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Abstract

Discovering the molecular malfunction patterns leading to disease is one of the major
tasks of this century. Multiple studies have explored associations between genetic varia-
tion and phenotypic outcomes of human disease. However, progress has been limited and
fields like computational variant effect prediction have not seen a significant improvement
in method accuracy over the past decade. In this work, we first took a new approach
to elucidate the association between genetic variation, functionality and disease. We
introduced a new feature, characterizing protein sequence positions by the distribution
of variant effects on protein function. We developed a Machine Learning approach to
predict this feature with high accuracy, providing the foundation for a new and improved
variant effect predictor. In parallel we addressed the same question from an alternative
perspective. Current research provides substantial evidence that microbiome function
is also strongly associated with disease state. We developed two tools that firstly fa-
cilitated the analyses of microbiome function profiles between different disease states
and secondly, permitted the investigation of microbial functional similarity with respect
to different environments. To complement these tools and account for Big Data bot-
tlenecks, we additionally developed an automated cluster load balancing software that
allowed us to utilize both local and remote compute resources simultaneously and speed
up analyses drastically. In summary, we developed new approaches which significantly
improve identification of aberrant patterns and their association with disease states.
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Zusammenfassung

Das Entschlüsseln jener fehlerhaften molekularen Muster, die unausweichlich zu Krank-
heiten führen, ist eine der wichtigsten Aufgaben dieses Jahrhunderts. Zahlreiche Studien
untersuchten die Zusammenhänge zwischen genetischer Variation und phänotypischen
Veränderungen in menschlichen Krankheiten. Bisherige Fortschritte sind jedoch be-
grenzt, und in Bereichen wie der Effekt-Vorhersage von Mutationen war im letzten
Jahrzehnt keine signifikante Zunahme von Präzision festzustellen. In dieser Arbeit ver-
folgten wir einen neuen Ansatz, um den Zusammenhang zwischen genetischer Varia-
tion, Funktion und Krankheit aufzuzeigen. Wir führten ein neues Merkmal ein, welches
Positionen in einer Protein Sequenz anhand der Verteilung von Effekten durch Muta-
tionen auf die Protein Funktion charakterisiert. Im Zusammenhang damit entwickel-
ten wir eine auf Machine Learning basierende Methode, um dieses Merkmal mit hoher
Präzision vorherzusagen. Dies stellt die Grundlage für eine neue und verbesserte Meth-
ode zur Effekt-Vorhersage dar. Parallel dazu betrachteten wir die identische Fragestel-
lung aus einer alternativen Perspektive. Der aktuelle Stand der Forschung deutet klar
darauf hin, dass das im Mikrobiom enthaltene Funktions-Profil ebenfalls stark mit
dem Stadium einer Krankheit assoziiert ist. Wir konzipierten zwei Methoden, die
uns zum einen Analysen vollständiger Mikrobiom Funktions-Profile in Bezug auf unter-
schiedliche Krankheitsstadien ermöglichten, andererseits aber auch die Evaluierung von
funktionellen Gemeinsamkeiten zwischen Mikroorganismen in Bezug auf unterschiedliche
Milieus erlaubten. Um diese Methoden zu komplementieren und um den Herausforderun-
gen von Big Data Analysen zu entsprechen, entwarfen wir zusätzlich eine Software zur
automatisierten Lastverteilung zwischen Rechenzentren. Diese erlaubte es uns, lokale
und entfernte Ressourcen gleichzeitig zu verwenden und Analysen drastisch zu beschleu-
nigen. Zusammenfassend entwickelten wir neue Ansätze, die eine Identifikation anomaler
Muster und deren Assoziation mit Krankheitsstadien signifikant verbessern.
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1 Introduction

1.1 Molecular patterns of human disease

The diseases that plague humanity are complex in their etiology, influenced by a variety
of genetic and environmental factors. In the last few decades, we have seen significant ad-
vances in high-throughput experimental methods, as well as in the sophistication of the
resulting data analyses. The Human Genome Project [1] produced the first reference hu-
man genome to be used as a baseline for identifying individual-specific sequence variants.
Since then we have sequenced many more genomes, e.g. for the 1000 Genomes project
[2], to increase the resolution of variation baselines across ethnicities and individuals.
The many following Genome-Wide Association Studies (GWAS) aimed to uncover spe-
cific variants likely to be associated with disease. These associations have been shown for
diseases like Schizophrenia, Psoriasis, and Non-alcoholic fatty liver disease among others
[3, 4, 5]. However, identifying variants that have a minor effect, but could lead to disease
in concert with others, remains difficult if not impossible. Experimental determination
of these effects for every single variant is clearly not feasible. Thus, over a hundred com-
putational predictors have been developed to bridge this knowledge gap. Unfortunately,
none of these methods solves the question on the level of molecular functionality, much
less so to be useful in diagnostic practice or other clinical applications.

Nevertheless, the simultaneous progress in -omics methods have facilitated the study
of not only sequence variations but the effect of variants within these sequences at a
functional level. Studying these traits in the light of proteomics, epigenetics, diversity
and the microbiome (through metagenomics) has led to a much better appreciation of
the complexity of human disease. The human microbiome has especially been linked to
various host disease phenotypes [6, 7, 8]. GWAS studies have used the variations in the
microbiome as a trait, uncovering genetic variations in the host and associating them
with microbial variants [9]. Similar to GWAS studies that simply associate sequence
variations to disease, we argue that using just microbial variants and associating them
to disease is inadequate. Functional genomic approaches provide a more mechanistic as
well as realistic perspective of this association.

1.2 Limits of variant effect prediction

Our ability to analyze sequence data currently cannot keep up with the rapidly growing
number of genomes and exomes sequenced for research and medical purposes [10, 11, 12].
Experimental assessment of effects caused by all non-synonymous Single Nucleotide Poly-
morphisms (nsSNPs) is far beyond practical and we require precise specialized computa-
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1 Introduction

tional methods to substitute for wet-lab evaluations. Distinguishing the roughly 10,000
amino-acid differences observed in protein coding regions of individuals [13] from those
associated with disease states is almost like looking for the needle in a haystack. More-
over, substitution effects are not black and white but rather have a gradient range of
outcomes [14]. While some variants might only marginally alter a protein structure,
e.g. leading to a slight change in ligand affinity [15], others alter molecular function and
induce drastic changes [15]. Subtle modifications can be very difficult to detect and even
though they may have only a minor impact when isolated, these can result in pheno-
typic changes when co-occurring with other mutations [16, 17]. Those complex epistatic
interactions can be found in diseases traits [18, 19] and require alternative approaches
than traditional nsSNP analysis.

Figure 1.1: Computational variant effect prediction methods. Around 180 different
tools for variant effect predictions are currently available. The different approaches
range from conservation and homology to stability analysis and from naive bayes
classification to neural networks. Many of them were trained on specifically com-
prised data sets and thus are meant to predict mutations in very specific use cases
(i.e. cancer mutations).

In this thesis we focus on the effects of single amino acid substitutions caused through
nsSNPs. Single substitutions can frequently be successfully associated to disease traits
[20, 21]. Given the broad range of possible applications, it is not surprising that dozens of
computational algorithms for the prediction of mutation outcomes have been developed
(figure 1.1). However, current approaches still have significant room for improvement
[22].

Briefly, computational variant effect prediction methods attempt to assess the impact
of an amino acid exchange at a specific position in a protein sequence. This impact
can - from a very generic point of view - be scaled into positive, negative or no effect
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1.2 Limits of variant effect prediction

with regards to protein function. Or more simply, into effect or no effect. Using various
computational/mathematical techniques and numerous data inputs, all methods rely, to
various extents, on two broad concepts: (i) basic biological principles and (ii) pattern
recognition techniques. Despite increasing number and complexity of methods, there has
not been a significant improvement in prediction accuracy over the last two decades. This
is why we examined the assumptions underlying those concepts with higher scrutiny.

Figure 1.2: Disease causing variants may occur at non-conserved positions. The den-
sity of disease causing substitutions is very high within highly conserved regions
(0.8 to 1) as expected, however those with low conservation scores (upto 0.6) still
demonstrate disease occurrence. Adapted from (de Beer et al. 2013 [23])

Basic biological principles range from biochemical amino acid properties to evolution-
ary information extracted from Multiple Sequence Alignments (MSAs) of homologous
sequences. Some approaches use globally-applicable scoring matrices, e.g. BLOSUM62
[24], which estimate likelihoods of amino acid substitutions in curated MSAs. Non-
disruptive substitutions (i.e. those represented in matrices with high probabilities) often
match literature based biochemical classifications of side chains. Those in turn are often
the starting point for designing experimental mutation studies. Substitutions of amino
acids with comparable properties are expected to allow normal or near-normal protein
activity. Other substitutions are very likely to alter or abolish function. Variant-effect
predictors use different subset of these properties as a base for assessing the potential
impact when substituting the wild-type residue with a specific amino acid. One property
utilized by most effect prediction models are evolutionary constraints (i.e. conserved vs.
non-conserved). Generally, if a specific variant is present in functionally-active homologs,
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1 Introduction

it allows for a ’normal’ or ’near-normal’ function. In the contrary, if a variant is absent
in the MSA, chances are that it has been excluded through evolutionary selection and
as such poses an unfavorable substitution. However, many protein positions do change
during evolution and therefore are not conserved in MSAs. Those non-conserved po-
sitions are often neglected and deemed as less important. This is highly questionable
as functional diversification in homologs often emerges through amino acid changes at
non-conserved positions [25]. Even though disease variants are often highly conserved, it
has been shown that disease-causing substitutions can very well occur at non-conserved
positions [26, 27] (figure 1.2). Another implied assumption for prediction models incor-
porating MSAs is that if a particular variant-effect is known for one homolog, similar
outcomes are expected for the same variant in other family members. In strong disagree-
ment with that hypothesis, studies show that pathogenic variations can be compensated
for in homologs and thus are not lethal any more on occurrence ([28], figure 1.3).

Figure 1.3: Non-conservation does not necessarily indicate neutrality. In a position
that is not conserved and/or compensated for within other species, a variant in
the human ortholog may still be pathogenic. This indicates that ’non conserved’
positions found in MSAs cannot be generically assumed neutral. Adapted from
(Kondrashov et al. 2002 [28]; Copyright (2002) National Academy of Sciences,
U.S.A.)

Prediction methods that apply pattern recognition techniques often require compre-
hensive, experimentally validated data sets (functional effects of amino acid substitu-
tions) for training and optimization of the underlying models. Even though recently
developed deep mutagenesis approaches improve this situation, data sets with sufficient
sample size meeting those criteria are still hard to come by. Furthermore, many models
work under the assumption that variants used for model training roughly cover the entire
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1.2 Limits of variant effect prediction

spectrum of variation. The reality is that variants studied in lab conditions are subject
to experimental limitations and, even more importantly, to the interests of researchers.
This is why currently available sets of experimentally validated variants feature a con-
siderable bias towards conserved amino acid positions [29]. Variants with no (neutral)
or weak effects which naturally occur predominantly at non-conserved positions are for
the most part not in the main focus of research driven by experimentalists. Without
any doubt, the holy grail for experimentalists lies in identifying mutations, which are
declarative for a phenotype of interest, rather than all those which do not show any
effect. Additionally, embryonically lethal variants are often missing entirely or signif-
icantly under-represented in our data sets. We see lethal variants only rarely simply
because they are not compatible with life.

As such, one of the reasons for stagnation of prediction accuracy despite advances
in methodology is that we are missing essential data in our training sets. Meanwhile,
this missing data in training sets is approximated using databases which track variants
of known, strong effects, i.e. those known to be linked to Mendelian diseases. To
approximate neutral variants, MSAs of ortholog sequences represent a starting point,
identifying non-conserved residues across species which are assumed to have little or no
effect. However, associating the lack of conservation with the likelihood of variants being
neutral is problematic as discussed earlier.

It has been shown that some functionally-important, non-conserved positions do not
follow any of the evolutionary or biochemical assumptions made for conserved positions
[30]. That could explain why prediction algorithms that rely on the conventional substi-
tution rules or on laboratory-derived training sets might not correctly predict the variant
outcomes at non-conserved positions. This suggests that key non-conserved positions fol-
low different substitution rules than conserved positions. In this thesis we developed this
hypothesis and defined a new concept of sequence position types to compensate for the
described mis-assumptions. These concepts may redefine the current prediction models
that ultimately aim to clarify our understanding of disease from a host-intrinsic point of
view. Additionally we looked extrinsically into other aspects of functional variation that
may complement our studies. Since strong associations exist between the microbiome
and disease, we describe functional prediction from the perspective of an extrinsic factor-
the microbiome.
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1 Introduction

1.3 Associations with the microbiome

The human microbiome comprises of thousands of species, consisting of more bacterial
cells than human cells within the host [31]. Thus, it has even been called an ’organ’
by itself. The composition and diversity has been shown to be affected by multiple
factors including age, sex, diet, host genetics and most importantly, by disease states
[32, 33, 34, 35, 36] (table 1.1).

Disease state

Acne
Auto-immune disease
Allergy
Autism
Cancer
Depression
Diabetes
Inflammatory bowel diseases
Liver disease
Neurological disorders
Obesity

Table 1.1: Some conditions associated with alterations in the human microbiome.

Crohn’s disease (CD) for example is a multifactorial illness resulting from a genetic pre-
disposition, environmental influences and changes in the intestinal microbiome. Analysis
of the microbiome from CD patients have revealed microbial profiles that are distinct to
individuals affected by the disease [37, 38]. These features include an enrichment of cer-
tain communities simultaneous to the depletion in others [39, 40]. In order to understand
whether disease precedes the change in the microbiome or vice versa, it is important to
determine what the functional impact of this change is. For example, whether there
is enrichment in the communities associated with ’high inflammation’ compared to a
depletion in those that are ’protective’ in this setting. This is further complicated by
the fact that genetic predisposition may play an important role here - firstly in develop-
ment of the disease directly and therefore an influence on the microbiome subsequently.
Alternatively, if host genetics influences microbiome composition and thus consequently
leads to CD. It may also be a combination of the two situations. In spite of the advances
made in this field, the question of ’causality’ still remains. Interestingly, earlier studies
demonstrated that the association of the microbiome with CD is more consistent with
changes in the functional profile of the microbial communities rather than their diver-
sity [41]. Inflammatory Bowel Disease (IBD), diabetes (type 2) and colorectal cancer
are some of the most extensively studied diseases in this context [42, 43, 44, 45]. This
may be due to the disease phenotype occurring in close proximity to the gut. However,
multiple studies have demonstrated associations between microbial variation during dis-
eases that are not localized to the intestine, for example, during Multiple Sclerosis (MS)
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1.3 Associations with the microbiome

[46, 47]. Interestingly, both host genetic factors and the microbiome status can affect
disease state either alone or in combination [48, 49] (figure 1.4).

Figure 1.4: Causal interactions between host genetic regulation, variation, the mi-
crobiome and disease. Both, the regulation of genes in the host and genetic
variation in these genes can affect the development of disease. The microbiome
on the other hand can affect disease phenotype but also be affected by the above
factors, gene regulation by the host, genetic variation and the disease state itself.
Adapted from (Luca et al. 2017) [50]

Therefore, recently researchers have begun to consider the microbiome as a complex
human trait [9]. However, Luca et al. have suggested that the microbiome cannot be
considered a traditional quantitative trait but more like an array of complex traits [50].
The human microbiome is a multi-dimensional profile comprising of various features-
relative abundance, taxa, diversity molecular/metabolic pathways and other functional
aspects. These individual features may be associated with a specific host locus, they
may also be influenced by a different environmental factor. Interestingly, human SNPs
associated with the microbiome were discovered , which were enriched for genes associ-
ated with immunity as well as complex diseases [51]. Nevertheless, environmental factors
may indeed have a stronger effect than that of the host genetic effect [52]. Taking this
one step further, it has been shown that the environment may have a profound effect
on microbial functionality, however a direct link has not been demonstrated. Since the
microbiome holds a vast amount of functional information, accessing this in a timely and
efficient manner could prove to be extremely useful. Microbial sequences are generally
compared based on their evolutionary relatedness, which assists their classification but
does not provide a guarantee of their functional relatedness. Based on relatedness, phy-
logenic trees can be assembled, which are important for re-constructing the evolutionary
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history of these organisms. However, how these microorganisms behave functionally in
their distinct environments cannot be predicted from this information [53]. Fortunately,
the number of sequenced genomes has increased drastically and databases like Protein
Families (Pfam) [54] allow us to take a closer look at the functionality through protein
sequences. Therefore in 2015, we developed a method that compared microbial func-
tional similarity based on translated proteins from their genomes [53]. Through this tool
we observed inconsistencies in the functional diversity at the level of taxa. Additionally,
we could use meta-data to underscore definitive environmental factors driving microbial
diversification. Our results demonstrated that function annotation methods are more
descriptive of organism similarity compared to just gene-sequence identity. Intuitively,
microbial communities occupying the same niche can be expected to have similar func-
tional properties than those thriving in a different environment. In line with this, we
could identify natural functional clusters of bacteria within a wide range of metabolically,
environmentally and phenotypically diverse microorganisms (figure 1.5). Apart from un-
derstanding microbial diversity through similar functionality, another important aspect
is how this could be translated clinically. Analyzing microbial/microbiome (metage-
nomic) data by associating it with altered function holds the true key for uncovering
mechanistic interactions leading to and from disease.

Figure 1.5: Natural organism grouping using the original Fusion module. Source (Zhu
et al. 2015 [53])
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1.4 Big Data in disease

1.4 Big Data in disease

With impressive developments in high-throughput -omics, biologists have recently vali-
dated their admission ticket to the growing Big Data club [55]. Massive data sets pro-
duced in sequencing projects have introduced new challenges for storage and analysis.
In the first place, this offered exciting new possibilities and enabled large scale analysis
approaches. Fields like infectious diseases have experienced a nearly exponential increase
in number of publications (Figure 1.6).

Figure 1.6: Near-exponential increase of published research on infectious diseases
with the advent of Big Data. Source (Bansal et al. 2016 [56])

It is safe to assume that we did not even scratch the surface of what is achievable
based on the rapidly growing information produced in various fields. However, if not
approached in the right way, this massive increase in data can be more of an obstacle
than an opportunity. Developing efficient algorithms has become an essential task, as
has detailed knowledge about using cluster or cloud computing. On the first glance,
simple issues like slower data-transfer rates evolve into serious obstacles when dealing
with vast amounts of data. At this point, a variety of applications and high performance
computing (HPC) platforms for biological Big Data analysis exist [57]. Commercial
solutions like Amazon Web Services (AWS) offer nearly unlimited scaleable on-demand
compute resources. In academic settings, initiatives like Jetstream [58] aim to provide
researches with adequate tools to meet today’s analytical challenges. Identifying disease
patterns is often directly associated with the power of a study. Approaches like GWAS
require large data sets to identify statistically significant traits. In this context, Big data
clearly opened new doors in uncovering disease patterns [59]. The methods we describe
in this work rely on the processing of large databases to compile reference databases or
process new queries. To our advantage, those repositories are consistently growing, which
enables us to improve our tools steadily - given the availability of sufficient resources.
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1 Introduction

Thus, unlocking the possibilities held within biological Big data is an important part of
the success story of the methods we employ.
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1.5 Overview of this work

1.5 Overview of this work

In section 2.1, I describe a new concept for characterizing protein sequence positions and
its impact on computational effect prediction of amino acid substitutions. This concept
was based on experimentally evaluated effects of amino acid mutations. We segregated
protein sequence positions into two classes based on the range of validated mutational
outcomes per position: (i) binary (on/off) effects compared to (ii) progressive changes.
We demonstrated that current computational effect predictors fail to correctly assess
amino acid substitutions in the context of this classification. We concluded that building
more accurate prediction models requires distinguishing between the two position type
classes.

In section 2.2, I summarize our progress on building a new machine learning approach
for predicting the new position type classes introduced in section 2.1. We extracted ex-
perimentally validated substitution effects for five protein sequences from corresponding
deep mutagenesis data sets. Based on its distribution of effects, every sequence position
could be assigned to a class of binary outcomes, range of effects or no effect (neutral).
We developed a 2-step approach to predict those class labels using only sequence based
features. We validated our model via Cross Validation (CV) and demonstrated that our
approach is resistant to changes in training data as well as variations in the selected fea-
tures. Overall, we reached an averaged accuracy of 82% and used this model to analyze
the distribution of position types in an entire set of human enzymes.

In section 3.1 I outline CLUster-load Balancer for Bioinformatics E-Resources (club-
ber), an automated load balancing software we developed to reduce required computation
time and facilitate Big Data analyses for all methods described in this thesis. clubber
was originally intended to bundle compute resources available for our group and allow
us to automatically distribute computations to all of them simultaneously. Since then
it evolved to be a fully automated cluster load balancer, supporting two job schedulers
prominently used in academic settings as well as cloud compute resources. We integrated
various pre- and post-processing routines for common approaches enabling analysis of bi-
ological data sets. To simplify usage and the integration of clubber in existing workflows,
we created a stand-alone Docker [60] image which is fully manageable via the provided
web interface. clubber is connected to all our web services and enables extremely fast
processing of user submission.

In section 4.1 I discuss our Database relating bacterial fusion functional repertoires to
the corresponding environmental niches (fusionDB), a novel database that links func-
tional similarities of microorganisms and environmental preferences. We compiled a
reference database consisting of 1374 taxonomically distinct bacteria. Individual mi-
croorganisms are represented by the entirety of functions retrieved from their proteome
and connected via those functions that they share with other microbes. fusionDB can
additionally facilitate the functional analysis of unknown microorganisms e.g. found in
samples from affected patients. Mapping microbial genomes to the functional repertoire
of bacteria integrated in fusionDB identifies shared functionality. This association may
provide crucial information about the characteristics of the query organism. fusionDB
is available as a web service [61] and allows users to explore functionality graphs inter-
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1 Introduction

actively. With the increasing number of available microbial genomes and more complete
metadata annotations, fusionDB has the potential to develop into the ’go-to’ workflow
for microbial functional analysis.

