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ABSTRACT
Pancreatic ductal adenocarcinoma (PDA) exhibits one of
the poorest prognosis of all solid tumours and poses an
unsolved problem in cancer medicine. Despite the recent
success of two combination chemotherapies for palliative
patients, the modest survival benefits are often traded
against significant side effects and a compromised
quality of life. Although the molecular events underlying
the initiation and progression of PDA have been
intensively studied and are increasingly understood, the
reasons for the poor therapeutic response are hardly
apprehended. One leading hypothesis over the last few
years has been that the pronounced tumour
microenvironment in PDA not only promotes
carcinogenesis and tumour progression but also
mediates therapeutic resistance. To this end, targeting of
various stromal components and pathways was
considered a promising strategy to biochemically and
biophysically enhance therapeutic response. However,
none of the efforts have yet led to efficacious and
approved therapies in patients. Additionally, recent data
have shown that tumour-associated fibroblasts may
restrain rather than promote tumour growth, reinforcing
the need to critically revisit the complexity and complicity
of the tumour–stroma with translational implications for
future therapy and clinical trial design.

INTRODUCTION
With a median survival of 6 months, pancreatic
ductal adenocarcinoma (PDA) is a notoriously
aggressive disease with a dismal prognosis and
steadily increasing incidence rates in the industria-
lised world.1 In the UK, about 9000 new cases are
diagnosed each year, and in the USA the number
rises to almost 44 000 cases per year.1 Due to the
lack of effective means for an early diagnosis, most
patients diagnosed with PDA have locally advanced
or metastasised disease, and are therefore not can-
didates for surgical resection. Therefore, >80% of
patients qualify only for palliative treatment and
gemcitabine has been the standard of care chemo-
therapy for many years. The use of gemcitabine is
associated with a significant, though marginal, sur-
vival extension of approximately one month.2 The
only targeted agent that has been successfully com-
bined with gemcitabine is erlotinib, an inhibitor of
tyrosine kinase domain of the epithelial growth
factor receptor, however, achieving an only mar-
ginal survival benefit of a median of 2 weeks in
unselected patients.3 Notably, the development of
skin rash (grade ≥2) is considered a predictive clin-
ical marker for this therapy and results in a median
survival of almost 12 months.4 Combinations of
gemcitabine with a second cytotoxic drug such as
5-fluorouracil, capecitabine, cisplatin, irinotecan

or oxaliplatin all failed to achieve meaningful
improvement in overall survival, and thus did not
enter clinical routine.5–11 However, more recently,
two novel combination chemotherapies have con-
siderably changed the clinical oncological landscape
for patients with PDA. In 2011, the gemcitabine-
free FOLFIRINOX regimen (folinic acid, fluorour-
acil, irinotecan and oxaliplatin) was shown to
significantly improve overall median survival in
metastasised PDA compared with gemcitabine
(11.1 vs 6.8 months).12 Two years later, in 2013,

Key messages

Basic science
▸ A pronounced desmoplastic and hypovascular

microenvironment is a histological hallmark
feature in pancreatic cancer.

▸ The tumour microenvironment consists of
activated fibroblasts, pancreatic stellate cells,
infiltrating immune cells, macrophages and
soluble growth factors and cytokines that are
secreted in the stiff extracellular matrix
scaffold.

▸ Activated fibroblast govern local immune
surveillance through CxCl12 secretion and
additional unknown mechanisms.

▸ Pharmacological and genetic depletion of
activated fibroblasts result in accelerated
pancreatic tumour growth and
immune-modulation, whereas reprogramming
of activated fibroblasts promotes improved
response to cytotoxic drugs.

Clinical practice
▸ Despite the massive desmoplastic reaction

characteristic for pancreatic ductal
adenocarcinoma no antistromal therapies are
currently approved for clinical use.

▸ Therapies aimed at depleting or modifying
cellular and acellular components of the stroma
may open new avenues for immunological
checkpoint antagonists or other targeted
therapies (eg, antivascular endothelial growth
factor) that otherwise fail in patients with
pancreatic ductal adenocarcinoma.

▸ Stromal depletion or modification therapies
should be investigated carefully since
tumour-suppressive and promoting functions of
the stroma have been described.

