the main models. The
content of this chapter was presented in [5].

4.1. Interface of the Network Model

Since we change the routing problem to a greedy solution (i.e. only consider
one new flow), the network modeling becomes more challenging. Even if the
routing itself could be performed for a single flow (Equation 2.5)

min
Pf∈P(o,d)

Cost(Pf)

D(Pf) ≤ tf

L(Pf) = 0,

The network model has to ensure the original delay (Equation 2.2)

D(Pf) ≤ tf ∀f ∈ F

and loss (Equation 2.3)

L(Pf) = 0 ∀f ∈ F

bounds for all the flows. Therefore, the interface consists of the following four
so-called model functions.

GETDELAY: computes the worst-case delay of a given queue link edge. This
delay value has to be independent of the embedding of new flows, to
satisfy Equation 2.2. Indeed if the delay value is static Equation 2.2 is
always satisfied.

HASACCESS: checks whether or not there are still enough resources available
for a given flow at a given queue link edge. This access control mechanism
enables the implementation of the loss constraint (Equation 2.3). Indeed if
the resource consumption of each queue in the network is tracked a further
use of a queue could be prohibited if this would cause packet loss.

REGISTERPATH: updates the model state to reflect the embedding of a new flow.

50

4.2. Network Calculus

DEREGISTERPATH: updates the model state to reflect the removal of a previ-
ously embedded flow.

The GETDELAY and HASACCESS methods correspond to the get arrow in Fig. 2.5,
while REGISTERPATH and DEREGISTERPATH correspond to the update arrow.
How these methods are implemented depends on how and which resources are
allocated and managed at each queue. In the next Sections, we present our two
novel DetServ models implementing these four model functions.

4.2. Network Calculus

Network Calculus [118] provides a mathematical framework for calculating
deterministic upper delay bounds of a network. This mathematical model
has been used for the dimensioning and offline planning of real-time sys-
tems [143, 136, 43]. In contrast, we employ network calculus for online modeling
of the network at run time. Duan [116] developed an SDN-based network as a
service framework and derived network calculus to evaluate data rates needed
for fulfilling delay requirements in such a general framework. The network
calculus results served as a basis for an offline mixed integer program (MIP) that
evaluates admission control (resource availability) decisions and routes flows,
albeit for prohibitive computational cost. In contrast, in the present thesis we de-
velop a computationally efficient, online function split framework for run-time
admission decisions and routing while maintaining the network calculus based
real-time guarantees.

4.2.1. Basics: Theory Principles

In order to provide a deterministic model of the network, we propose to use
network calculus. Network calculus [118] is a system theory for communication
networks. From models of a considered flow and of the service a so-called
system can offer, bounds on (i) the delay the flow will experience traversing the
system, (ii) the backlog the flow will generate in the system, and (iii) the new
model for the flow after it has passed the system can be computed. A system
can range from a simple queue to a complete network. The theory is divided
in two parts: deterministic network calculus, providing deterministic bounds,
and stochastic network calculus, providing bounds following probabilistic dis-
tributions. Since we strive for deterministic modeling, we will only consider
deterministic network calculus.
As mentioned, models of both a flow and a network system are needed. The
modeling of a flow is done using a so-called arrival curve α. α(τ) gives an upper

51

4. Network Resource Modeling: DetServ

time

data β = βR,T

∇
=
R α∗ = γr,b+rT

∇ = r α = γr,b

∇ = r

T + b/R

b + rT
b+ rT

b

T

Figure 4.2.: Example of graphical computation of delay, backlog and output bounds using
network calculus concepts. The delay and backlog bounds respectively correspond to the
horizontal and vertical deviations between the arrival and service curves. In the particular case
of an arrival curve αTB

r,b and a service curve βRL
T,R, the output bound α∗ is obtained by shifting

the initial arrival curve α up by rT .

bound on the amount of data a flow will send during any time interval of length
τ . The α curve in Fig. 4.2 represents a token bucket flow: the flow is allowed to
send bursts of up to b bytes but its sustainable rate is limited to r bytes/s. This
Token Bucket (TB) service curve is denoted by αTB.
The modeling of a network system is, for its part, done using a so-called service
curve β. Its general interpretation is less trivial than for an arrival curve [135].
The particular service curve β shown in Fig. 4.2 can be interpreted as follows.
Data might have to wait up to T seconds before being served at a rate of at least
R bytes/s. This type of service curve is denoted by βRLT,R and is referred to as a
Rate Latency (RL) service curve.
From these two curves, the three above mentioned bounds can be computed.
The delay and backlog bounds respectively correspond to the horizontal and
vertical deviations between the arrival and service curves [135]. Le Boudec [118]
provides the following two functions to compute the horizontal

h(α, β) = sup
t≥0

(α− β) (4.1)

and vertical

v(α, β) = sup
t≥0

[inf (d ≥ 0 such that α ≤ β(t+ d))] (4.2)

deviation of the two curves. This two functions can be improved by only
checking the knee points of α and β. Since both curves are piecewise linear
functions only the knee points can contain the maximum deviation. This is
shown in Fig. 4.2. The vertical deviation is ether T itself or T + b/R which is:

v(α, β) = max (T , T + b/R) = T + b/R (4.3)

52

4.2. Network Calculus

The horizontal deviation is ether b itself or b+ rT which is:

h(α, β) = max (b, b+ rT) = b+ rT (4.4)

In the general case, the way to compute α∗, the output arrival curve of the
flow after having traversed the system, is not straightforward [135]. In the
particular case where the arrival and service curves are βRLT,R and αTBr,b , we have
α∗ = αTBr,b + rT = αTBr,b+rT [135] (Fig. 4.2). This formula can be interpreted as
follows. Since the flow can possibly wait up to T seconds before being served
at a potentially infinite rate, its burst size can increase by up to rT bytes – the
maximum amount of data that, by definition of the arrival curve of the flow, will
arrive during these potential T seconds of waiting time.

4.2.2. Selected Results: Priority Scheduling

In the particular case of a non-preemptive strict priority scheduler with n queues
traversed by token bucket flows [111], the service curve for priority queue i is
given by [135]

βi(t) =

(
Ct− t

i−1∑
j=1

rj −
i−1∑
j=1

bj − max
i+1≤j≤n

{lmaxj } − lmaxi

)+

, (4.5)

where queue i = 1 is the highest priority queue, C is the capacity of the output
link, and rj , bj and lmaxj are the rate, burst size and maximum packet size of the
token bucket flow traversing queue j. This formula can be interpreted as follows.
The service offered to a given queue i corresponds to the whole link capacity
(first term) from which the capacity used by higher priority flows is deducted
(second and third terms). Since we assume a non-preemptive priority scheduler,
data in a high priority queue might have to wait for a packet of a lower priority
queue to be transmitted before being served (fourth term). The fifth term models
the store-and-forward behavior of switches. Indeed, the scheduler must wait
for each packet to be completely received before serving it. Note that for cut-
through switches, only the header length should be used here. Because the
scheduler cannot provide negative service, the negative part of the resulting
curve is reduced to zero ((.)+ notation).
Eqn. 4.5 corresponds to a βRLTi,Ri

curve where

Ti =

∑i−1
j=1 bj + max

i+1≤j≤n
{lmaxj } − lmaxi

C −
∑i−1

j=1 rj
(4.6)

53

4. Network Resource Modeling: DetServ

and

Ri = C −
i−1∑
j=1

rj . (4.7)

From Fig. 4.2, the delay and backlog experienced by the flow traversing queue i
are respectively bounded by

di =

∑i
j=1 bj + max

i+1≤j≤n
{lmaxj } − lmaxi

C −
∑i−1

j=1 rj
(4.8)

and
xi = bi + riTi, (4.9)

and the new burst of the flow after the system is given by

b∗i = xi, (4.10)

while its rate remains unchanged.

4.3. Notations

As introduced in section 2.2 the resource model consists of two graphs. The
physical and queue link graphs are respectively denoted by Gp and Gq. The
physical graph Gq consists of the set of network nodes N and the set of physical
edges Ep connecting this nodes. The capacity of a physical link (u, v) ∈ Ep is
denoted by R(u,v). Queue link edges (u, v, q) ∈ Eq are connecting the same nodes
N to form the queue link graph Gq = (N , Eq). We assume a non-preemptive
strict priority scheduler with a set of queue links Eq

(u,v)
at the physical link

(u, v, q) ∈ Eq. Edges in the queue link network are denoted by (u, v, q), where (u, v)

is the corresponding physical link and p ∈ {1, . . . ,
∣∣∣Eq(u,v)∣∣∣} is the priority of the

corresponding queue at the physical link, p = 1 being the highest priority.
The set of active (i.e., embedded) flows in the network is denoted by F . For a
given embedded flow f ∈ F or for a given flow f requesting an embedding,

• rf denotes the rate (as defined in Sec. 4.2.1) of the flow,

• bf (Pof ,u) denotes the burst size (as defined in Sec. 4.2.1) of the flow at queue
link (u, v, q) (as we have seen in Sec. 4.2.2 that the burst of a flow changes at
each hop on the path Pof ,u which leads from origin o to the source node of
the edge u),

• tf denotes the end-to-end delay requirement of the flow,

54

4.3. Notations

• lmaxf denotes the maximum packet size of the flow, and

• Pf ⊆ Eq denotes the set of queue link edges through which the flow is
routed (empty set if the flow is not embedded yet).

We denote the maximum packet size in the network by Lmax. If it is not known,
the maximum Ethernet frame size can be used.
For a given queue link edge (u, v, q) ∈ Eq,

• F(u,v,q) ⊆ F denotes the set of flows routed through the queue link edge,

• UR(u,v,q) denotes the sum of the rates of the flows routed through the queue
link edge, i.e.,

UR(u,v,q) ,
∑

f∈F(u,v,q)

rf , (4.11)

• UB(u,v,q) denotes the sum of the bursts of the flows routed through the queue
link edge, i.e.,

UB(u,v,q) ,
∑

f∈F(u,v,q)

bf (Pof ,u), (4.12)

• lmax(u,v,q) denotes the maximum packet size of the aggregate flow traversing
the queue link edge, i.e.,

lmax(u,v,q) , max
f∈F(u,v,q)

{lmaxf }, (4.13)

• WCB(u,v,q) denotes the worst-case burst of the queue link edge,

• WCD(u,v,q) denotes the worst-case delay of the queue link edge, and

• B(u,v,q) denotes the buffer capacity of the queue corresponding to the queue
link edge.

Using these notations, Eqn. 4.6 and 4.7, can be respectively rewritten as

T(u,v,q) =

∑p−1
j=1 U

B
(u,v,q) + max

p+1≤j≤
∣∣∣Eq(u,v)∣∣∣{l

max
(u,v,q)}+ lmax(u,v,q)

R(u,v) −
∑p−1

j=1 U
R
(u,v,q)

(4.14)

and

R(u,v,q) = R(u,v) −
p−1∑
j=1

UR(u,v,q) (4.15)

55

4. Network Resource Modeling: DetServ

where βRLR(u,v,q),T(u,v,q)
is the rate-latency service curve offered by a queue link edge

(u, v, q) ∈ Eq. This rate-latency service curve is used to calculate the online worst
case delay

WCDonline
(u,v,q) =

∑p
j=1 U

B
(u,v,q) + max

p+1≤j≤
∣∣∣Eq(u,v)∣∣∣{l

max
(u,v,q)}+ lmax(u,v,q)

R(u,v) −
∑p−1

j=1 U
R
(u,v,q)

(4.16)

which is only valid if the online worst case burst can be capt by the buffer.

WCBonline
(u,v,q) = UB(u,v,q) + UR(u,v,q)T(u,v,q) ≤ B(u,v,q) (4.17)

Additionally, in order to respect the QoS requirements of embedded flows, we
must have, ∑

(u,v,q)∈Pf

WCBonline
(u,v,q) ≤ tf ∀f ∈ F . (4.18)

4.4. Requirement for the Models: Fixed Per-Queue
Delay

Both bounds in Eqn. 4.17 and 4.18 depend on UB(u,v,q), U
R
(u,v,q) and lmax(u,v,q) for some j,

i.e., on the burst size, rate and maximum packet size of other flows embedded on
the same physical link. If a new flow is embedded on a link (u, v) ∈ Ep, the worst-
case delay (Eqn. 4.16) and buffer consumption (Eqn. 4.17) of some of the queues
at the link will be updated, thereby possibly violating requirements of some
previously embedded flows (Eqn. 4.18) or exiting the buffer space (Eqn. 4.17).
As explained in Sec. 2.5, we do not want to check that the delay requirements of
the already embedded flows are still satisfied (i.e., check Eqn. 4.18) after a new
flow embedding. That means that the worst-case bounds WCD(u,v,q) have to be
bounded independently of the status of the network. In such a way, if Eqn. 4.18
for a given flow f was satisfied when the flow was embedded, it will be kept
satisfied for the whole runtime of the network.
The two different models we present in the next Sections differ in the way they
fix the WCD(u,v,q) bounds. While the MHM upper bounds the variable parts of
Eqn. 4.16, the TBM fixes WCD(u,v,q) itself and lets the variables vary until the
fixed threshold is reached.

4.5. Multi-Hop Model (MHM)

Our first model, the Multi-Hop Model (MHM), extends the access control scheme
proposed by Schmitt et al. [111] for one aggregation node in order to consider

56

4.5. Multi-Hop Model (MHM)

multi-hop paths and physical buffer limits. This section is mainly based on the
work presented in [1, 5].

4.5.1. Network Calculus Developments

The model finds an upper bound for WCDMHM
(u,v,q) by replacing the variable com-

ponents in Eqn. 4.16 with upper bounds for them.
Firstly, the packet size of a flow cannot be greater than the maximum packet size
in the network. That is,

lmaxf ≤ Lmax ∀f ∈ F . (4.19)

Secondly, the model assumes that the resource allocation algorithm allocates
a data rate AR(u,v,q) to each queue link edge. The rate of the aggregate flow
traversing a queue is then limited by the access control scheme to the rate
allocated to this queue. That is,

UR(u,v,q) ≤ AR(u,v,q) ∀ (u, v, q) ∈ Eq. (4.20)

Obviously, rates must be allocated such that
∣∣∣Eq(u,v)∣∣∣∑
p=1

AR(u,v,q) ≤ R(u,v)∀ (u, v, q) ∈ Eq. (4.21)

From Eqn. 4.16 and 4.17, Eqn. 4.19 and 4.20 allow to compute the following
upper bounds for the worst-case delay and backlog at a queue link edge1.

WCDonline
(u,v,q) ≤

∑p
j=1 U

B
(u,v,q) + 2Lmax

R(u,v) −
∑p−1

j=1 A
R
(u,v,q)

(4.22)

WCBonline
(u,v,q) ≤ UB(u,v,q) + AR(u,v,q)

∑p
j=1 U

B
(u,v,q) + 2Lmax

R(u,v) −
∑p−1

j=1 A
R
(u,v,q)

≤ B(u,v,q) (4.23)

Finally, the burst of the aggregate flow traversing a queue has to be limited
such that it does not generate any buffer overflow. If we refer to the maximum
allowed burst at a queue as AB(u,v,q), i.e.,

UB(u,v,q) ≤ AB(u,v,q) ∀(u, v, q) ∈ Eq, (4.24)

1Note that Eqn. 4.21 ensures that the denominators in Eqn. 4.22 and 4.23 are strictly positive,
thereby ensuring that the bounds are both positive and not infinite nor undefined.

57

4. Network Resource Modeling: DetServ

these AB(u,v,q) bounds must be computed such that

WCBMHM
(u,v,q) = AB(u,v,q) + AR(u,v,q)

∑p
j=1A

B
(u,v,q) + 2Lmax

R(u,v) −
∑p−1

j=1 A
R
(u,v,q)

≤ B(u,v,q) (4.25)

The model also assumes that the resource allocation algorithm manages AB(u,v,q).
Eqn. 4.25 allows to recursively compute the AB(u,v,q) values independently of the
state of the network. αTB

AB
(u,v,q),A

R
(u,v,q)

corresponds to the maximum token bucket
arrival curve allowed to traverse a given queue link (u, v, q). We will denote it as
αMHM
(u,v,q) .

As a result, Eqn. 4.22, can be rewritten as

WCDonline
(u,v,q) ≤

∑p
j=1A

B
(u,v,q) + 2Lmax

R(u,v) −
∑p−1

j=1 A
R
(u,v,q)

= WCDMHM
(u,v,q) (4.26)

where WCDMHM
(u,v,q) is the upper bound of the worst-case delay WCDonline

(u,v,q) of a
queue link (u, v, q) ∈ Eq used by the MHM and that is independent of the state of
the network.

4.5.2. Model Operations

From these developments, the four DetServ model functions of the MHM are
defined in Fig. 4.3.
The model uses UB(u,v,q) and UR(u,v,q) as state variables for each queue (u, v, q) ∈ Eq.
The registration and deregistration methods simply consist in updating these
variables. The access control for a new flow simply consists of checking that
Eqn. 4.20 and 4.24 are always satisfied. Based on the rate allocated by the
resource allocation algorithm to each queue in the network, the AB(u,v,q) and
WCDMHM

(u,v,q) bounds can be computed once for each queue link edge (u, v, q) ∈ Eq
and the four model functions then require low computation overhead.

4.5.3. Limitations of the Multi-Hop Model

The MHM requires a data rate and maximum burst to be allocated to each
queue. These allocations then define the maximum rate and burst allowed at
each queue, as well as the maximum delay of each queue. The access control
checks the availability of two resources: burst and rate (HASACCESS method in
Fig. 4.3). Hence, it can happen that the access to a queue is blocked because its
rate budget is exhausted, while its burst limit AB(u,v,q) is not reached. In such a

58

4.5. Multi-Hop Model (MHM)

1: function GETDELAY((u, v, q))
2: return WCDMHM

(u,v,q) (Eqn. 4.26)

3:
4: function HASACCESS(f , (u, v, q))
5: if UB(u,v,q) + bf (Pof ,u) ≤ AB(u,v,q) and UR(u,v,q) + rf ≤ AR(u,v,q) then
6: return true
7: else
8: return false
9:

10: function REGISTERPATH(f , Pf)
11: for (u, v, q) ∈ Pf do
12: UB(u,v,q) ← UB(u,v,q) + bf (Pof ,u)

13: UR(u,v,q) ← UR(u,v,q) + rf

14:
15: function DEREGISTERPATH(f , Pf)
16: for (u, v, q) ∈ Pf do
17: UB(u,v,q) ← UB(u,v,q) − bf (Pof ,u)

18: UR(u,v,q) ← UR(u,v,q) − rf

Figure 4.3.: The four DetServ model functions for the Multi-Hop Model (MHM). The model
uses UB

(u,v,q) and UR
(u,v,q) as state variables for each queue (u, v, q) ∈ Eq. The registration and

deregistration of a path in the network simply consists in updating these variables. For its
part, the access control simply consists in checking that the state variables never exceed their
respective limits, which are defined is such a way that, if the variables stay below these limits,
(i) the maximum backlog at a queue will never exceed the buffer size of the queue, thereby
avoiding any buffer overflow, and (ii) the maximum delay for a queue will not exceed the delay
returned by GETDELAY for this queue.

situation, it would be beneficial to artificially reduce the buffer size AB(u,v,q) of
the queue. Indeed, this would, by Eqn. 4.26, reduce WCDMHM

(u,v,q) of the queue
itself and lower priority queues could then either (i) see their maximum delay
reduced (by Eqn. 4.26) or (ii) see their maximum allowed burst or rate increased
(by Eqn. 4.25). However, the opposite situation could also happen. That is, the
buffer capacity could be the bottleneck, in which case it would be beneficial to
trade-off rate in order to increase the maximum allowed bursts or reduce the
maximum delays.
In other words, the MHM requires the resource allocation algorithm to be
responsible for adjusting the trade-off between the resources, that is, to make
an a priori choice between buffer space, data rate, buffer capacity and delay.
However, adjusting this trade-off requires to know what is the bottleneck in the

59

4. Network Resource Modeling: DetServ

network or at a given link. Would flows be rejected because there is no buffer
capacity available anymore, no data rate available anymore, or because their
delay cannot be satisfied? Unfortunately, answering this question requires to
know the traffic demand, which is, because of our online approach (see Sec. 1.1),
not the case.

4.6. Threshold-Based Model (TBM)

The Threshold-Based Model (TBM) solves the shortcoming of the MHM by
choosing between buffer capacity and data rate as flows are added to the net-
work, thereby allocating the rate and buffer capacity resources only when needed
rather than pre-allocating them without knowing future flow requests.

4.6.1. Model Operations

In the TBM, the worst-case delay of each queue (Eqn. 4.16) is simply fixed by
defining a threshold AWCD

(u,v,q). Then, flows are accepted in a queue as long as the
worst-case delay of the queues at the same link do not exceed their respective
thresholds.
This approach has two main benefits. First, as mentioned, the data rate and
buffer space resources are allocated only when needed, rather than a priori,
thereby leading to a better utilization of the resources. Second, the resource
allocation algorithm is now simplified since it only has to optimize with respect
to one variable (the time) rather than two (buffer space and data rate). In other
words, the TBM replaces the three data rate, buffer space and delay resources by
a single one: delay.
Unfortunately, this comes at the cost of a higher computational complexity for
access control. Indeed, as UR(u,v,q) is not bounded anymore, it is not anymore
possible to compute a bound on the service curves offered to the different
queues (i.e., on the T(u,v,q) and R(u,v,q) parameters). Adding a flow in a queue
will update the service curve offered to lower priority queues (by Eqn. 4.14
and 4.15). Hence, when adding a flow in a queue (u, v, q), besides checking
that WCDonline

(u,v,q) ≤ AWCD
(u,v,q), the access control mechanism has to check that the

thresholds of lower priority queues are also not exceeded. That is, the access
control mechanism has to check that

WCDonline
(u,v,j) ≤ AWCD

(u,v,j) ∀ j : q ≤ j ≤
∣∣∣Eq(u,v)∣∣∣ . (4.27)

Besides, the access control scheme has to make sure that no buffer overflow can

60

4.6. Threshold-Based Model (TBM)

be caused by the embedding of the new flow, i.e.,

WCBonline
(u,v,j) ≤ B(u,v,j) ∀ j : q ≤ j ≤

∣∣∣Eq(u,v)∣∣∣ . (4.28)

1: function GETDELAY((u, v, q))
2: return AWCD

(u,v,q)

3:
4: function HASACCESS(f , (u, v, q))
5: for i ∈ {p, . . . ,

∣∣∣Eq(u,v)∣∣∣} do

6: WCDTBM
(u,v,q) ← Eqn. 4.29 including new flow

7: WCBTBM
(u,v,q) ← Eqn. 4.30 including new flow

8: if WCDTBM
(u,v,q) > AWCD

(u,v,q)] or WCBTBM
(u,v,q) > B(u,v,q) then

9: return false
10: return true
11:
12: function REGISTERPATH(f , Pf)
13: for (u, v, q) ∈ Pf do
14: UB(u,v,q) ← UB(u,v,q) + bf (Pof ,u)

15: UR(u,v,q) ← UR(u,v,q) + rf

16: Update lmax(u,v,q)

17:
18: function DEREGISTERPATH(f , Pf)
19: for (u, v, q) ∈ Pf do
20: UB(u,v,q) ← UB(u,v,q) − bf (Pof ,u)

21: UR(u,v,q) ← UR(u,v,q) − rf
22: Update lmax(u,v,q)

Figure 4.4.: The four DetServ model functions for the Threshold-Based Model (TBM). The
threshold on the delay of a queue is chosen by the resource allocation algorithm. Access to a
queue link edge (u, v, q) ∈ Eq is then checked by checking that the new worst-case bound does
not exceed its threshold value. Besides, as the state of a queue influences the state of lower
priority queues, the access control mechanism also has to check that the worst-case bounds of
lower priority queues do not exceed their respective thresholds. Finally, the buffer capacity also
has to be checked for the different queues.

Note that Eqn. 4.16 and 4.17 require the knowledge of the maximum packet size
in lower priority queues. This means that, when embedding a flow in a queue,

61

4. Network Resource Modeling: DetServ

higher priority queues also have to be checked since the maximum packet size
might have changed. However, because best-effort traffic flows through the
lowest priority queue, we cannot keep track of this value and we hence replace
it by Lmax. From this, we have

WCDTBM
(u,v,q) =

∑p
j=1 U

B
(u,v,j) + Lmax + lmax(u,v,j)

R(u,v) −
∑p−1

j=1 U
R
(u,v,j)

≤ AWCD
(u,v,j), (4.29)

and

WCBTBM
(u,v,q) = UB(u,v,j) + UR(u,v,j)

∑p−1
j=1 U

B
(u,v,j) + Lmax + lmax(u,v,j)

R(u,v) −
∑p−1

j=1 U
R
(u,v,j)

≤ B(u,v,j), (4.30)

which only depend on the state of higher priority queues. As a result, it is
sufficient to only check lower priority queues when embedding a new flow.
The four model functions of the TBM are given in Fig. 4.4. As for the MHM,
the registration and deregistration methods simply consist in updating the state
variables. However, we here have one additional state variable: the maximum
packet size at each queue. The delay of a queue link edge is now the one fixed by
the resource allocation algorithm and the access control scheme simply verifies
that Eqn. 4.27 and 4.28 would still be verified for the subject queue and the lower
priorities queues if the flow is embedded.

4.6.2. Shortcomings of the TBM

The TBM, though having major advantages, presents two drawbacks. First,
the complexity of the HASACCESS model function is increased by a factor of
up to

∣∣∣Eq(u,v)∣∣∣. Because the HASACCESS function is called each time the routing
algorithm visits an edge, this might have a considerable influence on the overall
request processing time. However, we will show in Sec. 6.3 that the increase
in runtime is reasonable and acceptable for industrial scenarios. Second, the
model presents an inherent blocking problem. Indeed, if a low priority queue is
close to its delay threshold, it will block further embeddings in higher priority
queues, even if these are still far from their own delay threshold. Consequently,
the routing algorithm has now to operate cautiously when embedding flows in
order to avoid such a blocking situation which would inevitably cause resource
waste.

62

4.7. Computation of the Burst Increase

4.7. Computation of the Burst Increase

Though we mentioned that the burst of a flow changes at each hop, we did
not explain how these changes can be computed on a per-flow basis and how
this impacts delay computations. From Sec. 4.2, we know that an aggregate
flow with arrival curve αTB

UR
(u,v,q),U

B
(u,v,q)

traversing a queue offering a service curve

βRLR(u,v,q),T(u,v,q)
will see its burst UB(u,v,q) increased by UR(u,v,q)T(u,v,q), i.e.,

UB(u,v,q)
∗ = UB(u,v,q) + UR(u,v,q)T(u,v,q). (4.31)

UB(u,v,q)
∗ is the new burst of the entire aggregate. Nevertheless, the flows compos-

ing this aggregate might take different routes at the next hop and the individual
burst increases of the individual flows composing the aggregate must be com-
puted. For that reason the burstiness of a flow bf (Pof ,u) is depending on the path
it has taken the node u.
There are four opportunities for implementing bf (Pof ,u):

BI-REAL Eqn. 4.31 can be rewritten as a multi hop version. Therefore, the burst
increase of each hop the flow has taken to this particular node has to be
summed up:

bf (Pof ,u) = bf + rf
∑

(u,v,q)∈Pof ,u

T(u,v,q). (4.32)

The use of T(u,v,q) would cause that when a flow is embedded in a queue,
the burst increases of other flows traversing the same link might change,
possibly violating already performed access control checks. As explained
in Sec. 2.5, we want to avoid such a situation and the burst increase of a
flow must therefore be, as the worst-case delay of a queue, independent of
the network state.