In section 4.2 I describe MIcrobiome - Functional Annotation of SEquencing Reads
(mi-faser), an extremely fast and accurate method for annotation of molecular func-
tionality encoded in microbiome sequencing read data without the need for assembly
or gene finding. mi-faser is comprised of two key components: (i) a Gold Standard
(GS) set of reference proteins and (ii) the functional annotation of sequencing reads
(faser) algorithm. The GS set, used to compile the mi-faser reference database, con-
tains only protein sequences with experimentally annotated molecular functions. Thus
we avoided erroneous functional annotations due to mis-annotations frequently present
in other databases. The faser algorithm aligns translated sequencing reads to the set of
full-length proteins contained in the mi-faser reference database. The molecular func-
tionality is thus determined based on these alignments. Further, mi-faser facilitates the
comparison between functional profiles of entire metagenomes via non-metric Multidi-
mensional Scaling (NMDS) plot representations. This enabled us to directly compare
function abundance profiles between microbiome samples of healthy and disease-related
individuals. mi-faser is available as a web service [62] additionally offering downstream
analysis like mapping metabolic pathways through Kyoto Encyclopedia of Genes and
Genomes (KEGG).

12



2 Improving variant effect prediction

2.1 Computational predictors fail to identify amino acid
substitution effects at rheostat positions

2.1.1 Preface

Predicting the effects of amino acid mutations (variants) on protein function is a problem
which has been seeing a lot interest and developments in the last two decades. One of the
reasons for this attention is based on the observation that nsSNPs are often associated
with diseases. Any given individual can have over 10,000 amino-acid differences in their
protein coding regions, as compared to the reference genome [13]. Given the large number
of variants, it is not feasible to experimentally determine the outcomes/effects for all
changes, i.e. how they alter molecular function, protein structure, evolutionary fitness,
or lead to pathogenesis. Currently, roughly 180 computational methods exist (figure
1.1) approaching this task from various perspectives. While some of them are rather
general, others are trained on very selective data sets and predict effects of mutations
only within a very narrow range. However, despite the variety of different approaches,
current algorithms have significant room for improvement [22]. Especially since we can
actually observe that the increase in number and complexity of available methods in the
last two decades, is not remotely proportional to an increase in prediction accuracy.

We addressed this by introducing a new feature, characterizing protein sequence po-
sitions based on the distribution of experimentally evaluated effects of amino acid sub-
stitutions on protein function. We demonstrated that this protein sequence position
class - rheostat (rheostat) or toggle (toggle) - affected computational effect predictions.
toggle positions were characterized by binary variant outcomes, i.e. amino acid sub-
stitutions caused either a severe impact or no/weak effects. On the contrary, rheo-
stat positions showed a progressive (gradient) change upon mutation. We compared
experimentally-evaluated substitutions in the E. coli LacI repressor protein with predic-
tions from 16 widely-used computational methods. We focused on how computational
predictors scored those substitutions, which were experimentally determined as neutral
(no/weak effect) and non-neutral (effect). Explicitly, how those scoring profiles differed
in the context of the two positions classes - toggle and rheostat . All methods failed two
key expectations: predicted scores for neutral mutations at toggle positions were incor-
rectly predicted as more non-neutral than scores predicted for non-neutral mutations at
rheostat positions. Secondly,neutrals at both toggle and rheostat positions were incor-
rectly predicted to be different. Further, none of the methods significantly distinguished
toggle neutrals from toggle non-neutrals or rheostat neutrals from rheostat non-neutrals.
However, we observed that toggle non-neutrals were correctly distinguished from rheo-
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2 Improving variant effect prediction

stat neutrals. This hinted at two conclusions. First, with many toggle positions be-
ing conserved, in contrast to most rheostats, all methods appear to annotate position
conservation better than mutational effect. This in turn can be explained by the well-
known fact that predictors assign disproportionate weight to conservation. Moreover,
this clearly poses a limiting factor for improving predictor performance. Second, this
behaviour obviously reflects a bias in training data. Due to the experimentalists choice
of topic and limitations of biological experimental design, current data sets consist of
(for the largest part) either obviously severe - toggle - variants (i.e. Mendelian disease
causing variants) or likely neutral - rheostat - variants. This is ultimately what models
are trained to distinguish between. With training data unlikely to improve drastically
in the near future, the knowledge about rheostat and toggle positions is a key feature
for building more reliable and accurate variant effect predictors.

The entire computational analysis was carried out by me. The experimental work was
done by our collaborators, the Liskin Swint-Kruse lab. The manuscript was drafted by
all authors.

2.1.2 Journal article. Miller et al., Scientific Reports 2017

Supplementary material can be found online at [63]. The published article is attached
below.
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Computational predictors fail to 
identify amino acid substitution 
effects at rheostat positions
M. Miller1,2,3,*, Y. Bromberg1,4,5,* & L. Swint-Kruse6,*

Many computational approaches exist for predicting the effects of amino acid substitutions. Here, we 
considered whether the protein sequence position class – rheostat or toggle – affects these predictions. 
The classes are defined as follows: experimentally evaluated effects of amino acid substitutions at 
toggle positions are binary, while rheostat positions show progressive changes. For substitutions in 
the LacI protein, all evaluated methods failed two key expectations: toggle neutrals were incorrectly 
predicted as more non-neutral than rheostat non-neutrals, while toggle and rheostat neutrals were 
incorrectly predicted to be different. However, toggle non-neutrals were distinct from rheostat 
neutrals. Since many toggle positions are conserved, and most rheostats are not, predictors appear to 
annotate position conservation better than mutational effect. This finding can explain the well-known 
observation that predictors assign disproportionate weight to conservation, as well as the field’s 
inability to improve predictor performance. Thus, building reliable predictors requires distinguishing 
between rheostat and toggle positions.

Recent years have seen an explosion in the number of genomes and exomes sequenced for research and medical 
purposes, e.g. for diagnosing and prognosing predisposition to or progression of disease1–3. Unfortunately, our 
ability to interpret sequence data lags far behind. Take exomes, for example: Any given individual can have over 
10,000 amino-acid differences in their protein coding regions, as compared to the reference genome4. These dif-
ferences are often caused by nsSNPs (non-synonymous single nucleotide polymorphisms); in this manuscript, 
we refer to amino acid substitutions as variants. Given the large number of variants, it is not feasible to experi-
mentally determine the outcomes/effects for all changes, i.e. how they alter molecular function, protein structure, 
evolutionary fitness, or lead to pathogenesis. Thus, dozens of computational algorithms have been developed to 
predict outcomes. However, current algorithms have significant room for improvement5.

Interestingly, underneath the assortment of computational/mathematical techniques and numerous data 
inputs, all variant-effect predictors rely, to various extents, on two broad concepts: (i) basic biological principles 
and (ii) pattern recognition techniques, optimized using results from wet-lab experiments. We examined the 
assumptions underlying these concepts, hoping to identify avenues to improve predictions.

The basic biological principles include biochemical amino acid similarities and evolutionary informa-
tion about the protein of interest. The latter is usually in the form of a multiple sequence alignment (MSA) of 
homologs and is used to determine which specific sequence positions show evolutionary constraints (i.e. con-
served vs. non-conserved). This information serves as a proxy to predict which amino acid substitutions are 
“allowed” (inferred by their presence in functionally-active homologs) and which are “bad” (selected against 
during evolution and, thus, absent from the multiple sequence alignment). Some variant-effect predictors use 
globally-applicable scoring matrices, e.g. BLOSUM6, that represent the likelihoods of amino acid substitutions 
in curated MSAs. The substitutions allowed by these matrices often match the biochemical classifications of side 
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chains found in textbooks, which, in turn, are often used to design experimental mutation studies. By convention, 
only substitutions of “similar” amino acids are expected to allow normal or near-normal protein activity, while 
other substitutions are expected to alter or abolish function.

Variant-effect predictors that incorporate pattern recognition approaches are often training-driven. That is, 
they use large sets of experimentally verified functional effects of amino acid substitutions to build predictive 
models. These methods often (wrongly) assume that the variants used for training broadly represent the entire 
world of variation. Another extrapolation is implicit in any computational method that incorporates MSAs: if a 
particular variant-effect is known for one homolog, similar outcomes are expected for the same variant in other 
family members.

Both the conventional substitution rules and training datasets are biased by a gap between unbounded evolu-
tionary reality and limited laboratory work; i.e. laboratory variants are subject to experimental limitations and to 
the interests of the scientists. Indeed, available experimentally-annotated sets of variants are heavily biased to the 
study of conserved amino acid positions7.

However, many protein positions are not conserved in MSAs; i.e. they do change during evolution. 
Non-conserved positions are often ignored as not important, but this need not be true: homologs often evolve 
functional variance via amino acid changes at non-conserved positions8 and disease-causing substitutions can 
occur at non-conserved positions9,10.

We hypothesized that key non-conserved positions follow different substitution rules than conserved posi-
tions. If so, prediction algorithms that rely on the conventional substitution rules or on laboratory-derived train-
ing sets might not correctly predict the variant outcomes at non-conserved positions. Indeed, we recently showed 
that some functionally-important, non-conserved positions do not follow any of the evolutionary or biochemical 
assumptions made for conserved positions11: In that work, we identified 12 positions in the LacI/GalR family 
of proteins that varied widely among family members8. Next, using the natural E. coli lactose repressor protein 
(LacI) and modified (synthetic) versions of seven LacI/GalR homologs (including GalR, PurR, and RbsR), we 
substituted the native amino acid in each of these positions with 5–13 other amino acids and measured functional 
outcomes11. If these positions were functionally important, the conventional rules would predict that only a few 
similar substitutions would allow normal function and that most others would abolish function (e.g. Fig. 1, left 
panel). However, at most of the chosen non-conserved positions, variants exhibited a wide range of functional 
effects (Fig. 1, right panel). Furthermore, these effects did not correlate with evolutionary frequency, side chain 
similarities, or functional effects of the same substitutions in homologous proteins11.

We named these positions rheostats after their most prominent characteristic: When multiple amino acids 
were substituted at one rheostat position, functions of the mutant proteins could be rank-ordered to show a pro-
gressive effect (Fig. 1, right panel). This contrasts with the toggle (on-off) behavior that is frequently observed at 
conserved positions and is predicted by the conventional rules (Fig. 1, left panel). We have also noted rheostatic 
behavior in published variant datasets for other proteins (e.g. refs 12, 13), which indicates that rheostat positions 
are likely widespread in the protein universe. Importantly, the progressive functional impact of variants at rhe-
ostat positions is all but disregarded by the current variant-effect predictors, which were either developed using 
variants at toggle positions and/or the thresholded (binary) version of functional outcomes. We also hypothesized 

Figure 1.  Experimental differentiation of toggle and rheostat positions. The left panel shows an example 
of a toggle position (tyrosine in position 47): Relative to wild-type (value normalized to 1), most substitutions 
at LacI position 47 abolish transcription repression of the reporter-gene. The right panel shows an example of 
a rheostat position (valine in position 52): Variants at this position in LacI exhibit a wide range of repression 
levels relative to wild-type (value normalized to 1). Data for position 52 (right panel) are adapted from11; the 
dark gray bar shows the ratio of no-repression (full expression of the reporter gene) to repression by wild-type 
LacI. Data for position 47 (left panel) were adapted from14. Briefly, the earlier study categorized these semi-
quantitative data relative to the activity of un-repressed reporter gene (i.e., in the absence of repressor protein). 
For this figure, we translated the semi-quantitative ranges to the quantitative scale using the “none” value on the 
right panel.
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that the poor correlation observed between functional outcomes of substitutions and biophysical/evolutionary 
amino acid properties could contribute to erroneous predictions.

Here we compare predictions from 16 widely-used computational methods for experimentally-evaluated sub-
stitutions at rheostat and toggle positions in LacI. Each variant at each position was assigned as either non-neutral or 
neutral based on experimental outcomes (Methods). When experimental outcomes were compared to predictions  
at rheostat positions, many non-neutral variants were incorrectly predicted to be neutral. At toggle positions,  
neutral variants were also poorly predicted, as previously observed by Gray et al.7. We gained insight into this 
problem by comparing the overall prediction ranges for rheostat and toggle positions, instead of using the default 
binary neutral/non-neutral thresholds: Our results suggest that current computational predictions could be 
enhanced by first determining whether the affected position functions as a rheostat or as a toggle.

Finally, our results show that evaluations of predictor performance are misled by bias in the available exper-
imental data: As noted above, there is a dearth of experimental results for variants at rheostat positions; in addi-
tion, at toggle positions, the number of experimentally validated non-neutral variants is high and the number of 
validated neutral variants is very low. The latter is further complicated by an arguably obfuscated definition of 
“neutrality” that often differs among methods. Together, these biases have had the practical effect that all toggle 
variants appear to be non-neutral and all rheostat variants are assumed to be neutral. This leads to an artificially 
low number of variants incorrectly predicted as non-neutral, whereas the number of incorrect, neutral predic-
tions cannot be properly estimated due to the low number of experimentally-validated neutral toggles. We pro-
pose that eliminating data bias, e.g. by using experimental results that annotate rheostat position variants, and 
optimizing prediction algorithms to account for position type will lead to more accurate evaluations of variant 
impact.

Figure 2.  Locations of toggle and rheostat position sets on the structure of the LacI homodimer bound to 
DNA (PDB 1EFA34; visualized with PyMOL)71. On one monomer, positions are colored by the sets described 
in the text. Note that smaller sets are included in the larger sets. For example, toggle_12 positions are also part of 
toggle_50. Chain B (identical to Chain A) is shown in the background at 50% transparency. DNA is shown as a 
double helix at the top of the figure.
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Results
To test the performance of variant-effect predictors at rheostat and toggle positions, we extracted positions that 
exhibit these behaviors from two experimental datasets for LacI (Methods; Fig. 2)11,14. Rheostatic positions were 
identified by variants whose outcomes showed a progressive distribution; notably the outcomes of individual var-
iants did not correlate with evolutionary frequency, side chain similarities, or outcomes in homologous proteins11.  
Rheostats were identified in both experimental datasets; for this work, predictions were compared to the quanti-
tative measurements of Meinhardt et al.11. Toggle behavior was identified by binary variant outcomes, i.e. amino 
acid substitutions caused either a severe impact or no/weak effects; predictions were compared to data from the 
semi-quantitative study by the Miller lab14.

We designated three sets of rheostat and toggle variants (Methods, Supplemental Tables 1 and 2): (i) The 
stringent set comprised the nine rheostat positions that were identified by both experimental studies, and a com-
parable number of nearby toggle positions. (ii) The complete set comprised all 12 rheostat positions from the 
quantitative experiments and a comparable number of toggle positions. (iii) The extended set comprised all 12 
rheostat positions and 50 toggles from the semi-quantitative study. For both rheostat and toggle positions, indi-
vidual variants were classified as either neutral or non-neutral according to their experimentally-determined 
fold-change relative to wild-type repression.

For all variants in these sets, we predicted outcomes using 16 selected prediction algorithms 
(Fig. 3; Supplementary Tables 3 and 4). Most prediction trends were similar for all three sets (Fig. 4; 
Supplementary Figs 1, 2 and 3); differences are highlighted in the text below and likely stem from the small num-
bers of neutral variants at toggle positions (the stringent set contained only four neutral variants and the extended 
set contained 28). Experimentally-determined outcomes were compared to computational predictions in two 
ways: First, we compared the overall distributions for prediction scores from each of the four classes (rheostat 
non-neutral, rheostat neutral, toggle non-neutral, and toggle neutral). Second, for algorithms that generate con-
tinuous prediction scores, we directly compared predictions and experiments for individual variants.

Differences between rheostat and toggle positions confound variant-effect predictions.  
Variant predictors report their results in one of two ways: as a binary decision (neutral/non-neutral) or as a scored 
value representing the likelihood of non-neutrality, often thresholded to make a binary decision. Ideally, each 
algorithm would clearly separate the distributions of neutral and non-neutral variants, regardless of their toggle 
or rheostat position location (Fig. 4a). That is, methods should differentiate toggle neutrals from both toggle 
and rheostat non-neutrals; moreover, rheostat neutrals should be classified similarly to toggle neutrals. Finally, 
the progressive effect of rheostat non-neutrals should be different from the binary effect of toggle non-neutrals 
(Fig. 4a).

However, for the stringent comparison set, no algorithm significantly distinguished toggle neutrals from tog-
gle non-neutrals (Fig. 4b and Supplementary Fig. 1, (B) vs. (D): dark red vs. dark blue), as determined by the 
Kolmogorov-Smirnov test (KS-test) for continuous predictors and the Fisher exact T-test for binary predictors. 
The extended set was better differentiated at toggle positions by 8 of 16 methods (Supplementary Fig. 3). At 

Figure 3.  Variant-effect predictors vary in features and development data used. The 16 publicly available 
variant-effect prediction algorithms can be broadly grouped by use of (i) basic biological principles and 
evolutionary information, (ii) pattern recognition techniques and machine learning, and (iii) meta/ensemble 
predictors.
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rheostat positions in the stringent set, neutrals and non-neutrals were significantly differentiated by only three of 
the methods (SNAP215, PROVEAN16, and PolyPhen-217; Fig. 4b and Supplementary Fig. 1, (A) vs. (C), light red 
vs. light blue).

Note, however, that non-neutral variant PolyPhen-2 scores are nearly uniformly distributed over the entire 
score range. The complete and extended sets were differentiated by four methods (the three above and MutPred2, 
the unpublished successor of MutPred18; Supplementary Figs 2 and 3).

In contrast, toggle non-neutrals were well-differentiated from rheostat neutrals (Fig. 4b and Supplementary  
Fig. 1, (B) vs. (C), dark red vs. light blue) in all three comparison sets by all methods except PANTHER19. Note 
that PANTHER only returned predictions for 30% of all variants; no predictions were made for neutrals in the 
stringent or complete sets, and only 8 of 26 neutrals had predictions in the extended set. This makes PANTHER an 
outlier to most trends observed for all other methods. Some of the algorithms also correctly and significantly dif-
ferentiated rheostat non-neutrals from toggle neutrals (Fig. 4b and Supplementary Fig. 1, (A) vs. (D), light red vs. 
dark blue). However, all of the continuous prediction methods erroneously assigned higher scores to toggle neu-
trals than to rheostat non-neutrals – the opposite of the correct prediction. Furthermore, for the larger extended 
set, the distinction between rheostat non-neutrals and toggle neutrals was eliminated (Supplementary Fig. 3); this 
finding, again, likely indicates the influence of the low number of toggle neutrals in the stringent set.

Finally, every method scored toggle neutrals (Fig. 4b and Supplementary Fig. 1, dark blue), on average, above 
the neutrality threshold and higher than rheostat neutrals (light blue), which on average scored below the neu-
trality threshold. This difference was significant for 12 of 16 methods. This trend was maintained for the larger 
comparison sets, suggesting that this issue is inherent to the prediction methods.

Weak correlation between predictions and experimental outcomes at rheostat positions.  The 
main goal of variant-effect prediction is to classify functional outcomes into binary neutral/non-neutral catego-
ries. Nevertheless, several predictors calculate continuous prediction scores, allowing us to correlate predictions 
with experimental effects for individual variants.

For rheostat positions, this would be a more valuable prediction, since the thresholds for biological effects can 
change with environment (e.g., in response to changes in other proteins or in cellular conditions)20,21. Thus, we 
examined whether the progressive nature of variant outcomes at rheostat positions was captured by the continu-
ous score prediction methods for the rheostat_9 and rheostat_12 sets.

For the rheostat_9 set, only 50% of the continuous prediction methods showed any correlation (Fig. 5; 
Supplementary Fig. 4). Moreover, only four of the sixteen methods (SNAP2, PROVEAN, MutPred2, and 
PolyPhen-2) showed statistically-significant differentiation of rheostat neutrals from non-neutrals in the rhe-
ostat_9 or rheostat_12 sets. Of these, SNAP2 exhibited the highest correlation (Pearson’s r =​ 0.58, rheostat_9; 
Fig. 5). Using the rheostat_12 set did not alter the observed trends (Supplementary Table 5).

Predictions for variants at neutral positions have unclear outcomes.  The LacI/GalR experimental 
study carried out experiments at the same positions in multiple homologs11. When outcomes were compared, 
each rheostat position showed a rheostatic profile in ~80% of the homologs studied. Thus, rheostat behavior 

Figure 4.  Distributions of variant scores from continuous prediction methods differ between rheostat 
and toggle positions (stringent set). Panel (a) shows the distributions expected from an ideal variant-effect 
predictor, while panel (b) shows the distributions determined for neutral and non-neutral variants at both 
rheostat and toggle positions in the stringent set. These four predictors were selected on the basis of top 
performance in differentiating rheostat non-neutrals from rheostat neutrals. Results for all other predictors 
are in Supplementary Fig. 1. The violin plot is an augmented box plot where the width at any given Y-axis 
value indicates the probability density of the data (median, white circles; interquartile range, box outline). The 
p-values in the legend are from a Kolmogorov-Smirnov (KS) test, indicating whether a method can significantly 
distinguish between the two distributions pointed to by the respective arrows. Results from the complete and 
extended sets are in Supplementary Figs 2 and 3.
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appears to be the baseline for these positions within the protein family, even though individual homologs may 
evolve the position to different roles. Positions 60 and 62 were among those that appear able to evolve new roles: 
These positions acted as rheostats in most of the homologs, but in LacI were neither toggle nor rheostat in either 
dimer or the tetramer datasets11,14. Instead, these were neutral positions – no variant had a significant effect on 
repression (in the absence of inducer). Note the distinction between a neutral position and a neutral substitution. 
Rheostat positions comprise both neutral and non-neutral substitutions, as long as the number of non-neutral 
variants greatly exceeds the number of neutral variants. Neutral positions comprise only neutral substitutions.

