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Abstract: A Verified ODE Solver and Smale’s 14th Problem

Ordinary differential equations (ODEs) arise in many mathematical models for e.g., physics,
biology, or economics. This thesis enables reasoning about ODEs in the interactive theorem
prover Isabelle/HOL with a formalization of abstract theory as well as concrete numerical
algorithms.

The first contribution, a library of formalized mathematics for ODEs, encompasses the
fundamental results for reasoning about ODEs and their solutions. This is in particular the
notion of flow and its continuous and differentiable dependence on initial conditions. The
library furthermore includes an important technique for the analysis of dynamical systems,
the Poincaré map.

The second contribution is the implementation and verification of a rigorous ODE solver:
a numerical algorithm that computes safe enclosures for the aforementioned solutions
of ODEs, Poincaré maps and their derivatives. For the implementation, I chose data
structures and algorithms that are amenable to formal verification while at the same time
exhibiting reasonable performance: affine arithmetic for rigorous numerics and Runge-
Kutta methods as approximation scheme for solutions of ODEs. A geometric algorithm for
zonotope/hyperplane intersection computes enclosures for Poincaré maps. The ODE solver
can also be applied to solve the variational equation in order to enclose the derivative of the
flow.

As final contribution, we target one particular dynamical system where a verified algorithm
is highly relevant, the Lorenz attractor. The Lorenz attractor is the subject of Smale’s 14th
problem, an important conjecture from the field of dynamical systems. Tucker settled this
conjecture with a proof that relies on numerically computed bounds on a Poincaré map and
its derivative. Our verified algorithms are capable of certifying those bounds and therefore
lift the numerical part of Tucker’s proof onto solid formal foundations.
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1
Introduction

This thesis describes a rigorous numerical ODE (ordinary differential equation) solver and
its formal verification in the interactive theorem prover Isabelle/HOL. The main application
is the Lorenz attractor: the verified ODE solver certifies the numerical bounds of Tucker’s
proof for Smale’s 14th problem.

1.1 Motivation

Ordinary differential equations (ODEs) play an important role in many scientific disciplines.
An ODE relates the temporal evolution of a quantity with its rate of change, which is a
useful concept in models from many scientific and engineering disciplines. ODEs model
e.g., the motion of particles, cars, trains, airplanes, or planets. Further examples of models
are chemical reactions, spread of diseases, or the evolution of populations.

1.1.1 Rigorous ODE Solvers

Scientists produce models and analyze them in order to gain a deeper understanding of the
real behavior. Assuming that the model is valid, i.e., it adequately represents real phenomena,
it is essential that the analysis is carried out correctly. Drawing wrong conclusions from a
valid model can lead to disastrous failures when e.g., safety-critical systems are subject of
the analysis.

How can one verify that a model involving ODEs has been analyzed correctly? It depends
on the kind of analysis, which can be broadly categorized as either symbolic or numeric.
A symbolic analysis is easy to verify, for example checking that a given function solves an
ODE. The fact that the function t 7→ et solves the ODE ẋ(t) = x(t) is readily checked by
symbolic differentiation. Unfortunately, many ODEs do not admit closed form expressions as
solutions, which is why one often resorts to numerical simulations. Numerical simulations
do, however, incur approximation errors and therefore uncertainty. This uncertainty is
hard to quantify, the fact that a numerical simulation is a meaningful approximation of the
modeled behavior is therefore hard to verify.

To mitigate this problem, rigorous ODE solvers have been developed. A rigorous ODE
solver is a program that computes an approximation together with a safe bound on the
approximation error. The output of a rigorous ODE solver consists of a set of enclosures
that are guaranteed to contain the true solution. This is more reliable than mere simulations
and finds its applications in the analysis of safety-critical systems and even mathematical
proofs. The very idea of rigorous ODE solving is that the computation of a bound can be
seen as a mathematically rigorous proof that the solution is contained in that bound.

1



1 Introduction

1.1.2 A Verified ODE Solver

But rigorous ODE solvers give rise to a new concern. The fact that the solution is enclosed
by the computed bounds depends on the fact that the rigorous ODE solver implements
the underlying mathematical ideas faithfully. This is a real concern, given the numerous
examples of software bugs, even in safety-critical systems. It is therefore not surprising that
rigorous numerical tools have been affected by bugs, as well. Mahboubi et al. [94] point out
bugs in the implementation of supposedly rigorous solvers. There are even examples of flaws
in the underlying mathematical ideas and not just in the implementation, as Bünger [29]
pointed out for an optimization that is used in a rigorous ODE solver.

A comprehensive approach to ensure correctness of an implementation is formal veri-
fication. That is, reasoning about computer programs in a rigorous, machine checkable
calculus. We focus on formal verification in interactive theorem provers. The “interactive”
part, formal proofs guided by human intuition, is necessary because specifications and
correctness arguments can be too involved for purely automatic verification. Interactive
formal verification induces large efforts. These efforts are worthwhile when high correctness
guarantees are required, in particular for fundamental, potentially safety-critical software.
Notable examples are the verified compiler CompCert [90] or the verified operating system
kernel seL4 [81].

I claim that ODEs are of similar fundamental importance, because of their ubiquity in all
sorts of scientific and engineering disciplines. Despite their importance, formal verification
of rigorous ODE solvers has not been undertaken. There is ample work on (rigorous)
numerics, from IEEE floating point numbers [57, 17], to formally verified libraries for
rigorous numerical computations [104, 96, 33, 146, 26] and nonlinear optimization [128].
Libraries for mathematics, in particular real analysis, are well developed in many proof
assistants (as surveyed e.g., by Boldo et al. [21]), but no comprehensive formalization of the
theory of ODEs.

The main goal of this thesis is the formal verification of a rigorous ODE solver, a verified
ODE solver. This is a challenging undertaking, because it requires the formalization of the
underlying mathematics as well as intricate algorithms. Moreover, we have the ambition to
devise an implementation that is not only formally verified, but also reasonably efficient to
work on realistic example applications.

We accept these challenges, because a formally verified ODE solver rewards us with
unprecedented guarantees about the reliability of the computed bounds.

1.1.3 Application to Smale’s 14th Problem

Apart from safety-critical systems, another area where such high guarantees are desired
is in mathematics, in the context of computer-assisted proofs. Computer-assisted proofs
are proofs that depend on the output of a computer program and therefore crucially on a
correct implementation. Computer-assisted proofs have therefore been the target of formal
verification in outstanding examples like the Flyspeck project for a formal proof of the Kepler
conjecture [55] and well as the formal verification of the four-color theorem [44].

With the verified ODE solver, we target one particular application: Tucker’s proof of
Smale’s 14th problem. This was an important problem, its solution earned Tucker e.g., the
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1.2 Contributions

price of the European Mathematical Society [87]. The problem is part of a list of problems for
the 21st century, composed by Fields medalist Stephen Smale, among prominent conjectures
like the Riemann hypothesis or the question if P = NP. Tucker’s proof [137, 138, 131] is
based on numerical bounds produced by a rigorous ODE solver. On modern hardware,
it computes for about 30 hours, so the steps carried out by the program are clearly not
surveyable for human reviewers. There have been bugs in the first versions of Tucker’s
program [140, 136], which illustrates the additional value of formal verification: now we can
be certain that the computed bounds are not compromised by potentially remaining bugs.

A short disclaimer might be in order here: it is only the computer-assisted part of Tucker’s
proof that is verified. That is to say, we formally proved that the numerical bounds used in
Tucker’s proof are valid, but not that they imply the solution of Smale’s 14th problem.

1.2 Contributions

The central contribution of this thesis is the formal verification of a rigorous ODE solver.
Fundamental to the verification is the formalization of a significant body of mathematics for
ODEs, in particular for the flow of ODEs and the Poincaré map. The main application is the
Lorenz attractor and the verification of the computer-assisted part of Tucker’s proof.

The verified ODE solver is modular, fundamental for managing its verification. Therefore
all parts can be seen as an independent contribution, each useful on its own. Nevertheless,
all of the individual parts can be motivated along the lines of Tucker’s proof on the Lorenz
equations: The Lorenz equations induce a dynamical system, and therefore a notion of flow.
Tucker uses a standard technique for the analysis of dynamical systems, a so-called Poincaré
map, in his proof. Tucker proves chaos, i.e., sensitive dependence on initial conditions. This
is quantified with the derivative of flow and Poincaré map. We verify rigorous numerical
algorithms that compute enclosures for all of those entities and apply them to the numerical
part of Tucker’s proof.

• formalization of flow and Poincaré map

– continuous and differentiable dependence on initial conditions

– justification of numerical approximation schemes

• implementation and verification of rigorous numerical algorithms

– a library for affine arithmetic

– a rigorous ODE solver,
based on Runge-Kutta methods and affine arithmetic

– rigorous computation of the derivative of the flow,
based on the variational equation

– rigorous computation of Poincaré maps,
based on geometric intersection of zonotopes and hyperplanes

• certification of the computer-assisted part of Tucker’s proof

3



1 Introduction

Every theorem or lemma that is displayed explicitly as such in this thesis possesses a
formal counterpart checked by Isabelle/HOL and is available in the Archive of Formal
Proof [76, 73]. We do, however, take the liberty to deviate from the precise formulations for
the sake of readability.

1.3 Structure of This Thesis

This thesis is structured in a bottom-up fashion, which resembles the formalization, where
everything needs to be built from solid foundations. We therefore start with abstract
mathematical foundations and successively build more and more layers on top, until we
finally arrive at a verified algorithm that certifies Tucker’s proof. The topics of the individual
chapters are so diverse that related work is discussed in each chapter individually. It makes
sense to read the chapters in order. For a quick overview, one can attempt to start with
chapter 7 and look up the necessary background on demand.

The constructions in chapter 3 depend very much on the way mathematics is formalized as
described in chapter 2. But later on, we use the results of chapter 3 in a way that is agnostic
of the concrete constructions. Similarly for chapter 5, where the internal constructions and
proofs are not relevant outside the chapter.

• Chapter 2 presents background on Isabelle/HOL and its library of formalized mathe-
matics, in particular analysis.

• Chapter 3 presents the formalized theory of ODEs and the Poincaré map for the
analysis of dynamical systems and also contains the abstract numerical analysis of
Runge-Kutta methods.

• Chapter 4 introduces how the abstract numerical scheme is turned into a rigorous
numerical method, in particular using affine arithmetic.

• Chapter 5 contains a geometric algorithm for the intersection of zonotopes and hyper-
planes.

• Chapter 6 describes the framework used for specifying and verifying high level
algorithms operating on safe enclosures.

• Chapter 7 assembles the ingredients of the previous chapters to a verified ODE solver.

• Chapter 8 details on applying the verified ODE solver to the Lorenz attractor.

1.4 Publications

This thesis contains text that has appeared before in scientific papers. These are listed here,
joint work is presented with the coauthors’ permission.

[75] Fabian Immler and Johannes Hölzl. Numerical analysis of ordinary differential equa-
tions in Isabelle/HOL. In Lennart Beringer and Amy Felty, editors, Interactive Theorem
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1.4 Publications

Proving: Third International Conference, ITP 2012, Princeton, NJ, USA, August 13-15, 2012.
Proceedings, pages 377–392, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. ISBN
978-3-642-32347-8. URL https://doi.org/10.1007/978-3-642-32347-8_26

[67] Johannes Hölzl, Fabian Immler, and Brian Huffman. Type classes and filters for
mathematical analysis in Isabelle/HOL. In Sandrine Blazy, Christine Paulin-Mohring,
and David Pichardie, editors, Interactive Theorem Proving: 4th International Conference,
ITP 2013, Rennes, France, July 22-26, 2013. Proceedings, pages 279–294, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg. ISBN 978-3-642-39634-2. URL https://doi.org/10.
1007/978-3-642-39634-2_21

[69] Fabian Immler. Formally verified computation of enclosures of solutions of ordinary
differential equations. In Julia M. Badger and Kristin Yvonne Rozier, editors, NASA
Formal Methods: 6th International Symposium, NFM 2014, Houston, TX, USA, April 29 –
May 1, 2014. Proceedings, pages 113–127, Cham, 2014. Springer International Publishing.
ISBN 978-3-319-06200-6. URL https://doi.org/10.1007/978-3-319-06200-6_9

[72] Fabian Immler. A verified algorithm for geometric zonotope/hyperplane intersection.
In Proceedings of the 2015 Conference on Certified Programs and Proofs, CPP ’15, pages
129–136, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3296-5. URL http:
//doi.acm.org/10.1145/2676724.2693164

[71] Fabian Immler. Verified reachability analysis of continuous systems. In Christel Baier
and Cesare Tinelli, editors, Tools and Algorithms for the Construction and Analysis of
Systems: 21st International Conference, TACAS 2015, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015,
Proceedings, pages 37–51, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg. ISBN
978-3-662-46681-0. URL https://doi.org/10.1007/978-3-662-46681-0_3

[70] Fabian Immler. A verified enclosure for the Lorenz attractor (rough diamond). In
Christian Urban and Xingyuan Zhang, editors, Interactive Theorem Proving: 6th Inter-
national Conference, ITP 2015, Nanjing, China, August 24-27, 2015, Proceedings, pages
221–226, Cham, 2015. Springer International Publishing. ISBN 978-3-319-22102-1. URL
https://doi.org/10.1007/978-3-319-22102-1_14

[78] Fabian Immler and Christoph Traut. The flow of ODEs. In Jasmin Christian Blanchette
and Stephan Merz, editors, Interactive Theorem Proving: 7th International Conference,
ITP 2016, Nancy, France, August 22-25, 2016, Proceedings, pages 184–199, Cham, 2016.
Springer International Publishing. ISBN 978-3-319-43144-4. URL https://doi.org/10.
1007/978-3-319-43144-4_12

[79] Fabian Immler and Christoph Traut. The flow of ODEs: Formalization of variational
equation and Poincaré map. Journal of Automated Reasoning, 2018. ISSN 1573-0670. URL
https://doi.org/10.1007/s10817-018-9449-5

[74] Fabian Immler. A verified ODE solver and the Lorenz attractor. Journal of Auto-
mated Reasoning, 61(1):73–111, 2018. ISSN 1573-0670. URL https://doi.org/10.1007/
s10817-017-9448-y
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1 Introduction

The source code corresponding to this thesis is available in the Archive of Formal Proof:

[73] Fabian Immler. Affine arithmetic. Archive of Formal Proofs, September 2017. ISSN
2150-914x. http://isa-afp.org/entries/Affine_Arithmetic.shtml, Formal proof
development

[76] Fabian Immler and Johannes Hölzl. Ordinary differential equations. Archive of Formal
Proofs, September 2017. ISSN 2150-914x. http://isa-afp.org/entries/Ordinary_
Differential_Equations.shtml, Formal proof development

The paper [75] evolved from a student project of mine, supervised by Johannes Hölzl.
The contents corresponding to that project are in section 3.2, but the formalization as it
is part of this thesis is much more streamlined. Chapter 2 is largely based on the joint
paper [67], notable extensions by me are bounded linear functions (section 2.8.2) and
uniform limits (section 2.4.2). The paper [69] presented an ODE solver based on affine
arithmetic (section 4.3) and the Euler method. Chapter 5 is based on [72]. Aspects of [71] can
be found in chapter 7, but very much streamlined and extended to enclosures for derivatives
and a proper notion of Poincaré map. [70] is morally the basis for chapter 8, but has been
extended significantly to formal notions of what is being computed, namely derivatives, cone
fields, and expansion estimates. The developments of [78] are found in section 3.3. Christoph
Traut contributed the proof of lemma 3.32 and theorem 3.33 as part of a student project. The
article [79] extends the paper [78] with a formalization of Poincaré map (section 3.4). The
article [74] can be seen as a synoptic overview of the results presented in this thesis.

Outside of the scope of this dissertation are the following publications.

[121] Albert Rizaldi, Fabian Immler, and Matthias Althoff. A formally verified checker of
the safe distance traffic rules for autonomous vehicles. In Sanjai Rayadurgam and
Oksana Tkachuk, editors, NASA Formal Methods: 8th International Symposium, NFM
2016, Minneapolis, MN, USA, June 7-9, 2016, Proceedings, pages 175–190, Cham, 2016.
Springer International Publishing. ISBN 978-3-319-40648-0. URL https://doi.org/10.
1007/978-3-319-40648-0_14

[122] Albert Rizaldi, Jonas Keinholz, Monika Huber, Jochen Feldle, Fabian Immler, Matthias
Althoff, Eric Hilgendorf, and Tobias Nipkow. Formalising and monitoring traffic
rules for autonomous vehicles in Isabelle/HOL. In Nadia Polikarpova and Steve
Schneider, editors, Integrated Formal Methods: 13th International Conference, IFM 2017,
Turin, Italy, September 20-22, 2017, Proceedings, pages 50–66, Cham, 2017. Springer
International Publishing. ISBN 978-3-319-66845-1. URL https://doi.org/10.1007/
978-3-319-66845-1_4

[77] Fabian Immler and Alexander Maletzky. Gröbner bases theory. Archive of Formal Proofs,
May 2016. ISSN 2150-914x. http://isa-afp.org/entries/Groebner_Bases.shtml,
Formal proof development
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2
Mathematics in Isabelle/HOL

All of the results described in this thesis are formalized, that is, written in a formal language
and proved in a machine-checkable calculus. We use the Isabelle theorem prover [116].
Isabelle is a logical framework and Isabelle/HOL [111] the most popular instantiation.

Isabelle follows the tradition of Edinburgh LCF [46] of having a small, trusted kernel.
This kernel provides an abstract interface to what we call formal theorems and implements
primitive logical inference rules. The system ensures that formal theorems can only be
constructed by applying the primitive inference rules to existing formal theorems. A formal
theorem therefore provides highest levels of mathematical rigor: its validity can be traced
back to the very axioms of the underlying logic.

In this chapter we present Isabelle/HOL viewing it as a logic for formalizing mathematics—
in the tradition of Whitehead and Russel’s Principia Mathematica [143] and as alternative
to e.g., Zermelo-Fraenkel set theory. A different view of Isabelle/HOL as a functional
programming language with logic is provided by Part I of Concrete Semantics [110].

We will start with basic concepts and our syntactic conventions in section 2.1. A unique
feature of Isabelle/HOL among other HOL based theorem provers is its axiomatic type
classes. We elaborate on the library for analysis and how it is structured along a hierarchy
of type classes (section 2.3). A result of this design is the fact that function spaces are best
formalized as types (section 2.8). A central concept in mathematical analysis is that of limits,
of which there exist many different notions: limits of sequences, limits when approaching
a point, one-sided limits, uniform limits. In Isabelle/HOL, we work with a unified view
(as promoted e.g., by Bourbaki [25]): limits of filters, where the filter is used to abstract
over the various kinds of limits. This is presented in section 2.4. Limits are necessary for
talking about continuity (section 2.5) and, particularly important for differential equations,
differentiability and derivatives (section 2.6) as well as integration (section 2.7).

2.1 Isabelle/HOL

The logic on which the developments of this thesis are built on is Isabelle/HOL. This is an
extension of Higher Order Logic (HOL)—a logic which has its roots in Church’s Simple
Theory of Types [32] and distinguishes between types and terms. Types must not depend on
terms (in contrast to Martin-Löf type theory [97]).

Gordon’s original HOL system [47] extended Church’s Simple Theory of Types with
top-level (or Hindley-Milner) polymorphism and type definitions. Isabelle/HOL extends the
original HOL with axiomatic type classes [52, 142], which play a crucial role in structuring
the library of formalized mathematics in Isabelle/HOL.

7
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Types. Type variables are usually denoted by lower case Greek letters α, β, γ, and so on.
Further types are constructed with type constructors like, e.g., the type of functions α→ β,
the type of sets α set of elements of type α, or the product type α× β.

Terms. For terms, we write t :: τ to indicate that a term t is of type τ. Terms are made up
of constants constant , variables x, y, . . . , function abstractions (λx. t), or function application.

Function application is written—as is common in functional programming and the λ-
calculus—juxtaposition: f t denotes the function f :: α→ β applied to an argument t :: α.

Function abstraction (λx. t) :: α → β denotes the (anonymous) function that maps an
argument x :: α to some term t :: β (which may depend on x). A mathematician would write
(x 7→ t).

Currying. Elements of the product type, pairs, are written (a, b) :: α × β. For binary
functions, a mathematician usually writes f (a, b), for a f applied to two arguments a, b. In
Isabelle/HOL, such a notation means that f :: (α× β)→ γ maps a product to some value.
In functional programming (and Isabelle/HOL), it is more common to use a Curried (named
after Haskell Curry) representation for functions with several arguments: one would use
g :: α→ β→ γ, such that g, when (partially) applied to one argument, yields a function in
the second argument: (g a) :: β→ γ.

Top-Level Polymorphism. Constants are called polymorphic if their type contains type
variables, e.g., the first projection function fst : (α× β)→ α for pairs. Type variables can be
instantiated with concrete types, e.g., fst can be applied to a pair of natural numbers such
that fst (2 :: N, 3 :: N) :: N. Type variables are implicitly quantified at the outermost level
(being very explicit, we would write fst :: ∀αβ. (α× β)→ α). This is a restriction compared
to System F [43], where types may be quantified at any level1.

Type Definition. New types can be introduced with a type definition mechanism. Given
a subset S :: σ set of an existing type σ and a name ᾱ type for the new type constructor
depending on a list of types ᾱ, typedef declares a new type that is isomorphic to the set S .

typedef ᾱ ty := S :: σ set

Concepts involving the newly defined type are usually introduced using the package
for lifting and transfer by Huffman and Kuncar [68]. With lifting, constants involving the
new type are defined in terms of the old type, provided the invariant S is respected. With
transfer, proof obligations involving the new type are transferred to obligations on the old
type.

Type Classes. The feature that distinguishes Isabelle/HOL from other HOL-based theorem
provers is the concept of (axiomatic) type classes [109, 52]. Type classes help to organize
polymorphic specifications. A type class C specifies assumptions P1, . . . , Pk for constants

1The term λx. x x can be typed in System F with (∀α. α→ α)→ (∀α. α→ α), but is not top-level polymorphic.
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c1, . . . , cm (that are to be overloaded) and may be based on other type classes B1, . . . , Bn. We
use the following syntax to describe a type class in Isabelle/HOL:

class C = B1 + B2 + . . .+ Bn+

fixes c1 :: α κ1 and c2 :: α κ2 and · · · and cm :: α κm

assumes P1 and P2 and · · · and Pk

In the type class specification only one type variable, α, is allowed to occur. κ1, . . . , κm are
(fixed) type constructors. Variables in P1, . . . , Pk are implicitly universally quantified. A type
α is said to be an instance of the type class C if it provides definitions for the respective
constants and respects the required assumptions. In this case we write α :: C.

2.2 Base Types

Booleans, numbers, sets and lists are the base types that are most important for the purposes
of this thesis.

Booleans. The type B consist of the two values True :: B and False :: B. We use the usual
logical connectives ¬,∧,∨,−→, ∀, ∃ for negation, conjunction, disjunction, implication, all-
quantification, exists-quantification. Implication binds stronger than universal quantification,
i.e., ∀x. P x −→ Q x is equal to ∀x. (P x −→ Q x). Bi-implication ←→ denotes equality of
Booleans.

Sets. A set of elements of type α is of type α set The universe of a type α, i.e. the set of
all elements of type α, is written UNIV α :: α set . We use the usual notation ∈,⊆, \ for set
membership, subset relation, set difference. We write set comprehension {x | P x} for the
set of all Elements x :: α for which the predicate P :: α→ B holds. We write the image of a
function f :: α→ β applied to a set X :: α set as f (X) :: β set . This can be ambiguous with
regular function application but should be clear from the context.

Lists. A finite list of elements of type α is of type α list . Lists are constructed inductively
from the empty list [] :: α list and a constructor # :: α→ α list → α list which prepends an
Element to a list. The list of the first three prime numbers is 2#3#5#[], and we also use the
notation [2, 3, 5] for better readability. We mostly use the convention of using the suffix s for
variables of a list type. E.g., when we use variables x, y, z, or X, Y , Z for elements of type α,
we use variables xs, ys, zs, or XS, YS, ZS for elements of type α list .

Lists have a length length :: α list → N and the set of elements in a list is denoted by
set :: α list → α set . For an index i ≤ length xs, we denote the selection of the i-th element of
the list xs with a subscript xsi. map :: (α→ β) → α list → β list takes a function f :: α→ β

and a list xs :: α list and applies the function to every element of the list.
Functional programmers tend to take a recursive view on lists and functions on lists,

e.g., map f (x#xs) = ( f x)#map f xs and map f [] = []. We will sometimes take a more
declarative, extensional view by avoiding the constructors and referring to the elements at
the valid indices of the list, e.g, ∀i < length xs. (map f xs)i = f (xsi).
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2 Mathematics in Isabelle/HOL

Numbers. In Isabelle/HOL different types are used for different sets of numbers (e.g.,
N is not a subset of R), the connections between the different types are maintained with
explicit injections.

Natural numbers are the type N, which can be seen as constructed inductively from
0 :: N and Suc :: N → N, but we use numeral notations as e.g., 3 = Suc (Suc (Suc 0)).
Integer numbers are the type Z, and real numbers the type R. The injections int-of-nat ::
N → Z, real-of-nat :: N → R, and real-of-int :: Z → R may seem to render formalization
cluttered, in practice this is not a big problem because Isabelle uses coercive subtyping [134],
which automatically inserts such injections in appropriate places. For example, one could
write π+ Suc 0 and the system would insert coercions for an internal representation as
π+ real-of-nat (Suc 0).

Operations like addition +, subtraction −, multiplication · are polymorphic, i.e., they
can be used for all number types (and even more), these operations are organized along a
hierarchy of type classes as described in the following section 2.3.

2.3 Type Classes for Mathematical Analysis

Many structures in mathematics are organized hierarchically and share operations. For
example, a ring (R,+, ·) is based on an abelian group (R,+) and a monoid (R, ·). Every
group shares the symbol + (in additive notation): one uses the same symbol + to denote
addition of natural, integer, and real numbers.

In Isabelle, we talk about + : N → N → N,+ : Z → Z → Z,+ : R → R → R,
because of the different types, + denotes different functions and we call such an operation
polymorphic. We write + :: α→ α→ α and assume that α is constrained to type class that
provides an addition operation.

Type classes are well suited to exhibit the hierarchical structure of spaces within mathe-
matical analysis and organize polymorphic specifications. In this section, we present the
hierarchy of type classes that are useful for mathematical analysis. Figure 2.1 shows the type
class hierarchy. We group the type classes into topological, metric, vector and algebraic type
classes.

2.3.1 Topological Spaces

A topology captures the notion of nearness of elements in a space with the help of so called
open sets. An open set contains for each element also all elements which are in some sense
near it. This structure is sufficient to express limits and continuity of functions on topological
spaces. For a introduction into topology the reader may look into standard textbooks
like [80].

A topological space is defined by its predicate of open sets, open :: α set → B. In mathe-
matics the support space, the union of all open sets, is usually explicitly given, whereas in
Isabelle/HOL, the support space is the set of all elements of the type, which needs to be
open: open UNIV α. Open sets are stable under binary intersection (open U −→ open V −→
open (U ∩ V)) and arbitrary union ((∀U ∈ S . open U) −→ open

⋃
S ). Combining all of
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Topological

Vector

Metric

Algebraic

topological-space

t0-space

t1-space

t2-space perfect-space

first-countable-topology

second-countable-topology

linorder-topology

metric-space

complete-space

heine-borel

ab-group-add

ring

field

real-vector

real-algebra

real-field

real-normed-vector

real-normed-algebra

real-normed-field

banachreal-inner

euclidean-space

Figure 2.1: Hierarchy of type classes for mathematics [67]. Full lines are inheritance relations
and dashed lines are proved subclass relations.

this, a topological space is a type in the following type class:

class topological-space =

fixes open :: α set → B

assumes open UNIV α

and open U −→ open V −→ open (U ∩ V)
and (∀U ∈ S . open U) −→ open

⋃
S

In the context of topological spaces, one can define the notion of closed sets as the ones with
open complement:

closed :: α set → B

closed U ←→ open (UNIV α \U)

Refined notions of topological spaces with separation properties are separation spaces t0-
space , t1-space , t2-space , and the notion of perfect spaces perfect-space . They are discussed
in more detail in section 2.3 of the paper [67].

2.3.2 Metric Spaces

Metric spaces are specializations of topological spaces: while topological spaces talk about
nearness, metric spaces require to explicitly give a distance between elements. This distance
then induces a notion of nearness: a set is open iff for every element in that set, one can give
a distance within which every element is near, i.e. in the open set. The following type class
formalizes open sets induced by a distance:

class open-dist = fixes open :: α set → B and dist :: α→ α→ R

assumes open U ←→ (∀x ∈ U. ∃e > 0. ∀y. dist x y < e −→ y ∈ U)
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If the distance is a metric, it induces a metric space, and with the open sets defined as
prescribed by the type class open-dist , it is a topological space.

class metric-space = open-dist +

assumes dist x y = 0←→ x = y and dist x y ≤ dist x z + dist y z
instance metric-space ⊆ topological-space

One aspect that makes real numbers an interesting metric space is the fact that they are
complete, which means that every sequence where the elements get arbitrarily close converges.
Such a sequence is called Cauchy sequence, and a metric space is complete iff every Cauchy
sequence converges.

Cauchy :: (N→ α :: metric-space )→ B

Cauchy X ←→ (∀e > 0. ∃M. ∀m, n ≥ M. dist (X m) (X n) < e)

complete :: (α :: metric-space ) set → B

complete U ←→ (∀X. (∀i. X i ∈ U) ∧ Cauchy X −→ ∃x ∈ U. X −−−→ x)

class complete-space = metric-space + assumes complete UNIV α

2.3.3 Vector Spaces

One aspect that is often abstracted away from products of real numbers is their property
of being a vector space, i.e. a space where addition and scaling can be performed. Let
us present in this section the definition of vector spaces, normed vector spaces, and how
derivatives are generalized for normed vector spaces.

Usually, a vector space is defined on an Abelian group of vectors V , which can be scaled
with elements of a field F, and where distributive and compatibility laws need to be satisfied
by scaling and addition. The type class based approach restricts the number of type variables
to one. Therefore locales (Isabelle’s module system for dealing with parametric theories [53])
are used to abstractly reason about vector spaces with arbitrary combinations of F and
V (which may be of different types). The instantiation of the field F with the type of
real numbers is used as the type class real-vector of real vector spaces. The type class
ab-group-add , which formalizes an Abelian group, provides the operations for addition and
additive inverse for the type of vectors α (subtraction is defined in terms of these operations).

class real-vector = ab-group-add + fixes ·R :: R→ α→ α

assumes r ·R (a + b) = r ·R a + r ·R b and (r + q) ·R a = r ·R a + q ·R a
and r ·R (q ·R a) = (r · q) ·R a and 1 ·R a = a

We write ·R for scalar multiplication in the vector space to distinguish it from multiplication
· on real numbers. For r, s :: R and x :: α :: real-vector , we take the liberty to write (scalar)
multiplication also as rs, rx, or r · x, wherever the precise meaning should be clear from the
context.

A generalization of the length of a vector of real numbers is given by the norm in a vector
space. The norm induces a distance in a vector space. Similar to open-dist , which describes
how dist induces open sets, dist-norm formalizes how the norm induces a distance.

class dist-norm = fixes norm :: α→ R and − :: α→ α→ α

assumes dist x y = norm (x− y)

12
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A normed vector space is a vector space real-vector with a separating and positively scalable
norm, for which the triangle equality holds. The distance for the instantiation as metric
space and open sets for the topology are induced by dist-norm and open-dist , respectively.
This makes every normed vector space a metric space.

class real-normed-vector = real-vector + dist-norm + open-dist +

assumes norm x = 0←→ x = 0 and norm (r ·R x) = |r| · norm x
and norm (x + y) ≤ norm x + norm y

instance real-normed-vector ⊆ metric-space

About syntactic conventions, we will also write ‖x‖ = norm x for the norm of x.
Complete normed vector spaces are called Banach spaces.

class banach = complete-space + real-normed-vector

Further specializations of (normed) vector spaces are available by including multiplica-
tion ∗ from a ring ring that is compatible with scaling vectors, which yields real-algebra , an
algebra over the field of real numbers.

class real-algebra = real-vector + ring
assumes r ·R x ∗ y = r ·R (x ∗ y)

A real-algebra endowed with a sub-multiplicative norm is a real-normed-algebra .

class real-normed-algebra = real-normed-vector + real-algebra
assumes ‖x ∗ y‖ ≤ ‖x‖ · ‖y‖

2.3.4 Euclidean Space

We consider spaces with Euclidean structure also as a type class. Elements of a space with
Euclidean structure consist of finitely many real valued coordinates.

A first abstraction towards this notion is given by a normed vector space with an inner
product. While the norm can be interpreted as the length of a vector, the inner product can
be used to describe the angle between two vectors together with their lengths (the cosine
of the angle is the inner product divided by the product of the lengths). dist-norm and
open-dist specify the induced metric and topology. The inner product is used to induce a
norm ‖x‖ =

√
x • x. An inner product is a commutative bilinear operation • on vectors, for

which 0 ≤ x • x holds with equality iff x = 0.

class real-inner = real-vector + dist-norm + open-dist +

fixes • :: α→ α→ R

assumes ‖x‖ =
√

x • x and x • y = y • x
and (x + y) • z = x • z + y • z and (r ·R x) • y = r ·R (x • y)
and 0 ≤ x • x and x • x = 0←→ x = 0

instance real-inner ⊆ real-normed-vector

The structure of Euclidean space can be captured with an inner product and a finite
coordinate basis. A coordinate Basis is a finite set of orthogonal (i.e., their inner product

13
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equals zero) vectors, each of length 1. Moreover, the zero vector is characterized by zero
“coordinates” with respect to the basis.

class euclidean-space = real-inner +

fixes Basis :: α set
assumes finite Basis and Basis 6= ∅ and (∀u ∈ Basis . x • u = 0)←→ x = 0

and u ∈ Basis −→ v ∈ Basis −→ u • v = if u = v then 1 else 0
instance euclidean-space ⊆ perfect-space , second-countable-topology ,

banach , heine-borel

Any Euclidean space is a Banach space with a perfect second countable topology and satisfies
the Heine-Borel property (closed bounded sets are exactly the compact sets).