The WCD(u,v,q) is used to achieve a static behavior of the network model.
Since WCD(u,v,q) is always bigger equal then the corresponding T(u,v,q)

T(u,v,q) ≤ WCD(u,v,q) (4.33)

equation 4.32 can be reformulate to

bf (Pof ,u) = bf + rf
∑

(u,v,q)∈Pof ,u

WCD(u,v,q). (4.34)

by not loosing the determinism.

On the one hand the REAL mode provides accurate bounds by considering
the burst increase in the model. On the other hand the formulation is

63

4. Network Resource Modeling: DetServ

depending on the whole path it has taken and is used in the HASACCESS
method. In [6] we call this an M∞ metric. This type of metrics lead to a vio-
lation of the Optimal substructure property. Which implies that optimality
and completeness of state of the art routing algorithms could be lost.

BI-WCB To avoid the violation of the Optimal substructure property the Worst
Case Burst increase could be considered. Therefore, we simply consider
the delay constraint of the flow tf as the delay the which was experienced
so fare, knowing that this delay will be never exited.

bf (Pof ,u) = bf + rf tf . (4.35)

This consideration is valid but less tied then the REAL mode.

BI-WCB-RR Worst Case Burst - Real Reservation if the compromise of both. It
uses WCB only during the routing phase, which allows to use optimal and
complete algorithms. The BI-REAL mode is used during the reservation
phase, which enables more tide bounds than the pure WCB mode.

BI-NO We note that, if the cycle time (or inter-arrival time of packets) of a
flow is greater than its worst-case delay bound, then the burst increase
can be neglected. Indeed, in such a case, a packet is ensured to reach its
destination before the following packet is sent. As a result, packets of the
same flow will not queue up at any queue and the burst of the flow will
never increase. In this case the following burst increase formulation could
be used:

bf (Pof ,u) = bf . (4.36)

The performance of this burst increase modes is evaluated in chapter 6.3.

4.8. Input Link Shaping (ILS)

4.8.1. Towards Lower Bounds

So far, we considered that the arrival curve of the aggregate flow entering a
queue (u, v, q) ∈ Eq is βRLR(u,v,q),T(u,v,q)

, that is, that the burst of the aggregate flow
entering a queue is given by the sum of all the bursts of all the flows composing
the aggregate (see Eqn. 4.12). Nevertheless, the individual flows come from
physical links with limited capacities. Hence, the amount of traffic entering a
given queue is further limited by the capacity of the links it is coming from.
Considering this new bound on the traffic entering a queue, we can lower

64

4.8. Input Link Shaping (ILS)

time

data

∇
=
Ru

,v
,p

∇
=
R

∇ = U
R
(u,v

,p)

UB
(u,v,p)

lmax
u,v,p

Tu,v,p

Figure 4.5.: Shaped arrival curve of an aggregate flow traversing a queue (u, v, q) ∈ Eq coming
from an input link with rate R. The knowledge of the physical properties of the input link of the
flow allows us to limit the burst and rate of the aggregate respectively to the maximum packet
size lmax

u,v,p of the flow and to the maximum rate R of the link. Graphically, we can easily see that
such a shaping reduces the values of the backlog and delay bounds.

the corresponding arrival curves, yielding lower bound values and thereby
potentially accepting more flows in the network.
The idea, to which we refer to as Input Link Shaping (ILS), is illustrated in Fig. 4.5
for a given queue (u, v, q) traversed by a set of flows coming from a common
input link of capacity R. From the knowledge of the physical properties of the
input link, besides its traditional arrival curve, the aggregate flow is additionally
constrained by a token bucket arrival curve with rate R and burst lmaxu,v,p. A better
arrival curve for a flow constrained by two different token bucket arrival curves
being the minimum of these curves [135], the new arrival curve of the aggregate
flow is of the form shown in Fig. 4.5. We can see that the backlog and delay
bounds will always be smaller than if shaping was not taken into account,
highlighting the benefit of ILS.

4.8.2. ILS Does Not Contradict Network Calculus

In Sec. 4.2, we have presented network calculus results for computing the output
arrival curve of a flow after it has traversed a network node characterized by a
given service curve. We now propose to cut off a part of this arrival curve by
shaping it with the input link rate. Though this is intuitive, it might seem to
contradict the network calculus results which say that a big burst could happen.
The justification is the following. The results of network calculus theory are

65

4. Network Resource Modeling: DetServ

solely based on the arrival and service curve concepts. While the service curve
gives a lower bound on the service a network node will offer to a flow, it does
not specify anything regarding the maximum service the node could offer, hence
potentially allowing infinite service, i.e., infinite rate. Taking this into account,
network calculus results consider that an infinite service could instantly output
the current backlog as a single burst, which is why, in Eqn. 4.10, the output burst
corresponds to the worst-case backlog. As a matter of fact, we know more than
what the service curve concept provides to network calculus theory. Indeed, we
know that the service provided by the network node could never be higher than
the link rate. The shaping we introduce is hence augmenting network calculus
results, rather than contradicting them.

4.8.3. Adapting the MHM

In the MHM, the worst-case delay of a queue is made independent of the
network state by statically defining the maximum arrival curves allowed at each
queue. Therefore, to keep the worst-case delay of a queue static, ILS must be
introduced in a way that is also independent of the network state. For a given
queue-link edge(u, v, q) ∈ Eq, the worst-case burst that could ever enter the queue
is nLmax where n is the number of links entering node u. The worst-case rate
is for its part given by the sum of the rates of the individual incoming links.
Therefore, the arrival curve αMHM

(u,v,q) considered so far can be replaced by

αMHM−ILS
(u,v,q)

= min

 ∑
x:(x,u)∈Eq

(
αTBRx,u,Lmax

)
, αMHM

(u,v,q)

 . (4.37)

To present the worst case burstWCBMHM−ILS
(u,v,q)

and the worst case delayWCDMHM−ILS
(u,v,q)

in a clearly arranged way we swap the presentation stile to the curve based
formulation presented in section 4.2.1. There two functions where introduced.
One to compute the vertical deviation between a arrival curve and a service
curve (v(α, β)) and one to compute the horizontal deviation between a arrival
curve and a service curve (h(α, β)). The service curve of MHM can be derived
form equation 4.5 and 4.26. Which is:

βMHM
(u,v,q) =

(
βRL
R(u,v),2

Lmax

R(u,v)

−
p−1∑
j=1

αMHM
(u,v,j)

)+

. (4.38)

Based on the arrival curve αMHM−ILS
(u,v,q)

and the service curve βMHM
(u,v,q) the worst

case burst

66

4.8. Input Link Shaping (ILS)

WCBMHM−ILS
(u,v,q)

= h
(
αMHM−ILS
(u,v,q)

, βMHM
(u,v,q)

)
≤ WCDMHM

(u,v,q) ≤ B(u,v,q) (4.39)

and the worst case delay

WCDMHM−ILS
(u,v,q)

= v
(
αMHM−ILS
(u,v,q)

, βMHM
(u,v,q)

)
≤ WCDMHM

(u,v,q) (4.40)

are calculated. Please not that the equations 4.39 and 4.40 are a drop in re-
placement for the original MHM formulation (Equ. 4.25 and 4.26). The new
formulation will never exit the bounds of the original MHM but has the potential
to provide more tied once. In addition this formulation is only considered by the
resource allocation algorithm which computes AR(u,v,q) and AB(u,v,q) by using the
new formulation. Once these computations are done, the four DetServ model
functions described in Fig. 4.3 are manly left unchanged. Only the GETDELAY
method has to return the new static delay bound WCDMHM−ILS

(u,v,q)
.

4.8.4. Adapting the TBM

While present, the benefits of ILS for the MHM are limited. Indeed, since we
only keep track of worst-case arrival curves, ILS also has to be done worst-case,
i.e., considering the worst-case packet size and rates coming from each input
link.
For the threshold-based model, the arrival curves are computed live. Therefore,
the maximum packet size and rate for each incoming link can also be computed
on the fly. This can be done by introducing three new state variables UR(m,u,v,q),
UB(m,u,v,q) and lmax(m,u,v,q) keeping track respectively of the rate, burst and maximum
packet size of the aggregate flow coming from the physical edge (u, v) and
traversing the queue-link edge (u, v, q). Instead of considering the arrival curve
consisting of the sum of all the arrival curves of the flows entering the queue,
the contribution of each input link can now be shaped individually. That is, the
arrival curve considered at a queue (u, v, q) is now

αTBM−ILS
(u,v,q)

=
∑

x:(x,u)∈Eq

(
min

{
αTBR(x,u),lmax

(x,u,v,q)
, αTBUR

(x,u,v,q),U
B
(x,u,v,q)

})
, (4.41)

i.e., a sum of shaped arrival curves.
An example for two input links is shown in Fig. 4.6. One can see that the
summed up arrival curve can have up to n knee points, where n is the number
of physical input links.
For the same reasons as for the MHM, but with increased impact since shaping
is done with the current real values, the computed worst-case delay and backlog

67

4. Network Resource Modeling: DetServ

time

data

∇
=
R
(u

,v
,p
)

∇ = U
R
(m,u,v,p

)
+ U

R
(o,u,v

,p)

∇ = R(m,u) +R(o,u)

∇ = R(m,u) + UR
(o,u,v,p)

UB
(m,u,v,p)

+ UB
(o,u,v,p)

lmax
(m,u,v,p)

+ lmax
(o,u,v,p)

T(u,v,p)

Figure 4.6.: Example of shaped arrival curve for the TBM. The aggregate flow traversing queue
(u, v, q) comes from two input links (m,u) and (o, u). Each input link has shaped the traffic it
carries as shown in Fig. 4.5 and the resulting aggregate, corresponding to the sum of the two
shaped arrival curves, is then composed of three segments with decreasing slopes. The backlog
and delay bounds can then be reached at any angular point of both curves. One can see that the
bounds will always be lower than if shaping was not taken into account.

values will be lower. As a consequence, the limits AWCD
(u,v,q) and B(u,v,q) will be

reached later, thereby potentially allowing more flows to be accepted.
Fig. 4.7 fhows the new ILS avare imlementation of the TBM. Obviously, the GET-
DELAY method does not change in comparison to Fig. 4.4. The REGISTERPATH
and DEREGISTERPATH methods have to be updated to keep track of the new state
variables. For its part, the HASACCESS method only has to be changed at lines
6-7. Since the arrival curves are not token buckets anymore, the formulas for
computing the worst-case delay WCDTBM

(u,v,q) (Eqn. 4.29) and backlog WCBTBM
(u,v,q)

(Eqn. 4.30) are not valid anymore and these values have now to be computed
geometrically as it is done for the adaption of the MHM. First we define the new
service curve for the ILS enabled TBM as

βTBM−ILS
(u,v,q)

=

(
βRL
R(u,v),2

Lmax

R(u,v)

−
p−1∑
j=1

αTBM−ILS
(u,v,j)

)+

. (4.42)

From this, we have the worst case delay

WCDTBM−ILS
(u,v,q)

= h
(
αTBM−ILS
(u,v,q)

, βTBM−ILS
(u,v,q)

)
≤ WCDTBM

(u,v,q) (4.43)

68

4.8. Input Link Shaping (ILS)

1: function GETDELAY(f ,(u, v, q))
2: return AWCD

(u,v,q)

3:
4: function HASACCESS(f , (m,u, v, q))
5: for i ∈ {p, . . . ,

∣∣∣Eq(u,v)∣∣∣} do

6: WCDTBM−ILS
(u,v,q)

← Eqn. 4.43 including new flow
7: WCBTBM−ILS

(u,v,q)
← Eqn. 4.44 including new flow

8: if WCDTBM−ILS
(u,v,q)

> AWCD
(u,v,q)] or WCBTBM−ILS

(u,v,q)
> B(u,v,q) then

9: return false
10: return true
11:
12: function REGISTERPATH(f , Pf)
13: for (m,u, v, q) ∈ Pf do
14: UB(m,u,v,q) ← UB(m,u,v,q) + bf (Pof ,u)

15: UR(m,u,v,q) ← UR(m,u,v,q) + rf

16: Update lmax(m,u,v,q)

17:
18: function DEREGISTERPATH(f , Pf)
19: for (m,u, v, q) ∈ Pf do
20: UB(m,u,v,q) ← UB(m,u,v,q) − bf (Pof ,u)

21: UR(m,u,v,q) ← UR(m,u,v,q) − rf
22: Update lmax(m,u,v,q)

Figure 4.7.: The four DetServ model functions for the TBM with ILS. The threshold on the
delay of a queue is chosen by the resource allocation algorithm. Access to a queue link edge
(u, v, q) ∈ Eq is then checked by checking that the new worst-case bound does not exceed its
threshold value. Besides, as the state of a queue influences the state of lower priority queues, the
access control mechanism also has to check that the worst-case bounds of lower priority queues
do not exceed their respective thresholds. Finally, the buffer capacity also has to be checked for
the different queues.

69

4. Network Resource Modeling: Deterministic Services (DetServ)

and the worst case burst

WCBTBM−ILS
(u,v,q)

= v
(
αTBM−ILS
(u,v,q)

, βTBM−ILS
(u,v,q)

)
≤ WCBTBM

(u,v,q) (4.44)

to check if the given delay and buffer constraints are not violated. Pleas note
that this new formulation will never exit the bounds of the original TBM but has
the potential to provide more tied once.

4.8.5. Impact on the Performance of the MHM

As mentioned, because the MHM performs shaping based on worst-case values,
we expect the impact on the amount of flows that can be embedded to be quite
low. Nevertheless, as everything is computed during initialization, the request
processing time of the MHM should not be affected by ILS. Hence, for the MHM,
ILS has only benefits, though limited.

4.8.6. Impact on the Performance of the TBM

On the contrary, the TBM performs shaping based on the current traffic. Hence,
the impact of ILS on the amount of flows that can be accepted in the network
is expected to be greater than for the MHM. While ILS does not slow down
the MHM, the runtime of the TBM should be much more affected. Indeed, the
increased amount of knee points in the arrival curves does not allow anymore
the computation of the worst-case delay and burst with formulas. From the
convexity of the region between the curves (see Fig. 4.6), the delay (resp. backlog)
bound can be computed by comparing the horizontal (resp. vertical) deviation at
each knee point of the two curves. This inevitably slows down the HASACCESS
method. Hence, ILS is expected to have a major impact on the TBM, both in
terms of increased performance and increased runtime.

70

4.8. Input Link Shaping (ILS)

Table 4.1.: Summary of Main Notations
General model

N set of nodes of a graph (G)
E set of edges of a graph (G)
G = (N , E) graph consisting of a set of nodes (N) and a set of edges (E)

Network model
(u, v) edge of a physical link from node u to node v
(u, v, q) edge of a Queue link from node u to node v via queue q
(m,u, v, q) edge of a Queue link from node u to node v via queue q

from physical edge m
Ep = {(u, v)} set of edges of a graph (G)
Gp = (N , Ep) graph consists of a set of nodes (N) and a set of edges (E)
Eq = {(u, v, q)} set of edges of a graph (G)
Gq = (N , Eq) graph consists of a set of nodes (N) and a set of edges (E)
Eq
(u,v)
⊆ Eq Set of queue links (u, v, q) traversing physical link (u, v)∣∣∣Eq(u,v)∣∣∣ number of queues of a physical link (u, v)

Flow model
F set of flows (f) embedded in the Graph G
of , df Origin and destination nodes of flow f
rf Avg. (mean) bit rate [bit/s] of flow f
bf Burstiness parameter [Byte] of flow f
tf End-to-end delay limit [s] of flow f

Path model
P(o,d) path of a flow f from origin o to destination d over edges in

E .
Pf path of a flow f which contains the edges (m,u, v, q) from to
Cost(Pf) Cost of path Pf
D(Pf) End-to-end worst-case delay of path Pf

Network resource model
R(u,v); R(u,v,q) service data rate of an edge
T(u,v,q) service delay of an edge
WCD(u,v,q) Worst Case Delay of an edge
WCB(u,v,q) Worst Case Burst of an edge
B(u,v,q) buffer capacity of an edge
A set of resource allocation parameter
AR(u,v,q); A

R
(m,u,v,q) Bit rate allocated to an edge

AB(u,v,q); A
B
(m,u,v,q) Buffer capacity alocated to an edge

AWCD
(u,v,q) Worst Case Dealy alocated to an edge
U set of resource utilisation parameter
UR(u,v,q); U

R
(m,u,v,q) Bit rate utilisation of an edge

UB(u,v,q); U
B
(m,u,v,q) Buffer capacity utilisation of an edge

71

4. Network Resource Modeling: DetServ

72

5. Optimization Problems

Before we can discuss the different optimization problems, a definition of the
optimization goal has to be stated. We assume that there is an exponentially
distributed arrival process, which creates new requests with a rate λF . The termi-
nation of a flow is also defined as an exponentially distributed process with an
average holding time hF . This assumption is possible because each independent
automation module within a factory will request real-time connections. Since
the number of automation modules is increasing the number of independent
connection requests increases. This leads to the fact that the arrival and the
termination process could be modeled as an exponentially distributed process.
The traffic intensity the system has to cover is defined as

y = λFhF . (5.1)

Network
Resource
Modeling

Routing

Cost
Function

Resource
Allocation

Figure 5.1.: dependencies of Delay-Constrained Least-Cost (DCLC) Routing, Resource Allocation
and Cost Function

73

5. Optimization Problems

Erlang formula B defines the blocking probabilityBP as a function of the number
of available connection N and the traffic intensity y.

BP (N, y) =
yN

N !∑N
i=0

yi

i!

(5.2)

The objective of the real-time Quality of Service (QoS) framework is to maxi-
mize the traffic intensity (y) in a given network by varying the paths of all the
embedded flows and increase the flow f arrival rate (λF).

max
λF

y (5.3)

Equation 5.2 describes the probability of blocking for classical telecommuni-
cation systems. The calculation of the number of channels N for a multi hop
network is not straightforward. However, we can calculate the blocking probabil-
ity BP by an online simulation of the QoS framework. This blocking probability
(BP) should be smaller than a maximum blocking probability (BPmax).

BP ≤ BPmax (5.4)

Figure 5.1 shows that the industrial QoS framework divides into four parts. In
the previous chapter the network resource models were discussed. This chapter
covers the three optimization problems/algorithms. First we discuss how the
routing algorithm (Section 5.1) influences the performance of the industrial QoS
framework. The routing algorithms performance mainly depends on the cost
function (Section 5.2). The cost functions defines which resources are rare and
thereforemore expensive. The resource allocation (Section 5.3) adapts the static
resource assignment of the network resource model to work around such rare
resources. This chapter is mainly based on [3].

5.1. Routing Problem

Routing, i.e., determining a route (path) from a source node to a destination node
through a sequence of intermediate switching nodes, is an elementary function
of the network layer in communication networks. Given the importance of
routing for communication networks, a diverse array of routing algorithms have
been designed.
Providing QoS is an important requirement for a wide range of communication
network settings and applications. For instance, multimedia network applica-
tions require QoS from the network service, as do many network applications in
industrial networks [144] and the smart grid [145] as well as networked control

74

5.2. Cost Function design Problem

systems [146]. The required QoS is often in the form of delay bounds (con-
straints) for the data packets traversing the network. Accordingly, extensive
research has developed routing algorithms that satisfy given delay constraints
while minimizing some cost metric, i.e., so-called DCLC routing algorithms.
This problem statement is of the following form:

min
Pf∈P(o,d)

Cost(Pf)

D(Pf) ≤ tf

which corresponds to the definition of the routing algorithm needed in the func-
tion split (Section 2.4). DCLC routing algorithms and similar routing algorithms
that support QoS networking are often referred to as QoS routing algorithms.
Generally, the route determination (computation) is either carried out in dis-
tributed nodes, e.g., the control modules in individual distributed Internet
Protocol (IP) routers, or by a centralized controller, e.g., a Software Defined
Networking (SDN) controller [147, 148, 39, 149]. Distributed routing algorithms
have been intensely researched for traditional IP routing, e.g., [32, 33, 31], and
more recently for ad hoc networks, see e.g., [28, 27, 30, 29]. In the mid 1990s,
the development of QoS paradigms for the Internet, see e.g, [26, 25], led to a re-
newed interest in examining routing and spurred the development of a plethora
of QoS routing algorithms, which mainly targeted distributed computation. In
sharp contrast, the emergence of the SDN paradigm [21, 22] has shifted the
research focus to centralized network control, including centralized routing
computations [23, 24].
In section 3.2 we have summarized the routing algorithms of the state of the art.
Out of this set of QoS routing algorithms we have to select the routing algorithm
which maximizes the optimization goal (Equation 5.3) at an acceptable runtime.
However, it is not clear that an optimal routing algorithm will also lead to a
higher traffic intensity. Therefore, the routing algorithm selection has to be
evaluated within the context of the entire QoS framework.

5.2. Cost Function design Problem

The cost behavior of the cost function influences the global optimality of a
greedy routing system. Depending on the design of this cost function the
overall blocking probability could be minimized. Only if the cost function
expresses the negative impact of this path for future embeddings correctly, will
this path lead to a higher network utilization. An optimal cost function needs
information about the future requests, the DCLC Routing algorithm behavior,

75

5. Optimization Problems

the Resource Allocation algorithm and the network resource model. Only if
all this aspects are considered in a cost function,can global optimality can be
achieved. Unfortunately, there is no optimal cost function or even the possibility
of proofing the cost functions optimality for big topologies. Therefore, we
define seven cost functions within this section and discuss and evaluate their
performance.
The general definition of the path dependent cost function Cost(Pf) leads to a
full combinatorial search during the routing process [6]. Therefore, a reduction
of the problem complexity is needed. We define Cost(Pf) as the flowing:

Cost(Pf) =
∑

(m,u,v,q)∈Pf

Costx(m,u, v, q) (5.5)

The cost function provides a cost value for a queue link edge. A queue link edge
consists of the flowing parameter:

u source of an link

v destination of an link

q queue of an link

m link leading to the link

The considered cost functions consist of four basic values:

priority (p) provides the priority value of a Queue link from node u to node v
via queue q [p(u, v, q)]. The priorty value range is defined between 0 and
pmax. 0 is the higest priority and pmax the lowest.

maximal priority (pmax) provides the maximum priority value which is the
value of the lowest priority Queue link from node u to node v via queue q
[pmax(u, v, q)].

number of flows (nf) provides the number of flows traversing a physical link
from node u to node v [nf(u, v)], for a Queue link from node u to node v via
queue q [nf(u, v, q)] and for a Queue link from node u to node v via queue q
from physical edge m [nf(m,u, v, q)].

feasibility (fes) provides the feasibility value of a physical link from node u to
node v [fes(u, v)], a Queue link from node u to node v via queue q [fes(u, v, q)]
and a Queue link from node u to node v via queue q from physical edge m
[fes(m,u, v, q)]. The feasibility value is defined as the multiplier to the edge
resource consumption on which the access control is still valid.

76

5.2. Cost Function design Problem

constant value is necessary to formulate complex cost functions.

These basic building blocks are used to build more complex cost functions. We
group this cost functions into two classes. The first one is the class of the static
cost functions. The second one is the class of the dynamic cost functions.

5.2.1. Static Cost Functions

Static cost functions are based on network metrics which are considered to be
constant. These cost functions have the advantage that the computational effort
is negligible. However, the capabilities of resolving bottleneck situations is also
limited. In this section, we discuss three static cost functions.
Cost 1 (eq. 5.6) is the most simplistic cost function. At every edge the algorithm
requests costs, the cost value one will be returned. A least cost algorithm will
return the path which has the smallest possible hop count in the first place.
If the hop count is identical, the edge with the highest priority on the first
relaxed link will be taken due to the implementation of the algorithms. This is a
approximation of a Least Delay Path (LDP) search.

Cost 1(m,u, v, q) = 1 (5.6)

Cost 2 (eq. 5.7) is a hybrid cost function. It finds the shortest path in terms of hop
count if the priorities are the same. The queue with the highest priority comes
with a cost of 2 since p(u, v, q) returns zero in that case. If the number of priority
queues increases the cost value of the queue with the lowest priority converges
to one. The maximum cost difference between a high and a low priority queue
is one. This indicates that the algorithm can find paths with up to the double
hop length of the shortest path.

Cost 2(m,u, v, q) = 1 +
1

1 + p(u, v, q)
(5.7)

Cost 3 (eq. 5.8) is the linear version of Cost 2. The costs of a queue are between 1
and pmax. From this it is obvious that a pmax times longer path will be used, if it
consist only of low priority queues, to avoid high priority queues.

Cost 3(m,u, v, q) = pmax(u, v, q)− p(u, v, q) (5.8)

5.2.2. Dynamic Cost Functions

Dynamic cost functions adapt their cost value based on state full variables of the
network. Since this computation has to be performed online this cost functions

77

5. Optimization Problems

will have a higer computational complexity than the static cost functions. How-
ever, due to the dynamicity of the cost functions they potentially adapt better to
bottleneck situations.
Cost 4 (eq. 5.9) finds the shortest path in terms of hop count by having at least
a cost at one. The goal of the second part of the equation is to provide a high
cost for edges heavily used and a low cost for ones that are nearly empty. This
is achieved by calculating the distance ratio to the case where the resources are
occupied. This is achieved by calculating (fes(u, v)− 1). To normalize the values
among all edges it is multiplied by the number of flows served by this edge
(nf(m,u, v, q)). The result is the additional average number of flows which will
fit into this edge. The multiplicative inverse of average number of flows will
provide low costs for empty edges and high costs for the full ones.
As a result the routing algorithm will use the path which contains the edges with
the highest amount of free resources. Please note that Cost 4 is depending on
the input link. In [6] we call this an M1 metric. Please note that normal routing
algorithms might become suboptimal if they use this cost function.

Cost 4(m,u, v, q) = 1 +
1

(fes(m,u, v, q)− 1) nf(m,u, v, q)
(5.9)

To avoid the usage of a M1 metric we define Cost 5 (eq. 5.10) and Cost 6 (eq. 5.11).
They both folow the idea of Cost 4 but provide a smaller amount of cost values.
Cost 5 (eq. 5.10) considers the resource usage of the whole physical link (u, v).
This implies that all q-links of the physical link will have the same cost. Cost 6

(eq. 5.11) considers the resource usage of a q-link (u, v, q). In summary, all three
cost functions (Cost 4,Cost 5 and Cost 6) share the same calculation principle, but
execute it on a different complexity level.

Cost 5(m,u, v, q) = 1 +
1

(fes(u, v)− 1) nf(u, v)
(5.10)

Cost 6(m,u, v, q) = 1 +
1

(fes(u, v, q)− 1) nf(u, v, q)
(5.11)

Since Cost 4,Cost 5 and Cost 6 are pricing the edges of the graph based on the
demand they are able to reflect bottleneck situations in there cost value. Con-
strained Shortest Path (CSP) algorithms using this cost functions will use the
less costly non bottleneck edges, if possible.
We extend the pure feasibility based cost function Cost 5. In addition to the
search for the non bottleneck physical edges we use the high priority queues
first. This behavior is realized with Cost 7. The idea for this cost function is based
on the experiments made trough the evaluations.

78

5.3. Resource Allocation Problem

Cost 7(m,u, v, q) = 1 +
1

(fes(u, v)− 1) nf(u, v)(pmax(u, v, q)− p(u, v, q))
(5.12)

5.2.3. Discussion

The impact of the cost functions is highly dependent on the used routing algo-
rithm (Section 5.1) and the used resource model (Section 4). Indeed the different
suboptimal behaviors of routing algorithm could lead to an different impact on
the performance of a cost function. The implications of the resource modeling
is even more obvious. A resource model which does not consider input link
shaping is not able to benefit from an input link dependent cost function. To
deal with this, an evaluation is needed which compares all possible settings
of cost functions, routing algorithms, resource models and Resource allocation
algorithms in different network scenarios. This evaluation is extensively done
in Section 6.