Here, most variants at neutral positions 60 and 62 were indeed predicted to be neutral (Fig. 5, set rheostat {60, 62}).  
However, the apparent success may be spurious for two reasons: First, our other current results show that all var-
iants at rheostat positions generally score lower than those at toggle positions, and the results for positions 60/62 
could just be a manifestation of that. Second, one of the correctly predicted neutral variants at position 62 was not 
inducible in experiments. In this work, we generally did not consider the variant effect on LacI induction, because 
for most variants, significant changes were not experimentally observed (Supplementary Table 2). However, 
altered response to inducer is classified as dramatic biological impact (the “+​s” phenotype in the tetramer data-
set)14. If this information were taken into consideration, the predictors would be considered to have failed for this 
non-inducible variant.

To resolve the performance of variant-effect predictors at neutral positions, we ideally need two additional 
experimental datasets: One comprising variants at positions 60/62 in other natural LacI/GalR homologs (the first 
study used synthetic homologs, as described in Methods below); and one comprising variants at other neutral 
positions in a variety of proteins.

Discussion
We previously showed experimentally that amino acid substitutions at rheostat positions have different functional 
outcomes than those expected for toggle positions11. Here, we show that these differences impair the performance 
of variant-effect prediction algorithms. Overall, the predictors differentiated toggle positions from rheostat posi-
tions better than neutral variants from non-neutral variants. This may be due to the fact that, in LacI, rheostat 
positions are not conserved, whereas most toggle positions are. Many studies have noted that conservation is a 
key factor in identifying neutral and non-neutral variants22. Moreover, the rheostats host the majority of neutral 
variants. If these characteristics are common to other proteins, then our results demonstrate one possible reason 

Figure 5.  Correlation between experimentally measured fold-changes and predicted variant-effect scores. 
Panels (a) SNAP2; (b) PROVEAN; (c) MutPred2; (d) PolyPhen-2 show the relationship of the computationally 
and experimentally derived scores. For each variant at all rheostat positions, fold-change in repression relative 
to wild-type LacI is shown on log scale (Y axis), whereas predicted scores are normalized to the linear range 
[0, 1] (X axis). The blue area depicts the scores expected for neutral variants (fold-change between 0.5 and 2.0); 
the green area depicts scores expected for non-neutral variants. The Pearson product-moment correlation 
coefficient (Pearson’s r) is given for the rheostat_9 set. Results from other predictors are in Supplementary Fig. 4.
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for the disproportionate importance of conservation for existing tools and for the consistent lack of significant 
improvement of method performance.

Furthermore, we previously found that predictors disagreed in their annotation for roughly a fifth of the  
variants15,23. Here, we show that this number cannot be accounted for by mis-predictions at toggle positions: Most 
methods correctly predict toggle non-neutrals, and toggle neutrals are few in number, comprising a small per-
centage of the total predictions. Thus, mis-predicted rheostat variants are, arguably, a key factor that differentiates 
prediction methods.

Next, we considered the fact that threshold choice directly affects binary variant-effect predictions. Current 
variant-effect predictors use various input parameters to calculate a likelihood that a given, single amino acid 
substitution has an effect on protein function, disease relevance, structure, etc. Many methods use likelihood 
thresholds to further categorize substitutions as either neutral (tolerant, wild-type, benign) or non-neutral (dam-
aging, pathogenic, deleterious). However, the methods for choosing thresholds vary widely. Some categorization 
thresholds are established by assessing score distributions across the training sets, and some are determined 
heuristically.

We further note that thresholding based on experimental training sets can be biased, since different “wet-lab” 
approaches use different thresholds to classify variant effects and each assay has a technical limit. For example, 
here we called an experimentally measured two-fold change in repression neutral, and everything above that 
threshold non-neutral because biological differences were detected at this level for variants in the quantitative 
dataset24. However, in the semi-quantitative tetramer dataset, everything within ~26-fold of wild-type repres-
sion was classified as neutral (“+​”)14, and variants that repress better than wild-type (also non-neutral in our 
definition) were also considered to be experimentally neutral. Note that the trends of experiment to prediction 
comparisons were not changed with altered thresholds (Supplementary Fig. 5).

Adding to the overall confusion in the field is the fact that the “effect” definitions are often unclear; i.e. manu-
scripts detailing predictor implementations and/or performance comparisons often mix different effect terms and 
types of experimental data used for training/development. Thus, at best, most predictors ultimately differentiate 
between variants of severe effect (e.g. those that abolish function or obviously lead to disease) from those that 
are unlabeled (e.g. variants found in healthy populations, 1000 Genomes25 or EXAC)26 or poorly labeled27,28 (e.g. 
UniProt29 polymorphisms or variants between orthologous sequences).

Here, we showed that thresholding hides the fact that predictors behave differently for rheostat and toggle 
positions, i.e. they generate different score distributions for the two classes. The nearly identical overall perfor-
mance of all methods – regardless of the effect to be predicted (disease, functional significance, structure, etc.) – 
reveals that current prediction methods are, in essence, trained to differentiate toggle non-neutrals from rheostat 
neutrals, rather than for the general differentiation of neutral variants from non-neutral ones. This could explain 
why all predictors appear to have reached an upper threshold in performance.

However, within the rheostat and toggle sets, several methods were able to differentiate neutrals from 
non-neutrals (Fig. 4b, Supplementary Figs 1b, 2b and 3b). Thus, our results suggest that, if we could reliably label 
sequence positions as toggle or rheostat, predictions could be improved by using different neutral/non-neutral 
thresholds for each position class. In particular, this would circumvent the problems that all methods failed to 
recognize rheostat non-neutrals as having more effect than toggle neutrals and that toggle neutrals scored higher 
than rheostat neutrals – a difference that is not biologically feasible, as all neutrals are by definition equivalent.

Finally, we note that binary classifications are insufficient to capture variant effects at rheostat positions. 
Our results show that thresholding prediction scores into binary classes obscures the progressive effects seen 
for variants at rheostat positions. Nevertheless, the progressive changes are often biologically significant. For 
the LacI/GalR homologs, progressive functional outcomes translated into progressive and significant changes 
on bacterial growth rates24. Nor can small changes, classified as neutral, be always disregarded: (i) Less than 
two-fold differences in the function of the tetracycline resistance protein were biologically-adaptive to bacteria in 
clinically-relevant conditions30. (ii) Neutral substitutions in DNA methyl-transferase were deleterious to a host 
organism under some conditions31. (iii) The wide range of normal human phenotypes appears to arise through 
combinations of weakly non-neutral protein variants27. These observations make a compelling argument for 
building variant-effect predictors that determine a range of outcomes.

For some current algorithms, the magnitude of the prediction scores correlated with the size of the effects. 
We illustrated this behavior earlier for our method, SNAP15,23,27 and, additionally here, for SNAP2. Further, 
PROVEAN and PolyPhen-2 showed significant, though weak, correlations for non-neutral variants at rheostat 
positions. Note that none of the methods was explicitly trained to recognize the severity of effects. Instead, they 
were trained to differentiate binary effects: neutral from non-neutral. Thus, their prediction scores are indications 
of a statistical likelihood that a variant of a particular effect will occupy a particular scoring space. Indeed, high 
impact substitutions at toggle positions, which make up a disproportionately large fraction of the available train-
ing sets7, were predicted with higher statistical likelihood; i.e. toggle non-neutrals score distributions were more 
dense and significantly higher than rheostat non-neutral scores. In contrast, a statistical likelihood of a variant 
occupying a neutral scoring space has no equivalent meaning in biology – neutral (no effect) variants cannot be 
less or more neutral.

We conclude with the acknowledgement that change in protein functionality is not consistently predictive 
of disease. Regardless of the accuracy of any particular prediction, annotating outcomes is just the first step 
in a series of inquiries that must be made when trying to map pathogenicity. Each protein must ultimately be 
considered in the context of its biological role. For example, an interacting protein can change to offset a path-
ogenic variant to restore normal function32. Moreover, functionally deficient proteins may cause disease in 
some contexts yet protect in others. For example, the variant in hemoglobin that leads to sickle cell anemia in 
homozygotic humans is protective from malaria for heterozygotes33. Thus, variant pathogenicity predictor scores 
are but one step in modeling the specific mechanisms of disease. Nevertheless, to provide a reliable foundation 
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for quantitative models that predict changes in larger biological systems, we must build consistently-reliable 
variant-effect predictors.

Methods
Experimental characteristics of rheostat positions.  In our earlier work11, we used a dimeric version 
of the E. coli LacI repressor and synthetic versions of seven other LacI/GalR homologs as hosts for amino acid 
substitutions at twelve non-conserved positions. All of these positions were located within the linker region that 
joins the N-terminal DNA binding domain and the allosteric regulatory domain (Fig. 2; PDB 1EFA34; positions 
46–62). These positions were experimentally shown to be rheostats: At each position, the progressive functional 
effects of multiple amino acids substitutions were quantified by determining ability to repress transcription of a 
reporter gene in vivo. These studies were extensively validated: For all variants, we confirmed that the protein was 
expressed at comparable levels, folded, and capable of binding DNA11,35. We also benchmarked the in vivo repres-
sion data against in vitro biophysical measurements of protein-DNA interactions; in most cases, the repression 
changes resulted from altered Kd for DNA binding36–38. Finally, we determined the impact of altered repression on 
bacterial growth rates to show that the changes were biologically significant24.

For the current work, we only used experimental results for E. coli LacI (UniProt accession number: P03023). 
While the synthetic LacI/GalR homologs were critical for disproving the assumptions discussed in the introduc-
tion about amino acid interchangeability11, these proteins were not naturally evolved and we excluded them to 
avoid the possibility that they are not properly evaluated by available computational techniques. We also consid-
ered whether amino acid substitutions in dimeric LacI had equivalent outcomes in wild-type, tetrameric LacI. 
The latter is a dimer of dimers, with each dimer serving as a functional unit capable of binding the DNA operator 
and inducer molecules39. Dimeric LacI was created by truncating the C-terminal tetramerization domain40. Aside 
from its lessened ability to simultaneously bind and “loop” two DNA operators41, dimeric LacI is extremely sim-
ilar to tetrameric LacI40,42. Dimeric LacI was chosen in the 2013 study11 so that substitution outcomes could be 
directly compared with the synthetic homologs, all of which lack a tetramerization domain. For nine of the twelve 
LacI rheostat positions, the quantitative substitution outcomes experimentally measured for dimeric variants11 
were in strong agreement with the semi-quantitative in vivo measurements previously made for the tetrameric 
LacI14 (Fig. 1, right panel) and with in vitro measurements of LacI/DNA variant binding affinities38.

Disagreements between the dimeric and tetrameric datasets were only observed for positions 48, 50, and 54. 
These three positions showed toggle behavior in the tetrameric study, i.e. most substitutions abolished function14, 
and rheostat outcomes in the dimeric study11. This difference is opposite any artifacts expected from truncating 
the dimerization domain: The tetramerization domain enhances LacI stability relative to the dimer43 and tetramer 
looping enhances repression44; either outcome would enhance DNA binding and repression, concealing dimin-
ished function of the variants. Thus, we propose the differences between the datasets are due to very low (or 
zero) LacI protein expression in the tetramer study, which relied upon suppression of amber codons in mutated 
bacterial strains to create the protein variants45. The latter can be an inefficient process that obscures the true out-
come of the protein variation. Since the tetramer data are widely used to benchmark computational predictions, 
developers should be aware that this is a potential experimental bias of this dataset.

For this work, analyses were carried out in parallel using two sets of rheostat positions: all twelve identified in 
our 2013 study11, and the nine that showed agreement between the dimer and tetramer forms of LacI. To deter-
mine the categories of neutral/non-neutral, we used the two-fold technical limit of the quantitative repression 
assay. Thus, variants exhibiting fold-changes in the range of [0.5, 2] relative to wild-type were assigned to the 
category of rheostat neutrals. All other variants were designated as rheostat non-neutrals. The fold change used 
for determining rheostatic behavior was calculated relative to the wild-type repression of 0.124 Miller units. The 
rheostat_12 set comprised a total of 103 variants across 12 positions, of which 18 (17%) were neutral and 85 were 
non-neutral. The rheostat_9 set comprised 78 variants across 9 positions, of which 18 (23%) were neutral and 60 
were non-neutral.

For this study, we considered only the functional impact on repression in the absence of allosteric inducer, 
since most variants did not show significant changes in allosteric response. For each variant, we re-cast repression 
in the absence of inducer as fold-change with respect to repression by dimeric wild-type LacI, using equation (1) 
(Supplementary Table 1):

. =Fold change AxB AxB
A

( ) ( )
(1)

measured

measured

where (AxB) stands for a substitution of amino acid A by amino acid B at position x and having the amino acid 
A corresponds to the wild-type protein. Experimental errors associated with the wild-type and variant func-
tional data (standard deviations from the average of ~8 technical and biological replicates) were propagated using 
equation (2):
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where σ is the standard deviation. This equation is derived for correlated variables. For uncorrelated variables, 
covariance terms present in the original formula equal zero. Solving that formula for the non-squared ratio of two 
variables results in equation (2).
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Selection and characteristics of toggle positions.  Our 2013 study focused on non-conserved posi-
tions, and none of the tested LacI positions showed toggle behavior. Thus, to obtain a set of toggle positions for 
this study, we used the semi-quantitative variant data for tetrameric LacI generated by the Miller lab14. In that 
work, positions 2–329 were substituted with 12–13 amino acids each (Supplementary Table 2) and functional 
outcomes were broadly grouped into several phenotypes, including those with severe effects (non-neutral) and 
those with no effects (neutral; Supplementary Table 6). In this work, we defined toggle positions as those with 
at least 8 severe variants and at most 2 neutral variants. This definition identified 53 toggle positions distributed 
over the LacI protein. As noted above, rheostat positions 48, 50 and 54 fell in this set of toggles positions. As noted 
above, we hypothesized that these results are due to extremely low protein concentrations, perhaps related to 
inefficient suppression of the amber codon, and we thus excluded these positions to yield the final toggle_50 set 
(618 variants, 26 neutral and 592 non-neutral).

To create a toggle set of comparable size to the rheostat set, we selected a subset of toggle positions based on 
the availability of neutral variants and structural proximity to rheostat positions: First, we selected all positions 
within the DNA-binding domain with at least one neutral variant (10, 13, 30, 49). Second, toggle positions 47, 
49, 53, 56, and 57 were chosen because they interdigitate with rheostat positions in the linker region (46–62). Of 
the remaining 13 toggles within the DNA-binding domain, we selected positions 16, 18, 21, and 22. The resulting 
toggle_12 set comprised 145 variants across 12 positions, of which 4 (2.8%) were neutral. We also designated the 
toggle_9 set (toggle_12 minus variants at positions 16, 21 and 22), which comprised 109 variants (4 toggle neutrals 
and 105 non-neutrals) across 9 positions.

In Results, we labeled the rheostat_9 vs. toggle_9 comparison as the stringent set (see Fig.  4, 
Supplementary  Fig.  1). For a more comprehensive analysis, we also computed results for complete 
(Supplementary Fig. 2) and extended (Supplementary Fig. 3) sets; which included the rheostat_12 set and, respec-
tively, the toggle_12 or the full toggle_50 set (Supplementary Table 2). By using the three comparison sets, we 
hoped to minimize the impact of mis-assigned toggle positions due to poor protein expression.

Variant-effect prediction algorithms.  To predict variant effects at rheostat and toggle positions, we used 
16 publicly available computational methods (Fig. 3, Supplementary Table 7). These were selected to cover a 
wide variety of computational techniques and training sets. Note that not all publications explicitly mention 
what is meant by the word “effect.” Some predict disease variants, others focus on evolutionary conservation or 
evolutionary fitness, and still others evaluate functional or structural impacts. To be able to use all tools, here we 
broadly use the term outcome without further identifying differences between methods. For all methods that 
require a 3D structure, we used 1EFA (PDB ID: 1EFA)34, consisting of dimeric LacI bound to DNA operator and 
an “anti-inducer” allosteric ligand. All reported graphs/statistics were generated using R46.

1.	 SIFT22 uses PSI-BLAST47 (position-specific iterated Basic Local Alignment Search Tool; BLAST) to query 
a sequence database (e.g. NCBInr)48 and generates a position-specific scoring matrix (PSSM) based on 
the retrieved sequences. Note that we used SIFT with a manually curated MSA (Supplementary File 1)49 
rendering the initial PSI-BLAST query obsolete. Combined with known generic likelihoods of amino acid 
substitutions (BLOSUM62 substitution matrix), this approach allows estimating probabilities of effect for 
any position-specific amino acid substitution.

2.	 PROVEAN16 uses BLAST50 to collect homologous and distantly related sequences from NCBInr, which 
are then clustered by sequence identity. To measure the effect of a variation, the algorithm calculates the 
average divergence score between the cluster sequences and the query sequence using the BLOSUM62 
substitution matrix.

3.	 PANTHER19 uses BLAST to identify the best match to the input query in the PANTHER database51. This 
matched protein is linked to a pre-computed phylogenetic tree of the specific protein family. To evaluate 
the effect of the substitution, the mutated residue is traced back through increasingly older ancestral pro-
teins in this tree.

4.	 MutationAssessor52 uses BLAST to query the UniProt and identify related protein sub-families, which are 
used to extract characteristic conservation patterns. The latter are used to calculate the effect of mutating a 
specific residue in a protein family and, separately, in each of its sub-families.

5.	 FoldX (PositionScan)53 uses protein 3D structures and an empirical force field to evaluate the effects (free 
energy changes) due to variation.

6.	 Align-GVGD54 is an extension of the Grantham Difference55, combining a conservation score based on a 
given MSA (Grantham Variation) with a measure of the biochemical difference between the mutant and 
the wild-type amino acids (Grantham Deviation).

7.	 MAPP56 constructs a phylogenetic tree based on substitution frequency per site within an MSA of ort-
hologs or closely related paralogs. Topology and branch lengths of the tree are used to calculate weights for 
each sequence respectively. These weights are used to generate an alignment summary that is interpreted 
using a matrix of physiochemical properties resulting in an estimate of the physiochemical constraints on 
each position of the MSA. Deviations from these constraints are calculated for each position of the query 
sequence and transformed into an effect prediction score.

8.	 PolyPhen-157 classifies variants via empirically derived rules using various sequence-based characteristics 
of the substitution site (e.g. UniProt annotations), along with structure and homology descriptors.

9.	 PolyPhen-217 trains a Naïve Bayes classifier on HumDiv (set of single amino acid substitutions from 
UniProt known to cause human Mendelian diseases and non-damaging variants found in closely relat-
ed mammalian homologs) and HumVar58 (set of disease- and neutral polymorphism-annotated single 
amino acid substitutions of human proteins from Swiss-Prot)29 variants. PolyPhen-2 uses structure-based 
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(e.g. accessible surface area and conformational mobility of the wild-type amino acid residue) and se-
quence-based features (e.g. MSA-based conservation and depth, CpG context and residue volume).

10. 	SNAP215 uses an artificial neural network, trained on experimentally-obtained variant functional effect 
data, with a variety of precomputed biochemical and evolutionary amino acid substitution rules, as well 
as conservation and predicted sequence-derived protein features, e.g. secondary structure and solvent 
accessibility.

11. 	PhD-SNP58 applies a decision tree to predict effects either using a profile based support vector machine (SVM; 
sequence profile calculated by BLAST against UniRef90) or by a single sequence based SVM. Training data are 
extracted from Swiss-Prot (disease vs. polymorphism variants) and enriched with OMIM59 annotations.

12	 iMutant358,60 offers different SVMs to predict (i) stability changes, using SVMs trained on the ProTherm 
database61, from sequence only or from structural information, and (ii) disease associated variants from 
sequence only using the PhD-SNP prediction pipeline.

13. 	nsSNPAnalyzer62 uses a random forest classifier, trained on a curated dataset of variants (ModSNP)63 using 
(i) variant structural environment, (ii) position conservation within the MSA, and (iii) similarity between 
variant and original amino acid. If no structural information is provided, the ASTRAL database64 is queried 
for a homolog structure.

14. 	PredictSNP65 is a meta-predictor incorporating eight methods (MAPP, nsSNPAnalyzer, PANTHER, 
PhD-SNP, PolyPhen-1/-​2, SIFT, SNAP2) into a consensus classifier based on a majority vote weighted by 
the method-specific confidence scores. PredictSNP is trained on a benchmark dataset compiled from five 
different sources (training datasets of four variant-effect prediction tools not selected for the PredictSNP 
pipeline: SNPs&GO, MutPred18, PON-P and HumVar; the fifth source is a subset of UniProt variants). 
Testing datasets are derived from the Protein Mutant Database66 (PMD) and from experimental studies.

15. 	Meta-SNP67 is a random forest-based binary classifier meta-predictor, combining the predictions of four 
methods (SNAP2, SIFT, PANTHER, PhD-SNP) and four features extracted from the PhD-SNP protein 
sequence profile; the training dataset is derived from Swiss-Prot (disease vs. polymorphism variants).

16. 	MutPred2 (unpublished; the successor of MutPred)18 consists of an ensemble of bagged neural networks, 
trained on amino acid substitutions from HGMD68, Swiss-Prot, dbSNP69, and ortholog alignments. In 
addition to sequence, conservation, and physicochemical features in and around the variant position, 
MutPred2 uses predictions of change due to amino acid variation in over 50 local structural and functional 
properties (e.g. post-translational modification sites, macromolecular binding, among others).

For all variants in the LacI rheostat and toggle sets, predictions were generated using the 16 algorithms listed 
above. When no publicly available web-service was present, prediction methods were installed and run locally. 
Input parameters were set to default values. To obtain comparable predictions between the different algorithms, 
all predictor scores were transformed and normalized: Some tools provide a probability or some other score for 
the likelihood of variant non-neutrality. For these, we converted pre-defined, method-specific binary thresholds 
to a value of 0.5 and normalized the neutral and non-neutral score ranges separately to [0, 0.5] and (0.5, 1], 
respectively. For methods that predict the classes of functional outcomes, scores were assigned manually. Details 
of scoring and thresholds used for normalization are as follows:

1.	 SNAP2 scores are [−​100, 100], threshold at 0, neutrals below threshold.
2.	 SIFT scores are [0, 1], threshold at 0.05, neutrals above threshold. Scores were reversed (equation (3) prior 

to normalization.