Concrete instances are real numbers R, Complex numbers C, and any (binary or finite)
product of Euclidean spaces is a Euclidean space.

When b ∈ Basis , we also write xb for the projection of x to b, i.e., xb := x • b. We write
[x; z] := {y | ∀b ∈ Basis . xb ≤ yb ∧ yb ≤ zb} :: α :: euclidean-space set for hyperrectangles (or
boxes) in Euclidean spaces (for the instance R, those are the closed intervals). Beware a
potential confusion with two-element lists [a, b]. The infimum inf :: α→ α→ α is defined
componentwise (inf x y) • i = min(x • i)(y • i), analogously the supremum sup. An order
x ≤ y←→ (∀b ∈ Basis . xb ≤ yb) is also defined componentwise.

For computability, it is important that elements of euclidean-space can be represented
unambiguously. One can fix an order on the basis vectors in a class executable-euclidean-space

class executable-euclidean-space = euclidean-space +

fixes Basis-list :: α list
assumes set Basis-list = Basis

and distinct Basis-list

Elements x :: α :: executable-euclidean-space can be interpreted as lists of real numbers with
the help of eucl-of-list : R list → α and list-of-eucl : α→ R list . We therefore have

eucl-of-list (list-of-eucl x) = x

and if the dimension of the spaces (i.e., the cardinality of the set Basis ) match the lengths of
the involved lists, we have the inverse:

length xs = |Basis :: α set | −→ list-of-eucl (eucl-of-list xs :: α)

In the context of executable-euclidean-space , we also write xi if i ∈N and i < length Basis-list
to denote the i-th coordinate of x.

xi := xBasis-list i = x • (Basis-list i)

2.4 Filters and Limits

Filters are a useful concept in topology—promoted e.g., by Bourbaki [25]—because they
help to unify various kinds of limits and convergence, including limits of sequences, limits
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of functions at a point, one-sided, asymptotic, or uniform limits. A filter is a set of sets (or
equivalently a predicate on predicates) with a certain order structure.

The intuition is that many varieties of logical quantification are filters, such as “for all x
in set A”; “for sufficiently large n”; “for all but finitely many x”; “for x sufficiently close to
y”. These quantifiers are similar to the ordinary universal quantifier (∀) in many ways. In
particular, each holds for the always-true predicate, preserves conjunction, and is monotonic:

(�x. True )
(�x. P x) −→ (�x. Q x) −→ (�x. P x ∧ Q x)
(∀x. P x −→ Q x) −→ (�x. P x) −→ (�x. Q x)

In Isabelle/HOL, a filter F is defined as a predicate on predicates that satisfies all three of
the above rules. (Filters are not required to be proper; that is, we admit the trivial filter “for
all x in {}” which holds for all predicates, including λx. False .)

is-filter :: ((α→ B)→ B)→ B

is-filter F =

F (λx.True ) ∧
(∀P, Q. F (λx. P x) −→ F (λx. Q x) −→ F (λx. P x ∧ Q x)) ∧
(∀P, Q. (∀x. P x −→ Q x) −→ F (λx. P x) −→ F (λx. Q x))

This notion is abstracted in a type α filter comprising all filters over the type α.

typedef α filter = {F | is-filter F}

We use filter quantifiers ∀F x. P x to express that a predicate P holds under the filter
F :: α filter .

For a filter F :: α filter and its corresponding raw representation F :: (α → B) → B, we
will usually show only its characteristic equation ∀F x. P x ←→ F P and leave the raw
definition (in terms of the isomorphism between α filter and (α→ B)→ B) and the proof
obligation is-filter F implicit.

Filters are equipped with a finer than ordering, which is defined accordingly:

F1 ≤ F2 ←→ ∀P. (∀F2 x. P x) −→ (∀F1 x. P x)

With this ordering, α filter is a complete lattice, where the bottom element is the trivial filter
and the top element the filter corresponding to ∀-quantification.

2.4.1 Basic filters.

The principal filter of a set B represents a bounded quantifier, i.e. “for all x in B”.

∀principal S x. P x←→ (∀x ∈ S . P x)

On any linearly ordered type α :: linorder , the filter at-top :: α filter means “for sufficiently
large y” or “as y −→ +∞”, and at-bot :: α filter as “for sufficiently small y” or “as y −→ −∞”.
sequentially :: N filter as an abbreviation for at-top as a filter on the natural numbers.

(∀at-top x. P x)←→ (∃x. ∀y ≥ x. P y)

(∀sequentially n. P n)←→ (∃n0. ∀n ≥ n0. P y)

(∀at-bot x. P x)←→ (∃x. ∀y ≤ x. P y)
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In the context of a topological space, the neighborhood filter nhds x is the filter that means
“for all y in some open neighborhood of x”.

(∀nhds x . P x)←→ (∃U. open x ∧ x ∈ U ∧ (∀y ∈ U. P y))

The principal filter can be used to construct refinements of the neighborhood filter. The
punctured neighborhood filter at x within U means “for all y ∈ U and y 6= x in some
neighborhood of x”. We also use one-sided filters at-left and at-right . at x is an abbreviation
for at x within UNIV α. F1 u F2 is the infimum of the filters F1 and F2. For functions, one can
define a filter that expresses that functions are uniformly close:

at � within � :: (α :: topological-space )→ α set → α filter
at-left , at-right :: (α :: linorder-topology )→ α filter
uniformly-on :: α set → (α→ β :: metric-space )→ α→ β filter

at x within U = nhds x u principal (U \ {x})
at-left x = at x within ]∞, x[
at-right x = at x within ]x, ∞[

uniformly-on S l =
d

0<δ principal { f | ∀x ∈ S . dist ( f x) (l x) < δ}

2.4.2 Limits.

Filters can be used to express a general notion of limits. To illustrate this, we start with
the usual epsilon-delta definitions of limits of functions and sequences on reals, and then
incrementally generalize the definitions. Finally we end up with a single definition, param-
eterized over two filters, that can express diverse kinds of limits in arbitrary topological
spaces. Here are the usual epsilon-delta definitions of limits for sequences yn and for a
function f at a point a.

(yn −−−→ L) = (∀ε > 0. ∃n0. ∀n ≥ n0. ‖yn − L‖ < ε)
(lim

x→a
f (x) = L) = (∀ε > 0. ∃δ > 0. ∀x. 0 < ‖x− a‖ < δ −→ ‖ f (x)− L‖ < ε)

The reader may recognize “∃n0. ∀n ≥ n0” as the filter sequentially . Also note that “∃δ >
0. ∀x. 0 < ‖x− a‖ < δ” is equivalent to the punctured neighborhood filter (at a). Therefore
we can rewrite the above definitions as follows.

(yn −−−→ L) = (∀ε > 0. ∀sequentially n. ‖yn − L‖ < ε)
(lim

x→a
f (x) = L) = (∀ε > 0. ∀at a x. ‖ f (x)− L‖ < ε)

Here we can generalize those two definitions by parameterizing over the filter. We write
( f −→ L) F to denote that f tends to L under the filter F:

( f −→ L) F = (∀ε > 0. ∀F x. | f (x)− L| < ε) (2.1)

This yields a general notion of limit: by instantiating F with various filters, we can express
many different kinds of limits: sequentially for sequences, at a for a function at a point,
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at-top or at-bot for a function at ±∞, at-left a or at-right a for one-sided limits.

(xn −−−→ L) = (x −→ L) sequentially

(lim
x→a

f (x) = L) = ( f −→ L) (at a)

( lim
x→a+

f (x) = L) = ( f −→ L) (at-right a)

( lim
x→−∞

f (x) = L) = ( f −→ L) at-bot

Generalized Limit. All of the previous notions talk about limits approaching a point L.
Even this can be generalized to, as we will see, e.g., infinities or functions (in a uniform
limit). First of all, note that when applying a function to the argument of each predicate in a
filter, one gets a filter again. This is expressed by filtermap f F, which transforms the filter F
with a function f .

∀(filtermap f F) x. P x←→ ∀F x. P ( f x)

filtermap can be used to rewrite (2.1):

( f −→ L) F = (∀ε > 0. ∀(filtermap f F) y. |y− L| < ε)

But this is saying that filtermap f F is eventually in every open neighborhood of L, which is
equivalent to the following:

( f −→ L) F = (filtermap f F ≤ nhds L)

Finally, we can generalize nhds L to an arbitrary filter G and obtain a generalized limit
filterlim f F G, which is used to define the tendsto relation and sequential limit:

filterlim :: (α→ β)→ α filter → β filter → B

filterlim f F G ←→ filtermap f F ≤ G

(� −→ �) � :: (α→ β)→ (β :: topological-space )→ α filter → B

( f −→ L) F ←→ filterlim f F (nhds L)

� −−−→ � :: (N→ α)→ (α :: topological-space )→ B

X −−−→ L ←→ (X −→ L) sequentially

This generalized notion of limit is only based on filters and does not even require topologies.
This can be used in e.g., filterlim (λx. − x) at-bot at-top to express that that −x goes to
positive infinity as x approaches negative infinity.

For filterlim one can provide a composition rule for convergence. Further rules about e.g.
elementary functions are available for normed vector spaces.

filterlim f F1 F2 −→ filterlim g F2 F3 −→ filterlim (g ◦ f ) F1 F3

A small example to illustrate where such a formalization enables compositional reasoning is
to prove

((λx. exp (−1/x)) −→ 0) (at-right 0)

by composing the rules

17



2 Mathematics in Isabelle/HOL

• filterlim (λx. 1
x ) (at-right 0) at-top .

• filterlim (λx. − x) at-top at-bot , and

• (exp −→ 0) at-bot ,

Uniform Limit The generalized limit filterlim is sufficiently general to capture the notion
of uniform limit, as well. For this, we use the uniformly-on X l filter, a filter that quantifies
over functions f :: α → β :: metric-space that are (on a domain X) uniformly close to a
function l:

(∀(uniformly-on X l) f . P f )←→ (∃ε > 0. ∀ f . (∀t ∈ T . dist ( f x) (l x) < ε) −→ P f )

With the help of this filter, we can describe uniform convergence:

uniform-limit X f l F ←→ filterlim f F (uniformly-on X l)

which is usually defined as follows for a sequence of functions fn.

( fn
uniformly−−−−−→ l)←→ (∀ε > 0. ∃N. ∀n ≥ N. ∀x ∈ X. | fn x− l x| < ε)

When instantiating F with the sequentially filter, one gets the usual definition of uniform
convergence for a sequence of functions fn : N → α or a family of functions fy as y
approaches z:

uniform-limit X f l sequentially :=

∀ε > 0. ∃N. ∀x ∈ X. ∀n ≥ N. ‖ fn x− l x‖ < ε

uniform-limit X f l (at z) :=

∀ε > 0. ∃δ > 0. ∀y. ‖y− z‖ < δ −→ (∀x ∈ X. dist ( fy x) (l x) < ε)

The advantage of the filter approach is that many important lemmas can be expressed for
arbitrary filters, for example the uniform limit theorem, which states that the uniform limit l
of a family of continuous functions fy is continuous.

Theorem 2.1 (Uniform Limit Theorem).

(∀F y. continuous-on X fy) −→ uniform-limit X f l F −→ continuous-on X l

A frequently used criterion to show that a series of functions converges uniformly is the
Weierstrass M-test. Assuming majorants Mn for the functions fn and assuming that the series
of majorants converges, it allows to deduce uniform convergence of the partial sums towards
the series.

Lemma 2.2 (Weierstrass M-Test).

∀n. ∀x ∈ X. ‖ fn x‖ ≤ Mn −→ ∑
n∈N

Mn < ∞ −→

uniform-limit X (λn x. ∑
i≤n

fi x) (λx. ∑
i∈N

fi x) sequentially
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2.5 Continuity

Filters are also used to generalize notions of continuity, e.g., continuity at a point, continuity
from the left, or continuity from the right. Continuity of a function f at a filter F says that
the function converges on F towards its value f a while F converges to a.

continuous :: α filter → (α→ β)→ B

continuous F f ←→ ∃a. ((λx. x) −→ a) F ∧ ( f −→ f a) F

Often times, a function needs to be continuous not only at a point, but on a set. For this one
uses continuous-on : for every point x in the set S , f converges to f x when approaching the
limit from within S .

continuous-on :: α set → (α :: topological-space → β :: topological-space )→ B

continuous-on S f ←→ ∀x ∈ S . ( f −→ f x) (at x within S )

2.6 Derivatives

The main topic of this work is ordinary differential equations, it is therefore important to
formally reason about derivatives. We use two different (but related) concepts: the ordinary
(vector) derivative and the total (or Fréchet) derivative.

Total Derivative. The total derivative (or Fréchet derivative) is a generalization of the
ordinary derivative (of functions R→ R) for arbitrary normed vector spaces. To illustrate
this generalization, recall that the ordinary derivative denotes the slope of a function: the
derivative of f at x equals m, iff

lim
h→0

f (x + h)− f (x)
h

= m (2.2)

Moving the m under the limit, one sees that the function λh. h ·m is a linear approximation
for the difference of the function value at nearby points x and x + h:

lim
h→0

f (x + h)− f (x)− h ·m
h

= 0

This concept can be generalized by replacing λh. h ·m with an arbitrary (bounded) linear
function A. In the following equation, A is a linear function.

lim
h→0

f (x + h)− f (x)− A h
‖h‖ = 0 (2.3)

Note that in the previous equation, we can drop many of the restrictions on the type of
f . We started with f : R → R in equation 2.2, but the last equation still makes sense for
f : α→ β for normed vector spaces α, β. We call A : α→ β the total derivative D f of f at a
point x. It is formalized with the predicate has-derivative , which is formalized with a filter to
parametrize the way h tends to zero in equation 2.3.
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Definition 2.3 (Total Derivative). For
f :: α :: real-normed-vector → β :: real-normed-vector ,
A :: α→ β, x :: α, and S :: α set

( f has-derivative A) (at x within X)←→((
λy.
‖ f y− f x− A (y− x)‖

‖y− x‖

)
−→ 0

)
(at x within X)

For ease of notation, whenever there is an assumption ( f has-derivative A) F in the
formalization, we write, close to common mathematical notation, D f |F , or even D f |x instead
of D f |at x or D f |at x within X .

Ordinary Derivative For functions x :: R → α in one real variable, the total derivative
is a linear function R → α that approximates x at a given point. In contrast to that, the
ordinary derivative gives the rate of change (as a value of type α) at the given point. The
ordinary derivative of a vector valued function x :: R→ α is formalized as has-vderivative
(the v stands for “vector”) based on the total derivative has-derivative :

Definition 2.4 (Ordinary Derivative). For
x :: R→ α :: real-normed-vector ,
x′ :: α, t : R, and T : R set

(x has-vderivative x′) (at t within T )←→ (x has-derivative (λd. d · x′)) (at t within T )

Similarly to the total derivative, we also adopt a special notation whenever there is an
assumption (x has-vderivative x′) (at t within T ). We then write the following (and leave the
domain T of approaching the limit implicit):

ẋ(t) = x′

Similar to continuous at a point and continuous-on on a set, we also provide a notion
has-vderiv-on for the derivative on a set. In contrast to definition 2.4, the derivative x′ here is
a function of the point in time where the derivative is taken.

Definition 2.5 (Ordinary Derivative on a Set). For
x :: R→ α :: real-normed-vector ,
x′ :: R→ α and T : R set

(x has-vderiv-on x′) T ←→ (∀t ∈ T . (x has-vderivative x′ t) (at t within T ))

2.7 Integrals

Integrals are defined for functions from Euclidean space to Banach space. A Banach space is
a complete normed vector space.

class banach = real-normed-vector + complete-space

The formalization includes properties like linearity, monotone and dominated convergence,
as well as the fundamental theorem of calculus. For an integrand f :: α :: euclidean-space →
β :: banach , we denote with

∫ b
a f x dx the integral of f over the box [a; b].
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2.8 Function Spaces as Types

Type classes make specifications and reasoning about common spaces generic: The original
motivation was to generalize from Rn to isomorphic spaces without explicitly reasoning
about the isomorphism. Some examples include R (which is isomorphic to R1), C (which is
isomorphic to R2), or tuples of e.g., type R×R×R (which is isomorphic to R3).

It turned out, however, that the fine-grained hierarchy of type classes also supports
functional analysis, i.e., analysis of spaces whose elements are functions. The approach
is therefore to define types for function spaces and instantiate type classes accordingly. A
concrete example where this is necessary is the case of bounded continuous functions and
its role in the proof of the Picard-Lindelöf theorem.

2.8.1 Bounded Continuous Function

We motivate bounded continuous functions with the Picard-Lindelöf theorem, which guar-
antees the existence of a unique solution to an initial value problem. For an ODE f with
initial value x0 at time t0, a unique solution on the time interval [t0; t1] is constructed by
considering iterations of the following operator for continuous functions φ : [t0; t1]→ Rn:

P(φ) :=
(
λt. x0 +

∫ t

t0
f (τ, φ(t))dτ

)
From a mathematician’s point of view, P operates on the Banach space of continuous

functions on the compact domain [t0; t1] and therefore the Banach fixed point theorem
guarantees the existence of a unique fixed point (which is by construction the unique
solution).

In order to formalize this in Isabelle/HOL, there are two obstructions to overcome: First,
the concept of Banach space is a type class in Isabelle/HOL, we therefore need to introduce
a type for the mappings φ : [t0; t1] → Rn from above. But this poses the second problem:
functions in Isabelle/HOL are total and types must not depend on term parameters like t0
and t1.

We work around these restrictions by introducing a type of bounded continuous functions,
which is a Banach space and comprises (with a suitable choice of representations) every
continuous functions on all compact domains.

typedef α→bc β := { f :: α→ β | f continuous on α∧ (∃B. ∀t. ‖ f t‖ ≤ B)}

Functions on a given compact domain are then encoded (see ext-cont in section 3.2.1) with
suitable representatives.

In order to define operations on type α →bc β, the Lifting and Transfer package [68] is
an essential tool: operations on the plain function type α → β are automatically lifted to
definitions on the type α→bc β when supplied with a proof that functions in the result are
bounded continuous under the assumption that argument functions are bounded continuous.
We write application of a bounded continuous function f : α→bc β with an element x : α as
follows.
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Definition 2.6 (Application of Bounded Continuous Functions).

( f ·bc x) :: β

The norm on α→bc β is the supremum of the range and the vector space operations +, ·
are defined pointwise.

Definition 2.7 (Normed Vector Space of Bounded Continuous Functions).

‖ f ‖ := sup {‖ f ·bc x‖ | x ∈ UNIV α}
( f + g) ·bc x := f ·bc x + g ·bc x
(a · f ) ·bc x := a · ( f ·bc x))

The type→bc with the above operations forms a complete normed vector space (a Banach
space). This allows us to use the Banach fixed point theorem for operators on this type.

2.8.2 Bounded Linear Functions

Similar to the type of bounded continuous functions, we also introduce a type of bounded
linear functions (also known as continuous linear functions), but for a different notion of
“bounded”.

For vector spaces α and β, a linear function is a function f : α→ β that is compatible with
addition and scalar multiplication.

linear f := ∀x y c. f (c · x + y) = c · f (x) + f (y)

Let us assume normed vector spaces, i.e., α, β :: normed-vector-space . Linear functions are
continuous if the norm of the result is linearly bounded by the norm of the argument. We
cast bounded linear functions α → β as a type α →bl β in order to make it an instance of
Banach space.

typedef α→bl β := { f :: α→ β | linear f ∧ ∃K. ∀x. ‖ f (x)‖ ≤ K‖x‖}

The construction is very similar to bounded continuous functions. We write bounded
linear function application ( f ·bl x). For simplicity of notation, will often write f instead
of (λx. f ·bl x), which is done in Isabelle/HOL as well with the help of coercions [134].
Vector space operations are also analogous to→bc defined pointwise. The usual choice of a
norm for bounded linear functions is the operator norm: the maximum of the image of the
bounded linear function on the unit ball. With this norm, α→bl β forms a normed vector
space and we prove that it is Banach if α and β are Banach.

Definition 2.8 (Norm in Banach Space→bl ). For f :: α→bl β,

‖ f ‖ := max {‖ f ·bl y‖ | ‖y‖ ≤ 1}

Having (bounded) linear functions as a separate type makes many formulations easier.
For example, consider Harrison’s formalization of multivariate analysis in HOL Light
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(from which Isabelle/HOL’s analysis descended). In Harrison’s formalization, continuity is
formalized for functions f of type Rn → Rm.

(continuous f (at x)) = (∀e > 0. ∃d > 0. ∀y. ‖x− y‖ < d −→ ‖ f x− f y‖ < e)

Most of Harrison’s formalization is geared towards viewing derivatives as linear functions of
type Rn → Rm. For continuously differentiable functions, one therefore needs to reason about
functions f ′ : Rn → (Rn → Rm), where f ′ x is the derivative of f at a point x. Continuity of
f ′ is written in an explicit ε-δ form and involves the operator norm onorm : (Rn → Rm)→ R,
which is quite verbose:

(∀e > 0. ∃d > 0. ∀y. ‖x− y‖ < d −→ onorm (λv. f ′ x v− f ′ y v) < e))

The ε-δ form could of course be captured in a separate definition, but this would be very
similar to the definition of continuity and would introduce redundancy.

In the Isabelle/HOL formalization, continuous is defined for functions f :: α → β for
topological spaces α and β. If α and β are normed vector spaces, the above equality for
continuous holds in Isabelle/HOL, too. And indeed, the norm of bounded linear functions is
defined using onorm such that onorm (λv. ( f ′ x) ·bl v− ( f ′ y) ·bl v) = ‖ f ′x− f ′y‖ holds. Then,
continuity of a derivative f ′ : α→ (α→bl β) can simply be written as (continuous f ′ (at x)),
which is a better abstraction to work with and also avoids redundant formalizations for
different kinds of continuity.

(Bounded) Linear Functions between Euclidean Spaces. In hindsight, instead of bounded
linear functions between normed vector spaces with the operator norm, a type for linear
functions between Euclidean spaces could have been more helpful in the formalization. This
type is also (bounded) linear, but with e.g., the Frobenius norm (interpreting the linear
function Rn → Rm as matrix Rn×m and taking the norm of this matrix), the resulting type
would be a Euclidean space. In one place of our formalization (section 7.4), we make such a
distinction and explicitly convert between Rn →bl Rn and Rn×n. This is in order to evaluate
the variational equation, where we want to re-use the verified algorithm for Euclidean space
and therefore need an explicit representation type Rn×n, which is an instance of Euclidean
space. With a tentative type of linear functions between Euclidean spaces, this conversion
would not be necessary.

Bounded Linear Operators. Bounded linear operators are a type copy of bounded linear
functions α →bl α from one type α into itself. One can also compose bounded linear
functions according to ( f ◦bl g) ·bl x = f ·bl (g ·bl x). Bounded linear operators form a Banach
algebra with composition as multiplication:

Definition 2.9 (Banach Algebra of Bounded Linear Operators). For f , g : α→bl α,

( f ∗ g) ·bl x := ( f ◦bl g) ·bl x
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2 Mathematics in Isabelle/HOL

2.9 Related Work

We first concentrate on related work that has directly influenced the emergence of the
mathematics library in Isabelle before surveying formalizations of real analysis in other
proof assistants. An extensive survey is given by Boldo et al. [21].

2.9.1 Origins of Isabelle’s Mathematics Library

Isabelle’s mathematics library has its origins in Fleuriot and Paulson’s [37] theory of real
analysis which covered sequences, series, limits, continuity, transcendental functions, nth
roots, and derivatives. These notions were all specific to R, although much was also
duplicated at type C. This material has since been adapted to the new type class hierarchy.
The non-standard analysis part with ∗R and ∗C is not adapted.

Much of the formalization of analysis has been ported to Isabelle/HOL from Harrison’s
multivariate analysis library for HOL Light [58, 61]. In addition to limits, convergence,
continuity, and derivatives, Harrison’s library also covers topology, linear algebra, and
Henstock-Kurzweil integration, which has all been ported to Isabelle/HOL, mostly by
Amine Chaieb and Robert Himmelmann. The formalization in HOL Light library is mostly
specific to Rn, its generalization to type classes in Isabelle/HOL is mostly due to Brian
Huffman and Johannes Hölzl.

Instead of formalizing limits with filters, Harrison invented a variant of nets which also
bore some similarities to filter bases. His library provided a tends-to relation parameterized
by a single net, but did not have an equivalent of the general limit operator filterlim which is
parameterized by two filters (see Section 2.4).

In contrast to HOL Light, Isabelle/HOL supports coercive subtyping [134]. In particular,
the automatic insertion of coercions of the embeddings of integers and natural numbers to
the real numbers makes statements much easier to read than the corresponding ones from
HOL Light.

2.9.2 Analysis in Proof Assistants

Here we describe the formalized mathematics (in particular real analysis) in other proof
assistants and highlight some of the most prominent results in order to give an impression
of the state of the art of formalized mathematics.

HOL Light HOL Light’s library has mostly been developed by John Harrison. A landmark
result achieved with this library was the formal verification of the Kepler conjecture in the
Flyspeck project [55]. Harrison’s library also covers complex analysis [60], including results
like, e.g., Cauchy’s integral theorem or Cauchy’s integral formula. Maggesi developed
a general theory of metric space (as a predicate on sets, instead of type classes) in HOL
Light [93] and also formalizes a complete metric space of continuous functions.

Isabelle/HOL Hölzl formalized an extensive library of measure and probability theory [67].
Advanced results in Isabelle/HOL include e.g., the central limit theorem [8], Green’s
theorem [1], and parts of the Flyspeck project.
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HOL4 The library for real analysis in HOL4 provides basic real analysis as well as measure
theory [100], and Henstock-Kurzweil integration [126].

Coq Coq’s standard library contains an axiomatization of real numbers. It’s conservative
extension Coquelicot [20] aims at presenting a user-friendly library of real analysis. In
Coquelicot, (general) limits are also formalized with filters. Coquelicot provides a notion
of limit that may take values in the extended real numbers. Derivatives and integrals are
formalized as total functions with explicit assumptions on differentiability and integrability.
This makes the formalization similar the the Isabelle/HOL formalization, in particular
because dependent types are not used to encode differentiable or integrable functions, which
could be a possible design choice.

A different approach is taken by Spitters and van der Weegen [130], who formalize a
type class hierarchy for algebraic types in Coq. The motivation for their hierarchy of type
classes is slightly different compared to Isabelle/HOL: their goal is efficient computation,
hence they support different implementations for isomorphic types. In contrast, the goal in
Isabelle/HOL is to share definitions and proofs for types which share the same mathematical
structure. They also introduce type classes in category theory which is not possible in Isabelle
as type classes are restricted to one type variable.

Outstanding formalizations in Coq are e.g., the formalizations of the Four Color Theorem
or the Odd Order Theorem by Gonthier et al. [44, 45].

Mizar. Mizar, invented by Andrzej Trybulec, is based on (Tarski Grothendieck) set the-
ory [135]. In the Mizar mathematical library, many proofs of advanced topological theorems
are formalized, the overview by Naumowicz and Kornilowicz [105] lists e.g., the Jordan
Curve Theorem, the Brouwer Fixed Point Theorem, Urysohn’s Lemma, the Tichonov Theo-
rem, or the Tietze Extension Theorem.

PVS. Lester [91] formalizes topology and constructive real numbers (as streams of digits
that yield Cauchy sequences) in PVS. He formalizes topological spaces, T2-spaces, second
countable space, and metric spaces. He does not provide vector spaces above metric spaces
and he does not use filters or nets to express limits.
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3
Ordinary Differential Equations

ODEs describe how a system evolves in time. A solution is one possible evolution, formally
defined in section 3.1. An important class of problems is initial value problems (IVPs).
An IVP is an ODE together with an initial value. The problem is to characterize solutions
evolving from the given initial value. Under mild assumptions, such a solution exists and is
unique. The formalization thereof is discussed in section 3.2.

A natural question is to ask how the choice of initial value affects the solution. The solution
to an ODE depending on the initial value is captured by the notion of flow. We formalize the
flow and prove conditions for analytical properties like continuity of differentiability. Most
of these properties seem very “natural”, as Hirsch, Smale and Devaney call them in their
textbook [65]. However, despite being “natural” properties and fairly standard results, they
are delicate to prove: In the textbook, the authors present these properties rather early, but

“postpone all of the technicalities [. . .], primarily because understanding this
material demands a firm and extensive background in the principles of real
analysis.” [65]

In section 3.3, we show how to cope with these technicalities in a formal setting. This
confirms that Isabelle/HOL supplies a sufficient background of real analysis.

Moreover we present the formalization of the so-called Poincaré map (section 3.4), an
important notion for analyzing dynamical systems induced by ODEs. A dynamical system
is a time-dependent process which is homogeneous in time, i.e., its evolution depends only
on the initial state, but not on time. The Poincaré map plays a central role in Tucker’s proof
about the Lorenz attractor, which motivated its formalization.

3.1 Solutions

We assume ODEs as given by their right hand side f :: R× α→ α :: banach :

ẋ t = f (t, x t) (3.1)

A solution to this ODE is any function φ :: R→ α, which evolves according to the ODE. We
formalize this with a predicate (φ solves-ode f ) T X for explicit time domain T and space
domain X.

Definition 3.1 (Solution of ODE).

(φ solves-ode f ) T X := (φ has-vderiv-on (λt. f (t, φ t))) T ∧ (∀t ∈ T . φ t ∈ X)
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3 Ordinary Differential Equations

The left conjunct prescribes that the derivative of φ satisfies the ODE, whereas the right
conjunct ensures that the solutions remains in the explicitly given domain X :: α set for time
arguments in T :: R set .

The predicate (φ uniquely-solves-ode f from t0) T X encodes that the solution φ is unique
on a time interval T w.r.t. solutions ψ on shorter time intervals T ′ and for the same initial
value at initial time t0.

Definition 3.2 (Unique Solution of Initial Value Problem).

(φ uniquely-solves-ode f from t0) T X :=

(φ solves-ode f ) T X ∧
t0 ∈ T ∧
is-interval T ∧
(∀ψ. ∀T ′ ⊆ T . (t0 ∈ T ′ ∧ is-interval T ′ ∧ (ψ solves-ode f ) T ′ X ∧ ψ t0 = φ t0) −→

(∀t ∈ T ′. ψ t = φ t))

3.2 Initial Value Problems: Existence and Uniqueness

An initial value problem is an ODE together with an initial condition x t0 = x0. In this
section, we formalize conditions on f , T , and X under which we can construct a unique
solution φ such that (φ uniquely-solves-ode f from t0) T X holds. The Picard-Lindelöf theorem
establishes the existence of a local unique solution (section 3.2.1) via the Banach fixed
point theorem. This can be extended to a globally unique solution, which we formalize in
section 3.2.2.

3.2.1 Local Existence and Uniqueness

Lipschitz continuity is a basic assumption for the Picard-Lindelöf theorem. It is stronger
than continuity: it limits how fast a function can change. A function g is (globally) Lipschitz
continuous on a set S if the slope of the line connecting any two points on the graph of g is
bounded by a Lipschitz constant L:

Definition 3.3 (Lipschitz Continuity).

lipschitz S g L := (∀x, y ∈ S . dist (g x) (g y) ≤ L · dist x y)

The Banach fixed point theorem guarantees the existence of a unique fixed point of a
Lipschitz continuous map g on a complete subset of a metric space α. This theorem is part
of the mathematics library ported from HOL-Light. In order to present how this theorem is
being used, we give its precise formulation in Isabelle/HOL as follows:

Theorem 3.4 (Banach Fixed Point Theorem).
For β :: metric-space , S :: β set , and g :: β→ β:

(complete S ∧ S 6= ∅ ∧ 0 ≤ L ∧ L < 1∧ lipschitz S g L ∧ g(S ) ⊆ S ) −→
(∃1x. x ∈ S ∧ g x = x)
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3.2 Initial Value Problems: Existence and Uniqueness

For the Picard-Lindelöf theorem in its most basic form, we instantiate the Banach fixed
point theorem with the Picard operator on the space of bounded continuous functions. The
following list details on how to instantiate β, S , and g in the Banach fixed point theorem 3.4
in order to obtain the Picard-Lindelöf theorem.

• β := R→bc α. The type→bc of bounded continuous functions is a (complete) metric
space.

• S := [t0; t1]→bc X. Here, the bounded continuous function space [t0; t1]→bc X is the
set of all bounded continuous functions with values in X for arguments in [t0; t1]. To be
precise, [t0; t1]→bc X := {x :: R→bc α | ∀t ∈ [t0; t1]. x ·bc t ∈ X}.

