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Abstract Nowadays indoor navigation and the understanding of indoor maps and
floor plans are becoming increasingly important fields of research and application.
This paper introduces clustering of floor plan areas of buildings according to dif-
ferent characteristics. These characteristics consist of computed human perception
of space, namely isovist features. Based on the calculated isovist features of
floorplans we can show the possible existence of greatly varying alternative routes
inside and around buildings. These routes are archetypes, since they are products of
archetypal analysis, a fuzzy clustering method that allows the identification of
observations with extreme values. Besides archetypal routes in a building we derive
floor plan area archetypes. This has the intention of gaining more knowledge on
how parts of selected indoor environments are perceived by humans. Finally, our
approach helps to find a connection between subjective human perceptions and
defined functional spaces in indoor environments.
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1 Introduction

Navigation is one of the most popular use cases for Location-Based Services
(LBS) (Gartner et al. 2007; Gartner and Rehrl 2009; Gartner and Ortag 2011; Krisp
2013; Krisp and Meng 2013). In particular, navigation inside buildings, also
referred to as indoor navigation, has gained increasing attention in recent years.
Estimations of Shekhar et al. (2016) state that people currently spend 10–20 % of
their lifetime using LBSs and around 80–90 % of their lifetime in indoor envi-
ronments. One area of LBS applications is the calculation of routes for visitors of
large buildings, e.g., hospitals (Hughes et al. 2015), fairs, or airports (Ruppel et al.
2009). Also, non-human entities like autonomous mobile robots in store houses or
non-player characters in computer games utilize such geospatial trajectories (Zheng
and Zhou 2011).

Besides finding a shortest path between two given points, the calculation of
alternative routes is an important task. There are several definitions for quality
metrics for alternative routes in street networks, see for example Camvit (2013),
Delling and Wagner (2009) and Kobitzsch et al. (2013). The first definition of
alternative routes in indoor navigation scenarios is given by Werner and Feld
(2014), where algorithms for creating said routes have been proposed as well.
Subsequently, the concept of archetypal routes has been defined in Feld et al.
(2015) using archetypal analysis (Cutler and Breiman 1994), a multivariate data
analysis and clustering mechanism to find the most extreme observations or pure
types inside a given dataset. In that work, the authors have used simple features like
the area of the convex hull of a route or the overlength regarding the shortest path.

How humans visually perceive the environment has got a large influence on both
navigation performance and emotional response. Franz and Wiener (2008) illus-
trated that isovists and visibility graph measures are able to capture behaviorally
relevant properties of space, allowing the prediction of affective responses and
navigation behavior. Emo et al. (2012) found connections between streets’ spatial
geometry and spatial decisions with space syntax as an interpreter. Unlike outdoor
road networks, indoor environments are restricted by walls and other obstacles such
as furniture and installations. They also provide navigable space with more degrees
of moving freedom.

However, it is still unclear how to incorporate visibility properties of an envi-
ronment into LBS applications (e.g., navigation systems) to provide users reason-
able choices. Different from psychological and behavioral researches, we use
perceptual properties in a reversed way. We first inspect perceptual differences
among different locations of an environment. Then we use these results to create
alternative routes to enable users to have different perceptual experiences when they
traverse the environment. Basically, the main idea is to use extreme types of indoor
perception to cluster freely walkable space into functional areas. To achieve this
goal, we combine the concepts of archetypal analysis (Cutler and Breiman 1994)
and isovist features (Benedikt 1979).
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Our first contribution creates insights about a building’s structure by using just
the plain floorplan itself. For this, we calculate isovist features for all accessible
points on the map and cluster them via archetypal analysis. The key benefits of
using archetypal analysis are the identification of the most extreme observations
and the use of multiple features at the same time. This results in the classification of
indoor areas and its surroundings into values like entrance areas, corridors, halls or
streets.

Our second contribution expands the idea of archetypal routes (Feld et al. 2015)
and analyzes the effect of isovist features on the clustering of a set of routes
traversing a building. Thus, we identify a small set of proper alternative routes
between two points based on perception features only, i.e. isovist measures, and not
geometric measures regarding the routes themselves.

2 Background

2.1 Archetypal Analysis

Cutler and Breiman (1994) define archetypal analysis as a statistical data analysis
technique. The results of archetypal analysis are defined clusters, which are com-
parable to the results of other data clustering methods (Kaufman and Rousseeuw
1990; Jain and Dubes 1988) as, for instance, k-means clustering (Hartigan 1975). In
contrast to the last mentioned examples of hard clustering, archetypal analysis is a
fuzzy clustering technique.