▸ The prognostic role of the activated tumour
stroma in patients should be revisited as results
are highly controversial to date.
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results from the international phase III Metastatic Pancreatic
Adenocarcinoma Trial revealed a significant survival benefit for
nab-paclitaxel and gemcitabine compared with gemcitabine
alone (8.5 vs 6.7 months).13 Even though these chemotherapy
protocols are a major improvement in the pancreatic cancer
space, increased efficacy can only be achieved on the cost of
more severe side effects. Much hope has been put into
approaches targeting the tumour stroma in PDA. Indeed, PDA is
an extremely stroma-rich, hard and scirrhous mass of which
almost 90% are made up of extracellular matrix (ECM) consist-
ing of a highly complex assembly of activated fibroblasts,
immune cells, blood vessels, neural cells and a variety of matri-
cellular proteins (figure 1A). Furthermore, fibrillar collagen,
fibronectin, hyaluronic acid as well as soluble growth factors
such as transforming growth factor-β (TGF-β), fibroblast growth
factor, vascular endothelial growth factor (VEGF) and connect-
ive tissue growth factor (CTGF/CCN2) are secreted and stored
in this highly dynamic location, which is termed the tumour
microenvironment.14 For many years, the pronounced stroma
reaction (also termed desmoplastic reaction or desmoplasia) was
considered to be a passive bystander during carcinogenesis and

tumour progression.15 However, during the last 10 years it has
dawned that the tumour microenvironment may in fact act as
‘partner in crime’ with tumour cells, promoting tumour initi-
ation and progression.16–18 Many efforts were undertaken to
elucidate the complex stroma–tumour interactions and provided
interesting and fascinating insights into the stromal biology of
pancreatic tumours.19 These investigations were predominantly
executed in vitro or in transplanted immunodeficient in vivo
models that only partly recapitulate the complex composition of
the microenvironment.20 Still, the concept of antistromal ther-
apies emerged soon thereafter and fuelled great enthusiasm in
the pancreas cancer community.21 However, all of the promising
experimental and early clinical findings failed when rigorous
clinical phase II or III studies were conducted and no approved
antistromal therapy has actually entered the clinical routine.22–
24 Recent experimental evidence has shown that stromal deple-
tion approaches may favour tumour aggressiveness and spread,
and thus have reignited the discussion whether the tumour
stroma in PDA is ‘friend or foe’.25 In fact, the mechanisms and
functional consequences of the tumour–stroma crosstalk may be
by far more complex than previously anticipated and should

Figure 1 (A) H&E stain of human pancreatic ductal adenocarcinoma displaying a prominent desmoplastic reaction (black arrows) in which
neoplastic ductal cells are embedded (white arrowheads). (B–E) Genetically engineered mice (here: KrasG12D/+;p53172H/+;Pdx-Cre) faithfully
recapitulate the dense collagen-rich stroma as evidenced by several chemical and immunohistochemical staining methods. CTGF, connective tissue
growth factor.
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therefore be reassessed in an unbiased manner. This review revi-
sits the translational aspects of stromal biology in pancreatic
cancer with potential implications for future therapy and clinical
trial design.

CELLULAR AND MOLECULAR HALLMARKS IN PDA: FROM
MEN TO MICE
The cellular and molecular evolution of pancreatic carcinogen-
esis has been intensively studied over the last few decades.
Human and murine data suggest that PDAs develop through an
increasing number of dysregulated cell-autonomous and non-
tumour cell-autonomous pathways paralleled by typical mor-
phological changes that are termed pancreatic intraepithelial
neoplasia (PanIN 1–3) and originally arise from acinar to ductal
metaplasia (ADM).26 Activating mutations in the
K-ras-oncogene represents a critical event and can be found in
>90% of PDA cases.27 Subsequent somatic mutations of
tumour suppressor genes such as p16, p53 and DPC4/SMAD4
lead to epithelial transformation and ultimately pave the way for
progression to frank adenocarcinoma that commonly metastasise
to the liver and lymph nodes at early stages.28–30 Histologically,
PDA is characterised by a marked fibrotic tissue reorganisation.
The activation of fibroblasts, myofibroblasts and pancreatic stel-
late cells (PSCs) can already be observed at early pre-neoplastic
stages, leading to the production of large amounts of ECM
components (eg, hyluronan, collagen, fibronectin) as well as a
large number of growth factors and matricellular proteins (eg,
SPARC) that determine the biophysical properties and the bio-
chemical complexity around epithelial cells.14 31