• g := P :: (R→bc α)→ (R→bc α) where

P φbc := ext-cont [t0;t1]

(
λt. x0 +

∫ t

t0
f
(
τ, φbc ·bc τ

)
dτ

)
is the Picard operator φ 7→ λt. x0 +

∫ t
t0

f (τ, φ τ) dτ, but embedded in the type of bounded
continuous functions with the help of ext-cont [t0,t1], which is defined to continuously
and constantly extend the argument outside the given interval.

ext-cont [t0;t1] x ·bc t :=


x t0, if t < t0
x t1, if t > t1
x t, if t ∈ [t0; t1]

If X is closed in the topology of α, then [t0, t1]→bc X is closed (and complete) in the space
R→bc α, and thus satisfies the first two assumptions of the Banach fixed point theorem 3.4.
The third, fourth and fifth assumptions (on a suitable Lipschitz condition on g respectively
P) can be proved from a continuous (in t) and uniformly (w.r.t. t) Lipschitz continuous (in x)
right hand side f :

(∀t ∈ [t0; t1]. lipschitz UNIV α (λx. f (t, x)) L)

The last assumption (g(S ) ⊆ S ) is satisfied by assuming that [t0, t1]→ X is closed under the
Picard operator for continuous functions φ that satisfy the initial condition φ t0 = x0.

(∀t ∈ [t0; t1]. ∀φ. φ t0 = x0 ∧ φ ∈ [t0; t]→ X ∧ continuous-on [t0; t] φ) −→

φ t0 +
∫ t

t0
f (τ, φ τ)dτ ∈ X

We summarize the aforementioned assumptions under the name unique-on-closed :

unique-on-closed X L :=

closed X ∧
continuous-on f ([t0; t1]× X) ∧
(∀t ∈ [t0; t1]. lipschitz X (λx. f (t, x)) L) ∧
(∀t ∈ [t0; t1]. ∀φ. φ t0 = x0 ∧ φ ∈ [t0; t]→ X ∧ continuous-on [t0; t] φ

−→ φ t0 +
∫ t

t0
f (τ, φ τ)dτ ∈ X)
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3 Ordinary Differential Equations

The assumptions unique-on-closed and small enough t1 (i.e. (t1 − t0) · L < 1, which makes
the Lipschitz constant of P smaller than 1) make it possible to apply the Banach fixed point
theorem. It guarantees the existence of a unique fixed point φbc for the mapping P. Together
with the fundamental theorem of calculus, it follows that the fixed point φbc of P is a solution
to the IVP.

((λt. φbc ·bc t) solves-ode f ) [t0; t1] UNIV α ∧ φbc ·bc t0 = x0

Moreover every (continuously extended) solution ψ is a fixed point of P

∀ψ. ((ψ solves-ode f ) [t0; t1] UNIV α ∧ ψ t0 = x0) −→
P(ext-cont [t0;t1] ψ) = ext-cont [t0,t1] ψ

from which we conclude the existence of a unique solution φ t := φbc ·bc t:

Lemma 3.5.

(unique-on-closed X L ∧ (t1 − t0) · L < 1) −→
(φ uniquely-solves-ode f from t0) [t0; t1] X

This result can be strengthened by dropping the assumption (t1 − t0) · L < 1: We can
subdivide the interval [t0; t1] into n intervals [s0, s1] ∪ · · · ∪ [sn−1; sn] = [t0; t1] such that every
individual interval is small enough to ensure a contraction: (si+1 − si) · L < 1 Then we can
invoke lemma 3.5 for a solution φi+1 on the interval [si; si+1]. With induction on n, we may
assume a solution φ0,i on [s0; si] and combine them to a solution according to the following
lemma:

Lemma 3.6.

((φ0,i uniquely-solves-ode f from s0) [s0; si] X ∧
(φi+1 uniquely-solves-ode f from si) [si; si+1] X) −→
((λt. if t ≤ si then φ0,i t else φi+1 t) uniquely-solves-ode f from s0) [s0; si+1] X

It then follows a first version of the Picard-Lindelöf theorem:

Theorem 3.7 (Picard-Lindelöf).

unique-on-closed X L −→ (φ0,n uniquely-solves-ode f from t0) [t0; t1] X

To summarize the proof of the Picard-Lindelöf theorem, the overall approach is similar
to textbooks (e.g., the one by Walter [141]), but we have seen some particularities of the
formalization that are worth pointing out: Moving explicitly between functions R → α

and the dedicated type of bounded continuous functions R→bc α is the most prominent
difference to textbook proofs. In textbook proofs, the induction on n (after the with (t1 − t0) ·
L < 1 restricted lemma 3.5) can be avoided by using a different metric (depending on t0, t1),
which is not possible in our setting, as the metric is fixed once and for all in the type class
instantiation of type→bc (section 2.8.1).

Note that we left the co-domain X generic, suitable specializations are presented in the
following. An easy instantiation is to take X = UNIV α, if f satisfies a global Lipschitz
condition on the whole type universe:
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3.2 Initial Value Problems: Existence and Uniqueness

Theorem 3.8 (Picard-Lindelöf on a Strip).

(continuous-on f ([t0; t1]× UNIV α) ∧
(∀t ∈ [t0; t1]. lipschitz UNIV α (λx. f (t, x)) L)) −→
∃φ. (φ uniquely-solves-ode f from t0) [t0; t1] X

Often times, the assumption on a global Lipschitz condition is too restrictive, we therefore
give (as is also standard in textbook expositions) an explicit variant where X is a closed ball
Bb(x0) of radius b around the initial value x0. Then t1 needs to be chosen small enough such
that the solution does not leave Bb(x0): C := norm ( f ([t0; t1]×Bb(x0)) is the maximum slope
of a solution confined to Bb(x0) for time in [t0; t1]. Therefore, at time t1, the distance of the
solution to the initial value can be at most (t1− t0)C, if we assume t1− t0 ≤ b/C. The solution
is guaranteed to remain in the closed ball Bb(x0). This can be proved with an application of
the mean value theorem. This suffices to show the last conjunct of unique-on-closed , i.e., that
[t0; t1]→bc X is closed under the Picard operator. In summary:

Theorem 3.9 (Picard-Lindelöf on a Ball).

(continuous-on f ([t0; t1]×Bb(x0)) ∧
(∀t ∈ [t0; t1]. lipschitz Bb(x0) (λx. f (t, x)) L) ∧
t1 − t0 ≤ b/C ∧
(∀t ∈ [t0; t1]. ∀x ∈ Bb(x0). norm ( f (t, x)) ≤ C)) −→
∃φ. (φ uniquely-solves-ode f from t0) [t0; t1] (Bb(x0))

Many functions do not have a global Lipschitz constant (e.g. λx. x2 on R). The weaker
assumption of local Lipschitz continuity allows one to prove the existence of a solution in a
neighborhood of the initial value. We consider binary functions that are locally Lipschitz
continuous in their second argument (uniformly w.r.t. the first): A function f is locally
Lipschitz continuous in its second variable if for every point (t, x) of the domain, there exists
a neighborhood Bε(t)×Bε(x) inside which there exists a Lipschitz constant L:

Definition 3.10 (Local Lipschitz Continuity).

local-lipschitz f := ∀(t, x) ∈ T × X. ∃ε > 0. ∃L.

∀u ∈ Bε(t) ∩ T . lipschitz (λx. f (u, x)) (Bε(x) ∩ X) L

The only assumptions that are needed to show the existence of a unique solution are open
sets for time T and space X and a locally Lipschitz continuous right-hand side f that is
continuous in t:

Definition 3.11 (Conditions for Local Unique Solution).

ll-on-open T X f :=

open T ∧
open X ∧
local-lipschitz T X f ∧
(∀x ∈ X. continuous-on T (λt. f (t, x)))
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3 Ordinary Differential Equations

From these assumptions, we can choose for every t ∈ T and x ∈ X suitable closed balls
with radius εt for time and εx for space such that there is a local unique solution φ according
to theorem 3.9.

Theorem 3.12 (Local Unique Solution).

∃εt > 0. ∃εx > 0. ∃φ. (φ uniquely-solves-ode f from t0) (Bεt(t0)) (Bεx(x0))

3.2.2 Global Existence and Uniqueness

The construction of a global unique solution goes along the lines of Walter’s textbook [141].
First, we define the set of all solutions with initial condition x0 at time t0 on compact time
intervals and together with the bound of their respective intervals.

Φ t0 x0 := {(φ, t1) | [t0; t1] ⊆ T ∧ φ t0 = x0 ∧ (φ solves-ode f ) [t0; t1] X}

From this set of solutions, the maximal existence interval is defined as the union of all
closed intervals with solutions:

Definition 3.13 (Maximal Existence Interval).

ex-ivl t0 x0 :=
⋃

(φ,t1)∈Φ t0 x0

[t0; t1]

By definition, the maximal existence interval deserves its name, because as soon as any
solution from t0 exists until some time t1, this is contained in ex-ivl t0 x0. It is also straight-
forward to see that ex-ivl is an interval.

Because of theorem 3.12, for every time t1 ∈ ex-ivl t0 x0, there is a ball in T that contains t1
and on which a solution exists. It follows that the existence interval is an open set.

Theorem 3.14 (Open Existence Interval).

(t0 ∈ T ∧ x0 ∈ X) −→ open (ex-ivl t0 x0)

All solutions (φ1, t1), (φ2, t2) ∈ Φ take the same values on the intersection of their existence
intervals (if not, there is a maximal time t∗ up to which they are equal, but then theorem 3.12
can be invoked from that point and yields a contradiction). Therefore sol is well defined as
follows.

Definition 3.15 (Global Solution).

sol t0 x0 t := φ t, for some (φ, t) ∈ Φ t0 x0

It follows that sol is the unique solution on the maximal existence interval ex-ivl .

Theorem 3.16 (Global Unique Solution).

ll-on-open T X f ∧ t0 ∈ T ∧ x0 ∈ X −→
(sol t0 x0 uniquely-solves-ode f from t0) (ex-ivl t0 x0) X
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3.3 Flow

3.3 Flow

In this section, we focus on how the global unique solution sol t0 x0 as constructed in the
previous section depends on changes in the initial conditions t0, x0. But first of all, we
simplify matters (and notation) a little bit. We consider open sets T , X and restrict ourselves
to autonomous (this means that f does not depend on t) ODEs1. More precisely, we consider
an ODE

ẋ t = f (x t) (3.2)

with locally Lipschitz continuous right hand side f :: α :: banach → α:

ll-on-open UNIVR X (λt. λx. f x)

To emphasize joint dependence on initial condition x0 and flow time t, we write φ(x0, t)
for the solution of equation (3.2) for an initial condition x 0 = x0. This solution depending
on initial conditions is called the flow of the differential equation and we define it in terms
of the global solution sol from the previous section.

Definition 3.17 (Flow).
φ(x0, t) := sol 0 x0

In the context of autonomous ODEs, we write ex-ivl x0 instead of ex-ivl t0 x0.
The flow φ (together with ex-ivl , which guarantees the flow to be well-defined) is a

convenient way to talk about solutions, because after guaranteeing that they are well-defined,
these constants have many nice properties, which can be stated without further assumptions.

3.3.1 Properties of the Flow

For a first overview, we sill start listing the main results that we formalized about φ and
ex-ivl . Their more technical constructions and sketches of proofs are deferred to section 3.3.2.

3.3.1.1 Composition of solutions

A first nice property is the abstract property of the generic notion of flow. The flow allows
one to easily state composition of solutions and to algebraically reason about them. As
illustrated in figure 3.1, flowing from x0 for time s + t is equivalent to first flowing for time
s, and from there flowing for time t.

This only works if the flow is defined also for the intermediate times (the theorem can not
be true for φ(x0, t + (−t)) if t /∈ ex-ivl ).

Theorem 3.18 (Flow property).

s ∈ ex-ivl (x0) −→ t ∈ ex-ivl (φ(x0, s)) −→ φ(x0, s + t) = φ(φ(x0, s), t)

1Many of our results are also formalized for non-autonomous ODEs, but the notation is clearer, and if the
right-hand side is locally Lipschitz continuous in time t, the non-autonomous ODE can directly be encoded
as an autonomous one.
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Figure 3.1: The flow for different initial values
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Figure 3.2: Flow φ of the van der Pol system
(ẋ, ẏ) = (y, (1 − x2)y − x) and its
partial derivatives ∂φ

∂x , ∂φ
∂y for initial

condition (x0, y0) = (1.4, 2.25).
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3.3.1.2 Continuity of the Flow

In the previous lemma, the assumption that the flow is defined (i.e., that the time is
contained in the existence interval) was important. Let us now look at the domain {(x, t). t ∈
ex-ivl (x)} ⊆ T × X of the flow in more detail. It is called the state space and denoted by Ω.

Definition 3.19 (State Space).

Ω := {(x, t). t ∈ ex-ivl (x)}

Consider an element in the state space. (x, t) ∈ Ω means that we can follow a solution
starting at x for time t. It is natural to expect that solutions starting close to x can be followed
for times that are close to t. In topological parlance, the state space is open.

Theorem 3.20 (Open State Space). open Ω

In the previous theorem, the state space allows us to reason about the fact that solutions
are defined for close times and initial values. For quantifying how deviations in the initial
values are propagated by the flow, Grönwall’s lemma is an important tool that is used in
several proofs. Because of its importance in the theory of dynamical systems, we list it
here as well, despite it being a rather technical result. Starting from an implicit inequality
g t ≤ C + K ·

∫ t
0 g(s)ds involving a continuous, nonnegative function g : R→ R, it allows to

deduce an explicit bound for g:

Lemma 3.21 (Grönwall).

0 < C −→ 0 < K −→ continuous-on [0; a] g −→

∀t. 0 ≤ g t ≤ C + K ·
∫ t

0
(g s)ds −→

∀t ∈ [0; a]. g t ≤ C · eK·t

Grönwall’s lemma can be used to show that solutions deviate at most exponentially fast:
∃K. ‖φ(x, t)− φ(y, t)‖ < ‖x− y‖ · eK·|t| (see also Lemma 3.27). Therefore, by choosing x and
y close enough, one can make the distance of the solutions arbitrarily small. This implies
that the flow is continuous in its first argument and can be used to show that the flow is
continuous on the state space:

Theorem 3.22 (Continuity of Flow). continuous-on Ω φ

3.3.1.3 Differentiability of the Flow

Continuity states that small deviations in the initial values result in small deviations of the
flow. But one can be more precise on how initial deviations propagate. Let us assume that f
is a continuously differentiable function on Euclidean space, namely:

Definition 3.23.

c1-on-open X ( f :: α :: euclidean-space → α) :=

open X ∧ ( f has-derivative (λx. D f |at x)) (at x) ∧ continuous-on X (λx. D f |at x)
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3 Ordinary Differential Equations

Then the flow is also continuously differentiable: the way initial deviations propagate can
be approximated by a (bounded) linear function. So instead of solving the ODE for perturbed
initial values, one can approximate the resulting perturbation with this linear function: We
write φt := λx. φ(x, t), then one has Dφt|at x ·bl v ≈ φt(x + v)− φt(x). By using a basis vector
for v, one gets the corresponding partial derivative of the flow. Dφt|at x :: α→bl α is called
the space derivative of the flow.

As an example, figure 3.2 depicts a two-dimensional flow φ starting at (x0, y0) and its
evolution (in black) up to time t = 2 in black. Along with the flow, it shows the evolution of
the partial derivatives ∂φ((x0,y0),t)

∂x = Dφt|at (x0,y0) ·bl (1, 0) and ∂φ(x0,y0)
∂y = Dφt|at (x0,y0) ·bl (0, 1).

The derivative of φ with respect to time is given by the ODE f , one can therefore write
the total derivative of the flow as Dφ|at (x,t) ·bl (dx, dt) := Dφt|x ·bl dx + dt f (φ(x, t)). Putting
everything together, the total derivative W of the flow exists and is continuous on the state
space.

Theorem 3.24 (Differentiability of the Flow).

(φ has-derivative Dφ|at (x,t)) (at (x, t)) ∧ continuous-on Ω (λ(x, t). Dφ|at (x,t))

3.3.2 Proofs about the Flow

Let us now turn to some more technical lemmas that are required to prove the main
properties from the previous section. If the results are also formalized for non-autonomous
ODEs, we will list those more general versions. The flow of a non-autonomous ODE is then
denoted with φ(t0, x0, t).

3.3.2.1 The Frontier of the State Space

It is important to study the behavior of the flow at the frontier of the state space (e.g., as time
or the solution tend to infinity), because it allows one to deduce conditions under which
solutions can be continued further and yields techniques to gain more precise information
on the existence interval ex-ivl .

If the solution only exists for finite time, it necessarily explodes (i.e., the solution leaves
every compact set):

Lemma 3.25 (Explosion for Finite Existence Interval).

sup(ex-ivl (t0, x0)) < ∞ −→ compact K −→
∃t ≥ t0. t ∈ ex-ivl (t0, x0) ∧ φ(t0, x0, t) /∈ K

This lemma can be used to prove a condition on the right hand side f of the ODE, to
certify that the solution exists for an arbitrary time in T .

Lemma 3.26 (Condition for Global Existence of Solution).

(∀s ∈ T . ∀u ∈ T . ∃L. ∃M. ∀t ∈ [s, u]. ∀x ∈ X. ‖ f t x‖ ≤ M + L · ‖x‖) −→
ex-ivl (t0, x0) = T
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3.3.2.2 Continuity of the Flow

The following lemmas are all related to continuity of the flow. With the help of Grönwall’s
lemma 3.21, one can show that whenever two solutions (starting from different initial
conditions x0 and y0) both exist for a time t and are restricted to some set Y on which the
right hand side f satisfies a (global) Lipschitz condition K, then the distance between the
solutions grows at most exponentially with increasing time:

Lemma 3.27 (Exponential Initial Condition for Two Solutions).

t ∈ ex-ivl (t0, x0) −→ t ∈ ex-ivl (t0, y0) −→
Y ⊆ X −→ ∀s ∈ [t0; t]. φ(t0, x0, s) ∈ Y −→
Y ⊆ X −→ ∀s ∈ [t0; t]. φ(t0, y0, s) ∈ Y −→
s ∈ [t0; t]. lipschitz Y ( f s) K −→
‖φ(t0, x0, t)− φ(t0, y0, t)‖ ≤ ‖x0 − y0‖ · eK·(t−t0)

Note that it can be hard to establish the assumptions of this lemma, in particular the first
two assumptions that both solutions from x0 and y0 exist for the same time t. Consider
figure 3.1: not all solutions (e.g., from z0) do necessarily exist for the same time s. One
can choose, however, a neighborhood of x0, such that all solutions starting from within this
neighborhood exist for at least the same time, and with the help of the previous lemma, one
can show that the distance of these solutions increases at most exponentially:

Lemma 3.28 (Exponential Initial Condition of Close Solutions).

a ∈ ex-ivl (t0, x0) −→ b ∈ ex-ivl (t0, x0) −→ a ≤ b

∃δ > 0. ∃K > 0. Uδ(x0) ⊆ X ∧
(∀y ∈ Uδ(x0). ∀t ∈ [a; b].

t ∈ ex-ivl (t0, x0) ∧ |φ(t0, x0, t)− φ(t0, y, t)| ≤ ‖x0 − y‖ · eK·|t−t0|)

Using this lemma is the key to showing continuity of the flow (theorem 3.22).
A different kind of continuity is not with respect to the initial condition, but with respect

to the right-hand side of the ODE.

Lemma 3.29 (Continuity with respect to ODE). Assume two right-hand sides f , g defined on X
and uniformly close (∀x ∈ X. ‖ f x− g x‖ < ε). Furthermore, assume a global Lipschitz constant K
for f on X. Then the deviation of the flows φ f and φg can be bounded:

‖φ f (x0, t)− φg(x0, t)‖ ≤ ε

K
· eK·t

3.3.2.3 Differentiability of the Flow

The proof for the differentiability of the flow incorparates many of the tools that we have
presented up to now, we will therefore sketch some of the details of this proof (which follows
the presentation of Hirsch et al. [65]). This proof has been formalized by Christoph Traut as
part of a student’s project.

We denote the derivative along the flow from x0 with Ax0 : R→ (α :: euclidean-space →bl

α):
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Definition 3.30 (Derivative along the Flow). Ax0(t) := D f |at φ(x0,t)

The derivative of the flow is the solution to the so so-called variational equation, a non-
autonomous linear ODE. The initial condition ξ :: α is supposed to be a perturbation of the
initial value (like vx and vy in figure 3.2) and in what follows we will prove that the solution
to this ODE is a good (linear) approximation of the propagation of this perturbation.{

u̇(t) = Ax0(t) ·bl u(t)

u(0) = ξ
(3.3)

We will write ux0(ξ, t) for the flow of this ODE and omit the parameter x0 and/or the
initial value ξ if they can be inferred from the context.

As a prerequisite for the next proof, we begin by proving that ux0(ξ, t) is linear in ξ, a
property that holds because u is the solution of a linear ODE (this is often also called the
“superposition principle”).

Lemma 3.31 (Linearity of ux0(ξ, t) in ξ).

α · ux0,a(t) + β · ux0,b(t) = ux0,α·a+β·b(t).

Because λξ. ux0(ξ, t) : α → α is linear on Euclidean space α :: euclidean-space , it is also
bounded linear, so we will identify this function with the corresponding element of type
α →bl α. The main efforts for proving differentiability of the flow go into proving the
following lemma, showing that the aforementioned function is the derivative with respect to
space of the flow φt = (x0 7→ φ(x0, t)) for fixed time t.

Lemma 3.32 (Space Derivative of the Flow). For t ∈ ex-ivl (x0),

(Dφt|at x0) ·bl ξ = ux0(ξ, t)

Proof. The proof starts out with the integral identities of the flow, the perturbed flow, and
the linearized propagation of the perturbation:

φ(x0, t) = x0 +
∫ t

0
f (φ(x0, s))ds

φ(x0 + ξ, t) = x0 + ξ+
∫ t

0
f (φ(x0 + ξ, s))ds

ux0(ξ, t) = ξ+
∫ t

0
Ax0(s) · ux0(ξ, s)ds

= ξ+
∫ t

0
f ′(φ(x0, s)) · ux0(ξ, s)ds

Then, for any fixed ε, after a sequence of estimations (3 pages in the textbook proof)
involving e.g., uniform convergence (section 2.4.2) of the first-order remainder term of the
Taylor expansion of f , continuity of the flow (theorem 3.22), and linearity of u (lemma 3.31)
one can prove the following inequality.

‖φ(x0 + ξ, t)− φ(x0, t)− ux0(ξ, t)‖
‖ξ‖ ≤ ε

This shows that ux0(ξ, t) is indeed a linear approximation for the propagation of the initial
perturbation ξ and exactly the definition for the space derivative of the flow.
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Note that ux0(ξ, t) yields the space derivative in direction of the vector ξ. The total space
derivative of the flow is then the linear function λξ. ux0,ξ(t). This derivative can equivalently
be described as the solution of the following “matrix-valued” variational equation:{

Ẇx0(t) = Ax0(t) ◦bl Wx0(t)

Wx0(0) = 1bl
(3.4)

This IVP is defined for linear operators of type α →bl α. Thanks to lemma 3.26, one
can show that it is defined on the same existence interval as the flow φ. The solution
Wx0 :: R → α →bl α is related to solutions ux0 :: R → α of the “vector-valued” variational
IVP (3.3) as follows:

ux0(ξ, t) = Wx0(t) ·bl ξ

The derivative of the flow φ at (x0, t) with respect to t is given directly by the ODE, namely
f (φ(x0, t)). Therefore the total derivative of the flow is characterized as follows:

Theorem 3.33 (Derivative of the Flow).

Dφ|at (x0,t) ·bl (ξ, τ) = Wx0(t) ·bl ξ+ τ · f (φ(x0, t))

This result is also based on deducing the total derivative of a function g by looking at its
(continuous!) partial derivatives g1 and g2 (that is, the derivatives w.r.t. one variable while
fixing the other).

Lemma 3.34 (Total Derivative via Continuous Partial Derivatives). For g : α → β → γ,
g1 : α→ β→ (α→bl γ), g2 : α→ β→ (β→bl γ)

∀x. ∀y. D(λx. g x y)|at x = g1 x y −→
∀x. ∀y. D(λy. g x y)|at y = g2 x y −→
continuous (at (x, y)) (λ(x, y). g1 x y) −→
continuous (at (x, y)) (λ(x, y). g2 x y) −→
D(λ(x, y). g x y)|at (x,y) ·bl (t1, t2) = (g1 x y) ·bl t1 + (g2 x y) ·bl t2

3.3.2.4 Continuity of Derivative

We can also show that the derivative Dφ|at (x0,t) ·bl (ξ, τ) is continuous with respect to (x0, t).
First of all, τ · f (φ(x0, t)) is continuous because of definition 3.11 and theorem 3.22. Second,
Wx0(t) is continuous with respect to t. What remains to show is continuity of the space
derivative regarding x0. The proof of this relies on theorem 3.29, because for different
values of x0, Wx0 is the solution to ODEs with slightly different right-hand sides. A technical
difficulty here is to establish the assumption of global Lipschitz continuity for theorem 3.29.

3.4 Poincaré Map

The Poincaré map is an important tool for analyzing dynamical systems. Whereas the flow
describes the evolution of a continuous system with respect to time, it is the Poincaré map
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3 Ordinary Differential Equations

that allows to describe the evolution with respect to some space variables. A Poincaré section
is a subset Σ of the state space. Consider the illustration in figure 3.3. For a point x ∈ Σ, the
Poincaré map is defined as the point P(x) where the flow starting from x, i.e., λt. φ(x, t), first
hits the Poincaré section Σ.

Studying the dynamics of a system using a Poincaré map has two advantages: first, the
Poincaré map is a map on a lower-dimensional space and second, instead of analyzing the
continuous dynamics of the original flow, one can confine the analysis to discrete iterations
of the Poincaré map.

x
λt. φ(x, t)

Σ

P(x)

Figure 3.3: Illustration of Poincaré map P on Poincaré section Σ.

3.4.1 Properties of the Poincaré Map

A Poincaré section is usually given as an implicit surface Σ = {x | s(x) = c} with contin-
uously differentiable s. The Poincaré map is defined with the help of the first return time
τ(x).

Definition 3.35 (First Return Time). τ(x) is the least t > 0 such that φ(x, t) ∈ Σ.

Obviously, τ is only well-defined for values that actually return to Σ, which we encode in
the predicate returns-to .

Definition 3.36.
returns-to (Σ, x) := ∃t > 0. φ(x, t) ∈ Σ

The return time can then be used to define the Poincaré map as follows.

Definition 3.37 (Poincaré map).
P(x) := φ(x, τ(x))

For a sensitivity analysis of the flow, one can study the derivative of the Poincaré map.
Its derivative can be given in terms of the derivative of the flow φt for fixed time t (φt :=
λx. φ(x, t)) and the function s defining the implicit surface for Σ = {x | s(x) = c}.

Theorem 3.38 (Derivative of Poincaré map).

DP|x ·bl h = Dφτ(x)|x ·bl h−
Ds|P(x) ·bl (Dφτ(x)|x ·bl h)

Ds|P(x) ·bl ( f (P(x)))
f (P(x))
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For a rough intuition, the derivative DP|x ·bl h of the Poincaré map is related to the space
derivative of the flow at the return time Dφτ(x)|x ·bl h. But it needs to corrected in the direction
f (P(x)) in which the flow passes through Σ, because P varies only on Σ and not through it.
This correction factor also depends on the tangent space Ds|P(x)) of the section Σ at P(x).

In section 3.4.2, we precise the assumptions under which τ (and therefore P) is continuous
and differentiable.

3.4.2 Proofs about the Poincaré Map

Here we sketch how to prove continuity and differentiability of the Poincaré map. We
assume a Poincaré section to be a subset (via S ) of an implicit surface with continuously
differentiable s:

Σ = {x ∈ S | s(x) = 0}
Key techniques are the implicit function theorem and results about inverses of linear

functions.

3.4.2.1 Inverse Functions

In the Banach space of bounded linear functions, the set of invertible functions is open:

Theorem 3.39.

open { f :: α→bl β | ∃ f−1. f ◦bl f−1 = 1bl ∧ f−1 ◦bl f = 1bl }

The proof of this theorem is based on the fact that the inverse of the disturbed identity
function 1bl + w with ‖w‖ < 1 is the convergent series ∑i(−1)iwn:

Lemma 3.40. For 1bl , w :: α →bl α with ‖w‖ < 1, (∑i(−1)iwn) is convergent and the left and
right inverse of 1bl + w:

(∑
i
(−1)iwn) ∗ (1bl + w) = 1bl

(1bl + w) ∗ (∑
i
(−1)iwn) = 1bl

Moreover, one can bound the norm of the inverse,

Lemma 3.41. ‖(1bl + w)−1 − (1bl + w)‖ ≤ ‖w‖2

1−‖w‖

which is necessary to prove the set of invertible linear functions open for theorem 3.39.

3.4.2.2 Implicit Function Theorem

The implicit function theorem is a powerful tool to construct (differentiable) functions
satisfying a given (implicit) equation. Given an “equation” F :: α× β → γ with a root
F(x, y) = 0, the theorem allows to “extend” the root (x, y) in an ε-neighborhood Uε(x) to a
solution function u. This means that the image of the graph of u under F remains constant,
namely F(x, u(x)) = 0.

For a precise formulation, F needs to be continuously differentiable with invertible
derivative:
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3 Ordinary Differential Equations

Theorem 3.42 (Implicit Function Theorem). Assume a zero F(x, y) = 0 of a continuously
differentiable function F. We use the following notation for
the derivative of F w.r.t. the 1st argument f1 · d := DF|(x,y)(d, 0) and
the derivative of F w.r.t. the 2nd argument f2 · d := DF|(x,y)(0, d).
Assume that f2 is invertible, i.e., f−1

2 exists with f−1
2 ◦ f2 = 1bl and f2 ◦ f−1

2 = 1bl .
Then there exist u :: α→ β and ε > 0 such that:

• u(x) = y

• F(x, u(x)) = 0

• ∀s ∈ Uε(x). F(s, u(s)) = 0

• continuous-on Uε(x) u

• Du|x = − f−1
2 ◦ f1

• u is unique: for every v, V where V ⊆ Uε(x) is open and connected, v with continuous-on V v,
v(x) = y, and (∀s ∈ V . F(s, v(s)) = 0), it holds that
∀s ∈ V . v(s) = u(s)

Existence of such a function u on a neighborhood Uε(x) can be reduced to the inverse
function theorem, which already exists in Isabelle’s library. We therefore perform this reduc-
tion, which yields the expression for the derivative Du|x = − f−1

2 ◦ f1. Openness of invertible
linear maps (theorem 3.39) is required for this construction.

3.4.2.3 Continuity and Differentiability of the Poincaré Map

The idea for proving differentiablity of the Poincaré map is to apply the implicit function
theorem 3.42 to find a differentiable function u that solves s(φ(x, u(x))) = 0 in a neighborhood
Uε(x). The implicit function u is unique (w.r.t. continuous functions). Since s(φ(x, τ(x))) = 0,
all one has to do is prove that τ is continuous, because then τ is equal to u according to
theorem 3.42 and therefore Dτ|at x = Du|at x.

But first, one needs more assumptions on the Poincaré section Σ in order to carry out the
construction of the implicit function u: we assume S closed and s continuously differentiable,
moreover the flow needs to be transversal at the return map (Ds|at φ(x,τ(x)) · f (P(x)) 6= 0).
Furthermore, P(x) needs to be in the relative (with respect to the implicit surface) interior of
the Poincaré section (∃δ. Uδ(P(x)) ∩ {x | s(x) = 0} ⊆ S ). We summarize these assumptions
in the following definition.

Definition 3.43 (Assumptions for Poincaré Section).

Ds|at φ(x,τ(x)) · f (P(x)) 6= 0∧ (∃δ. Uδ(P(x)) ∩ {x | s(x) = 0} ⊆ S )

There are two cases for which we prove τ(x) continuous: First, if x /∈ Σ, then τ is
continuous in any sufficiently small neighborhood around x. The limit can therefore be
approached from within an arbitrary set X, i.e., at x within X. Second, if x ∈ Σ, then τ

is continuous only on the side of the surface Σ to which the vector field points to, i.e.,
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(at x within {x | s(x) ≤ 0}). That is because if y is taken (arbitrarily) close to x, but on the
other side of Σ, then τ(y) is (arbitrarily) close to zero, but τ(x) > 0. More formally, the two
cases are given by theorems 3.44 and 3.45:

Theorem 3.44 (Continuity of τ outside Σ).
continuous τ (at x within X), if the assumptions from definition 3.43 and the following conditions
hold:

• returns-to (Σ, x)

• x /∈ Σ

Theorem 3.45 (Continuity of τ on Σ).
continuous τ (at x within {x | s(x) ≤ 0}), if the assumptions from definition 3.43 and the following
conditions hold:

• returns-to (Σ, x)

• x ∈ Σ

• Ds|at x · f (x) < 0

When τ is continuous (e.g., under the same same assumptions as those of theorem 3.44), τ
is equal to the solution of the implicit function theorem. This yields an explicit expression
for the derivative Dτ.

Theorem 3.46 (Derivative of τ).
Under the assumptions of theorem 3.44:

Dτ|x · h = −
Ds|P(x) · (Dφτ(x)|x · h)
Ds|P(x) · ( f (P(x)))

f (P(x))

From continuity and differentiability of the flow (theorems 3.22 and 3.24) and τ (theo-
rems 3.45, 3.44, and 3.46), it follows that the Poincaré map is continuous and differentiable.

It is interesting to note that our definition of Poincaré map slightly differs from the
approach that many textbooks (e.g., [117, chapter 3], [123, chapter 5.8], [65, chapter 10.3])
take. The original application of Poincaré maps is the study of periodic orbits, and textbooks
usually define the return time implicitly for a periodic point as follows: For a point x with
period τ(x) and a choice of Σ transversal to the flow, these textbooks invoke the implicit
function theorem to obtain a continuous function τi(x) and declare the obtained function as
the return time. This way, the definition implicitly depends on x and is valid only locally.