5.3. Resource Allocation Problem

With our network resource model, the resource allocation can readily be executed
periodically in the background to optimize the queue link configuration of
each physical link. Generally, a potential resource allocation algorithm has
to optimize the allocation of the resource for the different models. For the
Multi-Hop Model (MHM) the allocated rate AR(u,v,q) and the allocated burst
AB(u,v,q) have to be adapted. The Threshold-Based Model (TBM) needs only
adjustments of the allocated worst case delay bound AWCD

(u,v,q). We refer to the
set of adjustable parameter as A. The resource allocation algorithm should
change this parameters to avoid bottleneck situations of the network resources.
Bottlenecks could arise for each of the three types of resources:

• data rate, indicated through the utilized mean transmission bit rate UR(u,v,q)

• buffer space, indicated through the utilized buffer UB(u,v,q)

• delay limit utilization, indicated through the difference between the delay
limits tf and the worst-case path delays D(Pf).

For an actual network operating with the proposed function split approach, only
the online routing needs to be executed when a new flow requests admission. As
the arrivals of new flow requests or departures of existing flows occur typically
on a slow time scale, significant changes in the resource utilization of the queue

79

5. Optimization Problems

links occur only slowly. Thus, executing the resource allocation periodically
in the background will typically be sufficient for conducting the routing (and
admission control) with a resource allocation that is (nearly) up-to-date and
close to optimal for the currently carried flows.
Please notice that changes in the allocation parameter are only allowed if they
do not violate the buffer constraint (MHM: Equation 4.25; TBM: Equation 4.30)
of the network resource models so that the packet loss constraint (Equation 2.3)

L(Pf) = 0 ∀f ∈ F

stays valid. In addition, it is only allowed to do changes which still ensure the
end-to-end delay bound (Equation 2.2)

D(Pf) ≤ tf ∀f ∈ F .

The optimal solution of the general resource allocation problem is beyond the
scope of this thesis. However, in order to illustrate a possible resource allocation
approach for our overall function split QoS framework, we propose an elemen-
tary resource (rate) allocation algorithm and the Tunable Resource Allocation
Algorithm (TRAA) in the next subsections.

5.3.1. Elementary Resource Allocation Algorithm

Initially, for the commencement of operation of a network, link rates are allocated
according to historic traffic observations for similar networks and predictions
of traffic patterns, similar to [154]. Then, the resource allocation algorithm
in Figs. 5.2 and 5.3 is periodically employed in the background (offline) to
sequentially examine rate allocations at the individual physical connections (u, v)

element of the set of physical connections Ep. The current state of the network
resource model (Section 4) is copied over to a virtual network resource model,
which is then used (in the background) for executing the resource allocation
algorithm.
The brute-force search in Line 10 of Fig. 5.2 is over a prescribed reasonably large
set AP of rate allocations AR(u,v,q)∈A(u,v)

to all the queue links q ∈ Eq
(u,v)

traversing
the considered physical link (u, v). For instance in our numerical evaluations in
Section 6.2.3 we consider the allocation of the total physical transmission bit rate
1 Gb/s in 5 Mbyte/s steps to the individual queue links.
For a given considered rate allocation to all the queue links AR(u,v,q)∈A(u,v)

, the
algorithm in Fig. 5.3 estimates the number of flows that can be supported in two
main steps. In a first step (Lines 2–4) the already admitted flows are added one-
by-one to the virtual network resource model. If all admitted flows can still be

80

5.3. Resource Allocation Problem

1: procedure RESOURCEALLOCATION
2: for all (u, v) ∈ Ep do
3: Virtual Netw. Res. Model← Netw. Res. Model
4: Execute Steps on Virtual Netw. Res. Model
5: F (u,v) = Set of admitted flows traversing (u, v)

6: for all f ∈ F (u,v) do
7: DEREGISTERPATH(Pf)

8: Fmax = 0

9: for all AR(u,v,q)∈A(u,v)
∈ AP do

10: F = FLOWCOUNTEST(AR(u,v,q)∈A(u,v)
)

11: if F > Fmax then
12: Fmax = F

13: ARmax = AR(u,v,q)∈A(u,v)

14: if Fmax > |F (u,v)| then
15: Netw. Res. Model← ARmax

16: for all (u, v, q) ∈ Eq
(u,v)

do
17: Evaluate WCDMHM

(u,v,q) from Eqn. (4.26)
18: Evaluate AB(u,v,q) from Eqn. (4.25)

19: for all f ∈ F (u,v) do
20: DEREGISTERPATH(Pf),
21: REGISTERPATH(DOROUTING(f))

Figure 5.2.: Resource allocation algorithm executed periodically in background: The algorithm
cycles through all physically links (u, v) of the network. The current real network resource
model is first copied over to a virtual network resource model to examine candidate resource
(rate) allocations AR

(u,v,q)∈A(u,v)
to the set Eq(u,v) of queue links traversing physical link (u, v). The

candidate allocations AR
(u,v,q)∈A(u,v)

are from a prescribed set AP . The resource allocation AR
max

supporting the highest number of flows, as determined by the flow count estimation algorithm
in Fig. 5.3, is implemented in the real network resource model (provided AR

max supports more
flows than the current allocation).

accommodated, the second step (Lines 5–9) estimates the number of additional
flows that the node can carry with the considered rate allocation. For this
estimation, new flows are generated from a statistical flow model. The statistical
flow model could, for instance, average the flow model parameter values (see
Table 4.1) of the admitted flows F (u,v) or uniformly randomly draw each added
flow from F (u,v) (which is considered in our evaluations in Section 6.2).
We note that the resource allocation algorithm in Fig. 5.2 always starts from a
valid state since the admission control has only admitted flows whose delay
limits can be met with the currently considered network resource allocation. The

81

5. Optimization Problems

1: procedure FLOWCOUNTEST((AR(u,v,q)∈A(u,v)
)

2: for all Admitted flows f ∈ F (u,v) do
3: if REGISTERPATH(DOROUTING(f)) = False then
4: return 0
5: FlowCount = |F (u,v)|
6: New flow n = StatModel(F (u,v))

7: while REGISTERPATH(DOROUTING(f)) = True do
8: New flow n = StatModel(F (u,v))

9: FlowCount + +

10: return FlowCount

Figure 5.3.: Flow count estimator algorithm for testing a candidate resource (rate) allocation
AR

(u,v,q)∈A(u,v)
: The admitted flows that are currently traversing the examined physical link (u, v)

are added one by one to the virtual network resource model. After all admitted flows have been
successfully added, additional new flows are generated according to a statistical model of the
flows currently traversing the link (u, v). The total number of flows (already admitted flows
plus new flows from the statistical model) that the node can accommodate subject to the QoS
constraints is returned to the resource allocation algorithm in Fig. 5.2.

search for a new rate allocation pattern on the virtual network resource model
delivers a pattern that supports at least the currently admitted flows (and poten-
tially additional new flows). Thus, already admitted flows are guaranteed to still
have a valid path when a new resource allocation pattern is adopted in Line 15
of Fig. 5.2. Line 17–18 uses Eq. 4.26 to update the queue link delay budgets
WCDMHM

(u,v,q) , which are used to evaluate the end-to-end delay requirement D(Pf).
In addition the allocated buffer capacity AB(u,v,q) is updated with Eq. 4.25. The
flows are shifted to their valid paths with the new resource allocation pattern
through executing the flow removal and addition in Line 24 of Fig. 5.2. Running
this resource allocation algorithm periodically in the background following the
general strategies for periodic background processes in networks [155] adapts
the resource allocation to the admitted traffic flows and, if possible, allows for
the admission of new flows.

5.3.2. Tunable Resource Allocation Algorithm (TRAA)

There is a fundamental trade-off within the resource allocation problem. Utiliz-
ing links higher will cause also higher delays. A valid strategy to handle this
trade-off properly is to increase the delay border, enabling a higher utilization at
bottleneck links. This will lead to a higher utilization at the bottlenecks in the
network. On the other hand a delay decrease at the low utilized links should be
performed to enable a low end-to-end delay. In addition to this, a rebalancing of
the resources is needed. For example the MHM could have some burst left even

82

5.3. Resource Allocation Problem

1: procedure RESOURCEALLOCATION
2: Spl get set of all physical links
3: sort Spl by utilization
4: Shu is the TRAAer percent of the high utilized links from Spl
5: Slu is the TRAAer percent of the low utilized links from Spl
6: for all Slu do
7: A = Optimize Equations 5.13 with -TRAAdv
8: update A parameter at model
9: for all Shu do

10: A = Optimize Equations 5.13 with -TRAAdv
11: update A parameter at model

Figure 5.4.: Tunable Resource Allocation Algorithm (TRAA) listing

if all allocated rate is consumed. This burst will cause queuing delay even if it is
impossible to consume it. A resource allocation scheme has to eliminate such
kind of situations.

Figure 5.4 shows the algorithm listing of the Tunable Resource Allocation Algo-
rithm (TRAA). The algorithm should be called if TRAAnf flows were embedded
since the last execution. The algorithm itself sorts all the physical links by its
utilization. This sorted set is used to get the TRAAer present of the high and low
utilized links. The first optimization step is the decrease of the delay level for
the low utilized links and the update of the parameter. Since the delay deviation
of flows F is increased the increase of the delay level at the high utilized links
could be done.

To solve this challenges two optimization problems are defined. Problem formu-
lation 5.13 shows how the resource balancing and the change of the link delay
level is realized. The first step is the definition of the optimization goal. The
goal is the maximization of the link feasibility by varying the corresponding set
of resource allocation parameter. This will optimize the resource balancing. The
second step is to check that the changes of the set of resource allocation parame-
ter do not lead to an violation of the end-to-end delay constraint tf . The next
constraint limits the overall movement of the delay value by the configurable
parameter TRAAdv. If this value is positive the link delay level will be increased.
A negative TRAAdv will decrease the link delay level. The last constraint defines
the problem as unfeasible if no improvement of this link is possible.

83

5. Optimization Problems

max
A

fes(u, v)

D(Pf) ≤ tf |Pf ∈ F∑
q∈Eq(u,v)

D(u, v, q,A)

D(u, v, q)
≤ (1 + TRAAdv)|Eq(u,v)|

1 < fes(u, v)

(5.13)

The impact of the TRAA is highly dependent on the used routing algorithm
(Section 5.1) and the used cost function (Section 5.2). Indeed the different
suboptimal behaviors of routing algorithms could lead to a different impact on
the performance of the TRAA. To deal with this an evaluation is needed which
compares all possible settings of cost functions, routing algorithms, resource
models and Resource allocation algorithms in different network scenarios. This
evaluation is extensively done in Section 6.

84

6. Evaluation

The design of the industrial Quality of Service (QoS) framework solves already
some parts of the problem statement. The Deterministic end-to-end delay guar-
antees (Problem 1), the unrestricted topologies (Problem 4) and the Cross traffic
(Problem 6) tolerance of the framework is covered by the deterministic network
resource models. The function split tempts to enable an online usage (Problem 2)
of the industrial QoS framework. However, a detailed performance analysis
which proofs the runtime behavior (Problem 2) , the flow capacity (Problem 3)
and the sensitivity to topology scaling (Problem 7) is missing. This gap will be
closed by this chapter.
Since the three common Software Defined Networking (SDN) controller (Flood-
light, Opendaylight and ONOS) are implemented in Java, we use Java for
implementing the industrial QoS framework, too. A component based entity
system was used as the general design pattern. This pattern enables to program
modular functionalities, which is well suited for implementing the different
network resource models.
In total three evaluations are presented. The function split uses Constrained
Shortest Path (CSP) algorithms for reducing the problem complexity. So the CSP
algorithms performance will influence the performance of the industrial QoS
framework. In Section 3.2 all suitable CSP algorithms are surveyed. However,
since the state of the art did not provide any complete performance comparison
of this CSP algorithms an algorithm selection could not be performed directly.
In Section 6.1 this gap will be closed by simulation.
Since the Function Split is a simplification of the original problem the results
of the Function Split based industrial QoS framework could be suboptimal.
In Section 6.2 the the performance impact of the complexity reduction of the
function split are evaluated against a Mixed Integer Program (MIP) solution.
There are many cross dependencies between the different implementation as-
pects of the industrial QoS framework. An overall performance analysis of the
entire QoS framework with finally all its configuration options is provided in
Section 6.3. Within this section a method, solving the algorithm selection prob-
lem for the industrial QoS framework is provided. Finally the best framework
configuration is used to judge if the framework provides sufficient performance
for the industrial use case.

85

6. Evaluation

topology size (m)

topological scenario

topology size (n)

delay constraint

Figure 6.1.: Illustration of four dimensions of performance evaluation framework for delay-
constrained least-cost (DCLC) routing algorithms: type of topology, scaling of the network
(topology) in two dimensions, and delay constraint.

6.1. CSP Algorithm Evaluation

In Section 3.2 we surveyed the stat of the art of CSP routing algorithms. In total
26 algorithms where identified (see Table 6.1). However, no comparison of all
these algorithms is available in the state of the art. To close this gap a large-scale
evaluation based on a consistent Java based re-implementation of all the studied
algorithms is performed in this section.
We classify the unicast QoS routing algorithms according to the underlying
routing strategy into several main categories, including priority queue based
algorithms, Bellman-Ford based algorithms, Lagrange relaxation based algo-
rithms, as well as algorithms that follow the least-cost and least-delay paths (see
Table 6.1).
In order to facilitate a comprehensive evaluation of QoS routing algorithms,
we introduce a four dimensional (4D) evaluation framework, as illustrated in
Fig. 6.1. The first dimension corresponds to the type of topology. The second and
third dimensions correspond to the scaling of a given type of topology into two
dimensions that characterize the “size” of the network. The fourth dimension
corresponds to the tightness of the delay constraint.
The comprehensive evaluation of the existing QoS routing algorithms with this

86

6.1. CSP Algorithm Evaluation
Ta

bl
e

6.
1.

:C
om

p
re

he
ns

iv
e

lis
to

fC
on

st
ra

in
ed

Sh
or

te
st

P
at

h
(C

SP
)a

nd
M

u
lt

i-
C

on
st

ra
in

ed
Sh

or
te

st
P

at
h

(M
C

SP
)a

lg
or

it
hm

s,
w

hi
ch

ca
n

be
em

pl
oy

ed
fo

r
D

el
ay

-C
on

st
ra

in
ed

Le
as

t-
C

os
t(

D
C

LC
)Q

oS
ro

ut
in

g.
T

he
al

go
ri

th
m

s
ar

e
ca

te
go

ri
ze

d
ac

co
rd

in
g

to
th

e
un

de
rl

yi
ng

al
go

ri
th

m
ic

st
ra

te
gy

in
to

al
go

ri
th

m
s

ba
se

d
on

pr
io

ri
ty

qu
eu

es
,B

el
lm

an
-F

or
d

(B
F)

,L
ag

ra
ng

e
re

la
xa

ti
on

,a
s

w
el

la
s

L
ea

st
-C

os
t(

L
C

)
an

d
L

ea
st

-D
el

ay
(L

D
)

p
at

hs
.

Fo
r

ea
ch

al
go

ri
th

m
,w

e
in

d
ic

at
e

th
e

ty
p

e(
s)

,i
.e

.,
C

SP
or

M
u

lt
i-

C
on

st
ra

in
ed

Sh
or

te
st

P
at

h
(M

C
SP

)o
r
k

pa
th

ve
rs

io
ns

th
er

eo
f,

as
w

el
la

s
ot

he
r

ke
y

ch
ar

ac
te

ri
st

ic
s,

in
cl

ud
in

g
op

ti
m

al
it

y
pr

op
er

ty
an

d
th

e
ac

ce
pt

ed
pa

ra
m

et
er

s.
W

e
in

di
ca

te
th

e
nu

m
be

r
of

un
de

rl
yi

ng
al

go
ri

th
m

ru
ns

,e
.g

.,
It

er
at

iv
e
k

Sh
or

te
st

Pa
th

(I
k

SP
)a

nd
St

at
ic
k

Sh
or

te
st

Pa
th

(S
k

SP
)a

lg
or

ith
m

s
(s

ee
Se

ct
io

n
3.

2.
1

fo
r

de
fin

iti
on

s)
.W

he
n

th
e

ex
ac

tn
um

be
r

of
ru

ns
de

pe
nd

s
on

th
e

sp
ec

ifi
c

sc
en

ar
io

,t
he

po
ss

ib
le

nu
m

be
rs

of
ru

ns
ar

e
in

di
ca

te
d

th
ro

ug
h

a
co

m
m

a-
se

p
ar

at
ed

lis
to

r
a

ra
ng

e
(w

it
h

th
e

ar
ro

w
(→

)s
ym

bo
l)

w
it

hi
n

p
ar

en
th

es
es

.U
nb

ou
nd

ed
nu

m
be

rs
of

ru
ns

ar
e

in
d

ic
at

ed
w

it
h

th
e

gr
ea

te
r

or
eq

ua
l(
≥

)s
ig

n.
W

e
no

te
th

at
an

al
go

ri
th

m
us

in
g

a
St

at
ic
k

Sh
or

te
st

Pa
th

(S
k

SP
)a

lg
or

it
hm

ca
n

be
im

pl
em

en
te

d
w

it
h

an
It

er
at

iv
e
k

Sh
or

te
st

Pa
th

(I
k

SP
)a

lg
or

it
hm

.

A
lg

or
it

hm
Ty

pe
N

um
be

r
of

ru
ns

of
un

de
rl

yi
ng

al
go

ri
th

m
s

O
pt

im
al

C
om

pl
et

e
D

is
tr

.
Pa

ra
m

.
Ik

SP
Sk

SP
tr

ee
Sk

SP
SP

tr
ee

SP
El

em
en

ta
ry

A
lg

or
ith

m
s

(S
ec

.3
.2

.4
.1

)
LD

P
C

SP
1

X
if

SP
is

FB
[9

8]
C

SP
,M

C
SP

(1
→
M

+
1)

if
C

SP
k

M
C

SP
(k

)C
SP

,(
k)

M
C

SP
1

X
X

Pr
io

ri
ty

Q
ue

ue
Ba

se
d

A
lg

or
ith

m
s

(S
ec

.3
.2

.4
.2

)
C

BF
[1

29
]

C
SP

X
X

A
*P

ru
ne

[8
9]

(k
)C

SP
,(

k)
M

C
SP

X
X

A
lg

or
ith

m
s

Ba
se

d
on

BF
(S

ec
.3

.2
.4

.3
)

D
C

BF
[8

8]
C

SP
1

X
X

k
D

C
BF

[8
8]

C
SP

1
X

X
k
d
,k
c

D
EB

[1
05

]
C

SP
X

A
lg

or
ith

m
s

Ba
se

d
on

th
e

La
gr

an
ge

R
el

ax
at

io
n

(S
ec

.3
.2

.4
.4

)
LA

R
A

C
[6

8,
69

,7
0,

71
]

C
SP

≥
1

X
M
D

LA
R

A
C

G
C

[6
9]

C
SP

(0
,1

)
≥

1
if
δ

=
0

X
δ

SC
R

C
[1

00
]

C
SP

(0
,1

)
(1

,2
)

X
X

k
LA

R
A

C
[8

8]
C

SP
≥

1
X

k
H

_M
C

O
P

[5
9]

C
SP

,M
C

SP
1

(0
,1

)
if

C
SP

λ
k

H
_M

C
O

P
[5

9]
C

SP
,M

C
SP

(0
,1

)
1

if
C

SP
λ

,k
N

R
_D

C
LC

[9
1]

C
SP

≥
0

≥
1

X
M

H
_M

C
O

P
[1

07
]

C
SP

,M
C

SP
(1
→
H

+
1)

(0
→
H

+
1)

if
C

SP
H

E_
M

C
O

P
[1

07
]

C
SP

,M
C

SP
(0
→

2)
(1
→
M

+
1)

X
X

D
C

C
R

[9
9]

C
SP

(0
,1

)
(1

,2
)

X
k

SS
R

+D
C

C
R

[9
9]

C
SP

(0
,1

)
(1
→
L

+
2)

X
L

,k
A

lg
or

ith
m

s
Ba

se
d

on
LC

an
d

LD
Pa

th
s

(S
ec

.3
.2

.4
.5

)
D

C
U

R
[9

2,
93

]
C

SP
(1

,2
)

X
X

D
C

R
[9

4]
C

SP
(0

,1
)

1
X

X
IA

K
[9

6]
C

SP
1

(0
,1

)
X

X
SM

S-
R

D
M

[9
5]

C
SP

1
if
p
≥

∆
(G

)
X

p
SM

S-
C

D
P

[9
5]

C
SP

2
if
p
≥

∆
(G

)
X

p
SM

S-
PB

O
[9

5]
C

SP
if
p
≥

∆
(G

)
X

p
SF

_D
C

LC
[9

7]
C

SP
(1

,2
)

X
X

87

6. Evaluation

novel 4D evaluation framework provides valuable insights into the behaviors
of the algorithms. Our evaluation has yielded a very large data set; we only
present the most significant and insightful evaluation data in this article. We
have made the entire evaluation data publicly available at [158], an interactive
web interface that allows for convenient navigation through the 4D evaluation
space.
We have observed from our evaluations that it is not possible to elect an algo-
rithm as “the best QoS routing algorithm”. Indeed, we show that the perfor-
mance of the algorithms strongly depends on the considered specific sub-space
of the 4D evaluation space. Nevertheless, we identify two algorithms (out of a
total of 26 compared algorithms) that achieve the best cost-runtime trade-off for
most cases. Furthermore, we observe the general trend that algorithms based
on a shortest path (SP) algorithm have shorter runtimes than algorithms based
on a shortest path tree (SP tree) algorithm, which in turn have shorter runtimes
than algorithms relying on a k shortest path (kSP) algorithm to reach a given
optimality level. The content of this section is manly based on [4].

6.1.1. Four-Dimensional (4D) Evaluation Framework

Generally, the performance of an algorithm depends on the specific scenario in
which it is executed. In order to evaluate the behaviors of the different algorithms
across a wide set of scenarios, we introduce an evaluation framework that
evaluates QoS routing algorithms along four critical dimensions. First, we define
four topologies, which we describe in Sec. 6.1.1.1. A topology describes both
the underlying structure of the network and the nodes that communicate with
each other in the network. Second and third, we scale these topologies in two
directions. Fourth, we distinguish requests based on the level of strictness of the
delay constraint, see Sec. 6.1.1.2. Sec. 6.1.1.3 presents the evaluation procedure
and the metrics used, while Sec. 6.1.1.4 identifies the evaluated algorithms.

6.1.1.1. Topology and Scaling

As first dimension of our evaluation framework, we define four topologies
(shown in Fig. 6.2) based on three different base topologies. Although our
survey is generic and all the algorithms can be applied to any CSP problem,
we focus on industrial topologies where we expect centralized QoS routing
to be extensively employed [3]. Nevertheless, the topologies we define are
also common in and representative of data center, metro, grid, and enterprise
networks. On the contrary, wide-area (star topology) networks are not covered,
as strict centralized QoS routing in such environments is unlikely. All topologies
can be scaled according to two scale parameters m and n that represent the

88

6.1. CSP Algorithm Evaluation

One Ring
Bottleneck (ORB)

Two Ring
Bottleneck (TRB)

Two Ring
Random (TRR)

Grid
Random (GR)

remote I/Os to PLC any to any

n

m

n

n m

m

PLC

Remote I/O

Switch

Link

Figure 6.2.: The four topologies considered in the evaluation are based on three different base
topologies which can be scaled in two different directions.

number of communicating nodes and switches as defined in the following for
the four different topologies. The second and third dimensions of our evaluation
framework correspond to varying the two scale parameters m and n from 4 to 13,
thereby defining 100 different scalability levels. The four topologies are referred
to as One Ring Bottleneck (ORB), Two Ring Bottleneck (TRB), Two Ring Random
(TRR) and Grid Random (GR).

One Ring Bottleneck (ORB) The ORB topology consists of a base ring of m+ 1

switches. A so-called Programmable Logic Controller (PLC) is connected
to one switch of this ring. A branch composed of a series of n remote
input/output nodes (I/Os), e.g., sensors and actuators, is connected to
each of the other m switches of the ring. Thus, there are a total of mn I/Os.
Remote I/Os have an internal switch allowing traffic to flow along the
branches. Traffic is only considered from the remote I/Os to the PLC.

Two Ring Bottleneck (TRB) The TRB topology extends the ORB topology with
an additional ring consisting of m+ 1 switches. The m+ 1 switches connect
the loose (bottom) ends of the m branches of remote I/Os (of the ORB
topology) to the PLC. Traffic is still considered only from the remote I/Os
to the PLC.

Two Ring Random (TRR) The TRR topology is the same as the TRB topology,
but traffic is now considered between any pair of remote I/Os. As the
remote I/Os, the PLC is able to forward traffic not destined for it.

Grid Random (GR) The GR topology is a grid of width m and height n. In the
GR topology, traffic is considered between any pair of nodes.

89

6. Evaluation

We do not consider random topologies generated based on models, such as the
Waxman model [106]. Instead, striving for a fair and reproducible evaluation,
we only use deterministic topologies.
Each directed link is considered to have four output priority queues and rout-
ing is then performed on the corresponding queue-link topologies. For each
physical link, the costs of the four queue-link edges with priority levels p, p =

1 (high priority), 2, 3, 4 (low priority), are set to the values 1 + 1/p so as to favor
the usage of low priority queues. The delay values are obtained with Schmitt’s
formula 4.6. Thus, the costs and delays of the four queue-link edges are respec-
tively set to 2 and 0.48 ms, 1.5 and 1.26 ms, 1.33 and 2.83 ms, as well as 1.25 and
7.55 ms.
Clearly, the number of queues as well as the cost and delay settings influence the
performance of the algorithms and could be defined as additional comparison
dimensions. However, in order to keep the evaluation tractable, we keep them
static.

6.1.1.2. Delay Constraint Tightness

The delay constraint of routing requests can range from loose values for which
the LC path is feasible to tight values for which no feasible path exist. Within this
range, we define seven subranges of equal size, which we refer to as delay levels.
The fourth dimension of our evaluation framework corresponds to varying the
delay constraint of routing requests between these different delay levels.

6.1.1.3. Evaluation Procedure and Metrics

Each algorithm is evaluated along the four dimensions of our evaluation frame-
work. For each particular topology and combination of the scale parameters m
and n, we sequentially simulate 20,000 routing requests. The first 1000 requests
are used as warm-up for the Java HotSpot optimizer and their results are not
considered. For each request, the source and destination are generated uni-
formly randomly from the possible set of combinations defined by the topology
and scale parameters. The delay constraint is distributed uniformly randomly
among the seven delay levels [and then uniformly randomly within the selected
delay level (delay constraint subrange)] so as to prevent the Java HotSpot opti-
mizer from optimizing for a specific delay level. (If all test runs for a specific
delay level are run successively, the Java HotSpot optimizer could exploit the
consideration of a particular delay level in successive runs. This could happen
because of the online code analyses done by Java HotSpot. The online compiler
might find some optimization opportunities which are only possible when the
delay level stays equal. [161])

90

6.1. CSP Algorithm Evaluation

For a given Algorithm Under Test (AUT) and request (source, destination and
delay level), we run three algorithms. First, we run Constrained Bellman-Ford
(CBF) in order to obtain the cost zopt of the optimal solution. Second, we run the
AUT to determine the AUT cost z′. The Cost Inefficiency (CI) of the AUT is then
evaluated in % compared to the cost of the optimal path according to Eqn. (3.3).
Third, we run an LD search using A* (which is then equivalent to an Least Delay
Path (LDP) search). We define the runtime of the AUT divided by the runtime of
the LD search as the runtime ratio of the AUT. This normalization allows to filter
out runtime variations due to the varying load on the testing machines. Indeed,
both algorithms are run one after the other, i.e., within a short time window
during which the load on the testing machine can be assumed to be constant.