= −Score Score1 (3)reversed raw

3.	 MutationAssessor score range was not defined by the authors, but available data52 suggests a [−​4, 5] range, 
which we use in normalization; default threshold is 1.9, neutrals below threshold. Note, however, in this 
work we used a threshold of 0.8, as described in ref. 16, to more accurately differentiate neutrals.

4.	 PROVEAN score range was not defined by the authors, but predicted scores for our variants occurred in 
the [−​14.875, 1.908] range, which we use in normalization; threshold at −​2.5, neutrals above threshold.

5.	 MAPP scores are [0, 1], threshold at 0.5, neutrals above threshold. Scores were reversed using equation (3).
6.	 iMutant3 score range was not defined by the authors, but predicted scores for our variants occurred in the 

[−​3.5, 0.63] range, which we use in normalization; threshold at −​0.5, neutrals above threshold. Note that 
we used this threshold to transform predictions into a binary form.

7.	 FoldX (PositionScan) score range is not defined by the authors, but predictions for free energy changes be-
low 0.05 kcal/mol (neutrals) are not reported. The maximum predicted score for our variants was 3.76102. 
Here we assigned a score of 0 to missing predictions, resulting in [0, 3.76102] range, and set the threshold 
at 0.5 (as in iMutant, above), neutrals below the threshold. Note that we used this threshold (as in iMutant, 
above), to transform predictions into a binary form.

8.	 PolyPhen-1 classifications of [benign, possibly damaging, probably damaging], were converted to [0, 0.5, 1]
9.	 Align-GVGD classifications are [C0, C15, C25, C35, C45, C55, C65], assigned to corresponding risk esti-

mates, ranging [1.16, 3.12]70. The authors did not define the threshold, but C0 was suggested to be the only 
neutral class. Thus, threshold was set at the corresponding risk estimate of 1.16, neutrals below threshold. 
Note that we used this threshold to transform predictions into a binary form.

10. 	PolyPhen-2 scores are [0, 1], threshold at 0.92, neutrals below threshold.

11-14. 	�MutPred2, PANTHER, PhD-SNP, and Meta-SNP obtain probability scores, which range [0, 1] with 
a threshold at 0.5, neutrals below threshold. Note that scores for PANTHER and PhD-SNP reported 
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here were each obtained from meta-predictors (PredictSNP and Meta-SNP, respectively).
15,16.  	�nsSNPAnalyzer and PredictSNP are binary classifiers [neutral, non-neutral], which were converted to 

[0, 1].

To analyze the performance of prediction tools in differentiating rheostat and toggle position non-neutrals 
and neutrals, we applied the Kolmogorov-Smirnov (KS) test (two-sided) for continuous predictors and Fisher 
exact T-test (two-sided) for binary predictors. To compare the correlation between experimentally-measured 
fold-changes for rheostat variants and predicted variant-effect scores, we computed the Pearson product-moment 
correlation coefficient (Pearson’s r). For this analysis, we made two assumptions: (i) In addition to the variants 
with diminished repression, five variants showed enhanced repression relative to wild-type (fold-change values 
less than 0.5) and thus were treated as non-neutral. We used the reciprocal of the fold-change to correlate them 
to prediction scores. (ii) Neutral variants are, by definition, all equivalent to wild-type. However, the continuous 
predictors usually assign a range of scores that fall below their neutrality threshold (here normalized to 0.5). Thus, 
we assigned all neutrally predicted variants a score of 0.5.
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2 Improving variant effect prediction

2.2 fun-TRP: accurate annotation of protein position classes
(in preparation)

2.2.1 Introduction

One of the main objectives of my research was to study the association between disease
patterns and altered protein function caused by amino acid substitution. As mentioned
before (section 1.2), currently available variant effect prediction methods generally lack
the required accuracy for this endeavour. Consequently, the development of an improved
variant effect prediction model was a vital aspect to achieve this objective. In section 2.1
we established a new concept of protein sequence position classes - toggle and rheostat .
We demonstrated that existing computational predictors fall short on accurately dif-
ferentiating between neutral and non-neutral mutations between those two classes. We
concluded that for improving prediction accuracy, new models require the implementa-
tion of the position class as an additional feature. toggles and rheostats are characterized
based on the distribution of experimentally validated variant effect scores per protein
sequence position. Consequently, as experimental data is still very limited, we required a
tool that assigns those class labels without requiring wet-lab work. We developed a new
machine learning approach, FUNction Toggle-Rheostat Predictor (fun-TRP), to predict
position classes using a manually curated set of sequence based features. This was the
first step towards our main goal of establishing an improved variant effect predictor.

2.2.2 Methods

We extracted experimentally evaluated amino acid substitution effect scores from five
deep mutational scanning (DMS) data sets [64, 65, 66, 67, 68]. These sets were explicitly
selected to cover a wide range of species (table 2.1).

Gene sub-region organism method variants score

BRCA1 RING domain H. sapiens DMS 3169 E3 ligase activity

PAB1 RRM domain S. cerevisiae DMS 1244 Ampicillin resistance

UBE4B U-box domain H. sapiens DMS 993 E3 ligase activity

TEM-1 - E. coli DMS 5469 Ampicillin resistance

SPG1 GB1 Streptococcus sp exp. assay 417 Binding affinity to IgG

Table 2.1: List of experimentally validated data sets used for training and Cross
Validation of prediction models.

From all variants contained in the described data sets we removed those which were
not ’SNP-possible’, i.e. those amino acid substitutions which required more than one
nucleotide to be altered with respect to the wildtype residue. An overview of the fun-
TRP pipeline is depicted in figure 2.1.

We normalized the data sets to the wildtype score. Thus, neutral mutations (i.e.
mutations which exhibited the same scores as the wildtype) were automatically assigned
a score of 0. Subsequently we applied K-Means Clustering (n=3) to each of these data
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Figure 2.1: fun-TRP Workflow.

sets separately, including 0 as wildtype (wt) score and a dataset specific knock-out (ko)
score (score threshold for complete loss of function). Thus each of the experimentally
validated scores was assigned to one of three clusters, namely wildtype (containing the
wt score), severe (containing the ko score) or functional. A residue was labeled as either
toggle or neutral based on the clustering of associated effect scores. If, for a specific
residue, the majority of experimental scores was assigned to the wildtype cluster and not
more than one attributed to any other cluster, we labeled this residue position as neutral.
On the other hand, if more than one experimental score was assigned to the severe cluster
but not more than two attributed to any other cluster, we labeled this residue position
as toggle. If none of the two scenarios held true, residue positions were labeled as
unknown. Distributions of experimentally validated effect scores per residue for PAB1
(colored by assigned class labels) are shown in figure 2.2. toggle and neutral positions
are clearly separated from each other. Positions labeled as unknown (not shown here),
which exhibit a progressive range of effects, are clearly separated as well. Combining
all five data sets, our initial set contained 820 instances, i.e. residues. We excluded 228
residues, which did not possess a sufficient number of experimentally measured values
(>= 6). 66 positions were labeled as toggle and 153 positions as neutral. Upon manual
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re-assessment we excluded six toggle positions and twelve neutral positions (shown in
grey in figure 2.2) to generate a more conservative data set. Thus our toggle-neutral
training set (TNT ) finally comprised 60 toggle and 141 neutral positions. A total of 373
positions were labeled as unknown.

Figure 2.2: Distributions of experimentally validated effect scores per residue col-
ored by assigned class labels for PAB1. Residues with box plots showed in
grey were excluded upon manual re-assessment based on position of distribution
median. Dotted lines represent data set specific thresholds for severe (blue) and
neutral (green) variant effects.

Next we identified rheostat positions in the set of residues labeled as unknown. We
trained a machine learning model (model 1 ) using a Random Forest (RF) classifier on
the above-described TNT set and a manually curated set of sequence-based features
(table 2.2). To account for bias in class labels we re-sampled the set and trained on a
balanced set, comprised of 1000 instances. We then used this model to predict toggle vs.
neutral labels for the unknown set of positions. Based on the resulting scores of toggle vs.
neutral predictions, we defined those positions as rheostats where the prediction model
could not decide between toggle and neutral classes. Specifically, if the predicted score
fell in the range of 0.37-0.57 (with predictions ranging from 0 (neutral) to 1 (toggle)), we
considered the prediction unreliable and, as such, the position class - a rheostat . This
resulted in 84 positions changing their label from unknown to rheostat . Together with
the previous TNT set, our final training set consisted of 285 labeled positions.

We used our final set to train a second machine learning model (model 2 ; again
using a RF classifier with re-sampling and the same set of sequence based features) to
successfully predict toggles, neutrals and rheostats. We used an implementation of RF
Classification available in the WEKA library [71] and R [72] for K-Means Clustering.
The general workflow was implemented in Python.
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id feature tool description

1 PACC PROF (*) predicted solvent accessibility

2 pH PROF (*) ’probability’ for assigning helix

3 pE PROF (*) ’probability’ for assigning strand

4 pL PROF (*) ’probability’ for assigning neither helix, nor strand

5 consurf score consurf (*) predicted conservation

6 PROFbval PROFbval (*) predicted residue flexibility

7 MD raw MD (*) predicted protein disorder

8 msa frequency - calculated MSA entropy

9 amino acid - amino acids encoded as a vector of length 20

10 small - basic amino acid property

11 polar uncharged - basic amino acid property

12 negatively charged / acidic - basic amino acid property

13 positively charged / basic - basic amino acid property

14 possible snps - number of possible nsSNPs

Table 2.2: Set of sequence based features used by prediction model. (*) tools are
applied via the PredictProtein pipeline [69]. We created a dockerized version of
PredictProtein [70] which allows us to run predictions paralellized in cluster envi-
ronments using clubber (see section 3.1).

2.2.3 Preliminary Analysis

We evaluated our models extensively via CV. We used leave-one-out Cross Validation
(LOO-CV) to assess the performance for both our prediction models. Note, that we
re-sampled our training set for each validation run (after removing the test instance) to
account for bias in class labels. Evaluating model 1 on the TNT set (see Methods; 201
instances, 60 toggles & 141 neutrals) resulted in an overall accuracy of 90% (correctly
classified neutrals: 133/141 and toggles 48/60) and F-measure of 0.93. An identical
evaluation of model 2 resulted in an averaged accuracy of 82.1% (correctly classified
neutrals: 125/141, toggles 44/60 and rheostats 65/84). We further evaluated our mod-
els by leave-one-dataset-out as well as and 10-fold CV resulting in overall comparable
performances (data not shown).

We retrieved the entire set of human enzymes from the UniProt KnowledgeBase [73]
and applied our fun-TRP pipeline to predict position classes for all 12,362 protein se-
quences. Our analysis shows the following distribution of class labels for human enzymes:
toggles (18.4%), neutrals (45.5%) and rheostats (36.1%). Surprisingly, the distribution
of residue classes shows that charged residues are most interchangeable of the entire
amino acid alphabet (neutrals). As expected, smaller aliphatic residues can often be
rheostats and cysteines act as toggles (figure 2.3). It is interesting to note that pro-
line, a residue that is usually considered to be immutable, is sometimes still a rheostat,
suggesting that further insight is necessary to understand its role in specific proteins.
We also observe differences in distributions across broad enzyme classes; particularly,
oxidoreductases show distinct patterns of toggles and rheostats, which are different from
all other enzyme classes. We suspect, that due to their ancient origins, importance to
organism life and function, and corresponding ubiquitous presence, oxidoreductases are
likely to allow for a larger spectrum of functional tuning (more rheostats than neutrals
and toggles) (figure 2.4).
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Figure 2.3: Distribution of toggles, neutrals and rheostats of human enzymes
grouped by amino acid.

Figure 2.4: Distribution of toggles, neutrals and rheostats of human enzymes
grouped by enzyme class.
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3 Efficient Big Data analysis through load
balancing

3.1 clubber: removing the bioinformatics bottleneck in big
data analyses

3.1.1 Preface

In modern day bioinformatics, Big Data related challenges have become a recurring
obstacle in the path of efficacious analysis. When designing new algorithms, efficiency
has to play a major role during method development. Yet, even the most efficient
tools require large resources when applied to exponentially growing biological data sets.
Thus the bottleneck in biological discovery has gradually shifted from the cost of doing
experiments to that of analyzing results. Access to sufficient computational resources
to deal with Big Data is therefore essential. The methods we developed and which
are described in this thesis enable the processing of a vast amount of input data. fu-
sionDB maps new microbial genomes to the functional spectrum of reference bacteria.
This requires thousands of Position-Specific Iterative Basic Local Alignment Search Tool
(PSI-BLAST) [74] runs to compare the entire proteome of the new organism to the ref-
erence database. mi-faser annotates read-’parent protein’ molecular functionality for
an entire metagenome. Tens of millions of sequencing reads have to be translated and
aligned to a reference database of full-length proteins. The fun-TRP predictor requires
a set of fourteen features to be calculated, many of which involve resource intensive
prediction methods. Large scale analyses like assessing the distribution of class labels
in the entire set (12.362) of enzymes present in the human genome are therefore very
compute intensive.

Complementing our analytical methods I developed clubber , an automated cluster
load balancing software. Using clubber enabled us to extensively speed up those meth-
ods by parallelizing and distributing computations among all (heterogeneous) compute
resources accessible for our group. By doing so, we had access to up to 7000 cores shared
among six HPC resources at a time. Further, we avoided long queuing times on specific
resources (i.e. due to a high workload or scheduled maintenance) as clubber distributes
computations prioritized to resources with the least expected total processing time. The
advantage of using clubber is particularly obvious in a scenario where only one cluster
is available for computation vs. having two clusters – a local and one additional remote
cluster. Computations are sped up by up to 100 %. Simply logging in to another cluster
and submitting job subsets manually is a tedious task, which would not, even in the
best case scenario, achieve a comparable speed up. Simplicity was a key feature for de-
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veloping clubber . Using the software is as simple as downloading and installing Docker
[60], a software container platform available for every environment, and using a single
command to run the Docker-cloud clubber container [75]. From there, any interaction
for basic configuration, job submission, monitoring and displaying results is achieved via
the clubber web interface or the provided RESTful [76] API. For integration into larger
projects we provide clubber as a Python package. Finally, clubber facilitates upstream
and downstream processing of input data as well as results. It was designed specifically
to simplify and accelerate common computational biology experimental workflows.

Using clubber as back-end for all our applications enabled us to offer extremely fast
(web) services for the research community. Our mi-faser web service functionally an-
notates microbiomes in less then 20min per 10GB of reads. In this work we used this
service to rapidly analyze the Deepwater Horizon oil-spill study data [77] (BioProject
PRJNA260285; 16 samples, 73GB sequence reads). We used NMDS for visualization of
the similarity between individual result vectors by mapping their similarity as a function
of two-dimensional Euclidean space. We could quantitatively show that the beach sands
have not yet entirely recovered. Further, our analysis of the CAMI challenge [78] (five
Hiseq samples, 15 Gbp each) data revealed that microbiome taxonomic shifts do not nec-
essarily correlate with functional shifts. These examples (21 metagenomes processed in
172 min) clearly illustrates the impact of clubber in the everyday computational biology
environment.

Concept, implementation and design of the software was done by me. clubber perfor-
mance analysis was done by me. The analysis of the Horizon oil-spill study and CAMI
challenge data was carried out by Chengsheng Zhu. The manuscript was drafted by
Yana Bromberg and me. clubber is available as Docker container [79], Git repository
[80] and is archived via Digital Object Identifier (DOI) [81].

3.1.2 Journal article. Miller et al., Journal of Integrative Bioinformatics
2017

The published article is attached below.
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Abstract:
With the advent ofmodern day high-throughput technologies, the bottleneck in biological discovery has shifted
from the cost of doing experiments to that of analyzing results. clubber is our automated cluster-load balancing
system developed for optimizing these “big data” analyses. Its plug-and-play framework encourages re-use
of existing solutions for bioinformatics problems. clubber’s goals are to reduce computation times and to fa-
cilitate use of cluster computing. The first goal is achieved by automating the balance of parallel submissions
across available high performance computing (HPC) resources. Notably, the latter can be added on demand,
including cloud-based resources, and/or featuring heterogeneous environments. The second goal of making
HPCs user-friendly is facilitated by an interactive web interface and a RESTful API, allowing for job monitor-
ing and result retrieval. We used clubber to speed up our pipeline for annotating molecular functionality of
metagenomes. Here, we analyzed the Deepwater Horizon oil-spill study data to quantitatively show that the
beach sands have not yet entirely recovered. Further, our analysis of the CAMI-challenge data revealed that mi-
crobiome taxonomic shifts do not necessarily correlate with functional shifts. These examples (21metagenomes
processed in 172 min) clearly illustrate the importance of clubber in the everyday computational biology envi-
ronment.
Keywords: cluster job scheduler, high performance computing, job management, load balancing
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1 Introduction

Fast-paced growth of high performance computing (HPC), coupled with the recent appearance of new cloud
computing solutions, created a new scope of possibilities for applications in today’s science. At the same time,
more advanced and less expensive high throughput experimental assays have led to exponential growth of new
biological datasets. Having access to sufficient computational resources to deal with the growing “big data” is
therefore essential not only for computational, but also for experimental biology research labs, particularly
those working in genomics. Less than two decades ago the first human genome took 13 years and $2.7 billion
to sequence [1]. Today sequencing a genome takes a day and $1000, with costs projected to go even lower in
the near future. Recent projects like the 1000 Genomes Project [2] and others currently under way [3], [4] will
provide the field with an unprecedented amount of data, opening up new possibilities to significantly improve
current models and tools.

These developments come at a cost, as traditional HPC is quite expensive both in purchase and mainte-
nance. Research labs espouse different models for dealing with this computing need – some have their own
computational power, others share machines across an institute or outsource their computing to collaborators.
Although usability varies significantly across setups, compute nodes rarely reach the often-targeted utilization
rates of 75–85 % consistent workload. Usage usually peaks with a specific high priority project running on the
Maximilian Miller, Yana Bromberg are the corresponding authors.
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cluster for a limited time or with short-term jobs submitted through a web interface, where timing and respon-
siveness are essential. Cloud computing offers new alternatives, but is not always an adequate replacement for
traditional HPC. The nature of cloud solutions often creates new challenges, such as the transfer of enormous
amounts of data to and from the remote cloud storage.

Both from time and performance points of view, there is a clear advantage in making use of all available
computational resourceswhen necessary.However, this is a considerable challenge as the, often distributed and
setup-disparate, clusters have distinct runtime pre-requisites. Ideally all resources would “speak” the same lan-
guage, i.e. have a shared common base (OS, executables, job scheduler, etc.) Existing tools [5], [6] for bringing
together disjoint computational resources and for distributing jobs among them require significant IT-related
knowledge to get up and running. Moreover, none of these were designed explicitly for evaluations and ap-
proaches common in computational biology. Their capability is mostly limited to retrieval of job results from
compute clusters and does not extend to downstream processing. Thus, post-processing and publishing of re-
sults is not automated and has to be dealt with individually.

Here we describe our novel clubber (CLUster-load Balancer for Bioinformatics E-Resources) framework,
available at http://services.bromberglab.org/clubber. clubber is designed specifically to facilitate and accel-
erate common computational biology experimental workflows and used in conjunction with existing methods
or scripts to efficiently process large-scale datasets. Using clubber is as simple as downloading and installing
Docker [7], a software container platform available for every environment, and using a single command to
run the Docker-cloud clubber container [8]. From there, any interaction for basic configuration, job submission,
monitoring and displaying results is achieved via the clubber web interface. Note that clubber can also be run
from command-line using an interactive console, or from within a Python project by importing the clubber
package. Due to our method’s modular design, all of its main components (Manager, Database, Web Interface)
can run separately on different environments/machines. Further, clubber can be easily configured to use any
of the databases or webservers and thus to directly integrate into existing external services. Results can be ac-
cessed directly from the clubber web interface, either as downloadable files or as searchable data tables (given
an appropriate output format). A RESTful [9] API provides programmatic access to the jobs managed by club-
ber, enabling other frameworks to monitor individual job progress and retrieve and display the final results.
Very importantly, the clubber API facilitates integration into existing and new web services; i.e. tasks submit-
ted through a web interface can be simply “handed over” to clubber and results queried once available. clubber
can be set up on a dedicated server to be accessible by all members of a research group or by a selected few
authenticated via a built-in user authentication module.

Existing workflow frameworks like Galaxy [10] and Nextflow [11] allow users to create computational
pipelines to process and analyze biological data. Although both environments are highly usable, they have
some limitations. Galaxy, for example, requires some time for setup of all components and limits the selection
of available tools to those for which corresponding plugins have been written. Nextflow, on the other hand, has
limited data filtering and visualization capabilities. Further, both tools can be configured to run jobs on a remote
cluster, andGalaxy additionally providesmeans tomake results accessible via aweb interface.However, in both
cases, jobs are submitted sequentially to only one previously configured cluster. Distributing jobs to multiple
resources requires manual interaction and, potentially, adaptation of the necessary submission scripts. This
leads to extensive computation times, directly correlated with the amount of processed data.

We designed clubber to deal with the challenges of growing datasets, which are particularly obvious in
genome research. The current clubber package includes built-inmethods to simplify parallelized job submission,
e.g. splitting a single multi-sequence input file to submit parallel jobs, each containing a user-defined number
of sequences. All of these features make clubber an essential tool for processing and analyses of vast amounts
of biological data in a parallel, efficient, and (very) fast fashion.

2 Methods

clubber works in all environments and integrates seamlessly with existing workload managers. We made
clubber available as a ready-to-launch Docker image. Adding a computing resource (an HPC cluster) requires
only a valid username and password combination for a user who is eligible to submit jobs on this specific
resource. Note that there is no need for any additional software to be installed on these resources. The stan-
dalone clubber python installation has only two requirements: (i) access to a MySQL database (version 5.x) and
(ii) availability of python (version 3.x). The optional web interface additionally requires access to a webserver
with installed PHP module (version 5.6.x). Detailed installation instructions and sources can be found online
[8]. Figure 1 illustrates the clubber workflow. clubber’s three components, Manager, Database, andWeb Interface,
are independent from each other. The Manager accesses registered clusters via Secure Shell (SSH) and commu-
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nicates with the Database usingMySQL queries. TheWeb Interface interacts with the Database to register jobs,
monitor their progress and retrieve results.