In contrast, our construction (as first return time) is a notion that is given globally (on the
whole state space and not just on Σ) and a-priori (without any implicit constructions). We
use the uniqueness condition of the implicit function theorem 3.42 and the continuity results
of theorem 3.44 and 3.45 to show equality of τ and τi.
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3.5 Related Work

To conclude this chapter, the formalization of the flow (section 3.3) contains essentially all
lemmas and proofs of at least 22 pages (Chapter 17) of the textbook by Hirsch et al. [65]. This
corresponds to section 2.1 to 2.5 on “Nonlinear Systems: Local Theory” (about 30 pages) of
Perko’s textbook [117]. The formalization moreover comprises a notion of Poincaré map,
which is more flexible than what is usually presented in textbooks.

I am not aware of any other formalization that covers this foundational part of the theory
of ODEs and dynamical systems in similar detail.

Boldo et al. [18] formalize partial differential equations stemming from acoustic wave
equations in Coq. This particular problem admits an analytical solution and they simply
assume that the solution is unique. Another important result, fundamental for numerical
approximations of partial differential equations is the formalization of the Lax-Milgram
theorem in Coq by Boldo et al. [22]. This formalization is similar to ours in the sense that it
is also based on functional analysis and formalization of bounded linear functions.

Platzer’s proof assistant KeYmaera X [40] is based on Differential Dynamic Logic [119].
Based on my formalization of ODEs, Bohrer et al. [16, 15] formalized Differential Dynamic
Logic in Isabelle/HOL.

Gouëzel [48] formalized ergodic theory, i.e., dynamical systems with an invariant measure
in Isabelle/HOL, his formalization includes Kac’s Formula and Birkhoff and Kingman
theorems. Gouëzel also formalized aspects of functional analysis, in particular Lp-spaces [49].

Maggesi [93] formalized a theory of metric spaces (as a predicate instead of type classes)
for a formalization of a local version of the Picard-Lindelöf theorem (similar to theorem 3.9)
in HOL Light.
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4
Rigorous Numerics in Affine Arithmetic

Rigorous (or guaranteed) numerics means computing with sets that are guaranteed to enclose
the quantities of interest, for example using intervals [102]. But in principle, enclosures
can be any data structure that represent sets of real values, popular alternative choices are
intervals, affine forms (they represent a class of sets called zonotopes), or Taylor models. A
central idea of the approach that we are following here is the deep embedding of arithmetic
expressions (section 4.1), which allows one to stay agnostic about the representation of
concrete enclosures.

For concrete computations, we use software floating point numbers (section 4.2) for
approximations of real numbers and affine arithmetic (section 4.3) for rigorous evaluation of
expressions.

4.1 Expressions

For formalizations, it is useful to have a deep embedding of arithmetic expressions like
e.g., done by Dorel and Melquiond [96] as well as Hölzl [66]. This work builds on Hölzl’s
language of arithmetic expressions given in the left of figure 4.1. We write [[e]]vs :: R for the
interpretation of an expression e over an environment of variables vs :: R list . Expressions
are interpreted recursively according to the right of figure 4.1. The role of the environment vs
gets clear from the interpretation of variables. Var i is interpreted as the i-th element of the
list vs. More operations can be derived from this language of expressions, e.g., subtraction
x− y = x + (−y), division x

y = x · ( 1
y ), and sin(x) = cos(x− pi

2 ).
Independent of the choice of representation of enclosures, a rigorous approximation

scheme approx needs to satisfy that for every environment xs in an enclosure XS, the
interpretation [[e]]xs :: R of the expression e is contained in the result of approximation
scheme evaluated for the enclosure XS. We could call this the fundamental property of
rigorous numerics.

xs ∈ XS −→ [[e]]xs ∈ approx e XS

4.1.1 Expressions for Euclidean Space

Expressions of type aexp are interpreted as real numbers. But we would like to do rigorous
numerics for vectors of real numbers Rn or more general, elements of an arbitrary type
α :: euclidean-space . We work with the type class executable-euclidean-space , which extends
euclidean-space by fixing an order on the Basis elements and therefore enables operations
eucl-of-list : R list → α and list-of-eucl : α → R list . Then we can simply interpret a list of
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aexp = Add aexp aexp
| Mult aexp aexp
| Minus aexp
| Inverse aexp
| Cos aexp
| Arctan aexp
| Abs aexp
| Max aexp aexp
| Min aexp aexp
| Pi
| Sqrt aexp
| Exp aexp
| Powr aexp aexp
| Ln aexp
| Power aexp N

| Floor aexp
| Num R

| Var N

[[Add a b]]vs = [[a]]vs + [[b]]vs

[[Mult a b]]vs = [[a]]vs · [[b]]vs

[[Minus a]]vs = −[[a]]vs

[[Inverse a]]vs = 1/[[a]]vs

[[Cos a]]vs = cos([[a]]vs)

[[Arctan a]]vs = arctan([[a]]vs)

[[Abs a]]vs = |[[a]]vs|
[[Max a b]]vs = max([[a]]vs, [[b]]vs)

[[Min a b]]vs = min([[a]]vs, [[b]]vs)

[[Pi ]]vs = π

[[Sqrt a]]vs =
√
[[a]]vs

[[Exp a]]vs = e[[a]]vs

[[Powr a b]]vs = ([[a]]vs)[[b]]vs

[[Ln a]]vs = ln([[a]]vs)

[[Power a n]]vs = ([[a]]vs)n

[[Floor a]]vs = b[[a]]vsc
[[Num r]]vs = r
[[Var i]]vs = vs ! i

Figure 4.1: Data type of arithmetic expressions and interpretation

aexp expressions es : aexp list componentwise to obtain an element of Euclidean space with
eucl-of-list , i.e., [[es]]vs :: α.

[[es]]vs = eucl-of-list (map (λe. [[e]]vs) es)

In contrast to the componentwise interpretation, the approximation of a list of expressions
should not be componentwise: an approximation function approx for lists of expressions
should be typed approx :: aexp list → R list set , which allows approx to keep track of
dependencies between the components of the result.

4.1.2 Derivatives

The derivatives with respect to one variable can be computed symbolically from the structure
of the expression. That is, for an expression e :: aexp one can compute (recursively) an
expression ∂ e

∂i :: aexp which is interpreted as the derivative with respect to the i-th variable
(if this derivative exists).

Lemma 4.1 (Symbolic Partial Derivative).

[[
∂ e
∂i

]]xs =
∂ [[e]]xs

∂xsi

If we consider a list of expressions es :: aexp list as a function on Euclidean space, i.e.,
according to fes := λx. [[es]]list-of-eucl x, then the total derivative of fes can be represented
by the Jacobian matrix of the partial derivatives of fes. We can represent matrices as a
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flat list (according to eucl-of-list/list-of-eucl , because matrices are also elements of the type
class euclidean-space ). For computing derivatives, however, we directly produce a list of
expressions D(es, vs) :: aexp list that is interpreted as the product of the derivative matrix
with a vector.

Definition 4.2 (Total Derivative of Expressions).

(D(es, vs))i = Sum [0..<length vs](λ j. Mult (
∂ esi

∂ j
) vs j)

In this definition, [0..<n] denotes the (sorted) list of natural numbers less than n. Sum xs f
is the aexp expression corresponding to the sum of all elements in xs after application of f ,
i.e., Sum [] f = Num 0 and Sum x#xs f = Add ( f x) (Sum xs f ). The definition is chosen such
that the interpretation of the resulting list of expressions D(es, vs) corresponds to the total
derivative of the function fes encoded by the list of expressions es multiplied with the vector
encoded by vs.

Lemma 4.3 (Total Derivative of Expressions).

[[D(es, vs)]]xs = D fes|at (eucl-of-list xs) · [[vs]]xs

This way, we can produce expressions for higher derivatives as e.g., used in the multivariate
Taylor series expansion (section 7.2.1):

D0(es, vs) =es

Di+1(es, vs) =D(Di(es, vs), vs)

Note that the proper interpretation can only be written down in Isabelle’s type system for
fixed values of i: the resulting object is an i-linear function, so the resulting type depends on
a term argument. This could also be encoded as functions taking lists as arguments, but
fixed values of i suffice for our purposes. As an example, this is the interpretation of the
derivatives up to second order.

[[D0(es, vs)]]xs =[[es]]xs

[[D1(es, vs)]]xs =D fes|at (eucl-of-list xs) ·bl [[vs]]xs

[[D2(es, vs)]]xs =D(λy. D f |at y)|at (eucl-of-list xs) ·bl [[vs]]xs ·bl [[vs]]xs

4.1.3 Straight Line Programs

Often times, expression contain common subexpressions. This is not desirable because
one would need to perform redundant computations. We therefore follow Dorel and
Melquiond’s [96] approach and compile plain aexp expressions to straight-line programs
with static single assignment.

For us, a straight line program is just a list of arithmetic expressions, which is interpreted
according to function slp : aexp list → R list → R list :

slp [] vs = vs

slp (e#es) vs = slp es ([[e]]vs#vs)
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The idea is that a straight line program only contains unary or binary operations which put
the result on top of the evaluation stack. The following example illustrates sharing the term
x + y in a computation of (x + y) · (x + y):

slp [Add (Var 0)(Var 1),Mult (Var 0)(Var 0)] [x, y] = [(x + y)(x + y), x + y, x, y]

We provide a function slp-of , which eliminates common subexpressions by traversing an
expression bottom-up and saving subexpressions in a map that gives the index of the
subexpression in the resulting straight line program. It is proved to be correct in the sense
that the interpretation of the first element of the resulting list equals the interpretations of
the original expression.

Lemma 4.4 (Correctness of slp-of ).

(slp (slp-of e) vs)0 = [[e]]vs

4.2 Numerics

We begin with discussing the representation of real numbers in calculations with finite
precision. Our numerical algorithms are specified to operate on real numbers R, which
makes verification convenient. Concrete computations for type R are carried out only on
the subset that is representable with software floating point numbers m · 2e for (unbounded)
integers m, e ∈ Z, which is cast as a subtype of the real numbers:

typedef F = {m · 2e :: R | m, e ∈ Z}

This yields an injective function (·)R :: F → R and its partially specified inverse (·)F ::
R → F. Arithmetic constants 0, 1, +, −, ·, <, ≤ are lifted from the respective ones on the
real numbers, so are type class instantiations (in particular as linearly ordered ring).

For an executable view on F, we introduce a (non-injective) constructor Float m e =

(m · 2e)F and declare it as a datatype constructor for code generation [51]. This is a standard
approach of light-weight data refinement [54]. Operations on type F are then implemented
with concrete operations on arbitrary precision integers, for example multiplication:

(Float m1 e1) · (Float m2 e2) = Float (m1 ·m2) (e1 + e2).

All further operations, including explicit round-off operations are defined in terms of real
numbers and are mapped to the corresponding executable functions on floating point
numbers by the code generator.

This also includes round-off operations. They are introduced as explicit operations in
our formalization. We have functions trunc+ :: N → R → R and trunc− :: N → R → R,
which return the floating point number rounded with a precision of p bits either upwards or
downwards:

Definition 4.5.
trunc− p x := bx · 2p−blog2 |x|cc · 2p−blog2 |x|c

trunc+ p x := dx · 2p−blog2 |x|ce · 2p−blog2 |x|c
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These operations can be implemented with software floating point numbers, e.g., down-
wards rounding:

Lemma 4.6 (Implementation of trunc−).

trunc− p (Float m e) =

let d = log2 |m| − p− 1 in

if 0 < d

then Float (m÷ 2d) (e + d)

else Float m e

For our purposes of computing safe enclosures, however, the precise definition or precision
of the rounding operations is not important. All that matters is that trunc+ and trunc−

return a safe enclosure:

Theorem 4.7 (Safe Rounding).

trunc− p x ≤ x ≤ trunc+ p x

4.3 Affine Arithmetic

Up to now, we kept the discussion on the level of expressions, let us now motivate affine
arithmetic as a concrete approximation scheme.

The most basic approximation scheme is interval arithmetic [102] where the real quantities
are enclosed in intervals. A problem of interval arithmetic is that dependencies between
variables are lost, e.g. for an enclosure x ∈ [0; 2], the expression x− x evaluates to [−2; 2] in
interval arithmetic whereas the exact result would be representable as the interval [0; 0].

Another problem, the wrapping effect, occurs when computing with multidimensional
intervals – which are Cartesian products of intervals. It can be visualized already in the
two-dimensional case. Assume a rectangle [p; q] = [px; qx]× [py; qy] as in figure 4.2 and a
function rotating the rectangle. When using interval arithmetic, the rotated rectangle needs
to be enclosed in a Cartesian product [rx; sx]× [ry; sy] of intervals again, leading to large
overapproximations, in particular for iterated applications.

(px, py)

(qx, qy)

7→ f [p; q]

(rx, ry)

(sx, sy)

Figure 4.2: Wrapping effect
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4.3.1 Tracking Linear Dependencies

Affine arithmetic [34, 125] improves over interval arithmetic by tracking linear dependencies.
The data structure that underlies affine arithmetic is a formal sum

A0 + ∑
i
εiAi

where the εi are treated as formal parameters. Such a formal sum is called affine form.
Abstractly, an affine form A is a function where only finitely many arguments map to
nonzero values. We consider them as a separate type:

typedef affine-form := {a :: N→ R | finite {i | a i 6= 0}}

We write the i-th element of an affine form A :: affine-form as Ai. An affine form is interpreted
for a valuation ε : N→ R of the formal parameters with the function affine .

affine ε A := A0 + ∑
i
εi · Ai

Looking at the interpretation, one often calls the terms εi noise symbols, A0 the center,
and the remaining Ai generators. The idea is that noise symbols are shared between affine
forms and that they are treated symbolically: the sum of two affine forms is given by the
pointwise sum of their generators, and scalar multiplication with a constant factor is also
done componentwise.

Definition 4.8 (Addition and Scalar Multiplication of Affine Forms).

(A + B)i := Ai + Bi

(c · A)i := c · Ai

With these definitions, the sum and scalar multiplication are interpreted as the sum and
scalar multiplication of the respective interpretations:

Lemma 4.9.

affine ε (A + B) = (A0 + B0) + ∑
i
εi · (Ai + Bi) = affine ε A + affine ε B

affine ε (c · A) = c · A0 + ∑
i
εi · (c · Ai) = c · affine ε A

Affine forms are used to represent sets. By convention, the range of an affine form is the
set of all affine evaluations where the noise symbols range in [−1; 1]. For the range of a
list of affine forms, those are evaluated jointly for the same valuation of the noise symbols,
reflecting the intuition that those are shared.

range A := {affine ε A | −1 ≤ εi ≤ 1}
joint-range AS := {map (affine ε) AS | −1 ≤ εi ≤ 1}
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Figure 4.3: Illustration of joint-range for (left) A = [ε1, 2ε2], (middle) B = [ε1, 2ε1], (right) C =

[ε1, 2ε1 + 0.5ε2]

The joint range is used to represent multi-dimensional sets with shared dependencies. For
example, 2ε1 and 2ε2 both represent the same set affine (2ε1) = affine (2ε2) = [−2; 2], but
for example the joint range of [ε1, 2ε2] is the rectangle A in figure 4.3 whereas the joint range
of [ε1, 2ε1] is the line segment B from [−1,−2] to [1, 2]. A third example is the parallelogram
C represented by the joint range of [ε1, 2ε1 + 0.5ε2]

As a concrete example, let us examine how affine arithmetic handles the dependency
problem in the introductory example x− x for x ∈ [0; 2]. The interval [0; 2] is represented
by the affine form 1 + 1 · ε1. This is the affine form represented by the function X :=
(λi. if i = 0 ∨ i = 1 then 1 else 0). For this function, range X = [0, 2] holds. Then, in affine
arithmetic, (1 + 1 · ε1)− (1 + 1 · ε1) = 0 + 0 · ε1, which corresponds to the constant zero
function. Therefore range (X − X) = {0}.

4.3.2 Multiplication

Multiplication is not a linear operation. The idea for an affine arithmetic definition of
multiplication is to return a linear approximation and account for the linearization error
with a fresh noise symbol. Consider the multiplication of two affine forms with formal
parameters ε.

(affine ε A) · (affine ε B) = A0B0 + ∑
i
εi · (A0Bi + AiB0) + (∑

i>0
εiAi) · (∑

i>0
εiBi)

The resulting term is not an affine form, because the last summand on the right contains
non-linear terms (i.e., products of εi). But if we assume a proper valuation with εi ∈ [−1; 1],
the last summand on the right can be bounded by (∑i>0 |Ai|)(∑i>0 |Bi|). Therefore, if k is
fresh in A and B, we can define A · B such that

affine ε (A · B) := A0B0 + ∑
i
εi · (A0Bi + AiB0) + εk · ((∑

i>0
|Ai|) · (∑

i>0
|Bi|))
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4 Rigorous Numerics in Affine Arithmetic

the k-th generator bounds the linearization error. As a result, multiplication of affine forms
is a safe overapproximation:

Theorem 4.10 (Multiplication of Affine Forms).

[a, b] ∈ joint-range [A, B] −→ a · b ∈ range (A · B)

4.3.3 Conversions to and from Intervals

The sum of the absolute values of all generators ∑i |Ai| is called the total deviation of an
affine form. With it, we can define lower and upper bounds inf, sup of an affine form
A :: affine-form and elementwise of a list of affine forms AS :: affine-form list .

Definition 4.11 (Interval Bounds of Affine Form).

inf A := A0 −∑
i
|Ai|

sup A := A0 + ∑
i
|Ai|

inf AS := map inf AS

sup AS := map sup AS

Intervals with bounds given by inf and sup do indeed enclose the range respectively
joint-range . In the latter case the interval is to be interpreted as a Cartesian product of
intervals and represents a hypercube.

Lemma 4.12 (Correctness of Interval Bounds).

range A ⊆ [inf A; sup A]

joint-range AS ⊆ [inf AS; sup AS]

We can also go in the reverse direction, defining an affine form that represents an interval
[l; u] :: R set .

Definition 4.13 (Affine Form of Interval).

affine ε (affine-of-ivl i l u) :=
l + u

2
+

u− l
2

εi

This yields a range equal to the given interval.

Lemma 4.14 (Correctness of Affine Form of Interval).

range (affine-of-ivl i l u) = [l; u]

This works for any index i for the formal parameter. This index becomes relevant for the
joint range. For a hyperrectangle [ls; us] for ls, us :: R list , different formal parameters need
to be chosen for every dimension.

Definition 4.15. For i < length ls = length us:

(affines-of-ivls ls us)i := affine-of-ivl i (lsi) (usi)

This ensures that the corresponding joint-range equals the hyperrectangle [ls; us].

Lemma 4.16.
joint-range (affines-of-ivls ls us) = [ls; us]
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4.3.4 Minkowski Sum

The Minkowski sum X ⊕ Y = {x + y. x ∈ X ∧ y ∈ Y} can easily be implemented for affine
forms. Given A :: affine-form and B :: affine-form , we first choose n such that ∀i ≥ n. Ai = 0.
That is, every noise symbol with index ≥ n is fresh in A. We then define C as an affine form
representing the same set as B, but with noise symbols independent from A:

Ci<n = 0

Ci≥n = Bn−i

This yields range C = range B. Because the generators in C are independent from A, the
sum A +C represents the Minkowski sum:

Lemma 4.17 (Minkowski Sum of A and B).

range (A +C) = range A⊕ range B

Note that because of possibly shared noise symbols, range (A + B) does not necessarily
equal range A⊕ range B.

4.3.5 Round-off Operations

All the operations presented up to now are in exact arithmetic. For efficiency reasons, we
would like to work with a finite precision p, which means that we have to take round-off
errors into account. Our approach is to provide an explicit round-off operation trunc-err-affine
to round all generators of the affine form to some given precision p with trunc− p (from
section 4.2).

Definition 4.18.

(truncate-affine p A)i := trunc− p Ai (4.1)

The variant trunc-err-affine returns an overapproximation of the incurred round-off errors,
which we need to take into account if we want to retain safe enclosures.

Definition 4.19.

trunc-err-affine p A := (truncate-affine p A, trunc+ p (∑
i
|Ai − trunc− p Ai|)

Correctness of trunc-err-affine states that the resulting affine form B encloses the original
one with some uncertainty e.

Theorem 4.20 (Rounding Generators of an Affine Form).

trunc-err-affine p A = (B, e) −→ range A ⊆ range B⊕ [−e, e]
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4.3.6 Extended Affine Forms

One optimization, that is usually only hinted at in descriptions of how to efficiently imple-
ment affine arithmetic is the following: when approximating a complicated expression using
affine arithmetic, more and more noise symbols will appear to account for linearization and
round-off errors. Since all of them are independent, it does not make sense to keep distinct
noise symbols for each of them. One can rather accumulate them in a special error symbol.
For this, we work with affine forms A with an associated error e, which we simply write as a
pair (A, e) :: affine-form ×R and call it extended affine form.

We will use extended affine forms as main data structure to approximate expressions. An
extended affine form is interpreted with affine-err for a valuation ε as the interval that stems
from the exact evaluation of the affine form with the uncertainty from the additional error
term:

Definition 4.21 (Interpretation of Extended Affine Form).

affine-err ε (A, e) := [affine ε A− e, affine ε A + e]

4.3.7 Approximation of Elementary Operations

For extended affine forms, we provide the arithmetic operations addition, multiplication,
combined with an immediate round-off operation. Consider e.g., addition, where argument
affine forms A with associated error e1 and B with error e2 are first added exactly (A + B)
and then truncated elementwise to C with associated error e3. For the result, all errors are
accumulated in the second component.

Definition 4.22.
add-affine p (A, e1) (B, e2) =

let (C, e3) = trunc-err-affine p (A + B);
in (C, trunc+ p (e1 + e2 + e3))

Correctness of operations on extended affine forms states that if the arguments are in the
range of the arguments, then the result of the “ideal” operation is in the range resulting
from the operation on affine forms. Moreover the dependencies of the formal variables stay
intact, i.e., the valuation ε remains the same. In the example of addition:

Theorem 4.23 (Correctness of Addition).

x ∈ affine-err ε (X, eX) −→ y ∈ affine-err ε (Y , eY) −→ x + y ∈ affine-err ε (add-affine X Y)

We proved similar correctness theorems for multiplication mult-affine and unary minus.
We guided our implementation by the descriptions of de Figueiredo and Stolfi [34].

4.3.8 Approximation of Standard Functions

We also provide affine arithmetic approximations for standard functions. Most of them can
be approximated with so-called min-range approximations. We describe the general setup,
how it is used for monotone standard functions like division, exp, ln, arctan,

√
. With a bit

of further efforts, this can also be used for periodic functions like sin, cos.
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4.3.8.1 Generic Linear Operation With Rounding

As basis for all operations that follow, we use a generic linear operation that involves
round-off operations and also adds a noise symbol for further uncertainties (this is also what
Stolfi and de Figueredo [34] discuss in detail):

We assume a generic affine operation given by parameters a, b and some uncertainty d.
The idea is that a · x + b approximates some (possibly nonlinear) function f up to an error d.
This idea is captured in the following theorem. We give the implementation of affine-unop
immediately afterwards.

Theorem 4.24 (Correctness of affine-unop ).

(x ∈ affine-err ε (X, eX) ∧ | f (x)− (a · x + b)| ≤ d) −→
f (x) ∈ affine-err ε (affine-unop p a b d (X, eX))

affine-unop is defined by performing exact operations a · X, A+ b and rounding in between,
while accumulating all errors into the additional error term of the resulting extended affine
form (also respecting the initial uncertainty eX and linearization error d):

affine-unop p a b d (X, eX) :=let

(A, eA) = trunc-err-affine (a · X);
(B, eB) = add-affine A b

in (B, trunc+ p (|a|eX + eA + eB + d))

4.3.8.2 Min-Range Approximation

There are various degrees of freedom for linearizing a non-linear function f on an interval
[l; u] using an affine form with a generic linear operation affine-unop : a, b, d must be chosen
such that ‖ f (x) − (α · x + b)‖ ≤ d) holds. Three approaches are commonly used in the
literature: One, setting a = 0, which results in an interval approximation the function f .
Two, minimizing the error d, which results in the first-order Tchebychev approximation.
Three, the so-called min-range approximation, which is in some sense a good compromise
between the two other options:

The error of the Tchebychev approximation is quadratic in the size of the interval X,
(which is desirable, because one usually works with sufficiently small uncertainties), for the
interval approximation the error is only linear. For monotone functions, the Tchebychev
approximation has one drawback: the range covered by the approximation can be larger
than that of the original function (which is not the case for the interval approximation). The
min-range approximation combines the advantages of both other approximation schemes:
its error is quadratic in the size of the argument interval and its range is the same as that of
the interval approximation.

The idea behind the min-range approximation (for monotone functions) is to maximize
the slope of the enclosure while fixing the range of the approximation. Consider figure 4.4,
which depicts a min-range approximation of sin on the interval [0; π3 ]: It does not exceed the
interval [sin(0); sin( π3 )]. Any smaller slope would be just as safe, but the slope could not be
chosen larger (at x = π

3 the upper bound is tangential to sin(x)).

55



4 Rigorous Numerics in Affine Arithmetic

����

��

����

����

����

����

����

����

����

����

����

�� ���� ���� ���� ���� �� ����

�

�

������

Figure 4.4: Min-range approximation of sin[0; π3 ]

The abstract justification of the min-range approximation is given by the following lemma
for a differentiable function f (with derivative f ′). a needs to be a lower bound on the
derivative and b and d need to be chosen such that it accounts for the error of the linear
function centered between f (u) and f (l) as well as for the error that b makes with respect to
the center (the second summand on the right of the inequality in condition 2 of lemma 4.25.

Lemma 4.25 (Justification for Min-Range Approximation).

∀x ∈ [l; u]. | f (x)− (a · x + b)| ≤ d

if the following conditions are satisfied:

1. ∀y ∈ [l; u]. a ≤ f ′(y)

2. d ≥ f (u)− f (l)−a·(u−l)
2 + |( f (l) + f (u)− a · (l + u))/2− b|

For a concrete implementation of a min-range approximation for a function f on an
interval [l; u], we rely on interval arithmetic extensions F, F ′ of f and its derivative f ′. To
remain safe, we need to choose for a the lower bound of the interval arithmetic evaluation of
the derivative (in lemma 4.25, a needs to be a lower bound). For d, we need to choose the
upper bound for a safe over-approximation. For b it does not really matter (we choose the
mid-point) as long as we respect the error eb.
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min-range-aform (F, F ′, (X, eX)) := let

[l; u] = [inf(X, eX); sup(X, eX)]

[a; _] = min(F ′(l), F ′(u));

[b− eb; b + eb] =
F(l) + F(u)− α · (l + u)

2

[_; d] =
F(u)− F(l)− a · (u− l) + eβ

2
in affine-unop (a, b, d, (X, eX))

For the following correctness theorem, we assume that the extended affine form (X, eX) is
bounded by an interval [l; u]. The derivative f ′ attains its maximum at one of the endpoints
of the interval. This is a slight generalization to what is demanded in the literature [34, 125]
where one assumes a convex function f . This is particularly useful for sin and cos, since
they are not convex, but satisfy the former assumption. Moreover we assume valid interval
extensions F, F ′ of f , f ′. Then the resulting extended affine form is a safe enclosure for f :

Lemma 4.26 (Correctness of Min-Range Approximation).

∀x ∈ affine-err ε (X, eX). f (x) ∈ affine-err ε (min-range-aform (F, F ′, (X, eX)))

if the following conditions are satisfied:

1. ivl (X, eX) = [l; u]

2. ∀x ∈ [l; u]. min( f ′(l), f ′(u)) ≤ f ′(x)

3. ∀x ∈ [l; u]. f (x) ⊆ F([l; u])

4. ∀x ∈ [l; u]. f ′(x) ⊆ F ′([l; u])

Something that is not mentioned in the theorems here should be noted: min-range-aform
only produces an approximation that is close to the min-range approximation if the function
f is monotone on [l; u]. But a similar version of min-range-aform is easily provided for the
antitonic case.

With this setup (we rely on Hölzl’s [66] library of interval arithmetic in Isabelle/HOL), we
can provide Min-Range approximations for arctan,

√
, exp, and the natural logarithm ln.

4.3.8.3 Trigonometric Functions

The trigonometric functions cos and sin pose the problem that they are not monotonic. This
can be alleviated in two steps:

The first step, range reduction, exploits periodicity to reduce the argument to the range
[0; 2π]. Range reduction (shifting the argument x by −2π · b x

2πc) is computed using interval
arithmetic. If the argument after reduction is not contained in [0; 2π] (which might be due
to imprecise interval arithmetic or an argument interval that is larger than 2π), we simply
return the interval approximation of cos on the reduced argument.
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Figure 4.5: Min-range approximations (fifteen subdivisions) of sin[0; 2π]

The second step is a case distinction if the argument is contained in the antitone part [0; π]
or the monotone part [π; 2π]. It is possible that this distinction cannot be decided (if e.g., the
argument interval straddles π), but then again, the only valid min-range approximation is
the interval approximation (with 1 as upper bound). A series of such computed min-range
approximations for sin(x) is shown in figure 4.5.

4.3.9 Approximation of Expressions

Arithmetic expressions aexp as given in section 4.1 can be approximated with affine arith-
metic by recursively following the structure of the expression. Below we give addition and
lookup of a variable as example but refrain from a presentation of further cases. Approxima-
tion is performed inside the option monad: approx either returns Some result or None to
indicate failures like e.g., approximating the inverse of an affine form that contains zero or
looking up an undefined variable.

approx p (Add a b) VS l =
do A← approx p a VS

B← approx p b VS
Some (add-affine p A B)

approx p (Var i) VS l =
if i < length VS then Some (VSi) else None
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Variables in approx are looked up from a list of extended affine forms. This is interpreted for
a valuation ε as a set of lists of real numbers. Correctness follows from an induction over
the structure of the expression and states that the interpreted expression is enclosed in the
resulting extended affine form for the same valuation of noise symbols.

Theorem 4.27 (Affine Arithmetic Approximation of Expressions).

approx p expr VS = Some X −→
ε ∈ UNIVN → [−1; 1] −→
length vs = length VS −→
(∀i < length vs. vsi ∈ affine-err ε (VSi)) −→
[[expr]]vs ∈ affine-err ε X

The usage of extended affine forms is a sensible choice for evaluating a single expression,
but for iterative computations, the associated errors grow monotonically and do not share
any dependencies. This is alleviated by incorporating the error terms into the affine form,
therefore increasing the number of generators. Then those can e.g., be contracted in further
iterations.

4.3.10 Summarizing Noise Symbols

During longer computations, more and more noise symbols will accumulate in an affine form,
which impairs performance. The number of noise symbols can be reduced by summarizing
(or condensing) them. There are several methods described e.g., by Althoff et al. [5], de
Figueiredo and Stolfi [34], or Girard [41]. We implemented the latter two approaches,
because they fit into the same framework and are easier to formalize (Althoff’s approaches
require to invert matrices).

The approaches that we formalize are both based on selecting a subset of the generators
and enclosing them with a box (thereby discarding all the dependencies).

Definition 4.28.

(select P XS)i := if P i then (XS)i else 0
(summarize P XS) := select P XS⊕ box (select (¬P) XS)

The approach of de Figueiredo and Stolfi is to choose P such that all generators with an
absolute value smaller than a given fraction of the maximum deviation of the affine form
are selected. For Girard’s method, one selects a given number of generators which are most
perpendicular.

For correctness, the concrete choice of P is irrelevant, the correctness theorem states that
summarization returns a safe overapproximation:

Theorem 4.29 (Summarizing Noise Symbols).

range X ⊆ range (summarize P X)
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4.3.11 Splitting

Errors are introduced due to linearization of operations on affine forms. These errors are
quadratic in the size of the generators, acceptable precision can therefore be maintained if
the size of the generators is kept small. One means to achieve this is to split an affine form X
into two smaller affine forms such that the union of the resulting ranges covers the original
range. X can be split by halving the k-th generator Xk and moving the center X0 accordingly:

split k X := (Y , Z)
where
(Y)0 := a0 − ak/2
(Z)0 := a0 + ak/2
(Y)k := Xk

2
(Z)k := Xk

2
(Y)i := Xi (∀0 < i 6= k)
(Z)i := Xi (∀0 < i 6= k)

The range of the resulting affine forms encloses the range of the argument, which follows
from the definition of range .

Theorem 4.30 (Splitting). split k X = (Y , Z) −→ range (X) ⊆ range (Y) ∪ range (Z)

Except for trivial cases, after a split of X, the resulting ranges will overlap (that is,
joint-range Y ∩ joint-range Z 6= ∅). For concrete applications and performance reasons, one
wants a split to be as effective as possible (i.e., as little overlap as possible). This depends on
the choice of k. Althoff [5] discusses that a summarization of noise symbols (see section 4.3.10)
before splitting yields more effective splits, however at the cost of overapproximation
incurred by summarization. Althoff also discusses a performance index depending on the
choice of the generator k along which the split is performed. We use a less sophisticated
method and always split the longest generator after the sum of the lengths of all generators
exceeds a configurable threshold, which worked well for our purposes.

4.3.12 Code Generation

We use data refinement via the code generator [54] to implement the type affine-form with
association lists (N×R) list that are (reverse) strictly sorted (with respect to the keys). This
sparse representation is useful because the largest index of a non-zero generator can be
directly read off by inspecting only the first element. Adding a fresh generator can be
done by simply prepending the new element. Binary operations are efficiently and easily
implemented by merging the two lists of generators.

