
Applications in HHI – Physical Cooperation

Markus Rickert and Andre Gaschler and Alois Knoll

Abstract Humans critically depend on permanent verbal and non-verbal interaction—
for aligning their mental states, for synchronizing their intentions and goals, but also
for performing joint tasks, such as carrying a heavy object together, manipulation
of objects in a common workspace, or handing over components and building or
assembling larger structures in teams. Typically, physical interaction is initiated by
a short joint planning dialog and then further accompanied by a stream of verbal
utterances. For obtaining a smooth interaction flow in a given situation, humans
typically use all their communication modalities and senses, and this often happens
even unconsciously. As we move toward the introduction of robotic co-workers
that serve humans—some of them will be humanoids, others will be of a differ-
ent shape—humans will expect them to be integrated into the execution of the task
at hand, just as well as if a human co-worker were involved. Such a flawless re-
placement will only be possible if these robots provide a number of basic action
primitives, for example, hand-over from human to robot and vice versa. The robots
must also recognize and anticipate the intention of the human by analyzing and
understanding the scene as far as necessary for jointly working on the task. Most
importantly, the robotic co-worker must be able to carry on a verbal and non-verbal
dialog with the human partner, in parallel with and relating to the physical interac-
tion process. In this chapter, we give an overview of the ingredients of an integrated
physical interaction scenario. This includes methods to plan activities, to produce
safe and human-interpretable motion, to interact through multimodal communica-
tion, to schedule actions for a joint task, and to align and synchronize the interaction
by understanding human intentions. We summarize the state of the art in physical
human-humanoid interaction systems and conclude by presenting three humanoid
systems as case studies.

Key words: Conversational Dialog, Human-Robot Cooperation, Humanoid Sys-
tem Architectures, Joint Action, Multi-Sensor Fusion

1



2 Markus Rickert and Andre Gaschler and Alois Knoll

1 Introduction

For their survival, humans depend on communicating with each other (one cannot
not communicate), but they just as strongly depend on modes of interaction, i.e., do-
ing things together, either in direct physical contact, through the exchange of words
(and expressions in other modalities) that change each other’s state of mind, and
by doing both in parallel. Through this interaction perception, decision-making, and
production of behaviors, humans are tuned to their peers with whom they synchro-
nize and share believes, desires, and intentions. It is highly desirable to transfer the
concepts of interaction and joint action as cooperation metaphors when developing
cooperating robots and in particular when it comes to the development of robots
working together with humans.

It is easy to predict that the development of techniques for effective and effi-
cient joint action based on multimodal communication flows between humans and
artifacts will be of utmost importance for the advancement of service robotics as
the whole. Once this development gains enough momentum, the requirements for
an ever-increasing responsiveness of robots, of wider applicability to new scenar-
ios, situations, and object domains, and of an easy integration of the robots into
scenarios with many cooperating robots and many cooperating humans will grow
quickly. There have been various attempts to design robots that directly interact
with humans—for the purpose of programming by demonstration [8], for control-
ling their behavior within certain limits [46], or for force amplification [43]. All
of these have shown that the development of truly interactive robots that combine
multimodal communications with physical interaction is a very complex matter. It
depends very much on progress in various fields, which is why to this date only
laboratory samples of systems exist that implement individual aspects needed for
smooth interaction over long time horizons.

In a typical setting, human instructions are perceived by the robot in just one
modality, e.g., through a camera system. This precludes the system from construct-
ing cross-modal associations by evaluating clues from other modalities (audition,
touch, etc.). It also prevents humans from giving additional explanations in natu-
ral modalities, e.g., teaching robot hand movements supplemented by instructive
speech statements. Partly due to mono-modality, the communication flow for en-
abling joint action is not in the form of a dialog between human and robot. Dialog-
oriented interaction is often very useful because it is the source of additional infor-
mation, but it becomes indispensable in the case of error conditions. Furthermore,
the aspect of physical cooperation for supporting instructing the robot in parallel
through corresponding utterance in several modalities has hardly been addressed so
far. Hence, this chapter will review recent implementations of human-humanoid in-
teraction methods. To allow a better insight into the practically realized methods,
this chapter will review some of the underpinning questions of physical human-
human cooperation and communication, i.e., dynamic arm handover characteristics
and multimodal gesture communication. This requires careful transfer into respec-
tive technologically realized humanoid systems. Thus, a detailed review of recent
projects in human-humanoid interaction will address step-by-step some of the is-
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sues mentioned above. Among the projects reviewed are MORPHA [49], Robo-
naut [1], and the European Union funded project called JAST (Joint Action Science
and Technology) [63, 5].

The MORPHA project [49] envisioned the use of a two-arm service robot at the
turn of the millennium (Section 2.2). The vision then was that the robot communi-
cates with its instructors via different communication channels, including physical
contact, comments on its actions, and can be used in the most different settings—
on the factory floor and at home. Ideally, it can also work in groups and transfer
acquired knowledge and skills to its peers (see Chapter [40]).

A joint-action setting involving more than just one robot was part of the Robo-
naut project [1] (Section 2.2). It was also conceived around the year 2000. Two
(real) humanoid robots worked on structures with one human in a simulated sce-
nario, e.g., for the International Space Station (ISS). The purpose of the Multi-
Agent Truss Assembly Test was to develop teaming strategies for extra-vehicular
astronauts working side-by-side with highly dexterous, teleoperated robots and to
study the operational trade-offs inherent in human and robot teaming in a space
assembly context. Working together, the two Robonauts operated in various roles
supporting the astronaut, who operates in both a leader and support role. A mixture
of manipulation and teaming skills was required to complete the truss-assembly
task. Truss-assembly agents must not only be capable of mating nodes and struts,
they must also be able to coordinate cooperative manipulation, hand-offs and other
multi-agent interactions in the pre-planned assembly sequence. Note that the Robo-
nauts were remote-controlled by humans, i.e., they did not have any intelligence or
autonomy of their own.

While there had been a number of interesting projects in robotics that concen-
trated on verbal communication with robots (do what I say/mean), a project funded
by the European Union called JAST (Joint Action Science and Technology) [63, 5]
for the first time adopted findings from neuroscience, cognitive science, and lin-
guistics and fused them with ideas from robotics. It investigated joint action in au-
tonomous systems: To develop intelligent, embodied agents that cooperate and com-
municate with their peers and with humans while working on a mutual task (Chap-
ter [16]). In the end, a cognitive control architecture with perception, reasoning,
motor behavior, and verbal and non-verbal communication tools was demonstrated
in various systems that performed a variety of joint-action tasks (Section 3.1).

This chapter will be able to detail many of the techniques only to a given limit,
however, there are other contributions within this section of the Handbook which
are closely related and we will refer to these accordingly. For example, from a cog-
nitive perspective, it is highly desirable that the robot systems contain cognitively
adequate modes of interaction with humans—for dialog control in a given audio
scenery (see Chapter [12] on speech), for dynamic control (see Chapter [44]), for
synchronizing utterances with motor control (see Chapters [67] and [50]), and for
life-long learning and plasticity. In particular the latter has not been investigated
very much in the context of joint action between humans and artifacts. Hence, there
are no adequate dynamical models that incorporate both the interpretation of sensor
stimuli for learning—e.g., (how to learn) to extract the right clues from the learning
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examples—and action triggering along with the generation of actions and action se-
quences with many degrees of freedom. The construction of a formal model of the
underlying cognitive processes that addresses these issues is thus fundamental.

Our chapter is structured as follows: In Section 2, basic aspects of physi-
cal human-human cooperation and its direct relationship and transfer to human-
humanoid cooperation will be discussed, providing explicit examples such as han-
dover motion and timing, cooperative manipulation, followed by conversation and
multimodal communication. This is then followed in Section 3 by the discussion
of three exemplary projects, Clara [63, 62], Domo [19, 20], and James [23]. The
chapters will detail the cognitive technologies and review the decision and planning
framework for communication in these projects.

2 Basic Aspects of Physical Cooperation

In contrast to the interaction with a virtual agent, e.g., a face on a screen or a 3D
simulation of a human or a robot, the interaction with a physical system presents a
whole new set of issues that need to be considered. In contrast to a virtual agent,
human and robot can now directly interact with each other using natural modali-
ties, not just mouse and keyboard. This however raises many additional questions,
e.g., what properties of physical cooperation are essential for a natural interaction
and whether there is a noticeable benefit to the interaction when the robot displays
more human-like motions over unnatural and unpredictable trajectories classically
associated with robots. Conversation between humans during collaboration is very
different to written dialog and is an important factor in task synchronization. The
following sections give an overview on three basic topics in physical collaboration:
handover between robot and human, cooperative manipulation, as well as aspects of
conversation and multimodal communication.

2.1 Handover Motion and Timing

Handing over objects from one person to the next is a task performed several times
a day by an average person, typically without thinking about parameters such as
timing or other factors. For example, people are often taught to handover scissors
with the handle toward the other person and to pick up heavy objects using a dif-
ferent grasp than the one we choose for fragile parts. Given a couple of iterations,
human coworkers are able to better synchronize their motions leading to an increase
in overall performance.