Figure 1: The clubber pipeline. Jobs can be submitted either through a web interface or via command-line to the clubber
manager. These are registered and managed using a relational database. The manager uses an automated balancing ap-
proach to distribute jobs among available clusters; the manager daemon runs locally and communicates with available
clusters, transferring completed job results and storing them locally or, optionally, in the database.

clubber bundles computational resources, providing an interface for a simple centralized submission.
clubber can be used in two different ways: through an interactive web interface or via command-line. First, a
clubber project is created, defining basic parameters like project name, selection of clusters to use and the envi-
ronment variables necessary for job submission. Projects can contain binaries or database files required by the
associated jobs. Note that single jobs can be submitted without creating a project; these will automatically be
assigned to a default project with no environment variables set. After a project has been created and automat-
ically initiated on the specified clusters, jobs can be submitted using the web interface or from command-line.
Additional environment and job specific variables are defined in a simple syntax described in the clubber docu-
mentation. The manager uses an auto balancing approach to automatically distribute new jobs between regis-
tered clusters. Three factors determine how many jobs are submitted to each cluster during the auto balancing
process. These are, in decreasing priority: (i) the cluster workload, (ii) the expected queuing time and (iii) the
average job runtime. Cluster workload is calculated as a percentage of total possible workload, with 100 % rep-
resenting a fully occupied cluster. The expected queuing time and the average job runtime are normalized to a
[0,1] range, with one representing themaximum amount of time spent in either queue or run state, respectively,
over all jobs of the same project among all active clusters. Both factors are set to one by default and are updated
automatically during the progression of a project. In order to obtain the cluster specific load balancing factor
(LBF) they are combined with the respective cluster workload (Eq. 1).

(1 − workload) × 0.5 + (1 − queuingfactor) × 0.3 + (1 − runtimefactor) × 0.2 (1)

clubber communicateswith clusters exclusively via encrypted SSH. The rsync [12] utility and Secure Copy (SCP)
are used to transfer files to and from the clusters. Since some of the inquiries sent to the many clusters takemin-
utes to process, all communication is threaded to avoid blocking faster transactions. This architecture enables
clubber to efficiently distribute and retrieve jobs in a highly parallelized fashion.

To track and update current job states clubber relies on a relational database. This approach results in very
robust job exception handling, both regarding errors on remote clusters and exceptions like lost connections on
the machines running the clubber manager. The database also allows independent services, which use clubber
as a job manager, to monitor current job states and retrieve results. Job success is continuously and extensively
validated, ensuring that a project with millions of jobs is completed correctly even after allowing for power
failures and compute node breakdowns. Once a job is identified as finished, the validation pipeline ensures
that the expected results are present and correctly retrieved from the clusters. In case of errors, jobs are reset
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and re-sent out for computation. A detailed logging and notificationmodule tracks these processes and notifies
the user if specific jobs produce recurring errors.

clubber is designed to be used with existing software tools. Our plug-and-play framework makes it pos-
sible to use any existing tools or scripts within the clubber environment. User-defined specific pre- and post-
processing actions can also be re-used with clubber projects. This allows for manipulation of input data prior
to batch processing (e.g. converting fastq to fasta format) and for automatic processing of job results once they
have been retrieved from the clusters. In its initial release, clubber includes two built-in methods for specific pre-
and post-processing to simplify parallelized job submission. They allow to automatically split a single multi-
sequence input file to submit parallel jobs and merge results once all jobs have been computed. The number of
sequences used for each parallel job is user-defined. We expect that with increasing use of clubber (available as
Git repository hosted on bitbucket) [8], the community will produce a larger repertoire of common pre- and
post-processing tools, e.g. file conversion, filtering, etc., commonly applied in every-day computational biology.

3 Results and Discussion

clubber significantly reduces the “real-world” compute time by parallelizing and optimizing the workload
distribution across available resources. We evaluated clubber performance by measuring the time required to
complete one thousand individual jobs, requiring 1-min CPU time each. Note, that these jobs did not require
any data to be transferred to remote clusters. The evaluation was performed in various scenarios. We compared
the required time at different cluster workloads when using clubber with one to five separate clusters available
vs. a standard job submission (Figure 2). A standard job submission is defined as a manual submission of a
single shell script running all thousand jobs on a single local HPC cluster. Note that workloads for remote
clusters registered with clubber are conservatively estimated to be consistently at 50 %; the actual gain in com-
putation efficiency could be substantially higher. Also note that 0 % workload is here defined as the ability to
run at most 100 jobs in parallel. For the (ideal, but also rare) case of no (0 %) workload on the local cluster, only
two additional registered clusters, both exhibiting a workload average, reduce the overall computation time by
approximately 50 %. The total gain in computation time is directly correlated to the current workloads on the
remote clusters. clubber’s auto-balancing job submission ensures that clusters with a low workload are prefer-
entially selected, optimizing and reducing to a minimum the total required computation time. As expected,
the more clusters are registered with clubber the less effect single clusters with a high load have on the final
computation time. The advantage of using clubber is particularly obvious in a scenario where only one cluster
is available for computation vs. having two clusters – a local and one additional remote cluster. Using clubber
speeds up computation by up to 100 %. Note that simply logging into another cluster and submitting job sub-
sets is tedious task, which would not, even in the best case scenario, achieve similar speed up – as one cluster
finishes, the other is still only somewhat through its assigned computation.
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Figure 2: Efficiency fold-change of clubber vs. standard job submission: Efficiency fold increase in submitting jobs using
clubber as compared to a standard job submission. Primary cluster workload is varied between 0 % and 90 %, where 0 %
workload is defined here as the ability to run at most 100 jobs in parallel (100 CPU cluster). Compute time is measured
for a submission of 1000 jobs, each requiring 1-min CPU time and no data transfer. Active workloads for remote clus-
ters registered with clubber are conservatively estimated to be consistently at 50 % of possible total. None of these clusters
dropped below that threshold in our use experience. They have, however, gone significantly higher. Thus, the actual gain
in computation efficiency could be even higher than that displayed.

clubber facilitates fast evaluation of millions of sequences. Our recent work required a total of 19.4 million
bacterial sequences to be analyzed for all-to-all pairwise similarity using BLAST [13]. We estimated that our
single local cluster of 640 compute cores in its entirety would have taken roughly 4 months to perform the
computation. This estimate is based on a 24 day-long 3,797,793 job BLAST run against the 19.4 M sequence
database. Using clubber to run on three additional clusters (800, 1536, and 3120 cores, respectively; of varied
load, but no more than 50 % of any one cluster available at any given time), speeds up this time to a bit over 2
months (70 days, a factor of 1.8).

Deepwater oil spill metagenome analysis using mi-faser. Our lab’s recently created web service [14], mi-
faser [15], uses clubber to rapidly annotate gigabytes of genomic sequence read data for the molecular function-
ality encoded by the “read-parent genes” without the need for assembly. For every inputmetagenome, mi-faser
computes a function profile – a list of Enzyme Commission (EC) numbers and the associated read abundances.
To illustrate clubber functionality, we ranmi-faser on 16 beach sandmetagenomes from four phases of the Deep-
water Horizon oil spill [16] (BioProject PRJNA260285) study – Pre-oil, two samples of Oil, and Recovery phases
(available at http://services.bromberglab.org/mifaser/example). Analysis of this data (73GB sequence reads)
using the mi-faser web interface with a clubber back-end was done in only 1 h, with clubber distributing a total
of 4.5 k jobs among three compute clusters. Note that running these jobs using only our local cluster (640 cores)
with an average workload (unavailability of nodes) of 30 %, took 170 min – 3-fold slower than clubber.

For further analysis, we removed sample-specific functions and normalized the individual entries of the
function profile vectors by the total number of annotated reads. We found that microbiome functional profiles
of samples from different phases significantly differ from each other (Figure 3, non-metric multidimensional
scaling (NMDS) analysis [17]; P < 0.001, permanova test [18]). Interestingly, the samples from the Oil phases
show higher variation than the samples from the Pre-oil phase and the Recovery phase, suggesting that “nor-
mal” ecosystem microbiomes are functionally more consistent than those in the disturbed ecosystems. The
samples from Oil phases are functionally closer to the samples from the Recovery phase than to the Pre-oil
phase, indicating that the beach sands have likely not entirely recovered.

Figure 3: Microbiome functional capabilities of beach sand metagenomes from a study of the Deepwater Horizon oil spill
(16) (BioProject PRJNA260285) differ across phases. The samples were collected from four phases, including Pre-oil phase
(OS-S1, OS-S2, OS-S3 and OS-S4), Oil phase 1 (OS-A, OS-B, OS-C and OS-D), Oil phase 2 (OS-E, OS-F, OS-G and OS-H)
and Recovery phase (OS-I600, OS-I606, OS-J598 and OS-J604). The distances between samples in this non-metric multidi-
mensional scaling (NMDS) graph represent the variation between sample function profiles. Samples from Pre-oil phase,
Oil phases and Recovery phase localize separately. Oil phase samples are closer to Recovery phase samples than to Pre-oil
phase samples.

Regardless of the significant differences between phases, the fraction of housekeeping functions (compiled
from [19]) was highly consistent across samples (22.1±0.5 %); e.g.DNA-directed RNApolymerase (2.7.7.6) is the
most abundant function in all samples (about 4∼5 %). As the number of reads encoding a particular function-
ality is highly correlated to the number of individual cells performing said functionality, these results are not
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very surprising – all bacterial phyla, nomatter howdifferent, carry housekeeping genes. This finding serves as a
confirmation of mi-faser’s accuracy, while highlighting its ability to estimate functional diversity in a non-taxon
dependent level.

Critical Assessment of Metagenomic Interpretation (CAMI) challenge analysis using mi-faser. We further
usedmi-faser to evaluate a high complexity data set from the CAMI [20] challenge. The data set contains a time
series of five Hiseq samples (15 Gbp each) with small insert sizes sampled from a complex microbial commu-
nity. With clubber optimizing job submissions, the total computation time for 500 M sequence reads was only
1 h 59 min. Note that the CAMI challenge did not evaluate runtimes for the submitted tools/predictions, but
they note that this evaluation is a necessary feature of future method development [20]. Metagenome compar-
ative analysis revealed that the microbiome functional profiles remain highly consistent (Table 1), regardless
of a clear community composition shift (Table 2). Interestingly, these results indicate that, over time, microbial
species were exchanged, while maintaining the same functional capacity. Thus, the time effect on the microbial
community is not as striking as what the taxonomical changes would suggest. This example highlights the fact
that inferring microbiome function from its taxonomy composition is misleading. Thus, metagenomic analysis
tools such as mi-faser are essential for a deeper understanding of microbiome functional potentials. Note that
clubber is uniquely responsible for allowing our lab to make the mi-faser web interface available to the general
public for the purposes of extremely fast (and accurate) functional annotation ofmillions of raw sequence reads.

Table 1: Spearman correlation between taxonomic profilesa of CAMI metagenomes.

RH_S001 RH_S002 RH_S003 RH_S004 RH_S005

RH_S001 1 – – – –
RH_S002 0.78 1 – – –
RH_S003 0.64 0.75 1 – –
RH_S004 0.51 0.59 0.73 1 –
RH_S005 0.45 0.51 0.54 0.71 1

aThe taxonomic profiles were obtained from http://cami-challenge.org.

Table 2: Spearman correlation between functional profilesa of CAMI metagenomes.

RH_S001 RH_S002 RH_S003 RH_S004 RH_S005

RH_S001 1 – – – –
RH_S002 0.99 1 – – –
RH_S003 0.99 0.99 1 – –
RH_S004 0.99 0.99 0.99 1 –
RH_S005 0.99 0.99 0.99 0.99 1

aThe functional profiles were annotated by mi-faser (15).

Dealing with tool heterogeneity in clubber-accessible resources. Even though clubber is highly successful
in facilitating HPC use, there may be still scenarios, which require manual interaction with the individual
compute clusters. When creating a clubber project that includes binaries, the user has to validate these binaries
on each of the cluster resources. When using pre-installed tools local to each resource, all installs have to be
of the same version and produce identical results given identical input. To prevent erroneous results in these
scenarios, clubber offers the option to automatically compare cluster environments and submit test jobs before
starting a project run on different computing resources. Note that virtualization solutions, e.g. Docker, offer a
simple solution to these problems by guaranteeing identical environments on every resource. In this scenario
(planned for the next release of our software) clubber distributes a user provided Docker image to the clusters
and relays job parameters when starting a Docker container.

Impact of dataset size on clubber performance. clubber was developed to process extremely large datasets
using remotely accessed resources. The remoteness of these resources, thus, poses a bottleneck in transferring
data between compute clusters. For the larger compute centers, it is safe to assume that an appropriately fast
connection is available. For smaller set-ups, data transfer speeds may vary. In testing to evaluate the contribu-
tion of transfer times for our collection of clusters, some smaller and some larger ones, we found that times
did not vary across remote and local machines and did not affect the relative performance. For all five of our
clusters the transfer times varied by as little as 6 %, despite being located in different places of the world (New
Brunswick, NJ, USA and Garching, Germany); the speed of transfer of 1Gb of data was 146 ± 8 s. Note that
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jobs requiring large data transfers would necessarily be slowed down, but roughly in equal measure for local
or remote machines. The slow-down is especially visible in cases where the computation time for a single job
is fairly short. Increasing the number of jobs processed reduces this initial impact as performance improves by
use of additional resources.

Better resource management and faster processing speeds with clubber. Our clubber framework provides
a simple way to bundle available, possibly heterogeneous, computational resources and to distribute computa-
tions minimizing the required processing time. This approach avoids long computation times associated with
an overloaded local cluster when there are in fact additional resources available elsewhere. Simple job submis-
sion/monitoring and automated exception handling make clubber easy-to-use and ideal for handling projects
with millions of jobs. Its ability to use cloud-computing services like Amazon Web Services (AWS) with club-
ber on-demand, additionally allows for temporary, large-scale increases in computational resources. With all
of these features, web services, the bread-and-butter of the computational biology community, are made ex-
tremely responsive with clubber.

With the exponential growth of available data in computational biologywaiting to be analyzed, bioinformat-
ics, not experimental analysis, has unexpectedly become the progress bottleneck. By combining the available
resources and using them in the most optimal fashion, clubber offers a new approach to tackling this challenge.
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4 Comprehensive microbiome function
analyses

4.1 fusionDB: assessing microbial diversity and environmental
preferences via functional similarity networks

4.1.1 Preface

In recent years, there has been an increased interest in microbial organisms and their
associated functional repertoire. In fact, the molecular functionality found in microor-
ganisms is relevant to a range of human interests, including health, industrial produc-
tion, and bio-remediation. A main driving force for microbial functional diversification
are environmental factors. Microorganisms inhabiting the same environmental niche
tend to be more functionally similar than those from different environments. In some
cases, even closely phylogenetically related microbes differ more across environments
than across taxa. Experimental study of these microbes to optimize their uses is expen-
sive and time-consuming. Experimental assessment of bacterial functional capacity is
very challenging [82]. Our functional repertoire similarity-based organism network (fu-
sion) algorithm allows the comparison of microbial functional similarities based on their
proteome. However, while those similarities are often reported in terms of taxonomic
relationships, no existing databases directly links microbial functions to the environment.

This gap is closed by fusionDB. fusionDB assesses microbial functional similarity on
the basis of their corresponding proteome, connecting individual microbes via common
functions. fusionDB uses the fusion protocol [83], an organism functional similarity net-
work. It contains 1374 taxonomically distinct bacteria annotated with available meta-
data: habitat/niche, preferred temperature, and oxygen use. An interactive (web) ser-
vice allows mapping of new microbial genomes to the functional spectrum of reference
bacteria, rendering interactive similarity networks that highlight shared functionality.
This often includes matching proteins of yet unannotated function across organisms.
fusionDB provides a fast means of comparing microbes, identifying potential horizontal
gene transfer events, and highlighting key environment-specific functionality. fusionDB
also provides quantitative support to the fact that environmental factors drive micro-
bial functional diversification. We mapped a recently sequenced genome of a freshwater
Synechococcus bacterium to fusionDB and demonstrated that this microorganism is more
functionally related to other fresh water Cyanobacteria than to the marine Synechococcus
[84]. In a case study on Bacillus microbes, we used fusionDB to track organism-unique
functions and illustrated the detection of core-function repertoires that capture traces of
environmentally driven horizontal gene transfer (HGT). Building the reference database
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and mapping new microbial genomes to fusionDB is compute intensive. For the current
reference database we had to align 4.284.540 proteins from 1374 bacterial genomes in
an all-vs-all comparison. Genomes were retrieved from the NCBI GenBank [85]. In the
current version of this database the number of protein sequences grew more than 3-fold.
To manage the growing complexity in generating the reference database and achieve rea-
sonable processing times for user submitted genomes, we integrated clubber [86] (section
3.1) as fusionDB back-end. Further, we are evaluating a new alignment approach (MM-
seqs2 [87]) to replace PSI-BLAST in the long run. Those improvements will enable us
to provide considerably faster mappings of new genomes to the database. More impor-
tantly, we will be able to incorporate significantly more bacterial genomes for building
the reference database. That will in turn allow us to better and more comprehensively
annotate functions within unknown microorganisms, e.g. isolated from patient samples.
Identifying shared functionalities within the reference database can provide important
information like pathogenic characteristics or antibiotic resistance status. Finally, we
expect that fusionDB will additionally facilitate the study of environment-specific mi-
crobial molecular functionalities.

The web service front- and back-end was developed by Yannick Mahlich and me.
Network visualization and interactivity was done by me. Evaluation was done by Yannick
Mahlich. The project was designed by Chengsheng Zhu, Yannick Mahlich and Yana
Bromberg. The manuscript was drafted by all four authors.

4.1.2 Journal article. Zhu, Mahlich & Miller et al., Journal of Nucleic Acids
Research 2017

Supplementary material can be found online at [88]. The published article is attached
below.
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ABSTRACT

Microbial functional diversification is driven by en-
vironmental factors, i.e. microorganisms inhabiting
the same environmental niche tend to be more func-
tionally similar than those from different environ-
ments. In some cases, even closely phylogenetically
related microbes differ more across environments
than across taxa. While microbial similarities are of-
ten reported in terms of taxonomic relationships,
no existing databases directly link microbial func-
tions to the environment. We previously developed
a method for comparing microbial functional similar-
ities on the basis of proteins translated from their
sequenced genomes. Here, we describe fusionDB,
a novel database that uses our functional data to
represent 1374 taxonomically distinct bacteria an-
notated with available metadata: habitat/niche, pre-
ferred temperature, and oxygen use. Each microbe
is encoded as a set of functions represented by
its proteome and individual microbes are connected
via common functions. Users can search fusionDB
via combinations of organism names and metadata.
Moreover, the web interface allows mapping new mi-
crobial genomes to the functional spectrum of ref-
erence bacteria, rendering interactive similarity net-
works that highlight shared functionality. fusionDB
provides a fast means of comparing microbes, iden-
tifying potential horizontal gene transfer events, and
highlighting key environment-specific functionality.

INTRODUCTION

Microorganisms are capable of carrying out much of molec-
ular functionality relevant to a range of human interests, in-
cluding health, industrial production, and bioremediation.
Experimental study of these microbes to optimize their uses
is expensive and time-consuming; e.g. as many as three hun-
dred biochemical/physiological tests only reflect 5–20% of
the bacterial functional potential (1). The recent drastic in-
crease in the number of sequenced microbial genomes has
facilitated access to microbial molecular functionality from
the gene/protein sequence side, via databases like Pfam (2),
COG (3), TIGRfam (4), RAST (5) and others. Note that the
relatively low number of available experimental functional
annotations limits the power of these databases in recogniz-
ing microbial proteins that provide novel functionality. Ad-
ditional information about microbial environmental prefer-
ences can be found, e.g. in GOLD (6). While it is well known
that environmental factors play an important role in micro-
bial functionality (7), none of the existing resources directly
link environmental data to microbial function.

We mapped bacterial proteins to molecular functions and
studied the functional relationships between bacteria in the
light of their chosen habitats. We previously developed fu-
sion (8), an organism functional similarity network, which
can be used to broadly summarize the environmental fac-
tors driving microbial functional diversification. Here, we
describe fusionDB – a database relating bacterial fusion
functional repertoires to the corresponding environmental
niches. fusionDB is explorable via a web-interface by query-
ing for combinations of organism names and environments.
Users can also map new organism proteomes to the func-
tional repertoires of the reference organisms in fusionDB;
including, notably, matching proteins of yet unannotated
function across organisms. The submitted organisms are vi-
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sualized, and can be further explored, interactively as fusion
networks in the context of selected reference genomes. Ad-
ditionally, the web interface generates fusion+ networks, i.e.
views that explicitly indicate shared microbial functions.

Our overall analyses of the fusionDB data for the first
time give quantitative support to the fact that environ-
mental factors drive microbial functional diversification. To
demonstrate fusionDB functionality for individual organ-
isms, we mapped a recently sequenced genome of a fresh-
water Synechococcus bacterium to fusionDB. In line with
our previous findings (8), we demonstrate that this mi-
croorganism is more functionally related to other fresh wa-
ter Cyanobacteria than to the marine Synechococcus. In a
case study on Bacillus microbes, we use fusionDB to track
organism-unique functions and illustrate the detection of
core-function repertoires that capture traces of environ-
mentally driven horizontal gene transfer (HGT). fusionDB
is a unique tool that provides an easy way of analysing
the, often unannotated, molecular function spectrum of a
given microbe. It further places this microbe into a con-
text of other reference organisms and relates the identified
microbial function to the preferred environmental condi-
tions. Our approach allows for detection of microbial func-
tional similarities, often mediated via horizontal gene trans-
fer, that are difficult to recover via phylogenetic analysis. We
note that, in the near future, fusionDB may also be useful
for the analysis of functional potentials encoded in micro-
biome metagenomes. We expect that fusionDB will facilitate
the study of environment-specific microbial molecular func-
tionalities, leading to improved understanding of microbial
lifestyles and to an increased number of applied bacterial
uses.