The general goal of clustering is to organize data in feature space into useful
partitions. This organization of a collection of patterns into clusters is often based
on similarity (Jain et al. 1999). Archetypal analysis partitions certain amounts of not
necessarily equally spaced data. In contrast to traditional clustering techniques,
archetypal analysis searches for the points on the outer rim of data space. It
approximates the convex hull of the data mainly by looking for data points that are
maximally distinct from each other. This characteristic renders archetypal analysis
fundamentally different to other clustering techniques, as the aim is to find “pure
types” within specific data sets (Eugster and Leisch 2009).

The original algorithm is described in Cutler and Breiman (1994). Seiler and
Wohlrabe (2012) propose an iterative version of archetypal analysis which alter-
nates between two steps. The idea is to find a convex hull approximation (in data
space) using relatively few points, which results in solving a linear optimization
problem.

Referring to the practical approach in this work, we consider a data set with
N observations, which in our case are routes consisting of pixel values, and m at-
tributes. This results in a N ×m matrix X. Afterwards, the number k of archetypes to
be extracted needs to be defined. These archetypes are then specified by the k ×m-
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dimensional matrix Z, which is computed by minimizing the residual sum of
squares (RSS):

RSS= X − αZT
�
�

�
�
2

Consequently, we compare matrix X with the product of the N × k-dimensional
coefficient α and the matrix of archetypes Z. In the formula of the RSS the part ⋅k k2
represents a fitting matrix norm, which in our case is the L2-norm. Subsequently, α
is the coefficient matrix, which is needed to generate X from a given set of
archetypes Z. Further mathematical and computational details of the algorithm are
explained in Eugster and Leisch (2009). Archetypal analysis by Cutler and Breiman
(1994) is also called alternating least square algorithm since it alternates between
calculating the best coefficient α for given archetypes Z and calculating the best
archetypes Z for given coefficient α. Archetypal analysis iterates until it finds a
minimum. It always terminates, but does not necessarily find the global minimum
of the RSS. It can find a local minimum instead of, for example, the best approx-
imation of the convex hull of the data using k points.

There is no universal rule for determining the initial number of archetypes k. The
common approach for its determination is the so called “elbow criterion”: a flat-
tening of the RSS scree plot is indicating a potentially good value of k.

Our literature review on archetypal analysis includes publications that focus on
details like numerical issues, stability, computational complexity and robustness.
These issues are based on concrete applications and mentioned in Cutler and
Breiman (1994), Eugster and Leisch (2009, 2011) and Seiler and Wohlrabe (2012).
Recently, applying archetypal analysis is becoming popular in economics (Eugster
and Leisch 2009). Relatively unexplored is the use of archetypal analysis with
geodata.

2.2 Qualitative Perceptual Analysis of Space

Human beings experience surrounding environments through senses including
seeing, hearing, and smelling. The objects that are seen usually shape the most basic
and important part of our experiences. Much effort has been made by behavioral
researchers and environmental psychologists to explore how visual properties of an
environment affect human’s subjective feelings and behaviors in it.

The term isovist has been introduced by Tandy (1967) as a visible space obtained
at a specific place. Benedikt (1979) then provided a formal definition of isovists
with a set of analytic measurements to enable quantitative descriptions of spatial
environments. Isovist fields characterize the whole environment with recorded
measurements. Using a discretized representation—either some selected locations
or evenly distributed locations—is practical to approximate isovist fields (see e.g.
Peponis et al. 1997; Batty 2001). To the best of our knowledge, the selection of
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representative locations and granularity of the discrete representation still have no
universal answers. There is always a compromise between coverage (Davis and
Benedikt 1979) and computing costs. In most of the mentioned researches, isovist
analysis is performed on 2D representations, such as maps and floor plans. Though
Emo (2015) advocates isovist analysis in 3D space, she admits such egocentric
isovist analysis is still far from mature.

Space syntax (Hillier and Hanson 1984) and visibility graph (Turner et al. 2001)
are also frequently used tools that focus on visual perception. Space syntax captures
mainly topologic structures (or inter-visibility connections) of an environment, and
defines no explicit geometric measurements in Euclidean space, which isovists are
capable of, while visibility graph counts the inter-visibility between locations.