6.1.1.4. Algorithms Selection

Table 3.2 summarizes the algorithms that we have identified as suitable for
the considered unicast QoS routing in Sec. 3.2.4. We implemented all these
26 algorithms in Java 81 and, for each of them, ran our evaluation procedure.
The specific parameter settings for parameterized algorithms will be given in
Sec. 6.1.2. We will identify parameterized algorithms by the name of the original
algorithm to which we append the dash-separated parameter values in the
same order as in Table 3.2. For example, Lagrange Relaxation based Aggregate
Cost Gap Closing (LARACGC) with δ = 25% will be referred to as LARACGC-
25. We omit the λ parameter of Heuristic for Multi-Constrained Optimal Path
(H_MCOP) and k Heuristic for Multi-Constrained Optimal Path (kH_MCOP)
since it has no influence in the CSP case.

6.1.2. Evaluation Results

Sec. 6.1.2.1 presents the evaluation results for the fourth dimension, i.e., the
behavior of the algorithms for the different delay levels. Sec. 6.1.2.2 then focuses
on the three first dimensions. Due to the high number of algorithms and the
highly detailed results on how they behave and perform, it is not possible to
present and discuss all results for all algorithms in detail in this thesis. Therefore,
we only present the most interesting algorithms and discuss the most important
conclusions. We have made the entire set of raw results and graphs for all the
algorithms publicly available at http://www.lkn.ei.tum.de/lora [158].
We found that k Multi-Constrained Shortest Path (kMCSP), A*Prune, LARACGC,
Santos Coutinho-Rodrigues Current (SCRC), Exact Multi-Constrained Optimal

1We acknowledge that the results may be subject to our specific implementations; however, we
tried to be fair and optimize all implementations as much as we could.

91

6. Evaluation

Path (E_MCOP), and the three Sriram Manimaran Siva (SMS) variations were
not able to complete the evaluation in a reasonable amount of time compared to
CBF. This leads to our first observation that algorithms using an IkSP algorithm
to reach optimality have a very long runtime. Indeed, the considered queue-link
topologies are dense with high numbers of possible paths. Thus, the number
of paths to discover until reaching optimality is also high, yielding intractable
runtimes for kMCSP, LARACGC, SCRC, and E_MCOP. A*Prune and SMS are
not based on an IkSP algorithm but their structure is such that, if their initial
search direction is not the correct one, they have to explore a high number
of paths to reach the destination. The negative impact of this approach is
accentuated by the high density of the considered queue-link topologies.

6.1.2.1. Fingerprints: Influence of the Delay Constraint Tightness

We analyze the fourth dimension using so-called fingerprint graphs (Fig. 6.3). The
fingerprint graph for a given combination of topological and scale parameters m
and n, shows the distribution of the runtime ratio (left, in red) and CI (right, in
yellow) of an algorithm for the seven different delay levels (loose levels on the
left and tight levels on the right). Since we have four different topologies with
100 different scalability levels (combinations of m and n values), each algorithm
has 400 fingerprint graphs. Nevertheless, we observed that the shapes of all
fingerprint graphs for a given algorithm are similar; Fig. 6.3 shows fingerprints
for the GR topology with scale parameters m = n = 10. Since the shapes of
these graphs characterize the different algorithms we refer to these graphs as
fingerprints: they nearly uniquely identify an algorithm based on its behavior
and are (nearly) always the same for a given algorithm. Only the absolute
values vary depending on the topology and its scaling. These variations will be
discussed in Sec. 6.1.2.2.

Elementary Algorithms Since the elementary LDP algorithm (see Section 3.2.4.1)
does not take cost into account, its CI is the benchmark for the worst acceptable
CI (Fig. 6.3a). As expected, the CI of LDP gets better for tighter constraints since
the LD path becomes closer to the optimal solution. In terms of runtime, as
LDP is compared with itself, the LDP fingerprint shows that the accuracy of
our runtime metric is reasonable (the 0.5 and 99.5 percentiles are reasonably
close to one and the median is approximately one). In additional evaluations,
which we cannot include due to space constraints, we observed that Fallback
(FB) exhibited, as expected, exactly the same CI behavior as LDP; except when
the LC path is feasible, where FB is optimal, at the cost of one additional Shortest
Path (SP) run for all other cases.

92

6.1. CSP Algorithm Evaluation

tPlc
tPld

0

20

40

60

tf

co
st

in
effi

ce
n

cy
[%

]

0

0.5

1

ru
n
ti

m
e

ra
ti

o

(a) LDP

tPlc
tPld

0

20

40

60

tf

co
st

in
effi

ce
n

cy
[%

]

0

50

100

150

200

250

ru
n
ti

m
e

ra
ti

o

(b) CBF

tPlc
tPld

0

20

40

60

tf

co
st

in
effi

ce
n

cy
[%

]

0

10

20

30

40

50

ru
n
ti

m
e

ra
ti

o

(c) DCBF

tPlc
tPld

0

20

40

60

tf

co
st

in
effi

ce
n

cy
[%

]

0

1

2

3

4

5

ru
n
ti

m
e

ra
ti

o

(d) LARAC

tPlc
tPld

0

20

40

60

tf

co
st

in
effi

ce
n

cy
[%

]

0

5

10

15

20
ru

n
ti

m
e

ra
ti

o

(e) LARACGC-25

tPlc
tPld

0

20

40

60

tf

co
st

in
effi

ce
n

cy
[%

]

0

5

10

ru
n
ti

m
e

ra
ti

o

(f) kLARAC-3

tPlc
tPld

0

20

40

60

tf

co
st

in
effi

ce
n

cy
[%

]

0

5

10

15

ru
n
ti

m
e

ra
ti

o

(g) H_MCOP

tPlc
tPld

0

20

40

60

tf

co
st

in
effi

ce
n

cy
[%

]

0

5

10

15

ru
n
ti

m
e

ra
ti

o

(h) kH_MCOP-10

tPlc
tPld

0

20

40

60

tf

co
st

in
effi

ce
n

cy
[%

]

0

2

4

6

8

10

ru
n
ti

m
e

ra
ti

o

(i) SSR+DCCR-4-10

tPlc
tPld

0

20

40

60

tf

co
st

in
effi

ce
n

cy
[%

]

0

5

10

ru
n
ti

m
e

ra
ti

o

(j) SSR+DCCR-2-5

tPlc
tPld

0

20

40

60

tf

co
st

in
effi

ce
n

cy
[%

]

0

5

10

15

20

25

ru
n
ti

m
e

ra
ti

o

(k) DCR

tPlc
tPld

0

20

40

60

tf

co
st

in
effi

ce
n

cy
[%

]

0

10

20

30

ru
n
ti

m
e

ra
ti

o

(l) SF_DCLC

Figure 6.3.: Fingerprints for selected QoS routing algorithms. These graphs show, for the GR
topology with m = n = 10, i.e., 10× 10 switching nodes, the runtime ratio (runtime of algorithm
normalized by runtime of LD search, plotted in red on left) and cost inefficiency (in yellow
on right) of the algorithms for the seven different delay levels tf (delay constraint subranges,
whereby loose delay constraints are on the left and tight delay constraints are on the right).
tPld

and tPlc
denote the delays of the LD and LC paths, respectively. Since the rightmost delay

level corresponds to an infeasible problem (delay constraint tf lower than the delay tPld
of the

LD path), no cost inefficiency value is shown and the runtime then corresponds to the time
required to detect that the problem is infeasible. While the cost inefficiency scale is the same for
all the algorithms, the runtime scales have to differ because of the high variability between the
algorithms. The lower and upper whiskers of the boxplots, respectively, correspond to the 0.5%
and 99.5% percentiles.

93

6. Evaluation

Priority Queue Based Algorithms The benchmark for the highest acceptable
runtime ratio is given by CBF, an optimal algorithm based on a priority queue
(Section 3.2.4.2) (Fig. 6.3b). CBF was the fastest optimal algorithm. Since CBF
terminates when the paths it expands have delays higher than the constraint,
it terminates earlier for tighter constraints and its runtime therefore improves
as the delay constraint gets tighter. The CI of CBF is always zero since CBF is
optimal.

Algorithms Based on BF The BF based Delay-Constrained Bellman-Ford
(DCBF) algorithm (Fig. 6.3c) has a CI fingerprint with slightly decreasing run-
times and increasing CI for increasingly tight delay constraints. For tight delay
constraints, the delay test during the BF run fails more often and hence allows
BF to terminate earlier (as it stops when no relaxation occurs in an iteration)
and DCBF therefore gets faster as the delay constraint gets tighter. In addi-
tional evaluations we have observed that k Delay-Constrained Bellman-Ford
(kDCBF) (not included in Fig. 6.3) has similar shapes, however which much
lower CIs and longer runtimes. For example, kDCBF-2, divides the CI by a factor
of approximately two, but increases runtime by a similar factor.

Algorithms Based on Lagrange Relaxation Similar to FB, Lagrange Relax-
ation based Aggregate Cost (LARAC) (Fig. 6.3d) can find the optimal solution
with one LC search when the LC path is feasible. Fig. 6.3d (for the left-most,
i.e., loosest delay constraint level tf) shows that this run is roughly two times
faster than an LD search. This is due to the fact that the delay and cost values
have ranges of different absolute sizes and the guess function of A* is better
for the costs because the costs have a smaller range size than the delay values,
i.e., have a range size closer to the one of the least-hop count used for the guess
(which is zero). When the problem is infeasible, LARAC notices the infeasibility
with an additional LD search. For intermediate delay levels, LARAC requires a
few additional SP runs, hence leading to slightly higher runtimes. Nevertheless,
these additional runs are worth it as we can observe that the CI of LARAC is
then pretty low.
While LARACGC did not complete the evaluation within a reasonable amount
of time, LARACGC with δ = 25 % (Fig. 6.3e) did. As LARAC has a CI higher
than 25% only for the tightest feasible delay level, LARACGC-25 only behaves
differently than LARAC for this tightest feasible delay constraint. As expected,
LARACGC-25 then brings the CI to less than 25% but at a high runtime cost even
for such a small gap closing (as the CI of LARAC is at most 30%). This indicates
that the gap closing is expensive in terms of runtime and probably not worth it.
The high runtime is likely due to dense queue-link topology structures of our

94

6.1. CSP Algorithm Evaluation

evaluation networks and confirms that algorithms based on an IkSP algorithm
are not efficient for dense network topologies.
We observe from Fig. 6.3f that k Lagrange Relaxation based Aggregate Cost
(kLARAC) with k = 3 has the same shape as LARAC, however with longer
runtime and lower CI. This is expected, since kLARAC runs an k Shortest
Path (kSP) at each iteration, allowing to find lower cost paths but with longer
runtime. We nevertheless observe that this cost reduction comes with a much
less pronounced runtime increase than for LARACGC.
The fingerprint of H_MCOP (Fig. 6.3g) shows the difference in runtimes between
SP searches and SP tree searches. Indeed, for detecting an infeasible problem,
H_MCOP first computes a reverse SP tree. As can be seen, this has a much
longer runtime than the single LD search of LDP. More precisely, the H_MCOP
median runtime is only slightly longer, but the 99.5% percentile of the runtime is
much higher than for LDP. This shows that comparing the runtime of algorithms
in terms of “Dijkstra runs” independently of whether these are SP or SP tree
runs, as done in some papers, is not a valid metric. For all other cases, H_MCOP
requires an additional forward SP search. The H_MCOP runtime for these delay
levels is hence always similar and slightly higher (by 0.5 since it is an LC search)
than for the infeasible delay level. In terms of CI, H_MCOP interestingly presents
a fingerprint of different shape than LARAC, LARACGC-25, and kLARAC-3.
While the different LARAC versions have a U-shaped CI fingerprint, H_MCOP
reaches higher CI for problems with tighter constraints but improves again
for the tightest feasible delay level. In terms of absolute values, the CIs of
H_MCOP are usually slightly worse than for the different LARAC versions,
except when the delay constraint is loose, where H_MCOP and LARAC perform
similarly. When using Chong’s algorithm with k = 10 (Fig. 6.3h), we see that
the runtime is only slightly increased while the CI is substantially improved.
Indeed, kH_MCOP-10 reaches optimality in nearly 50% of the cases.
In additional evaluations we found that Nonlinear Relaxation Delay Constraind
Least Cost (NR_DCLC) (which is not shown in Fig. 6.3) has a similar, but slightly
better, CI fingerprint compared to H_MCOP; which is expected since NR_DCLC
uses Heuristic for Multi-Constrained Path (H_MCP) (i.e., H_MCOP) as underly-
ing algorithm. On the other hand, the NR_DCLC runtime is much longer, except
in the cases where the LC path is feasible or where the problem is infeasible, in
which cases NR_DCLC uses SP runs to detect these situations. Within the feasi-
ble delay levels, the runtime of NR_DCLC gets shorter as the delay constraint
gets tighter. Indeed, NR_DCLC starts with an LD search and then improves
on this path. When the delay constraint gets tighter, the LD path is closer to
the optimal solution and NR_DCLC hence has less work to do. Additional
evaluations have shown that Modified Heuristic for Multi-Constrained Optimal
Path (MH_MCOP) (which is not shown in Fig. 6.3) improves the CI of H_MCOP

95

6. Evaluation

by a factor of around two at the expense of a twofold runtime increase. The H
parameter can then be used to tweak the CI/runtime trade-off. While the CI
fingerprint of MH_MCOP is similar to the one of H_MCOP, the MH_MCOP
runtime fingerprint exhibits a Gaussian bell curve shape. This is due to the fact
that MH_MCOP improves on the solution of H_MCOP. Hence, the amount of
work it has to perform depends on the CI of H_MCOP, which is similar to a
Gaussian bell curve.
In additional evaluations we also found that Delay-Cost-Constrained Routing
(DCCR)-3 (which is not shown in Fig. 6.3) has a high CI (between 20% and 45% in
most cases). On the other hand, Search Space Reduction Delay-Cost-Constrained
Routing (SSR+DCCR) (6.3i and Fig. 6.3j) is interesting. Since SSR+DCCR
improves the LARAC solution or one of the intermediate LARAC results,
SSR+DCCR has a similar CI fingerprint as LARAC. Interestingly, SSR+DCCR
especially improves the solution of LARAC when the delay constraint is tight
but still feasible. We observe that SSR+DCCR is, similar to LARACGC, closing
the gap of LARAC. Nevertheless, SSR+DCCR appears more powerful than
LARACGC for our dense network scenarios since SSR+DCCR runtimes stay
reasonably short. As expected, SSR+DCCR-2-5 reduces the runtime compared
to SSR+DCCR-4-10; whereas the CI is not strongly affected. Hence, the tuning of
the SSR+DCCR parameters requires additional evaluations and is left for future
research.

Algorithms Based on the LC and LD Paths The studies on this type of
algorithms usually assume that the LD and LC trees can be computed once and
then reused for each request, thereby leading to a low request provisioning time.
However, in our scenario, we assume that the delay and cost of the edges can
change inbetween requests and we therefore have to recompute the tree for
each request. Delay-Constrained Unicast Routing (DCUR), Distributed delay
Constrained Routing (DCR), and Ishida Aman Kannari (IAK) always follow
edges belonging to the LC and LD paths towards other nodes. For our specific
queue-link cost and delay settings, which are identical for each physical edge,
we have observed that all these algorithms either follow the LC path and then
switch to the LD path until the end, or vice versa. This results in the same cost
and these four algorithms hence present exactly the same CI behavior. Although
this shows that further study is required with different queue-link cost and
delay settings, it also highlights that features of algorithms do not always bring
some benefit. Indeed, while DCR and IAK only switch once between following
the LC and LD paths towards the destination, DCUR can switch any number
of times. Since DCUR executes several SP tree runs, it is slower than IAK and
DCR which only run one SP search and one SP tree search. However, these

96

6.1. CSP Algorithm Evaluation

extra computations appear to be useless in our scenario. Because the SP tree
search is the most expensive search and because DCR runs an LC SP tree search
which enjoys a better guess function than an LD SP tree search, DCR is on
average slightly faster than IAK. We show therefore only DCR in Fig. 6.3k. The
fingerprint of DCR again shows the difference between SP and SP tree runs.
While DCR detects an infeasible problem quite fast with an LD SP search, the
following LC SP search for the other cases is much more time consuming, at
least in the worst-case.
The runtime ratio of Selection Function Delay Constraind Least Cost (SF_DCLC)
(Fig. 6.3l) corresponds to two SP tree searches, except for the infeasible problem
where one is enough. As SF_DCLC has more options at each hop, it achieves a
better CI fingerprint than DCUR (which is the same as DCR, as noted above) but
still with a similar shape. Interestingly, we observe that SF_DCLC and H_MCOP
have very similar CI fingerprints, although they are very different in terms of
implementation. Examining the output of the algorithms closely, we noticed
that, for identical requests, they always returned paths with identical costs. In
particular, we observed that SF_DCLC and H_MCOP both prefer one path over
the other either based on the cost or on the delay metric depending on whether
these paths are feasible or not. Even though SF_DCLC proceeds node by node
and H_MCOP within an SP search, both algorithms find typically the same
paths (i.e., they nearly always find identical paths and in the rare cases where
the paths are different, the paths have identical costs), at least for our specific
delay and cost distributions.

Summary In general, it is interesting to note that most algorithms exhibit a
higher variability of the CIs when the delay constraint is tight (but still feasible).
This can be explained by the fact that there are relatively few possible paths.
Hence, if the best one is not chosen, the cost can quickly increase. Interestingly,
Chong’s algorithm [87] appears to be a good tool to resolve this issue, as has been
demonstrated by kH_MCOP, and SSR+DCCR. In additional evaluations (not
included in Fig. 6.3), we found that DCCR and kDCBF also show this behavior.

6.1.2.2. Heatmaps: Impact of Network Topology and Scale

In order to observe the behaviors of the algorithms for the different topologies
and scalability levels, we collapse the fourth dimension (delay constraint tight-
ness) of our evaluation framework by retaining only the average runtime ratio
and CI over all delay constraint levels2. This yields the heatmaps shown in

2For both the runtime ratio and the CI, only values between the 1% and 99% percentiles were
considered for the computation of the average.

97

6. Evaluation

Fig. 6.4. Specifically, each cell of each sub-figure in Fig. 6.4 corresponds to a fin-
gerprint plot, whereby the fingerprint plots for the GR topology with n = m = 10

have been shown in Fig. 6.3, the other fingerprints are available at [158]. While
observing the scalability of the different algorithms with these heatmaps, the
reader should pay attention that the scalability of the algorithm is compared to
an LD search. That is, if an algorithm presents the same runtime ratio for all the
scalability levels of a topology, that does not mean that its runtime is always the
same but rather that the considered algorithm has similar scaling behavior as an
LD search.

Elementary Algorithms: LDP as Runtime Benchmark The lower four plots
for the LDP runtime, see Fig. 6.4a, confirm that our runtime metric has, on
average, an inaccuracy of less than 6%. These inaccuracies are mainly due to
the inaccuracy of the CPU clock. This indicates that our LDP based runtime
metric provides a valid runtime reference benchmark across the three evaluation
dimensions of topologies and scale parameters m and n.

Priority Queue Based Algorithms The heatmaps of CBF (Fig. 6.4b) illustrate
the limitation of CBR: the CBF runtime grows exponentially with the size of the
network, which is consistent with the observations in [129].

Algorithms Based on BF The DCBF CI (Fig. 6.4c) is only slightly affected by
the size of the topology. Interestingly, the DCBF CI is much better, i.e., lower
by a factor of two, in the GR topology compared to the other three considered
topologies. The intuitive explanation for this DCBF behavior is as follows. DCBF
may be sub-optimal if it “relaxes too much”. DCBF relaxes a node when (i) the
cost of the new path is lower, and (ii) the new path satisfies the projected delay
test. Two cases are possible: Case 1: The cost of the new path is lower and its
delay is also lower than the current path at a node. The relax operation is hence
justified.
Case 2: The cost of the new path is lower and its delay is higher, but still satisfies
the projected delay test. Since the new path has a higher delay than the older
path, it can happen that DCBF has to take a higher cost path to satisfy the
delay constraint. Therefore, although at the current node, the path was cheaper,
because of its higher delay, DCBF then has to follow a higher cost path to reach
the destination in time. This is the DCBF sub-optimality scenario, where DCBF
is not optimal anymore because the final path would have been cheaper by
keeping the original path (which was more expensive at one node). This DCBF
sub-optimality scenario occurs more frequently when paths have to share nodes,
because only one path will be kept at each node. The grid topology has a lot

98

6.1. CSP Algorithm Evaluation

5 10
4
6
8

10
12

co
st

in
effi

ci
en

cy
[%

]
m

ORB

5 10
4
6
8

10
12

TRB

5 10
4
6
8

10
12

TRR

5 10
4
6
8

10
12

GR

46

47

48

5 10
4
6
8

10
12

n

ru
nt

im
e

ra
ti

o
m

5 10
4
6
8

10
12

n
5 10

4
6
8

10
12

n
5 10

4
6
8

10
12

n

0.95

1

1.05

(a) LDP

5 10
4
6
8

10
12

co
st

in
effi

ci
en

cy
[%

]
m

ORB

5 10
4
6
8

10
12

TRB

5 10
4
6
8

10
12

TRR

5 10
4
6
8

10
12

GR

0
0.2
0.4
0.6
0.8
1

5 10
4
6
8

10
12

n
ru

nt
im

e
ra

ti
o

m

5 10
4
6
8

10
12

n
5 10

4
6
8

10
12

n
5 10

4
6
8

10
12

n

50

100

(b) CBF

5 10
4
6
8

10
12

co
st

in
effi

ci
en

cy
[%

]
m

ORB

5 10
4
6
8

10
12

TRB

5 10
4
6
8

10
12

TRR

5 10
4
6
8

10
12

GR

2

4

6

5 10
4
6
8

10
12

n

ru
nt

im
e

ra
ti

o
m

5 10
4
6
8

10
12

n
5 10

4
6
8

10
12

n
5 10

4
6
8

10
12

n

4

6

8

10

12

(c) DCBF

5 10
4
6
8

10
12

co
st

in
effi

ci
en

cy
[%

]
m

ORB

5 10
4
6
8

10
12

TRB

5 10
4
6
8

10
12

TRR

5 10
4
6
8

10
12

GR

2.5

3

3.5

5 10
4
6
8

10
12

n

ru
nt

im
e

ra
ti

o
m

5 10
4
6
8

10
12

n
5 10

4
6
8

10
12

n
5 10

4
6
8

10
12

n

2

2.5

(d) LARAC

5 10
4
6
8

10
12

co
st

in
effi

ci
en

cy
[%

]
m

ORB

5 10
4
6
8

10
12

TRB

5 10
4
6
8

10
12

TRR

5 10
4
6
8

10
12

GR

2.5

3

3.5

5 10
4
6
8

10
12

n

ru
nt

im
e

ra
ti

o
m

5 10
4
6
8

10
12

n
5 10

4
6
8

10
12

n
5 10

4
6
8

10
12

n

2

2.5

3

(e) LARACGC-25

5 10
4
6
8

10
12

co
st

in
effi

ci
en

cy
[%

]
m

ORB

5 10
4
6
8

10
12

TRB

5 10
4
6
8

10
12

TRR

5 10
4
6
8

10
12

GR

1

1.5

2

2.5

5 10
4
6
8

10
12

n

ru
nt

im
e

ra
ti

o
m

5 10
4
6
8

10
12

n
5 10

4
6
8

10
12

n
5 10

4
6
8

10
12

n

4

5

6

(f) kLARAC-3

99

6. Evaluation

5 10
4
6
8

10
12

co
st

in
effi

ci
en

cy
[%

]
m

ORB

5 10
4
6
8

10
12

TRB

5 10
4
6
8

10
12

TRR

5 10
4
6
8

10
12

GR

4

6

8

10

12

5 10
4
6
8

10
12

n

ru
nt

im
e

ra
ti

o
m

5 10
4
6
8

10
12

n
5 10

4
6
8

10
12

n
5 10

4
6
8

10
12

n

2

2.5

3

3.5

(g) H_MCOP

5 10
4
6
8

10
12

co
st

in
effi

ci
en

cy
[%

]
m

ORB

5 10
4
6
8

10
12

TRB

5 10
4
6
8

10
12

TRR

5 10
4
6
8

10
12

GR

0

2

4

6

5 10
4
6
8

10
12

n

ru
nt

im
e

ra
ti

o
m

5 10
4
6
8

10
12

n
5 10

4
6
8

10
12

n
5 10

4
6
8

10
12

n

3

3.5

4

4.5

(h) kH_MCOP-10

5 10
4
6
8

10
12

co
st

in
effi

ci
en

cy
[%

]
m

ORB

5 10
4
6
8

10
12

TRB

5 10
4
6
8

10
12

TRR

5 10
4
6
8

10
12

GR

1

2

3

5 10
4
6
8

10
12

n

ru
nt

im
e

ra
ti

o
m

5 10
4
6
8

10
12

n
5 10

4
6
8

10
12

n
5 10

4
6
8

10
12

n

4

5

6

(i) SSR+DCCR-4-10

5 10
4
6
8

10
12

co
st

in
effi

ci
en

cy
[%

]
m

ORB

5 10
4
6
8

10
12

TRB

5 10
4
6
8

10
12

TRR

5 10
4
6
8

10
12

GR

1

2

3

5 10
4
6
8

10
12

n

ru
nt

im
e

ra
ti

o
m

5 10
4
6
8

10
12

n
5 10

4
6
8

10
12

n
5 10

4
6
8

10
12

n

2.5

3

3.5

4

(j) SSR+DCCR-2-5

5 10
4
6
8

10
12

co
st

in
effi

ci
en

cy
[%

]
m

ORB

5 10
4
6
8

10
12

TRB

5 10
4
6
8

10
12

TRR

5 10
4
6
8

10
12

GR

20

22

24

26

5 10
4
6
8

10
12

n

ru
nt

im
e

ra
ti

o
m

5 10
4
6
8

10
12

n
5 10

4
6
8

10
12

n
5 10

4
6
8

10
12

n

3

4

(k) DCR

5 10
4
6
8

10
12

co
st

in
effi

ci
en

cy
[%

]
m

ORB

5 10
4
6
8

10
12

TRB

5 10
4
6
8

10
12

TRR

5 10
4
6
8

10
12

GR

4

6

8

10

12

5 10
4
6
8

10
12

n

ru
nt

im
e

ra
ti

o
m

5 10
4
6
8

10
12

n
5 10

4
6
8

10
12

n
5 10

4
6
8

10
12

n

4

6

8

(l) SF_DCLC

Figure 6.4.: Heatmaps showing the behaviors of selected QoS routing algorithms for different
topologies and scalability levels. For a given algorithm, the four upper heatmaps show the CI
for the four different topologies, and the four lower heatmaps show the runtime ratio. A given
heatmap shows the CI or runtime ratio as a function of the scale parameters n = 4, 5, . . . , 13,
and m = 4, 5, . . . , 13, i.e., for a total of 100 different scalability levels. Each cell corresponds
to the average results of 20,000 requests (with randomly drawn delay constraints from across
the seven considered delay constraint levels and corresponding subranges) simulated for this
specific n and m combination. To prevent outliers from biasing the results, only values between
the 1% and 99% percentiles are considered for computing the average. Unfortunately, because
of the high variability between the algorithms, the scales are different for each algorithm.

100

6.1. CSP Algorithm Evaluation

of diversity (dense graph), thus DCBF sub-optimality arises only rarely. In
the other topologies, paths frequently share nodes (because of the branches in
the topologies), which leads to frequent DCBF sub-optimality scenarios and
therefore to a higher CI.
In additional evaluations that are not included in Fig. 6.4, we observed that dual
extended Bellman-Ford (DEB) has a high CI (between 12 % and 35 % on average).
The high DEB CI is due to the fact that DEB tries to reduce the CI by checking
paths of different hop counts. Nevertheless, in our queue-link topologies, we
have many paths of identical length and the CI can be dramatically changed
simply by choosing different queues at each hop and hence without changing
the path length.