The molecular and histopathological evolution of human
PDA has also been recapitulated in genetically engineered
mouse models (GEMMs).32 33 Mice with conditionally engi-
neered activating mutations (eg, by conventional Cre-loxP-based
techniques) of K-ras progressively develop murine PanIN lesions
and ultimately murine PDA (mPDA) with long latency (12–15
months).34 Additional genetic ablation of p16, TGF-β or p53
dramatically accelerates tumorigenesis, and locally invasive and
metastasised mPDA can be observed starting at 3–4 months of
age.35–38 Importantly, GEMMs not only recapitulate the clinical
symptoms such as biliary obstruction, anaemia, ascites, cachexia
and chemoresistance to gemcitabine, but also faithfully mimic
the histological features of the tumour microenvironment
within the pancreas (figure 1B–E). The introduction of GEMMs
has marked a milestone in pancreatic cancer research and
hugely contributed to a more detailed understanding of the
complex biology of the disease.20 Moreover, numerous preclin-
ical drug trials have been conducted in GEMMs in so-called
‘mouse-hospitals’ to foster insights into the poor therapeutic
responsiveness of PDA.39–41 However, simultaneous embryonic
activation of oncogenes and inactivation of tumour suppressor
genes do not reflect the genuine sequential multistep develop-
ment of human cancer and represent a profound limitation of
traditional GEMMs. More recently, several modifications of
GEMMs have been developed. Interestingly, the next-generation
dual-recombinase system (DRS) allows spatiotemporal genetic
engineering that resembles the natural course of cancer more
closely. To this end, the Flp-FRT recombinase system is com-
bined with the Cre-loxP system for secondary genetic manipula-
tion. This sophisticated approach opens new experimental
avenues to rigorously investigate genetic alterations during mul-
tistep carcinogenesis, scrutinise tumour cell subpopulations (eg,
stem cells), functionally dissect different cellular compartments
within the tumour microenvironment (ie, immune cells, fibro-
blasts, nerves) and ultimately assess therapeutic targets and

resistance mechanisms.42 Using this next-generation dual recom-
binase system, Schonhuber et al provided first evidence that
mast cells that had traditionally been regarded as oncogenic
players are surprisingly dispensable for tumour formation.
Besides the Cre-loxP, Flp-FRT DRS, tetracycline-inducible
expression systems,43 44 novel embryonic stem cell-based PDA
models45 and recombination systems such as Dre-Rox system are
valuable additions to the genomic toolbox that will spur the
field. Notably, Kras alone is insufficient to induce PDA, and
several transposon-based insertional mutagenesis screens in mice
have led to the discovery of genetic alterations that cooperate
with oncogenic K-ras to promote tumorigenesis and have not
previously been implicated in pancreatic carcinogenesis.46–48

However, the generation, imaging, treatment and mainten-
ance of GEMMs require resources and staffing that are often
not feasible for single laboratories. Notably, in order to draw
robust conclusions from preclinical and genetic experiments,
cohort sizes need to consist of at least 5–8 animals per treatment
cohort, and large-scale drug screening experiments cannot be
performed.49 50 Therefore, three-dimensional and organotypic
culture systems are currently developed to investigate the
complex interplay between stromal cells, tumour cells and
immune cells within a reconstituted ECM gel.51–54 Recent work
showed that pancreatic organoids can be rapidly derived from
resected tumours and biopsies, survive cryopreservation and
exhibit biological and cellular hallmark features of PDA.55

Orthotopically transplanted neoplastic organoids recapitulate
preneoplastic stages and progress to locally invasive and meta-
static carcinomas. Whether results from drug screens using orga-
noid models are predictive remains to be seen, but genetic and
pharmacological manipulation provide a platform to probe
these issues. Therefore, organoids will certainly expand the
experimental armamentarium, thus possibly bridging the gap
between GEMMs and cell culture-based or xenotransplanted
models.