4.4 Counterexample Generation

Based on the deep embedding of arithmetic expressions, I implemented an extension of
Isabelle’s quickcheck [108, 28] command. Quickcheck is used to test tentative lemmas by
searching for counterexamples. This works for lemma statements involving executable
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constructs (in particular data types). Such a method is also useful when proving facts about
real valued functions, and works well for arithmetic involving +,−, ∗, /, because those can
be executed on a representation of real numbers with rational numbers.

As soon as transcendental functions are involved, the standard setup does not work
anymore. I extended quickcheck with an additional generator that can be invoked with
quickcheck[approximation], it is available after loading the theory Approximation.thy.
quickcheck[approximation] evaluates conjectures first with approximate floating point

arithmetic (i.e., compiling real valued functions in HOL to the corresponding IEEE floating
point implementations of PolyML). Once a potential counterexample is found in floating
point arithmetic, quickcheck[approximation] tries to certify the counterexample with inter-
val arithmetic (this avoids spurious counterexamples for formulae like sin2(x) + cos2(x) = 1).
Another means to avoid spurious counterexamples is to declare the option quickcheck_-
approximation_epsilon = ε such that left- and right-hand sides of counterexamples for
equalities (or inequalities) have to differ by at least the given ε.

4.5 Related Work

Floating Point Numbers in ITPs. The formalization of arbitrary-precision floating-point
numbers originates from Obua’s work [112] and has been used for an implementation of
interval arithmetic by Hölzl [66]. A specification of floating point numbers according to
the IEEE-754 standard was formalized in Isabelle/HOL by Yu [145]. This was inspired by
Harrison’s [59] extensive formalization in HOL Light. In Coq, there is a comprehensive
formalization of floating point numbers by Boldo and Melquiond [17], as well as some
efforts in ACL2 [101].

Rigorous Numerics in ITPs. Muñoz and Lester [104] use rational interval arithmetic
in PVS to efficiently approximate real valued functions. In addition to basic arithmetic
operations they also support trigonometric functions. Dorel and Melquiond [96] implement
a similar method in Coq. Similar to the presentation here, they use a representation for
expressions and straight line programs and provide approximation functions using intervals,
centered forms, and Taylor models.

Other formalizations of Taylor models in theorem provers have been in the context of
Ariadne [33] and as a means for rigorous numerics [26, 146].

Solovyev [128] implements a global optimization method that is evaluated directly in HOL
Lights kernel. He uses first and second derivatives to exploit monotonicity and convexity of
the target function in order to reduce the search space for the global optimization.

Exact Real Arithmetic in ITPs. An alternative to rigorous numerics (i.e., explicit enclo-
sures) is to perform arithmetic on a computable representation of real numbers. One can for
example represent real numbers by a sequence of rational numbers. Each element in this se-
quence has a defined distance to the exact result. Harrison [56] uses this approach to compute
the logarithm. O’Connor [114] approximates real numbers by organizing their completion
of rational numbers in a monad. O’Connor and Spitters [113] use this monadic construction
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in order to implement arbitrary approximations of the Riemann integral. Krebbers and
Spitters [84, 83] extend this work to use arbitrary-precision floating-point numbers.

62



5
Computational Geometry

In the previous chapter 4, we discussed affine forms as our main data structure for repre-
senting enclosures. The geometric interpretation is that affine forms represent zonotopes
(section 5.2.1). Intersection of zonotopes with hyperplanes is an important operation, e.g., for
computing enclosures of Poincaré maps (where the Poincaré section is given as hyperplane).
This chapter is about the verification of an approximative algorithm due to le Guernic and
Girard [42] to compute enclosures for the intersection of zonotopes with hyperplanes.

Formal verification of geometric algorithms is a challenging and interesting topic: such
algorithms are easily presented with the geometric intuition, but this intuition needs to
be made precise formally. The core of the intersection algorithm that we will verify in
this chapter is similar to convex hull algorithms for points in the two-dimensional plane.
For such algorithms, Knuth [82] has developed a theory that axiomatizes the notion of
orientation of points. The idea is that for three points p, q, r in the plane, visiting them in
order requires either a counterclockwise (ccw) turn (written pqr) or clockwise (¬pqr) turn.
Knuth observed that already few of the properties fulfilled by the ccw predicate pqr suffice
to define a theory rich enough to formalize many concepts in algorithmic geometry.

In contrast to Knuth’s theory, which is targeted towards a finite, discrete set of points, our
application is about sets in continuous vector spaces. We therefore extend Knuth’s theory to
continuous vector spaces.

The first part of this chapter is devoted to the presentation of Knuth’s system of axioms
(section 5.1), the standard instantiation for points in the plane (section 5.1.1), and the
additional constraints that are needed to talk about ccw systems on vector spaces instead
of discrete sets (section 5.1.2). In the second part (section 5.2), we use this theory to reason
about the correctness of le Guernic and Girard’s algorithm.

5.1 CCW System

Knuth introduces the notion of a ccw system as a set of points together with a ccw predicate
written pqr for points p, q, r. In this section, we write (scalar) multiplication always explicitly
as x · y to avoid potential confusion of a product x · y · z a ccw predicate xyz. A ccw system
has to satisfy the following properties (we call them axioms, following Knuth’s terminology),
inspired by the relations satisfied by points in the plane. For all axioms in the following,
there is the additional implicit assumption that the involved points are pairwise distinct. For
three points, only simple axioms need to be fulfilled:

Axiom 5.1 (Cyclic Symmetry). pqr −→ qrp

Axiom 5.2 (Antisymmetry). pqr −→ ¬prq

63



5 Computational Geometry
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Figure 5.1: Cyclic symmetry (left), interiority (middle), transitivity (right); dashed predicates
are implied by solid ones

Axiom 5.3 (Nondegeneracy). pqr ∨ prq

Cyclic symmetry and the more interesting case of interiority, which involves four points,
are illustrated in figure 5.1. Interiority states that if one point t is left of three lines pq qr rp,
then the three other points are oriented in a triangle according to pqr.

Axiom 5.4 (Interiority). tpq∧ tqr ∧ trp −→ pqr

The most important tool for reasoning is transitivity, which involves five points and works
if three points p, q, r lie in the half-plane left of the line ts, i.e., tsp∧ tsq∧ tsr. Then, fixing t
as first element for the ccw relation, we have transitivity in the second and third element:
tpq∧ tqr −→ tpr (see figure 5.1).

Axiom 5.5 (Transitivity).
tsp∧ tsq∧ tsr ∧ tpq∧ tqr −→ tpr

The same intuition also holds for the other side of the half-plane:

Axiom 5.6 (Dual Transitivity).

stp∧ stq∧ str ∧ tpq∧ tqr −→ tpr

Knuth shows that under the assumptions of Cyclic Symmetry, Antisymmetry, and Non-
degeracy, Transitivity holds if and only if Dual Transitivity holds. Knuth requires more than
half a page of low level reasoning, but as this reasoning is carried out abstractly in a small
first order theory, sledgehammer (Isabelle’s interface to various automatic theorem provers)
is able to find a proof that consists of just one single invocation of an automated prover.

5.1.1 Instantiation for Points in the Plane

Up to now, our reasoning was based abstractly on ccw systems, but of course we also want
to use the results for a concrete ccw predicate. Well known from analytic geometry is the
fact that ccw orientation is given by the sign of the following determinant |pqr|:

|pqr| :=

∣∣∣∣∣∣
px py 1
qx qy 1
rx ry 1

∣∣∣∣∣∣ = px ∗ qy + py ∗ rx + qx ∗ ry−
(rx ∗ qy + ry ∗ px + qx ∗ py)
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5.1 CCW System

Points are collinear iff |pqr| = 0. Under the assumption that one works with a finite set of
points where no three points are collinear, the following predicate pqr> satisfies the axioms
of a ccw system.

pqr> := |pqr| > 0

Most axioms can easily be proved using Isabelle/HOL’s rewriting for algebraic structures.
Transitivity is slightly more complicated, but can also be solved automatically after a proper
instantiation of Cramer’s rule, which is easily proved automatically:

|tpr| = |tqr||stp|+ |tpq||str|
|stq| , if ‖stq| 6= 0

5.1.2 CCW on a Vector Space

Knuth presented his axioms with a finite set of discrete points in mind, in our case we
need to talk about orientation of arbitrary points in a continuous set. We therefore require
consistency of the orientation predicate when vector space operations are involved.

We stick to the the predicate pqr> because we can rule out degenerate cases in pre- and
postprocessing phases (sections 5.2.4.6 and 5.2.4.5). As vector space, we consider points
p, q, r ∈ R2.

One obvious requirement is that orientation is invariant under translation (figure 5.2, left):

Theorem 5.7 (Translation).

(p + s)(q + s)(r + s)> = pqr>

With translation invariance, we can reduce every ccw triple to a triple with 0 as origin,
and from there it is easy to state consistency with respect to scaling: If at q, there is a ccw
turn to r, then every point on the ray from 0 through q will induce a ccw turn to r (figure 5.2,
right).

Theorem 5.8 (Scaling).
α > 0 −→ 0(α · q)r> = 0qr>

Negative scalars can be treated by requiring that reflecting one point at the origin inverts
the ccw predicate:

Theorem 5.9 (Reflection).
0(−p)q = 0qp

Furthermore, the addition of vectors q and r, which are both ccw of a line p needs to be
ccw of p as well:

Theorem 5.10 (Addition).
0pq −→ 0pr −→ 0p(q + r)

Equipped with these theorems, we can simplify many of the ccw predicates that can occur.
For example, one can get rid of all parts of the third component which are collinear with the
second:

γ > 0 −→ 0a(γ · a + b)> = 0ab>
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Figure 5.2: Invariance under translation (left), invariance under scaling (right)

Some ccw predicates involving a sum can be reduced to showing the ccw predicate for every
summand:

∀i ≤ k. pq(ri)
> −→ pq

(
∑
i≤k

ri

)>

5.2 Verification of le Guernic and Girard’s Algorithm

The geometric objects that are represented by affine forms are called zonotopes. Computing
the intersection of zonotopes with hyperplanes is an important operation and can be
performed geometrically. Unfortunately, the complexity for computing the exact intersection
grows exponentially with the number of generators. An overapproximation of the zonotope
(reducing the number of generators as in section 4.3.10) before computing the intersection
is possible but often leads to too coarse overapproximations. Therefore le Guernic and
Girard [42] proposed a way to directly compute overapproximations to the intersection.

5.2.1 Zonotopes

Zonotopes are the sets represented by affine forms, they are particular centrally symmetric,
convex polytopes. A zonotope can be visualized as the Minkowski sum of line segments
defined by the generators. The Minkowski sum X ⊕ Y operates on two sets and returns the
set containing all possible sums between elements of the first and second set:

X ⊕ Y = {x + y. x ∈ X ∧ y ∈ Y}

For a generator ai, the corresponding line segment is li = {ε · ai. − 1 ≤ ε ≤ 1}. Figure 5.3
illustrates how a zonotope is built by incrementally taking the Minkowski sum of the three
line segments l1, l2, l3 corresponding to generators a1, a2, a3. In the two-dimensional case,
we can speak of corners (c0, c1, . . . ) and edges (c0c1, c1c2, . . . ) of the zonotope (compare
figure 5.4). Corners are of the form a0 + ∑i εi · ai for εi ∈ {−1, 1}, edges are of the form
ci(ci + 2 · a j) for corners ci and generators a j. We call the set of all edges the hull of the
zonotope.

5.2.2 Reduction to a Two-Dimensional Problem

The first idea of le Guernic and Girard’s algorithm is to overapproximate a given set
X tightly from a set D of directions. D can be chosen arbitrarily. For every direction
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a1
a2

a3

l1 l1 ⊕ l2 l1 ⊕ l2 ⊕ l3

Figure 5.3: Construction of a zonotope
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Figure 5.4: Corners and edges of a zonotope, intersecting line Lc

d ∈ D ⊆ Rn, the infimum md and supremum Md of the sets {〈x, d〉. x ∈ X} needs to be
determined. Geometrically speaking, md and Md give the translation of two hyperplanes
with normal vector d. The two hyperplanes bound X from below and above, respectively.
An overapproximation P is then given by the points between all of these hyperplanes:

X ⊆ P = {x ∈ Rn. ∀d ∈ D. md ≤ 〈x, d〉 ≤ Md}

The second observation of le Guernic and Girard is that when the set X is the intersec-
tion of some set Z with a hyperplane G = {x. 〈x, g〉 = c}, then the computation of the
overapproximation P can be reduced to a set of two-dimensional problems with the linear
transformation Πg,d : Rn → R2, Πg,d(x) = (〈x, g〉, 〈x, d〉) for every d ∈ D.

Theorem 5.11 (Two-Dimensional Reduction).

{〈x, d〉. x ∈ Z ∩G} = {y. (c, y) ∈ Πg,d(Z)}

The theorem is an easy consequence of the definitions of G and Πg,d. For every direction
d, the theorem allows to reduce the computation of the intersection Z ∩G on the left-hand
side to the intersection of the projected two-dimensional zonotope Πg,d(Z) with the vertical
line Lc = {(x, y). x = c}.

We therefore need an algorithm bound-intersect-2D that computes the intersection of a
two-dimensional zonotope S with a vertical line Lc, returning the minimal m and maximal M
second coordinate of the intersection, as illustrated in figure 5.4. Correctness of the algorithm
is specified as follows:
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Lemma 5.12 (Correctness of 2D-Zonotope/Line Intersection).

bound-intersect-2D (S , Lc) = (m, M) −→ S ∩ Lc ⊆ {(x, y). x = c∧m ≤ y ≤ M}

With this specification and theorem 5.11 in mind, we can easily define the algorithm
bound-intersect (Z, g, c, d), which returns the lower and upper translation (m, M) of the hy-
perplanes with normal vector d that bound the intersection Z ∩ {x. 〈x, g〉 = c} of a zonotope
Z with the hyperplane normal to g at c.

Definition 5.13 (Bound for Intersection).

bound-intersect (Z, g, c, d) := bound-intersect-2D (Πg,d(Z), Lc)

The idea to implement the algorithm bound-intersect-2D for two-dimensional zonotopes is
to first compute the edges of the zonotope with an algorithm hull-of-zonotope S . We compute
bounds on the intersection of the vertical line Lc with every edge ab as follows: for the
line segment ab we assume ax ≤ g ≤ bx, otherwise we just flip the corners. If the segment
is vertical, i.e., ax = bx, we return m = min(ay, by) and M = max(ay, by) as bounds on the
intersection. If ax < bx, we use approximate operations with fixed precision to compute
bounds on the exact point of intersection m ≤ by−ay

bx−ax
(c− ax) + ay ≤ M. The zonotope then

intersects the line between the minimum and maximum bounds m, M of all edges. The only
part missing is how to compute hull-of-zonotope , which we sketch in the following.

5.2.3 Computation of Two-Dimensional Hulls

To formally reason about the computed intersection, some guarantees concerning the edges
computed by hull-of-zonotope are required: in particular that they actually enclose the
zonotope. To see how this can be ensured, we first take a look at how they are actually
computed. Intuitively, assuming that all generators point upwards, one starts at the lowest
corner c0 in figure 5.4 and appends to it the “rightmost” generator a1 (twice) to reach c1. One
then continues with the “rightmost” of the remaining generators, a2 and is in the process
essentially “wrapping up” the hull of the zonotope.

We therefore need a way to reason about “rightmost” vectors. Similar ideas of “wrapping
up” a set of points also occur for convex hull algorithms, they have been studied exten-
sively in the literature with Knuth’s axiomatic theory of counterclockwise (ccw) systems
(section 5.1). The algorithm hull-of-zonotope is easier to implement than convex hull algo-
rithms, because it basically only needs to sort the generators. The verification, however,
poses additional challenges as we do not deal with discrete set of points, but rather with
the continuous set given by the zonotope which needs to be enclosed by the computed
segments. This is why we make use of our extended theory of ccw systems on vector spaces
(section 5.1.2).

5.2.4 Verification of Two-Dimensional Hulls

Equipped with the formalisms to reason about orientation in the plane, we now detail on the
algorithm hull-of-zonotope to compute the hull of a two-dimensional zonotope a0 + ∑i εi · ai

and how we verified it.
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1. input: an affine form a0 + ∑i εi · ai, given by the list of its generators a0, . . . , an, all
pointing upwards

2. find the lowest corner c0 of the zonotope, i.e., c0 = −∑i ai

3. sort the generators, i.e., assume i < j −→ 0(ai)(a j)>

4. double the generators, i.e., bi := 2 · ai

5. append generators in order, i.e., ci+1 = ci + bi+1

6. reflect the corners c0, . . . , cn, i.e., cn+i+1 = −ci+1

7. output: a list of edges c0c1, c1c2 . . . , cncn+1, . . . , c2n−1c2n

Figure 5.5: Algorithm hull-of-zonotope

The verification of the algorithm is simpler when we assume that the generators ai are not
collinear and that all of them point upwards, i.e., (ai)y > 0. In fact, the instantiation of the
ccw predicate pqr> requires this. We present a suitable preprocessing in subsection 5.2.4.6,
which ensures that these conditions are always met when computing the hull. We can also
assume that the zonotope is centered around the origin, i.e., a0 = 0.

The aim is to compute a list of corners ci of the zonotope generated by the ai. We first
compute the corners on the right side (c1, c2, c3 in figure 5.3) by appending the generators in
sorted order. For sorting, we need the notion of a total order induced by the ccw predicate
(section 5.2.4.1). Then we reflect the obtained corners according to the central symmetry of
zonotopes. In a bit more detail, the algorithm can be described as in figure 5.5.

Implementing this algorithm in a functional language is straightforward. The specification
that we aim to verify is that the returned edges enclose the interior of the zonotope, i.e., every
point x in the zonotope is left of all the edges cici+1. According to the definition of pqr>, the
ccw predicate can be used to describe half-planes: Xpq :: R2 set with Xpq := {x | pqx>} is
the half-plane left of the line pq. The interior of any given convex polygon can therefore be
described as the intersection of half-planes defined by the edges of the polygon: for corners
c0, . . . , cn of a polygon, the interior of the polygon is the set P =

⋂n
i=0 Xc jc j+1 .

The verification can be outlined as follows: First, appending sorted vectors in order keeps
certain linear combinations ccw oriented with respect to the line segments. Second, we
establish that these linear combinations represent the interior of the zonotope, therefore the
interior of the zonotope is ccw of the line segments after step 5. Then, because of symmetries,
the same holds for the reflected corners on the left, i.e., the ones after step 6. Finally, we give
a relaxed notion of ccw that allows to include not only the interior but also the edges of the
zonotope.

5.2.4.1 Total Order from CCW

As sketched in section 5.2.3, we need to be able to select a “rightmost” element of a set of
vectors. With transitivity of the ccw predicate, we can obtain a total order on vectors which
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Figure 5.6: c0 + polychain ([b1, b2, b3]) and illustration of lemma 5.15

allows to do just this: Given a center t and another point s, the ccw predicate tpq can be used
to define a total order on points p, q in the half-plane left of ts, i.e., p < q iff tpq. Axioms 5.2
and 5.3 directly provide antisymmetry and totality. Transitivity of the order follows from
axiom 5.5 and the assumption that all points are in the half-plane left of ts.

This order is used to specify a ccw-sorted list of points R, with respect to a center p:

Definition 5.14.
ccw-sorted p R := (∀i ∀ j. i < j −→ prir j)

A list of points can only be sorted if all points are in one half-plane through the center,
because the first element r0 of a ccw-sorted list restricts all subsequent points to the half-plane
left of pr0.

5.2.4.2 Appending Sorted Vectors

We write polychain B for the list of points obtained from a list B consisting of vectors bi by
appending the vectors bi in order.

(polychain B)i+1 = (polychain B)i + bi+1

A crucial property is that whenever a list of vectors B is sorted, then linear combinations
(with coefficients between 0 and 1) of the elements bi of B are ccw of polychain B. Compare
also figure 5.6.

Lemma 5.15. Assume ccw-sorted B and ∀i. 0 < εi < 1 and C = polychain B. Then:

c jc j+1

(
∑

i
εi · bi

)>

The proof goes by induction the length of B resp. C and makes use of ccw vector space
theorems like the ones given in subsection 5.1.2.

5.2.4.3 The Interior of the Zonotope

The interior of the zonotope, i.e., the points constructed as linear combinations a0 + ∑i εi · ai

for −1 < εi < 1, can also be represented as linear combinations c0 + ∑i εi · bi for a different
set of 0 < εi < 1: the linear combinations are just translated to the lowest point c0, and
doubling the vectors in step 3 makes up for the smaller range for the εi.
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Now assume that after step 4, we have computed n corners c0, . . . , cn. Since the c j are
sorted, we have from lemma 5.15 that all linear combinations x = c0 + ∑i εi · bi are left of
the line segments c jc j+1. But according to the previous considerations, this means that the
interior of the zonotope is left of the computed line segments after step 4:

Lemma 5.16. After step 4,
c jc j+1(∑i εi · ai)> holds for −1 < εi < 1

Note that at this step it is important to consider only the strict interior (i.e., −1 < εi < 1) of
the zonotope, because points on the edges do not satisfy the (strict) ccw predictate pqr> and
can only be reached with −1 ≤ ε ≤ 1.

5.2.4.4 Reflected Corners

Step 5 of the algorithm simply reflects the already computed corners at the origin, an
operation under which the orientation predicate remains invariant. Because in addition
to that, every zonotope is centrally symmetric, we can deduce from lemma 5.16 that the
reflected line segments enclose the interior of the zonotope as well. We also have cn = −c0.

Lemma 5.17. After step 5,
c jc j+1(∑i εi · ai)> holds for −1 < εi < 1

5.2.4.5 “Postprocessing”: Continuously Relaxing CCW

In order to also include the edges into our reasoning, we define the slightly relaxed ccw
predicate pqr≥, which holds for all points on the line through pq and for all points on the
half-plane left of pq.

pqr≥ := |pqr| ≥ 0

For every segment c jc j+1, the half-plane X j = {x. c jc j+1x≥} is topologically closed. We
know that all points from the interior are contained in this half-plane and show that
points from the edges of the zonotope are also contained: Assume some x = ∑i εi · ai with
−1 ≤ εi ≤ 1, i.e., x may be on the edges or in the interior. Then define xm = ∑i(εi · (1− 1

m )) · ai

for m = 1, 2, . . . , we therefore have strict inequalities −1 < εi · (1− 1
m ) < 1, which imply

according to lemma 5.17 that xm ∈ X j. Moreover, as m goes to infinity, xm tends to x, and
since X j is closed, we can conclude x ∈ X j.

In summary, the line segments output by hull-of-zonotope define a polygon (as intersection
of half-planes) that encloses the zonotope:

Theorem 5.18. After step 5,
c jc j+1(∑i εi · ai)≥ holds for −1 ≤ εi ≤ 1

Theorem 5.18 proves that hull-of-zonotope encloses all points of the zonotope, but not that
all enclosed points actually belong to the zonotope. We have also proved that theorem, but
do not make use of it, as we are only interested in an overapproximation of the intersection.
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5.2.4.6 Preprocessing for Generators

Recall that at the beginning of section 5.2.4, we assumed the generators ai of the zonotope to
be nonaligned and pointing upwards. Given a zonotope with arbitrary generators a′i, it is
easy to compute a new set of generators ai that meet the above conditions and represent the
same zonotope.

Consider an element x = ∑i εi · a′i with generators a′i which point downwards, i.e., (a′i)x < 0.
Set ai = −a′i and also negate εi, then x = ∑i εi · ai and all generators ai point upwards.

Concerning collinear generators, one can start with the first generator a′1 and find the
indices C of collinear generators, i.e., |0a′1a′i| = 0 for 1 < i ∈ C. Then we can set a1 =

a′1 + ∑i∈C a′i and find an appropriate ε1 such that x = ∑i εi · ai. Then recurse on the list of
remaining generators ai with i /∈ C and finally obtain a list of generators which are pairwise
not collinear, i.e., for i 6= j, we have |0aia j| 6= 0.

5.2.5 The Final Intersection Algorithm

Recall that the algorithm bound-intersect returns hyperplanes that bound the intersection
from above and below. The final result of our verification can then be summarized by a
short formal statement: The intersection of a zonotope (the range of the affine form given by
generators A = (ai)i) with a hyperplane is bounded by the computed half-planes:

Theorem 5.19 (Bounding the Zonotope/Hyperplane Intersection).

bound-intersect (A, g, c, d) = (m, M) −→
{a0 + ∑

i
εi · ai. − 1 ≤ εi ≤ 1} ∩ {x. 〈x, g〉 = c} ⊆

{x. m ≤ 〈x, d〉 ≤ M}

The intersection is represented by half-planes, if however one wants to continue calculating
with zonotopes, it is necessary to choose several directions di in a way that the polytope
resulting from the intersection of all the half-planes can be represented as a zonotope. For
this purpose, one can choose for example hyperrectangles or parallelotopes.

5.2.6 Experiments

All of the algorithms we presented are given as functional programs in Isabelle/HOL.
We can therefore make use of Isabelle’s code generator [51] to conduct some experiments
and demonstrate that our formalization can actually be used to compute intersections of
zonotopes with hyperplanes. Here, numbers are represented by floating point numbers
m · 2e for unbounded integers m, e (see also section 4.2).

We give a short example where the naive approach of projecting the set to the hyperplane
G would result in a very large overestimation, but the intersection (in this case from Basis-
parallel directions) is tight, i.e. it touches the original set in every direction. The zonotope
Z in the example is given by [(0, 0, 0); (2, 1, 0)] ⊕ (5, 10, 20). The hyperplane is given by
G = {x. 〈(0, 0, 1), x〉 = 3}. Computing the intersection in this case takes negligible time.
For a more complex scenario, we created random ten-dimensional zonotopes with fifty
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Figure 5.7: Intersection as it might occur in reachability analysis

generators, computing the intersection with a random hyperplane takes 6-7 milliseconds on
a 2.9 GHz laptop. Twice the number of generators requires twice as much time, doubling the
dimension also increases the amount of time needed by a factor of two. For our purposes,
the code exhibits reasonable performance and scaling behavior.

5.3 A Consistent CCW Predicate for Degenerate Cases

This section is not directly related to the verification of zonotope/hyperplane intersection,
but it is interesting as an example of formalizing geometry.

Recall that the instantiation of a ccw system with pqr> only worked with the additional
assumption that all involved points are not collinear. In some cases it is possible to get
rid of “degenerate” situations with some sort of preprocessing, which is what we did in
section 5.2.4.6. Here we give an alternative instantiation of ccw systems for arbitrary points
in the plane, as demonstrated in chapter 14 of Knuth’s monograph.

Knuth proposes to refine the ccw predicate pqr> in degenerate cases by including the
lexicographic order ≺ on points.

p ≺ q := px < qx ∨ (px = qx ∧ py < qy)

The refined ccw predicate pqr∗ can then be defined as follows:

pqr∗ := pqr> ∨ (|pqr| = 0∧ p ≺ q ≺ r ∨ q ≺ r ≺ p∨ r ≺ p ≺ q)
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This predicate can be shown to form a ccw system for arbitrary points in the plane.
As elaborated by Knuth as well, an important part of the reasoning is that the convex
combination of two points lies lexicographically between them:

p ≺ q∧ 0 ≤ α ≤ 1 −→ p ≺ α · p + (1− α) · q ≺ q

Knuth does not explicitly mention it, but a similar rule for triangles is needed as well.

p ≺ q ≺ r ∧ 0 ≤ α∧ 0 ≤ β∧ 0 ≤ γ ∧ α+ β+ γ = 1 −→
p ≺ α · p + β · q + γ · r ≺ r

This rule is necessary to establish the following rules, all of which establish some sort of
consistency between the lexicographic order and the orientation predicate. Like Knuth, we
abbreviate s ∈ ∆pqr = spq∗ ∧ sqr∗ ∧ srp∗ to express s lying inside the triangle given by p, q, r
and �pqrs = pqr∗ ∧ qrs∗ ∧ rsp∗ ∧ spq∗ to describe an oriented tetragon p, q, r, s. Then each
of the following configurations is impossible (for pairwise distinct points): first (or second),
the rightmost (or leftmost) point s lies in the triangle given by the points p, q, r on the left (or
right). Third, if p and q are left of r and s, then the points cannot form an oriented tetragon
p, r, q, s, because two of the lines would have to cross.

p ≺ q ≺ r ≺ s∧ s ∈ ∆pqr

s ≺ p ≺ q ≺ r ∧ s ∈ ∆spqr

p ≺ r ∧ p ≺ s∧ q ≺ r ∧ q ≺ s∧�prqs

As in the previous sections, transitivity of pqr∗ can be established relatively easily alge-
braically, using Cramer’s rule. However, when collinear points are involved, case distinctions
are needed, some need to derive new collinearities, e.g., if q lies on a line with tp and on a
line with tr, then r and p are on the same line: |tpq| = |tqr| = 0 −→ |trp|.

In addition it is necessary to rule out configurations which are according to Knuth’s
presentation without further elaboration just “impossible”, but require careful formal proof.
Consider e.g. t, s, r, p aligned and q not aligned according to tpq> and tqr>. This configuration
can be realized, and is only impossible by investigating subtle contradictions given by the
possible lexicographic orderings of t, s, r, p in the context of the proof.

Other important lemmas that are not mentioned by Knuth are needed for translating the
corner of a ccw turn, which only works when translating in one direction, which is why the
lexicographic order is needed:

|trs| = 0∧ t ≺ r ≺ s∧ trp> −→ tsp>

5.4 Related Work

Noting that the main contribution of our work is the verification of a geometric algorithm,
we can compare this work with several other formalizations, especially with verifications of
convex hull algorithms: They all have in common that they base their reasoning on Knuth’s
notion of ccw system.
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Pichardie and Bertot [118] were the first to formalize Knuth’s ccw system and verify a
functional convex hull algorithm in Coq. Meikle and Fleuriot [99] formalized an imperative
algorithm and verified it using Hoare logic in Isabelle/HOL. Brun et al. [27] verify an
algorithm based on hypermaps to compute the convex hull.

The basic notion of a ccw system is straightforward to formalize, however it excludes
in its pure form “degenerate” configurations of points, that is, three points lying on the
same line. To cope with these special cases, different approaches have been used: Pichardie
and Bertot give two possible solutions, one is to extend the ccw theory with an additional
predicate pqr′, which is true whenever q lies on the line between p and r. This requires
nine additional axioms and therefore makes the abstract theory more cumbersome to use.
The second approach they formalized (and which has been elaborated by Knuth) perturbs
the points of the system in a continuous manner to get rid of degenerate configurations,
continuity carries the results over to the degenerate case. Our approach from section 5.2.4.5
is similar in the sense that we extend results from the nondegenerate interior of a zonotope
to the frontier, which contains degenerate points. Meikle and Fleuriot take a more pragmatic
approach and modify their algorithms to explicitly check for collinear points.

In section 5.3, we digressed into yet another possibility (also already described by Knuth)
to refine the ccw predicate pqr> in a consistent way for arbitrary points in the plane,
and see how we can follow Knuth’s reasoning with our formalization of ccw systems in
Isabelle/HOL. Unfortunately this approach does not directly work for ccw systems on vector
spaces.

It is worth mentioning that we restrict our attention to zonotopes and not the more general
approach of using support functions as done by le Guernic and Girard [89], because many
algorithms related to reachability analysis get more involved and require to solve e.g. linear
programming and other optimization problems that are not formalized in Isabelle/HOL.
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6
Specification and Verification of
Rigorous Numerical Algorithms

Rigorous numerical algorithms can be characterized by the fact that they compute with
enclosures of some real quantity. An important insight is that for the verification, anything
that is an enclosure of the real quantity is sufficient for proving correctness.

This gives the opportunity to abstract over implementation details along two axes. One, the
concrete representation of the enclosure, which could be e.g., ellipsoids, intervals, zonotopes,
or Taylor models. Two, the actual algorithm that computes the enclosure, which might also
be influenced by heuristics or optimizations.

We use Lammich’s [85, 86] framework Autoref for (automatic) refinement of nondeter-
ministic specifications. This framework provides the infrastructure to systematically refine
abstract, nondeterministic specifications (e.g., an enclosure for the solution of an ODE) to con-
crete, executable implementations (e.g., a rigorous Runge-Kutta method) as well as abstract
data structures (e.g., sets for enclosures) to concrete ones (e.g., intervals or zonotopes).

The advantage of a framework like Autoref is that one can conveniently verify the
correctness of algorithms on an abstract level, not caring about implementation details.
Moreover, data-structures and algorithms can be modularly modified while the abstract
correctness proofs remain valid.

This chapter presents a framework (based on Autoref) for writing rigorous numerical
algorithms in an abstract, high-level language. To this end, we first specify a set of abstract
operations that is useful for rigorous numerical algorithms (section 6.1). With the help
of Autoref, those abstract algorithms can be translated (mostly) automatically to concrete,
executable implementations. To make this translation possible, Autoref needs to be provided
with concrete data structures (section 6.2).