In the context of walkable area and alternative routes, we assume that any
accessible location can potentially be traversed. We focus on properties of each
single location in an environment. Since the generation of visibility graph shares the
same idea as generating isovist fields, measurements on visibility graph can easily
be integrated in future studies.

3 State of the Art

Orientation in indoor scenarios is still a problem to solve, since street names or
other characteristic landmarks are missing, unlike in outdoor environments (Yang
and Worboys 2011; Viaene et al. 2014; Ohm et al. 2015). Since the focus of this
work is on indoor environments we want to review research on indoor wayfinding,
perceptual analysis and the representation of indoor space.

3.1 Indoor Wayfinding and Navigation in Complex
Buildings

Early research on indoor navigation has been initiated by Best (1970) where
challenges of wayfinding in complex indoor environments have been formulated.
The work of Best (1970) deems reasoning on choice points, distances and changes
in direction to be relevant for wayfinding in road networks or buildings (Hölschner
et al. 2005).

Hölscher et al. (2005) stated that the difficulties of wayfinding in complex
buildings are connected with individual spatio-cognitive abilities and the archi-
tecture of the building. Therefore it is obvious to link research on architectural
design and human spatial cognition to gain knowledge in the field of indoor
wayfinding.

Wayfinding behavior in complex buildings has already been investigated by
studies coming from the community of environmental psychology (Hölschner et al.
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2005). Typical buildings are hospitals (Haq and Zimring 2003), shopping malls
(Dogu and Erkip 2000) and airports (Raubal 2002). In general, spatial knowledge
and wayfinding acquisition are complex tasks (Li et al. 2011).

3.2 Perceptual Analysis and Wayfinding Behavior

Isovist features and axial lines have shown high predictive power in previous
research. Wiener and Franz (2004) studied the interrelations between isovist mea-
sures and performance on navigation related tasks. They derived isovist measures
from visibility graphs (Turner et al. 2001). Their experiment illustrated the mean-
ingfulness of isovist measures, however, the most important wayfinding behavior—
orientation—was not considered. Davies et al. (2006) proposed to use isovist fea-
tures and build prediction models for spatial orientation and implied that correla-
tions among isovist measures have important implications. By respecting the spatial
configuration in indoor environments, we can derive measures for describing the
imagined spatial perception of moving persons. Important for these cases are fields
of vision (Schwab 2016), which are isovists that are connected with individual
vantage points (Turner et al. 2001). This is strongly connected with the previously
mentioned wayfinding strategies, mainly due to the fact that isovist measures are
information sources for individual decision making. The base for these findings
comes from previous studies by Conroy (2001), Wiener et al. (2011) and Schneider
and König (2012), who evaluated the potential of isovist measures by providing
different case studies in indoor environments.

3.3 Representation of Navigable Space

Shekhar et al. (2016) state that a major research question on indoor localization
includes the conversion of indoor floor plans (e.g. CAD drawings) into navigable
maps. Lorenz et al. (2013) argue that the map design of indoor floor plans is more
complicated to realize than outdoor environments since people usually walk across
different elevation levels of buildings. This could be solved by including 3D indoor
space visualization (Brown et al. 2013) or by a combination of 2D floor plans for
different elevation levels. Cartographic considerations on floor plans show that most
examples are inappropriate as they are non-generalized and too detailed for simple
orientation (Lorenz et al. 2013).

In general, there are still just few publications on cartographic design guidelines
for indoor maps (Lorenz et al. 2013). Nevertheless, Puikkonen et al. (2009), May
et al. (2003) and Vinson (1999) deliver some results from provided user studies on
created indoor environment maps.
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Other questions connected with floorplans and navigable maps consist of esti-
mating reliabilities of indoor positioning and the handling of missing indoor
building information (Shekhar et al. 2016).

Richter et al. (2009) solve the question of how to represent indoor space by
introducing a hierarchical representation of indoor spaces. In general we can state
that it is possible to describe indoor environments similar to outdoor environments
as an arrangement of elements in space, which is also referred to as spatial con-
figuration (Schwab 2016). This spatial configuration consists of topologic space
information together with indoor geometry and the arrangement of objects
(Frankenstein et al. 2010), which is the key information for indoor navigation in
many approaches (Brown et al. 2013).