Meulenbroek et al. [56] examined the coordination between two humans in a
joint-action task with the goal of transferring an object. With a focus on kinematic
movement parameters, they wanted to test if these were adapted based on the obser-
vation of movements of the other test subject. In this user study, a participant was
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asked to transfer a vertical cylindrical object from a position in front of him to a
new position within a circle in front of the other person, with the latter then trans-
ferring it to a position in his own working area. With variations regarding the size
(small and large) and weight (light and heavy) of the object, expectations included
different trajectories between putting and fetching actor based on observations of
the latter to correct for the wrongly perceived diameter/weight ratio. Variations to
the size of the target regions (9 or 18 cm) were assumed to lead to differences in
speeds adjusted to the size of the circle, with a smaller radius leading to a lower
speed. During the study, the participants wore earphones and a facial mask in order
to prevent communication or other external influences (e.g., task-related noise). The
evaluation showed that the person doing the second transfer was less surprised by a
false weight estimate than the one doing the initial motion.

Humans tend to optimize the movement trajectories of their limbs, e.g., using a
minimum-jerk profile, thus resembling a bell-shaped velocity profile with a duration
of about one second to grasp objects in their workspace. Robot trajectories on the
other hand are optimized for maximum efficiency and low cycle times, leading to
an unnatural motion (e.g., trapezoidal velocity) commonly associated with robots.
User studies evaluating a subjective safety rating for the maximum Cartesian speed
using typical robot motions ended up at only 0.225 ms−1 [42], which is significantly
lower than the average speed used by humans for movements in their workspace and
therefore a major issue in efficient human-robot collaboration.

In [38], the motion parameters of human-human handovers were analyzed with
focus on the arm movement velocity profile and its effect on human-robot inter-
action performance. Two human participants sitting opposite each other at a table
were given the task to hand over six small wooden cubes. The cubes were aligned
in a single line and the giving subject was asked to hand them over to the receiver
using one hand, while their arm movements were recorded with a tracking system.
Analysis of the recorded data identified three distinctive phases in the interaction:
the reaction of the receiver to the giving subject’s lifting motion, the manipula-
tion phase with the transfer of the object, and the post-handover with the receiver’s
placement of the cube on the table (Fig.1a). The receiver started moving to the han-
dover position while the giving subject’s hand was still in motion. The subject’s
velocity profiles showed a typical bell-shaped velocity profile with a mean peak
velocity of 0.93 ms−1 for the person handing over the cube and 0.85 ms−1 for the
receiver (Fig.1b). The overall duration for the six cubes was roughly 25 seconds.
The duration of a single handover decreased over the six steps of the interaction. If
reaction time decreased compared to a previous step, manipulation time often in-
creased slightly, as anticipatory reaction had to be compensated for by a fine tuning
of the handover position. The experiment was then modified to study the interac-
tion between a human participant and a humanoid robot (for details of the setup see
Section 3.1). For the robot, different upper limb movements were implemented for
comparison: a trapezoidal velocity profile in joint space and a minimum-jerk profile
in Cartesian space. The former controls each joint of the robot separately and thus
results in curved trajectories of the end effector. The trajectory duration was adjusted
to roughly 1.2 seconds for each point to point motion, approximating human speed
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Fig. 1a Plot of tracked hand motions of giving subject (solid, blue) and receiver (dashed, red)
in a handover experiment. The lines show the height of each subject’s hand over the table when
handing over six cubes.

5 s 15 s 25 s 35 s

1 ms−1

2 ms−1

Fig. 1b Absolute hand velocities of subjects in a handover experiment with six cubes. The solid
blue line shows the participant handing over the cubes, while the dashed red line shows the one
receiving the cubes.

from the previous trials. Participants were given the same handover task as before,
this time with the robot as partner using one of the implemented trajectories, chosen
in random order. After completion of this run, the handover task was repeated with
the other trajectory type. Apart from recording hand motions for both human and
robot, participants were asked to fill out a questionnaire, rating subjective feeling of
safety and human-like motion. The evaluation showed a reduction in reaction time
for the minimum-jerk profile similar to the one in human-human handover trials, but
not for the trapezoidal velocity profile. Overall duration for the reaction time was
similar to the human-human performance, with only slightly higher duration for
the manipulation phase despite disadvantages in the parallel gripper design. Post-
handover duration increased by over 0.5 seconds due to a much slower retraction of
the robot’s gripper compared to the human in the role of the giving subject. In the
subjective rating of safety, human participants felt safer with minimum-jerk velocity
profiles and considered the chosen peak velocity of roughly 1 ms−1 as acceptable
as they were able to predict the robot movements.

The above user study was extended in [37] to include a refined motion profile
for the robot during the handover to better resemble human arm movements. The
handover trial between two human participants was repeated and modified, adding



Applications in HHI – Physical Cooperation 7

Fig. 2a 3D plot of human-human interaction
in the handover experiment. The giving sub-
ject (top, blue) hands over six cubes to the
receiver (bottom, red). The projection of the
movements on the table surface are shown in
gray.

Fig. 2b Movements of robot (top, blue)
handing over six cubes to human receiver
bottom, red with projection onto the table sur-
face shown in gray.

headphones for the participants and a randomized audio start signal for each step
to prevent adaptation to a timing pattern. Fig. 2a shows a typical set of trajectories
of such a handover session with six cubes. In contrast to the minimum-jerk motion
profile in Cartesian space used in the previous study, it can be clearly seen that hu-
man trajectories are not straight lines in the workspace, but rather slightly curved.
This resulted in the design of a new decoupled minimum-jerk motion profile with
different velocities for the x-y plane and the z axis, better resembling those of human
trajectories (Fig. 2b). Apart from capturing motions with a tracking system, partici-
pants were again asked to fill out a questionnaire focusing on the subjective feeling
of safety and comfort, movement predictability, human-like appearance of motion,
and abruptness of the start of the robot’s motion. The trapezoidal velocity profile in
joint space with its unpredictable velocity profile was rated least comfortable and
least human-like, while the new decoupled profile had an even higher rating than
the standard minimum-jerk profile. Due to its higher maximum velocity, the decou-
pled profile appeared more abrupt to the participants than the other two trajectory
variants.

In the user studies described above, the robot was the individual that initiated a
handover and the interaction consisted of a sequence of identical objects in short
order. In a joint action setting however, e.g., between a worker and his assistant,
the latter needs to be able to anticipate the correct object and the correct time for
handover. Both typically depend on contextual information, such as handing over
the correct tool for a screw during assembly, and observation of gestures to optimize
timing. Huber et al. [36] and Glasauer et al. [32] investigated handover timing in an
assembly scenario with tasks of different complexity. The participants were asked
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to jointly construct a tower of cubes. Each cube had a different number of holes and
could be assembled with a matching number of bolts. The time required for each
individual step and the full assembly was measured and both finger, head, and torso
movements as well as gaze direction was recorded. In general, assembly time varied
depending on the complexity of each step as determined by the number of required
bolts and could be described by a linear function. Each participant showed different
timings according to his own work speed and some of them also demonstrated a
learning effect after their first steps. In order to create predictions of a human’s
individual assembly time for a robot assistant, a probabilistic model based on a
Kalman filter was implemented. It is able to predict the duration of consecutive
assembly steps using a normal distribution of the assembly time and continuously
updates its parameters based on the worker’s current speed and the complexity of
the next assembly operation. Evaluation showed that the model is able to adjust
itself to the worker after the first two assembly steps. The root mean square (RMS)
of the difference between the measured and the predicted assembly duration was
used for evaluating the performance. While a linear model was able to achieve an
accuracy of 2.50 s (RMS), the probabilistic model resulted in an overall accuracy
of 2.48 s (RMS) and an accuracy of 2.06 s (RMS) without the initial two steps. The
latter corresponds to an accuracy of 18.03% for the average assembly duration in
the given task.

2.2 Cooperative Manipulation

Direct and intertwined physical human-robot cooperation offers many advantages
over humans and robots working separately on tasks or subtasks that are interrelated.
For example, at certain points during the work, the robot can provide unique skills
that humans lack (e.g., high positioning accuracy, high forces), while at other points
in time, as needed, humans can contribute their superior perception and other high-
level cognition capabilities.

There are several modes or degrees of cooperation one can imagine between
robots and humans, which obviously depend on the physical design of the robot:

1. A humanoid robot with legs, arms, and a head can perform cooperative tasks over
longer physical distances, e.g., jointly carrying a door with the aid of a human. On
the perception side, this would require the humanoid to sense the forces exerted
by the human, yet at the same time it would have to stabilize its own body. It
also requires permanently observing the human and being able to understand,
or even to anticipate the human’s intentions, if the interaction is to be deployed
smoothly. In this mode of full physical cooperation, the human and robot are not
in touch with their respective bodies, only though the object to be worked on.
Such robots could eventually even replace the human counterpart in co-working
scenarios [74, 35].

2. A fixed humanoid torso with a head (and its associated perception capabilities)
and two arms and hands (but without legs) can cooperate almost as universally as
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Fig. 3 Humanoid robot Yumi in an assembly
task [45].

Fig. 4 Multiple Robonaut humanoids in a
joint construction task (Copyright NASA).

a complete humanoid, especially if it has the same perception and communica-
tion capabilities as a complete humanoid. Since the robot cannot move, the class
of tasks is restricted to what can be performed within the geometrical workspace
of the arms [63, 19] (Section 3).

3. A stripped-down version of a humanoid torso is a configuration of two light-
weight arms, as implemented, for example, in the Yumi robot system [47] shown
in Fig. 3. This type of robot is easier to program, but for lack of communica-
tion capabilities beyond force sensing on the part of the robot, the permanent
synchronization between human and robot is restricted. Therefore, the range of
tasks is rather limited, and robot manufacturers have been searching for useful
applications for quite some time.