METHODS

Database setup

fusionDB is based on alignments of 4 284 540 proteins
from 1374 bacterial genomes (December 2011 NCBI Gen-
Bank (9). For each bacterium, we store its (a) NCBI tax-
onomic information (10) and, where available, (b) envi-
ronmental metadata (temperature, oxygen requirements,
and habitat; GOLD (6). The environments are generalized,
e.g. thermophiles include hyper-thermophiles. ‘No data’ is
used to indicate missing annotations (Supplementary On-
line Material, SOM Table S1, SOM Figure S1). The gen-
eral fusion (functional repertoire similarity-based organism
network) protocol is described in our previous work (8).
Briefly, all proteins in our database are aligned against each
other using three iterations of PSI-BLAST (11) and the
alignment length and sequence identity are used to com-
pute Homology-derived Secondary Structure of Proteins
(HSSP) distances (12). A network of protein similarities
is then clustered using the Markov Clustering Algorithm
(MCL) (13). For fusionDB the original fusion algorithm was
modified to use less stringent protein functional similarity
criteria (with HSSP distance cutoff = 10), which resulted
in 457 576 functions (protein clusters; Table 1). Each bac-
terium was thus mapped to a set of functions, its functional
repertoire (∼2400 functions on average, ranging from 118
to 6134 functions). Note that our functional repertoires in-
clude all the bacterial functions, regardless of annotation.

We are thus able to make function predictions for proteins
in new bacteria, even if these functions have not been anno-
tated before.

Mapping new organisms to fusion

User submitted microbial proteomes and the associated
functions are stored in a separate database (SOM Figure
S2). For each query protein of the new organism, the map-
ping pipeline (SOM Figure S3, SOM Methods) (a) runs
PSI-BLAST (reporting e-value 1e–10, inclusion e-value 1e–
3, three iterations) against reference proteins in fusionDB
and (b) maps the query to a fusion functional cluster, which
contains the reference with the highest hit HSSP score. Note
that novel proteins that cannot be assigned to existing func-
tional groups (do not match any reference at HSSP dis-
tance ≥10) are reported as functional singletons even if
they are similar among themselves. Additionally, protein
alignments that exceed 12 CPU hours of run-time are cur-
rently eliminated from further consideration. In testing, we
found that no >0.1% of the proteins fall into this category.
Although long run-times usually indicate that query pro-
teins likely align to many others in our database, they con-
tribute only a small fraction to the overall bacterial similar-
ity and are eliminated for the sake of a faster result turn-
around. Note that we also evaluated a number of other al-
gorithms for mapping organism functional repertoires, of
which the above-described algorithm performed best (SOM
Methods).

All functional cluster assignments of proteins in the
query proteome are then combined into a functional reper-
toire where each functional cluster is unique; i.e. if two
query proteins are assigned to the same functional cluster,
this cluster is listed only once in the final repertoire.

Evaluating fusionDB performance

We evaluated the accuracy of functional mapping of new
proteomes by iteratively mapping each of the fusionDB or-
ganisms back to the remaining 1373. We aligned each pro-
tein of the query organism to all proteins in other organ-
isms and selected the alignment with highest HSSP score.
We then assigned the query protein to the functional cluster
of its match as described above for mapping new organisms.

The performance of this approach was evaluated on a
per-function basis, i.e. for each function of each ‘newly
added’ organism we retrieved counts of true positives (TP,
proteins correctly assigned to this fusionDB function), false
positives (FP, proteins falsely assigned to this fusionDB
function), and false negatives (FN, proteins that are part
of this fusionDB function in the reference database, but
not correctly assigned). Note that reference singleton pro-
teins that were not assigned to any fusionDB function were
considered true positives. Averaged across all functions, the
mean per-function precision and recall of correctly assign-
ing proteins were 97.2% and 96.6%, respectively (3.1 × 10−8

mean per function false positive rate, FPR), while the over-
all precision of assigning any protein to a function was
98.2% (Eq. 1).

Individual organisms were assigned to their functional
repertoires with 99.5% precision and 98.9% recall (Eq. 1,
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Table 1. Annotation status of (HSSP-based) function groups

Function groups (>1 sequence) Function groups (1 sequence) Total

Known (Kn) 54 522 15 738 70 260
Hypothetical (Hy) 85 252 89 282 174 534
Unknown (Un) 22 802 189 980 212 782
Total 162 576 295 000 457 576

SOM Figures S4 and S5). For this estimate we evaluated to
overlap between reference and assigned repertoire; i.e. func-
tional clusters that appear in both the reference and mapped
functional repertoire are true positives. False positives are
functional clusters in the mapped functional repertoire but
not the reference repertoire, false negatives vice versa. The
reported precision and recall are the mean precision and re-
call values averaged over all organism submissions.

precision = T P
T P + F P

, recall = T P
T P + F N

, F PR = F P
F P + TN

(1)

Web interface

fusionDB web interface has two functions: explore and map
new organisms. The explore section contains access to all the
1374 bacteria and their metadata. Users can search these
with (combinations of) organism names and environmen-
tal preferences by using text box input or built in filters.
A user-selected organism set can be used to create a fusion
network, in which organism nodes are connected by func-
tional similarity edges. The fusion network can be viewed
in an interactive display, as well as downloaded as net-
work data files or static images. The user-defined color la-
bels of the organism nodes reflect microbial taxonomy or
environment. In the interactive display clicking an organ-
ism node reveals its taxonomic information and environ-
mental preferences, while clicking an edge between two or-
ganisms yields a list of their shared functions. A fusion+
network can further be generated from the same list of or-
ganisms. There are two types of vertices (nodes) in fusion+:
organism nodes and function nodes. Organism nodes are
connected to each other only through the function nodes
they share. The number of edges (degree) of an organism
node represents the total number of functions of the or-
ganism; the relative position of each organism node is de-
termined by the pull toward other organisms via common
functions and away from others via unique functions (8).
Like fusion, fusion+ can be interactively displayed, down-
loaded, and colored by the users’ choices. For both net-
work types, users can further retrieve the functions shared
by the selected organisms––the core-functional repertoire
of the set. Note that the primary function annotation of
each functional cluster is the myRAST (5) description most
commonly assigned to the cluster members. For each cluster
we also include the corresponding Pfam (2) families. This
feature is an efficient tool for investigating functions under-
lying organism diversification, particularly within different
environment conditions.

In the map section, users can submit their own new organ-
ism proteomes (in fasta format) to our server (SOM Fig-
ure S3). The server sends out emails to users when map-
ping is finished. The map result page contains two tables
containing (a) functional annotations, including the asso-
ciated fusionDB reference sequences and proteins of the

query organism that mapped to each functional cluster, as
well as (b) similarity (Eq. 2) to the reference organisms in
fusionDB, including functional repertoire size, functional
overlap with the query, and metadata. Tables can be eas-
ily sorted, searched and exported as comma-separated files.
The submitted proteome is further mapped to user-selected
reference organisms with fusion and/or fusion+ as described
above (Figure 1).

similarity = shared functions
the larger functional repertoire size

(2)

Analysis of environment-driven organism similarity

For each environmental condition in fusionDB, we sam-
pled organism pairs where organisms were from (a) the
same condition (SC, e.g. both mesophiles) and (b) differ-
ent conditions (DC, e.g. thermophile versus mesophile).
To alleviate the effects of data bias, the organisms in one
pair were always selected from different taxonomic groups
(different families). The smallest available set of pairs,
SC-psychrophile contained 33 organisms from 17 families
(SOM Table S1; 136 pairs––48 same phylum, 88 different
phyla; due to high functional diversity of Proteobacteria,
its classes were considered independent phyla). For all other
environmental factors we sampled (bootstrap with 100 re-
samples) 136 organism pairs for both SC and DC sets, cov-
ering this same minimum taxonomic diversity. We calcu-
lated the pairwise functional similarity (Eq. 2) distributions
and discarded organism pairs with <5% similarity.

RESULTS AND DISCUSSION

Mapping a new Synechococcus genome to fusionDB

We downloaded the full genome of Synechococcus sp. PCC
7502 (GCA 000317085.1) as translated protein sequence
fasta (.faa file) from the NCBI Genbank (9) and submit-
ted it to our web interface. This 3,318 protein fresh water
Cyanobacteria is isolated from a Sphagnum (peat moss) bog
(6). 86% (2,853) of the bacterial proteins mapped to 2208
fusionDB functions, while 462 (14%) were functional sin-
gletons; three proteins exceeded runtime and were excluded
(Methods). The whole process from submission to results
notification e-mail took under three and a half hours. The
mapping indicates that Synechococcus sp. PCC 7502 is most
functionally similar (56%) to Synechocystis PCC 6803, a
fresh water organism evolutionarily closely related to Syne-
chococcus. It also shares a high functional similarity with a
mud Synechococcus (S.sp. PCC 7002; 53%) and with other
fresh water Synechococcus (S. elongatus PCC 7942 and S.
elongatus PCC 6301; 52%). Notably, but not surprisingly,
Synechococcus sp. PCC 7502 shares much less functional
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Figure 1. Screenshot of the organism mapping result page. (A) The ‘Mapped Functions’ table lists the functions that the submitted organism is mapped to.
For each function, associated proteins from fusionDB and mapped query proteins can be displayed. (B) The ‘Organism Similarities’ table displays, all 1374
fusionDB organisms and their functional similarities to the query organism, including additional information such as environmental metadata; the view
can be toggled between all and user-selected organisms. fusion(+) networks of the query and user-selected organisms can be created for on-site visualization
(see Figure 2) or download.
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Figure 2. Screenshot of the fusion+ visualization of all Synechoccocus genomes. The submitted Synechococcus sp. PCC 7502 (query, black) clusters with
the fresh water Synechococcus organisms (magenta). Note that Synechococcus sp. PCC 7002 – clustered among fresh water organisms; colored dark blue
(marine) – is isolated from marine mud. It is salt tolerant but does not require salt for growth).

similarity (40–42%) with the marine Synechococcus bacte-
ria. This relationship is clearly demonstrated by the fusion+
networks (Figure 2). There are 874 functions shared by all
the twelve Synechococcus (SOM Data 1), the core-function
repertoire for this genus, and 1128 functions shared among
only the fresh water Synechococcus (SOM Data 2). These
differential 254 functions (SOM Data 3) are likely impor-
tant for living in fresh water, as opposed to marine, envi-
ronment, e.g. low salinity and low osmotic pressure.

Environment significantly affects microbial function

In our evaluation of the effects of environmental pres-
sures on microbial functionality we found that, in general,
same environmental condition (SC) organisms across all
environmental factors are more functionally similar than
DC organisms (from different environments; Figure 3; with
some exceptions mentioned below, Kolmogorov-Smirnov
test (14) P-value < 2.5e–6). This finding is intuitive and
many studies have demonstrated the presence of horizon-
tal gene transfer (HGT) within environment-specific mi-

crobiomes (15–17). Our results, however, for the first time,
quantify on a broad scale the environmental impact on mi-
croorganism function diversification.

SC-thermophile and SC-psychrophile pairs demonstrate
significantly higher similarities when compared to DC pairs
(Figure 3A). Notably, the higher functional similarity be-
tween thermophiles than between psychrophiles suggests
that protein functional adaptation to low temperature may
be less taxing than to high temperature – an interesting
finding in itself. When contrasted with the extremophiles,
mesophiles seem to have much larger functional diversity;
in fact, SC-mesophile similarities are comparable to those
of DC pairs (Figure 3A).

Different molecular pathways of aerobic-respiration and
anaerobic-respiration/fermentation may explain the high
level of dissimilarity between the aerobes and anaer-
obes (DC-anaerobe-aerobe; Figure 3B). Interestingly, the
SC-anaerobe similarities are higher than the SC-aerobe
similarities, likely because the more ancient anaerobic-
respiration/fermentation machinery tends to be simpler
(fewer reactions) (18) and more conserved.
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Figure 3. Organism pairwise similarity is higher among organisms living
in the same environmental conditions. The mean pairwise similarity for
same (SC) and different (DC) condition organisms according to (A) tem-
perature, (B) oxygen and (C) habitat preferences. For all points without
error bars, the standard errors are vanishingly small.

Different habitat (DC) samples show lower pairwise or-
ganism similarity than SC samples as well (Figure 3C). In-
terestingly fresh water and marine organism similarity (DC-
fresh water-marine) is fairly high, likely due to overlaps in
requirements of the aquatic conditions. Note however, that
the dissimilarity across fresh water and marine conditions
is still high enough to differentiate organisms of the same
taxa (e.g. strains of Synechococcus in Figure 2). SC-host has
the lowest mean organism similarity of the habitat SC sam-
ples; we speculate this to be a result of differential adap-
tations necessary to deal with diverse host defense mech-
anisms (19). The soil organisms also share low functional
similarity, which is likely due to soil heterogeneity at physi-
cal, chemical, and biological levels, from nano- to landscape
scale (20).

Case study of a temperature driven HGT event

Using the fusionDB explore functionality, we extracted ther-
mophilic, mesophilic, and psychrophilic species representa-
tives (one per species) of the Bacillus genus. We also added
two other thermophilic Clostridia, Desulfotomaculum car-
boxydivorans CO-1-SRB and Sulfobacillus acidophilus TPY,
to generate a fusion+ network (SOM Table S2; Figure
S4A). As expected, note here that overall thermophilic bac-
teria are further removed from psychrophiles than from
mesophiles. Moreover, the thermophilic Bacilli were more
closely related to the non-Bacillus thermophiles than to
other Bacilli. The three Bacilli thermophiles share 29 func-
tions (SOM Data 4) that are not found in other Bacilli
in this organism set, three of which also exist in the two
thermophilc Clostridia. One is a likely pyruvate phosphate
dikinase (PPDK) that, in extremophiles, works as a pri-
mary glycolysis enzyme (21). The thermophilic Bacilli’s
PPDK proteins are more similar to those in thermophilic
Clostridia (sequence identity = 0.65 ± 0.03), than to those in

Figure 4. fusionDB reveals an HGT event between thermophilic Bacilli
and thermophilic Clostridia. (A) fusion+ visualization of Bacillus and ther-
mophilc Clostridia. Large organism nodes are connected via small func-
tion nodes. The two thermophilic Clostridia are connected to the ther-
mophilic Bacilli via functions that are possibly horizontally transferred;
(B) phylogenetic analysis of pyruvate, phosphate dikinase (PPDK) gene
suggests HGT between thermophilic Bacilli and thermophilic Clostridia.
The PPDK genes in thermophilic Bacilli are evolutionarily more related to
those in thermophilic Clostridia than those in other Bacilli.

mesophilic/psychrophilic Bacilli (sequence identity = 0.17
± 0.05). Phylogenetic analysis of the genes with additional
thermophilic organisms (SOM Methods) suggests a likely
HGT event between the thermophilic organisms (Figure
4B). The other two shared functions are carried out by pro-
teins translated from mobile genetic elements (MGEs) that
mediate the movement of DNA within genomes or between
bacteria (22). Shared closely-related MGEs in distant or-
ganisms imply HGT (23). We thus suggest that fusionDB
offers a fast and easy way to trace likely functionally neces-
sary HGT events within niche-specific microbial communi-
ties.

In this work, we have highlighted the importance of en-
vironmental factors for microbial function, and demon-
strated the capability of fusionDB to not only annotate
functions, but also directly link function to environment.
Although it was developed for mapping new microbial
genomes, fusionDB also has the potential for microbiome
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annotations. By mapping metagenome assemblies to fu-
sionDB, both the functional and taxonomical annotations
can be obtained. Moreover, our recent work (Zhu et al.
2017, Functional sequencing read annotation for high pre-
cision microbiome analysis, submitted) suggests that accu-
rate functional annotations can also be obtained without
assembly. We thus also expect to make fusionDB useful in
this type of analyses in the near future.

CONCLUSIONS

fusionDB links microbial functional similarities and envi-
ronmental preferences. Our analysis reveals environmen-
tal factors driving microbial functional diversification. By
mapping new organisms to the reference functional space,
our database offers a novel, fast, and simple way to detect
core-function repertoires, unique functions, as well as traces
of HGT. With more microbial genome sequencing and fur-
ther manual curation of environmental metadata, we ex-
pect that fusionDB will become an integral part of microbial
functional analysis protocols in the near future.

AVAILABILITY

fusionDB is publicly available at http://services.
bromberglab.org/fusiondb/

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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4.2 Functional sequencing read annotation for high precision
microbiome analysis

4.2.1 Preface

Current research provides substantial evidence that the repertoire of functions embodied
in microbiomes is strongly associated with disease state [89]. Therefore, the ability to
uncover functional profiles of microbiome samples with high accuracy and efficiency is
extremely beneficial. This is especially gaining attention for diagnostic purposes. In
the majority of cases it is practically impossible to separate individual microorganisms
within a microbiome community. Consequently, the most common approach to analyze
microbial functionality is to sequence the entire metagenome instead. Functional anno-
tation of the metagenome can be achieved with or without gene assembly. Commonly,
the high number of unassembled reads, chimeric assemblies and issues encountered by
gene finding tools are obstacles when choosing the latter route. Existing methods like
MG-RAST [90] can access molecular functionality of the entire community. However,
as annotations are usually based on homology, high frequency of short read lengths
pose a problem. Those reads are likely to be functionally misannotated as they may
be mapped to an incorrect sequence. Another, often neglected complication that causes
faulty annotations is the inaccurate computational annotation of most genes in the com-
piled reference databases [91]. In summary, currently available pipelines for microbiome
functional annotation are either lacking in precision or speed to be applicable for large
scale analysis.

To address these issues we developed mi-faser, an extremely fast and accurate (> 90%
precision) method for annotation of molecular functionality encoded in microbiome se-
quencing read data. To avoid erroneous annotation mappings, we compiled a new refer-
ence database from which annotations are transferred. We explicitly used only protein
sequences with experimentally annotated molecular functions. mi-faser does not require
time consuming assembly or error prone gene finding pre-processing steps. To further
speed up the alignment of translated reads against the reference database without miss-
ing potential hits, mi-faser uses DIAMOND [92] instead of PSI-BLAST. The publicly
available web service allows the user to process 10GB of reads in less then 20 minutes
using our clubber load balancer (described in section 3.1) as back-end. In a soon to
be released update, this time frame will be further reduced to about half. We built a
comprehensive web interface, which allows for further in depth analyses. Once an input
metagenome is functionally annotated, any subsets of retrieved enzymatic functions can
be mapped to the KEGG database [93] to uncover common metabolic pathways. mi-
faser includes means to compare functional profiles of microbiomes, either against each
other or versus a set of reference metagenomes (i.e. sequenced microbiome of healthy
individuals). The distances between function profiles can be easily visualized by the
provided NMDS plots. This allows for direct comparison of functional abundance pro-
files between microbiome samples i.e. from healthy and disease-associated individuals.
We demonstrated this ability analyzing microbial functions associated with CD using
samples available in the Biobank popgen [94]. We used the mi-faser pipeline to process
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11 microbiomes from individuals of the same extended family - two CD affected patients
and nine first-degree relatives. The nine healthy individuals shared highly similar mi-
crobiome functional profiles, whereas the two affected patients exhibited distinct profiles
from those of their healthy relatives. However, the two affected profiles also differed
from each other, hinting at either different microbial pathogenesis mechanisms of CD
or a diverse impact of the disease on microbiome functionality. Further we were able
to identify functional signatures of individual-specific gut microbiome responses to a
dietary intervention in children affected by Prader-Willi syndrome (PWS) [95]. Finally
we uncovered previously unseen oil degradation-specific functions in metagenomic data
collected from beach sands in different stages of oil contamination [96]. Overall, we
developed an extremely fast method for microbiome function annotation which outper-
forms other approaches not only by processing speed but also by coverage at the same
precision. The comprehensive web interface allows for large scale batch analysis and
offers various means for further in-depth analysis.

The original mi-faser algorithm was developed by Chengsheng Zhu. Rewriting for
optimization, paralellization and the standalone version was done by me. The mi-faser
web service front- and back-end was developed by me. Analysis and evaluation was
done by Chengsheng Zhu. The project was designed by Chengsheng Zhu and Yana
Bromberg. The manuscript was drafted by Chengsheng Zhu and Yana Bromberg. mi-
faser is available as Git repository [97] and is archived via DOI [98].

4.2.2 Journal article. Zhu, Miller & Marpaka et al., Journal of Nucleic
Acids Research 2017

Supplementary material can be found online at [99]. The published article is attached
below.
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ABSTRACT

The vast majority of microorganisms on Earth
reside in often-inseparable environment-specific
communities––microbiomes. Meta-genomic/-
transcriptomic sequencing could reveal the
otherwise inaccessible functionality of micro-
biomes. However, existing analytical approaches
focus on attributing sequencing reads to known
genes/genomes, often failing to make maximal
use of available data. We created faser (functional
annotation of sequencing reads), an algorithm that
is optimized to map reads to molecular functions
encoded by the read-correspondent genes. The mi-
faser microbiome analysis pipeline, combining faser
with our manually curated reference database of
protein functions, accurately annotates microbiome
molecular functionality. mi-faser’s minutes-per-
microbiome processing speed is significantly faster
than that of other methods, allowing for large scale
comparisons. Microbiome function vectors can be
compared between different conditions to high-
light environment-specific and/or time-dependent
changes in functionality. Here, we identified previ-
ously unseen oil degradation-specific functions in
BP oil-spill data, as well as functional signatures
of individual-specific gut microbiome responses to

a dietary intervention in children with Prader–Willi
syndrome. Our method also revealed variability in
Crohn’s Disease patient microbiomes and clearly
distinguished them from those of related healthy
individuals. Our analysis highlighted the microbiome
role in CD pathogenicity, demonstrating enrichment
of patient microbiomes in functions that promote
inflammation and that help bacteria survive it.