CHRONIC INFLAMMATION AND IMMUNE CELLS
General concept of inflammatory-driven pancreatic
carcinogenesis
The transition of chronic pancreatitis to pancreatic carcinoma
represents an exemplary clinical observation of the paradigm of
chronic inflammation evolving into malignancy. The risk corre-
lates with the duration of recurrent pancreatitis and chronic
inflammation. The lag of time between pancreatitis diagnosis
and PDA onset is usually about 10–20 years. Despite these posi-
tive correlations, chronic pancreatitis as risk for PDA is still
uncommon since only about 4–6% of patients with chronic pan-
creatitis develop frank carcinoma within 20 years of diagnosis.56

Chronic inflammation is thought to be the mechanism by which
chronic pancreatitis develops to PDA.57 Damaged acinar cells
are responsible for releasing the first inflammatory signals (inter-
leukin (IL)-1b, IL-6, tumour necrosis factor (TNF)) in response
to pancreatic injury, leading to the activation of the immune
system. Activated immune cells eliminate genetically altered
cells. However, over time, the anticancer response is insufficient
to eliminate these cells.58 Such altered cells activate proinflam-
matory transcriptional programmes such as nuclear factor of
activated T cells and release further inflammatory cytokines pro-
moting not only inflammation but also growth of pre-
neoplastic/neoplastic cells.59 60 During the process of chronic
inflammation, quiescent PSC are converted into an ‘activated or
myofibroblastic’ state. PSCs do not only retain their ability to
produce large amounts of ECM proteins in the inflamed pan-
creas transisting to PDA, they establish a network of interactions
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Figure 2 Following expression of oncogenic Kras, ductal cells induce a cascade of cell-autonomous and non-cell-autonomous alterations.
Accumulating genetic mutations govern pancreatic ductal adenocarcinoma (PDA) progression from low-grade pancreatic intraepithelial neoplasia
(PanIN) to high-grade PanIN and ultimately frank carcinoma (top line). Mechanisms of innate and adaptive immune responses with accumulation of
cytotoxic CD8 T cells, mature dendritic cells (DCs), activated proinflammatory macrophages (M1), natural killer (NK) cells and pancreatic stellate cells
(PSCs) are sequentially inhibited by premalignant and malignant cells that culminate in both local and systemic immune dysfunction, which hampers
the detection and clearance of transformed cells (immune evasion). Thus, a tumour-induced immunosuppressive environment is established in which
macrophages switch to the immunosuppressive M2 state, while T regulatory cells (Tregs) and myeloid derived suppressor cells (MDSC) inhibit effector
immune response. PSCs are activated to cancer associated fibroblasts (CAFs) that produce abundant extracellular matrix components. Furthermore,
various cell types within the tumour microenvironment support the immunosuppressive phenotype by secreting a multitude of soluble growth factors
and cytokines (green box) that further support the immunosuppressive phenotype in pancreatic cancer. IFN, interferon; IL, interleukin; MMP, matrix
metalloproteinase; PDGF, platelet-derived growth factor; TGF-β, transforming growth factor-β; TNF, tumour necrosis factor-α; TSLP, thymic stromal
lymphopoietin; VEGF, vascular endothelial growth factor.
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between inflammatory cells, acinar cells and cancer cells.61–64

Thus, PSCs might assume a coupling role in inflammation-
associated carcinogenesis (figure 2). Once the tumour is estab-
lished, the tumour microenvironment has a highly immunosup-
pressive composition comprising increased numbers of
tumour-associated macrophages (TAMs) with an M2 phenotype,
neutrophils with an N2 phenotype, Treg cells as well as a Th1/
Th2 cell shift.65 All these cells further contribute to immune
evasion.

Tumour-associated macrophages
TAMs have been identified as a major population of inflamma-
tory cells in solid tumours and identified as potential therapeutic
targets.66–68 For instance, the recently approved cytotoxic agent
trabectedin selectively targets mononuclear phagocytes through
caspase-8-dependent apoptosis; and selectivity is achieved due
to differential expression of signalling and decoy TRAIL recep-
tors in macrophages.69 Trabectedin has been used in a clinical
phase II trial in metastasised PDA (NCT01339754), but results
have not been published so far. Interestingly, recent data
revealed that TAMs induced upregulation of cytidine deaminase
(CDA), the main enzyme responsible for gemcitabine inactiva-
tion, and CDA inhibition sensitised murine tumours to gemcita-
bine.70 71 TAMs have also been implicated significantly in
tumour progression via secretion of IL-6 and activation of
Stat3.72 73 Recruited and activated macrophages release IL-6 to
activate the Stat3/Socs3 pathway in the pancreas. This
IL-6-dependent cascade accelerates pancreatic carcinogenesis.72

The complexity of the local immune system during pancreatic
cancer progression is depicted in figure 2.