4. The most basic form of physical interaction between robot and humans is a set-
ting where one robot arm with one specialized tool is guided by a human as
it works. A typical example is a learning scenario: A human guides the robot
by grasping its flange or tool and moves it along the desired trajectory. Later,
at run-time, the human can then correct the robot’s movement for slight varia-
tions in space and time, depending on changes required by that specific work
task [68, 72].

Historically, the first realistic visions developed by scientists (as opposed to play-
wrights or film makers) were joint assembly scenarios for construction on earth or
in space. One of the most well-known examples is NASA’s Robonaut [1, 18] shown
in Fig. 4. One of its envisioned tasks was to carry out the joint assembly of large
structures in space. This example is interesting because it involves two humanoids
and one human astronaut. It is logical then to think about extending this to situa-
tions in which there are n ≥ 1 humans and m ≥ 1 robots working together. It is also
interesting because it takes place in a very controlled environment: Cooperation on
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Fig. 5 Simulations of physical human-robot
interaction from the MORPHA project’s offi-
cial video: Human and robot jointly carrying
a heavy load in a factory setting (Copyright
GPS Stuttgart).

Fig. 6 HRP-2 humanoid working together
with a human in the construction of a cot-
tage [35].

earth will typically involve many more factors of uncertainty, e.g., sudden changes
in lighting, falling objects, etc.

A more down-to-earth vision was developed in the German research project
MORPHA, which started around the year 2000 [49]. In a simulated factory sce-
nario (Fig. 5), the humanoid robot (a torso on a wheeled platform) is already close
to replacing a human co-worker: It can help carry a heavy object, it can be instructed
to weld along a certain trajectory, it can fetch objects, and it can support the human
worker in many other ways. A crucial ingredient in this cooperation is the percep-
tion capability of the humanoid: Not only can it receive instructions from the human
over this channel, it can also outperform the human in certain subtasks, e.g., count-
ing screws or finding objects quickly in a warehouse.

In Japan, the direct cooperation between humanoids and humans has always been
a field of active research. Numerous tasks have been defined that involve using a
humanoid in place of a human. Among them are some that involve direct interaction,
the most famous may be the one involving the joint assembly of a cottage with
the Japanese HRP-2 robot (Fig. 6) [35]. However, carrying an object together was
one of the first demonstration scenarios. In 2000, Kosuge el al. [48] demonstrated
the mobile, upper-torso humanoid MR Helper to lift a panel cooperatively with a
human. Yokoyama et al. [74] implemented a walking humanoid that can help carry
a long panel and understand spoken commands to grasp, carry, or release that panel.
Although it was not really emphasized by the researchers at the time, the ability to
communicate accurately via the physical state and then aligning each other’s mental
state is a prerequisite for smooth, successful cooperation. Just pushing and pulling
the object and sensing forces is not enough.

Another important step in achieving smooth, successful interaction was the work
done at CNRS in France, also based on the Japanese HRP-2 robot. A full library for
trajectory control was developed that allows the humanoid and the human to carry
objects together, but also to move them along in random turning movements, just
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like two humans would move a heavy cabinet that they cannot carry, but which they
can lift on one side, shift that lifted side, and then continue by lifting and shifting
the other side [54].

While these experiments are certainly interesting from a scientific point of view,
they are less relevant for industrial practice. In these contexts, what is currently
most interesting are tasks that involve one light-weight arm that works on a rather
elementary task with the human co-worker [6]. These tasks are typically single-step
tasks and they do not involve sophisticated perceptual skills. They can, however, be
considered to be the initial steps toward a future in which more and more difficult
tasks can be performed together.

The next step in this development will be reached when the physical interaction
can be accompanied by a parallel dialog over the scenery, as pioneered in the early
work of one of the co-authors of this chapter [46].

2.3 Conversation and Multimodal Communication

While two persons working on the same task next to each other can easily talk to
each other to synchronize their actions, hoist and crane operators use hand signals
to accomplish this goal in loud environments or over long distances. Even in places
where speech could easily be used to coordinate actions, special circumstances such
as police or military operations may prohibit this kind of communication.

The use of gestures as a medium of communication during conversation is how-
ever controversial. De Ruiter [64] considers both positions and argues that there is
no actual conflict between the view that gestures are a communication device and the
opposite argument: While the effectiveness of the gesture may vary, the speaker’s
goal is always to use it as a communication device. People may use gestures while
speaking on the phone because they are used to it, even if the other person cannot
see them. In a conversation, the speaker’s intention may be to improve the listener’s
understanding of an abstract idea with—when using them without speech—cryptic
motions (see also Chapter [50] for non-verbal communication).

McNeill [55] distinguishes between five different types of gestures: Iconics il-
lustrate the spoken text with a gesture that refers a concrete object or event, e.g.,
when the speaker sweeps his own arm backwards while explaining how someone
else did this. Metaphorics are similar, but instead depict an abstract idea such as a
genre of cartoons. In this case, the speaker’s hands might rise up to offer the listener
something concrete in the form of an image or bounded object. Beats are a short and
simple flick of the hand or finger movement with two movement phases, e.g., in/out
or up/down, that mark the accompanying word or phrase as significant. Cohesives
are based on repetition and can consist of iconic, metaphoric, pointing, or beat ges-
tures. A constant series of beats during a political speech is given as an example that
aims to highlight consistency. Finally, deictics refer to the pointing gesture used to
indicate objects or abstract places during a conversation.
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Clark [14] shows that interaction goes beyond simple verbal communication and
that non-verbal input and output such as pointing at objects and placing of objects
is just as relevant. Some verbal expressions can only be fully understood in combi-
nation with non-verbal expressions, e.g., when referring to an object “over there” or
as “that one” by pointing at it. Placing oneself with items and money in cash at a
counter in a store is essential to completing a shopping transaction in this context.
He distinguishes between two basic techniques of indicating: With directing-to, a
speaker directs the addressee’s attention to a specific object, whereas with placing-
for, he places an object in the addressee’s attention. Among the many methods of
directing-to are pointing with a finger, sweeping with an arm, nodding with the head,
tapping with finger or foot, turning with the torso, directing with the face, or gazing
with the eyes. The latter requires mutual attention to be effective and is often com-
bined with pointing as well as face and torso direction. Voice is another common
device to to indicate a speaker (“me”), a location (“here”), or a time (“now”), as are
artificial devices such as laser pointers or markers. Directing-to is often used with
composite signals, e.g., demonstrative pronouns (“this”, “that”, “these”, “those”)
or adjectives, summonses (“hey, you”), emblems (e.g., goodbye wave, thumbs-up,
shoulder-shrug), or iconic gestures. Placing-for on the other hand is about placing
a specific object at a specific place with a specific action. Among these objects are
persons (self-objects) and material things (other-objects). Examples for the former
include standing behind a counter as a clerk or in front of a counter as a customer,
whereas a waiter putting a plate with food in front of a customer is an example for
the latter. The site of placement plays an important role in the interpretation of the
object. The store counter of the previous example has a site for the clerk, one for the
customer, and one for the transaction items. Equally important are the three phases
of placing-for: The initiation, where an object is placed, the maintenance, where an
object remains in place, and the termination, where an object is replaced, removed,
or abandoned. One placing-for act will often set up a following joint action, e.g.,
stepping up to the counter leads to the interaction with the clerk.

The coordination of references during conversation is another important aspect
in natural collaboration. Clark and Wilkes-Gibbs [15] see this as a collaborative
process that involves both parties in a shared effort. It is different from written text
because the speaker’s time for planning and revision is limited, the listener has to
follow the dialog in real-time, and the speaker can adjust his dialog based on his
observation of the listener. In conversation, both sides work together to ensure a
proper understanding of each reference. They continue the dialog only when they
share the belief that this is the case. The listener can signal this either by simply
letting the speaker continue or with “yes”, “right”, “I see”, or nodding his head.
The observations are verified in a user study, where two participants—director and
matcher—were asked to arrange 12 cards of Tangram figures in the correct order.
The director had to describe the order of his set of cards to the matcher so he could
rearrange his set accordingly and both were allowed to talk freely. The task was
repeated six times. The evaluation showed, that the number of words used by the
director to describe a figure reduced with each trial as the partners became more
efficient.
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De Ruiter et al. [65] modified the experiment of Clark and Wilkes-Gibbs [15] to
evaluate a connection between gesture and speech in the production of referring ex-
pressions. In the investigated tradeoff hypothesis, more gestures are used when the
use of speech alone is more complicated, whereas in the alternative hand-in-hand
hypothesis [69], more speech goes together with more gestures. In this variant of
the study, both parties sit in front of a wall with the Tangram figures at slightly more
than arm’s length and have to identify a specific one, with and without a dividing
wall between each other. Figures shapes range in increasing complexity from sim-
ple to humanoid-like to abstract and three trials were performed for each team. The
evaluation distinguishes between pointing gestures, obligatory iconics with essen-
tial information not included in speech (e.g., drawing a curve in the air while saying
“the one with a shape like this”), and nonobligatory iconics that do not add further
meaning (e.g., drawing a triangle in the air while saying “the big triangle”). The
study showed that no pointing gestures or obligatory iconics were used when the
participants could not see each other, but the use of nonobligatory iconics was not
affected. Without the wall, the number of pointing gestures was related to the num-
ber of location references in speech and more iconic gestures were used when the
amount of described features increased. The results were inconsistent with the trade-
off hypothesis and evidence supporting the hand-in-hand hypothesis was found. A
model where speech and gestures convey the same information is therefore sug-
gested to better mimic human behavior.