4 Methodology

Our concept combines two different approaches for classifying indoor environ-
ments, namely isovist analysis and archetypal analysis. The former focuses on
estimated human senses for optical perception of inner building structures. The
latter makes use of given features, in our case isovist measures, and derives extrema
of their appearance, namely archetypes. Like Krisp et al. (2010, 2012a, b) we have
used the main building of the Technische Universität München (TUM) in Munich
for our case study, which is characterized by its complexity and the high number of
entrances. The two mentioned aspects are mainly caused by the possibility to enter
varying elevation levels differently and by the diversity of options to traverse the
building by using more than twenty entrance points. There is a high number of
alternative routes to be expected, which will be one of the leading aspects for our
case study. The difference between our idea and previous visibility analysis
approaches that use isovist measures in indoor environments is the way of
inspecting the calculated isovist measures: all measures are utilized simultaneously
for calculating the archetypes. The aim of this approach is to design a functional
segmentation method for indoor spaces. This includes the classification of indoor
areas and its surroundings into values like entrance areas, corridors, halls or streets.

The actual investigation of the maps and routes represented in a multidimen-
sional feature space will be realized using an extension of the archetypal analysis
framework proposed by Feld et al. (2015). See Fig. 1 for an overview of the
algorithm’s workflow.

4.1 Input Requirements

As mentioned in the previous section, we adopt a 2D representation to depict the
study environment. The representation can be generated from floor plans or street
maps or the mix of both. 2D polygons represent walkable areas, their boundaries
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and inner holes represent restrictions such as walls, installations, and other obsta-
cles. This representation is also reasonable for multi-level indoor environments.
Each level of a building is represented in 2D separately. It does no harm to isovist
analysis when the calculation is based on a single level since ceiling and floor are
nontransparent. To calculate isovist fields for the full description of the environ-
ment, we use regular grid tessellation and select the geometric center of each cell as
the representative location. The appropriate grid resolution should be determined to
capture meaningful properties of the environment and fit the application scenario.
A too coarse resolution may fail to reveal changes of isovist features in transitional
areas like doorways or turnings. A 0.5 m resolution is enough for our case study.
A finer resolution will reveal more details, however leads to more computing costs
(time and storage). Besides, 0.5 m is also a reasonable approximation of body-size
and normal walking step length for human navigation and wayfinding scenarios.

A set of routes between a given start and goal will be created using the penalty
algorithm as proposed in Werner and Feld (2014). The algorithm works on plain
bitmaps and creates a node for each white pixel and an edge for all neighboring
white pixels. The edge weight is set to 1 for horizontal or vertical edges and
accordingly to

ffiffiffi

2
p

for diagonal edges. The algorithm iterates between performing
shortest path routing using Dijkstra’s algorithm (Dijkstra 1959) and increasing the
edge weights of the shortest path just found. Thus, by iteratively increasing the edge
weights the resulting shortest path will change with time.

4.2 Feature Extraction

In this paper we extract isovist features by following Benedikt’s definition and
measurements (Benedikt 1979). A single isovist is the set of all points in space that

Fig. 1 Workflow for analyzing a given floorplan (top) and a set of routes (bottom)
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are visible from a given point (vantage point) in the space. Figure 2 illustrates an
exemplary isovist with occlusive radius and line-of-sight.

The six measurements are:

(a) Ax, the area of the isovist;
(b) Px, the real-surface perimeter of the isovist that indicates the amount of

obstacle surface visible from a vantage point;
(c) Qx, the occlusivity of the isovist measures the length of the occluding radial

boundary;
(d) M2, x, the variance of the radius measures the distribution of the radials length;
(e) M3, x, the skewness of the radius measures the asymmetry of the distribution of

the radius length;
(f) Nx, the circularity of the isovist which can be calculated by the following

formula,

Nx = ∂Vxj j2 4̸πAx

where ∂Vxj j is the perimeter of the isovist.
We calculate the six isovist measurements using the given floorplan in vector

format and rasterize the calculated values afterwards for further processing.

4.3 Clustering Building Structures and Routes

As stated in the paper’s introduction, we focus on the extraction of insights about a
building’s structure as well as on the identification of a small set of proper alter-
native routes between two given points. For doing so, we need to transform the

Fig. 2 Definition of an
isovist by line-of-sight and its
corresponding features
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given map, isovist features, and routes into a form that can be processed by
archetypal analysis.

When analyzing the building structure we consider each pixel of the floorplan as
an observation. Thus, we have N = r × c observations, whereas r is the number of
pixel rows and c is the number of pixel columns. Each observation has got m=6
attributes fAx,Px,Qx,M2.x,M3.x,Nxg. Thus, the input of the archetypal analysis is
the N ×m matrix X consisting of all the floorplan’s pixels each having six features.