INTRODUCTION

Microorganisms inhabit every available niche of our planet,
and our bodies are no exception. Microbes that survive
and thrive in the environments at the extremes of temper-
ature, pH, and chemical or radiation contamination pos-
sess unique molecular functions of high industrial, clinical,
and bioremediation value. The human body microbiome
critically impacts our health. For example, Crohn’s disease
(CD) is a multifactorial disorder resulting from the inter-
play of individual genetic susceptibility, the gastrointestinal
(GI) microbiome and other environmental factors. Taxo-
nomic surveys of the GI microbiome have revealed micro-
bial community features that are unique to CD patients,
e.g. overall loss of microbial diversity (1,2), as well as deple-
tion and enrichment of certain bacterial taxa (3–6). Estab-
lishing whether these observed microbial community shifts
contribute to pathogenesis or, instead, correlate with or re-
sult from the disease onset, requires understanding not only
what are the microbes involved, but also what they do. Ear-
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lier studies indicate that in association with CD, the micro-
biome molecular function potential is more consistently dis-
turbed than taxonomic makeup (7). More thorough func-
tional analyses, e.g. based on deep metagenomic sequenc-
ing, are necessary to elucidate these findings.

Metagenome functional annotation can be performed
with or without genome assembly. If the reads can be as-
sembled into large contigs, existing annotation pipelines,
such as RAST (8) and IMG (9), can be applied. However,
assembly is difficult and often plagued by a large fraction
of unassembled reads or short length contigs, which be-
long to the minor microbiome members, and by chimeric
assemblies, which are especially common for complex and
highly diverse samples (see Sczyrba et al., 2017, doi: https:
//doi.org/10.1101/099127). Downstream gene finding algo-
rithms are further faced with incomplete and erroneously
assembled sequences, complicating statistical model con-
structions. Read-based annotation, e.g. using a platform
such as MG-RAST (10), can access molecular functional-
ity of the entire community. However, reads are usually an-
notated via function transfer by homology that, due to the
short read length, is lacking in precision. This inaccuracy is
additionally compounded by the erroneous computational
annotations of most genes in the reference databases (11).

Here, we compiled a gold standard set of reference pro-
teins (GS), with experimentally annotated molecular func-
tions. We further developed faser (functional annotation
of sequencing reads), an algorithm that uses alignments of
translated sequencing reads to full-length proteins to anno-
tate read-‘parent protein’ molecular functionality. faser an-
notates reads with higher precision at higher resolution, i.e.
more specific functionality, than BLAST or PSI-BLAST.
In a benchmark test, the functional annotations produced
by the combination of the faser algorithm with the GS
database were 12% more accurate than MG-RAST. Note
that this performance may be an overestimate because the
benchmark metagenome included the GS database. How-
ever, when GS was replaced with md5nr, MG-RAST’s ref-
erence database, faser annotated 20% more reads than MG-
RAST at a comparable precision level. These results illus-
trate that the GS and faser combination improves on MG-
RAST capabilities.

Our mi-faser pipeline implementation (Figure 1), com-
bining faser and GS, is highly parallelized, making use of
all available compute cores and processing a (∼10GB/70M
read) meta-genomic/-transcriptomic file in under half an
hour (using 400 compute cores, on average). Note that if
multiple microbiomes are submitted for annotation in par-
allel, the time scales favourably; in testing, 17 metagenomes
were processed within 66 minutes. mi-faser results for
all microbiomes analysed in this manuscript are available
at http://services.bromberglab.org/mifaser/results/example.
The standalone version of the pipeline, along with the
mi-faser source code, is available at https://bitbucket.org/
bromberglab/mifaser, as well as on the bromberglab web-
site.

We applied our mi-faser to metagenomic data collected
from beach sands in different stages of oil contamination
(12). Here, mi-faser was able to identify oil degradation
functionality that was missed by MG-RAST. We further
performed large-scale analysis of 68 metagenomic datasets

Figure 1. mi-faser pipeline. mi-faser is parallelized and runs a load bal-
ancer to submit jobs to available [1–2000] compute cores. Under normal
functioning conditions (∼400 available cores, on average), it takes ∼30 min
to process a single (10G/70M read) meta-genome/-transcriptome.

from a study of dietary intervention in Prader-Willi syn-
drome (PWS) affected obese children. Each dataset was
processed in approximately 16 minutes, highlighting mi-
faser’s processing speed. We identified previously unseen
individual-specific patterns in microbiome changes induced
by the treatment. Finally, we also analyzed the GI tract
microbiome data from Crohn’s Disease (CD) patients and
their relatives. We found the microbiome functional pro-
files were similar between healthy individuals but differ-
ent across patients and between patients and their healthy
relatives. Particularly, our analysis revealed that CD pa-
tients’ microbiomes were enriched in functions that help
bacteria survive inflammation, i.e. glutathione metabolism
and RNA modification, and in functions that cause inflam-
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mation, i.e. lipopolysaccharide and acetaldehyde produc-
tion. These results suggest the microbiome’s role in CD-
associated pathogenicity.

MATERIALS AND METHODS

Datasets

To compile the PE1-set, we extracted from SwissProt (Oct.
2015) (13) proteins that are (i) bacterial, (ii) with evidence
of existence, i.e. SwissProt protein evidence is 1, and (iii)
explicitly assigned an E.C. (Enzyme Commission) number
(14); note that we excluded proteins with incomplete an-
notations, e.g. 1.1.1.-, as well as those with multiple an-
notations. From the PE1-set, we further extracted proteins
whose functions are experimentally verified (Evidence =
’any experimental assertion’; EXP-set).

From the Catalytic Site Atlas database (CSA-set) (15)
we extracted all proteins that had literature-based annota-
tions. We identified the overlap between the PE1-set and
these proteins, and defined our gold-standard dataset (GS-
set; Supplementary Data 1) as the combination of CSA-set
and EXP-set, with 100% identical sequences removed.

For each protein of the PE1-set and GS-set, we extracted
the corresponding gene from ENA (European Nucleotide
Archive) (16) (including 5′ UTR and 3′ UTR) and randomly
generated 10 DNA reads (50–250 nucleotides) that overlap
by at least one nucleotide of the coding region. We further
performed 6-frame translations of the reads and excluded
peptides shorter than 11 amino acids. We defined the corre-
sponding peptide collection as rPE1-set and rGS-set.

We downloaded from MG-RAST the md5nr database
and defined its proteins as the md5nr-set.

We obtained six beach sand metagenomes from a pre-
vious study of the Deepwater Horizon oil spill (12). Here,
metagenomic DNA was sequenced using Illumina MiSeq
with paired-end strategy to produce 151 bp reads. The
samples reside in NCBI (BioProject PRJNA260285), in-
cluding (i) pre-oil phase samples, OS-S1 (SRX692936)
and OS-S2 (SRX695904), (ii) oil phase samples, OS-A
(SRX696142) and OS-B (SRX696240) and (iii) post-oil re-
covered phase samples, OS-I600 (SRX696250) and OS-I606
(SRX696254).

We also obtained 68 gut metagenomic sequencing
datasets (SRA (17) accession number SRP045211) from a
study of dietary intervention in Chinese children affected
by PWS (18). Fecal DNA samples before and after the treat-
ment (n = 17, at Day 0, 30, 60 and 90) were sequenced us-
ing Illumina HiSeq 2000 with paired-end strategy to pro-
duce 100 bp reads. The quality control was performed as
described in the previous study (18).

We additionally obtained 11 human gut (fecal) micro-
biome samples from a family affected by CD from the Pop-
Gen biobank (Schleswig-Holstein, Germany; accessible via
a Material Data Access Form. Information and application
procedures for data access can be found at http://www.uksh.
de/p2n/Information±for±Researchers.html). Of these, nine
members were self-reported as healthy and two were af-
fected. Metagenomic data were generated using the Illu-
mina Nextera DNA Library Prep Kit and sequenced 2
× 125 bp on an Illumina HiSeq2500. In total, 424.8 mil-
lion paired-end reads were generated with a median num-

ber of 38.9 million read pairs per sample. Adapter trim-
ming was performed using Trimmomatic (19) in paired-end
mode, discarding reads shorter than 60 bp. Quality filtering
was done using Sickle (20) run in paired-end mode, with
a quality threshold of 20 and a minimum length of 60 bp.
To remove contaminating host sequences from the dataset,
DeconSeq (v0.4.3) (21) was run with the human reference
genome (GRCh38) as database. Only read-pairs where both
sequences survived quality control were retained. On aver-
age 11.76% of raw reads were discarded, leaving 374.8 mil-
lion read pairs for downstream analysis.

faser curve optimization

We PSI-BLASTed the rGS-set against the GS-set (parame-
ters: evalue 1e−3; inclusion ethresh 1e−10; num iterations 3;
max target seqs 1 000 000), excluding self-hits, i.e. peptide
hits of their ‘parent’ proteins. For any peptide, functional
annotation (E.C. number) was inherited from the ‘parent’
protein; one nucleotide overlap required to transfer anno-
tation. A peptide-protein alignment is considered positive
if the functional annotations of the peptide and the aligned
protein match exactly at the selected number of E.C. digits,
and negative otherwise. Any given alignment can be plotted
in an L (alignment length) vs. Id (alignment sequence iden-
tity) two-dimensional space. Further, an exponential decay
curve (as for HSSP calculations, (22)) can be used to iden-
tify the alignments in this space as true positives (alignments
of peptides to proteins of identical function that fall above
or on the curve), false positives (different functions above
or on the curve), true negatives (different functions below
the curve) and false negatives (identical functions below the
curve). From these values, we calculated precision (positive
accuracy; Equation 1) and recall (positive coverage; Equa-
tion 2) for different curve parameters (a and b in Equation
4), optimizing the latter to fit a curve best separating pos-
itive from negative alignments in terms of the highest F-
measure (Equation 3).

Precision = True Positive
True Positive + False Positive

(1)

Recall = True Positive
True Positive + False Negative

(2)

F = 2 × Precision × Recall
Precision + Recall

(3)

b × L
−a×

(
1+e− L

1000

)
(4)

To avoid overestimating performance of faser, we clus-
tered the GS-set with CD-hit at 40% sequence identity and
split the clusters into ten subsets. We further optimized faser
curve parameters in 10-fold cross-validation, i.e. we itera-
tively optimized the curve on nine subsets and tested it on
the remaining one, repeating this process 10 times for a dif-
ferent subset as the test set. We evaluated the performance
reported here by summing the numbers of true and false
positives and negatives in each test set. As all ten curves were
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very similar in parameters, we took the average of these to
establish the final faser curve.

To summarise, the faser curve is meant to predict from a
peptide-protein alignment, whether the ‘parent’ protein of
the peptide and the aligned protein share the same function
(E.C. annotation). Additionally, the distance of the align-
ment point to the curve along the sequence identity (Id) axis
indicates the reliability of the prediction.

Evaluating faser using DIAMOND results

We extracted the proteins from the GS-set and md5nr-set
that had identical UniProt IDs. We performed searches
against the md5nr database using PSI-BLAST (parame-
ters: evalue 1e−3; inclusion ethresh 1e−10; num iterations 3;
max target seqs 1 000 000), BLASTP (parameters: evalue
1e−3; max target seqs 1 000 000), and DIAMOND (param-
eters: min-score 10; k 1 000 000). We further excluded from
the results the alignments to subject proteins that were not
in the overlap set. We compared the faser values calculated
from the results of different alignment algorithms by per-
forming a 100-fold bootstrap, sampling ∼20% of the results
at each iteration. Note that we used the bootstrap approach
to assess the consistency of the observed performance dif-
ferences.

Comparison to other methods

We submitted the artificial metagenome as well as the six
sand metagenomes for processing to MG-RAST via its
website and downloaded the resulting function annotations
via the MG-RAST API (23). We used the KEGG (24) anno-
tations from the md5nr database to establish the annotated
E.C.s. Note that although proteins can carry out multiple
functions, in this study we, conservatively, only included
proteins with unique and complete E.C. annotations; i.e. we
excluded proteins with incomplete or multiple E.C. annota-
tions.

We compared different database/algorithm combina-
tions for the annotation of the same sample (Supplemen-
tary Figure S2). The Venn diagrams of the numbers of E.C.s
annotated by different such combinations were generated
by Venny (25). When comparing across sand metagenome
samples from different phases, sample-specific E.C.s were
removed as uninformative (<1% of total E.C.s in both
cases). The correlation between samples was calculated with
Spearman’s rho, � , offered in the R package, Hmisc (26).

Two other tools, Fun4Me and ShotMAP, were installed
locally and run on the artificial metagenome with default
parameters; for both, we compared the precision of the
methods (Equation 1) as well as the number of correctly an-
notated reads.

Functional analysis of PWS dietary intervention
metagenomes

We performed NMDS (Non-metric multidimensional scal-
ing) (27) analysis and the subsequent permanova test using
the Vegan R package (28) and calculated the Euclidean dis-
tance between samples in the NMDS graph. Within the un-
treated Day0 group of samples, we identified outliers (indi-
viduals with inter-sample distance two standard deviations

away from the average distance; 3% of all distances). All
time-point samples of these individuals were removed from
subsequent analysis. For remaining individuals, we com-
pared the distances within each time-point group, as well
as the distances of all the time points from Day0 for every
individual separately.

Functional analysis of CD metagenomes

As described above, NMDS analysis (Shepard plot in Sup-
plementary Figure S10), along with the subsequent per-
manova test was carried out using the Vegan R package
(28). From the distributions of E.C.s in the microbiomes
of healthy individuals, we calculated the ‘confidence range’
for each E.C. as Q1 – 3*IQR (three interquartile ranges be-
low the first quartile) to Q3 + 3*IQR (three interquartile
ranges above the third quartile). Patient E.C.s that fell out-
side this range were identified as significantly depleted or
enriched, respectively. Pathway analysis was performed with
the KEGG Mapper tool (24). Jaccard Index was calculated
as the size of intersection divided by the size of union of the
two sample sets.

RESULTS AND DISCUSSION

Few proteins have experimentally verified function annotation

Among the 332 193 bacterial proteins in SwissProt (Oct.
2015) (13,29), only 18 240 (∼5%) are annotated as existing
with evidence at protein level. Of these, we extracted 5 965
that have unique (one per protein) and explicit (all four dig-
its) Enzyme Commission (E.C.) annotations (PE1-set; Ma-
terials and Methods). From our PE1-set, we further selected
proteins whose functions were experimentally verified, as
noted in the Catalytic Site Atlas (CSA-set) (15) or Swis-
sProt (EXP-set) (13,29). After filtering, our set contained
2 848 (2 810 non-redundant at 100% sequence identity; GS-
set) bacterial proteins of experimentally verified function.
Note that analysis of available mass-spectrometry databases
(30,31) is likely to retrieve a much larger set of verified ex-
isting proteins; however, these are not yet experimentally
annotated for molecular functionality. Thus, our collection
is the cleanest available dataset of functional annotations;
i.e. functional annotations in public databases are usually
based on (many rounds of) function transfer by homology
and are, as such, often questionable.

faser is more accurate for function transfer by homology than
PSI-BLAST

We created artificial reads from the gene nucleotide se-
quences corresponding to the proteins in GS-set and PE1-
set (6-frame translated to peptides, rGS-set and rPE1-set,
Materials and Methods). We further PSI-BLASTed (32) the
rGS-set against GS-set, excluding self-hits, to determine the
equation of the curve (Equation 5) separating the correct
alignments (same function) from the incorrect ones (dif-
ferent functions) in the L (alignment length) versus Id (se-
quence identity) space. Our approach was modeled after
the HSSP metric for function transfer between full-length
proteins (22,33). We optimized the curve parameters to
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Figure 2. faser outperforms PSI-BLAST in annotating read functions. At
most cutoffs, faser (filled circles) is more precise than PSI-BLAST (empty
circles). For example, for nearly half the reads, it provides as much as 90%
annotation accuracy as compared to 57% attained by PSI-BLAST (arrows
at faser score = 20 and e-value = e−18). At the default cutoff of 0, faser
attains similar accuracy as PSI-BLAST at e-value = e−18, but for ∼35%
more reads.

maximize the F measure (Materials and Methods), repre-
sentative of best separation of peptide–protein alignments
of the same function (E.C. annotation) from those of dif-
ferent functions (Methods). Thus, if a given alignment is
above the curve, the ‘parent protein’ of the peptide and the
aligned reference protein are predicted to share function.
The faser score (the distance from the curve along the Id
axis) indicates the reliability of such predictions. This mea-
sure clearly outperforms PSI-BLAST e-value in annotat-
ing function (Fmax of 0.76 versus 0.63, respectively; Equa-
tion (3), the highest F measure as in (34); recall in Figure
2 was calculated with the background of all PSI-BLAST
results at e-value = 10−3). For example, at recall levels of
∼50%, the faser score (=20) is nearly 90% accurate, which
is >30% more than e-value (=10−18; Figure 2). E-value
reaches ∼90% precision at cut-offs <10−36, which corre-
sponds to recall of <7% (Figure 2).

The number of matching E.C. digits reflects the level of
resolution of function annotation; i.e. proteins that share
only the first three E.C. digits have similar functions with
slight differences. For example, both 1.1.1.1 and 1.1.1.2 are
alcohol dehydrogenases, but with different electron accep-
tors: NAD+ and NADP+, respectively. PSI-BLAST ex-
hibits comparable performance to faser when matching the
first three E.C. digits (Supplementary Figure S1A), but fails
to differentiate functions at the fourth digit resolution level,
producing a large number of false positives (Figure 2). faser
resolves the fourth E.C. digit at >90% precision with >40%
recall. At all cut-offs, when compared to PSI-BLAST, faser

Table 1. Artificial metagenome (rPE1-set) annotation by FG, FM and MM

FG FM MM

Annotated reads 34 851 48 481 30 800
Multi-E.C. readsa 1004 11 373 200
Erroneously annotated reads 416 5705 4237
Correctly annotated reads 33 431 31 103 26 363
Precision 99% 85% 86%

aReads with multiple E.C. annotations were excluded from the analysis.

consistently offers as much as ∼50% higher recall at same
precision level and up to ∼25% higher precision at same re-
call level (Figure 2).

faser score =
{ −100, L < 11

Id − 352.3L
−0.302×

(
1+e− L

1000

)
, L ≥ 11

(5)

Note that a previous study has shown that PSI-BLAST
is not necessarily the best alignment method for function
transfer, e.g. it was inferior to BLAST (34). Although faser
was developed using PSI-BLAST, it can also be calculated
via other alignment mechanisms. To alleviate the long align-
ment runtimes, we exhaustively tested our options (includ-
ing comparing BLAST performance to PSI-BLAST) and
ended up switching to DIAMOND (35) (Supplementary
Text S1).

faser outperforms MG-RAST

We compared faser performance to that of MG-RAST
(10), one of the most popular public metagenome an-
notation platforms. We considered both algorithm and
database levels using the: (i) faser algorithm with the GS-
set database (FG, the mi-faser pipeline); (ii) faser algo-
rithm with the md5nr database (36) (FM; faser-md5nr);
(iii) MG-RAST algorithm with md5nr database (MM, the
MG-RAST pipeline) (Supplementary Figure S2; Methods).
Note that we could not run the MG-RAST algorithm with
the GS-set database because the MG-RAST developers ad-
vised against it, citing complicated installation.

When the rPE1-set is used as the artificial metagenome,
the FG and MM annotations are significantly different (Ta-
ble 1), although both pipelines annotate a similar number of
reads (Figure 3A). This variation in performance is not bi-
ased toward any specific E.C. class (Supplementary Figure
S3). Note that the rPE1-set is a superset of GS-set, which
likely contributes to the improved performance of the FG
pipeline. The differences between FG and MM annotations
(Figure 3B, first column) stem from the differences between
the databases (GS-set vs. md5nr) and/or algorithms (faser
versus MG-RAST). The divergence between FG and FM
annotations (Figure 3B, second column) indicates that the
database differences contribute significantly to the FG/MM
variation. Note that this difference is not surprising as the
GS-set and md5nr share only 779 E.C.s (62% and 29%, re-
spectively).

The comparison between FM and MM results is more in-
teresting (Figure 3B, third column), as it highlights the dif-
ferences between the faser and MG-RAST algorithms. Us-
ing the same md5nr database, faser (FM) annotated ∼20%
more reads than MG-RAST (MM, Figure 3A) with compa-
rable precision (Table 1). Note that the precision reported in
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Figure 3. The faser algorithm in combination with the GS database annotates the artificial metagenome functions in a manner complementary to MG-
RAST. (A) The number of reads annotated by each combination of algorithms and databases; (B) the read abundance by E.C. annotated via each combi-
nation of algorithm/database; (C) the total E.C. count annotated via each combination of algorithm/database.

these comparisons is affected by the misannotation (∼14%),
i.e. UniProt proteins in both the GS-set and md5nr anno-
tated with different E.C. numbers – a finding, which is in line
with a previous study (11). FM and MM identified 923 E.C.s
in common, while 175 and 40 E.C.s were uniquely identi-
fied by faser and MG-RAST, respectively (Figure 3C). In
other words, for the same artificial metagenome, faser an-
notates ∼14% more functions (E.C.s) than MG-RAST al-
gorithms. After exclusion of the database-specific E.C.s, the
database impact was reduced (FG/FM, Supplementary Fig-
ure S4), yet we still observed substantial FG/MM differences
largely due to the faser vs. MG-RAST algorithms. Notably,
FM still annotates ∼8% more functions than MM (Supple-
mentary Figure S4).

To summarize, the faser method comprises an exponen-
tial decay curve separating the two-dimensional space of
alignment length versus sequence identity into ‘same func-
tion’ and ‘different functions’ peptide–protein alignments.
The distance from a given alignment to the curve along the
sequence identity axis is the final faser score. Implicitly, faser
tries to capture homology of the peptide’s ‘parent’ protein
to the subject protein of the alignment. In faser develop-
ment we used the database of experimentally described pro-
teins (GS-set) to optimize and evaluate performance. We
continue to use the GS database in the mi-faser implemen-
tation. However, faser alignment scoring can be applied to
any other database as well. Note that we set the default cut-
off of faser score at 20 for high precision (90%).