Bard et al. [4] use a joint construction task [13] to analyze referring expressions
during collaboration, i.e., the use of indefinite/definite expressions (“a/the red trian-
gle”), deictics (“that triangle”), or personal pronouns (“it”). In the task, two players
have to construct shapes from basic Tangram pieces on separate computer screens.
Based on the test setting, they can communicate via speech, are able to see each
other’s mouse cursor, and are shown a cursor highlighting the gaze of the other par-
ticipant as tracked via an eye tracker. Participants were either both given the role of
task manager or one was assigned task manager and the other one acted as assistant.
In order to join two pieces together, each player must be holding one of the parts and
the resulting assembly is permanent. Pieces break when they overlap or if the play-
ers select the same object. Build accuracy, broken parts, and assembly time were
measured. The evaluation with speech showed no difference in build quality when
comparing groups with different or identical roles, but the former one showed faster
performance. With or without visible mouse cursor resulted in the same accuracy,
but the latter had shorter dialogs and slightly fewer broken parts. Gaze did not have
any measurable effect on any task criterion. With visible mouse movements, partic-
ipants used less definite expressions in exchange for deictic ones, while the use of
pronouns was unaffected. Participants used more deictic expressions over indefinite
ones when moving objects, regardless of mouse cursor visibility.

Based on the results of this study, Foster et al. [24] performed a task-based eval-
uation of referring expressions using the toy assembly scenario and the humanoid
robot system described in Section 3.1. In this scenario, participants were asked to
build an assembly consisting of various wooden parts such as bolts, cubes, nuts,
and slats. A new context-sensitive generator for referring expression was designed,
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as the previous study showed that participants did not prefer indefinite expressions
when first referring to an object, but often used other categories. Two scenarios were
evaluated: In the first one, the robot is the only one with knowledge of the assembly
plan. In the second one, both participants are aware of the plan, but the user can
optionally be given an incorrect one for a trial. The study compares the new algo-
rithm with the standard incremental algorithm [17] for reference generation. It con-
siders objective measures such as duration, turns, response time, task success and
subjective measures in the form of a questionnaire. While the standard incremental
algorithm uses a predefined domain-specific preference order to select the most rel-
evant attributes, the context-sensitive approach uses the dialog history and position
of the current object. The objective measures did not show any significant difference
between the two algorithms, but the participants rated the contest-sensitive version
better compared to the classical one.

Similar to the store example introduced earlier, a bar setting is an interesting sce-
nario in that it features the interaction of a bartender with multiple customers. Loth
et al. [51] recorded customer interactions in several German bars to study the use of
service initiation signals with a focus on results that could be applied to a robot bar-
tender. The recorded data was annotated and used to identify behaviors that occur
with high frequency. Based on the results, the signals looking at the bar and being
directly at the bar were selected for further validation. In two experiments, partici-
pants were shown video material of bar interactions and asked to respond whether
in their view the customer had the intention to order. The study showed, that just
one of the signals was not sufficient to trigger an order, but the participants could
not distinguish between false and correct orders if both signals were present. They
also first looked at the customer’s position relative to the bar before checking their
gaze direction. Results from this study were used in the first version of the bartender
robot system shown in Section 3.3 for estimating whether a customer is currently
seeking for attention. The performance of this rule-based estimator versus one based
on supervised learning was evaluated in [22]. The former proved to be more stable,
whereas the latter was shown to be faster at detecting initial intended user engage-
ment. The different classifier did however not influence the users’ subjective rating
of the system.

Giuliani et al. [31] evaluated a robot bartender with a purely task-based approach
against a socially appropriate system with an additional set of rules. A central hy-
pothesis was that service robots need not only achieve a certain task, but also behave
socially appropriate when interacting with humans. Participants were asked to fill
out questionnaires with their subjective ratings before and after their interaction
with the humanoid. In the interaction phase, each participant interacted with both
system versions in a randomized order. The pre-test/post-test design was chosen
to control for prior user expectations. In addition to subjective measures, objec-
tive measures were gathered on the task success rate, the number of repeated dia-
log actions because of speech recognition issues, the number of repeated questions,
and the duration from a customer’s appearance to when a drink was served. In the
experiment, the task-based system used fewer dialog system turns than the social
version, but the social version led to a shorter duration of the overall transaction
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from a customer entering to when their drink was served. The regression analysis
did not show a significant difference in subjective ratings between the two versions.
However, there were strong correlations between objective and subjective measures.
Higher numbers of system turns resulted in lower perceived intelligence ratings for
the humanoid. Repeated order requests strongly reduced subjective likeability. In-
terestingly, longer durations of the interaction increased the likeability. In general,
the user study demonstrated that the humanoid can successfully interact, but sur-
prisingly, it did not matter whether the socially-appropriate interaction scheme was
turned on.

A study with the second version of the bartender robot system of Section 3.3
examined which sensor modalities are the most informative for humans to manage
an interaction in place of the humanoid bartender [52]. The underlying idea was to
study human-human interaction through a limited user interface that shows speech
and visual recognition results and then design the humanoid system based on the
findings. In the Ghost in the Machine experiment, a participant (or, ghost) observes
speech and visual recognition results and can trigger robot actions in real-time. In
this kind of experiment, the robot interacts with confederates. The participant of
the study is located in a different room, can observe recognized data (recognized
speech, locations of people, body posture), and is supposed to trigger robot actions
(speech output, eye gaze direction, gestures, manipulation actions) to interact with
the human confederates. Contrary to Wizard of Oz experiments, participants cannot
observe the interaction directly, but only see recognition results. Using an eye track-
ing device and measuring eye gaze and dwell time on the user interface, it could
reliably be established on which modalities humans base their interpretation and
response. The study showed, that position and posture of guests are the most impor-
tant signals for initiating an interaction in the bartending domain. Humans tend to
respond in the same modality as the interaction partner, like to establish eye contact
for a visual handshake, and echo parts of an order to verify it (see also Chapter [67]
for more information on eye gaze etc.).

3 Examples of Physical Human-Humanoid Interaction Systems

3.1 Clara

Two persons collaborating on an assembly task, e.g., a toy set, either divide the
project into two parts that can each be assembled on their own, or one partner takes
over the role of builder, while the other one prepares the parts for the next stage of
the assembly according to the instruction manual and even highlighting individual
operations. This is essentially a form of placing-for and directing-to as outlined by
Clark [14]. In this joint action scenario, both persons typically work together on a
tabletop with a shared workspace between them and an own personal workspace that
the collaborator cannot access. Both verbal and non-verbal communication as well
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Fig. 7a Humanoid robot Clara with two in-
dustrial robot arms and an animatronic head
used in the joint assembly of Baufix parts.

Fig. 7b View of Clara’s object and gesture
recognition using a camera mounted on top
of the table with the shared workspace.

as a combination of both play an important role in these types of interaction. The
two collaborators share an understanding of the domain, in this case an assembly
process, as well as common knowledge, such as colors, shapes, or basic actions.
They have to observe each other’s behavior and coordinate their actions accordingly.

The humanoid robot Clara (Fig. 7a) was developed around such a joint-action
scenario by Rickert et al. [63, 62] at the Technical University of Munich in the
context of the JAST (Joint-Action Science and Technology) project funded by the
European Union. It supports a human and robot working together in the assembly
of various wooden components—slats, nuts, bolts, cubes, etc.—of a Baufix toy set.
The parts can be used to create assemblies such as airplanes, motorcycles, or railway
signals. As part of this construction process, the collaborators also create subcom-
ponents that are referred to by individual names. Understanding dialog, referring
expressions, and multimodal input are therefore highly important in the design of
such a system. A human will often not refer to an object with a complex verbal
expression, but rather just point at it and say “this one”—while the coworker has
knowledge of the parts required in the next assembly step [21]. In case of errors,
he will also correct his collaborator by using expressions such as “the other one”.
For human and robot to actually work together, the robot also needs to be able to
handle the parts of such an assembly process. The most common operations used
by humans in these settings include pick up, screw, point, put down, and plug [39].
The wooden parts used in the scenario exhibit large variations, therefore performing
these actions with a robot system is quite challenging.
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Fig. 8 System architecture of Clara used in the JAST project. It is structured into four sections from
left to right: Input, Interpretation, Reasoning, and Output. The individual modules communicate
over a distributed and cross-platform middleware.

3.1.1 Physical Setup and System Architecture

Clara uses two standard industrial manipulators, each featuring six degrees of free-
dom, mounted opposite each other on a cage-like structure of aluminium profiles
around a large wooden table (Fig. 7a) [63, 62]. The arms and the base mount are
covered in a protective hull commonly used in painting or welding applications to
hide the mechanical structure. Each manipulator is equipped with a force/torque
sensor and a pneumatic two-finger gripper. On top of the base mount, it features an
iCat animatronic head [10] with 13 servos for body control and generation of facial
expressions. It has a camera in the location of its nose, a microphone and speaker in
its base, and can synchronize its lips to spoken text. During interaction, an additional
headset is worn for better speech recognition accuracy. A camera mounted above the
table and facing downward is used as input for the object and gesture recognition
modules. Additional cameras mounted below the head and facing toward the human
and the table are used for face detection and object/gesture recognition.