The clustering of a (huge) set of routes each having the same start and goal
behaves slightly different. Each route consists of multiple pixel coordinates indi-
cating the trajectory’s course. We define each route to be an observation and for
each route pixel we determine the corresponding isovist measures from the previ-
ously calculated matrix. For each route and for each of the six isovist measures we
calculate the minimum, maximum, mean, median and variance. Thus, the input of
the archetypal analysis is the N ×m matrix X consisting of all the given routes each
having 5 × 6= 30 attributes.

5 Results and Discussion

We focus our discussion on a real world scenario, namely the main building of the
Technische Universität München (TUM) and its surrounding area (Theresienstraße,
Arcisstraße, Gabelsbergerstraße, Luisenstraße). We have simplified the original
floorplan (e.g. removal of doors) in order to be compatible with the route generation
algorithm in use.

5.1 Clustering the Map

Our first contribution is about identifying functional space inside a given, unlabeled
floorplan. Thus, we perform archetypal analysis on the floorplan’s isovist measures.
We utilized each walkable pixel as an observation and calculated the corresponding
six isovist measures as the attributes.

Archetypal analysis works by approximating the convex hull of the observations
in the multidimensional feature space. A common way to estimate a suitable value
for the number of archetypes k is to inspect the resulting approximation errors, i.e.
the residual sum of squares (RSS). A flattening of the curve indicates that a further
addition of an archetype would not help to improve the accuracy of the approxi-
mation. For our evaluation we have performed archetypal analysis with numbers of
archetypes ranging from k=1 to k=10 and repeated the calculations multiple times
to prevent local minima. The scree plot of the resulting RSS as shown in Fig. 3
suggests to choose a value of k=4, k=5, or even k=7. From an application point
of view a high number of archetypes like k=7 harbors the danger that the
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interpretation gets confusing. Thus, for the further course of this section we will
focus on up to five archetypes.

Archetypal analysis is a so-called fuzzy clustering method meaning that each
observation is represented by a convex combination of the identified clusters, i.e.,
the archetypes. We now discuss the points in the map that have a certain level of
assignment to an archetype. Graphically spoken, we highlight and discuss the
observations (pixels) that are some kind of “near” to an archetype in the feature
space. Thus, we assign a pixel to an archetype if the corresponding value in the
coefficient matrix α is higher than a defined threshold. Of course, the threshold for
the definition of an “archetypal pixel” can be varied, but for the sake of clarity and
visualization we restrict ourselves to the representative threshold of α>0.5.

The case k=2 is often hard to interpret: If the analyzed data set contains several
natural clusters, it happens that they get uncontrollably combined. The left-hand
side of Fig. 4 shows the parallel coordinates plot for k=2. The abscissa shows the
six isovist features, the gray lines represent all observations (i.e. all walkable pixels)
and the colored lines the identified archetypes. Basically, the red archetype can be
summarized as having high isovist measures while the green archetype has got low
values. Just the skewness of the radials M3.x seems quite similar. Roughly speaking,
high isovist measures indicate that the point of view is a good lookout (large isovist
area Ax) and that in turn involves much obstacle surface to be seen (high real surface
Px). In the case at hand, the green archetype has got very low values. In particular
the low radial’s variance M2.x indicates that the area of view (the isovist itself) has
got a more regular shape. The right-hand side of Fig. 4 shows the corresponding
coloring of pixels; it accompanies with our preliminary interpretation. Basically, the
red pixels represent places in the floorplan where large parts of the space can be
seen. Green pixels are the opposite of that, since the view is strongly restricted.

The left-hand side of Fig. 5 focusses on k=3. It shows that the green archetype
stayed nearly the same. In fact, all the values are lower than when using k=2. The
red archetype, however, still has got high levels of values, but they are somehow
more “radical”. The isovist’s area Ax is extremely high and the moderate
real-surface Px, the high occlusivity Qx, and the high variance M2.x indicate a more
“diversified” line-of-sight. Again, this archetype will be something like open space.

Fig. 3 Scree plot showing
the value of k and the
resulting residual sum of
squares (RSS)
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The new blue archetype is interesting, since the moderate area of visibility Ax,
plenty of walls to be seen (high Px) and the low values of occlusivity Qx suggest a
very uniform and simplistic structure. If we follow the initial interpretation by
looking at the right-hand side of Fig. 5, we see red pixels representing free and
open space, but with one obvious difference to the results of k=2: the structure of
the red area is more compact and just pixels having a “large outlook” are selected.