We further extended the comparison of the annotation
methods to six metagenomic samples from the Deepwater
Horizon oil spill beach sand study (12) (Methods). Note
that in this real-life case, there was no ‘correct’ annotation

to use for comparing annotation results. However, it ap-
pears that FM and MM results are orthogonal. For example,
for OS-A (oil phase) FM annotated >50% more reads than
MM (Supplementary Figure S5A); moreover, there were 220
E.C.s unique to FM and 42 E.C.s unique to MM (Sup-
plementary Figure S5C). Annotation of other samples fol-
lowed a similar pattern. Database differences resulted in a
significant disparity between the number of reads annotated
in each sample by FG and MM (e.g. Supplementary Fig-
ure S5B). However, both pipelines agreed that: (i) samples
taken in the same phase were highly functionally correlated
(Supplementary Tables S1 and S2), (ii) samples in oil phase
were functionally more correlated with samples in recovered
phase than pre-oil phase (Supplementary Tables S1 and S2,
which may indicate that the environment has not fully re-
covered from the contamination) and (iii) ∼20% of reads
in all samples mapped to housekeeping functions (house-
keeping E.C.s complied from (37)). This agreement across
methods suggests that FG reflects true variation in function-
ality between samples from a perspective complementary to
MM.

We further searched for functions enriched in oil phase
metagenomes as compared to either pre-oil or recovered
phases. FG returned 909 E.C.s (65%, 588 E.C.s, are GS-set
specific), while MM returned 1 627 E.C.s (65%, 1 062 E.C.s,
are md5nr specific). Note that even for the E.C.s present
in both databases, FG and MM revealed considerable dis-
crepancies in abundance fold-changes across phases; � =
0.46 (Spearman’s rho) for oil-to-recovered phase and only �
= 0.09 for oil-to-pre-oil phase (Supplementary Figure S6).
We explored E.C.s annotated by FG as highly enriched (≥5
times) in the oil phase as compared to other phases, yet un-
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changed or even decreased by MM. There are nine of these
E.C.s in oil-to-pre-oil comparison and ten in oil-to-recovered
comparison, with three E.C.s overlapping across compar-
isons; i.e. enriched in the oil phase as compared to either
pre-oil or recovered phases (Supplementary Tables S3 and
S4). Of the three overlapping E.C.s, two are particularly no-
table: 1.3.11.1 (catechol 1,2-dioxygenase) directly associates
with BTEX (benzene, toluene, ethylbenzene and xylenes)
degradation, while 1.8.99.1 (assimilatory sulfite reductase)
is essential for sulfur reducing bacteria, known to degrade
BTEX. Note that there were also three E.C.s annotated only
by MM that were enriched in the oil phase; however, we
were not able to identify them as being directly related to
oil degradation (Supplementary Tables S5 and S6).

We also compared our pipeline to two recently published
metagenome annotation tools, Fun4Me (38) and ShotMAP
(39), using the above-described artificial metagenome. Note
that Fun4Me includes its own reference database, which
cannot be changed on demand. ShotMAP allowed using
our GS-set as reference. FG correctly annotated 4 900 (17%)
more reads than Fun4Me. Additionally, when the multi-
EC-annotated reads were excluded, FG attained 7% higher
precision than Fun4Me (99% versus 92%, respectively; Sup-
plementary Table S7). While results were not as striking,
faser still outperformed ShotMAP (using our GS database)
with 1 160 (4%) more correctly annotated reads and 2%
higher precision (99% to 97%, respectively; Supplementary
Table S7). Notably, the entire run took mi-faser (standalone
version) 42 seconds, while Fun4Me required more than 25
minutes. The speed evaluation for ShotMAP was not pos-
sible via command-line due to installation issues, but the
virtual machine implementation was able to finish in 3 min-
utes.

mi-faser facilitates novel functional discovery, while acceler-
ating large-scale metagenomic analysis

The online service of mi-faser uses clubber (Cluster Load
Balancer for Bioinformatics e-Resources (40)) for faster
processing. To demonstrate our method’s performance we
obtained and analysed with mi-faser, 68 gut metagenomic
datasets from a study of Chinese children affected by the
PWS and treated via dietary intervention (Methods) (18).
The analysis was automatically distributed to three clus-
ters (640, 800, and 3400 cores with load-dependent ac-
cess) by clubber via the mi-faser interface, for an aver-
age of 16 minutes of user-wait time (11.8 CPU hours) per
metagenome.

Note that after NMDS Euclidean distance analysis of mi-
crobiomes of untreated individuals (Day0), four individuals
(GD12, GD39, GD41 and GD50) were identified as out-
liers and removed (Methods). While we do not expect that
all PWS-affected children share the same microbiome fea-
tures, we felt that treatment effect and progression could be
better evaluated from a narrow starting point.

For the remaining individuals (n = 13), it was clear
that the dietary intervention significantly altered gut micro-
biome functionality (Supplementary Figure S7; Day 0 ver-
sus Day>0, P-value = 0.001, permanova test). More pre-
cisely, the intervention gradually increased the functional
beta-diversity among the patients’ gut microbiomes (Figure

Figure 4. Functional capabilities of microbiomes of PWS patients shift in
the course of dietary intervention. (A) The boxplot of Euclidean distance
between samples of the same group (in-group distances), i.e. Day 0, 30, 60
or 90, on the NMDS diagram (Supplementary Figure S7). The in-group
diversity increases significantly with time; * indicates P-value <1e−4; **
indicates P-value <1e−14; there is no significance between Day 60 and
Day 90; t-test. (B) Two types of long term diet intervention effect on PWS
patients: type1 individuals (GD02, GD03, GD15, GD40, GD42, GD43,
GD47, GD51 and GD58) with gut microbiome functional capacity fur-
thest removed from Day 0 at Day 90; type 2 individuals (GD04, GD18,
GD52 and GD59) with gut microbiome functional capacity reversed at
Day 90 toward their Day 0.

4A; Supplementary Figure S7), which was in line with the
results of the original study (18).

We further investigated the treatment progress of each pa-
tient using the Euclidean distance of the Day 30, 60 and
90 samples from the Day 0 sample of the same individual.
Overall, the distances increased with the treatment progress
(Day 30, 0.09 ± 0.02; Day 60, 0.16 ± 0.02; Day 90, 0.2 ±
0.03; Supplementary Figure S7), indicating the progressive
changes of gut microbial functional potentials correlated
with the diet time-line. Although Day 90 samples showed
the highest dissimilarity from Day 0 samples in most cases,
four patients (GD04, GD18, GD52 and GD59) reached the
highest dissimilarity at Day 60, showing reversal of diet ef-
fects at Day 90 (Figure 4B). Follow-up studies on these dif-
ferential trajectories could contribute to a more thorough
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Figure 5. Functional capabilities of microbiomes of CD-affected individ-
uals differ from healthy individuals and from each other. (A) The pedi-
gree of the family in our study. Filled markers indicate CD affected indi-
viduals and empty markers are healthy individuals; dashed outline mark-
ers indicate individuals not included in this study. Individuals grouped by
circles live in the same household. (B) The non-metric multidimensional
scaling (NMDS) graph represents the distribution of individual micro-
biome functional profiles. Samples are labeled with identifiers (S1-S11)
and household numbers (H1, H2, or H3, in parenthesis). Legend marker
numbers (G1––grandparents, G2––parents, G3––children) represent gen-
erations, while marker shapes relate generations and CD status. Sick indi-
viduals (filled markers) localize separately from each other and from the
cluster of healthy individuals (empty markers).

understanding of the effectiveness of the dietary interven-
tion in PWS children.

mi-faser reveals microbial functions associated with Crohn’s
disease (CD)

We used our mi-faser pipeline (Figure 1) to analyse
11 microbiomes from individuals of the same extended
family––two CD affected patients and nine first-degree rel-
atives (Figure 5A). The members of this family live in three
households that are no more than 32km apart from each
other, with the CD affected individuals living in households
17 km away. No statistically significant distinction between
functional profiles of individuals in the study was observed

on the basis of generational or household differences (Fig-
ure 5B; P-value = 0.55 and 0.60 respectively, permanova test
(41)). The nine healthy individuals shared highly similar mi-
crobiome functional profiles (rho, � = 0.93 ± 0.03; Figure
5B; Supplementary Table S8). This finding is in line with
previous studies that show that microbiome functional pro-
files across healthy individuals are more consistently main-
tained than bacterial species profiles (7). On the other hand,
the microbiome functional profiles of the two CD patients
are not only distinct from those of their healthy relatives
(Figure 5B; � = 0.75±0.11; P-value = 0.02, permanova
test), but also between themselves (� = 0.72; Figure 5B;
Supplementary Table S8). Note that the former holds true
even within the same household. In concert, these findings
indicate that either there are different microbiome patho-
genesis mechanisms of CD or that CD has a diverse impact
on microbiome functionality.

We identified those E.C.s in our microbiomes whose
abundance significantly changed in each patient compared
to healthy individuals (Methods). S01 and S09 both have a
large fraction of such E.C.s (45% and 31% respectively, sum
of enriched and depleted, Supplementary Table S9). For ex-
ample, nine E.C.s enriched in both S01 and S09 are an-
notated as rRNA methyltransferases (Supplementary Ta-
ble S10), which are known to be essential for microbial re-
sponse to environmental stresses (42). Another three E.C.s
enriched in both patients are annotated as RNA pseudouri-
dine synthase. RNAs with modified nucleotides, such as
pseudouridine, have been shown to suppress host innate im-
mune system (43). Thus, RNA modification may be an im-
portant bacterial strategy of surviving the CD-associated
inflammation. We further explored these E.C.s to identify
pathways uniquely altered in each patient; e.g. more than
half of Biotin metabolism pathway E.C.s are altered in S01,
while Xylene degradation is enriched only in S09 (Figure
6). There are also pathways that are similarly changed in
both patients, i.e. they are enriched in the same E.C.s; for
example, glutathione metabolism and lipopolysaccharide
biosynthesis (Figure 6, Supplementary Figure S8). Given
the distant microbiome functional profiles between S01 and
S09 (Figure 5B), these similarities are unlikely to occur by
chance. Glutathione is known to help bacteria survive ox-
idative stress, thus the enriched glutathione pathway could
be a response to inflammation (44); a previous study has
reported enrichment in abundance of genes associated with
glutathione transportation in CD patients (7). However, the
latter study (7) also suggested a decrease in propanoate and
butanoate metabolism, both of which showed overall en-
richment in S01 and S09 (Figure 6). Finally, to the best
of our knowledge, the role of the lipopolysaccharide (LPS)
biosynthesis pathway in CD patient microbiomes has not
yet been reported. However, bacterial LPS is previously re-
ported to increase intestinal tight junction permeability in
mouse modules (45). Tight junctions normally form a se-
lective seal between adjacent intestinal epithelial cells. Its
increased permeability induces luminal pro-inflammatory
molecules, resulting in sustained inflammation and tissue
damage (46). Additionally, we also observed differences
within individual pathway changes between patients. For
example in the glycolysis/gluconeogenesis pathway, S01 is
depleted in proteins necessary to convert glucose to pyru-
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Figure 6. Enriched or depleted molecular pathways in microbiomes of CD-affected individuals. Changes in molecular pathways were obtained by counting
the numbers of enriched or depleted E.C.s as compared to microbiome functional profiles of the healthy family members.

Figure 7. Microbial function shift in CD patients is involved in inflammation. Functions that are associated with inflammation inducers (acetaldehyde
and lipopolysaccharide) are enriched in CD patient microbiomes, as are the functions that help bacteria survive inflammation conditions (glutathione
metabolism, rRNA methytransferase and RNA pseudouridine synthase). Note that pathways above are toy examples for illustration purposes only; light
gray nodes indicate enriched functions and white nodes indicate unchanged or undetected functions. Products are: ACE = acetaldehyde, LPS = lipopolysac-
charide, G-SH = glutathione, RNA = RNAs with methylation or pseudouridine.
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vate, while the pyruvate metabolism pathways are enriched
(Supplementary Figure S9A). S09 shows a similar pattern,
while enriching an alternative route from glyceraldehyde-
3P to glycerate-3P (Supplementary Figure S9B). Interest-
ingly, in both patients, most enriched E.C.s in pyruvate
metabolism lead to acetaldehyde production (Supplemen-
tary Figure S9), a metabolite also known to induce tight
junction disruption in intestinal epithelial cells (47). Thus,
our result indicates the microbiome function shift in CD pa-
tients contributes to pathogenicity, while helps the bacteria
survive host inflammation (Figure 7).

CONCLUSION

In this study, we compiled a ‘clean’ protein dataset with ex-
perimentally confirmed E.C. annotations (gold standard,
GS-set), and trained the faser algorithm to optimise trans-
fer of function annotation from reference proteins to short
peptides translated from sequencing reads. The faser al-
gorithm significantly outperforms PSI-BLAST in differ-
entiating functions at high-resolution levels. It also of-
fers ∼20% more annotations at comparable precision lev-
els than the function annotation algorithm of MG-RAST.
The (highly-parallelized and fast) mi-faser pipeline (faser
in combination with GS) was able to identify, in BP oil
spill data, unique candidate functions associated with oil-
degradation, which were missed by the MG-RAST pipeline.
Analysis of 68 metagenomic datasets from a dietary inter-
vention study in PWS patients highlighted previously un-
seen individual-specific trajectories of functional changes in
the gut microbiomes. Our pipeline also revealed that gas-
trointestinal microbiomes of related CD patients are func-
tionally very different. We observed two types of functions
enriched in CD patients: those that cause inflammation and
those that help bacteria survive inflammatory stress; these
may highlight the possible role of the microbiome in CD
pathogenicity. Note that all mi-faser annotations, although
highly informative, are based on the proteins making up the,
currently limited, GS-set. On the other hand, faser itself is
a robust read annotation algorithm that can be used with
any reference database supplied. We also expect the growth
in the number of proteins with experimentally verified func-
tions to make our approach even more powerful in the near
future.

AVAILABILITY

mi-faser is available online at http://services.bromberglab.
org/mifaser/.

The standalone version of the pipeline, along with the
mi-faser source code, is available at https://bitbucket.org/
bromberglab/mifaser. The DOI for the source code used in
this manuscript is https://doi.org/10.5281/zenodo.1045582,
and the DOI for the current GS database is https://doi.org/
10.5281/zenodo.1048268.

The fasta file for GS-set is available at http://bromberglab.
org/sites/default/files/SOM Data1 gold standard.fasta.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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González-Huix,F., López-Oliu,C., Dahbi,G., Blanco,J.E., Blanco,J.,
Garcia-Gil,J.L. and Darfeuille-Michaud,A. (2009) Molecular
diversity of Escherichia coli in the human gut: New ecological
evidence supporting the role of adherent-invasive E. coli (AIEC) in
Crohn’s disease. Inflamm. Bowel Dis., 15, 872–882.

7. Morgan,X.C., Tickle,T.L., Sokol,H., Gevers,D., Devaney,K.L.,
Ward,D.V., Reyes,J.A., Shah,S.A., LeLeiko,N., Snapper,S.B. et al.
(2012) Dysfunction of the intestinal microbiome in inflammatory
bowel disease and treatment. Genome Biol., 13, R79.

8. Aziz,R.K., Bartels,D., Best,A.A., DeJongh,M., Disz,T.,
Edwards,R.A., Formsma,K., Gerdes,S., Glass,E.M., Kubal,M. et al.
(2008) The RAST Server: rapid annotations using subsystems
technology. BMC Genomics, 9, 75.

9. Markowitz,V.M., Chen,I.-M.A., Palaniappan,K., Chu,K., Szeto,E.,
Pillay,M., Ratner,A., Huang,J., Woyke,T., Huntemann,M. et al.
(2014) IMG 4 version of the integrated microbial genomes
comparative analysis system. Nucleic Acids Res., 42, D560–D567.

10. Meyer,F., Paarmann,D., D’Souza,M., Olson,R., Glass,E., Kubal,M.,
Paczian,T., Rodriguez,A., Stevens,R., Wilke,A. et al. (2008) The
metagenomics RAST server – a public resource for the automatic
phylogenetic and functional analysis of metagenomes. BMC
Bioinformatics, 9, 386.

11. Schnoes,A.M., Brown,S.D., Dodevski,I. and Babbitt,P.C. (2009)
Annotation error in public databases: misannotation of molecular
function in enzyme superfamilies. PLoS Comput. Biol., 5, e1000605.

12. Rodriguez-R,L.M., Overholt,W.A., Hagan,C., Huettel,M.,
Kostka,J.E. and Konstantinidis,K.T. (2015) Microbial community
successional patterns in beach sands impacted by the Deepwater
Horizon oil spill. ISME J., 9, 1928–1940.

13. Bairoch,A., Boeckmann,B., Ferro,S. and Gasteiger,E. (2004)
Swiss-Prot: juggling between evolution and stability. Brief.
Bioinformatics, 5, 39–55.

14. EC,W. (1992) Enzyme Nomenclature 1992: Recommendations of the
Nomenclature Committee of the International Union of Biochemistry
and Molecular Biology on the Nomenclature and Classification of
Enzymes. Academic Press, San Diego.

15. Furnham,N., Holliday,G.L., de Beer,T.A.P., Jacobsen,J.O.B.,
Pearson,W.R. and Thornton,J.M. (2014) The Catalytic Site Atlas 2.0:
cataloging catalytic sites and residues identified in enzymes. Nucleic
Acids Res., 42, D485–D489.

16. Leinonen,R., Akhtar,R., Birney,E., Bower,L., Cerdeno-Tárraga,A.,
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5 Conclusion

In this work, we explored new avenues for facilitating identification of molecular malfunc-
tion patterns linked to disease. We considered two important perspectives of functional
alteration, coding genetic variation and microbiome changes. Gene sequence variants,
leading to alteration of protein sequence, structure, and, ultimately, function, are often
linked to disease. Similarly, changes in the diversity and/or levels of functionality of
the human-associated microbiomes are often markers, and sometimes causes, of many
pathologies.

Predicting genetic variant effects on protein function and, thus, potentially their rela-
tionship to disease is an endeavor taken up by many. In the first part of this thesis, we
highlighted the limited progress and issues in the field of computational variant effect
prediction over the last years. To address this problem, we introduced a new concept
that characterizes protein sequence positions into two classes, tuneable rheostats and
on-off toggles based on the distribution of substitution effects caused by nsSNPs (coding
variants leading to single amino acid substitutions). We first showed that current com-
putational predictors fail to accurately differentiate between non-neutral (functionally
disruptive) and neutral mutations within each of the two classes. Note that it can ex-
pected that mutations in toggle positions are significantly more rare and more likely to
be associated with Mendelian disorders, due to their overly deleterious nature. On the
flip side, the bulk of common diseases is very likely to be due to some combinations of
variants in rheostatic positions. To study these concepts in more detail, we developed a
new model to predict the class of each protein residue using a state of the art Machine
Learning approach. This model classifies residues into three classes toggle, rheostat, and
neutral (where no mutation has an effect) using 14 sequence based features and reaching
a combined accuracy of over 82%. Preliminary analyses of the distribution of residue
classes for the entire set of human enzymes suggests that charged residues are, surpris-
ingly, most interchangeable of the entire amino acid alphabet (neutrals). We observe
other distinct patterns, e.g. that smaller aliphatic residues can, as expected, often be
rheostats and cysteines act as toggles. It is interesting to note that proline, a residue
that is usually considered to be immutable, is sometimes still a rheostat, suggesting that
further insight is necessary to understand its role in specific proteins. We also observe
differences in distributions across broad enzyme classes; particularly, oxidoreductases
show distinct patterns of toggles and rheostats, which are different from all other en-
zyme classes. We suspect, that due to their ancient origins, importance to organism life
and function, and corresponding ubiquitous presence, oxidoreductases are likely to allow
for a larger spectrum of functional tuning (more rheostats than neutrals and toggles).
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5 Conclusion

We intend to continue this work to build residue class-aware functional effect predic-
tors, which can further be useful for larger disease gene evaluations and, eventually, for
developing diagnostic/prognostic tools.

In the second part of this dissertation, I put forward a new tool- clubber , automated
cluster load balancing software to facilitate Big Data analyses. We developed this tool
to complement and enhance the efficiency of all the analytical methods described in this
thesis. Integrating new tools into an already established and complicated workflow is
a tedious task, which we simplified by equipping clubber with multiple interfaces that
cover a wide range of applications. Aside from its user-friendliness, the main purpose
of clubber is to bundle local and remote compute resources and distribute jobs with
the goal of minimal queuing and processing times. Thus, it integrated seamlessly into
our existing pipelines, including web services, and currently allows us to process a large
amounts of user requests in an efficient and rapid manner. We expect clubber will become
more and more useful as availability of large-scale shared compute resources available
to researchers grows. For example, we are currently in the process of implementing our
web-available pipelines on Jetstream resources, speeding up data processing and assuring
redundancy/availability of our tools.

In the last part of this thesis I describe our approach to seeking out disease patterns
in functions of human-associated microbes and microbiomes. We developed two meth-
ods to analyze of the microbial functional repertoires. The first, fusionDB is a novel
database that comprises functional descriptors of 1,374 taxonomically distinct bacteria,
annotated with available experimentally determined metadata. Each microbe is encoded
as a set of functions carried out by the complete set of proteins it its genome encodes (its
proteome) and individual microbes are connected via common functions. By mapping
newly acquired disease-sample microbial genomes to the reference functional repertoires
in fusionDB, we can highlight shared functionality and draw conclusions of the possi-
ble mechanisms of infection and pathogenesis. The second method, mi-faser , is a fast
and accurate method for annotation of molecular functionality encoded in microbiome
sequencing read data without the need for assembly or gene finding. mi-faser allows
for the comparison of functional profiles between microbiomes, e.g. healthy and disease-
associated, visualizing the differences via NMDS plot representations. This approach
enables identifying functional patterns specifically related to disease.

The results from this dissertation contribute significantly to the field of variant effect
prediction and functional microbial/microbiome analysis; both in the context of disease
vs. healthy states. All computational models also boast drastically improved processing
speeds. From web-service use observations since publication of individual tools, we
suggest that usability and high efficiency strongly encourage utilization of our methods.
Our objective is to improve these models even further, with an aim to finally translate
these into a clinical setting.
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