As introductory example to illustrate the level of abstraction on which we aim to specify
algorithms, consider definition 6.1. This algorithm operates on a work-set X , think of X
as a union of intervals. The algorithm proves (when it terminates) that some function f is
positive on every interval in X . Inside the while-loop, an interval X is removed from the
work-set, and the algorithm comes up with a rigorous enclosure F for the image of some
function f on X and finds a lower bound ` on F. If this lower bound is positive, the while
loop continues with the rest of the work-set X . If ` is negative, the algorithm splits the
current set X into two parts X1 and X2 and adds those to the work-set, in the hope that
successive iterations will be successful in proving positivity for those smaller sets.
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Definition 6.1 (Pseudo-Code for Global Optimization Work-Set Algorithm).

while (X 6= ∅)

remove X from X
choose F such that f (X) ⊆ F

choose ` such that ∀x ∈ F. x ≥ `

if ` ≥ 0 then continue

else {
split X = X1 ∪ X2

X := {X1, X2} ∪ X
}

We aim for a framework that allows users to specify rigorous numerical algorithms at about
the level of abstraction of definition 6.1. We will use this algorithm as the running example
to illustrate the developments presented in this chapter. The precise formal definition of
this algorithm in Isabelle/HOL is given later on in definition 6.4. There will, however, be
one striking difference: reasoning about work-set algorithms involving (rigorous numerical)
enclosures can be abstracted even more than in the view of the algorithm in definition 6.1.
This is because X is of type α set set , the algorithm proves that f (

⋃
X∈X X) ≥ 0. But this

nesting of sets of sets can be avoided: we will specify work-set algorithm as operating on
just some set X :: α set . Removing an element is choosing some Y and Z such that X = Y ∪ Z,
where Y morally represents one element of the work-set and Z the remaining work-set.

6.1 Nondeterministic Specifications

Autoref is based on refinement calculus [9]. Specifications are encoded as nondeterministic
results (section 6.1.1). In this calculus, one can express and verify correctness of algorithms
(section 6.1.2). We specify a set of operations geared towards the specification of rigorous
numerical algorithms (section 6.1.3).

6.1.1 Nondeterministic Results

Autoref is based on a nondeterminism monad α nres , where programs can either fail or
yield a set of values as result, which is captured in the data type nres .

datatype α nres = FAIL | RES (α set)

The type nres is equipped with a refinement relation ≤. It is defined such that for results

RES S ≤ RES T ←→ S ⊆ T

and FAIL is the top element of this order: ∀x. x ≤ FAIL .
Deterministic results are singleton nondeterministic results. We write this as return :
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Definition 6.2 (Deterministic Results).

return x := RES {s}

The type nres can also be used to provide specifications. The set of all results satisfying a
given property P is written as specification spec .

Definition 6.3 (Nondeterministic Specification).

spec P := RES {x. P x}

The type α nres is a monad for which we use do notation. We will only appeal to
the intuition that x ← X binds (nondeterministically) some Element x :: α in the set of
nondeterministic results of X :: α nres to f :: α → β nres , which yields a nondeterministic
result of type β nres .

do {
x← X;

f x

}

We can also use while and if-then-else statements. For b :: σ → B, f :: σ → σ and X0 :: σ,
the while loop while b f X0 denotes iterated application of f on the initial state X0, as long
as the predicate b holds. The introductory example, specified in the nres monad should give
an intuition on while, do, and the nres monad.

Definition 6.4 (Global Optimization Work-Set Algorithm in the nres Monad).

global-optimization fe X0 :=

while (λX. X 6= ∅)

(λX. do {
(Y , Z)← spec (λ(Y , Z). X = Y ∪ Z);

F ← spec (λF. ∀y ∈ Y . [[ fe]]list-of-eucl y ∈ F);

`← spec (λ`. ∀x ∈ F. ` ≤ x);

if ` ≥ 0 then

return Z

else do {
(Y1, Y2)← spec (λ(Y1, Y2).Y ⊆ Y1 ∪ Y2);

return (Y1 ∪ Y2 ∪ Z)

}
}) X0

It is worth pointing out some differences to the pseudo code from definition 6.1. The
work-set X :: α set set turned into one enclosure X :: α set . The while-loop is now specified
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in a functional way, i.e., without implicit state: The while loop takes (as last argument) some
explicit initial state X0 and repeatedly applies the function in the second argument to it (as
long as the function on the first argument returns True ). Instead of “removing” an element
from X , we now obtain some Y and Z such that X ⊆ Y ∪ Z and return either Z (instead of
continue) or Y1 ∪ Y2 ∪ Z as new state. Furthermore, instead of a function f , we assume the
function given as interpretation λ. [[ fe]]list-of-eucl y of some aexp -expression fe (according to
section 4.1).

6.1.2 Verification Condition Generation

The nres monad allows one to specify correctness, e.g, of a program f whose inputs x satisfy
the precondition P and every possible value y in its nondeterministic result satisfies the
postcondition Q:

∀x. P x −→ f x ≤ spec (λy. Q y)

Proving that a program fulfills a specification therefore amounts to proving that the program
refines a spec statement. For such statements, Autoref provides a verification condition
generator, which follows the structure of the program. For illustration, we present the
structural rules for spec , monadic bind, and the while loop.

A specification refines another specification if one predicate implies the other:

Lemma 6.5 (Verification Condition for Specification).

(∀x. P x −→ Q x) −→ spec P ≤ spec Q

Binding an element x in the nondeterministic result of X to a function f refines a specifi-
cation Q if X refines the specification that f applied to any nondeterministic result x in X
refines the specification Q.

Lemma 6.6 (Verification Condition for Bind).

X ≤ spec (λx. f x ≤ spec Q) −→ do {x← X; f x} ≤ spec Q

A while loop requires an invariant I on the state. while b f X0 refines a specification Q if
the invariant holds for the initial state X0, an application of the function body on a state X
preserves the invariant, and the invariant after termination ¬b X refines the specification Q.

Lemma 6.7 (Verification Condition for while).

I X0 −→
(∀X. I X −→ b X −→ f X ≤ spec I) −→
(∀X. I X −→ ¬b X −→ Q X) −→
(while b f X0) ≤ spec Q

Ideally, the algorithm is specified in such a way, that after structural application of all
verification conditions, the proof obligations expose the main algorithmic ideas that require
interactive proof.

We return to the running example global-optimization . global-optimization fe X0 should
satisfy that upon termination, [[ fe]] applied to any element in X0 is greater or equal zero:
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Lemma 6.8 (Specification of global-optimization ).

global-optimization fe X0 ≤ spec (λ_. ∀x ∈ X0. [[ fe]]list-of-eucl x ≥ 0)

As loop invariant, we choose I X := ∀x ∈ X0 \ X. [[ fe]]list-of-eucl x ≥ 0. After generating
the verification conditions, Isabelle can automatically prove that global-optimization satisfies
the specification. This was precisely our goal of using a high-level specification language:
That for verification, only the main algorithmic ideas are exposed. In this example, the
algorithmic ideas are so simple that they can be proved automatically.

6.1.3 Specifications for Enclosures

We use spec to specify a collection of operations that are useful for rigorous numerical
algorithms. We will see that the specifications almost never demand precise results. The
specifications nondeterministically allow for safe uncertainties in the result. This gives
sufficient freedom for possible implementations, which may be limited to work e.g., only
with finite precision and can therefore not represent the result exactly.

Subdivisions are a means to maintain precision, we therefore have abstract specifications
for splitting a set (with and without the possibility to perform overapproximations):

split-spec⊆ X := spec (λ(A, B). X ⊆ A∪ B)

split-spec= X := spec (λ(A, B). X ⊆ A = B)

The following specifications yield some lower/upper bound on the set. Note that the
specification only demands some lower bound i (resp. upper bound s), not necessarily the
precise greatest lower bound.

Inf-spec X := spec (λi. ∀x ∈ X. i ≤ x)

Sup-spec X := spec (λs. ∀x ∈ X. x ≤ s)

Depending on the concrete representation of sets, one might not be able to decide certain
properties, but only give a positive answer if the precision is sufficient. An example is
disjointness of sets. This depends on the concrete representation, but it might be that if two
sets are very close, finite precision calculations are not sufficient to decide whether the sets
are actually disjoint or not. An abstract specification that accounts for such uncertainties is
the following. If the return value b is true, then one can be sure that the two sets X and Y
are disjoint, otherwise one knows nothing.

disjoint-spec X Y := spec (λb. b −→ X ∩ Y = ∅)

As seen in the previous chapter 5, depending on the data structure, one can not (or does
not want to) compute an exact representation for the intersection of sets. The following
specifications allow one to overapproximate an intersection, while guaranteeing that the
result is restricted to one of the arguments.

inter-spec 1 X Y := spec (λR. X ∩ Y ⊆ R∧ R ⊆ X)

inter-spec 2 X Y := spec (λR. X ∩ Y ⊆ R∧ R ⊆ Y)
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To bridge the gap to concrete numerical computations and the results from chapter 4, we
use a specification that satisfies the fundamental property of rigorous numerics.

approx-spec f X := spec (λR. ∀x ∈ X. [[ f ]]x ∈ R)

6.2 Data Refinement

In the previous section 6.1, we have seen nondeterministic specifications for operations
on enclosures (at that point, just arbitrary sets). In this section, we will present different
representations for enclosures and how the framework is instrumented to refine the abstract
operations to concrete ones using the given data structures.

Data refinement in Autoref is centered around a collection of so-called transfer rules.
Transfer rules relate abstract with concrete operations. A transfer rule involves a transfer
relation R :: γ× α set , which relates a concrete implementation c :: γ of an abstract element
a :: α and is of the following form.

(c :: γ, a :: α) ∈ R

Transfer rules are used to synthesize concrete algorithms from abstract ones by following
the structure of the algorithm (similar to the generation of verification conditions). Relators
and relations are used to express the relationship between concrete and abstract types.

6.2.1 Natural Relators

For the types of functions, products, sets, or data types like lists and nres , we can use
the natural relators A →r B, A×r B, 〈A〉set r , 〈A〉list r , 〈A〉nres r with relations A, B for the
argument types:

( f , f ′) ∈ A→r B←→ ∀(x, y) ∈ A. ( f x, f ′ x) ∈ B

((a, b), (a′, b′)) ∈ A×r B←→ (a, a′) ∈ A∧ (b, b′) ∈ B

(X, X′) ∈ 〈A〉set r ←→ (∀x ∈ X. ∃x′ ∈ X′. (x, x′) ∈ A) ∧
(∀x′ ∈ X′. ∃x ∈ X. (x, x′) ∈ A)

(xs, xs′) ∈ 〈A〉list r ←→ length xs = length xs′ ∧
(∀i < length xs. (xsi, xs′i) ∈ A)

(RES X,RES X′) ∈ 〈A〉nres r ←→ (X, X′) ∈ 〈A〉set r

br is used to build a relation from an abstraction function a :: (γ→ α) and an invariant
I :: γ→ B on the concrete type.

br a I := {(c, a c) | I c}
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6.2.2 Representing Vectors

We represent vectors (an arbitrary type α of class Euclidean space) as lists of real numbers
where the length matches the dimension of the Euclidean space. This representation is
expressed with the relation lv r .

lv r := br eucl-of-list (λxs. length xs = DIM(α))

With this representation, concrete algorithms are monomorphic (i.e., do not contain a type
variable for Euclidean space α). This has the advantage that code can be generated once
and for all and can therefore be used as a stand-alone tool. Operations on vectors are
simply implemented componentwise. For example, the transfer rule for addition of vectors
implemented with lv r is as follows.

Lemma 6.9 (Transfer Rule for Addition of Vectors).

((λxs. λys. map 2 (+) xs ys), (+)) ∈ lv r → lv r → lv r

map 2 is defined such that (map 2 f xs ys)i = f (xsi) (ysi).

6.2.3 Representing Enclosures

We provide several implementations for the sets that can be used as enclosures. Intervals are
represented by pairs of element types (which, in turn are implemented via some relation A)
with the relator ivl r and zonotopes are represented using the joint range joint-range of affine
forms with the relation affine r .

〈A〉ivl r := {((a′, b′), [a; b]) | (a′, a) ∈ A∧ (b′, b)}

affine r := br (λA. eucl-of-list (joint-range A)) (λ_. True )

6.2.4 Symbolic Representations

There are situations where operations can not be carried out on the concrete representation,
but one would still like to use them for the abstract algorithmic description. A solution is a
symbolic, or lazy, representation. For example, zonotopes are not closed under intersection,
but one can represent the intersection of two zonotopes simply by the two zonotopes. A
similar idea was implemented e.g., by Althoff and Krogh [6] who represent sets as the
intersection of a finite number of zonotopes.

We provide refinement relations for symbolic representations of hyperplanes and halfs-
paces. Moreover we provide relators for binary intersection and finite union.

Hyperplanes and Halfspaces. We symbolically represent hyperplanes using the constant
Sctn that keeps normal vector n and translation c of a hyperplane. It is interpreted as the
hyperplane itself or for the halfspace below the hyperplane (〈x, n〉 is the inner product).

plane-of (Sctn n c) := {x | 〈x, n〉 = c}
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halfspace (Sctn n c) := {x | 〈x, n〉 ≤ c}

〈A〉sctn r is the natural relator that allows one to change the representation of the normal
vector. With this, we can give a concrete implementation relation for hyperplanes and
half-spaces.

〈A〉plane r := 〈A〉sctn r ◦ br plane-of (λ_. True )

〈A〉halfspace r := 〈A〉sctn r ◦ br halfspace (λ_. True )

Operations are on the implementation side just identity functions, but construct useful
abstract objects (namely, the hyperplane or halfspace) on the abstract level:

((λx. x), plane-of ) ∈ 〈A〉sctn r →r 〈A〉plane r
((λx. x), halfspace ) ∈ 〈A〉sctn r →r 〈A〉halfspace r

Binary Intersection. With the relation 〈A, B〉inter r , we interpret pairs of representations of
enclosures as the intersection.

((λx y. (x, y)),∩) ∈ A→r B→r 〈A, B〉inter r

There are two operations to extract the original information. unintersect adds uncertainty by
throwing away the information from the second part of the intersection. get-inter extracts
both components.

unintersect :: α set → α set nres

unintersect X ≤ spec (λR. X ⊆ R)

((λ(x, y). return x), unintersect ) ∈ 〈A, B〉inter r → 〈A〉nres r

get-inter :: α set → α set × α set nres

get-inter X ≤ spec (λ(R, S). X = R∪ S)

((λ(x, y). (x, y)), get-inter ) ∈ 〈A, B〉inter r → 〈A×r B〉nres r

Finite Union. For work-set algorithms like the running example (definition 6.4), we realized
that it can be convenient to view a concrete set of enclosures abstractly as just one single
enclosure. For a relation A : (β× α set ) set that implements single enclosures for sets of
type α with some concrete representation of type β, and a relation S : (σ× β set ) set that
implements sets of concrete elements β, we define a relation that represents the union of all
those elements as follows:

〈S , A〉Union r : (σ× α set ) set
〈S , A〉Union r := S ◦ 〈A〉set r ◦ br (λX.

⋃
x∈X

x)(λ_. True )

Currently, we only use lists to implement the set of concrete representations S , for which we
write 〈A〉Union lr := 〈list-set r , A〉Union r , and operations like union or extracting one element
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(with the specification split-spec=) can be implemented with the respective operations on
lists/sets:

(λxs ys. return (xs@ys),∪) ∈ 〈A〉Union lr →r 〈A〉Union lr →r 〈A〉Union lr

(λx. return (hd x, tl x), split-spec=) ∈ 〈A〉Union lr →r 〈A×r 〈A〉Union lr 〉nres r

6.2.5 Example

Autoref automatically (but sometimes needs guidance) identifies operations from speci-
fications and chooses appropriate relations for their implementations. For the running
example definition 6.4, Autoref can be instrumented to implement the work-set X with
〈affine r 〉Union lr , identify spec (λ(Y , Z). X = Y ∪ Z) with split-spec= X, and so on for all
operations. In the end, this will yield an implementation on concrete (executable) data
structures like affine forms affine-form and a deterministic monad of type α dres instead of
the nondeterministic α nres monad.

global-optimization impl :: aexp list → affine-form list list → affine-form list list dres

By the automatic construction, the implementation global-optimization impl is related to the
abstract algorithm global-optimization .

Lemma 6.10 (Implementation of global-optimization ).

(global-optimization impl , global-optimization ) ∈
〈aexp rel 〉list r →r 〈affine r 〉Union lr →r 〈〈affine r 〉Union lr 〉nres r

For a correctness theorem stated outside the framework of Autoref, the implementation
lemma 6.10 and the abstract specification (lemma 6.8) can be combined by unfolding the
definitions of the implementing relations.

Theorem 6.11 (Correctness of global-optimization impl ).

global-optimization impl = dRETURN []

∀x ∈
⋃
(eucl-of-list (joint-range (X0))). [[ fe]]list-of-eucl x ≥ 0

To summarize, with the presented setup, we could specify an algorithm on an abstract
level (definition 6.4) and obtain an implementation global-optimization impl as well as a
corresponding correctness theorem mostly automatically.

6.2.6 Relations to Guide Heuristics

Often, in particular to guide heuristics, an algorithm needs to carry around information that
does not influence correctness proofs. An ODE solver for example, modifies its step size, also
based on previous values. An implementation needs to carry this information around, but
for verifying the algorithm, this only introduces unnecessary clutter. We therefore introduce
a relation info r that carries more information (implemented via A) in the implementation,
but keeps the abstract semantics (implemented via B):

〈A, B〉info r := {((a′, b′), b) | ∃a. (a′, a) ∈ A∧ (b′, b) ∈ B}
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Adding information is simply done by using a pair in the implementation side, semantically,
this information is simply discarded (put-info a b := b). Information can be extracted with
get-info , which is semantically just an arbitrary element (get-info b := spec (λ_. True )). The
implementations are straightforward:

(λa b. (a, b), put-info ) ∈ A→r B→r 〈A, B〉info r

((λ(a, b). return a), get-info ) ∈ 〈A, B〉info r → 〈A〉nres r
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In this chapter, we assemble all of the results and techniques from the previous chapters: In
the framework of chapter 6, we specify an algorithm of Bouissou et al.’s [24] for rigorous
numerical (chapter 4) enclosures of ODEs (as formalized in chapter 3). Bouissou et al.’s [24]
algorithm use affine arithmetic evaluations of Runge-Kutta methods.

This forms the basis for rigorous enclosures of Poincaré maps, which are computed
geometrically according to chapter 5.

The main results of this chapter are verified algorithms for solutions of ODEs as well as
Poincaré maps. These algorithms can be used to either generate code to obtain a highly
trusted rigorous ODE solver or as part of tactics to formally prove bounds on ODEs or
Poincaré maps in Isabelle/HOL.

The definitions are presented very much simplified and idealized compared to the real im-
plementation in Isabelle/HOL. But the intention is that they still convey the main algorithmic
ideas and the organization of the verification.

7.1 Generic Operations

The algorithms in this chapter are phrased in the framework of chapter 6. Most algorithms
are generic in the concrete representation of enclosures, for which we assume a relation encl r
and implementations for the abstract operations that are needed for the reachability analysis
algorithms: an approximation scheme for expressions approx-spec , enclosures from inter-
vals using an implementation encl-of-ivl , lower and upper bounds with Inf-spec , Sup-spec ,
computation of intersections with a plane inter-spec 2 (note that the relation fixes the second
argument to represent a plane, abstractly inter-spec 2 is just intersection on sets).

• (approx-encl , approx-spec ) ∈ slp r →r encl r →r 〈〈encl r 〉option r 〉nres r

• (λx y. encl-of-ivl x y, λx y. [x; y]) ∈ lv r →r lv r →r encl r

• (inf-encl , Inf-spec ) ∈ encl r →r 〈lv r 〉nres r

• (sup-encl , Sup-spec ) ∈ encl r →r 〈lv r 〉nres r

• (split-encl , split-spec⊆) ∈ real r →r nat r →r encl r →r 〈encl r ×r encl r 〉nres r

• (inter-encl-plane , inter-spec 2) ∈ encl r →r 〈lv r 〉plane r →r 〈encl r 〉nres r

Currently, the only instantiation of this scheme is with affine arithmetic (in this case we
set encl r to affine r ). Nevertheless, this structure keeps the formalization modular and one
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can imagine to add further instantiations with e.g., Taylor models, or centered forms in the
future.

7.2 Rigorous Runge-Kutta Methods

Runge-Kutta methods are a popular choice for numerically approximating the solution of
ODEs. We will assume an autonomous ODE

ẋ t = f (x t)

with a right hand side f :: Rn → Rn that is smooth on some domain (which we often denote
by X). We also assume that f is represented by some arithmetic expression (section 4.1)
fe :: aexp list , i.e., f = (λx. [[ fe]]list-of-eucl x) =: [[ fe]], such that f can be approximated with
affine arithmetic (section 4.3.9) or generically with approx-spec .

Runge-Kutta methods are one-step methods, where the idea is to approximate the solution
φ(x0, h) with a line segment whose slope may depend on the initial value x0 and the step
size h. In this work, we consider Euler’s method euler and a generic two-stage Runge-Kutta
method rk2 p. Compare also figure 7.1. Euler’s method takes as slope for the line segment
the slope of the solution at the initial value (given by the right-hand side f of the ODE). The
two-stage Runge-Kutta method evaluates the right-hand side f for two arguments: once
(like the Euler method) at the initial value x0 and once (depending on a parameter p) on the
line segment given by an Euler-like approximation (x0 + hp f (x0)).

Definition 7.1 (Euler’s Method and Two-stage Runge-Kutta Method).

euler (x0, h) := x0 + h · f (x0)

rk2 p(x0, h) = x + h · ψp(x0, h)

where

ψp(x0, h) = (1− 1
2p

) f (x0) +
1

2p
f (x0 + hp f (x0))

We will see that Euler’s method approximates the flow with a quadratic error, whereas
the two-stage Runge-Kutta method rk2 yields an error that is cubic in the step size:

‖φ(x0, h)− euler (x0, h)‖ ∈ O(h2)

‖φ(x0, h)− rk2 p(x0, h)‖ ∈ O(h3)

The quality of these approximations is proved by comparing the Taylor series expansions
of both the solution and the approximation scheme. This also yields explicit bounds on
the constants hidden in the O-notation, which we need for rigorous bounds enclosing
the solution. We will come to a discussion on the explicit bounds in section 7.2.2, right
after talking about multivariate Taylor series expansions and how they are formalized in
Isabelle/HOL in section 7.2.1.
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x0

rk2 p(x0, h)

euler h(x0)

φ(x0, h)

0 h

O(h3)

O(h2)

Figure 7.1: Illustration of flow φ, Euler’s method euler h(x0), and Runge-Kutta method
rk2 p(x0, h).

7.2.1 Multivariate Taylor Series Expansion

Taylor series expansions for functions in several variables bear some complications, in
particular for the formalization. A proper choice of concepts and notation is extremely
important. It could e.g., be done with higher partial derivatives, but then one risks drowning
in indices. The total derivative (section 2.6) summarizes all of the information of continuous
partial derivatives, so this helps for an abstract and clear notation.

One complication is that higher (total) derivatives are multilinear mappings, and the type
of the mapping would depend on the order: Consider e.g., a function f : α → β and its
derivative f ′x := D f |at x. The derivative of f ′ :: α→ α→bl β is the function f ′′x := D f ′|at x

with f ′′ :: α → α →bl α →bl β. How do we encode this? The solution in the case of
multivariate Taylor series expansions is easy: higher derivatives are repeatedly applied to
the same argument. The n-th derivative of f at x, e.g., is used only as ( f (n) x) ·bl h ·bl . . . ·bl h
with n applications of h.

But this can be encoded in a single type: that is, we use a function f (n) x d1 ·bl d2, which is
supposed to denote the n-th higher derivative of f , evaluated at x and applied n times to d1.
The multivariate Taylor series expansion can then be expressed for arbitrary vector spaces
(Banach in the image) and an integral bounding the remainder term:

Theorem 7.2 (Multivariate Taylor Series Expansion). For f :: α :: real-normed-vector → β ::
banach

n > 0 −→
(∀x. f (0) x h h = f x) −→
(∀x. ∀d. ∀i < n. D(λx. f (i) x h h)|at x · d = f (i+1) x d) −→

f (x + h) = ∑
i<n

1
i!

f (i) x h h +
∫ 1

0

(1− ξ)n−1

(n− 1)!
f (n) (x + ξh) h h dξ

7.2.2 Approximation Error

As a result of comparing the multivariate Taylor series expansion of the solution φ(x0, h) and
rk2 p(x0, h), we can enclose the error of the two-stage Runge-Kutta method with the help of
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the first and second derivative of the right hand side f of the ODE (details can be found
in textbooks on numerical approximations of ODEs, e.g., [35]). If we set f ′ := λx. D f |at x

and f ′′ := λx. D f ′|at x, then the remainder is contained in the convex hull of any set that
contains rk2-remainder h(x0, p, s, X), where X is an enclosure for the evolution of φ.

Lemma 7.3 (Runge-Kutta Method with Remainder Term). For 0 < p ≤ 1 and a convex a-priori
enclosure X for the flow φ(x0, [0; h]) ⊆ X:

φ(x0, h) ∈ rk2 h(x0) + convex-hull (rk2-remainder h(x0, p, [0; 1], X))

where

rk2-remainder h(x0, p, s, X) :=
h3

2
·
(

1
3
( f ′′(X)) ·bl ( f (X)) ·bl ( f (X)) + ( f ′(X)) ·bl ( f ′(X)) ·bl ( f (X))

− p
2

f ′′
(

x0 + hps2( f x0)
)
·bl ( f x0) ·bl ( f x0)

)
The convex hull and the evaluation of intervals for s stem from safe enclosures for the

remainder terms of the Taylor series expansions. A similar result holds for the remainder of
Euler’s method, but we will not go into the details here.

7.2.3 Rigorous Enclosures

According to lemma 7.3, a safe bound for the Runge-Kutta method depends on an a-priori
enclosure X for the solution φ(x0, [0; h]) ⊆ X. For the moment, let us assume that we dispose
of such an enclosure. The Runge-Kutta method can then be used to tighten this enclosure: X
is only used in rk2-remainder h, which is scaled by h3, and h is usually small.

Because we assumed that f is represented by an expression fe :: aexp list , it is straightfor-
ward to define an aexp expression rk2-aexp that is interpreted as Runge-Kutta method with
remainder term rk2 h(x0) + rk2-remainder h(x0, p, s, X). The expressions for the derivatives f ′

and f ′′ that occur in rk2-remainder are computed symbolically from fe via D1,2 according to
section 4.1.2.

Lemma 7.4 (Deeply Embedded Expression for Runge-Kutta Method).

[[rk2-aexp ]]x0,h,p,s,X = rk2 h(x0) + rk2-remainder h(x0, p, s, X)

Together with the fundamental property of rigorous numerics, this can be used to enclose
the solution of an ODE, according to the following calculation (∀x0 ∈ X0 and ∀h ∈ H):

φ(x0, h) ∈ rk2 h(x0) + rk2-remainder h(x0, p, [0; 1], X)

= [[rk2-aexp ]]x0,h,p,[0;1],X

⊆ approx rk2-aexp (X0, h, p, [0; 1], X)

This says that, when we have an enclosure X0 for the initial value x0 (or a set of initial values),
and an a-priori enclosure X for the solution (φ(X0, [0; h]) ⊆ X), we can evaluate rk2-aexp
with a safe approximation scheme approx to obtain a (hopefully) tighter enclosure for the
solution.
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Lemma 7.5 (Runge-Kutta Enclosure).

φ(X0, [0; h]) ⊆ X −→ φ(X0, h) ∈ approx rk2-aexp (X0, h, p, [0; 1], X)

7.2.4 Certification of Step: A-Priori Enclosures

If we actually want to compute an enclosure for φ (which we do want to!), lemmas 7.3
and 7.5 leave us with a cyclic dependence: The Runge-Kutta method rk2 h can be used to
compute an enclosure for φ, but only if we have an enclosure X for φ(x0, [0; h]) to estimate the
approximation error rk2-remainder h(x0, p, s, X). Moreover, we do not even know if φ(x0, [0; h])
is well-defined, i.e., we do not know if h ∈ ex-ivl (x0).

We resolve these problems in the same way Bouissou et al. [24] did: we construct a rough
a-priori enclosure X for φ(x0, [0; h]). The construction will also guarantee h ∈ ex-ivl (x0).

The idea is to certify the existence of a unique solution according to the Picard-Lindelöf
theorem 3.7. We recall the assumptions (with the Picard operator P(φ) = (λt. x0 +∫ t

t0
f (τ, φ τ) dτ)) of the theorem (simplified for the special case of autonomous right-hand

side f ) here:

closed X ∧
lipschitz X f L ∧
(∀φ ∈ ([0; h]→ X). φ 0 = x0 ∧ continuous-on [0; h] φ −→ P(φ) ∈ ([0; h]→ X))

In our construction, candidates for X will be (compact, closed) intervals, they are therefore
closed and satisfy the first assumption. Since f is smooth (and in particular C1), there exists
a Lipschitz constant L on the compact (!) interval X.

It remains to be shown that P is an endomorphism on the space of continuous functions
from [0; h] to X. Like Bouissou [24], we use the set-based overapproximation

Q(X) := x0 + [0; h] · ( f X)

of the operator P. Q is an overapproximation of P in the following sense: for a set X with
φ(x0, [0; h]) ⊆ X, t ∈ [0; h] and continuous φ, the following holds.

P(φ) t = x0 +
∫ t

0
f (τ, φ τ) dτ

⊆ x0 +
∫ t

0
f (X)dτ

⊆ x0 + t · f (X)

⊆ x0 + [0; h] · f (X)

⊆ Q(X)

A post-fixed point X of Q, i.e., Q(X) ⊆ X, implies that P is an endomorphism on ([0; h]→
X), i.e., P(φ) ∈ ([0; h] → X) for continuous φ ∈ ([0; h] → X). Therefore, a post fixed-point
of Q certifies the existence of a unique solution (according to theorem 3.7). Moreover the
solution is bounded by X.

Q(X) ⊆ X −→ ∃ψ. (ψ uniquely-solves-ode f from 0) [0; h] X
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From the existence and uniqueness of one solution, we can deduce that the flow φ is defined
and bounded by X.

Lemma 7.6 (Condition for A-Priori Bound).

Q(X) ⊆ X −→ h ∈ ex-ivl (x0) ∧ φ(x0, [0; h]) ⊆ X

The remaining question is how to come up with a post-fixed point of Q. This can be
achieved by looking at iterated applications of Q on an initial enclosure X0 3 x0 until a post
fixed point Qi+1(X0) ⊆ Qi(X0) is reached after the i-th iteration.

Note that it is possible that the iteration of Q does not reach a fixed point if the step size
is too large – one can then repeat the phase with a smaller step size. It is also possible
to accelerate the iteration by including some sort of widening into the operator Q. The
definition cert-stepsize sketches one possible implementation (which restarts with half the
step size after a maximum of k iterations).

Definition 7.7 (Certification of Step).

cert-stepsize X0 h :=

if ∃i ≤ k. Qi+1(X0) ⊆ Qi(X0)

then return (h, Qi+1(X0))

else cert-stepsize X0 (
h
2
)

cert-stepsize satisfies the specification that it returns a step size h and an enclosure X such
that a time step h is well-defined (h ∈ ex-ivl ) and X bounds the evolution of φ.

Lemma 7.8 (Certification of Step).

cert-stepsize X0 h0 ≤ spec (λ(h, X). ∀x ∈ X0. h ∈ ex-ivl (x0) ∧ φ(x0, [0; h]) ⊆ X)

7.2.5 One-Step Method with Adaptive Step Size Control

We will now use cert-stepsize and the approximation scheme rk2-aexp to implement and
verify a rigorous one-step method. That is, a method that encloses the flow of an ODE in
a series of discrete steps in time. Consider figure 7.2. Starting from an initial set X0, we
use cert-stepsize for an a-priori bound C0 that certifies the existence of a solution for time
step h0. With rk2-aexp , we obtain a tighter enclosure X1 at time h0. We can also obtain a
tighter enclosure on the interval [0; h0] by applying rk2-aexp to the time interval [0; h0] (dark
gray). This process is repeated for successive steps of size h1, h2, h3, . . . producing enclosures
X1, X2, X3, . . . and so on.

A single step is implemented as follows. We use rk2-remainder-aexp to obtain a bound on
the approximation error, which we will use later on for an adaptive step size control.
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X0

h0

X1

h1

X2

h2

X3

h3

. . .

C0

Figure 7.2: Illustration of rigorous one-step method.

Definition 7.9.

rkstep X0 h0 :=

do {
(h, C0)← cert-stepsize X0 h0

e← approx-spec rk2-remainder-aexp (X0, h, p, [0; 1], C0)

X1 ← approx-spec rk2-aexp (X0, h, p, [0; 1], C0)

C ← approx-spec rk2-aexp (X0, [0; h], p, [0; 1], C0)

return(h, C, X1, e)

}

Combining cert-stepsize with a rigorous Runge-Kutta step rk2-aexp , rkstep satisfies the
specification that results from combining lemma 7.8 with the specification of Runge-Kutta
enclosure (lemma 7.5).

Lemma 7.10 (Certified Runge-Kutta Step).

rkstep X0 h0 ≤ spec (λ(h, C, X1, e). ∀x0 ∈ X0. h ∈ ex-ivl (x0) ∧ φ(x0, h) ∈ X1 ∧ φ(x0, [0; h]) ⊆ C

The following definition one-step iterates single steps of rkstep in a simple loop. In the
loop (over (t, X, h)), it keeps track of the total time t, the enclosure X at time t and the next
step size h.
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Definition 7.11.

one-step X0 tend :=

do {
(X, _, _)←

while (λ(X, t, h). t < tend) (λ(X, t, h). do {
(h, _, Y , e)← rkstep X (max(h, tend − t))

t← t + h

h← adapt-stepsize h e // . . . = spec (λ_. True )

return(Y , t, h)

})
(X0, 0, hstart)

return X

}

The loop invariant of one-step X0 tend is λ(X, t, h). ∀x0 ∈ X0. t ∈ ex-ivl (x0) ∧ φ(x0, t) ∈ X. It
directly yields the correctness theorem for one-step :

Theorem 7.12 (Correctness of One-Step Method).

one-step X0 tend ≤ spec (λX. tend ∈ ex-ivl (x0) ∧ φ(x0, tend) ∈ X)

The correctness theorem follows from combining the loop invariant and the specification
lemma 7.10 of rkstep with the flow property theorem 3.18. The next stepsize h is not
relevant for the correctness and neither is the actual algorithm for adapting the step size.
adapt-stepsize only needs to fulfill the trivial specification spec (λ_. True ), one is therefore
free to choose any implementation for adapt-stepsize (We use a method similar to the one
described by Bouissou et al. [24]) and neither the particular implementation nor h induce
unnecessary clutter in the verification of one-step .