Algorithms Based on Lagrange Relaxation As already observed for the
fingerprints, we observe that the runtime increase of LARACGC-25 (Fig. 6.4e)
compared to LARAC (Fig. 6.4d) is not worth the slight CI reduction achieved
with LARACGC-25. The runtime increase we observe here is not substantial
since it only happens for one of the seven delay levels (as observed in the
fingerprints, see Section 6.1.2.1). Interestingly, while LARAC and LARACGC-
25 behave better, in terms of CI, for the GR topology, kLARAC-3 (Fig. 6.4f)
behaves better for the TRB topology. Fig. 6.4d, Fig. 6.4e, and Fig. 6.4f indicate
an interesting property of LARAC algorithms: in terms of runtime, they scale
better than an LD search, but only in the m scale direction; the n scale dimension
affects them as it affects an LD search. In additional evaluations we observed
that different MD parameters for LARAC do not affect the LARAC scalability
behavior, but only change the absolute values [158].
The H_MCOP runtime (Fig. 6.4g) scales worse than an LD search in both di-
rections (m and n) for the ORB and TRB topologies. On the other hand, the
H_MCOP runtime exhibits much better scaling behavior for the two other
topologies (TRR and GR). While H_MCOP reaches low CI for small topologies,
we observe that the H_MCOP CI grows quickly for larger topologies. Fig. 6.4h
shows that using Chong [87] with H_MCOP does not change its scalability.
Indeed, while kH_MCOP-10 is then able to reach optimality for small topologies,
its CI grows quickly as the topology sizes increase. Nevertheless, this dramatic
CI reduction only leads to a slight increase in runtime (by roughly 1 unit). In ad-
ditional evaluations, MH_MCOP exhibited an identical scaling behavior, though
still improving the CI by a factor of around two at the expense of approximately
doubling the runtime.
SSR+DCCR (Fig. 6.4i and 6.4j), scales similarly to the underlying LARAC algo-
rithm.

101

6. Evaluation

Algorithms Based on the LC and LD Paths DCR (Fig. 6.4k) and SF_DCLC
(Fig. 6.4l) present a similar scaling behavior, in terms of runtime, as H_MCOP.
Thus, the similar H_MCOP, DCR, and SF_DCLC runtime scaling behaviors
appear to indicate the scaling behavior of an SP tree search compared to an SP
search. DCR, and hence DCUR, and IAK, exhibit the interesting behavior that
their CI improves as the topology scales up. This is unfortunately not true for
the runtimes of DCR, DCUR, and IAK. These are the only algorithms showing
this behavior. SF_DCLC and H_MCOP show the exact same cost (CI) behavior,
hence confirming our observation that they actually always return equal cost
paths (see Section 6.1.2.1).

General Impact of Topology We conclude the discussion of the heatmaps in
Fig. 6.4 by briefly summarizing the general impact of the type of topology. We
observe from Fig. 6.4 that most algorithms have a better CI for the GR topology
than the other three topologies, except DCR (and DCUR and IAK) whose CI
behavior is opposite to all the others. This observation appears to indicate that
switching between LC and LD paths brings improvements for large topologies.
Another common observation is that all algorithms have generally shorter run-
time for the TRR topology than the TRB topology. The only difference between
the TRB and TRR topologies is the set of communicating nodes. Nevertheless,
we observe that this small difference has a major impact on the runtime of most
algorithms (though similar in that they get faster in TRR).

6.1.2.3. Which Algorithm is Best?

After analyzing the behaviors of all the algorithms, we are in a position to
address the question: which algorithm is the best? From our observations, the
answer is: it depends. Indeed, none of the algorithms is better than all others
in terms of both runtime and CI for all topologies, scalability levels, and delay
levels.
The first “it depends” consideration is in regard to the relative importance of cost
and runtime. While kLARAC, kH_MCOP, and all optimal algorithms are good
solutions if the cost is the most important criterion, algorithms, such as LDP, FB,
or H_MCOP, should be preferred if a very short runtime is critical. LARAC and
SSR+DCCR are algorithms that achieve relatively good performance for both
the cost and runtime performance metrics.
Secondly, the selection of the best QoS routing algorithm depends on the specific
region in the 4D evaluation space where the algorithm is supposed to operate.
Indeed, we have seen that for small topologies and/or tight delay constraints,
CBF remains a very good candidate. As the topology grows, algorithms with

102

6.2. Function Split Evaluation

better scalability are needed. In terms of cost, DCR, DCUR, and IAK are the
only algorithms with decreasing CI for large topologies and these algorithms are
therefore good choices for very large topologies. In terms of runtime, only the
different LARAC and SSR+DCCR variations scale better than an LD search and
are therefore also good candidates for large topologies. Therefore, the only way
of selecting the best QoS routing algorithm for a given scenario is to consider
the evaluation for the specific planned usage scenario.
Nevertheless, we can identify LARAC and SSR+DCCR as being among the best
QoS routing algorithms at any point of the 4D evaluation space. That is, for
any topology, and topology scale, and delay level, LARAC and SSR+DCCR are
among the best performing algorithms. Indeed, on average, for the simulated
topologies and network scales, both LARAC and SSR+DCCR keep their runtime
ratio lower than four and their CI lower than 4 %. While LARAC and SSR+DCCR
scale well in terms of runtime, their CI grows only slightly for large topologies.
Moreover, their behavior on the fourth dimension, i.e., for the different delay
levels, is quite stable. Last but not least, both LARAC and SSR+DCCR accept
several parameters that allow to tailor them to specific usage scenarios.

6.2. Function Split Evaluation

The function split (Section 2.4) simplifies the original routing problem (Sec-
tion 2.3) by transforming it to a simple CSP problem. The original problem was
defined as finding a path for every flow out of the paths leading form source to
destination fulfilling the delay and loss constraint:

Pf ∈ P(of ,df) ∀f ∈ F .
D(Pf) ≤ tf

L(Pf) = 0,

Since delay and loss are depending on the load caused by the flows using the
links, finding a solution for this problem is not trivial. The function splits enables
the solution of a CSP problem, instead:

min
Pf∈P(o,d)

Cost(Pf)

D(Pf) ≤ tf

The packet loss is handled by the network resource model. The online delay
value was replaced by a static worst case bound. This keeps all CSP solutions
valid for the lifetime of a flow. This problem simplification might lead to a loss
in optimality.

103

6. Evaluation

n1

n2

n3

n4

n5

n6

SDN-

Controller

Figure 6.5.: Illustration of unidirectional ring physical link topology for evaluation of the end-
to-end real-time QoS framework with function split between resource (transmission bit rate)
allocation to priority queue links and routing through queue links. Each link has 1 Gb/s and
four priority queues, each with 90,000 Byte buffer (as per NEC PF5240 switch specifications).

In this section the initial evaluation of the Function Split is presented. We
compare a MIP based solution [1] of the overall problem with the first imple-
mentation of the Function Split [3]. The goal of this is an understanding of
the trade-off between runtime and optimality. In addition insights in the three
important resources (Data Rate, Buffer Capacity and Time) in a packet switched
real-time system can be gathered. The content of this section is mainly based on
[3].

6.2.1. Network Set-up and Traffic Mixes

For the simulation-based evaluations in this section, we consider a unidirectional
ring, which is a typical elementary industrial network structure, to illustrate the
performance characteristics of the proposed function split QoS framework. The
ring has six switching nodes and six source/destination nodes, see Figure 6.5.
Each switching node output port (link) has four output queues operating with
strict priority scheduling (without preemption). Note that the resulting queue
link network has for three hops already 64 possible paths. Each flow belongs to
one of the four service classes in Table 6.2. Specifically, we consider the ensemble
of 968 traffic mixes obtained by letting each of the four traffic service classes
contribute 5, 10, 15,. . ., 85 % of the total traffic. Independently of the service
class, we draw for each flow a random hop distance according to a short (S) hop
distance scenario with 70% of the flows transmitted over one hop, 20% over two
hops, and 10% over three hops and a long (L) hop distance scenario with 10% 1
hop, 10% 2 hops, 20% 3 hops, 30% 4 hops, and 30% 5 hops flows.

104

6.2. Function Split Evaluation

Table 6.2.: Traffic characteristics and delay limits of the considered industrial traffic service
classes; each traffic class has a packet size of 64 Byte.

Service Mean Bit Rate Burst Size Delay Limit

Class rc [kByte/s] bc [Byte] tc [ms]

c = 1 10 100 5

c = 2 10 100 10

c = 3 10 100 20

c = 4 10 100 50

6.2.2. Routing Cost Functions

We introduce two per-hop cost components and corresponding cost functions.
Please note that this cost components are predecessors of the cost functions
defined in section 5.2. We use them for the comparison of the function split
only. Our “simple” per-hop cost component counts the number of queues q with
a priority level less than or equal to the priority level p(u, v, q) of the queue q
traversed by the considered flow. With q = 1 denoting the lowest priority and
q = |Eq

(u,v)
| denoting the highest priority, the number of queues with lower (or

equal) priority than queue q is simply cs(u, v, q) = q.
Our “buffer-aware” per-hop cost component counts the buffer usage Bfnew

max−Bmax

due to a new flow fnew being added to the existing set of flows. This buffer usage
is normalized by the allocated buffer space AB[u, v, q] and the burstiness bfnew of
the new flow:

cb(u, v, q) =
UB(u,v,q)

+f − UB(u,v,q)
AB
(u,v,q)

bf
. (6.1)

The total cost of an end-to-end path is the sum of the per-hop cost components
c(u, v, q) (e.g., c(u, v, q) = cs(u, v, q) or cb(u, v, q)) along the traversed path, i.e.,

C(Pi) =
∑

(u,v,q)∈Pi

c(u, v, q). (6.2)

6.2.3. Evaluation Procedures

6.2.3.1. Online Routing and Admission Control

In order to obtain detailed insights into the performance of our online routing
algorithm, including the online admission control for new flows, we consider the
online routing initially in isolation from the offline resource allocation algorithm
in Section 5.3.1. In particular, we consider 2925 rate allocation patterns AP

105

6. Evaluation

obtained by allocating the R = 1 Gb/s physical link rate in 5 MByte/s steps
to the |Eq

(u,v)
| = 4 priority queue links (q = 1, 2, 3, 4) for each physical link. For

each rate allocation pattern, we successively add in flows according to a given
considered traffic mix (out of a total of 968 considered traffic mixes). For each
new flow, we run the online routing and admission control algorithm. We
gradually add in as many flows as admissible subject to the QoS requirements.
We thus find the best and the worst resource allocation pattern, i.e., the pattern
that leads to the most carried (admitted) flows and the fewest carried flows in
the network among the 2925 considered rate allocation patterns.

6.2.3.2. Offline Resource Allocation

For the evaluation of the offline resource allocation from section 5.3 we simulate
the continuous operation. of the network for each of the 968 traffic mixes.
Specifically, we initialize the network with a uniform (equal) split of the physical
transmission bit rates to the queue links. Then we continuously try to add in
more flows of the considered traffic mix (using the online routing and admission
control) while the resource allocation proceeds once in the background through
all six switching nodes.

6.2.3.3. Comparison Benchmark: MIP Solution

We compare with the results generated by the offline MIP solution to the joint
problem of routing and resource allocation in [1]. This MIP formulation maxi-
mizes the number of flows

max |F|

while flowing the distribution given traffic mixes. And it is constrained by the
formal problem specified in Section 2.3:

Pf ∈ P(of ,df) ∀f ∈ F .
D(Pf) ≤ tf

L(Pf) = 0,

This comparison provides a benchmark for the performance of (i) our online
routing and admission control algorithm, which is only optimal for the routing
of each flow, and (ii) our offline resource allocation algorithm which sequentially
considers rate allocations at individual nodes. The MIP solution finds an overall
optimum for the joint routing and resource allocation.

106

6.2. Function Split Evaluation

Table 6.3.: Comparison of computation times for short hop distance scenario: online routing and
admission control for a single flow vs. offline (background) resource allocation (one iteration
through all 6 switching nodes) vs. MIP for resource allocation and routing.

Online Routing Offline Resource MIP: Res. Alloc.

and Adm. Control Allocation and Routing

25th percentile 2.85 µs 24.9 s 148 s

mean 3.47 µs 27.1 s 333 s

75th percentile 3.95 µs 29.9 s 333 s

6.2.4. Computation Time

In Table 6.3, we compare the computation time of the offline MIP algorithm [1]
with the total computation time for the elementary resource allocation algorithm
(Section 5.3.1) and the online routing (and admission control) from [3]. Please
note that the online routing process presented in [3] is a predecessor of the work
presented in this thesis. Nevertheless, the results still provide insights in the
optimality of the function split. We consider the short hop distance scenario with
up to three hops, for which the MIP is computationally feasible (the MIP becomes
computationally prohibitive for the long hop distance scenario). All times
were measured for computations on the same physical computing hardware in
order to allow for meaningful computation time comparisons of the different
approaches. The computation times in Table 6.3 are based on the 968 different
traffic mixes, i.e., the variations of the computing times represent the variations
due to the different traffic mixes. We observe that the mean total computation
time (for a given arbitrary traffic mix) for the online routing and admission
decision for a new flow seeking admission to the network is less than 5 µs. While
the delay for making routing and admission decisions in the controller does not
impact the packet delay of established flows on the forwarding (data) plane,
the very fast routing and admission control computation in combination with
real-time QoS control channel flows that could be established between switches
and the controller could ensure delay bounds for flow establishment.
One iteration of the resource allocation algorithm through all six switching
nodes, which is executed in the background, i.e., does not impede the online
routing and admission control, takes on the order of 30 s. In contrast, the MIP
takes on the order of a few hundred seconds.

6.2.5. Utilization of Links, Buffers, and Delay Limits

We present cumulative distribution function (CDF) plots (across the 968 traffic
mixes) in Figures 6.6, 6.7, and 6.8 for:

107

6. Evaluation

0 0.2 0.4 0.6 0.8 1

average link rate utilization

0

0.2

0.4

0.6

0.8

1

P
(

x
≤

av
er

ag
e

lin
k

ra
te

ut
ili

za
tio

n)

S scf-worst
S scf-best

S bcf-worst
S bcf-best

L bcf-worst
L bcf-best

S bcf-res. alloc. L bcf-res. alloc.S MIP

Figure 6.6.: Comparison of the cumulative distribution function (CDF, across the 968 traffic
mixes) of the average link (rate) utilization for the online routing evaluation for fixed rate
allocations from Section 6.2.3.1 (showing curves for the worst and the best rate allocation), the
evaluation of online routing in conjunction with the background resource allocation algorithm
from Section 6.2.3.2 (bcf-res. alloc.), and the MIP benchmark evaluation from Section 6.2.3.3 The
short (S, up to 3 hops) and long (L, up to 5 hops) hop distances are considered. The simple cost
function (scf) and the buffer-aware cost function (bcf) are considered for the evaluation from
Section 6.2.3.1.

• The average link (rate) utilization defined as the mean utilization of all
links in the network. (Figure 6.6)

• The average buffer utilization defined as the mean utilization of all buffers
in the network. (Figure 6.7)

• The average delay deviation defined as the average of the deviation of the
end-to-end worst-case path delay D(Pf) form the delay limit tf in percent,
i.e., the average of (tf −D(Pf))/tf , over all flows f carried in the network.
(Figure 6.8)

We focus initially on the online routing and MIP results for the link rate utiliza-
tion in Fig. 6.6 and the buffer utilization in Fig. 6.7 for the short hop distance
scenario. The results for the link utilization in Figure 6.6 indicate higher band-
width utilizations with the buffer-aware routing cost function (bcf) than the
simple cost function (scf). For the best resource (rate) allocation, the bcf rout-
ing achieves up to 93 % link utilization compared to up to close to 60 % link
utilization with scf routing (and compared to up to 100 % with the MIP).

108

6.2. Function Split Evaluation

S scf-worst
S scf-best

S bcf-worst
S bcf-best

L bcf-worst
L bcf-best

S bcf-res. alloc. L bcf-res. alloc.S MIP

Figure 6.7.: Comparison of the CDF or the average buffer utilization of the overall network for
the three evaluation procedures from Sections 6.2.3.1– 6.2.3.3 for the simple (scf) and buffer
aware (bcf) routing cost functions for short (S) and long (L) hop distance scenarios.

At the same time, we observe from Figure 6.7 that the scf routing leads to a higher
average buffer utilization than bcf routing. For the best resource allocation
(that maximizes the number of flows), the scf routing almost fully utilizes the
buffers; whereas, bcf routing utilizes approximately 65–92 % of the buffers. The
simple cost function counts the number of queues with equal or lower priority
and thus strives to route flows through low priority queues. However, due
to the principles of deterministic network calculus, the low priority queues
have only relatively low guaranteed available transmission bit rates R(u,v,q), see
Eq. (4.15), since the transmission bit rates allocated to higher priority queues
are not considered to be available for the low priority queue. The low level of
guaranteed available transmission bit rate S leads to a high worst-case maximum
buffer occupancy (utilization), see Eq. (4.8), for the low priority queues. In
contrast, the buffer aware cost function considers directly the maximum buffer
occupancy, see Eq. (6.1), and accordingly routes flows through a mix of low
and high priority queues so as to “save” buffer space. Comparing Figs. 6.6
and 6.7 we observe that for the considered networking scenario, the buffer space
becomes the bottleneck resource for the scf routing: The scf routing utilizes
nearly all available buffers for average link utilizations close to 60 %. In contrast,
bcf routing achieves up to 93 % link utilization while requiring less than 92 % of
the available buffer for the worst-case requirements.
We observe that for a given routing cost function, there is a wide gap between the
utilization achieved with the best and worst resource (rate) allocation patterns

109

6. Evaluation

AR(u,v,q)∈A(u,v)
. We plot the utilization results for both the best and worst rate

allocation to illustrate the impact of the rate allocation on the performance
of the introduced function split QoS framework. Moreover, we observe from
Fig. 6.6 that the elementary resource allocation algorithm from Section 5.3.1
(bcf-res. alloc. curve) also covers a fairly wide range of utilization levels. The
elementary algorithm that considers rate allocations at individual nodes gives
poor rate allocations for some traffic mixes, as indicated by the wide gap to
the bcf-best curve at the bottom of Fig. 6.6. However, for over 60 % of the
traffic mixes the elementary resource allocation is within 25 % of the maximal
supported number of flows of the bcf-best scenario. The refinement of the
resource allocation within the function split QoS framework, e.g., by jointly
considering rate allocations to several switching nodes is an important direction
for future research.

We observe from Figs. 6.6 and 6.7 that the long (L) hop distance scenario gives
generally lower link and buffer utilizations than the short (S) hop distance
scenario. The bcf routing with offline resource allocation (bcf-res. alloc. curve),
for instance, has 5–10 % lower link and buffer utilizations for the long hop
distance than for short hop distance. The bcf-best approach achieves bandwidth
utilizations up to around 84 % for the long hop distance scenario compared to
up to 93 % for the short hop distance scenario. This is mainly because the long
hop distance flows require rate and buffer allocations at more successive switch
queue links and are therefore more difficult to accommodate, leading to fewer
admitted flows and hence lower utilization levels.

Figure 6.8 indicates that the buffer-aware cost function (for the best rate allo-
cation) has a slightly higher average delay deviation between the delay limits
and the worst-case path delays than the simple cost function. This means that
the buffer-aware cost function gives on average a shorter path delay D(Pf), i.e.,
utilized less of the available delay limit tf than the simple cost function. How-
ever, even the MIP has an average deviation of over 60 %, i.e., the path delays
D(Pf) are less than 40 % of the delay limits tf for all traffic mixes. The delay
deviation curves are fairly close together, except for the simple cost function
(with the worst rate allocation) which utilizes on average only about 10 % of the
delay limits for roughly 70 % of the traffic mixes. Overall, these delay deviation
results indicate that the delay limits are on average only partly utilized, i.e., the
packet traffic arrives typically well before the deadlines. We also observe from
Fig. 6.8 that the long hop distance scenario utilizes 10–20 % more of the delay
budget than the short hop distance scenario.

Overall, the results indicate that the introduced split function QoS framework
makes very quick run-time admission decisions while providing deterministic
worst-case QoS guarantees. In conjunction with suitable offline (background) re-

110

6.3. Industrial QoS Framework Evaluation

0 0.2 0.4 0.6 0.8 1

average delay deviation

0

0.2

0.4

0.6

0.8

1

P
(

x
≤

av
er

ag
e

de
la

y
de

vi
at

io
n)

S scf-worst
S scf-best

S bcf-worst
S bcf-best

L bcf-worst
L bcf-best

S bcf-res. alloc. L bcf-res. alloc.S MIP

Figure 6.8.: Comparison of the average delay deviation (difference between delay limit tf and
worst-case path delay D(Pf)) of the overall network for the three evaluation procedures from
Sections 6.2.3.1– 6.2.3.3 for the simple and buffer aware routing cost functions for short (S) and
long (L) hop distance scenarios.

source allocation, the connection carrying capacity and bandwidth utilization of
our split function QoS network comes for short hop distances in the considered
ring topology example network to within 7 % of the performance of a monolithic
MIP that jointly optimizes routing and resource allocation.

6.2.6. Conclusion

Our evaluations for two routing cost functions indicate that the proposed func-
tion split approach makes accurate routing and admission control decisions
within a few microseconds, compared to hundreds of seconds required by a
monolithic mixed integer program (MIP) approach that jointly optimizes routing
and resource allocation. At the same time, our approach achieves up to approxi-
mately 93 % average link utilization in an example industrial communication
scenario compared to close to 100 % utilization by the MIP approach.

6.3. Industrial QoS Framework Evaluation

In section 6.1 an evaluation of CSP routing algorithms is presented. There poten-
tially high performance CSP routing algorithms were identified. The impact of
the function split is evaluated and discussed in Section 6.2. However, this evalu-

111

6. Evaluation

ations only cover a single performance aspect of the industrial QoS framework.
All solutions discussed in this thesis contribute differently to the performance of
the industrial QoS Framework. There might exist cross dependencies between
different implementations. For example some cost functions need an optimal
routing algorithm to provide a good performance. To discover these dependen-
cies an evaluation which explores the performance of all possible combinations
of solutions in different communication scenarios is needed.
This evaluation is presented in this section. First the scenarios and the solution
space are described in section 6.3.1. Since the result of the Monte Carlo method
based evaluation is a huge dataset, a stepwise analysis is needed. Section
6.3.3 shows the results of the raw datasets. These results represent the main
impacts on the overall performance. To identify the best specific real-time
communication system, a more detailed analysis is needed. An analysis based on
the results of section 6.3.3 is done in section 6.3.4. Therefore, the low performance
configuration parameter identified in section 6.3.3 are not longer considered as
part of the solution space. The best system setting is presented in section 6.3.5.

6.3.1. Scenario

Any heuristic algorithm is a compromise between runtime and the quality of its
result. Since the service the QoS framework provides is calculation, registration,
optimization and deregistration of a end-to-end real-time connection, the evalu-
ation metric has to cover all these lifecycle steps. Based on this we introduce the
flowing trade-off metrics:

Maximum Traffic Intensity is the Erlang value the overall system can serve
with out rejecting any connection request during the entire simulation.

Lifecycle Runtime is the calculation time of a particular flow spent in the
different lifecycle stages.

These metrics are depending on the following configuration dimensions:

Resource Model is defined in Section 4. It provides three independent config-
urable functionalities:

Access Control is the core functionality of the Network Resource Model.
There are two opportunities to implement how the supervision of the
QoS bounds is realized. In this evaluation Multi-Hop Model (MHM)
(Section 4.5) and Threshold-Based Model (TBM) (Section 4.6) are used.

Input Link Shaping (ILS) (Section 4.8) provides a better resource usage
at the cost of a more complex model. It could be used by the frame-
work.

112

6.3. Industrial QoS Framework Evaluation

Burst Increase (Section 4.7) models the fact that the burst bf of the flow
increases if the flow is delayed at a queue. There are four opportunities
for the system. The first option is to ignore the burst increase. So there
is NO burst increase. The second option is to transform the token
bucket parameter of the flow so that they include the worst case burst
increase (WCB). The third option is an improved version of WCB.
Instead of using the WCB token bucket also in the reservation phase,
the real delay value could be used. So the worst case burst is used
during routing phase and the real delay during the reservation phase
(WCB-RR). The last opportunity is to use the real delay value also
during the routing phase (REAL).

Routing Algorithm are described in section 5.1. From the set of available algo-
rithms CBF is chosen because it is cost optimal, LARAC is chosen because
it is the most promising heuristic in terms of speed and cost optimality and
LDP is chosen because it is the fastest heuristic.

Cost Function are important for the global optimality of the system. All seven
cost functions defined in section 5.2 are possible options.

Resource Allocation Algorithm provides an offline optimization of the sys-
tem. For this evaluation we could use the Tunable Resource Allocation
Algorithm (TRAA) or not. If it is used, the parameters have to be chosen.

Topology is selected a TRB. For the scalability factors m and n values from 4 to
10 could be chosen.

Traffic Mix The Traffic is randomly generated. The burstiness bf is a uniform
distributed random value between 100 and 1000 byte. The flow data rate rf
is a uniform distributed random value between 10000 and 100000 byte/s.
The delay constraint tf is a uniform distributed random value between 5
and 100 ms.

During the discussion of the results we will use a state space diagram (see
Figure 6.9) to provide an overview of the data set which is currently part of
the evaluation. It contains the routing algorithms, access control, Input Link
Shaping (ILS), burst increase, the resource allocation algorithm parameter and
the used topology. Please note that there is a special case "TRAA = NO" which
indicates that there is no resource allocation algorithm running. These diagrams
show in white if a configuration option is not part of the particular evaluation.
In this example only the TRB topology is considered for evaluation. Blue color
indicates the configuration options of interest. In this example the evaluation
targets the CSP routing algorithms. Green color indicates which configuration

113

6. Evaluation

CBF

MHM

ILS

NO

Cost1

TRAAer = 0.4

TRAAdv = 0.01

TRAAfn = 100

ORB

LARAC LDP

TBM

NO ILS

WCB WCB-RR REAL

TRB TRR GR

TRAAer = 0.1

TRAAdv = 0.001 TRAAdv = 0.0001 TRAA = NO

TRAAfn = 1000

Cost2 Cost3 Cost4 Cost5 Cost6 Cost7

Figure 6.9.: Example state space diagram

Table 6.4.: Number of system setting combinations
Combinations

Routing algorithm 3
Access Control 2
ILS 2
Burst Increase 4
Cost Function 7
Resource Allocation Algorithm 2x3x2 + 1 = 13
Topology 1
Topology Size 7 x 7 = 49
Traffic Mix 1
Total possible Settings 214032

options are part of the data sets used for the evaluation. In this example there is
only the already mentioned filtering of the topologies.
There are two main challenges for evaluating the performance (Maximum Sys-
tem Traffic Intensity; System lifecycle Runtime) by exploring all the configuration
dimensions. First, the efficient computation of the Maximum System Traffic
Intensity is a not trivial task. Second, the total amount of possible configurations
is 214032 (see Table 6.4). To explore all these combinations statistically signifi-
cant each specific setting needs at least 5-10 simulations. This leads to a total
simulation amount of more than one million simulations.

6.3.2. System Evaluation Framework

To find the best configuration for real scenarios two challenges have to be
solved. First, there is a need for defining two metrics which reflect the industrial

114

6.3. Industrial QoS Framework Evaluation

QoS framework runtime and the efficiency in resource usage (Section 6.3.2.1).
The second challenge is to deal with the large solution space. To perform a
brute force search more than a million simulations have to be performed (see
Section 6.3.1). Since the computational resources are limited, the evaluation
have to be performed on a smaller data set. This is discussed in section 6.3.2.2.