Myeloid cell infiltrations
However, even in the absence of chronic inflammation, pancre-
atic cancer contains infiltrates of diverse leucocyte subsets.
Although these infiltrates, composed of both myeloid-lineage
and lymphoid-lineage cells, do not meet the classical definition
of an inflammatory immune response, they seem to be instru-
mental in mediating tumour progression. This form of immune
cell infiltration that is detectable in many solid tumours has
been described as infiltrating immune cells (IICs) to encompass
both classic inflammation and a more subtle involvement of
immune cells.74 IICs are found very early in the tissue surround-
ing early and late mPanIN lesions and are still present in full-
blown pancreatic cancer.75 It is becoming increasingly evident
that immune cells in the tumour microenvironment fail to
mount an effective antitumour immune response as the majority
of the IICs are immunosuppressive. The granulocyte macro-
phage colony-stimulating factor (GM-CSF) seems to play a
central role not only in establishing the inflammatory tumour
microenvironment but also in mediating immunosuppression.
Oncogenic, activated Kras expressed in pancreatic ductal epithe-
lial cells seems to reprogram the tumour microenvironment by
directing transcription of the inflammatory cytokine
GM-CSF.76 77 Tumour-derived GM-CSF promotes recruitment
of myeloid progenitor cells to the surrounding stroma and sub-
sequent differentiation into myeloid-derived suppressor cells
(MDSCs). MDSCs, in turn, suppress the immune surveillance
function of CD8+ killer T cells, preventing them from recognis-
ing and clearing transformed pancreatic ductal cells. Data from
the Hingorani group show that targeted depletion of granulo-
cytic MDSC (Gr-MDSC), a single myeloid subset, triggers an
endogenous antitumour T cell response, suggesting that thera-
peutic targeting of Gr-MDSC might be potential strategy for
patients with PDA.78

T cell infiltration
Among infiltrating T lymphocytes, CD8+ T cells are rare
whereas CD4+ T cells are abundant.75 Recent studies addressed
the functional role of CD4+ T cells within the pancreatic
cancer microenvironment.79 80 These studies show that CD4+
T cells promote PanIN formation by blocking the antitumour
immune responses mediated by CD8+ T cells. A predominant
infiltration of pancreatic cancer stroma by Th2 (GATA3+) in
contrast to Th1 (Tbet+) cells correlated with disease progres-
sion.81 The ratio of GATA3+/Tbet+ tumour-infiltrating lympho-
cytes was proposed as an independent predictive marker for
survival after surgery in patients with (stage IB/III) pancreatic
cancer. Activation of the TNF receptor superfamily member
CD40 has been shown to be a key regulatory step in the devel-
opment of T-cell-dependent antitumour immunity. CD40 activa-
tion can reverse immune suppression and drive antitumour T
cell responses. Systemic CD40 activation with an agonist CD40
monoclonal antibody was sufficient to circumvent tumour-
induced immune suppression and invoke productive macro-
phage and T-cell-dependent antitumour immunity in pancreatic
cancer in mice and humans.82 These studies argue for an
important role of the immune system in established pancreatic
cancer. CD4+ T cells are a heterogeneous population. High
numbers of regulatory T cells and T helper 17 (TH17) cells
were observed in the pancreatic microenvironment in a
Kras-dependent manner. Levels of TH17 cells were found to be
elevated in the pancreatic immune-infiltrates in humans as well
as in mice. CD4+ T lymphocytes and IL-17 signalling are
required for oncogenic Kras-driven pancreatic carcinogenesis.
Intrapancreatic CD4+ T cells suppress the antitumour activity
of CD8+ T cells during Kras-driven PanIN formation. TH17
cells (as well as γδ T cells) secrete IL-17A that signals through
IL-17RA in acinar–ductal metaplasia and PanINs, thereby indu-
cing tumour initiation and progression. CD4+ T cell ablation
enables effector CD8+ T cell function and induces apoptosis in
PanIN cells, thus blocking the onset of pancreatic cancer initi-
ation.80 Moreover, pattern recognition receptors were found to
be expressed in pancreatic cancer. Studies have shown that
Toll-like receptors (TLRs) and the adaptor protein MyD88
impact pancreatic cancer development through the regulation of
immune response. Ligation of TLR7, for example, also involved
various signalling pathways such as Stat3.83 84 This information
is now culminating in various clinical trials. A phase III trial
addressing the additional role of Jak1/2/Stat3 inhibitors in
patients with metastatic pancreatic cancer are under way
(NCT02117479; NCT02119663).