7.3 Poincaré Maps

The Poincaré map simplifies reasoning about the dynamics of an ODE, because one need not
consider temporal dependencies. Recall section 3.4, the Poincaré map is defined as the flow
at the return time P(x) := φ(x, τ(x)). In a sense, the definition of P hides the dependency of
φ on the time variable.

We do exploit this simplification for our verification of rigorous numerical algorithms
enclosing the Poincaré map: We formalize the enclosure of an evolution from an initial set
X to some other set Y with the ternary predicate y, where X yC Y holds if the evolution
flows every point of X ⊆ Rn to some point in Y ⊆ Rn and does not leave the set C in the
meantime. We call C the flowpipe from X to Y . Note that y does not involve any parameters
for the dependency of φ on time.

Definition 7.13 (Flows-to Predicate).

X yC Y := ∀x ∈ X. ∃t ≥ 0. φ(x0, t) ∈ Y ∧ (∀s ∈ [0; t]. φ(x0, s) ∈ C)
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X0

C1

X1

C...

Xk

Ck+1

Xk+1

Σ

Figure 7.3: Computation of enclosure for Poincaré map.

We write X y Y if C is irrelevant or the domain of f .
The main goal of this section is to compute a Poincaré map from an initial set X0 onto a

Poincaré section Σ (we restrict ourselves to hyperplanes, i.e., Σ = {x | 〈x, n〉 = c} for some
normal vector n and translation c). The basic idea (compare figure 7.3) is as follows: starting
from a set X0, perform a series of steps X1, X2, . . . in the style of one-step . With the flows-to
predicate, this yields X0 yC1 X1 yC2 . . .yCk Xk, which composes to X0 y Xk.

Stop (at Xk) before the evolution would cross the Poincaré section in the subsequent
step. Then perform another step Xk+1 to cross Σ. This step Xk yCk+1 Xk+1 implies P(Xk) ⊆
(Ck+1 ∩ Σ). With X0 y Xk, this composes to P(X0) ⊆ (Ck+1 ∩ Σ). Therefore Ck+1 ∩ Σ is the
desired overapproximation of the Poincaré map P(X0).

We need to, however, add some refinements to the basic idea: If reachable sets grow above
a given threshold, we perform subdivisions to increase precision (section 7.3.1). Furthermore,
one cannot ensure that Ck+1 will always end up on the other side of Σ. Therefore the
step from Ck to Ck+1 in the basic idea is actually another sequence of steps, until the
currently reachable set is on the other side of Σ. This results in a collection of enclosures for
the intersection, which typically overlap. This in turn results in redundant computations
when continuing from there. To avoid this, we include a method to remove such overlaps
(section 7.3.3). Furthermore, we want to compose a series of intermediate Poincaré maps
(section 7.3.4).

7.3.1 Reachability Loop

single-step is defined to perform one step in the reachability analysis up to the Poincaré
section. The implementing relation of single-step reads as follows. We define it to either split
the argument set or perform one Runge-Kutta step.
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Definition 7.14.

single-step X :=

do {
w← width-spec X

h← get-stepsize X

if w ≤ max-width

then do {
(h, _, Y , C)← rkstep X h

h′ ← adapt-stepsize h e

return(put-info h′ Y , C)

} else do {
(Y , Z)← split-spec⊆ X

return(put-info h (Y ∪ Z), (Y ∪ Z))

}
}

single-step is an example of where we hide implementation details in the implementing
relations. In order to make sense of this definition, it is instructive to look at the actual
implementing relation.

(single-step impl , single-step ) ∈
〈real r , encl r 〉info r → 〈〈〈real r , encl r 〉info r 〉Union lr , 〈encl r 〉Union lr 〉nres r

The information on the last (and next) step size is reflected in the refinement relation
〈real r , encl r 〉info r . The fact that single-step either returns one set (after performing the
Runge-Kutta step) or two sets (after splitting) is hidden behind Union lr . In contrast to the
implementation relation, the type of single-step :: Rn set → (Rn set ×Rn set ) is as abstract
as one would like it to be, it does not clutter the verification. The correctness theorem can
therefore be stated as simple as follows:

Theorem 7.15. single-step X h ≤ spec (λ(C, Y). X yC Y)

For the verification, width-spec X = spec (λ_. True ) can be ignored, because it only
implements a heuristic value for the width of the argument set X. The specification follows
in the if-branch from the correctness of a Runge-Kutta step (lemme 7.10), in the else branch
from the specification of split-spec⊆ and the fact that X y Y holds whenever X ⊆ Y (choose
time t = 0 in the definition of the flows-to predicate y).

Note that single-step returns (from an implementation point of view) a collection of
enclosures implemented using 〈encl r 〉Union lr , so we need some sort of work-set algorithm
to resolve all currently reachable sets. The continuous reachability loop reach-cont does so:
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Definition 7.16 (Continuous Reachability Loop).

reach-cont Σ X0 :=

do {
(_, C, I)←

while (λ(X, C, I). X 6= ∅) (λ(X, C, I). do {
(X1, X2)← split-spec=X

(Y1, C1)← single-step X1

d ← disjoint-spec C1 sctns

if d

then return (X2 ∪ Y1, C ∪C1, I)

else return (X2, C, I ∪ X1)

})
(X0, ∅, ∅)

return (C, I)

}

The loop in reach-cont maintains three kinds of sets (see also figure 7.4): X is the collection
of sets whose future reachable sets still need to be explored. C is the collection of all
flowpipes explored so far. I is the collection of sets where reachability analysis has stopped
because of an intersection with the Poincaré section Σ. The algorithm takes one element
out of the work-set X by splitting the collection of enclosures using split-spec=, performs a
single step, and checks for an intersection with one of the Poincaré sections and updates
X, C, and I accordingly.

The loop invariant of reach-cont is roughly the following: Elements from X0 flow via C to
X and I, while avoiding Σ.

X0 yC (X ∪ I) ∧C ∩ Σ = ∅

The specification of reach-cont is therefore relatively simple:

Theorem 7.17. reach-cont Σ X0 ≤ spec (λ(C, I). X0 yC I ∧C ∩ Σ = ∅)

It is worth noticing that this simplicity is due to the fact that the work-list and heuristic
info on individual step sizes is hidden via refinement relations in the implementation.

(reach-cont impl , reach-cont ) ∈
〈lv r 〉plane r → 〈〈real r , encl r 〉info r 〉Union lr → 〈〈〈real r , encl r 〉info r 〉Union lr 〉nres r

If this were represented on the specification level (e.g., by using sets of enclosures paired
with their current step size), the specification would have to be much more cluttered:

(
⋃

(h,x)∈X0

x) yC ((
⋃

(h,x)∈X

x) ∪ (
⋃

I))

Such a specification distracts the user and also automatic proof tools, and we are therefore
happy to hide this in the abstraction.
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Figure 7.4: Continuous reachability loop

7.3.2 Resolve Intersection

X0

C1

X1

C2

X2

C3

X3
Σ

Figure 7.5: Iteration for computation of Poincaré map.

The algorithm reach-cont performs reachability analysis until each enclosure in I is just
about to intersect Σ. Hidden in the implementing relation, I is actually a union of individual
enclosures. Starting from one such enclosure X0, we compute the Poincaré map in an
iteration of reachable sets X0, X1, . . . until the reachable set (here X3) is below the hyperplane
Σ, compare figure 7.5. During the iteration, we collect the intersection of the flowpipes
(C1 ∪C2 ∪C3) with Σ. This is implemented in the definition of intersect-flow .
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Definition 7.18.

intersect-flow Σ X0 :=

do {
(X, J)←

while (λ(X, J). ¬X ⊆ Σ≤) (λ(X, J). do {
(_, C, Y , _)← rkstep X

C′ ← inter-spec 2 C Σ

return (Y , C′)

})
(X0, ∅)

return J

}

Recall that we assumed Σ = {x | 〈x, n〉 = c}. We denote the halfspace (strictly) above Σ
with Σ> = {x | 〈x, n〉 > c}, similar for Σ≤. The loop invariant in intersect-flow is that X0 can
be split in two sets X0 = A∪ B such that A flows (above Σ) to the part of X which is above Σ
and the Poincaré map of B is enclosed by J:

∃A. ∃B. X0 = A∪ B∧ A yΣ>
(X ∩ Σ>) ∧ P(B) ⊆ J

Runge-Kutta step and intersection of the flowpipe with Σ as in the body of the loop maintain
this invariant (this is a relatively straightforward consequence of the definitions of flow and
Poincaré map).

Upon termination, X is below Σ, i.e., X ⊆ Σ≤. From the loop invariant, we have that
A yΣ>

(X ∩ Σ>). But this implies (X ∩ Σ> = ∅) that A y ∅ and therefore A = ∅ and B = X0.
This yields the specification of intersect-flow :

Lemma 7.19 (Correct Resolution of Poincaré Map).

intersect-flow Σ X0 ≤ spec (λJ. P(X0) ⊆ J)

The implementation of intersect-flow is guided by this implementing relation:

(intersect-flow impl , intersect-flow ) ∈ 〈lv r 〉plane r → 〈〈encl r 〉Union lr 〉nres r

7.3.3 Summarization of Intersections

When the intersection is computed by flowing the reachable set through the hyperplane
step by step, the set J is implemented as consisting of individual intersections Ii. Many of
the sets Ii usually overlap, in order to avoid redundant enclosures, it is desirable to remove
the overlaps. Summarizing at a Poincaré section is also a means to counteract the (due to
splitting) increasing number of reachable sets.1

1An example of reduction of number of reachable sets can be seen in the plot of figure 8.5, in particular at
x = ±0.1 and x = ±0.75.
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I

L R

L′

LL LR

R′

RL RR

LL′ LR′ RL′ RR′

Figure 7.6: Summarization of intersections: overlapping sets J (gray) and interval enclosure I.
Split I = L ∪ R, reduction L L′, R R′, split L′ = LL ∪ LR, split R′ = RL ∪ RR,
and reduction LL LL′, LR LR′, RL RL′, RR RR′.

The (very naive) overapproximation that we use successively refines a union of interval
enclosures. Compare also figure 7.6: start with an interval enclosure I of the union of
overlapping sets J ⊆ I. Split the interval I such that I = L ∪ R. Then the size of L and R can
be reduced to L′ and R′ by restricting L respectively R to the part which has a non-empty
intersection with J. That is, L L′ if L∩ J ⊆ L′, similar for R R′. Then proceed recursively
until the widths of the resulting enclosures are below a given threshold.

We call the resulting algorithm reduce , the only specification it needs to fulfill is that the
result is a safe overapproximation:

Lemma 7.20. Correct Summarization

reduce X ≤ spec (λY . X ⊆ Y)

It is implemented to operate on a union of enclosures encl r , and internally converts back
and forth between enclosures encl r and intervals 〈lv r 〉ivl r .

(reduce impl , reduce ) ∈ 〈encl r 〉Union lr → 〈〈encl r 〉Union lr 〉nres r

7.3.4 Intermediate Poincaré Maps

The overall algorithm poincare takes a list of Poincaré sections and resolves them in order by
alternating continuous reachability reach-cont and resolution of intersections with Poincaré
sections intersect-flow , followed by summarization of intersections reduce .

Definition 7.21.

poincare [] X0 := return X0

poincare [Σ1, . . . , Σn] X0 :=

do {
X1 ← reach-cont (

⋃
i≤n

Σi) X0

X2 ← intersect-flow Σ1 X1

X3 ← reduce X2

poincare [Σ2, . . . , Σn] X3

}
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We take the liberty to write reach-cont (
⋃

i≤n Σi) X0, which means that reachability analysis
stops upon reaching any of the Σi. This yields PΣ1(X0) ⊆ X3 and X3 is reachable without
touching

⋃
2≤i≤n Σi. This is important to be able to compose PΣ1(X0) with the Poincaré map

PΣn of the recursive call. The overall specification is that poincare encloses the Poincaré map
to the last section in the argument.

Theorem 7.22 (Correctness of Enclosure with intermediate Poincaré Maps).

poincare [Σ1, . . . , Σn] X0 ≤ spec (λR. PΣn(X0) ⊆ R)

7.4 Derivatives

For Tucker’s proof, it is necessary to compute not only the Poincaré map, but also its
derivative. In general, the derivative of the flow or Poincaré map provides quantitative
information on how the dynamics depend on initial conditions.

The derivative of the flow can be encoded as a higher dimensional ODE according to
the variational equation (theorem 3.33). For an ODE with right hand side f : Rn → Rn,
we construct a new ODE of type Rn ×Rn×n with right hand side λ(x, W). ( f x,D f |at x ·W).
Here the first component contains the solution, and the second component its matrix of
partial derivatives.

With a modified predicate y′ for reachability with derivative,

X y′C Y := ∀(x, d) ∈ X. ∃t ≥ 0. (φ(x0, t),Dφt|at x0 ·bl d) ∈ Y ∧
(∀0 ≤ s ≤ t. (φ(x0, s),Dφs|at x0 ·bl d) ∈ CX)

we can show that reach-cont ′, i.e., the instantiation of reach-cont for the modified ODE
satisfies the specification

Theorem 7.23 (Continuous Reachability with Derivatives).

reach-cont ′ sctns X′0 ≤ (λ(C′, Y ′). X′0 y′C′ Y ′)

The Poincaré map, however requires extra care, because we cannot simply intersect the
derivative of the flow with the Poincaré section: the derivative of the Poincaré map is given
according to the expression in theorem 3.38. For a hyperplane H = {x | 〈x, n〉 = c}, the
derivative is given as follows (for x ∈ {x | 〈x, n〉 = c}):

DP|x ·bl h = Dφτ(x)|x ·bl h−
Ds|P(x) ·bl (Dφτ(x)|x ·bl h)

Ds|P(x) ·bl ( f (P(x)))
f (P(x)) (7.1)

We can evaluate this expression using affine arithmetic. But we need to be able to enclose
all quantities that occur on the right hand side, in particular P(x) = φ(x, τ(x)) and Dφτ(x)|x · d.
But we can enclose those: assume a step in computing an intersection, i.e., X yC Y . Let
us assume for simplicity that (X ∪ Y) ∩ H = ∅ and X and Y are on opposite sides of the
hyperplane. Then the intersection of the flowpipe C with the section H encloses the Poincaré
map: P(X) = {φ(x, τ(x)) | x ∈ X} ⊆ C ∩ H. For an extended flow X′ yC′ Y ′, this means
{(φ(x, τ(x)),Dφτ(x)|x ·bl d) | (x, d) ∈ X′} ⊆ C′ ∩ H ×Rn∗n. Therefore both P(x) = φ(x, τ(x))
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and Dφτ(x)|at x · d are enclosed by the result of the intersection C′ ∩ H ×Rn×n for which we
can use the regular intersection algorithm from chapter 5.

This results in a modified algorithm poincare ′, which is defined like poincare , but uses
reach-cont ′ instead of reach-cont and combines the computation of intersect-flow with the
formula in equation 7.1.

The resulting correctness theorem reads as follows. poincare ′ computes an enclosure for
the Poincaré map of X0 and how the derivative DP propagates a matrix (or bounded linear
function) DX0.

Theorem 7.24 (Poincaré map with Derivative).

poincare ′ [Σ1, . . . , Σn] (X0, DX0) ≤ spec (λ(R, DR). PΣn(X0) ⊆ R∧DP|X0 ◦bl DX0 ⊆ DR)

7.5 Tactics

We provide automated tactics with which one can prove bounds on ODEs, Poincaré maps,
and their derivatives by reducing them to a computation with one-step , poincare , or poincare ′.
We illustrate the approach for one-step , the other methods are treated similarly.

We assume a goal statement in a fixed form, namely

t ∈ [t−; t+]→ x ∈ [x−; x+]→ φ f (x, t) ∈ [l; u]

φ f stands for the flow of an ODE with right-hand side f . This goal statement is then reified
in an automated procedure, i.e., translated to a form where every function and bound in the
statement is expressed as the interpretation of an explicit aexp expression. That is, we are
left with a goal of the following form.

t ∈ [[[t−e ]][]; [[t
+
e ]][]]→ x ∈ [[[x−e ]][]; [[x

+
e ]][]]→ φ[[ fe]](x, t) ∈ [[[le]][]; [[ue]][]]

Intervals with bounds given by aexp expressions can be approximated with standard
interval arithmetic. These intervals can then be represented as encl r using encl-of-ivl . We
therefore get T implemented as encl r such that [[[t−e ]][]; [[t+e ]][]] ⊆ T , similar for an X with
[[[x−e ]][]; [[x+e ]][]] ⊆ X. We can also come up with an inner approximation for the resulting
bound, namely R ⊆ [[[le]][]; [[ue]][]].

The above statement can be proved with the correctness theorem 7.12 of one-step , when
computing a result S and checking that S ⊆ R.

one-step X T = return S ∧ S ⊆ R

one-step X T is then evaluated with Isabelle’s eval mechanism.

Overview of Tactics. Overall, we provide tactics for goals of the following form:

• The solution of an initial value problem with interval uncertainty.

t ∈ [t−; t+]→ x ∈ [x−; x+]→ t ∈ ex-ivl (x) ∧ φ f (x, t) ∈ [l; u]
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• Bound on the solution of an initial value problem together with its variational equation.

t ∈ [t−; t+]→ x ∈ [x−; x+]→ d ∈ [d−; d+]→
t ∈ ex-ivl (x) ∧ φ f (x, t) ∈ [l; u] ∧Dφ|x ·bl d ∈ [dl; du]

• Bounds on definite integrals by encoding them in the obvious way as an ODE and
solving the ODE with one-step . ∫ b

a
f (x)dx ∈ [l; u]

• Bounds on the Poincaré map.

∀x ∈ [x−; x+]. returns-to Σ x ∧ PΣ(x) ⊆ [pl; pu]

• Bounds on the derivatiave of the Poincaré map.

∀x ∈ [x−; x+]. ∀d ∈ [d−; d+]. returns-to Σ x ∧ PΣ(x) ⊆ [pl; pu] ∧DP|x ·bl d ∈ [dl; du]

7.6 Plotting

It is instructive to visualize the computations of the rigorous ODE solver. We therefore instru-
ment the ODE solver such that it outputs enclosures while running. For an n-dimensional
ODE, the user can provide a function to project n-dimensional zonotopes into the plane.
For the resulting two-dimensional zonotope, we use the algorithm hull-of-zonotope from sec-
tion 5.2.3 to compute a list of line segments making up the boundary of the two-dimensional
projection. This list of line segments is output in a format that can be read by gnuplot. One
line in the output format is a list of four numbers in scientific notation, which represent the
endpoints of a line segment of the boundary of the zonotope. A file containing such output
can then be plotted using gnuplot with the following command:
plot "filename" using 1:2:3:4 with vectors nohead

7.7 Experimental Evaluation

This section contains a comparison with the performance and precision of other tools for
rigorous ODE solving and/or reachability analysis on some selected problems. Please
note that these experiments compare tools with very different underlying algorithms and
data structures, each of which with their particular strengths and weaknesses. Moreover,
performance and precision often depends crucially on a proper choice of parameters, where
I cannot claim to be able to identify the best ones. I did, however, try to reach some local
optimum in the sense that I started with default parameters, modified trying to reach a
given precision and then trying to improve performance while keeping the precision.

The experiments in this section were carried out in a virtual machine operated by a 64-bit
Ubuntu 16.04 Linux on a laptop computer with a 2,6 GHz Intel R© CoreTM i7 CPU and 16 GB
RAM. All computations were single-threaded and run with an increased clock frequency of
about 3.4 GHz. Isabelle is run with the 64-bit version of PolyML.
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7.7.1 Tools

The tools that I used as part of this experimental evaluation are denoted as follows. I will
also list the parameters (with default values) for which I tried to find suitable values for
good results in this experimental evaluation.

GRK. The Guaranteed Runge-Kutta methods by Bouissou et al. [24], which inspired the
usage of Runge-Kutta methods and affine arithmetic. It is implemented in OCaml. I will
only cite the results reported in their paper.

Flow*. A tool for reachability analysis of continuous and hybrid systems with nonlinear
dynamics [30]. Available online2 in the current version 2.1.2. It is implemented in C++
and is based on Taylor models. Relevant parameters are Taylor model order and an error
estimation for the remainder terms.

Flow*-P. This denotes Flow* with manually inserted intermediate Poincaré maps, (or
pseudo-invariants, as Bak [10] calls them).

CORA. Reachability analysis of continuous and hybrid systems [3, 4], in version CORA
2016, which is available online3. It uses zonotopes and linearizes nonlinear dynamics and is
implemented in Matlab. Relevant parameters are the (fixed) step size and zonotope order.

CORA-P. This denotes CORA with manually inserted intermediate Poincaré maps.

CAPD. CAPD is a library for nonrigorous and validated numerics for dynamical systems4.
I use version 5.0.6. CAPD is based on high-order Taylor expansions and implemented in
C++.

VNODE. This denotes VNODE-LP by Nedialkov [106]. VNODE-LP is implemented using
C++ and literate programming, its correctness can therefore be reviewed by a human expert.
It is based on high-order Taylor series expansions or Hermite-Obreschkoff. I use version 0.3
which is available online 5.

Coq. This denotes Mahboubi et al.’s [94] work on formally verified approximations of
definite integrals in the interactive theorem prover Coq [13]. I will only cite the results
reported in their paper.

Isabelle. My verified algorithms for zonotope enclosures with Runge-Kutta steps (from
section 7.2.5). Relevant parameters are floating point precision, error tolerance for adaptive
step size control, and maximum zonotope order.

2http://flowstar.org
3http://www.i6.in.tum.de/Main/SoftwareCORA
4http://capd.ii.uj.edu.pl/
5http://www.cas.mcmaster.ca/~nedialk/vnodelp/
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7.7 Experimental Evaluation

Isabelle-P. My verified algorithms for reachability analysis with intermediate Poincaré
maps (from section 7.3), which are manually chosen a-priori. Other parameters are as for
Isabelle.
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7.7.2 Oil Reservoir

The oil reservoir problem is the running example of Bouissou et al.’s paper [24]:

ẏ =z

ż =z2 − 3
10−3 + y2

The goal is to solve the following ODE with initial condition y(0) = 10 and z(0) = 0 on the
time interval [0; 50]. Figure 7.7 depicts enclosures as computed by the verified algorithm
Isabelle.
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Figure 7.7: Enclosures for the temporal
evolution of the oil reservoir
problem.
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Figure 7.8: Enclosures around t = 35 of
the oil reservoir problem.

The ODE is stiff around time t = 35, i.e., small step sizes are required to maintain precise
enclosures. Figure 7.8 zooms in on that detail of the evolution.

Results. Table 7.1 summarizes the time required by the different tools to produce an
enclosure with a prescribed width (the final error) at time t = 50. CORA is not listed, because
it does not feature an adaptive step size control. When the fixed step size is too large, it
fails to maintain precision around time t = 35. When the fixed step size is too small, CORA
requires too many steps (and therefore too much time) to integrate over the whole interval
[0; 50]. CAPD and VNODE clearly outperform the other tools, producing much tighter
enclosures in fractions of the time. The performance of Flow* is comparable to that of GRK.
On these examples, Isabelle is slower than those two by a factor between 7 and 50.

Settings. The error tolerances for the adaptive step-size control are set to 1 · 10−6 resp.
1 · 10−9 for Isabelle, Flow*, and GRK for final enclosures of width 5 · 10−2 resp. 5 · 10−3. I
used VNODE with the default parameters and CAPD with Taylor series of order 20 and
error tolerance of 1 · 10−10.

106



7.7 Experimental Evaluation

width of final
tool time [s] enclosure

CAPD < 0.01 5 · 10−13

VNODE < 0.01 5 · 10−13

Isabelle-P 54.2 5 · 10−2

417 5 · 10−3

GRK 4 5 · 10−2

12 5 · 10−3

Flow* 7.3 5 · 10−2

8.4 5 · 10−3

Table 7.1: Computation time and size of final enclosure (error) for the oil reservoir problem.
The entries for GRK are cited from Bouissou et al.’s paper [24]

7.7.3 Laub-Loomis

The Laub-Loomis model [88] is a seven-dimensional ODE for studying enzymatic activities,
it was a benchmark problem of the ARCH friendly software competition [31]:

ẋ1 = 1.4x3 − 0.9x1

ẋ2 = 2.5x5 − 1.5x2

ẋ3 = 0.6x7 − 0.8x2x3

ẋ4 = 2− 1.3x3x4

ẋ5 = 0.7x1 − x4x5

ẋ6 = 0.3x1 − 3.1x6

ẋ7 = 1.8x6 − 1.5x2x7

Analysis is to be carried out for time in [0; 20]. With this experiment, we study the perfor-
mance on a higher-dimensional, nonlinear ODE. Moreover we investigate how the different
tools deal with uncertainties in the initial condition. We therefore study boxes of width w = 0
w = 0.02 and w = 0.2 centered around x1(0) = 1.2, x2(0) = 1.05, x3(0) = 1.5, x4(0) = 2.4,
x5(0) = 1, x6(0) = 0.1, x7(0) = 0.45.

Enclosures for w = 0.01 as produced by Isabelle are plotted in figure 7.9

Results. Table 7.2 summarizes the computation time required depending on the initial
uncertainty w. With larger initial uncertainty, many tools fail to produce sensible enclosures
for the whole interval [0; 20]. After some time (roughly about the indicated tmax), the tools
produce ever-growing enclosures, a typical result of the wrapping effect getting out of
control.

As in the previous example (the oil reservoir problem), CAPD and VNODE are superior
in both precision (not reported here) and computation time. They suffer, however, from
medium-sized (w = 0.01) uncertainty in the initial data. CAPD manages to produce sensible
enclosures for slightly longer time spans.
Isabelle is more robust in handling larger initial sets, and the performance impact (from

w = 0 to w = 0.01) is negligible. Isabelle is slower than CORA and Flow* by a factor between
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Figure 7.9: Enclosures of the temporal evolution of x4 of the Laub-Loomis model.

5 and 20. Isabelle handles the largest initial set only until t = 9, whereas Flow* and CORA
can enclose the solution over the whole time interval.

Settings. For Isabelle, the maximum zonotope order is set to 60, error tolerance is set to
2−12. Flow* computes with a fixed step size of 0.05, fixed Taylor model order 4, remainder
estimation of 0.1, and symbolic remainders for 50 steps. CORA uses a fixed step size of 0.05,
zonotope order of 50 and for w = 1 polynomial zonotopes of order 4.

time [s]

tool (w = 0) (w = 0.02) (w = 0.2)

CAPD < 0.01 (tmax = 11) (tmax = 2.5)
VNODE < 0.01 (tmax = 8) (tmax = 1.7)
Isabelle 48.2 51.3 (tmax = 9)
Flow* 6.6 10.0 25.7
CORA 2.5 2.9 23.0

Table 7.2: Computation time for enclosing solutions of the Laub-Loomis model on the
interval t ∈ [0; 20]. Entries (tmax = . . . ) indicate that enclosures explode around
t = tmax.
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7.7.4 Van der Pol.

The Van-der-Pol oscillator (Figure 7.10, plotted from the output of Isabelle) is given by the
following ODE:

ẋ =y

ẏ =(1− x2)y− x

We consider initial value problems x0 ∈ 1.4 + 3w · [−1; 1], y0 = 2.25 and vary the size of the
initial set with the parameter w. Depending on the capabilities of the tool, we either compute
the Poincaré map for returning to y = 2.25 from above or until time t = 7, which is about the
return time. We will see that in this system, intermediate Poincaré sections are very effective.
We include one at x = −1 for Flow*-P, CORA-P, and Isabelle-P.
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Figure 7.10: Plot of the van der Pol system (w = 0.2)

Results. Table 7.3 displays computation time for different sizes of the initial set, with
(tmax = . . . ) indicating failures to produce meaningful enclosures. Intermediate Poincaré
maps speed up computations for Isabelle and even allow Isabelle-P to compute enclosures
for the largest initial set. Flow* does not profit from the intermediate Poincaré maps in
Flow*-P. On those examples, Isabelle-P can be faster than CORA, and up to a factor 5
slower than Flow*. Here again, CAPD and VNODE can not handle larger initial sets.
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Settings. For Isabelle, the maximum zonotope order is set to 20, error tolerance is set to
2−12. Flow* computes with fixed Taylor model order 4, remainder estimation of 1 · 10−5, and
adaptive step size control. CORA uses a fixed step size of 0.01, zonotope order of 50 and
splitting for width ≥ 0.5. CAPD and VNODE use standard settings.

time[s]

tool (w = 0.01) (w = 0.1) (w = 0.2) (w = 0.5)

Isabelle 2.9 3.1 5.0 (tmax = 3)
Isabelle-P 3.1 2.2 2.2 8.8
Flow* 0.5 0.6 0.8 1.5
Flow*-P 1.6 1.0 1.4 2.5
CORA 4.0 5.8 6.0 (tmax = 3)
CORA-P 7.8 8.0 7.5 8.2
CAPD < 0.01 (tmax = 3) (tmax = 1.2) (tmax = 0.6)
VNODE < 0.01 (tmax = 6) (tmax = 3) (tmax = 0.8)

Table 7.3: Computation time for the van der Pol system. Entries (tmax = . . . ) indicate that
enclosures explode around t = tmax.
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7.7.5 Lorenz.

For an experiment with a chaotic system, we consider the classical Lorenz system in Jordan
normal form, which is given with approximate numerical constants as follows:

ẋ = 11.8x− 0.29(x + y)z

ẏ = −22.8y + 0.29(x + y)z

ż = −2.67z + (x + y)(2.2x− 1.3y)

We experiment with initial sets of width 0.01 (in x and y) centered around (x0, 2.21, 27),
where we vary x0 between 0.84 and 0.94. The dynamics exhibits more chaotic behavior for
smaller values of x0. Figure 7.11 displays enclosures for the evolution from x0 = 0.92 (the
innermost), x0 = 0.88, and 0.84 (the outermost). As can be seen in the close-up of figure 7.12,
we include an intermediate Poincaré section at x = 2. This Poincaré section is also used for
Flow*-P and CORA-P.

Results. Without intermediate Poincaré maps, Isabelle and CORA fail to produce mean-
ingful enclosures, they are therefore omitted in this analysis. It can be seen in table 7.4 that
all tools require more time for more chaotic initial values. Isabelle-P produces the tightest
enclosures and is slower by a factor between 1.2 (vs. Flow*) and 5 (vs. CORA-P). CAPD
and VNODE fail for the initial sets of width 0.01, we therefore include results for easier
initial sets of width 0.01, where VNODE produces less accurate enclosures for all initial sets,
and CAPD is less accurate than Isabelle-P for the more chaotic half of initial values (despite
the smaller initial set).

Settings. VNODE and CAPD with standard settings, Flow* with remainder estimation
10−4, fixed order 6 and adaptive step size control. Isabelle-P with zonotope order 30 and
error tolerance 2−14. CORA-P with zonotope order 20 and fixed step size 0.005.
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x0

tool 0.94 0.92 0.90 0.88 0.86 0.84

Isabelle-P time[s] 11.5 11.5 11.6 11.6 12.1 13.1
final width 0.1 0.1 0.1 0.1 0.2 0.3

Flow* time[s] 6.1 6.3 6.7 7.5 8.3 10.9
final width 0.15 0.2 0.2 0.4 0.4 0.6

Flow*-P time[s] 4.7 4.8 4.8 4.9 5.1 5.5
final width 0.2 0.2 0.3 0.3 0.4 0.5

CORA-P time[s] 2.6 2.6 2.7 2.7 2.7 4
final width 0.2 0.25 0.3 0.35 0.4 0.6

CAPD (0.001) time[s] < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
final width 0.1 0.1 0.1 0.2 0.4 8

VNODE (0.001) time[s] < 0.01 < 0.01 < 0.01
final width 1.3 2.4 37 ∞ ∞ ∞

Table 7.4: Computation time (time[s]) and width of final enclosures (final width) for different
initial values (x0) of the Lorenz system.
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7.7.6 Integrals

We finally compare our results with the only other formally verified tool, namely the Coq
developments by Mahboubi et al. [94]. They only work with integrals. For this comparison,
we use the setup from section 7.5 to encode the integrals as ODE. We compare Isabelle with
all the results they report in their paper. They report on six definite integrals, which they
approximate to various given values e for the approximation error.