The system features a distributed architecture with multiple components run-
ning on a number of computers, operating systems, and programming languages.
The modules communicate over a middleware that supports remote procedure calls
and publish-subscribe connections [34]. It is broadly categorized into four main
sections (Fig. 8): The first one handles the Input of various information streams,
including object and gesture recognition, head tracking, as well as speech recogni-
tion and processing. The shapes and colors of the objects in the construction task
are well known and template matching (Fig. 7b) is used to detect this information
together with matching position and orientation [57]. Overlapping of objects is a
common feature in this scenario and the templates support occlusion up to a certain
amount. Assemblies consisting of multiple individual parts can be detected as well
if a matching template is provided. New objects can be introduced at runtime in
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combination with a provided name. As the robot manipulators can enter the camera
image and lead to false recognition results, their Cartesian position can be queried
and used to avoid these regions. Gesture recognition uses the same camera image
to detect the presence of a human hand and type of gesture it is using, including
pointing with an index finger, grasping with index finger and thumb, or holding-
out an open palm. The module reports the type of an individual gesture together
with a probability and can be extended to support new gestures with a number of
training images [75]. Head tracking is based on a Contracting Curve Density (CCD)
algorithm [58] and reports the location of the human’s head in the camera frame.
Speech recognition uses a commercial software package with a software develop-
ment kit (SDK) together with a customized grammar for improved recognition re-
sults. It reports multiple hypothesis together with their individual probabilities. All
input data is broadcast together with timestamps in order to enable further process-
ing later on.

The Interpretation modules contain a world model and a multimodal fusion com-
ponent. The world model stores information on parts in the current interaction con-
text and their locations, i.e., the tabletop itself, one of the robot’s hands, the human
collaborator, or an assembly. For the tabletop, this includes the pose of the object.
While the object recognition module reports the currently visible objects, the world
model has a persistent view and remembers the state even if the part in question is
currently obstructed. Objects can be queried according to descriptions, locations, or
world coordinates. Multimodal fusion takes information from all inputs and detects
correlations between verbal and non-verbal communication channels. A detected
object combined with a pointing gesture that includes this object among relevant
parts in its related area together with a verbal expression “take this one” and an
overlapping timestamp results in a strong instruction hypothesis for following mod-
ules. Speech processing—an important part of this module—is based on Combina-
tory Categorial Grammar (CCG) and results in a logical expression of the verbal
statement (see also Chapter [12] for information about the use of speech as com-
munication mode in humanoids). It provides both German and English language
support and is able to process task-related imperative sentences, questions, state-
ments, confirmations, barge-in, and—to some degree—elliptical sentences. Speech
and gesture input are then transformed into a compatible representation and com-
bined with a given rule set [30].

The Reasoning section consists of a dialog manager, a task planner and a goal
inference module. The system combines both symbolic and sub-symbolic reason-
ing to focus on different aspects of communication [25]. With a focus on symbolic
representations, the dialog manager [26] excels in the processing of complex verbal
instructions, while the dynamic field theory [7] of the goal inference module is able
to anticipate future and unexpected actions (Section 3.1.2 and 3.1.3).

Reference generation, presentation planning, output coordination, as well as
body and head control sum up the modules for the Output section. After the rea-
soning components come to a decision that should result in an action involving one
of the output channels, e.g., speech and/or motion, the dialog manager sends a cor-
responding command to the presentation planner [21]. If speech is a part of this
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action, it will involve the reference generator in order to create a more appropriate
response based on its dialog, world, and task state (Section 3.1.2). The generated
output plan is then sent to the output coordinator module for temporal and spatial
synchronization of animatronic head and robot manipulators, e.g., to match gestures
and speech output. The SDK of the head offers the ability to rotate and tilt the head,
control eyes, eyelids, and lips for facial expressions, and can synchronize the lips
to a commercial text-to-speech engine. Robot control is performed on a computer
with a real-time operating system. It offers a set of skills to the coordinating mod-
ule that are relevant for the assembly domain, for instance, pick up, point, or put
down [63]. Each skill coordinates several components, e.g., a robot manipulator and
a force/torque sensor, and is configured with parameters used in the individual steps
of its state machine. A single step can specify a target and limits, such as a joint or
Cartesian position or a force or torque value, and is executed until a combination of
exit conditions is met, e.g., a time limit, a goal position or velocity, a force or torque
limit, or any external input. Due to this, motions can be interrupted at any time to
enable barge-in. Global limits can be used to ensure maximum joint or Cartesian
positions and velocities. A step can also trigger the execution of an individual com-
mand, such as opening or closing a gripper. A pick up skill therefore consists of
individual steps, that move to a Cartesian approach pose above the object coordi-
nates, open the gripper, move down with a given velocity until a force threshold is
reached, close the gripper, and move up to a Cartesian goal position. Motions for
handover follow the results of Section 2.1 to increase joint-action performance.

3.1.2 Task-Based Human-Robot Dialog

Objects in the Baufix scenario include elements such as bolts, cubes, nuts, and slats.
All cubes are identical and only differ in color. Bolts are of different sizes, identified
by color, and come in two types of heads, round and hexagonal. Slats are of different
sizes and are differentiated by the number of holes, ranging from three to seven.
During the assembly, specific holes need to be referenced for the correct placement
of parts. All objects of the current assembly interaction are stored in the world model
component together with their location and state, i.e., on the table in the workspace
of the user or the robot, in the hand of the user or the robot, as a single part or in an
assembled state.

The task planner module represents the assembly plan in an AND/OR graph that
allows it to model different assembly sequences [26]. Each vertex of the graph has
a unique ID and can be given a label. The specific word depends on the language
of the used grammar. Fig. 9 shows an example of such a graph for the railway sig-
nal assembly. Subassemblies can also be given names, in this case their English
names are snowman and L-shape. The order of assembly is either based on instruc-
tions of the robot or can be chosen by the user. The dialog manager is based on
the TrindiKit toolkit [71] and uses an information state update approach. States in
Clara’s architecture include data of the user’s knowledge, the current assembly plan
step, the history of assembly steps described to the user, and the interaction history.
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Fig. 9 Assembly plan for a railway signal assembly. The final object requires eight Baufix parts in
total and includes the labeled subassemblies snowman (second row from bottom, left) and L-shape
(second row from bottom, right). Different sequences can be chosen that result in the same final
assembly.

To start an assembly with the robot as an instructor, the dialog manager requests the
task planner to load the specific AND/OR graph for the selected assembly and the
planner chooses a valid assembly sequence. The dialog manager then instructs the
user with one of two strategies: Depth-first gives assembly instructions for a step
and only names the object upon completion, while top-down does both at the same
time. As the system keeps track of steps already explained to the user, it can ask if
it should explain a repeated step again or if the user still remembers how it is done.
This can also be used to reduce linguistic output when multiple sequences with
the same result are available. The dialog manager then generates a representation
based on Rhetorical Structure Theory (RST) [53] that can be sent to the presen-
tation planner component. RST structures are used to describe relations between
different parts of natural text, e.g., a condition, an elaboration, or a sequence rela-
tion. The latter describes a succession relationship between one sentence part and
the next, for instance when describing that one specific step has to be performed
before the next one. The user can utter various forms of verbal acknowledgment,
indicate a misunderstanding, or use simple yes/no answers. The task planner is no-
tified on each completed assembly step so it can update its internal representation.
The world model is updated accordingly and the information state of the dialog
manager includes the performed assembly step in the user’s knowledge data [26].

Identifying specific objects is critical for the interaction in the Baufix scenario.
As highlighted above, there are for instance many different versions of bolts and
slats differentiated by color and shape. Rather than relying on complex wording
to precisely identify the object in question, the use referring expressions play an
important role in the generated dialog to make it more accessible [21]. As the robot
system is able to physically interact with its environment in this scenario, it can go
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beyond referring to a previously used object with verbal expressions. While picking
up an object and referring to it as “this one” is more effort, a more intense and
accurate reference can be achieved this way. If the object has to be used in the
next assembly step and is in the robot’s rather than the user’s workspace, this can
directly be followed up with a handover action. The system features two different
implementations: The first one is based on the incremental algorithm of Dale and
Reiter [17] and several of its extensions. From a given set of distractor objects, it
incrementally selects attributes missing in at least one other object in the set and
repeats this until only the target object remains. This greedy approach does not
necessarily lead to the optimal solution, but closely resembles human decisions. The
second one is context-sensitive and inspired by results from a user study [4, 24].

3.1.3 Combining Goal Inference and Natural-Language Dialog

As presented in Section 3.1.2, a dialog manager’s strength lies in dealing with com-
plex verbal input and output, while gestures and multimodal input and output can
be naturally integrated as well. When it comes to the anticipation of future actions
from its human collaborator, however, it can only give an estimate based on infor-
mation from a known assembly plan for this scenario. Dynamic field theory on the
other hand is inspired by findings from neurocognitive mechanisms [7]. In a joint
action scenario, a cognitive agent can compensate temporarily missing sensor in-
put through self-stabilized inner states and can anticipate future inputs related to a
specific goal-directed behavior. Different outcomes compete with each other based
on information from observed actions, contextual cues, and shared task knowledge
until one emerges as the winner.

The two implementations are fundamentally different, yet share a number of
identical information properties [25]. On the level of gesture, object, and action
representation, a common ground can be established: the different sets of gestures
handled by each system include pointing, grasping, holding-out, and unknown, to-
gether with the indicated object if applicable. An object has a classification, a pose,
and an indication if the object is within the robot’s workspace. The system can per-
form a limited set of actions, i.e., grasp-and-give, demand-and-receive, speak, and
an undefined action together with a string for further data, e.g., the ID of the corre-
sponding object. Both reasoning engines receive updates from the multimodal input
channels. The inferred goals and suggested responses from the goal inference mod-
ule are sent to the dialog manager, which integrates this information via appropriate
update rules and generates an output for the presentation planner.