6.3.2.1. Metric Computation

To perform a trade-off analysis of the industrial QoS framework two comple-
mentary metrics are defined. We first introduce the Maximum Traffic Intensity
as a measure of the efficiency in resource usage. The second metric the Life-
cycle Runtime reflects the computational complexity of a specific framework
configuration.

Maximum Traffic Intensity computation As already discussed in Section 5
the industrial QoS framework could be seen as a traditional telecommunication
system. Flow requests are generated with an Poisson distributed arrival rate
λF . These flows follow the traffic mix defined in the scenario. In addition there
is also a Poisson distributed holding time. With these two values the traffic
intensity is:

y = λFhF (6.3)

To calculate the maximum traffic intensity we use a static average flow f holding
time of 100 seconds. In a time based simulation this arrival termination process
is evaluated. First the simulation runs until a steady state (flow creation and
termination probability is the same) is reached. This is necessary because the
reject probability is only constant in the steady state. Then, the simulation runs
for 5000 flow embeddings. During the whole simulation, we check if a flow is
rejected by the system. A binary search is used to find the flow arrival rate λF
which leads to no flow rejection during the simulation time. We configure an
accuracy gap of a maximum error of 1%. After the binary search has stopped,
the best feasible flow arrival rate λF is used to compute the Maximum Traffic
Intensity.

Lifecycle Runtime computation To compute the Lifecycle Runtime all flow
related computations are measured separately during the steady state simulation
of the 5000 flows. The routing time, the flow calculation, registration and
deregistration of each flow is measured separately. In addition the total runtime
of the TRAA is measured too. The Lifecycle Runtime is the sum of the average
value of calculation, registration and deregistration and the TRAA divided by
the number of flows (5000).

115

6. Evaluation

6.3.2.2. Search Space limitation

Since the search space is too big to produce statistically significant results an
exhaustive search is not an option. Instead, a Monte-Carlo-method based eval-
uation was done, to compute a small subset of the solution space randomly.
In total 22500 simulations were computed. The evaluation is done on basis of
this simulations for each dimension separately. To compare the options of a
dimension the Empirical Cumulative Density Functions (ECDF) for each option
and metric have to be computed. The result will be visualized in ECDF plots for
Maximum Traffic Intensity and Lifecycle runtime. By doing this it is possible to
identify the high performance options for each dimension with random settings
in all other dimensions.

6.3.3. High Level Sensitivity Analyses
CBF

MHM

ILS

NO

Cost1

TRAAer = 0.4

TRAAdv = 0.01

TRAAfn = 100

ORB

LARAC LDP

TBM

NO ILS

WCB WCB-RR REAL

TRB TRR GR

TRAAer = 0.1

TRAAdv = 0.001 TRAAdv = 0.0001 TRAA = NO

TRAAfn = 1000

Cost2 Cost3 Cost4 Cost5 Cost6 Cost7

As a first analysis step, the identification of
dimensions which mainly influence the perfor-
mance, have to be performed. Therefore, we
analyze the twin plots of runtime and traffic in-
tensity for each dimension. We only consider
the dimensions which show a clear separation
in the performance graph on the overall con-
figuration space. Please note that the high level sensitivity analysis is only
performed on a single topology. Since the topology itself has a main influ-
ence on the framework performance it is necessary to focus only one topology.
Otherwise, the identification of the framework configuration options influence
becomes harder because the strong impact of the topologies hides it. The TRB
is selected as a compromise between the different topologies. While ORB is
simple, TRR and GR are too complex. Only four dimensions provide a clear
separation in there performance graphs so we will discuss them in this section.
The remainder of this section is structured as follows. First, we discuss the
impact of the routing algorithm dimension on the industrial QoS framework.
Second, we continue this discussion with the access control dimension. Third,
we elaborate the impact of the ILS dimension. Finally, we discuss the impact of
the burst increase dimension.

116

6.3. Industrial QoS Framework Evaluation

10−3 10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

Runtime [x in s]

ec
d
f(

x
)

101 102 103

0

0.2

0.4

0.6

0.8

1

Traffic Intensity [x]

CBF LARAC LDP

(a) Routing algorithm dimension

10−3 10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

Runtime [x in s]

ec
d

f(
x
)

101 102 103

0

0.2

0.4

0.6

0.8

1

Traffic Intensity [x]

MHM TBM

(b) Access Control dimension

10−3 10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

Runtime [x in s]

ec
d
f(

x
)

101 102 103

0

0.2

0.4

0.6

0.8

1

Traffic Intensity [x]

NO-ILS ILS

(c) Input Link Shaping dimension

117

6. Evaluation

10−3 10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

Runtime [x in s]

ec
d
f(

x
)

101 102 103

0

0.2

0.4

0.6

0.8

1

Traffic Intensity [x]

NO WCB WCB-RR REAL

(d) Burst Increase dimension

Figure 6.10.: High Level Sensitivity Analyses

CBF

MHM

ILS

NO

Cost1

TRAAer = 0.4

TRAAdv = 0.01

TRAAfn = 100

ORB

LARAC LDP

TBM

NO ILS

WCB WCB-RR REAL

TRB TRR GR

TRAAer = 0.1

TRAAdv = 0.001 TRAAdv = 0.0001 TRAA = NO

TRAAfn = 1000

Cost2 Cost3 Cost4 Cost5 Cost6 Cost7

Impact: Routing algorithm (Fig. 6.10a)
The behavior of the routing algorithms is
mainly aligned with the results of the routing
algorithm evaluation presented in section 6.1
(see. Figure 6.4). First, we discuss the runtime
behavior of the algorithms. The CBF algorithm
is the slowest one. Surprisingly LARAC is
only 62% of the cases slower than LDP. This
effect is plausible because LARAC and LDP use both A* to compute shortest
paths. However, the A* performance is highly depending on the quality of the
guess function. Since the value ranges of the cost functions (1-10) are much
smaller than the ranges of the delay value (µs−ms), the guess values of the cost
function is mor accurate than the guess of the delay. This results in a higher
runtime for the least delay run.
Surprisingly the LDP algorithm performs best in terms of traffic intensity. This
is a clear indicator that the majority of the cost functions (Cost 1, Cost 2, Cost 3,
Cost 4, Cost 5, Cost 6 and Cost 7) perform worse than just the least delay path. To
find the best routing algorithm, it is necessary to repeat the evaluation with the
subset of high performance cost functions. The analysis of the cost function and
the follow up analysis of the routing algorithms will be discussed within the
next section.

118

6.3. Industrial QoS Framework Evaluation

CBF

MHM

ILS

NO

Cost1

TRAAer = 0.4

TRAAdv = 0.01

TRAAfn = 100

ORB

LARAC LDP

TBM

NO ILS

WCB WCB-RR REAL

TRB TRR GR

TRAAer = 0.1

TRAAdv = 0.001 TRAAdv = 0.0001 TRAA = NO

TRAAfn = 1000

Cost2 Cost3 Cost4 Cost5 Cost6 Cost7

Impact: Access Control strategies (Fig. 6.10b)
The analysis of the Access Control strategies
runtime clearly proves their expected runtime
behavior (Section 4.6.2). The MHM provides,
due to its simplicity, the best performance in
terms of runtime. In worst case the TBM is ten
times slower than the MHM. The clear sepa-
ration of the access control implementations
indicates that the Access control has a main
influence on the runtime. The results do not show a clear separation of the
MHM and the TBM in terms of traffic intensity. The TBM is not capable to
outperform the MHM in all of the cases. The bad performance of TBM proves
the impact of the blocking problem mentioned in section 4.6.2. To conclude
the result the access control strategy clearly influences the runtime behavior of
the industrial QoS framework. The influence on the maximum traffic intensity
could not be proven with Figure 6.10b. This indicates that other dimensions
(like fore example the cost functions) have an higher influence on the maximum
traffic intensity. Finding this cross dependency is subject of section 6.3.4.

CBF

MHM

ILS

NO

Cost1

TRAAer = 0.4

TRAAdv = 0.01

TRAAfn = 100

ORB

LARAC LDP

TBM

NO ILS

WCB WCB-RR REAL

TRB TRR GR

TRAAer = 0.1

TRAAdv = 0.001 TRAAdv = 0.0001 TRAA = NO

TRAAfn = 1000

Cost2 Cost3 Cost4 Cost5 Cost6 Cost7

Impact: Input Link Shaping (Fig. 6.10c)
The ILS behaves as expected in Section 4.8.5
and Section 4.8.6. The runtime of the overall
framework is higher or equal if ILS is used.
But it also clearly increases the maximum traf-
fic intensity. We can show this behavior also in
Figure 6.10c. So depending on the needs, ILS
should be used if traffic intensity is the critical factor or not if a low runtime is
needed.

CBF

MHM

ILS

NO

Cost1

TRAAer = 0.4

TRAAdv = 0.01

TRAAfn = 100

ORB

LARAC LDP

TBM

NO ILS

WCB WCB-RR REAL

TRB TRR GR

TRAAer = 0.1

TRAAdv = 0.001 TRAAdv = 0.0001 TRAA = NO

TRAAfn = 1000

Cost2 Cost3 Cost4 Cost5 Cost6 Cost7

Impact: Burst Increase strategies (Fig. 6.10d)
The runtime of the WCB, WCB-RR and REAL
burst increase implementation increases in this
order which corresponds to the increasing im-
plementation complexity. This behavior is
valid for 80% of the cases. The remaining 20%
show nearly the same runtime behavior for all
burst increase strategies. Interestingly the runtime of the NO mode is higher
than the WCB even if they should be the same during the path computation
phase. The increase comes from the higher effort during the optimization phase
because of the high amount of flows handled by the framework. However, the

119

6. Evaluation

different burst increases do not have a big influence on the runtime compared to
other dimensions.
The traffic intensity performance is highly diverse. The WCB method provides
the worst traffic intensity due to its conservativeness. In contrast the NO mode
provides the best traffic intensity because of not considering the burst increase at
all. Because of the NO mode it is possible to serve 50 times more flows than with
WCB mode. WCB-RR and REAL mode are quite equal in their performance.
They reach in best case half the performance of the NO mode. However, even if
the NO mode provides the best performance we do not consider it for a possible
solution. It is only valid to ignore the burst increase under the condition that the
packet inter arrival time is bigger than the end-to-end deadline. This condition
could limit the application too much. The WCB mode can also be excluded due
to its poor performance in terms of traffic intensity.

6.3.4. Solution space reduction

In this section an analysis of the other dimensions is provided. These dimen-
sions have too many cross dependences to the main dimensions identified in
section 6.3.3. It is necessary to evaluate them by reducing the influence of the
main dimensions. Therefore, we perform the following analysis on a reduced
dataset. The cost functions and the Resource Allocation Algorithm were eval-
uated without considering the LDP routing algorithm. In addition, the burst
increase options NO and WCB are not considered because of their strong impact
on the traffic intensity and their limited applicability to the industrial use case.
Indeed, the NO burst increase is only valid under specific circumstances (see
Section 4.7) and the WCB mode provides a best case maximum traffic intensity
of hundreds of flows which is not sufficient.

CBF

MHM

ILS

NO

Cost1

TRAAer = 0.4

TRAAdv = 0.01

TRAAfn = 100

ORB

LARAC LDP

TBM

NO ILS

WCB WCB-RR REAL

TRB TRR GR

TRAAer = 0.1

TRAAdv = 0.001 TRAAdv = 0.0001 TRAA = NO

TRAAfn = 1000

Cost2 Cost3 Cost4 Cost5 Cost6 Cost7

Impact Cost function (Fig. 6.11a) To iden-
tify the high performance cost function, the
LDP algorithm should not be considered dur-
ing this analysis. The LDP algorithm ignores
the cost function which leads to a not negligi-
ble disturbance of the results. In addition, we
only consider the cases where WCB-RR and
REAL burst increase mode was used. Cost function Cost 1, Cost 4 and Cost 7 show
the best performance in terms of traffic intensity on the filtered dataset (see
Figure 6.11a). Cost 1 performs a approximation of a LDP search. Cost 4 prices
the queue link (u, v, q) by the number of flows it is able to accept in addition.
The queue link gets more expensive if the number of flows decreases. Cost 7 is a

120

6.3. Industrial QoS Framework Evaluation

10−3 10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

Runtime [x in s]

ec
d
f(

x
)

101 102 103

0

0.2

0.4

0.6

0.8

1

Traffic Intensity [x]

Cost1 Cost2 Cost3 Cost4
Cost5 Cost6 Cost7

(a) Comparison of the impact of cost function

10−3 10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

Runtime [x in s]

ec
d
f(

x
)

101 102 103

0

0.2

0.4

0.6

0.8

1

Traffic Intensity [x]

NO 100 1000

(b) Comparison of the impact of TRAA parameter TRAAnf

10−3 10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

Runtime [x in s]

ec
d
f(

x
)

101 102 103

0

0.2

0.4

0.6

0.8

1

Traffic Intensity [x]

NO 0.01 0.001 0.0001

(c) Comparison of the impact of TRAA parameter TRAAdv

121

6. Evaluation

10−3 10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

Runtime [x in s]

ec
d
f(

x
)

101 102 103

0

0.2

0.4

0.6

0.8

1

Traffic Intensity [x]

NO 0.1 0.4

(d) Comparison of the impact of TRAA parameter TRAAer

10−3 10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

Runtime [x in s]

ec
d

f(
x
)

101 102 103

0

0.2

0.4

0.6

0.8

1

Traffic Intensity [x]

NO RA-OPT

(e) Comparison of the impact of TRAA parameter set TRAAnf = 1000; TRAAdv = 0.001;
TRAAer = 0.1

10−3 10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

Runtime [x in s]

ec
d
f(

x
)

101 102 103

0

0.2

0.4

0.6

0.8

1

Traffic Intensity [x]

CBF LARAC LDP

(f) Comparison of the Routing algorithm dimension

122

6.3. Industrial QoS Framework Evaluation

10−3 10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

Runtime [x in s]

ec
d
f(

x
)

101 102 103

0

0.2

0.4

0.6

0.8

1

Traffic Intensity [x]

MHM TBM

(g) Comparison of the Access Control dimension

10−3 10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

Runtime [x in s]

ec
d

f(
x
)

101 102 103

0

0.2

0.4

0.6

0.8

1

Traffic Intensity [x]

NO-ILS ILS

(h) Comparison of the Input Link Shaping dimension

10−3 10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

Runtime [x in s]

ec
d
f(

x
)

101 102 103

0

0.2

0.4

0.6

0.8

1

Traffic Intensity [x]

NO WCB WCB-RR REAL

(i) Comparison of the Burst Increase dimension

Figure 6.11.: Solution space reduction

123

6. Evaluation

mixture of Cost 4 and Cost 1.
Cost 1 provide the best runtime behavior of the overall data set because of its
simplicity. The dynamic cost functions Cost 4 and Cost 7 show a similar worst
case runtime behavior but they are always worse than Cost 1, but all three never
exceed the 100 ms border.
On the other hand all three cost functions reach the same traffic intensity opti-
mality level by performing different strategies. The good performance of Cost 1

confirms also that the least delay path search leads to a high maximum traffic
intensity, since Cost 1 is an approximation of the least delay path search. The fact
that Cost 4 adapts nicely to network state, shows the potential of this cost func-
tion. It is highly probable that the cost function also adapts to other utilization
pattern. Cost 7 provide a good traffic intensity performance because Cost 1 and
Cost 4 are the underlying concept.

CBF

MHM

ILS

NO

Cost1

TRAAer = 0.4

TRAAdv = 0.01

TRAAfn = 100

ORB

LARAC LDP

TBM

NO ILS

WCB WCB-RR REAL

TRB TRR GR

TRAAer = 0.1

TRAAdv = 0.001 TRAAdv = 0.0001 TRAA = NO

TRAAfn = 1000

Cost2 Cost3 Cost4 Cost5 Cost6 Cost7

Impact Resource Allocation (Fig. 6.11b-
6.11e) We run the evaluation of the Resource
Allocation algorithm on the same dataset used
in the analysis of the cost functions. We focus
at our analysis on the TRAA. This algorithm
could be configured with three parameters.
These parameter are TRAAnf which specifies
after which number of embedded flows the resource allocation algorithm should
be started, TRAAdv which limits the delay border movement and TRAAer de-
termines the ratio of edges considered for optimization. In the following we
analyze the influence of these parameters.
The first evaluation of TRAAnf (Figure 6.11b) shows that the resource allocation
has only a limited influence on the maximum traffic intensity. Nevertheless,
there are some small improvements in comparison not using (NO) the resource
allocation algorithm. TRAAnf represents the number of processed requests after
the TRAA execution is triggered. There is small improvement of the maximum
traffic intensity by running the resource allocation every 1000 requests. This
setting seems to improve even the runtime behavior. Hence, we chose this value.
The second evaluation of TRAAdv (Figure 6.11c) analyses the delay border move-
ment limitation. The limit of the delay variation to a ratio of 0.001 leads to the
highest improvement of the maximum traffic intensity while the influence on
the runtime behavior is limited. Hence, we chose this value.
The third evaluation analyses the edge ratio TRAAer at Figure 6.11d. The value
determines how many of the high and low utilized edges are considered for
optimization. A ratio of 0.1 shows the best performance in terms of runtime and
maximum traffic intensity. So we do chose this value.

124

6.3. Industrial QoS Framework Evaluation

As a reasonable setting we finally chose TRAAnf = 1000, TRAAdv = 0.001 and
TRAAer=0.1. We show the performance comparison of this parameter set com-
pared to the case where the resource allocation algorithm is not running in
Figure 6.11e. The identified setting outperforms the case where no resource
allocation algorithm is used in slighting in runtime maximum traffic intensity.
However, the influence of the resource allocation is limited in comparison to
the performance impact of the routing algorithm, the Access Control, the burst
increase or the cost function dimensions.

CBF

MHM

ILS

NO

Cost1

TRAAer = 0.4

TRAAdv = 0.01

TRAAfn = 100

ORB

LARAC LDP

TBM

NO ILS

WCB WCB-RR REAL

TRB TRR GR

TRAAer = 0.1

TRAAdv = 0.001 TRAAdv = 0.0001 TRAA = NO

TRAAfn = 1000

Cost2 Cost3 Cost4 Cost5 Cost6 Cost7

Revisit: High Level Sensitivity Analysis
(Fig. 6.11f-6.11i) By revisiting the dimen-
sions Access Control, Burst increase and ILS of
the initial sensitivity analysis, by only consid-
ering the cost functions Cost 1, Cost 4,Cost 7 and
the resource allocation parameter TRAAnf =
1000, TRAAdv = 0.001, TRAAer=0.1 the follow-
ing additional conclusions can be drawn.
The use of proper cost functions and resource allocation improves the perfor-
mance of CBF and LARAC (see. Figure 6.11f). This improvement leads to the
fact that there is only a small difference in the maximum traffic intensity perfor-
mance, comparing the three routing algorithms. However, LARAC outperforms
LDP in 70% of the cases. So we can conclude that LARAC is a good candidate
for running the QoS framework.
The selection of the high performance cost functions leads to a clear performance
picture for the access control (see. Figure 6.11g). The MHM and TBM provide
now the expected runtime traffic intensity trade-off. At the cost of a higher
runtime it is possible to improve the maximum traffic intensity behavior of the
QoS framework, by using the TBM. It also shows that a proper cost function
can eliminate the impact of the blocking problem of the TBM mentioned in
section 4.6.2.
The behavior of ILS stays, from the performance trade-off perspective, the same
as in the initial evaluation (see. Figure 6.11h).
WCB-RR and the REAL burst increase mode provide also a trade-off between
runtime and maximum traffic intensity (see. Figure 6.11i). However, since the
gain of the REAL mode in terms of maximum traffic intensity is limited, the
expenses in extra runtime are not worth it. So the WCB-RR mode provides the
best performance for the industrial use case.

125

6. Evaluation

10−3 10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

Runtime [x in s]

ec
d
f(

x
)

101 102 103

0

0.2

0.4

0.6

0.8

1

Traffic Intensity [x]

Cost1 Cost4 Cost7 ALL

Figure 6.12.: Detailed analysis of the best configuration.

6.3.5. Analysis of the best configuration

CBF

MHM

ILS

NO

Cost1

TRAAer = 0.4

TRAAdv = 0.01

TRAAfn = 100

ORB

LARAC LDP

TBM

NO ILS

WCB WCB-RR REAL

TRB TRR GR

TRAAer = 0.1

TRAAdv = 0.001 TRAAdv = 0.0001 TRAA = NO

TRAAfn = 1000

Cost2 Cost3 Cost4 Cost5 Cost6 Cost7

In Section 6.3.3 and 6.3.4 the best configuration
for each dimension was found. The goal of this
section is the evaluation the performance of
the configuration which combines the settings
previously found. LARAC is used for routing.
The TBM Access Control mechanism is used
combined with ILS. The burst increase is cov-
ered by the use of the WCB-RR scheme. The resource allocation algorithm is
configured with the following parameter set: TRAAnf = 1000, TRAAdv = 0.001
and TRAAer=0.1. We rerun the evaluation with this specific configuration be-
cause the initial evaluation provides only a limited amount of sampling points.
This test shows if the conclusion drawn in section 6.3.3 and 6.3.4 is leading to a
good overall setting and is not the result of statistical outliers. The second goal
is to test the setting with different topologies. This test will show if the results
can be generalized.
In figure 6.12 the ECDF of the three different settings of the cost function are
compared to the data set used in section 6.3.3 and 6.3.4, excluding the data of the
NO burst increase setting. All three cost functions provide the same performance
in terms of maximum traffic intensity. This behavior confirms the results in our
previous evaluation (Figure 6.11a). In addition to this, we notice that combined
setting provides a better performance in terms of traffic intensity than 75% of
the setting of the previous evaluation. Cost 1 outperforms Cost 2 and Cost 3 by a
factor of 2-3 and compared to all settings Cost 1 is faster then 60% of this. These

126

6.3. Industrial Quality of Service (QoS) Framework Evaluation

results are promising, also in absolute numbers. It is possible to achieve an
online embedding rate of 100 flows per second with a maximum traffic intensity
of more then 1000 flows which meets the requirements of Problem 3: "Sufficient
flow capacity". In addition is the performance of 100 flow embeddings per
second more then sufficient for an industrial real-time system so Problem 2:
"Online flow management" is also covered.

6.3.6. Analysis of the topology impact
CBF

MHM

ILS

NO

Cost1

TRAAer = 0.4

TRAAdv = 0.01

TRAAfn = 100

ORB

LARAC LDP

TBM

NO ILS

WCB WCB-RR REAL

TRB TRR GR

TRAAer = 0.1

TRAAdv = 0.001 TRAAdv = 0.0001 TRAA = NO

TRAAfn = 1000

Cost2 Cost3 Cost4 Cost5 Cost6 Cost7

In Figure 6.13a the impact of the topology is
presented. Therefore, the TRB the ORB , TRR
and GR topologies where simulated with cost
function Cost 1. The TRR and GR topologies
increase the runtime by the factor of one to
two compared to the ORB and TRB topologies.
The evaluation of the traffic intensity shows
also that the usage of Cost 1 leads to an efficient usage of the bottleneck resources.
TRB is able to carry the double amount of traffic compared to the ORB. In the
less restricted topologies (TRR and GR) the traffic intensity can even reach 4000
- 20000 flows. The variance of the traffic intensity is caused by the different
topology sizes (Fig. 6.13b). The maximum traffic intensity scales with the TRR
topology dimension m which represents the number of branches in this topology.
In contrast, if the number of nodes on a branch is increased, the maximum traffic
intensity decreases. This indicates that the branch itself becomes a bottleneck.
The GR provides a better traffic intensity if m or n are increased.
These results show that the identified setting provides the performance needed
to handle Problem 3: "Sufficient flow capacity" and Problem 2: "Online flow
management". There was no drastic performance degradation if the setting was
applied for other topologies (ORB , TRR and GR). However, there is no proof
that this algorithm selection is also the best choice for the ORB, TRR and GR
topology. Therefore, the proposed evaluation method (Section 6.3.2) has to be
performed on simulations which reflect the use cases of the QoS framework as
accurately as possible. This will lead to the most accurate algorithm selection.

127

6. Evaluation

10−3 10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

Runtime [x in s]

ec
d
f(

x
)

101 102 103 104

0

0.2

0.4

0.6

0.8

1

Traffic Intensity [x]

ORB TRB TRR GR

(a) Impact of the topology on runtime and traffic intensity.

4
6

8
10

4

6

8

10

6,000

8,000

m

n

T
ra

ffi
c

In
te

n
si

ty

TRR

4
6

8
10

4

6

8

101

1.5

2

·104

m

n

GR

(b) Impact of the topology size on the traffic intensity.

Figure 6.13.: Evaluation of the topology impact.

128

7. Conclusion and Outlook

In this chapter, the conclusions, observations and results of this thesis are dis-
cussed. In addition, the several directions for future work are outlined.

7.1. Conclusion

A complete implementation of a centralized deterministic Quality of Service
control framework was presented in this Thesis. The implementation was done
for the use case of industrial real-time communication. To provide this type
of communication, a path with a deterministic end-to-end delay is needed. To
enable fast online routing capabilities in packet switched networks a function
split was introduced. This split breaks the global optimization problem into
three independent optimization problems: the routing problem, cost function
design and the resource allocation problem. These three problems work on basis
of a Network Resource Model. In this Thesis, multiple deterministic Network
Resource Models were presented.
To find a path with a deterministic end-to-end delay Constrained Shortest Path
(CSP) routing algorithms are needed. Since there is a substantial amount of CSP
algorithms available in the state of the art, but no quantitative comparison, an
evaluation of 26 CSP algorithms was done in this thesis. Seven cost functions
were introduced to optimize the global optimality of the control system.
The Function Split implies that the dynamic effects of adding and removing
flows to and from the network are not effecting previous routing decisions.
Therefore, the resource usage at each link has to be preallocated. The task of the
resource allocation algorithm is to adapt this preallocation to the latest network
state. To solve this task, the Tunable Resource Allocation Algorithm (TRAA)
was introduced.
To evaluate the centralized deterministic Quality of Service control framework,
a stand alone evaluation of all the components was not sufficient to determine
the best system performance. A Monte-Carlo based simulation was used to
create a dataset of system configurations. For this configuration the Maximum
Traffic Intensity and Life cycle Runtime were calculated. The dataset was used
to identify a configuration with a high performance in terms of maximum traffic
intensity (more than thousand flows in average) and a suitable calculation time
(around hundred of routings per second).

129

7. Conclusion and Outlook

These results can be mapped back to the initial problem statements:

Problem 1 "Deterministic end-to-end delay guarantees": We solve this prob-
lem by using a deterministic network calculus based worst case analysis of
the queuing delay. This approach provides conservative worst case bounds.
We have shown by evaluation that the amount of deterministic real-time
connections provided by this method is sufficient for the industrial use
case.

Problem 2 "Online flow management": To provide an online industrial QoS
framework the function split was introduced. We were able to improve
the runtime performance by transforming the routing problem into a CSP
problem.

Problem 3 "Sufficient flow capacity": The evaluation shows that 1000 real-
time connections could be served to a Programmable Logic Controller
(PLC).

Problem 4 "No topology limits": We tested the industrial QoS framework with
four scalable topologies. There is no restriction by the design of the frame-
work which prevents a topology layout. However, the topology has an
impact on the performance of the framework.

Problem 5 "Commodity Hardware": The framework needs at least Openflow
1.0 and priority scheduling supported by the forwarding elements. A lot of
commodity hardware fulfill this requirement.

