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Summary 
Floating Car Data (FCD) of taxis provides useful traffic information. Its handling needs effective 

analysis steps, including Map Matching (MM) onto road segments. Another challenge is to compute 

realistic FCD-based travel times in complex urban road networks with different elevation levels. We 

propose a method for inferring travel time variations in intersections of these networks. Based on 

intersecting recorded taxi trajectories in Euclidean space, we assign average travel time differences. 

Additionally, the same technique allows distinguishing between elevated and non-elevated road 

intersections in complex urban environment. In the end we test and evaluate the method with taxi 

FCD from Shanghai. 
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1. Introduction  

 

Floating Car Data (FCD) is one possibility of the big variety of sensor data for deriving traffic 

information. It is often provided by taxi fleets or commercial navigation system providers as 

TomTom and can describe the recent traffic situations (Cohn, 2014). Processing FCD for an effective 

traffic information service is nevertheless dependable on the number of observed vehicles and its 

percentage of the overall traffic participants. These can be estimated by the use of other sensors as for 

example Automatic Plate Number Recognition (ANPR) or inductive loops (Wang and Tsapakis, 

2010; Klein et al., 2006). The main traffic information is in this case the travel time, which can be 

associated with a certain road element. With the use of FCD devices each vehicle acts as a sensor 

itself (Cohn and Bischoff, 2012). FCD of numerous vehicles may be used for modelling the traffic 

flow and delivers information on the current transportation conditions. 

 

Movement of concrete objects is often collected as trajectories (Demšar and Virrantaus, 2010), which 

consist of spatial positions connected to sequences by ascending time components. The later are often 

time stamps associated to the object (Cohn and Bischoff, 2012). The connection of subsequent 

positions is consequently a multiline element and can be referred to as trajectory, because it describes 

the path of a moving object (Spaccapietra et al., 2008). In the field of traffic engineering and 

transportation, the term trajectory data describes positions of vehicles over time within a given road 

section (Treiber and Kesting, 2013). Vehicle trajectory data can base on positioning information 

(FCD), but as well from photographs and video footages. With the term trajectory it is possible to 

label a specific vehicle route or any other movement event. 
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2. Using vehicle trajectories for detecting road intersections and travel time differences 

 

The inspection of vehicle trajectories as overlapping polyline elements and the consecutive detection 

of certain patterns in movement may give indications on the underlying transportation infrastructure. 

One possibility is to use vehicle trajectories for map inference (Ahmed et al., 2015), which is useful 

when knowledge on the road network is missing. Map inference can include data mining techniques 

for automatically constructing road maps (Liu et al., 2012). 

 

The detection of road intersections by using automated methods for FCD was already described by 

Fathi and Krumm (2010). Important results of this approach are detected exact positions of road 

intersections and their accurate modelling within a routable road network. 

 

We want to follow up on a different approach on detecting crossings: detecting the crossings by 

inspecting the vehicle trajectory intersection patterns and subsequently give indication on the type of 

intersection by classification.  

 

Our approach includes mainly 4 parts: 

 

1. Connecting consecutive taxi FCD records to polyline elements 

 

2. Computing the attributes average time and average velocity for each segment of the 

trajectory polyline 

 

3. Intersecting all available taxi trajectory polyline with each other 

 

4.  Extracting all trajectory intersection points and computing time and velocity 

differences for each extracted point 

 

3. Initial test data set properties 

 

The investigated test data set in this work is a cutout of observed taxis in Shanghai (‘SUVnet-Trace 

Data’, http://wirelesslab.sjtu.edu.cn/taxi_trace_data.html). Each taxi trajectory is connected by 

specific taxi ID and by ascending time component t depending on an explicit time stamp. In a 

preprocessing step we connect each taxi ID to polyline elements, which show the entire movement of 

one object within a certain time window (in our case 10 minutes). For the partition between 8:20 and 

8:30 AM on the 13th of February (Tuesday) in the year 2007 there are for example 7078 generated 

trajectories corresponding to the same number of individual taxis, which are pictured in Figure 1. 

 

 

Figure 1 Generated 7078 taxi trajectory polylines between 8:20 and 8:30 AM on the 13th of February 

(Tuesday) in the year 2007 in the city centre of Shanghai. 



Each trajectory record has additional attributes, which are created supplementary to the process of 

connecting points to polylines, with the form < length, start_time, end_time, time_diff, x_start, 

y_start, x_end, y_end >. Important for the following steps are the trajectory attribute values length (of 

the trajectory) and time_diff, which is the time difference between starting and end point (in our case 

always 10 minutes). 

 

4. Results and Conclusion 

 

For exemplary representation of our test results, we focus on a certain location in Shanghai. There are 

68 taxi trajectories within the area of the Nanpu on-ramp. We extract the intersection points of these 

68 taxi trajectories. From 2750 intersection points there are 282 self-intersections in certain parts of 

this complex transportation infrastructure. Figure 2a shows the taxi trajectories in black and their self-

intersections by red dots. 

 

For finding correlations of calculated velocity values we are performing cluster analysis on all 2750 

intersection points. Our aim is to detect velocity-dependent hotspots by using the Getis-Ord GI* 

method (Getis and Ord, 1992; Ord and Getis, 1995). Figure 2b pictures hotspots by warmer colours, 

which show high correlation between our estimated average velocity values. 

 

 

Figure 2 Analysis of the taxi trajectories within the Nanpu on-ramp with (a) self-intersection points, 

(b) velocity hotspots from the Getis-Ord GI* method and (c) distance-clustered self-intersections as 

convex hulls. 

 

Since the self-intersections in Figure 2a include several illegitimate positions due to smaller jumps in 

space, we perform distance-based clustering with a search radius of 30 meters. After defining clusters, 

we exclude the outliers and use the convex hull generation method based on Jarvis (1973). The 

resulting convex hulls for the trajectory self-intersections are pictured in Figure 2c. 

 

Based on the distribution of trajectory intersection points, we can distinguish between general types 

of crossings: higher trajectory intersection point densities indicate elevated crossings or two-

dimensionally overlapping road segments, since many intersection points result from two road levels. 

The intersection points in elevated crossings imply smaller time differences in trajectory intersections. 

This means that vehicle trajectories may intersect each other within the same time and same 2-D 

space, but hold different z-coordinates. 

 

Another helpful information in this detection is the inspection of speed differences in each 

intersection point: higher speed differences of the interpolated individual speed values indicate 

vehicle movement on two road levels. The presence of regularly ordered and density-connected 

intersection points with comparably less point density is an indicator for a non-elevated crossing. 

Nevertheless, results are heavily dependent on the way instantaneous speed values are interpolated 

(vector-wise or trajectory-dependent) and how we select our time windows of inspection. 

 

 



5. Outlook 

 

Future Work may include the selection of appropriate clustering techniques for taxi trajectory 

intersection points. Furthermore it might be useful to define each transportation infrastructure type by 

its efficiency, which might be helpful for understanding the relationships between traffic flow, 

complex crossings and other transportation infrastructure elements. This definition might be helpful 

for simplifying the urban planning process in the way of providing more overview on the connections 

of different transportation infrastructure elements. 
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