Fig. 4 Parallel coordinates plot for k=2 (left) and correspondingly colored pixels with a
threshold of α>0.5 (right)

Fig. 5 Parallel coordinates plot for k=3 (left) and correspondingly colored pixels with a
threshold of α>0.5 (right)
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The green archetype can again be interpreted as areas where the view is restricted,
such as rooms or smaller halls. The new blue archetype can be interpreted as points
in the map where the field of vision is very restricted in two directions and very
wide in the other two directions, like in narrow hallways—or as in our case—the
streets around the building.

Please note the white pixels of the floorplan indicating that the corresponding α
values are all below the threshold. This means that the observations are somehow
poor to be described using the identified archetypes. When looking at the white area
at the left-hand side of the floor plan in Fig. 5 it is noticeable that there are
properties from each archetype: Somehow the area is room-like due to the regular
shape and the restricted view, somehow it is open space due to its large area and
somehow it is like a hall or a street due to the length.

Figure 6 shows the top pixels for k=4 (left) and k=5 (right), the number of
archetypes that are most suitable at least when inspecting the scree plot in Fig. 3.
The corresponding parallel coordinate plots (not shown) and a visual inspection of
the pixels indicate that the green archetype (“rooms”) and blue archetype (“halls or
streets”) stayed nearly the same, just the interpretation of “open space” is split. We
still have the red archetype indicating places with a large view, but additionally
there is the turquoise archetype that has got deep views into entrances (very high
occlusivity Qx, i.e. the length of the occluding radial boundary). The right-hand side
of Fig. 6 refines that setup further with the pink archetype where a spectator would
see much area while having a wall behind his or her back.

Fig. 6 Colored pixels for k=4 (left) and k=5 (right) for a threshold of α>0.5
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5.2 Identifying Alternative Routes

Our second contribution is about analyzing the effect of isovist features on the
clustering of a set of routes between two given points in order to generate a small
set of alternative routes. To this end, we created sets of routes between multiple
pairs of starts and goals inside floorplans. In the work at hand we used a repre-
sentative result for a set of 400 routes going from the main entrance of the building
to another entrance at the opposite side of the building. We used the penalty
algorithm as proposed in Werner and Feld (2014) to create the routes.

Figure 7 shows a plot of the resulting routes that traverse the map in multiple
ways ranging from completely detouring the building, going with variations
through several rooms, transiting the patio, etc. Through visual analysis of the
routes created, one can identify a strong correlation with real movement flows of
students during semesters on working days. Like stated before, our second con-
tribution is about extracting different archetypes of alternative routes, thus we try to
reduce the size of the set of routes from 400 to a low single-digit number. In terms
of archetypal analysis we consider each route as an observation. For each route, we
calculate the minimum, maximum, mean, median, and variance of the isovist
measures. Thus, for each of the 400 routes we have got 5 × 6= 30 attributes.

Fig. 7 Set of routes used for
the discussion
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As in the previous section we consult the scree plot of the RSS to check for an
indication of a proper value of k (see Fig. 8). There is a strong bend of the decrease
at k=3 visible, what also holds as an appropriate value from an application point of
view.

The calculated archetypes, i.e., the configurations of features, do not necessarily
exist or can be observed. Thus, and according to Feld et al. (2015), we call the
archetypes’ nearest neighbor in the feature space the “realized archetypal route”.
Figure 9 shows the corresponding archetypal routes for 2≥ k≥ 5.

The top-left part of Fig. 9 shows the case for k=2. The red route traverses the
map through the center while having a large view in the patio and proceeds quite
twisting and winding to the goal. The green archetype is, at least to this end, the
complete opposite. It is a straight path with regular turns and a more restricted view.
It follows the street around the building and traverses some rooms in the northern
and western part of the building.

The result for k=3 is shown in the top-right part of Fig. 9. The red archetype is
again a windy route going through the open space. The green archetype has
changed a bit, since it is more “extreme” in being very straight with a minimum
number of turns. The new blue archetype is quite complicated; it traverses the map
in a diverse way and has got narrow parts that go through different rooms, doors,
and hallways.