With input from the goal inference module, the dialog manager is able to react
to unexpected actions from the human collaborator that do not match the current
subgoals [25]. It can choose to inform the user of the correct assembly sequence,
engage in a dialog to clarify the user’s intention, or update its internal representation
of the current task. The design can be adjusted to follow either the user’s lead or the
plan selected by the system and thus lead to completely different personalities.
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3.2 Domo

A classical industrial robot with six degrees of freedom is designed to achieve high
precision and low cycle times in structured industrial settings without human in-
teraction. In order to handle very high payloads such as welding guns and due to
limitations of mechanical design, the ratio of payload to weight is typically in the
order of 1:10. The high speeds of these enormous moving masses on the one side
and the lack of sensors or optimized hardware to prevent contused wounds at low
speeds on the other side make this kind of design unsuitable for physical human-
robot cooperation [33]. Due to the rigid mechanical design of these systems, the
interaction with objects needs to be programmed very precisely in order to prevent
damage to the system or the environment. The fixed customization to individual in-
dustrial use cases with specialized tools and gripper fingers limits their usability in
environments with different types of objects that humans are easily able to handle.

In a completely different approach, the humanoid robot Domo shown in Fig. 10a
was designed by Aaron Edsinger at the Humanoid Robotics Lab of MIT with the
goal to assist humans in everyday tasks [19, 20]. It is based on the principle, that
human environments are optimally suited for the human body and human behavior
and it is designed to be able to handle a wide range of household items such as cups,
bottles, tools, or food items without the need for significant modifications.

Domo’s design is characterized by three major themes, each highlighting two or
three subcategories: The first one titled Let the Body do the Thinking [19] focuses
on a number of design strategies. With the Human Form as foundation, it enables
the use of tools created for humans and perceives the world from a similar physical
perspective as a human. Its proportions are chosen to be close to those of a human in
order to be able to take advantage of an environment designed with people in mind,
e.g., the use of standard human workplaces. Its Design for Uncertainty is centered
around inherent safety through the use of compliant and force controlled actuators.
Passive compliance in the body and the soft material used in its hand enable Domo
to handle uncertainty in its environment, e.g., in the case of unexpected contact or
when dealing with position uncertainty in a contact task. By Taking Action, the robot
aims to use its ability to actively participate in its environment to its advantage. It can
move its head and eyes to improve its recognition of objects via active perception,
adjust the stiffness in its arms in unknown environments, or increase the opening of
its hand when grasping in the dark.

The second theme Cooperative Manipulation [19] aims to enhance the robot’s
interaction capabilities with humans through adequate behavior patterns. Proper use
of social cues [9] understandable by a co-worker can help the robot assume the
role of a collaborator and both human and robot are then able to complete tasks as
a team (see also Chapter [40] for more detailed information on social aspects of
human-robot teaming). The field Assistive Robotics contributes the aspect of phys-
ical interaction as seen in elderly care or manipulation assistance with tasks such
as food preparation, operation of electronic devices, and picking up or placing of
objects. Due to the direct contact between robot and human, safety is a major factor
in the design of Domo. Collaborative Cues play an important role in the interaction
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Fig. 10a The humanoid robot Domo grasp-
ing a bottle in a handover scenario [20].

Fig. 10b Domo’s view of the environment
and the corresponding feature detection [20].

between two co-workers. The use of hand gestures such as pointing to an object
as well as eye and head movement to direct the attention to a specific object or to
highlight turn taking are all important aspects to improve collaboration.

The last theme aims to identify Task Relevant Features [19] that are common
in objects designed for human use. Domo’s goal is to be able to interact with ob-
jects that have not been specifically modeled beforehand. To accomplish this, the
software must address Perceptual Robustness, as the typical home or office environ-
ment have very cluttered backgrounds and lighting conditions that change heavily
throughout the day. Generalization means that principles that were successfully ap-
plied to a specific object should also work on a similar one, e.g., picking up a a
coffeepot or a briefcase via its handle or opening a lid with the tip of a screwdriver
or a knife.

3.2.1 Physical Setup and Safety Aspects

Domo is designed as a humanoid robot with two arms, two hands, and an actuated
head in dimensions matching those of an average human [19]. The robot’s kinemat-
ics feature a total of 29 degrees of freedom (DOF), with 9 DOF in the head, 6 DOF
in each arm, and 4 DOF in each hand. The 22 DOF from the neck down feature a
Series Elastic Actuators (SEA) [61] design with a compliant element between mo-
tor output and load in order to provide force sensing and passive compliance. All
components are custom built in order to fulfill the design requirements mentioned
in the previous section.

The arms are designed to be light-weight in order to reduce inertia, improve
safety, and reduce motor requirements for higher efficiency. A cable-driven design
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inspired by the Barrett WAM manipulators [70] is used to enable a move of the
shoulder motors into the torso for further weight reduction. These two DOF control
pitch and roll of the shoulder, while four actuators in the bicep control shoulder yaw,
elbow pitch, as well as wrist roll and pitch. With a weight of 2.1 kg and a payload
of 5 kg they offer a good balance between safety and usability quite opposite to the
ratio offered by standard industrial manipulators.

Design goals for the hand included passive compliance and force control, espe-
cially for dealing with unknown objects and position uncertainty. In contrast to the
SEA design of the arms, they use a compliant element between motor housing and
chassis for a more compact design. Each hand weighs 0.51 kg and consists of three
fingers with three joints. Only one joint is actively controlled while the other two are
passively coupled. The one remaining DOF is used to control the spread between
two of the fingers. The fingers are covered with 24 tactile sensors and a soft urethane
material, the latter enabling robust grasping of a variety of objects and improving
the ability to maintain a stable force controlled grasp. This also improves the overall
robustness of the design when interacting with the environment.

Domo’s head is a mechanical copy of the MERTZ design by Aryananda and We-
ber [3]. It features a neck with three DOF and an upper head with one DOF each for
roll and tilt. It is equipped with two CCD cameras controlled by a single tilt DOF
and two independent pan DOF. The remaining DOF is used to control the eyelids. A
3-axis gyroscope provides an absolute reference with respect to gravity. As visual at-
tention concepts play an important aspect in the design of the robot, special empha-
sis was given to human-like eye movement. With the exception of the optokinetic
response, Domo supports saccades with fast, ballistic eye movements of 900◦/s,
smooth pursuit with slow, controlled tracking movements of up to 100◦/s, vergence
with independent control of eye pan, and the vestibulo-ocular reflex through a head
mounted gyroscope to counter-rotate eyes during head movement.

Physical safety when collaborating with a human co-worker was a major design
aspect of Domo. Edsinger [19] evaluated this aspect of robot interaction with the
Head Injury Index (HIC) [73]. The HIC summarizes the impact acceleration of the
head and the duration of impact in one function, where a value of 100 is considered
safe and a HIC of 1000 can be fatal. His experiments for Domo show a HIC of
167 for an impact velocity of 1 ms−1 when using both SEA and cable-drive com-
pared to a HIC of 489 for a non-SEA and non-cable-drive version. A HIC of 100
can be reached by limiting the maximum velocity to 0.84 ms−1 for the former and
0.52 ms−1 for the latter version. However, as shown in [33], HIC alone is not an
accurate measure of injury severity in human-robot interaction.

3.2.2 Behavior-Based System Architecture

While the traditional sense-plan-act approach requires precise models of objects for
a proper interaction with them, these kinds of models are hard to define for typical
household objects. Domo therefore uses a behavior-based approach [2] and refers
to perceptual observations instead of internal models. A set of simple behaviors is



Applications in HHI – Physical Cooperation 25

ContactDetect

CompliantLower

StiffnessAdapt

GraspDetect

GraspAperature

AssistedGrasp

AssistedGive

InterestRegions

VisualSeek

PersonDetect

PersonSeek

VocalRequest

HelpWithChores

PutStuffAway ContainerInsert BimanualFixture

SurfaceTest SwitchHands FixtureServo

ShelfDetect

TipUse

PalmServo

TipServo

TipPose

ContainerPlace

SurfacePlace

TipPriors

TipEstimate

WristWiggle

Fig. 11 Overview of Domo’s architecture for the HelpWithChores task. It is structured into four
layers, with the Perceptual Detectors and Motor Primitives on the bottom up to the Task Skills
on the top. The colors highlight modules according to their underlying strategy, with yellow for
Cooperative Manipulation, green for Task Relevant Features, and purple for Let the Body do the
Thinking [19].

designed to work around an incomplete sensory representation of its environment.
These modules receive access to resources such as a robot’s manipulator based on
their priority and the estimate of their readiness level. Higher levels of certainty lead
to a higher likelihood of the behavior being given control. Domo’s architecture can
be structured into four basic layers (Fig. 11), which are detailed in the following
paragraphs [19].

A number of Perceptual Detectors and Motor Primitives provide the basis for the
layers above. The former modules include implementations for detecting contact
of the manipulator with the environment, the contact surface of the palm, or the
aperture of a grasp. The latter ones take care of modifying joint stiffness, directing
eye gaze, or reaching toward someone.