Problem 6 "Cross traffic": The network resource model is cross traffic enabled.
Therefore, cross traffic has to use a lower priority queue.

Problem 7 "Large topologies": The evaluation was performed on topologies
of more than 100 forwarding nodes, which meets the initial requirements.
However, since the worst case runtime was in the magnitude of ms also
larger topologies could be supported.

These results shows that an implementation centralized deterministic Quality of
Service control system for packet switched networks is possible, and by using
the Function Split it already meets the industrial requirements. This provides the
opportunity to use standard networking hardware within the industrial domain,
which comes with lower costs in comparison to the specialized hardware used
nowadays.

130

7.2. Future Work

7.2. Future Work

The results of this Thesis is a basis for research in the four main topics. Namely
the areas of Routing algorithms, Network Modeling, Cost Functions and Re-
source allocation have provide a variety of new challenges.
An extensive evaluation of unicast CSP algorithms was done in this thesis. How-
ever, there are many other routing problems which occur in real live scenarios:

• Resilient path routing where two link/node disjoint paths have to be found

• Multicast/Broadcast Routing where a one to many communication has to
be established

• Multi-Constrained Shortest Path (MCSP) Routing where multiple con-
straints (e.g. Availability, Delay, ...) have to be satisfied.

The network resource modeling was focused on providing deterministic delay
bounds to serve hard real-time requirements. In future work, stochastic delay
bounds could be used to serve soft real-time requirements. In addition, both
models should coexist which would allow to serve soft and hard real-time
requirements at the same time. An additional direction could be the modeling of
different communication links in the same routing graph. This would enable to
control hybrid communication systems like wired and wireless communication
efficiently.
In this Thesis, cost functions and reallocation algorithms are provided. Since the
performance of this implementations highly dependents on the network state,
machine learning approaches could be used to design an adaptive solution.

131

7. Conclusion and Outlook

132

A. Appendix

A.1. Implementation

The framework presented in the thesis has been implemented in a modular
way that allows to update any component such as network model or routing
algorithm in a easy way. Further, the same software modules can be used for
proof-of-concept implementation as well as for simulation-based evaluation.

A.1.1. System Overview

Fig. A.1 illustrates the main workflow of the QoS provisioning system which
has been defined in section 2. The function split leads to two global workflow
loops: resource allocation and routing.
The routing loop gets a connection request from the network (packet-in) or a
request for a flow embedding via the northbound interface. The latest state of the
network is used to search a path that fulfills the end-to-end delay requirement
and provides enough data rate and buffer space. If a path is found this path
will be embedded in the network. In addition, the resources consumed by the
path will be fed into the queue-link model of the network. This leads to a new
network state. A new connection request is not able to use the resources already
consumed by a previous one. The routing task is designed as an online activity.
The resource allocation loop uses the current utilization of the network to adapt
the resource allocation. As described in section 4 the delay calculation is done
by preassigning resources to each queue. The goal of this loop is to optimize the
resource allocation by using statistical information of the network state. This
should increase the total number of flows or reduce the connection rejection rate.
The resource allocation task can be implemented as a background activity.

A.1.2. Component Model

Basis for the software development is the concept of a component-based entity
system [157]. An entity is a container object, which can carry one component of
every defined type. The component is defined and extended by the user. It is
used to carry application specific data in a global context. The system listens to

133

A. Appendix

State RoutingRes. allo.

Model

Network

getget

em
bedding

update

rerouting

update

lo
gy

to
po

- ne
w

flo
w

Control plane

Data plane

Figure A.1.: Overview over the two main system functions

component driven events. Systems can be implemented such that a method will
be called automatically if a specific component is created, updated or destroyed.
A basic feature for the system implementation is the queue-link model on which
the QoS flow embedding, resource allocation and any other methods are carried
out. Therefore, the present simple view of a communication network that is not
taking different queues into account, has to be extended towards a queue-link
model. For an Software Defined Networking (SDN) controller this is done as an
extension to the topology module, which we call topology module extension
below. From a software engineering point of view the basis for the topology
module extension is the above described component-based entity system. Basic
entities are extended with node and edge components to form a graph system.
The graph system components are then further extended with queue, delay,
rate and scheduler components to form the networking system implementing
the queue-link model. On the networking system routing modules for the
implementation of different routing algorithms and network modules for the
implementation of different network resource models are attached.

A.1.3. Industrial QoS Framework Architecture

This subsection describes the functional view on the framework components
implemented using the above described software architecture. Main part is the
control architecture that represents the SDN controller. The switching hardware
is not modified, i.e., standard Openflow capable switches are assumed.
The control architecture itself is based on a general controller architecture, e.g.
such as the OpenDaylight controller platform. For the software component
development of this project we introduced the functional module design shown
in figure A.2. The most important module of this design is the topology extension
module. It provides the basic component based entity system functionality. All
modules that are developed for this project implement components and systems

134

A.1. Implementation

to interact with each other.

Figure A.2.: Overview of the developed module structure.

The module structure (Figure A.2) will be described in the following:

Topology Extension The topology extension is the main module of the soft-
ware architecture; it implements the queue-link model of the network
topology that is used to calculate the worst-case QoS guarantees needed
for flow embedding etc. It is based on the Topology Module provided by
any common SDN controller architecture. Two main types of modules
are using it: (a) modules that work as a data provided to the queue-link
model such as the Network Resource Model and (b) data consumer like the

135

A. Appendix

routing module that use the data to calculate routes for flow embedding
inside the network.

Routing The Routing module uses the information provided by the Network
Resource Model to provide end-to-end latency guarantees. Therefore,
routing requests are generated via the Packet IN Manager. This requests
are solved by one CSP routing algorithm. The routing algorithm uses the
latency and cost values provided by the network resource model. The final
solution is pushed to the QoS Flow Embedding module.

Network Resource Model The Network Resource Model provides determinis-
tic worst case latency borders for every forwarding element. It implements
the modeling technique described in Section 4. In addition the implemen-
tation of the cost functions (Section 5.2) and the implementation of the
resource allocation algorithm (Section 5.3) is part of this module.

Packet IN Manager The Packet IN Manager classifies and distributes the packet-
in messages of the controller platform to the routing module. Therefore,
service classes have to be configured via the QoS Northbound Application
Programming Interface (API).

QoS Northbound API The QoS Northbound API is able to configure the Packet
IN manager in a dynamic way. It is possible to set specific real-time flows
through this interface based on REST. Therefore, the the flow matching and
the QoS requirements have to be provided.

QoS Flow Embedding The QoS Flow Embedding Module takes care of deploy-
ing the end-to-end flows provided by the routing modules to the network.
The second task is to store all the information of the embedded flows for
future processing via the topology extension module.

OpenFlow API The OpenFlow API module is a abstraction layer which profiles
easy access to the OpenFlow functionalities of the controller platform. It
transforms i.g. routing responses (Paths) into a set of Openflow rules and
deploys them in the network.

136

Abbreviations

kCSP k Constrained Shortest Path. 28, 34

kDCBF k Delay-Constrained Bellman-Ford. 35, 47, 87, 94, 97

kH_MCOP k Heuristic for Multi-Constrained Optimal Path. 40, 47, 87, 91, 93,
95, 97, 100–102

kLARAC k Lagrange Relaxation based Aggregate Cost. 38, 47, 87, 93, 95, 99, 101,
102

kMCP k Multi-Constrained Path. 28

kMCSP k Multi-Constrained Shortest Path. 28, 34, 35, 47, 87, 91, 92

kSP k Shortest Path. viii, 28, 31–33, 40, 95

API Application Programming Interface. 136

AQM Active Queue Management. vii, 8, 11

AUT Algorithm Under Test. 91

AVB Audio Video Bridging. 13

BF Bellman-Ford. viii, 31–35, 42, 47, 87, 94, 98

CBF Constrained Bellman-Ford. 34, 35, 43, 47, 87, 91–94, 98, 99, 102, 113, 118,
125

CD Constrained Dijkstra. 34

CDP Cost Delay Product. 45, 47, 87

CI Cost Inefficiency. 29, 38, 91, 92, 94–98, 100–103

CSP Constrained Shortest Path. viii, ix, 3–7, 19, 28–30, 33–36, 39, 41, 47, 49, 78,
85–89, 91, 93, 95, 97, 99, 101, 103, 111, 113, 129–131, 136

DCBF Delay-Constrained Bellman-Ford. 35, 47, 87, 93, 94, 98, 99, 101

137

Abbreviations

DCCR Delay-Cost-Constrained Routing. 41, 47, 87, 96, 97

DCLC Delay-Constrained Least-Cost. 19, 22, 29–31, 34, 37, 40–43, 47, 49, 73, 75,
87

DCR Distributed delay Constrained Routing. 43, 44, 47, 87, 93, 96, 97, 100, 102,
103

DCUR Delay-Constrained Unicast Routing. x, 35, 42–44, 47, 87, 96, 97, 102, 103

DEB dual extended Bellman-Ford. 35, 47, 87, 101

DetServ Deterministic Services. viii, 3–6, 27, 49–52, 54, 56, 58–62, 64, 66–70, 72

DiffServ Differentiated Services. vii, 1, 8, 9, 14, 15

E_MCOP Exact Multi-Constrained Optimal Path. 41, 47, 87, 91, 92

E_MCP Exact Multi-Constrained Path. 41

EB extended Bellman-Ford. 35

ECDF Empirical Cumulative Density Functions. 116, 126

FB Fallback. 34, 35, 47, 87, 92, 94, 102

FIFO First-in, First-out. 9, 10

FQ Fair Queuing. 10

GPS Generalized Processor Sharing. 8, 10, 13

GR Grid Random. 89, 92, 93, 98, 101, 102, 116, 127

H_MCOP Heuristic for Multi-Constrained Optimal Path. 39–41, 47, 87, 91, 93,
95–97, 100–102

H_MCP Heuristic for Multi-Constrained Path. 40, 41, 95

IkSP Iterative k Shortest Path. 33, 34, 37, 38, 41, 47, 87, 92, 95

IAK Ishida Aman Kannari. 43, 44, 47, 87, 96, 97, 102, 103

ILP Integer Linear Programming. 33

ILS Input Link Shaping. viii, x, 50, 64–71, 112–114, 116, 119, 125, 126

138

Abbreviations

IntServ Integrated Services. vii, 1, 8, 9, 14, 15

IP Internet Protocol. 75

LARAC Lagrange Relaxation based Aggregate Cost. x, 36–39, 42, 47, 87, 93–96,
99, 101–103, 113, 118, 125, 126

LARACGC Lagrange Relaxation based Aggregate Cost Gap Closing. 38, 42, 47,
87, 91–96, 99, 101

LC Least-Cost. viii, 32–40, 42–45, 47, 87, 90, 92–97, 102

LD Least-Delay. viii, 33–45, 47, 87, 91–98, 101–103

LDP Least Delay Path. 34, 47, 77, 87, 91–93, 95, 98, 99, 102, 113, 118, 120, 125

MCP Multi-Constrained Path. 28–30, 40, 41

MCSP Multi-Constrained Shortest Path. viii, 28, 29, 33–35, 39–41, 47, 87, 131

MH_MCOP Modified Heuristic for Multi-Constrained Optimal Path. 41, 47, 87,
95, 96, 101

MHM Multi-Hop Model. viii, x, 50, 56–60, 62, 66–68, 70, 79–82, 112, 119, 125

MIP Mixed Integer Program. ix, 6, 7, 18, 104, 106–108, 110, 111

NBI Northbound Interface. 20

NR_DCLC Nonlinear Relaxation Delay Constraind Least Cost. 40, 41, 47, 87, 95

ORB One Ring Bottleneck. 89, 101, 116, 127

PBO Partition-Based Ordering. 45, 47, 87

PCE Path Computation Element. 14

PLC Programmable Logic Controller. 2, 3, 89, 130

PQ Priority Queuing. 10, 11

QoS Quality of Service. iii, vii–xi, 1–18, 20, 22, 24, 25, 27–30, 32, 33, 42, 45–47,
49, 56, 74, 75, 85–88, 91, 93, 100, 102–104, 106, 107, 110–113, 115–117, 119,
121, 123, 125, 127, 130, 133–136

139

Abbreviations

RDM Residual Delay Maximizing. 45, 47, 87

RL Rate Latency. 52, 53, 56, 63, 64, 66, 68, 143

RR Round Robin. 10

RSVP Resource reSerVation Protocol. 8

SkSP Static k Shortest Path. 33, 38, 40, 47, 87

SCRC Santos Coutinho-Rodrigues Current. 38, 41, 47, 87, 91, 92

SDN Software Defined Networking. vii, 8, 14, 15, 17, 20, 30, 45, 75, 85, 134, 135

SF_DCLC Selection Function Delay Constraind Least Cost. 45, 47, 87, 93, 97,
100, 102

SMS Sriram Manimaran Siva. 44, 45, 47, 87, 92

SP Shortest Path. viii, 28–32, 34–47, 87, 92, 94–97, 102

SSR+DCCR Search Space Reduction Delay-Cost-Constrained Routing. 42, 47,
87, 93, 96, 97, 100–103

TB Token Bucket. 52, 53, 58, 63, 66, 67, 141

TBM Threshold-Based Model. viii, x, 50, 56, 60–62, 67–70, 79, 80, 112, 119, 125,
126

TCP Transmission Control Protocol. 11

TRAA Tunable Resource Allocation Algorithm. ix, xi, 80, 82–84, 113, 115, 121–
124, 129, 143, 144

TRB Two Ring Bottleneck. 89, 101, 102, 113, 116, 127

TRR Two Ring Random. 89, 101, 102, 116, 127

TSN Time Sensitive Networking. vii, xi, 7, 12–14

WFQ Weighted Fair Queuing. 10, 11

WRR Weighted Round Robin. 10, 11

140

Mathematical Notations

A set of resource allocation parameter. 71, 79–83, 110

αTB Token Bucket (TB) service curve. 52, 53, 58, 63, 66, 67

AB Buffer capacity alocated to an edge. 57–59, 67, 71, 79, 81, 82, 105

α arrival curve. 51, 52, 58, 66–68, 70

AR Bit rate allocated to an edge. 57–59, 67, 71, 79–82, 110

AWCD Worst Case Dealy alocated to an edge. 60–62, 68, 69, 71, 79

BPmax maximum blocking probability. 74

BP blocking probability. 74, 75

B buffer capacity. 11, 55–58, 61, 62, 67–69, 71

Pf path of a flow f . 18, 19, 50, 55, 56, 59, 61, 69, 71, 75, 76, 81, 103, 106, 142, 143

b burstiness. 8, 52–55, 59, 61, 63, 64, 69, 71, 105, 113

λF flow f arrival rate. 73, 74, 115

hF flow f holding time. 73, 115

y traffic intensity. 73, 74, 115

Cost 1 cost function which optimizes the path to a small hop count. 77, 118, 120,
124–127

Cost 2 cost function which optimizes the path to a small hop count path and to a
lowest priority. 77, 118, 126

Cost 3 cost function which optimizes the path to lowest priority with a linear
function. 77, 118, 126

Cost 4 cost function which optimizes the path to a small hop count path and a
high number of possible future flows for a input link for a q-link (m,u, v, q).
78, 118, 120, 124, 125

141

Mathematical Notations

Cost 5 cost function which optimizes the path to a small hop count path and a
high number of possible future flows for a physical link (u, v). 78, 118

Cost 6 cost function which optimizes the path to a small hop count path and a
high number of possible future flows for a q-link (u, v, q). 78, 118

Cost 7 cost function which optimizes the path to a small hop count path and a
high number of possible future flows for a physical link (u, v) and use a
high priority first. 78, 118, 120, 124, 125

Cost(Pf) end to end cost of a path Pf . 19, 50, 75, 76, 103

Cost cost metric. 19, 50, 71, 75–78, 103, 118, 120, 124–127, 141, 142

D(Pf) end to end delay of a path Pf . 18, 19, 50, 71, 75, 79, 80, 82, 83, 103, 106

E set of edges of a graph (G). 17, 71, 142, 143

Ep set of edges of a graph (G). 54, 56, 71, 80, 81

Eq
(u,v)

Set of queue links (u, v, q) traversing physical link (u, v). 16, 54–57, 60–62,
69, 71, 80, 81, 83, 105, 106

Eq set of edges of a graph (G). 54–59, 61, 64–67, 69, 71

v destination of an link. 71, 76, 143

m link leading to the link. 71, 76, 143

q queue of an link. 71, 76, 143

nf number of flows. 76, 78

u source of an link. 54, 55, 59, 61, 63, 64, 69, 71, 76, 143

F set of flows (f) embedded in the Graph G. 17, 18, 50, 54–57, 71, 80–83, 103, 106

t deadline constraint. 18, 19, 50, 54, 56, 64, 71, 75, 79, 80, 83, 103, 106, 113

d destination. 18, 19, 50, 71, 75, 103, 106

f flow. 17–19, 50, 54–57, 59, 61, 63, 64, 69, 71, 74, 75, 80–83, 103, 105, 106, 113,
115, 141, 142

o origin. 18, 19, 50, 54, 55, 59, 61, 63, 64, 69, 71, 75, 103, 106

142

Mathematical Notations

G graph consisting of a set of nodes (N) and a set of edges (E). 17, 71, 142, 143

Gp graph consists of a set of nodes (N) and a set of edges (E). 54, 71

Gq graph consists of a set of nodes (N) and a set of edges (E). 54, 71

L(Pf) end to end loss probability of a path Pf . 18, 19, 50, 80, 103, 106

N set of nodes of a graph (G). 17, 54, 71, 142, 143

α∗ output arrival curve. 52, 53

P set of possible pathes. 18, 19, 50, 71, 75, 103, 106

(u, v) physical link from node u to node v. 16, 54–58, 60–62, 66–69, 71, 76, 78,
80–83, 105, 106, 110, 142

p priority. 54, 76–78

fes feasibility. 76, 78, 83

pmax maximal priority. 76–78

(m,u, v, q) Queue link from node u to node v via queue q from physical edge m.
67, 69, 71, 76–78, 141

(u, v, q) Queue link from node u to node v via queue q. 54–71, 76–82, 105, 110,
120, 142

C link capacity. 53, 54

R service data rate. 11, 52, 54–58, 60, 62–64, 66–68, 71, 106

l packet length. 53–57, 61, 62, 67, 69

r data rate. 8, 52–55, 59, 61, 63, 64, 69, 71, 113

βRL Rate Latency (RL) service curve. 52, 53, 56, 63, 64, 66, 68

β service curve. 52, 53, 66–68, 70

T service delay. 52–56, 60, 63, 64, 71

TRAAdv Tunable Resource Allocation Algorithm (TRAA) delay variation. 83,
121–126

143

Mathematical Notations

TRAAer TRAA edge ratio. 83, 122, 124–126

TRAAnf TRAA number of flows. 83, 121, 122, 124–126

U set of resource utilisation parameter. 71

UB Buffer capacity utilisation of an edge. 55–59, 61–63, 67, 69, 71, 79, 105

UR Bit rate utilisation of an edge. 55–63, 67, 69, 71, 79

WCB Worst Case Burst. 55–58, 61, 62, 66–71

WCD Worst Case Delay. 55–63, 66–69, 71, 81, 82

144

Bibliography

Publications by the author

[1] J. W. Guck and W. Kellerer, “Achieving end-to-end real-time quality of
service with software defined networking,” in 2014 IEEE 3rd International
Conference on Cloud Networking (CloudNet), Oct 2014, pp. 70–76.

[2] J. W. Guck, M. Reisslein, and W. Kellerer, “Model-based control plane for
fast routing in industrial QoS network,” in 2015 IEEE 23rd International
Symposium on Quality of Service (IWQoS), June 2015, pp. 65–66.

[3] ——, “Function split between delay-constrained routing and resource
allocation for centrally managed QoS in industrial networks,” IEEE Trans-
actions on Industrial Informatics (TII), vol. 12, no. 6, pp. 2050–2061, Dec
2016.

[4] J. W. Guck, A. V. Bemten, M. Reisslein, and W. Kellerer, “Unicast QoS
routing algorithms for SDN: A comprehensive survey and performance
evaluation,” IEEE Communications Surveys Tutorials, vol. PP, no. 99, pp. 1–1,
2017.

[5] J. W. Guck, A. V. Bemten, and W. Kellerer, “DetServ: Network models
for real-time QoS provisioning in SDN-based industrial environments,”
IEEE Transactions on Network and Service Management, vol. 14, no. 4, pp.
1003–1017, Dec 2017.

[6] A. Van Bemten, J. W. Guck, C. Mas Machuca, and W. Kellerer, “Rout-
ing metrics depending on previously traversed edges: Taxonomy and
solutions,” in 2018 IEEE International Conference on Communications (ICC),
2018.

[7] J. W. Guck, W. Kellerer, V. Kulkarni, and J. Riedl, “Device
and method for managing end-to-end connections of a network
within a central network management entity,” Patent, Feb. 2,
2017, WO Patent App. WO2017016610A1. [Online]. Available: http:
//google.com/patents/WO2017016610A1

145

http://google.com/patents/WO2017016610A1
http://google.com/patents/WO2017016610A1

Bibliography

[8] ——, “Device and method for managing end-to-end connections,” Patent,
Mar. 1, 2018, WO Patent App. WO2018036606A1. [Online]. Available:
http://google.com/patents/WO2018036606A1

[9] A. Van Bemten, J. W. Guck, P. Vizarreta, C. Mas Machuca, and W. Kellerer,
“LARAC-SN and Mole in the Hole: Enabling routing through service
function chains,” in 2018 IEEE Conference on Network Softwarization (NetSoft)
(accepted), 2018.

[10] A. Van Bemten, J. W. Guck, C. Mas Machuca, and W. Kellerer, “Joint
Dijkstra (JD): Search space reduction for expediting shortest path,” in 2018
IFIP Networking Conference (IFIP Networking) (under review), 2018.

[11] S. Zoppi, A. Van Bemten, H. M. Gürsu, M. Vilgelm, J. Guck, and W. Kellerer,
“Achieving hybrid wired/wireless industrial networks with wdetserv:
Reliability-based scheduling for delay guarantees,” IEEE Transactions on
Industrial Informatics, vol. 14, no. 5, pp. 2307–2319, 2018.

[12] J. Folmer, D. Pantförder, J. W. Guck, A. Hosseini, and B. Vogel-Heuser,
“Realisierung eines konzeptes zur diagnose ethernetbasierter echtzeitkom-
munikationssysteme,” in Informatik aktuell. Springer Berlin Heidelberg,
2013, pp. 99–108.

[13] E. Grigoreva, J. W. Guck, and W. Kellerer, “Challenges and research direc-
tions in vehicular traffic modelling and uplink in-car scheduling,” Tech-
nische Universitaet Muenchen, Tech. Rep., Mar 2016.

[14] E. Sakic, F. Sardis, J. W. Guck, and W. Kellerer, “Towards adaptive state
consistency in distributed SDN control plane,” in 2017 IEEE International
Conference on Communications (ICC), May 2017, pp. 1–7.

General publications

[15] J.-D. Decotignie, “Ethernet-based real-time and industrial communica-
tions,” Proceedings of the IEEE, vol. 93, no. 6, pp. 1102–1117, 2005.

[16] P. Sharma, S. Banerjee, S. Tandel, R. Aguiar, R. Amorim, and D. Pinheiro,
“Enhancing network management frameworks with SDN-like control,” pp.
688–691, 2013.

146

http://google.com/patents/WO2018036606A1

[17] S. Sharma, D. Staessens, D. Colle, D. Palma, J. Goncalves, R. Figueiredo,
D. Morris, M. Pickavet, and P. Demeester, “Implementing quality of service
for the software defined networking enabled future internet,” pp. 49–54,
Sep. 2014.

[18] A. Akella and K. Xiong, “Quality of Service (QoS)-guaranteed network
resource allocation via Software Defined Networking (SDN),” pp. 7–13,
Aug. 2014.

[19] M. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “PolicyCop: An
autonomic QoS policy enforcement framework for software defined net-
works,” pp. 1–7, 2013.

[20] D. Adami, L. Donatini, S. Giordano, and M. Pagano, “A network control
application enabling software-defined quality of service,” pp. 6074–6079,
2015.

[21] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: An intellectual
history of programmable networks,” ACM SIGCOMM Computer Commu-
nication Review, vol. 44, no. 2, pp. 87–98, 2014.

[22] M. Jarschel, T. Zinner, T. Hoßfeld, P. Tran-Gia, and W. Kellerer, “Interfaces,
attributes, and use cases: A compass for SDN,” IEEE Communications
Magazine, vol. 52, no. 6, pp. 210–217, 2014.

[23] V. Kotronis, X. Dimitropoulos, and B. Ager, “Outsourcing the routing
control logic: Better internet routing based on SDN principles,” in Proc.
ACM Workshop on Hot Topics in Networks, 2012, pp. 55–60.

[24] C. E. Rothenberg, M. R. Nascimento, M. R. Salvador, C. N. A. Corrêa,
S. Cunha de Lucena, and R. Raszuk, “Revisiting routing control platforms
with the eyes and muscles of software-defined networking,” in Proc. ACM
Workshop on Hot Topics in Software Defined Networks, 2012, pp. 13–18.

[25] X. Xiao and L. M. Ni, “Internet QoS: A big picture,” IEEE Network, vol. 13,
no. 2, pp. 8–18, 1999.

[26] ——, “The use of RSVP with IETF integrated services,” Internet Requests
for Comments, RFC Editor, RFC 2210, Sep. 1997. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc2210.txt

[27] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc wireless
networks,” in Mobile Computing. Springer, 1996, pp. 153–181.

147

http://www.rfc-editor.org/rfc/rfc2210.txt

Bibliography

[28] M. S. Corson and A. Ephremides, “A distributed routing algorithm for
mobile wireless networks,” Wireless Networks, vol. 1, no. 1, pp. 61–81, 1995.

[29] R. Sivakumar, P. Sinha, and V. Bharghavan, “CEDAR: A core-extraction
distributed ad hoc routing algorithm,” IEEE Journal on Selected Areas in
Communications, vol. 17, no. 8, pp. 1454–1465, 1999.

[30] V. D. Park and M. S. Corson, “A highly adaptive distributed routing
algorithm for mobile wireless networks,” in Proc. IEEE INFOCOM, vol. 3,
1997, pp. 1405–1413.

[31] J. McQuillan, I. Richer, and E. Rosen, “The new routing algorithm for
the ARPANET,” IEEE Transactions on Communications, vol. 28, no. 5, pp.
711–719, 1980.

[32] J. Jaffe and F. Moss, “A responsive distributed routing algorithm for com-
puter networks,” IEEE Transactions on Communications, vol. 30, no. 7, pp.
1758–1762, 1982.

[33] R. Gallager, “A minimum delay routing algorithm using distributed com-
putation,” IEEE Transactions on Communications, vol. 25, no. 1, pp. 73–85,
1977.

[34] D. P. Bertsekas, Nonlinear Programming. Athena Scientific Belmont, 1999.

[35] A. Konak, D. W. Coit, and A. E. Smith, “Multi-objective optimization
using genetic algorithms: A tutorial,” Reliability Engineering & System
Safety, vol. 91, no. 9, pp. 992–1007, 2006.

[36] H.-S. Yang, M. Maier, M. Reisslein, and W. M. Carlyle, “A genetic
algorithm-based methodology for optimizing multiservice convergence in
a metro WDM network,” IEEE/OSA Journal of Lightwave Technology, vol. 21,
no. 5, p. 1114, 2003.

[37] K. Deb, Multi-objective Optimization Using Evolutionary Algorithms. John
Wiley & Sons, 2001, vol. 16.

[38] R. T. Marler and J. S. Arora, “Survey of multi-objective optimization meth-
ods for engineering,” Structural and Multidisciplinary Optimization, vol. 26,
no. 6, pp. 369–395, 2004.