When calculating k=4 archetypes (bottom-left part of Fig. 9) we basically get
the same three routes as before, although archetypal analysis is not nested per se.
Additionally, there is the turquoise archetype being a kind of mix between the green
and blue archetype. This route is quite straight with few turns, but mostly uses
rooms and doors instead of the more extreme, i.e., even straighter, green route
which uses the road.

The bottom-right part of Fig. 9 shows the results for k=5. The routes are
identical to the ones before, but additionally, the new pink route is—at least at a first
sight—very similar to the red one. It also traverses the patio but runs around the
isolated building to the top.

Fig. 8 Scree plot showing
the value of k and the
resulting RSS
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All five routes are proper alternatives with very different characteristics.
Beginning from k=6 the resulting routes start to “collapse”. That means that at
least two archetypal routes lie over another (note: in the observation space, not in
the feature space).

Fig. 9 Archetypal routes for k=2 (top left), k=3 (top right), k=4 (bottom left), and k=5
(bottom right)
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5.3 Sets of Archetypal Routes

Just focusing on a single representation of an archetype can sometimes bias the
interpretation. Just like with the clustering of the map, we now focus not only on the
nearest neighbor of each archetype, but on the observations that reach a certain
threshold regarding the coefficient matrix α.

Figure 10 shows this for k=3 and a threshold of α>0.8. It can be clearly seen
that the identified archetypes are based on the impression while traversing the
building and not on their geographic location. The green archetype consistently
traverses the patio having several variations at the start and the end of the route. The
blue archetype characterized by going very straight through the streets or long and
narrow halls can be found not only at the top of the floorplan, but also in variations at
the bottom of the map. The variations, be it shortcuts or detours, are located in rather
narrow spaces. Finally, also the red archetype is variable and consistently follows
variations of rooms and doors, but all the time in a quite complicated fashion.

Summarized, the resulting sets of routes are useful in application scenarios
where variety is desirable. Think of computer games where non-player characters
choose a set of archetypal routes based on their strategy and out of this set a random
concrete route to surprise the player. Another use case is a navigation system for
pedestrians that proactively prevents bottlenecks via non-deterministic route
suggestions.

Fig. 10 Top routes for
k = 3, i.e. routes with a
corresponding coefficient
value of α>0.8
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5.4 Archetypal Routes: Features Versus Time

To further interpret the properties of archetypal routes, we need to take a closer look
at the isovists of each of the selected locations along the route. To keep the
explanation clear and simple we have chosen the archetypal routes for k=2 as an
example. We also adopt a visual analytics way rather than using statistical analysis
as in many isovist related works already done.

Figure 11 depicts the case of archetypal routes for k=2. The top row corre-
sponds to the red route and the bottom row to the green route in Fig. 9, top-left. The
six measurements are normalized and plotted in a stacked area chart (left-hand
side). Isovists for each location are centered to have the same vantage point in order
to form a radar-like view (right-hand side). This visualization is related to the
Minkowski Model (Benedikt 1979), however, the original model is difficult to
perceive clearly when hundreds of isovists are stacked along a route. Our visual-
ization loses time dimension information, but it is sufficient to capture the pattern
changes of isovists along different routes. In this example, we can already find
obvious differences between the two archetypal routes indicating that our method
does not only find routes that are geometrically different, but also with different
perceptual properties. There are still details to be extracted from this visualization in
future work.

Fig. 11 Archetypal routes for k=2 with area plot for the normalized isovist features (mid) and
radar visualization of stacked isovists along a route (right). The top row corresponds to the red
route (top left) and the bottom row to the green route (bottom right) in Fig. 9 top left
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6 Conclusion

This paper proposed to use archetypal analysis, a fuzzy clustering method, to gain
insights of an environment based on modelled perceptual properties (visibility). Our
approach is able to find archetypes, i.e., extreme types, of perceptual properties of
the given environment. By applying this information we can create proper alter-
native routes going through a building that enable different user experiences when
traversing the environment. Previous psychological and behavioral research tried to
establish correlations between perceptual properties and wayfinding behavior. Our
method enables the creation of routes with extremely different visibility properties.
Additionally, we segment 2D Euclidean space into areas with fundamental differ-
ences depending on their visibility (based on the isovist feature values).

In future work we want to investigate other isovist measurements for extracting
environment information and for creating alternative routes. Also we try to focus on
the measurements along the routes using the stacked isovist visualization and visual
analytics. Finally, different route generation algorithms together with routes having
different start and goals need to be examined.
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