Derivative of arctan. The first example is the integral of the derivative of the arctan:∣∣∣∣∫ 1

0

1
1 + x2 dx− π

4

∣∣∣∣ ≤ e

For low precision, Isabelle takes a similar amount of time, medium precision (10−9) is still
possible, but higher precision seems unfeasible with the current approach in Isabelle:

e time (Coq) [s] time (Isabelle) [s]

10−3 0.3 0.4
10−6 0.3 1.4
10−9 0.6 52
10−12 1.0 > 60
10−15 1.7
10−18 2.9

Ahmed’s integral. The second example, Ahmed’s integral [2] involves more operators:∣∣∣∣∣
∫ 1

−1

arctan(
√

x2 + 2)√
x2 + 2(x2 + 1)

dx− 5π2

96

∣∣∣∣∣ ≤ e

Here, low precision is still feasible, but Isabelle cannot compete with medium and high
precision results of Coq.

e time (Coq) [s] time (Isabelle) [s]

10−3 0.5 1.3
10−6 1.2 15
10−9 2.8 > 60
10−12 5.5
10−15 11.2

Trigonometric. The third example involves trigonometric functions, which are harder to
approximate with Taylor models (and also zonotopes):∣∣∣∣∫ π

0

x sin x
1 + (cos x)2 dx− π2

4

∣∣∣∣ ≤ e

Here, the Taylor models used in Coq are clearly superior: Isabelle achieves an accuracy of
10−3 with reasonable effort, but higher accuracies become overly expensive.
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e time (Coq) [s] time (Isabelle) [s]

10−3 1.1 8.2
10−6 2.3 240
10−9 5.0 >240
10−12 11.5
10−15 27.2

Helfgott. The fourth example is from Helfgott, according to Mahboubi et al.in the spirit
of [62]. ∣∣∣∣∫ 1

0

∣∣∣(x4 + 10x3 + 19x2 − 6x− 6) exp x
∣∣∣ dx− 11.14731055005714

∣∣∣∣ ≤ e

Unfortunately, it can not be solved with Isabelle, because the ODE solver requires a (at least
twice) differentiable function, which is not the case here because of the absolute value in the
integrand.

Chebyshev. The fifth example is the 12-th coefficient of a Chebychev expansion:∣∣∣∣∫ 1

−1
cheb(x)dx + 3.2555895745 · 10−6

∣∣∣∣ ≤ e

Where

cheb(x) :=
((

2048x12 − 6144x10 + 6912x83584x6 + 840x4 − 72x2 + 1
)

exp
(
−(x− 3

4
)2
)√

1− x2

)
This integral can not be solved with Isabelle: the ODE solver requires the ODE to be defined
and differentiable on an open set. But because of the square root, cheb is only defined on
the closed interval [−1; 1] and needs to be considered at the boundary values −1 and 1.

Rump. The sixth and last example (suggested by Rump [124]) is a challenge because of its
large number of oscillations:∣∣∣∣∫ 8

0
sin(x + exp x)dx− 0.3474

∣∣∣∣ ≤ e

Here, also Coq has difficulties and requires much more time than on the previous examples,
but still performs better than Isabelle, which can only produce 1 correct digit in about 10
minutes.

e time (Coq) [s] time (Isabelle) [s]

10−1 81.0 700
10−2 123.6 > 700
10−3 183.4
10−4 277.6
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7.7.7 Interpretation of Results

VNODE and CAPD are highly optimized and the methods of choice for small initial sets
or point initial conditions. High order Taylor series expansions allow much more precision
than the fixed third order scheme implemented in Isabelle. For medium accuracy, Isabelle
can also produce meaningful results in reasonable time (compared to the other tools for
reachability analysis). Adaptive step size control can be an essential feature, therefore
Isabelle can outperform CORA on the oil reservoir problem.

Taylor models as implemented in Flow* or polynomial zonotopes as implemented in
CORA are the superior data structure to represent large non-convex sets of higher dimension
(as they appear in the reachability analysis of the Laub-Loomis model). VNODE and CAPD
are superior for point initial conditions but cannot handle larger uncertainties. For a medium
sized initial uncertainty, Isabelle can still compete, but non-convex set representations are
essential for high-dimensional non-linear dynamics (splitting the reachable sets is not an
option because of the high dimension).

Intermediate Poincaré maps are a useful means to reduce the wrapping of non-convex
sets, as could be seen in the van der Pol and Lorenz systems. On these examples, Isabelle-P
compares very well with the other (non-verified) tools for reachability analysis.

7.8 Related Work

In this section, I discuss related work on numerics of differential equations in interactive
theorem provers and discuss relations to non-verified work, in particular work on reachability
analysis of continuous and hybrid systems via flow-pipe constructions (mostly targeted
towards engineering applications) and rigorous numerical tools targeted at dynamical
systems.

7.8.1 Numerics of Differential Equations in ITPs

Spitters and Makarov [95] implement Picard iteration to calculate solutions of ODEs in
the interactive theorem prover Coq. The numerical bounds that they obtain are restricted
to relatively short existence intervals. Boldo et al. [19] approximate the solution of one
particular partial differential equation with a C-program and verify its correctness in Coq.

7.8.2 Other Tools

Apart from the tools presented in section 7.7.1, I would like to mention Bak’s [10] approach
of automatically deducing intermediate Poincaré maps (he calls them “pseudo-invariants”),
implemented e.g. in the tool HYST [11], which can be used as a front-end to other tools. The
state-of-the-art tool for analysis of hybrid systems with linear dynamics SpaceEx [39] can
handle systems with hundreds of variables, but cannot be used for non-linear dynamics
as in the experiments. COSY [14] is based on Taylor models and reportedly precise in the
analysis of non-linear dynamics, but unfortunately not freely available.

Rigorous computation of flow-pipes is also part of tools for analyzing non-linear hybrid
systems, e.g., HySAT/iSAT [38], Ariadne [12], or Acumen [132].
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7.9 Discussion.

We presented a formally verified analyzer for continuous systems given by ODEs. Its
performance can be in the range of other, non-verified tools. With the introduction of
intermediate Poincaré maps, we can handle larger initial sets or chaotic dynamics better
that some of the non-verified tools. Our approach does, however not scale to high precision
computations. But it tolerates larger uncertainties than e.g., CAPD, or VNODE.

Comparable tools are a about one or two orders of magnitude faster. But this is still
reasonable as e.g., our method does not use native floating point numbers, where we lose a
large factor. Setting this in context with other verification work: a factor of 7 to 26 has been
reported [36] for a verified implementation of an LTL model checker, where the verified
implementation was also tuned for efficiency.

In my earlier paper presented at TACAS [71], the overall reachability analysis algorithm
was based on more heuristics, which turned out to be unnecessarily complicated. The
manual declaration of intermediate Poincaré maps is perfectly feasible for the presented
examples. Moreover, devising intermediate Poincaré maps can be delegated to a tool like
HYST [10, 11].

7.9.1 Design Choices

There is no single best approach to reachability analysis of ODEs, this can be seen at the
variety of tools and algorithms for rigorous ODE solving. Many of my design decisions
were guided by the principle “reasonably efficient/precise” while simple enough for a
formalization with the existing libraries.

Affine Arithmetic seemed a straightforward generalization of interval arithmetic, but less
intricate to formalize than e.g., Taylor models.

Runge-Kutta methods have already been used with affine arithmetic by Bouissou et al. [24].
As a fixed scheme, the verification and implementation is straightforward. Without (at the
time) formal results about multivariate Taylor series expansions, the more flexible alternative
of Taylor series methods seemed further out of reach.

Splitting as a means to counteract the wrapping effect of non-convex sets is only effective
for low-dimensional systems. An alternative could have been the use of more complex data
structure like Taylor models that directly represent non-convex sets. It seems, however, that
splitting is also necessary for Taylor model based analysis tools, as could be seen in the
example on the Lorenz equations in section 7.7.5. Neumaier [107] discusses advantages and
limitations of Taylor models.

Intermediate Poincaré maps were inspired by Tucker’s algorithm and provided a means
to reduce the size of currently reachable sets, thereby avoiding non-convexity or wrapping.
An alternative to the geometric algorithm for resolving intersections was proposed by Althoff
and Krogh [7].
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7.9 Discussion.

7.9.2 Summary

In summary, the algorithms this chapter are the result of a pragmatic attempt to hit a sweet
spot between ease of implementation and verification on the one hand and performance
and precision on the other hand. Many decisions were taken with an analysis of the Lorenz
equation as motivation but are general enough to work for other (low dimensional) ODEs
as well. The overall design is modular such that it is now possible to include other set
representations like e.g., Taylor models (which are now available in Isabelle/HOL [133]) or
different approximation schemes like Taylor series methods into the overall framework.
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Figure 7.11: Lorenz system, enclosures for ini-
tial sets around x0 = 0.92 (inner-
most), x0 = 0.88, and 0.84 (outer-
most).
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Figure 7.12: Lorenz system, close-up on in-
termediate Poincaré section at
x = 2.
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8
Smale’s 14th Problem

In 1963, meteorologist Edward Lorenz [92] introduced the following system of ODEs as a
simplified model for atmospheric dynamics:

ẋ = −σx + σy

ẏ = −xz + ρx− y

ż = xy− βz

Lorenz observed that even the smallest perturbation in initial values would lead to completely
different long-term behavior of the system. Referring to the original motivation, he asked:
“Does the Flap of a Butterfly’s Wings in Brazil Set Off a Tornado in Texas?” and the term
butterfly effect entered popular culture. The Lorenz system tends to evolve to a complicated
structure, the so-called Lorenz attractor (figure 8.1), which became an iconic example of
deterministic chaos: According to Sparrow [129] “the number of man, woman, and computer
hours spent on [the Lorenz equations . . . ] must be truly immense”.

Despite its popularity and the amount of effort put into its study, nobody managed to
prove that the Lorenz attractor is chaotic in a rigorous mathematical sense.

The numerically observed dynamics inspired a geometric model, whose behavior could be
described with explicit symbolic formulas and could therefore be analyzed rigorously [144,
50].

Understanding the dynamics of Lorenz’ original ODE, however, remained out of reach. In
1998, Fields medalist Stephen Smale put the problem of understanding Lorenz’ ODE on his
list of eighteen unsolved mathematical problems for the 21st century [127]:

Problem 14: Lorenz Attractor
Is the dynamics of the ordinary differential equations of Lorenz that of the
geometric Lorenz attractor of Williams, Guckenheimer, and Yorke?

8.1 Tucker’s Proof

Tucker solved this problem with the help of a computer program. He proved that the Lorenz
attractor is singular hyperbolic, it therefore exhibits the same dynamics as the geometric
Lorenz attractor of Williams, Guckenheimer, and Yorke.

Tucker does so with the help of a Poincaré section. This is a distinguished set in the phase
space, in this case a square on the plane z = 27, namely Σ = [−6; 6]× [6; 6]× {27}. On
Σ, the Poincaré map P is defined: For a point x0 ∈ Σ, the Poincaré map P(x0) is the point

119



8 Smale’s 14th Problem

Figure 8.1: An enclosure of the Lorenz attractor. Shading of enclosures varies with initial
condition. Plotted from the output of check-result-c1 (input-data ).
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8.1 Tucker’s Proof

where the flow first returns to Σ. This reduces the three-dimensional, continuous dynamics
φ to (discrete) iterations of the two-dimensional map P. Tucker then analyzes the dynamics
of P with a rigorous ODE solver. In particular he identifies a trapping region for P on Σ and
quantifies sensitive dependence on initial values.

8.1.1 Trapping Region.

Tucker proves that there is a (compact) trapping region N ⊆ Σ, such that solutions starting
in N will remain in N. He does so by subdividing N into a large number of small rectangles.
For every small rectangle, Tucker’s program computes safe numeric bounds for all solutions
evolving from the small rectangle. In a number of time-discretization steps, the evolution is
followed until it eventually returns to Σ. Upon return, the program checks that the returned
enclosure is contained in N. If this process succeeds for every small rectangle, one can
conclude the following theorem.

Theorem 8.1 (Trapping Region). ∀x ∈ N − Γ. P(x) ∈ N

Note that there exists a set Γ on which P is not defined: Γ is the set of points, from which
solutions tend to the origin in infinite time. Γ is therefore explicitly excluded in the above
theorem. We will detail on the role of Γ in section 8.1.3 on normal form theory.

8.1.2 Sensitive Dependence.

Sensitive dependence on initial conditions can be quantified with the help of the derivative:
A deviation in the direction of a vector v ∈ R2 is propagated (in linear approximation)
like the derivative at x, i.e., P(x + v) ≈ x + DP|x · v. Here DP|x · v is the matrix of partial
derivatives of P (the Jacobian matrix) at the point x, multiplied with the vector v.

A mathematically precise notion of chaos is given by the class of singular hyperbolic
systems [103]. A hyperbolic system contracts deviations in stable directions and expands
deviations in unstable directions. Both are relevant for the dynamics of the attractor: Stable
directions make solutions tend to the attractor, whereas unstable directions lead to sensitive
dependence on initial conditions.

Tucker proves that the Lorenz attractor is (singular) hyperbolic by providing safe overap-
proximations for the unstable direction: Every x ∈ N is equipped with a cone C(x), which
contains the unstable direction. This is also verified by Tucker’s computer program: In
addition to the Poincaré map, the program keeps bounds on its matrix of partial derivatives.
The program tracks how initial deviations (inside the cone associated to an initial rectangle)
are propagated by the derivative DP. The cone field needs to be forward invariant (otherwise
it would not contain the unstable direction) and the expansion needs to be large enough
that the enclosed directions are actually expanding. An example of such a computation is
shown in figure 8.2.

Tucker’s program establishes factors E(x) and E−1(x), which quantify the expansion
properties of P:
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Figure 8.2: Enclosures for the flow and cones evolving from X0 = [4.375; 4.4]× [2.77; 2.79]×
{27} with a representation of a cone between 1.5◦ and 11.5◦ (detail on the right).

Theorem 8.2 (Derivatives, Cones, and Expansion).

1. ∀x ∈ N − Γ. ∀v ∈ C(x). DP|x · v ∈ C(P(x))

2. ∀x ∈ N − Γ. ∀v ∈ C(x). ‖DP|x · v‖ ≥ E(x) ‖v‖

3. ∀x ∈ N − Γ. ∀v ∈ C(x). ‖DP|x · v‖ ≥ E−1(P(x)) ‖v‖

This theorem states that 1., the cone field C is forward invariant under the action of the
derivative of P: the image of every cone is slimmer than the cones onto which they are
mapped. 2., the vectors v satisfy lower bounds on how much they are expanded: the length
‖DP|x · v‖ of the return of the deviation vector v is lower bounded by its length ‖v‖ times an
expansion factor E(x). They also satisfy a pre-expansion bound E−1(x) (this does not denote
1
E ) for the pre-image of x, which is required for technical reasons in Tucker’s proof.

8.1.3 Normal Form Theory.

In the previous section on sensitive dependence, I mentioned singular hyperbolic systems.
This term classifies hyperbolic sets that contain a hyperbolic fixed point. For the Lorenz
equations, the origin (0, 0, 0) is such a hyperbolic fixed point. The origin is a fixed point,
because the ODE evaluates to 0. It is hyperbolic, because solutions tend to it in the two
stable directions given by the y and z axis and expand in the unstable direction given by the
x-axis.

This singular point poses problems for the aforementioned approach of using rigorous
numerical methods: there are solutions that tend to the origin as time goes to infinity.
In such a situation, a time-discretization algorithm is at a loss, because it would need

122



8.2 The Input Data and its Interpretation

infinitely many steps. To remedy this problem, Tucker’s program interrupts computations
in a small cube L = [−0.1; 0.1]× [−0.1; 0.1]× [−0.1; 0.1] around the origin. Inside the cube,
where the numerical methods would fail, the evolution of solutions can be described with
classical, analytical means: more than half of Tucker’s thesis is devoted to accurate analytical
expressions (a so-called normal form) for the flow inside the cube L. These expressions
can be used to provide explicit bounds on how solutions exit the cube L and continue with
numerical computations.

Informal Theorem 8.3. There is an explicit form that bounds the dynamics inside the cube L =

[−0.1; 0.1]× [−0.1; 0.1]× [−0.1; 0.1].

In the rest of this chapter, we present how the verified algorithm poincare ′ of chapter 7 is
used to certify Tucker’s computations. We show in particular how we formally prove the
theorems 8.1 and 8.2. We will also make a precise statement for the informal theorem 8.3.

8.2 The Input Data and its Interpretation

It is not necessary to verify precisely the set N that Tucker used, but coming up with a
forward invariant set is slightly more involved than certifying one. We therefore use the
output of Tucker’s program as a starting point to set up the input for our ODE solver. The
output of Tucker’s program is available online1 as a file containing 7258 lines. Since any
other forward invariant with suitable cone field and expansion estimates would do just as
well, we are free to modify Tucker’s data slightly. We preprocessed Tucker’s data by merging
the information of some of the lines and slightly coarsening some of the numerical bounds.

This results in a list of 400 elements, which we call input-data and will be the basis for all
further interpretations:

Definition 8.4 (Input Data). input-data :: result list is a list of 400 elements of type result .

datatype result = Result (invoke-nf : B)

(min-deg : R) (max-deg : R)

(expansion : R) (preexpansion : R)

(gridx0 : Z) (gridx1 : Z) (gridy0 : Z) (gridy1 : Z)

(inf-retx : Z) (inf-rety : Z) (sup-retx : Z) (sup-rety : Z)

Elements res of type result are interpreted as initial rectangles as follows. The properties
gridx0 , gridx1 , gridy0 , and gridy1 encode a rectangle on Σ, which we denote by N(res). The
union of all elements of input-data represents the upper branch N+ of the forward invariant
set N. It is plotted in figure 8.3.

1http://www2.math.uu.se/~warwick/main/rodes/ResultFile
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8 Smale’s 14th Problem

Figure 8.3: N in green (N+ the upper and N− = S (N+) the lower branch) and enclosure of
P(N+) in red.

Definition 8.5.

N(res) :=[((gridx0 res− 1) · 2−8, (gridy0 res− 1) · 2−8, 27),

((gridx1 res + 1) · 2−8, (gridy1 res + 1) · 2−8, 27)]

N+ :=
⋃

res∈input-data
N(res)

N− := {(−x,−y, z) | (x, y, z) ∈ (N+)}
N := N+ ∪ N−

The input data also contains information on the image of an initial rectangle. It is
encoded in inf-retx , inf-rety , sup-retx , sup-rety : We select the elements within those bounds
with return-of :

return-of res := {res′ ∈ input-data |
gridx0 res′ ∈ [inf-retx res; sup-retx res] ∧
gridy0 res′ ∈ [inf-rety res; sup-rety res]}

min-deg and max-deg define the cone C associated with the rectangle: the conic hull of the
line segment between the boundary vectors.
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Definition 8.6.

C res =cone hull (segment

(cos(rad (min-deg res), sin(rad (min-deg res), 0)

(cos(rad (max-deg res)), sin(rad (max-deg res), 0)))))

There rad x = x·π
180 is the radian of the angle given in degrees, segment x y is the line

segment {(1− u) · a + u · b | u ∈ [0; 1]}, and cone hull S = {c · x | 0 ≤ c ∧ x ∈ S } the conic
hull of a set S .

The elements in input-data also encode a conefield C and expansion estimates as follows.
results-at (x) yields the set of result elements that cover a point x (the rectangles overlap at
the boundary). We need to respect this to ensure that C, E , and E−1 are well defined.

Definition 8.7.

results-at (x) := {res ∈ input-data | x ∈ N(res)}
C(x) :=

⋃
res∈results-at (x)

C(res)

E(x) := min
res∈results-at (x)

expansion (res)

E−1(x) := min
res∈results-at (x)

preexpansion (res)

One last property is invoke-nf , which encodes if the numerical computations need to be
interrupted and the results of the normal form need to be invoked. First, we define abstractly
when this is necessary, namely on the stable manifold of the origin. That is, the set of all
points, which tend to the origin in infinite time. We restrict our attention to the part of the
stable manifold whose trajectories do not intersect Σ for positive time.

Definition 8.8.

Γ := {x |[0; ∞] ⊆ ex-ivl x ∧ (∀t > 0. φ(x, t) /∈ Σ) ∧ (φ(x, t) −→t→∞ (0, 0, 0))}

When invoke-nf is true, the computations will be interrupted once the reachable sets arrive
at the small cube L = [−0.1; 0.1]× [−0.1, 0.1]× [−0.1; 0.1] inside which the normal form
estimates are valid. In our computations, solutions are guaranteed to enter the cube L
through a rectangle fst (T ) and the tangent vectors are in the cone that contains snd (T ):

T := ([−0.1; 0.1], [−0.00015; 0.00015], 0.1)×

 [0.8, 1.7]
[0.0005; 0.002]

0


That is, sets are very slim in the y-direction, and the expanding direction is closely around
the x axis. From Tucker’s analysis ([138, Proposition 3.1]), we devised the following bounds
for the sets E1, E2 through which solutions emanating from T exit the cube L:

E1 := ([−0.12;−0.088], [−0.024; 0.024], [−0.012; 0.13])×

 0
[−0.56; 0.56]
[−0.6;−0.08]
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E2 := ([0.088; 0.12], [−0.024; 0.024], [−0.012; 0.13])×

 0
[−0.56; 0.56]
[0.08; 0.6]


When we interrupt computations close to L, we check that the sets entering L do so within
T and continue computations from E1 ∪ E2. Since we have not verified Tucker’s normal
form theory, we need to trust the following assumption, which makes informal theorem 8.3
precise.

Assumption 8.9 (Normal Form Theory Bounds).

T y′L (E1 ∪ E2)

8.3 Checking the Input Data

In the previous section, we only defined what the input-data encodes, now we describe how
to check that the numerical bounds prescribed by the input-data are actually correct. This
involves three steps: First, we need to find a suitable setup to be able to use the algorithm
poincare , which computes derivatives and not cones. Second, we set up the check that a
single element of the input-data is correct. Third, we check all elements of the input-data ,
from which we conclude the formal counterparts of theorems 8.1 and 8.2.

8.3.1 Representation of Cones

Concerning the checking of cone conditions, first note that C res is an infinite cone, i.e., an
unbounded set of vectors. In contrast to that, all of our numerical algorithms are tailored
towards bounded enclosures. We therefore perform the computations with the line segment
connecting the two tangent vectors with unit length. matrix-segment x1 y1 x2 y2 e encodes
a line segment (parameterized by e) in a matrix (such that it can be used as matrix initial
condition DX of poincare ′, section 7.4). mat-seg-of-deg uses this to define the line segment
between the endpoints of unit vectors with given angles u, v to the x axis. A cone can
therefore represented with the help of mat-seg-of-deg :

Lemma 8.10 (Matrix Representation of Cone).

C(res) = cone hull


 m(1,1)

m(2,1)
0

∣∣∣∣∣∣m ∈ mat-seg-of-deg (min-deg res) (max-deg res)


with

matrix-segment x1 y1 x2 y2 e :=

 x1 + e · (x2 − x1) 0 0
y1 + e · (y2 − y1) 0 0

0 0 0


mat-seg-of-deg u v :=

matrix-segment (cos (rad u))(sin (rad u))(cos (rad v))(sin (rad v))[0; 1]
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Algorithm 1 Check Result

1: function check-result-c1 (res)
2: X0 ← N(res)
3: DX0 ← mat-seg-of-deg (min-deg res) (max-deg res)
4: RES ← poincare X0 DX0 Σ
5:

⋃
i(Pi × DPi)← split-along N RES

6: RET ← get-results (inf-retx res, inf-rety res) (sup-retx res, sup-rety res)
7: return ∀i. ∃ret ∈ RET . returns-within res Pi DPi ret

8.3.2 Checking a Single Result Element

Algorithm 1 outlines how to check that a single result element res ∈ input-data represents
correct numerical bounds. It works as follows: X0 is the initial rectangle, DX0 the initial
data for the derivatives, which encodes the associated cone with angles min-deg res and
max-deg res. Then the ODE solver returns with a union of return images RES , which are
split along the boundaries of the individual rectangles making up N. This splitting ensures
that each individual element (Pi, DPi) resulting from the splitting is contained in exactly
one individual element of N. We write singleton parts of the result of this splitting Pi, DPi.
In RET , there are all elements of the input-data within which res is specified to return. The
final check makes sure that every part Pi, DPi of the splitting returns within one element ret
of the collection RET . It is defined as follows and precisely formulates that X and DX, which
emanate from a result res and hit the result ret, satisfy the prescribed bounds on cones and
expansion.

returns-within res X DX ret :=

X ⊆ N(ret) ∧
check-cone-bounds (min-deg res) (max-deg res) X DX ∧
‖DX‖ ≥ E(res) ∧ ‖DX‖ ≥ E−1(ret)

check-cone-bounds is checked using affine arithmetic: It assumes that ux and uy are on the
line segment encoding a cone according to mat-seg-of-deg , therefore checks that uz = 0 and
ignores the other entries of the argument matrix. It further checks that the segment is on the
right side (0 < ux) and that the boundary angles L and U (given in degrees) also represent a
cone pointing to the right side. The main purpose is in the last line, the check that the angle
of the vector (ux, uy) with the horizontal axis is between L and U.

check-cone-bounds L U

 x
y
z

  ux vx wx

uy vy wy

uz vz wz

 :=

− 90 < L ∧ L ≤ U ∧U < 90 ∧
0 < ux ∧ uz = 0 ∧

tan(rad L) ≤ uy

ux
∧ uy

ux
≤ tan(rad U)

Correctness of check-result-c1 states that the set N(res) is mapped into the part return-of res
of the forward invariant set. Vectors in the cone C(res) are mapped by the derivative DP
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into the cone field with the prescribed expansion estimates. The theorem states that the
derivative exists and is defined when approaching x within Σ≤ = {(x, y, z) | z ≤ 27}.

Theorem 8.11 (Correctness of check-result-c1 ).

check-result-c1 (res) = return True −→
∀x ∈ N(res)− Γ. ∀dx ∈ C(res).returns-to Σ x ∧ P(x) ∈ N(return-of res) ∧
(∃DP. (P has-derivative DP) (at x within Σ≤)

(‖DP(dx)‖ ≥ E(res) · ‖dx‖) ∧
(∃ret ∈ return-of res.

P(x) ∈ N(ret) ∧ DP(dx) ∈ C(ret) ∧ ‖DP(dx)‖ ≥ E−1(ret) · ‖dx‖))

The theorem follows rather directly from the definition of algorithm 1 and the specifications
and definitions of the occurring functions.

8.3.3 Checking All Results

We prove that all input-data is correct:

Theorem 8.12 (Global Numerical Results).

∀res ∈ input-data . check-result-c1 res = return True

Theorem 8.12 is proved by computing check-result-c1 (res) for every res ∈ input-data . The
computations are carried out by evaluating the statement

Parallel.forall (λres. check-result-c1 res) input-data

with Isabelle/HOL’s evaluation engine eval.
As a result of those computations, we can state the main theorem of this thesis: a formal

verification of Tucker’s computations.

Theorem 8.13 (Correctness of Tucker’s Computations). Assumption 8.9 implies theorem 8.1
and theorem 8.2.

It follows from combining the individual instances of theorem 8.11 for all input data
(theorem 8.12) in a suitable way.

Parallel.forall results in parallel processing (using multithreading in PolyML [98]) of the
400 individual elements of input-data . Further parallelism is introduced when enclosures are
split during reachability analysis. Split sets can be processed in parallel until they reach the
next (intermediate) Poincaré section, where they might be (partially merged) upon resolving
the intersection (section 7.3.2).

Figure 8.1 shows the plot of an enclosure for the Lorenz attractor resulting from the
verified computation. The plot (and its detail in figure 8.5) hints at the intermediate Poincaré
sections that were manually set up (for some initial rectangles) at about z = 27, z = 30,
x = ±5,x = ±1.5,x = ±1, x = ±0.75, x = ±0.1, and z = 0.1. The black part of figure 8.3 is
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Figure 8.4: ML Statistics: Tasks waiting for Execution

an enclosure for P(N+) resulting from these computations, and it is as expected and verified
contained in N.

The timing results of a computation on a machine with 22 cores2 are given below:

• Elapsed Time: 6h 33min 9s

• CPU Time: 131h 52min 40 s

• Parallelization Factor: 20.13

• Garbage Collection Time: 42min 36s

A parallelization factor of 20 signifies a good saturation of the available cores, the progress
of parallel tasks waiting for execution is shown in figure 8.4. There one can see, that in the
first half of the elapsed time, tasks are spawned (mostly because the input-data was sorted
in such a way that the result elements close to the stable manifold (the ones that perform
most splitting) are processed first. In the second half, it is mostly working off tasks in the
queue. There appears to be a longer sequential computation in the end, which seems to be
responsible for the fact that the parallelization factor is significantly lower than 22.

To compare the general run time with Tucker’s C++ program, I compiled Tucker’s program
in a Virtual Machine running Ubuntu 4.20 and gcc version 3.3.4 on a machine with a 2,6 GHz
Intel R© CoreTM i7 CPU and 16 GB RAM. The program finished after a total computation
time of 30h and 24min. A direct comparison is hard, because the algorithms and data

2Intel R©Xeon R©CPU E5-2699 v4 @ 2.20GHz
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8 Smale’s 14th Problem

structures are very different, but a factor of less than five compared to a C++ program
signifies reasonable performance of the verified algorithm.

In earlier developments [70], an enclosure for the Lorenz attractor was computed with
neither derivative nor cones. This earlier version verified an enclosure for the Lorenz
attractor in about 7000 CPU hours. With the present version algorithms, such a computation
(without derivatives and cones) can be performed in about 3 CPU hours. The speedup
compared to the earlier work is mostly due to less aggressive splitting of reachable sets, and
a smaller number of intermediate Poincaré sections: In the earlier work [70], intermediate
Poincaré sections were introduced heuristically on-the-fly, and in the present work only
where they are really effective. This is beneficial, because resolving the intersection incurs
overapproximations.
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Figure 8.5: Enclosure of P(N+) (detail around the origin)
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9
Conclusion

This chapter concludes my thesis: modern ITP technology is capable for the formal ver-
ification of advanced rigorous numerical ODE solvers. It requires sufficient formalized
mathematical background (chapters 2 and 3), the right abstractions (enclosures for expres-
sions in chapter 4, algebraic reasoning about geometry in chapter 5), and a suitable setup
for a (in this case Lammich’s Autoref) framework for specifying and verifying high-level
algorithms (chapter 6).

My work brings a new quality of trust to rigorous numerics for dynamical systems and I
managed to apply it to a celebrated result.

This result is specialized, but most of the formalized techniques are standard and useful
for any ODE. This can be seen in the successful participation in a software competition for
non-verified software and by the fact that the theoretical foundations could be used for other
formalization projects [16].

Implementing an ODE solver leaves much space for design decisions. In my work, I chose
a compromise between ease of formalization and efficiency/precision. The overall structure
that emerged, however, should make it possible to re-visit any of those decisions and do
modular changes (e.g., replace zonotopes with Taylor models or choose some adaptive
high-order enclosure method instead of the present second order Runge-Kutta method).

I would like to prelude the end of this dissertation with an overview of the efforts required
for the formalization (estimated by the number of lines of code or proof), which will also
underpin the claim that most of the formalization is not specialized for the Lorenz attractor.
An outlook on possible future work ends this dissertation.

9.1 Code Size

Table 9.1 shows some statistics on the size in terms of lines of code of several programs
related to this verification. RODES is the rigorous ODE solver used by Tucker, it consists of
3800 lines of C++ code and builds on a library for interval arithmetic (Profil/BIAS) of about
twice the size. Similar to the sum of those two is the size of the generated SML code. This
indicates that the generated code is not overly complicated. The verification required more
effort, but the largest part is generic: the part specific to the Lorenz attractor (in particular
about cones) makes up only about 3000 lines of code.
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chapter language lines of code/proof

RODES C++ 3800
Profil/BIAS C++ 8800
generated ODE solver SML 12000
Flow, Poincaré map 3 Isabelle/HOL theory 13000
Affine Arithmetic 4 12000
Intersection 5 5000
Refinement/Enclosures 6 6000
Verification of ODE solver 7 12000
Lorenz Attractor 8 3000

Table 9.1: Size of Code and Formalization

9.2 Future Work

There are several possible directions for future work: towards a formal proof of Smale’s
14th problem, towards formal analysis of hybrid (discrete-continuous) systems, and general
improvements of performance and precision of the ODE solver.

9.2.1 A Formal Proof of Smale’s 14th Problem

One possible direction for future work is towards a complete formal proof of Smale’s 14th
problem. This involves formalization of two orthogonal topics.

First, a formalization of the normal form theory part of Tucker’s proof, which involves in
particular multivariate formal power series and a number of analytic estimations, proving
existence and convergence of specifically constructed formal power series. Tucker generalized
this technique to arbitrary ODEs with saddle fixed points [139]. Interestingly, also this part of
Tucker’s proof involves rigorous numerical computations, but the main difficulty lies really
in the analytical estimates. Tucker’s programs smalldiv.cc and coeffs.cc help devising
the normal form, but neither their specification nor their implementation is particularly
interesting, they essentially only evaluate a large number of fixed arithmetic expressions.

Second, concluding from the numerical results that the Lorenz equations actually support
a robust singular hyperbolic attractor with sensitive dependence on initial conditions. This
would require a well-developed theory of differentiable manifolds (to my knowledge, the
only formalization of manifolds is in Mizar [115, 120]) and advanced results about dynamics
on manifolds, in particular invariant foliations along the lines of Hirsch et al. [64].

9.2.2 Formally Verified Analysis of Hybrid Systems

The present work could be extended to target applications that are ubiquitous in engineering
applications, i.e., hybrid systems. One would need to formalize hybrid systems with a
suitable model, e.g., the classic hybrid automata [63], differential dynamic logic (which is
already formalized in Isabelle/HOL [16]), more applied formalisms like Acumen [132], or
following the work of rigorous simulation of Matlab/Simulink models [23]. Much of the
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work on intermediate Poincaré sections could be used for switching hyperplanes (guards) of
hybrid automata.

9.2.3 Improving the Verified ODE Solver

The present algorithms for enclosing ODEs are a pragmatic attempt, more efficient or
precise techniques could be incorporated to obtain a versatile, formally verified toolbox.
Representing enclosures with Taylor models, as formalized by Traut [133] would improve
accuracy on nonlinear systems, high-order Taylor series methods would be the method of
choice for small initial conditions and high accuracy, and the matrix exponential is a must
for high-dimensional linear systems.
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