On the layer above, Compensatory Actions reduce perceptual uncertainty, Pre-
condition Actions deal with adjusting the robot’s pose for follow-up actions, while
Task Relevant Features estimate stable features in the environment over time and
can combine these with control actions.

The coordination of these detection and control actions is done via hand-designed
Manual Skills. Here, an algorithm is split into several stages connected in a control
flow. The skill starts in a ready stage, where it waits until related perceptual pre-
conditions are met. After this, relevant compensatory and precondition actions are
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triggered to prepare the system for the following detection stage. With the detected
features as input, the control stage takes over the respective hardware component
and monitors the execution until the task is successful. The skill will fall back to
the ready stage at any point during execution, if the system does no longer meet the
readiness conditions.

At the very top of the architecture are the Task Skills. These coordinate the man-
ual skills from the layer below in close interaction with a human collaborator.

3.3 James

The James humanoid bartender (Fig. 12a and 12b) is a robot system designed to
study short-term and multi-party human-humanoid interaction that was developed in
the project JAMES (Joint Action for Multimodal Embodied Social Systems) funded
by the European Union [23]. Its application to the bartending domain motivates both
task-based interaction, such as ordering and serving drinks and cleaning the bar, as
well as social aspects of how to engage in conversations and how to handle requests
following social rules. Experiments include multiple user studies to evaluate the
acceptance and quality of the human-humanoid interaction [31], studies to compare
different planning approaches to control the robot’s behavior [31], and a Ghost in
the Machine study [52], where participants control the robot in real-time.

3.3.1 Physical Setup and System Architecture

The first version of James was based on the hardware of the system described in
Section 3.1. Its upper body consists of two industrial robot arms with six degrees
of freedom (DOF), hidden under a plastic cover. In contrast to the parallel grippers
used before, the hands are based on an enhanced design of the ones described in Sec-
tion 3.2.1 and feature three force-controlled tendon-driven fingers and an opposable
thumb. On top of the torso is still the iCat [10] animatronic head that can rotate, pro-
duce facial expressions, and output sound. The sensing was updated and the system
now includes two stereo color cameras, a depth camera, and a microphone array.
This setup was used in the initial development and during the first user studies. As
the industrial manipulators of this version are not safe for physical human-robot
interaction, an improved version was developed during the project once the rest of
the enhanced hardware of Section 3.2.1 became available for purchase. This setup
includes one manipulator with seven DOF and a torso with 3 DOF, both featuring
Series Elastic Actuators [61] and cable-driven design [70]. The head uses a custom
software on a tablet that is able to produce facial expressions and lip synchronization
on a browser-based interface.

The architecture of the distributed system is shown in Fig. 13. From a high-
level view, it generally follows the sense-plan-act pattern. Contrary to most human-
humanoid interaction approaches, dialogs are not managed by a component that
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Fig. 12a First version of the James robot us-
ing large parts of the hardware setup of the
system shown in Section 3.1.

Fig. 12b Second version of James with an
enhanced design of the hardware described in
Section 3.2.1.

follows rules or a state machine, but dialog actions result from generic knowledge-
level planning [59].

From sensing to action, the software components for visual and speech recogni-
tion, planning, and speech output and robot manipulation interact as follows: Visual
classification observes the bar area with both stereo cameras and an infrared-light
depth camera. It segments moving image areas by color and detects faces and hands.
Blob tracking allows people to be re-identified after an occlusion. At a lower rate, a
face detector is executed to update appearance models and achieve more robustness
against changes in illumination. When a person has been recognized and tracked,
their body pose is estimated by model-based fitting of primitive shapes in color and
depth images [23].

For recognizing speech, the system uses the Microsoft Speech API with a sim-
ple, domain-specific vocabulary for the two languages English and German. Even
though the microphone array receives a high level of background noise, for instance
from other guests, the limited vocabulary allows adequate recognition rates. For
parsing and understanding recognized text and generating spoken language output,
a bi-directional, bilingual OpenCCG grammar is used.

A state manager filters and fuses frame-based visual recognition and sentence-
based speech understanding results and passes the symbolic world state to the auto-
mated planner. The automated planner manages all interaction with customers and
generates sequences of actions for communication and manipulation. To generate a
plan, it performs a forward search with knowledge-level reasoning (Section 3.3.3).
Changes to the world state are monitored to detect infeasible plans and trigger re-
planning.

On the output side, the text-to-speech output is synchronized with facial expres-
sions and eye movement of the animatronic head to establish eye contact with the
addressed customer. When a drink is to be served, the robot motion planner finds
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Fig. 13 Software architecture for multi-party interaction used in the humanoid James. Input from
various sensors is evaluated and processed by a State Manager. A combined Planner and Execution
Monitor then generates actions for the Output Generator, that coordinates head and body output.

reachable grasp configurations and a collision-free trajectory. Because drinks are
to be placed close to a customer, trajectories need to be computed and verified at
run-time. To enhance the efficiency of robot-robot and robot-environment collision
checks, convex hulls of all rigid objects are precomputed, which enables checks in
less than a millisecond [23].

3.3.2 Visual Intention Recognition

In a social setting like the bartending domain, the intention and action of guests fol-
lows patterns, and learning these patterns may enhance the quality of the interaction
between human and humanoid. For example, most of the guests will order shortly
after entering the scene. However, people express their intention not necessarily in
a spoken dialog. Through empiric studies and interpretation of human-human inter-
actions in the same domain, it is known that body posture is the most crucial signal
to initiate an interaction [27]. In addition, head pose serves as signal for beginning
and ending an interaction. When an interaction is ending, most customers turn their
head downwards or sidewards. In sum, body orientation, body posture, head pose,
and—to a little extent—position relative to a group of people are the relevant signals
to show the intent to speak to or end an interaction with the humanoid [27].

Based on the human-human studies, a Hidden Markov Model (HMM) was
trained to detect interaction states between a human guest and the humanoid robot
from visual features. Body posture and the relative position to other people was
available from a depth camera and reconstructed skeletons. Head poses were recog-
nized on color imagery through identification of individual facial features by Haar-
feature classification. Estimated positions of eyes, nose, and mouth were processed
by a 3-layer artificial neural network (ANN), which was previously trained on anno-
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Fig. 14 Camera images (top) and corresponding skeleton poses (bottom) of Kinect sensor used for
visual intention recognition. The recognized states in the bar scenario include (from left to right):
entering bar setting, leaning on bar with right side, requesting attention, raising glass with left
hand, drinking, raising glass with right hand, leaning on bar with left side, and leaving bar setting.

tated photographs to finally output pitch, yaw, and roll angles of recognized faces.
Because the recognition problem of social interaction states is temporally coherent
and depends on previous states, a Hidden Markov Model was selected for train-
ing and recognition. A fine-grained model with eight states was chosen to detect
whether a person was idle, interacting with the humanoid, interacting with another
person, reading the menu, entering, leaving, clinking glasses, or drinking (Fig. 14).
More than 200 scenes with a total of 1720 states were enacted, recorded, and man-
ually labeled. Of these data, two thirds were used for training. Comparing precision
and recall scores on a small cross-validating data set, a suitable feature set of 19 real
values was selected, including torso and hand positions, body alignment, head pose
(both as a normal vector and as pitch and yaw angles), and two fuzzy features that
responded to a position close to other people. Possible graph structures of the model
were again evaluated on the cross-validation data set, from which a graph with three
linear hidden states for each interaction state and a feature emission model with a
mixture of three full covariance matrices was selected.

On the test set, the visual intention recognition system recognized 82.9% of the
interaction states correctly. Compared to the simpler rule-based classifier that was
used in all user studies to detect engagement with the humanoid, the HMM approach
did not provide more reliable results, but could be trained for a more complex inter-
action model to recognize eight different interaction states and gestures instead of
just two.

3.3.3 Planning Interaction and Dialog Management

The James humanoid does not manage dialogs and interaction with rules or state
machines, but generates its manipulation and speech actions with automated plan-
ning [59]. In particular, the Planning with Knowledge and Sensing (PKS) planner
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is used, which is a general-purpose planner that can reason with incomplete knowl-
edge. Because the bartending scenario allows multiple customers and natural lan-
guage understanding is imperfect, the PKS planner with its knowledge-level reason-
ing and its execution monitor is well suited.

In the bartending scenario, the goal of the planner is to ensure that all agents that
have sought attention will be served [59]. The knowledge state of the world is pro-
vided by the visual detection, pose recognition, and speech understanding compo-
nents after filtering by the state manager. The state is modeled by a set of predicates
that are true, false, or unknown. Unary predicates include whether a customer seeks
attention, has been greeted, has ordered, has been served, or was not understood
by speech recognition. A function with a parameter customer models which drink
a customer has requested. The planner then searches for a sequence of actions that
lead to state that fulfills the goal. Actions include both speech and facial expres-
sions (greeting a customer, asking for an order, acknowledgment, asking a customer
to wait) as well as manipulation actions to serve drinks.

Contrary to other automated planners [66], PKS operates on the knowledge-
level [60]. For example, an effect of the ask-for-an-order action is that the customer’s
wish becomes known, which is necessary to fulfill a precondition for the serve ac-
tion. Therefore, question-and-answer dialog actions are not tasks themselves, but
rather planned to gather knowledge that is necessary to fulfill the goal. Of course,
the world state is continuously monitored and updated with sensor input by the state
manager. Replanning only occurs if the preconditions of planned actions are no
longer fulfilled by the world state. In the experiments, planning usually took less
than 0.1 seconds.