STROMAL DEPLETION IN PDA: THERAPEUTIC AND
BIOLOGICAL IMPLICATIONS
The first preclinical trial in GEMMs that introduced the stromal
depletion hypothesis was conducted by Olive et al. The authors
demonstrated that pharmacological inhibition of the pro-stromal
sonic hedgehog signalling cascade by the Smoothened inhibitor
(IPI-926) led to a significant reduction of tumour stroma and
increased perfusion and mean vessel density. Paralleled by these
alterations, intratumoural gemcitabine delivery was elevated and
therapeutic response and median survival increased significantly.21

This preclinical work prompted clinicians and scientists likewise to
postulate that the biophysical rigidity of the ECM may consider-
ably contribute to therapeutic resistance in PDA by compressing
blood vessels, leading to reduced perfusion that ultimately
impedes the delivery of drugs to neoplastic cells.16 85 86
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Indeed, subsequent preclinical investigations introduced alter-
native approaches to successfully relieve vessel compression and
improve drug delivery. For instance, hyaluronan is highly over-
expressed by tumour and stromal cells and accumulates in
PDA.87 88 As megadalton glycosaminoglycan, HA retains water
due to its high colloid osmotic pressure and provides elasticity
to connective tissue in healthy organs. If excessive accumulation
of HA occurs, interstitial fluid pressure and solid stress result in
blood vessel compression. In line with previous data from a
prostate cancer xenograft model,89 we and others have con-
ducted preclinical trials in which HA degradation was achieved
by hyaluronidase PEGPH20 in pancreatic GEMM tumours.90 91

Although the preclinical trial design was slightly different,
increased vessel patency, drug delivery and survival was reported
in both publications. Whether this concept holds true in human
pancreatic cancer remains to be seen when the results of an
ongoing phase I/II trial of hyaluronidase (PEGPH20) plus gem-
citabine will be released (NCT01453153).

Other investigators have shown that the angiotensin inhibitor
losartan decreases stromal collagen and hyaluronan secretion in
PDA.92 Moreover, losartan treatment was accompanied by
reduction of profibrotic signals such as TGF-β1, CCN2/CTGF.92

The authors concluded that angiotensin inhibitors reduce solid
stress in tumours, resulting in increased vascular perfusion,
oxygen and drug delivery. A currently ongoing clinical trial with
FOLFIRINOX and losartan in patients with pancreatic cancer
will show whether this class of drugs may serve as inexpensive
anticancer therapeutics to sensitise PDA to standard chemother-
apy (NCT01821729).

However, the possibility to increase drug delivery to
stroma-rich pancreatic tumours does not necessarily imply that
this strategy can be successfully translated to patient care. First,
disruption of the dense tumour stroma leads to both biophysical
and biochemical modifications that may independently or col-
lectively contribute to a favourable therapeutic response, and
such information may guide the optimal translation of these pre-
clinical findings to patients. To this end, our group attempted to
uncouple stromal depletion from drug delivery by using a chem-
ical inhibitor for CDA, the main inactivating enzyme within the
gemcitabine metabolism. Although pharmacological inhibition
of CDA raised the levels of activated intratumoural gemcitabine
to a comparable level to PEGPH20 or SHH inhibition, the

apoptotic rate in neoplastic cells and overall tumour growth was
surprisingly unaffected.93 These data and prior work from our
group suggest that disrupting the stromal barrier to increase
drug delivery is not the only factor that increases antitumour
responses.40 Rather, increased drug delivery may be most effect-
ive when various intratumoural survival cues are concomitantly
targeted. However, elegant studies in patients with PDA using
CT-derived transport properties have revealed significant inter-
patient and intratumoural heterogeneity of gemcitabine DNA
incorporation despite similar intravascular pharmacokinetics.
Notably, stromal content was inversely correlated with gemcita-
bine incorporation, and pretherapy CT-derived properties corre-
lated with clinically relevant endpoints such as survival.94 95

Furthermore, clinical data have shown that high levels of the
gemcitabine transporter hENT1 and activating enzyme deoxycy-
tidine kinase are associated with improved survival in patients
treated with adjuvant gemcitabine,96 97 suggesting that gemcita-
bine metabolism rather than biophysical delivery matters most.