[39] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach
Featuring the Internet, 7th ed. Pearson, 2017.

148

[40] A. Ishimori, F. Farias, E. Cerqueira, and A. Abelém, “Control of multiple
packet schedulers for improving QoS on OpenFlow/SDN networking,”
in Proc. IEEE European Workshop on Software Defined Networking, 2013, pp.
81–86.

[41] D. Cavendish and M. Gerla, “Internet QoS routing using the Bellman-Ford
algorithm,” in High Performance Networking. Springer, 1998, pp. 627–646.

[42] L. Seno, F. Tramarin, and S. Vitturi, “Performance of industrial commu-
nication systems: Real application contexts,” IEEE Industrial Electronics
Magazine, vol. 6, no. 2, pp. 27–37, 2012.

[43] T. Skeie, S. Johannessen, and O. Holmeide, “Timeliness of real-time IP
communication in switched industrial Ethernet networks,” IEEE Trans. on
Industrial Informatics, vol. 2, no. 1, pp. 25–39, 2006.

[44] P. Gaj, J. Jasperneite, and M. Felser, “Computer communication within
industrial distributed environment—a survey,” IEEE Trans. Industrial Infor-
matics, vol. 9, no. 1, pp. 182–189, Feb. 2013.

[45] C. C. Skiscim and B. L. Golden, “Solving k-shortest and constrained short-
est path problems efficiently,” Annals of Operations Research, vol. 20, no. 1,
pp. 249–282, 1989.

[46] C. Pornavalai, G. Chakraborty, and N. Shiratori, “QoS based routing
algorithm in integrated services packet networks,” Journal of High Speed
Networks, vol. 7, no. 2, pp. 99–112, 1998.

[47] ——, “Routing with multiple QoS requirements for supporting multime-
dia applications,” Telecommunication Systems, vol. 9, no. 3-4, pp. 357–373,
1998.

[48] S. Chen and K. Nahrstedt, “Distributed QoS routing with imprecise state
information,” in Proc. IEEE Int. Conf. on Computer Communications and
Networks, 1998, pp. 614–621.

[49] ——, “Distributed quality-of-service routing in high-speed networks
based on selective probing,” in Proc. IEEE Conference on Local Computer
Networks (LCN), 1998, pp. 80–89.

[50] K. G. Shin and C.-C. Chou, “A distributed route-selection scheme for
establishing real-time channels,” in High Performance Networking. Springer,
1995, pp. 319–330.

149

Bibliography

[51] D. H. Lorenz and A. Orda, “QoS routing in networks with uncertain
parameters,” IEEE/ACM Transactions on Networking, vol. 6, no. 6, pp. 768–
778, 1998.

[52] R. A. Guérin and A. Orda, “QoS routing in networks with inaccurate in-
formation: Theory and algorithms,” IEEE/ACM Transactions on Networking,
vol. 7, no. 3, pp. 350–364, 1999.

[53] S. Chen and K. Nahrstedt, “Distributed quality-of-service routing in ad
hoc networks,” IEEE Journal on Selected areas in Communications, vol. 17,
no. 8, pp. 1488–1505, 1999.

[54] L. Xiao, J. Wang, and M. Nahrstedt, “The enhanced ticket-based routing
algorithm,” in Proc. IEEE Int. Conf. on Communications (ICC), vol. 4, 2002,
pp. 2222–2226.

[55] A. Goel, K. G. Ramakrishnan, D. Kataria, and D. Logothetis, “Efficient
computation of delay-sensitive routes from one source to all destinations,”
in Proc. IEEE INFOCOM, vol. 2, 2001, pp. 854–858.

[56] Y. P. Aneja, V. Aggarwal, and K. P. Nair, “Shortest chain subject to side
constraints,” Networks, vol. 13, no. 2, pp. 295–302, 1983.

[57] H. C. Joksch, “The shortest route problem with constraints,” Journal of
Mathematical Analysis and Applications, vol. 14, no. 2, pp. 191–197, 1966.

[58] R. Hassin, “Approximation schemes for the restricted shortest path prob-
lem,” Mathematics of Operations Research, vol. 17, no. 1, pp. 36–42, 1992.

[59] T. Korkmaz and M. Krunz, “Multi-constrained optimal path selection,” in
Proc. IEEE INFOCOM, vol. 2, 2001, pp. 834–843.

[60] D. H. Lorenz and D. Raz, “A simple efficient approximation scheme for
the restricted shortest path problem,” Operations Research Letters, vol. 28,
no. 5, pp. 213–219, 2001.

[61] F. Ergun, R. Sinha, and L. Zhang, “An improved FPTAS for restricted
shortest path,” Information Processing Letters, vol. 83, no. 5, pp. 287–291,
2002.

[62] A. Warburton, “Approximation of pareto optima in multiple-objective,
shortest-path problems,” Operations Research, vol. 35, no. 1, pp. 70–79, 1987.

150

[63] R. G. Garroppo, S. Giordano, and L. Tavanti, “A survey on multi-
constrained optimal path computation: Exact and approximate algo-
rithms,” Computer Networks, vol. 54, no. 17, pp. 3081–3107, 2010.

[64] H. Agrawal, M. Grah, and M. Gregory, “Optimization of QoS routing,” in
Proc. IEEE/ACIS Int. Conf. on Computer and Information Science (ICIS), 2007,
pp. 598–603.

[65] D. H. Lorenz, A. Orda, D. Raz, and Y. Shavitt, “Efficient QoS partition and
routing of unicast and multicast,” IEEE/ACM Transactions on Networking,
vol. 14, no. 6, pp. 1336–1347, 2006.

[66] D. Raz and Y. Shavitt, “Optimal partition of QoS requirements with dis-
crete cost functions,” in Proc. IEEE INFOCOM, vol. 2, 2000, pp. 613–622.

[67] G. Apostolopoulos, R. Guerin, S. Kamat, and S. Tripathi, “Improving QoS
routing performance under inaccurate link state information,” in Proc.
International Teletraffic Congress, 1999, pp. 7–11.

[68] Y. P. Aneja and K. Nair, “The constrained shortest path problem,” Naval
Research Logistics Quarterly, vol. 25, no. 3, pp. 549–555, 1978.

[69] G. Y. Handler and I. Zang, “A dual algorithm for the constrained shortest
path problem,” Networks, vol. 10, no. 4, pp. 293–309, 1980.

[70] D. Blokh and G. Gutin, “An approximate algorithm for combinatorial
optimization problems with two parameters,” Australasian Journal of Com-
binatorics, vol. 14, pp. 157–164, 1996.

[71] A. Jüttner, B. Szviatovski, I. Mécs, and Z. Rajkó, “Lagrange relaxation
based method for the QoS routing problem,” in Proc. IEEE INFOCOM,
vol. 2, 2001, pp. 859–868.

[72] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Nu-
merische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[73] A. Shimbel, “Structure in communication nets,” in Proceedings of the Sym-
posium on Information Networks, 1954, pp. 199–203.

[74] R. Bellman, “On a routing problem,” Quarterly of Applied Mathematics,
vol. 16, no. 1, pp. 87–90, Apr. 1958.

[75] L. R. Ford Jr, “Network flow theory,” DTIC Document, Tech. Rep., 1956.

151

Bibliography

[76] E. F. Moore, The Shortest Path Through a Maze. Bell Telephone System,
1959.

[77] A. Schrijver, “On the history of the shortest path problem,” Documenta
Mathematica, pp. 155–167, 2012.

[78] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuris-
tic determination of minimum cost paths,” IEEE Transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[79] J. Y. Yen, “An algorithm for finding shortest routes from all source nodes to
a given destination in general networks,” Quarterly of Applied Mathematics,
vol. 27, no. 4, pp. 526–530, Jan. 1970.

[80] M. J. Bannister and D. Eppstein, “Randomized speedup of the Bellman-
Ford algorithm,” in Proc. of the SIAM Meeting on Analytic Algorithmics and
Combinatorics, 2012, pp. 41–47.

[81] L. Fu, D. Sun, and L. R. Rilett, “Heuristic shortest path algorithms for
transportation applications: State of the art,” Computers & Operations
Research, vol. 33, no. 11, pp. 3324–3343, 2006.

[82] E. Chow, “A graph search heuristic for shortest distance paths,” Lawrence
Livermore National Laboratory, Tech. Rep., 2005.

[83] J. Y. Yen, “Finding the k shortest loopless paths in a network,” Management
Science, vol. 17, no. 11, pp. 712–716, 1971.

[84] D. Eppstein, “Finding the k shortest paths,” SIAM Journal on Computing,
vol. 28, no. 2, pp. 652–673, 1998.

[85] V. M. Jiménez and A. Marzal, “A lazy version of Eppstein’s k shortest paths
algorithm,” in Proc. Int. Workshop on Experimental and Efficient Algorithms.
Springer, 2003, pp. 179–191.

[86] H. Aljazzar and S. Leue, “K*: A directed on-the-fly algorithm for finding
the k shortest paths,” University of Konstanz, Germany, Tech. Rep., 2008.

[87] E. I. Chong, S. Maddila, and S. Morley, “On finding single-source single-
destination k shortest paths,” J. Computing and Information, Special Issue
ICCI, vol. 95, pp. 40–47, 1995.

[88] Z. Jia and P. Varaiya, “Heuristic methods for delay-constrained least-
cost routing problem using k-shortest-path algorithms,” in Proc. IEEE
INFOCOM, 2001, pp. 1–9.

152

[89] G. Liu and K. Ramakrishnan, “A*Prune: An algorithm for finding k short-
est paths subject to multiple constraints,” in Proc. IEEE INFOCOM, vol. 2,
2001, pp. 743–749.

[90] G. Xue, W. Zhang, J. Tang, and K. Thulasiraman, “Polynomial time ap-
proximation algorithms for multi-constrained QoS routing,” IEEE/ACM
Transactions on Networking, vol. 16, no. 3, pp. 656–669, 2008.

[91] G. Feng, C. Douligeris, K. Makki, and N. Pissinou, “Performance eval-
uation of delay-constrained least-cost QoS routing algorithms based on
linear and nonlinear lagrange relaxation,” in Proc. IEEE Int. Conf. on Com-
munications (ICC), vol. 4, 2002, pp. 2273–2278.

[92] H. F. Salama, D. S. Reeves, and Y. Viniotis, “A distributed algorithm for
delay-constrained unicast routing,” in Proc. IEEE INFOCOM, vol. 1, 1997,
pp. 84–91.

[93] D. S. Reeves and H. F. Salama, “A distributed algorithm for delay-
constrained unicast routing,” IEEE/ACM Transactions on Networking, vol. 8,
no. 2, pp. 239–250, 2000.

[94] Q. Sun and H. Langendörfer, “A new distributed routing algorithm
for supporting delay-sensitive applications,” Computer Communications,
vol. 21, no. 6, pp. 572–578, 1998.

[95] R. Sriram, G. Manimaran, and C. S. R. Murthy, “Preferred link based
delay-constrained least-cost routing in wide area networks,” Computer
Communications, vol. 21, no. 18, pp. 1655–1669, 1998.

[96] K. Ishida, K. Amano, and N. Kannari, “A delay-constrained least-cost path
routing protocol and the synthesis method,” in Proc. IEEE Int. Conf. on
Real-Time Computing Systems and Applications, 1998, pp. 58–65.

[97] W. Liu, W. Lou, and Y. Fang, “An efficient quality of service routing
algorithm for delay-sensitive applications,” Computer Networks, vol. 47,
no. 1, pp. 87–104, 2005.

[98] W. C. Lee, M. G. Hluchyi, and P. A. Humblet, “Routing subject to quality of
service constraints in integrated communication networks,” IEEE Network,
vol. 9, no. 4, pp. 46–55, 1995.

[99] L. Guo and I. Matta, “Search space reduction in QoS routing,” Computer
Networks, vol. 41, no. 1, pp. 73–88, 2003.

153

Bibliography

[100] L. Santos, J. Coutinho-Rodrigues, and J. R. Current, “An improved solu-
tion algorithm for the constrained shortest path problem,” Transportation
Research Part B: Methodological, vol. 41, no. 7, pp. 756–771, 2007.

[101] F. Xiang, L. Junzhou, W. Jieyi, and G. Guanqun, “QoS routing based on
genetic algorithm,” Computer Communications, vol. 22, no. 15, pp. 1392–
1399, 1999.

[102] W. Zhengying, S. Bingxin, and Z. Erdun, “Bandwidth-delay-constrained
least-cost multicast routing based on heuristic genetic algorithm,” Com-
puter Communications, vol. 24, no. 7, pp. 685–692, 2001.

[103] D. Karaboga and B. Basturk, “Artificial bee colony (ABC) optimization
algorithm for solving constrained optimization problems,” in Proc. Int.
Fuzzy Systems Assoc. World Congress. Springer, 2007, pp. 789–798.

[104] C. C. Ribeiro and M. Minoux, “A heuristic approach to hard constrained
shortest path problems,” Discrete Applied Mathematics, vol. 10, no. 2, pp.
125–137, 1985.

[105] ——, “A new heuristics for finding the delay constrained least cost path,”
in Proc. IEEE Global Telecommunications Conference (GLOBECOM), vol. 7,
2003, pp. 3711–3715.

[106] B. M. Waxman, “Routing of multipoint connections,” IEEE Journal on
Selected Areas in Communications, vol. 6, no. 9, pp. 1617–1622, 1988.

[107] G. Feng, K. Makki, N. Pissinou, and C. Douligeris, “Heuristic and exact
algorithms for QoS routing with multiple constraints,” IEICE Trans. on
Commun., vol. 85, no. 12, pp. 2838–2850, 2002.

[108] B. V. Cherkassky, A. V. Goldberg, and T. Radzik, “Shortest paths algo-
rithms: Theory and experimental evaluation,” Mathematical Programming,
vol. 73, no. 2, pp. 129–174, 1996.

[109] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge University
Press, 2004.

[110] L. Wolsey and G. Nemhauser, Integer and Combinatorial Optimization, ser.
Wiley Series in Discrete Mathematics and Optimization. Wiley, 1999.

[111] J. Schmitt, P. Hurley, M. Hollick, and R. Steinmetz, “Per-flow guarantees
under class-based priority queueing,” in Proc. IEEE Global Telecommunica-
tions Conference (GLOBECOM), vol. 7, 2003, pp. 4169–4174.

154

[112] J. Jasperneite and P. Neumann, “How to guarantee realtime behavior using
Ethernet,” in Information Control Problems in Manufacturing 2004 (INCOM
2004): A Proceedings Volume from the 11th IFAC Symposium, Salvador, Brazil,
5-7 April 2004, vol. 1. Gulf Professional Publishing, 2005.

[113] S. Tomovic, N. Prasad, and I. Radusinovic, “SDN control framework for
QoS provisioning,” in Telecommunications Forum Telfor (TELFOR), 2014
22nd. IEEE, 2014, pp. 111–114.

[114] S. Gorlatch, T. Humernbrum, and F. Glinka, “Improving qos in real-time
internet applications: from best-effort to software-defined networks,” in
Computing, Networking and Communications (ICNC), 2014 International Con-
ference on. IEEE, 2014, pp. 189–193.

[115] “Communication delivery time performance requirements for electric
power substation automation,” IEEE Std 1646-2004, pp. 1–24, 2005.

[116] Q. Duan, “Network-as-a-service in software-defined networks for end-to-
end QoS provisioning,” in 2014 23rd Wireless and Optical Communication
Conference (WOCC). IEEE, 2014, pp. 1–5.

[117] W. Zhao, D. Olshefski, and H. G. Schulzrinne, “Internet quality of service:
An overview,” 2000.

[118] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Deterministic
Queuing Systems for the Internet. Springer, 2001, vol. 2050.

[119] J. Jasperneite, J. Imtiaz, M. Schumacher, and K. Weber, “A proposal for
a generic real-time Ethernet system,” IEEE Trans. Industrial Informatics,
vol. 5, no. 2, pp. 75–85, May 2009.

[120] A. L. King, S. Chen, and I. Lee, “The middleware assurance substrate:
Enabling strong real-time guarantees in open systems with openflow,” in
Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC),
2014 IEEE 17th International Symposium on. IEEE, 2014, pp. 133–140.

[121] P. Gaj, J. Jasperneite, and M. Felser, “Computer communication within
industrial distributed environment - A survey,” IEEE Transactions on Indus-
trial Informatics, vol. 9, no. 1, pp. 182–189, 2013.

[122] M. Shen, L. Zhu, M. Wei, Q. Zhang, M. Wang, and F. Li, “Joint optimization
of flow latency in routing and scheduling for software defined networks,”
in Computer Communication and Networks (ICCCN), 2016 25th International
Conference on. IEEE, 2016, pp. 1–8.

155

Bibliography

[123] W. Kim, P. Sharma, J. Lee, S. Banerjee, J. Tourrilhes, S.-J. Lee, and P. Yala-
gandula, “Automated and scalable qos control for network convergence.”
INM/WREN, vol. 10, no. 1, pp. 1–1, 2010.

[124] N. An, T. Ha, K.-J. Park, and H. Lim, “Dynamic priority-adjustment for
real-time flows in software-defined networks,” in Telecommunications Net-
work Strategy and Planning Symposium (Networks), 2016 17th International.
IEEE, 2016, pp. 144–149.

[125] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” SIGCOMM Computer Communication Review, vol. 38,
no. 2, pp. 69–74, 2008.

[126] O. S. Consortium et al., “Openflow switch specification version 1.0.0,”
2009.

[127] T. Mahmoodi, V. Kulkarni, W. Kellerer, P. Mangan, F. Zeiger, S. Spirou,
I. Askoxylakis, X. Vilajosana, H. J. Einsiedler, and J. Quittek, “Virtuwind:
virtual and programmable industrial network prototype deployed in oper-
ational wind park,” Transactions on Emerging Telecommunications Technolo-
gies, vol. 27, no. 9, pp. 1281–1288, 2016.

[128] I. Owens, A. Durresi et al., “Video over software-defined networking
(VSDN),” in 16th International Conference on Network-Based Information
Systems (NBiS). IEEE, 2013, pp. 44–51.

[129] R. Widyono et al., The design and evaluation of routing algorithms for real-time
channels. International Computer Science Institute Berkeley, 1994.

[130] T. Sauter, “The three generations of field-level networks - evolution and
compatibility issues,” IEEE Transactions on Industrial Electronics, vol. 57,
no. 11, pp. 3585–3595, 2010.

[131] A. Kassler, L. Skorin-Kapov, O. Dobrijevic, M. Matijasevic, and P. Dely, “To-
wards qoe-driven multimedia service negotiation and path optimization
with software defined networking,” in SoftCOM 2012, 20th International
Conference on Software, Telecommunications and Computer Networks, Sept
2012, pp. 1–5.

[132] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, “OpenQoS:
An openflow controller design for multimedia delivery with end-to-end
quality of service over software-defined networks,” in Signal & Information

156

Processing Association Annual Summit and Conference (APSIPA ASC), 2012
Asia-Pacific. IEEE, 2012, pp. 1–8.

[133] E. Schweissguth, P. Danielis, C. Niemann, and D. Timmermann,
“Application-aware industrial ethernet based on an sdn-supported tdma
approach,” in Factory Communication Systems (WFCS), 2016 IEEE World
Conference on. IEEE, 2016, pp. 1–8.

[134] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal, “Fast-
pass: A centralized zero-queue datacenter network,” in ACM SIGCOMM
Computer Communication Review, vol. 44, no. 4. ACM, 2014, pp. 307–318.

[135] A. Van Bemten and W. Kellerer, “Network calculus: A comprehensive
guide,” 2016.

[136] J. Jasperneite, P. Neumann, M. Theis, and K. Watson, “Deterministic real-
time communication with switched Ethernet,” in 4th International Workshop
on Factory Communication Systems. IEEE, 2002, pp. 11–18.

[137] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algo-
rithms, and Applications. Prentice Hall, 1993.

[138] R. Braden, D. Clark, and S. Shenker, “Integrated services in the internet
architecture (rfc 1633),” IETF, 1994.

[139] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An
architecture for differentiated services (rfc 2475),” IETF, 1998.

[140] M. Welzl and M. Muhlhauser, “Scalability and quality of service: a trade-
off?” Communications Magazine, IEEE, vol. 41, no. 6, pp. 32–36, 2003.

[141] S. J. Vaughan-Nichols, “Openflow: The next generation of the network?”
Computer, vol. 44, no. 8, pp. 13–15, 2011.

[142] H. E. Egilmez, B. Gorkemli, A. M. Tekalp, and S. Civanlar, “Scalable video
streaming over openflow networks: An optimization framework for qos
routing,” in 18th International Conference on Image Processing (ICIP). IEEE,
2011, pp. 2241–2244.

[143] J. Loeser and H. Haertig, “Low-latency hard real-time communication
over switched ethernet,” in Proc. IEEE Euromicro Conf. on Real-Time Systems,
2004, pp. 13–22.

157

Bibliography

[144] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial
communication: Automation networks in the era of the internet of things
and industry 4.0,” IEEE Industrial Electr. Mag., vol. 11, no. 1, pp. 17–27,
Mar. 2017.

[145] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and G. P.
Hancke, “A survey on smart grid potential applications and communica-
tion requirements,” IEEE Trans. on Industrial Informatics, vol. 9, no. 1, pp.
28–42, Feb. 2013.

[146] B. W. Carabelli, R. Blind, F. Dürr, and K. Rothermel, “State-dependent
priority scheduling for networked control systems,” in Proc. American
Control Conference (ACC), May 2017, pp. 1–8.

[147] A. Blenk, A. Basta, J. Zerwas, M. Reisslein, and W. Kellerer, “Control plane
latency with SDN network hypervisors: The cost of virtualization,” IEEE
Transactions on Network and Service Management, vol. 13, no. 3, pp. 366–380,
Sep. 2016.

[148] M. Karakus and A. Durresi, “A survey: Control plane scalability issues and
approaches in Software-Defined Networking (SDN),” Computer Networks,
vol. 112, pp. 279–293, Jan. 2017.

[149] D. B. Rawat and S. R. Reddy, “Software defined networking architecture,
security and energy efficiency: A survey,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 1, pp. 325–346, First Qu. 2017.

[150] A. K. Parekh and R. G. Gallager, “A generalized processor sharing ap-
proach to flow control in integrated services networks-the multiple node
case,” in INFOCOM ’93. Proceedings.Twelfth Annual Joint Conference of the
IEEE Computer and Communications Societies. Networking: Foundation for the
Future, IEEE, 1993, pp. 521–530 vol.2.

[151] ——, “A generalized processor sharing approach to flow control in inte-
grated services networks: the single-node case,” IEEE/ACM Transactions
on Networking, vol. 1, no. 3, pp. 344–357, Jun 1993.

[152] C. Semeria, “Supporting differentiated service classes: queue scheduling
disciplines,” Juniper networks, pp. 11–14, 2001.

[153] G. Thiruchelvi and J. Raja, “A survey on active queue management mecha-
nisms,” International Journal of Computer Science and Network Security, vol. 8,
no. 12, pp. 130–145, 2008.

158

[154] A. Bianco, J. M. Finochietto, G. Giarratana, F. Neri, and C. Piglione,
“Measurement-based reconfiguration in optical ring metro networks,”
IEEE/OSA J. Lightwave Techn., vol. 23, no. 10, pp. 3156–3166, 2005.

[155] S. Floyd and V. Jacobson, “The synchronization of periodic routing mes-
sages,” IEEE/ACM Trans. Netw., vol. 2, no. 2, pp. 122–136, 1994.

[156] R. Ramaswamy, N. Weng, and T. Wolf, “Characterizing network process-
ing delay,” in Global Telecommunications Conference, 2004. GLOBECOM’04.
IEEE, vol. 3. IEEE, 2004, pp. 1629–1634.

[157] O. Wallentin, “Component-based entity systems: Modular object construc-
tion and high performance gameplay,” 2014.

Cited websites

[158] The league of routing algorithms. [Online]. Available: http://www.lkn.ei.
tum.de/lora

[159] (2017, 11) Time-sensitive networking task group. [Online]. Available:
http://www.ieee802.org/1/pages/tsn.html

[160] (2017, 11) Ieee 802.1. [Online]. Available: http://www.ieee802.org/1/

[161] (2017, 12) Java hotspot whitepaper. [Online]. Available: http://www.
oracle.com/technetwork/java/whitepaper-135217.html

159

http://www.lkn.ei.tum.de/lora
http://www.lkn.ei.tum.de/lora
http://www.ieee802.org/1/pages/tsn.html
http://www.ieee802.org/1/
http://www.oracle.com/technetwork/java/whitepaper-135217.html
http://www.oracle.com/technetwork/java/whitepaper-135217.html

	Introduction
	Problem Statement
	Contributions
	Thesis Outline

	Industrial qos Framework
	Context: Industrial qos Framework
	Ethernet/IP-based qos
	intserv
	diffserv
	Queue Scheduling
	aqm
	Traffic Shaping

	Industrial Ethernet
	tsn
	sdn

	Putting It All Together
	Formal Problem Formulation
	Function Split
	Building Blocks for Implementing the Function Split

	State of the Art Analysis
	Centralized qos Networking Frameworks
	High-Level Architectural Proposals
	OpenFlow Extensions
	TDMA Solutions
	QoS Frameworks based on Data Rate Allocation
	Measurement-based Frameworks
	Model-based Frameworks

	Centralized Routing Algorithms
	Basic Definitions for qos Routing Algorithms
	Definitions and Terminology
	Goals of qos Routing

	Overview of sp Algorithms
	Overview of ksp Algorithms
	Survey of (Multi-)Constrained Shortest Path (csp and mcsp) Algorithms
	Elementary Algorithms
	Algorithms Based on a Priority Queue
	Algorithms Based on bf
	Algorithms Based on the Lagrange Relaxation
	Algorithms Following the lc and ld Paths
	Other Approaches

	Network Resource Modeling: detserv
	Interface of the Network Model
	Network Calculus
	Basics: Theory Principles
	Selected Results: Priority Scheduling

	Notations
	Requirement for the Models: Fixed Per-Queue Delay
	mhm
	Network Calculus Developments
	Model Operations
	Limitations of the Multi-Hop Model

	tbm
	Model Operations
	Shortcomings of the tbm

	Computation of the Burst Increase
	ils
	Towards Lower Bounds
	ils Does Not Contradict Network Calculus
	Adapting the mhm
	Adapting the tbm
	Impact on the Performance of the mhm
	Impact on the Performance of the tbm

	Optimization Problems
	Routing Problem
	Cost Function design Problem
	Static Cost Functions
	Dynamic Cost Functions
	Discussion

	Resource Allocation Problem
	Elementary Resource Allocation Algorithm
	traa

	Evaluation
	csp Algorithm Evaluation
	Four-Dimensional (4D) Evaluation Framework
	Topology and Scaling
	Delay Constraint Tightness
	Evaluation Procedure and Metrics
	Algorithms Selection

	Evaluation Results
	Fingerprints: Influence of the Delay Constraint Tightness
	Heatmaps: Impact of Network Topology and Scale
	Which Algorithm is Best?

	Function Split Evaluation
	Network Set-up and Traffic Mixes
	Routing Cost Functions
	Evaluation Procedures
	Online Routing and Admission Control
	Offline Resource Allocation
	Comparison Benchmark: mip Solution

	Computation Time
	Utilization of Links, Buffers, and Delay Limits
	Conclusion

	Industrial qos Framework Evaluation
	Scenario
	System Evaluation Framework
	Metric Computation
	Search Space limitation

	High Level Sensitivity Analyses
	Solution space reduction
	Analysis of the best configuration
	Analysis of the topology impact

	Conclusion and Outlook
	Conclusion
	Future Work

	Appendix
	Implementation
	System Overview
	Component Model
	Industrial qos Framework Architecture

	Abbreviations
	Mathematical Notations
	Bibliography