In contrast to related works in automated dialog planning [11], the described
planner can reason with incomplete knowledge, which is useful for planning ques-
tions, and is fully integrated in James’ interactive humanoid system.

3.3.4 Task and Motion Planning for Interactive Manipulation

When a robot interacts with humans in a domain where objects can be moved and
manipulated, the state space is already so large that simple state machines or rules
will not solve the planning problem in full generality. Actions as simple as pick-
and-place have intricate preconditions and effects, for instance, which objects have
to be moved first to avoid collisions and to achieve a certain goal. As an example,
placing an object at a random location may block a picking action for the other robot
arm several steps later in a plan, something which cannot be predicted by rules
or heuristics. In addition, randomized path planners can only fail inconclusively
with a timeout, therefore a high-level, discrete search that calls path planning as a
subroutine cannot be complete.

Rather than following greedy heuristics that cannot solve every case, a combined
task and motion planner was developed to search in the full space of discrete ac-
tions and motion paths to solve generic pick-and-place tasks [29, 28]. The integrated
planner can start from an arbitrary world state, such as one where random bottles
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Fig. 15a Top view of a scenario where the
robot has to rearrange three bottles by grasp-
ing or pushing as indicated by the arrows.

Fig. 15b Solution path with intermediate
robot configurations. Edges drawn in red cor-
respond to robot manipulation actions, blue
ones to robot motion only.

have been placed on a bar table by human interaction partners. It then searches for
a sequence of actions to fulfill a goal condition, such as removing all bottles from
the bar table. The planner accepts a formal definition of actions, such as picking or
placing an object or moving one of the two robot arms, that are defined in terms of
discrete preconditions, random generators for geometric choices, geometric precon-
ditions (such as collision avoidance), and effects. The planner then progresses the
search, both by evaluating additional actions in the search graph and by trying out
additional geometric choices from existing states, until a state is found that fulfills
the goal.

In practical experiments with the bimanual humanoid, it was easy to identify
cases that could only be solved by such generic search. Because the James robot
bartender has two arms with different workspaces, cleaning the bar table requires
non-trivial sequences of actions. As an example, when a customers has placed an
empty bottle on the right side of the bar table, only one arm can pick it up, but it
needs to put it down in the common workspace where the other arm can reach it
to transfer it to the empty bottle storage region [29]. To allow concise definition of
scenarios and goal conditions, predicates to model support surfaces and the inclu-
sion relation are also available [28]. The search takes a few seconds for scenarios
with four objects and two arms, with most of the time spent on collision checking.
In general, evaluation on multiple scenarios has shown that integrated task and mo-
tion planning can solve pick-and-place tasks, even those that require both arms or
sequences of more than ten actions.

In an alternate approach, sampling-based motion planning can be extended with
Diverse Action Manipulation (DAMA) [41]. In addition to simple robot motion, the
following diverse action manipulations are available: picking up an object, transfer-
ring the rigidly attached object, pushing an object with the interior, and pushing an
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object with the exterior surface of the hand. These manipulation actions induce var-
ious hand poses, including grasping and both pushing poses. Fig.15a and 15b show
a scenario, in which the robot has to rearrange three bottles. Considering only trans-
lations for objects, the search space for this scenario is 18-dimensional, consisting
of important subspaces induced by the constraints of manipulation actions defined
for this configuration space.

4 Conclusions and Future Directions

In this chapter, we have shown the potential of human-robot physical interaction,
its state of development, its deficiencies, and the results of extensive real-world
experimentation. We have seen that performing this highly interdisciplinary type
of research—ranging from user-studies and neuroscience investigations to the the-
ory of robot motion planning all the way to a robust systems implementation in its
entirety—is absolutely vital for the progress of the field. Over the many years of
performing research into direct physical robot-human interaction, we have seen that
the following, non-exhaustive list of research areas can provide the basis for further
exciting research on our way to practical systems:

• Advances in speech output should specifically be used in the generation of refer-
ring expressions in situated dialog.

• More expansive and complex hand-over experiments can reveal many interesting
properties of human behavior and how a robot should adapt to the human partner.

• fMRI studies and neuroscience experiments can potentially reveal links between
brain activity, e.g., in the mirror neurons, and joint action.

• Error recognition and error handling is an absolute must, it may be even more
important than the planning of the original task.

• The collection of a multimodal data corpora of human-human task-based joint
action and making them accessible to automatic processing though powerful on-
tologies can dramatically improve the skill sets of the robot co-worker.

Without this underpinning research, robotic co-working will never find the neces-
sary acceptance to evolve into a mass market. However, if made accessible as a
base platform for roboticists and industry developers, it can be the starting point for
another robot application success story.
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33. Haddadin, S., Albu-Schäffer, A., Hirzinger, G.: Requirements for safe robots: Measurements,
analysis and new insights. The International Journal of Robotics Research 28(11–12), 1507–
1527 (2009). DOI 10.1177/0278364909343970

34. Henning, M.: A new approach to object-oriented middleware. IEEE Internet Computing 8(1),
66–75 (2004). DOI 10.1109/MIC.2004.1260706

35. Hirukawa, H., Kanehiro, Kaneko, K., Kajita, S., Fujiwara, K., Kawai, Y., Tomita, F., Hirai,
S., Tanie, K., Isozumi, T., Akachi, K., Kawasaki, T., Ota, S., Yokoyama, K., Handa, H.,
Fukase, Y., ichiro Maeda, J., Nakamura, Y., Tachi, S., Inoue, H.: Humanoid robotics plat-
forms developed in HRP. Robotics and Autonomous Systems 48(4), 165–175 (2004). DOI
10.1016/j.robot.2004.07.007



Applications in HHI – Physical Cooperation 35

36. Huber, M., Knoll, A., Brandt, T., Glasauer, S.: When to assist? – Modelling human behaviour
for hybrid assembly systems. In: Proceedings of the International Symposium and the German
Conference on Robotics, pp. 165–170. Munich, Germany (2010)

37. Huber, M., Radrich, H., Wendt, C., Rickert, M., Knoll, A., Brandt, T., Glasauer, S.: Evaluation
of a novel biologically inspired trajectory generator in human-robot interaction. In: Proceed-
ings of the IEEE International Symposium on Robot and Human Interactive Communication,
pp. 639–644. Toyama, Japan (2009). DOI 10.1109/ROMAN.2009.5326233

38. Huber, M., Rickert, M., Knoll, A., Brandt, T., Glasauer, S.: Human-robot interaction in
handing-over tasks. In: Proceedings of the IEEE International Symposium on Robot and
Human Interactive Communication, pp. 107–112. Munich, Germany (2008). DOI 10.1109/
ROMAN.2008.4600651

39. Hulstijn, M., Meulenbroek, R., Wijers, M., de Ruiter, J.P.: A frequency analysis of joint-action
primitives. Deliverable D2.3, EU FP6 IST Cognitive Systems Integrated Project JAST (FP6-
003747-IP) (2005)

40. Iqbal, T., Riek, L.D.: Human robot coordination. In: Humanoid Robotics: A Reference.
Springer

41. Jentzsch, S., Gaschler, A., Khatib, O., Knoll, A.: MOPL: A multi-modal path planner for
generic manipulation tasks. In: Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 6208–6214. Hamburg, Germany (2015). DOI 10.1109/
IROS.2015.7354263

42. Jindai, M., Shibata, S., Yamamoto, T., Shimizu, A.: A study on robot-human system with
consideration of individual preferences. JSME International Journal Series C Mechanical
Systems, Machine Elements and Manufacturing 46(3), 1075–1083 (2003). DOI 10.1299/
jsmec.46.1075

43. Kazerooni, H.: Exoskeletons for human performance augmentation. In: B. Siciliano, O. Khatib
(eds.) Springer Handbook of Robotics, first edn., chap. 33, pp. 773–793. Springer, Heidelberg,
Germany (2008)

44. Khan, S.G., Bendoukha, S., Mahyuddin, M.N.: Dynamic control for human-humanoid inter-
action. In: Humanoid Robotics: A Reference. Springer

45. Kirgis, F.P., Katsos, P., Kohlmaier, M.: Collaborative robotics. In: D. Reinhardt, R. Saunders,
J. Burry (eds.) Robotic Fabrication in Architecture, Art and Design, pp. 448–453. Springer
(2016). DOI 10.1007/978-3-319-26378-6 36

46. Knoll, A., Hildenbrandt, B., Zhang, J.: Instructing cooperating assembly robots through sit-
uated dialogues in natural language. In: Proceedings of the IEEE International Confer-
ence on Robotics and Automation, pp. 888–894. Albuquerque, NM, USA (1997). DOI
10.1109/ROBOT.1997.620146

47. Kock, S., Vittor, T., Matthias, B., Jerregard, H., Källman, M., Lundberg, I., Mellander, R.,
Hedelind, M.: Robot concept for scalable, flexible assembly automation: A technology study
on a harmless dual-armed robot. In: Proceedings of the IEEE International Symposium on
Assembly and Manufacturing. Tampere, Finland (2011). DOI 10.1109/ISAM.2011.5942358

48. Kosuge, K., Sato, M., Kazamura, N.: Mobile robot helper. In: Proceedings of the IEEE In-
ternational Conference on Robotics and Automation, pp. 583–588. San Francisco, CA, USA
(2000). DOI 10.1109/ROBOT.2000.844116

49. Lay, K., Prassler, E., Dillmann, R., Grunwald, G., Hägele, M., Lawitzky, G., Stopp, A., von
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