Very recently, first results were published regarding the bio-
logical effects of prolonged myofibroblast depletion in GEMM
by pharmacological and genetic methods. To this end, Pdx1-Cre;
KrasLSL-G12D/+;p53flox/+;Rosa26LSL-YFP/+ were intercrossed with
Shhfl/fl mice to conditionally ablate the Shh pathway in murine
pancreata. As expected, depletion of the pro-stromal Shh
pathway resulted in a marked reduction of myofibroblasts and
the corresponding tumour stroma. Surprisingly, however,
Shh-ablated tumours exhibited more frequent ADM and PanIN
lesions during early carcinogenesis, while established tumours
were undifferentiated, more metastatic and highly proliferative
compared with control littermates98 (figure 3). Furthermore, epi-
thelial to mesenchymal transition (EMT) markers such as Zeb1
and Slug and reduced CD45+-positive myeloid cells were
observed following Shh depletion98 (figure 3). In line with earlier
observations,21 Shh-deficient mice revealed a more prominent
tumour vasculature as evidenced by increased mean vessel
density. Although VEGF expression was not increased,
Shh-depleted tumours responded to VEGF inhibition compared
with wildtype controls, suggesting that stromal depletion may
open a narrow therapeutic window for targeted therapies.98 The
mechanism by which permanent stromal depletion via Shh inhib-
ition led to such aggressive pancreatic carcinomas has not been
answered yet. However, increased tumour vasculature and
reduced autophagy might be pro-tumorigenic, whereas fibro-
blasts seem to mediate some tumour-suppressive functions. As
the data could also be recapitulated by chronically administering
a Smoothed inhibitor (Smo) IPI-926 as monotherapy, it may
explain the poor clinical performance of Smo inhibitors in
patients with pancreatic cancer that resulted in early termination
of several clinical trials and caused scepticism regarding the
concept of stromal depletion as relevant therapeutic approach.
However, Shh and Gli1 protein abundance in resected PDA spe-
cimen were recently reported to be associated with a poor prog-
nosis (overall survival and disease-free survival),99 further
complicating the understanding of the current data.

Approaches that sensitise tumour cells to chemotherapy by
biochemical and/or biophysical alterations may be promising
new strategies. We have attempted to inhibit stromal-derived
CTGF/CNN2 in a GEMM by using a monoclonal antibody
FG-3019. Inhibition of CTGF by FG-3019 resulted in increased
rates of tumour cell apoptosis when combined with standard
chemotherapy gemcitabine. Although the gross appearance of
the cellular and acellular tumour stroma was unchanged, the
biochemical pattern of the murine tumours changed profoundly,
and antiapoptotic and pro-survival proteins such as X-linked

Tumour promotingTumour suppressive

Stromal depletion approaches

Poor tumour cell differentiaion
Increased EMT
increased Stemmness
Increased Invasion

Increased oxygen delivery
Increased drug delivery
Pro-apoptotic effects
Altered immune competence

Figure 3 Stromal depletion approaches such as sonic hedgehog
depletion or genetic myofibroblast ablation can tip the balance towards
tumour-promoting effects, resulting in highly proliferative and invasive
tumours with increased epithelial to mesenchymal transition and
stemness features. Dependent on the targeted stromal component and
the length of treatment, tumour-suppressive effects such as increased
oxygen delivery (sensitisation for radiation) and drug delivery as well as
biochemical and immunological sensitisation (eg, activation of
pro-apoptotic pathways) can also be observed. EMT, epithelial to
mesenchymal transition.
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inhibitor of apoptosis (XIAP) Birc6, Psen1, Ubqln2 and Hif1α
were all downregulated.93 The identified mechanism of chemo-
sensitisation with FG-3019 and gemcitabine is distinct from
increased drug delivery that was unaffected in these experi-
ments. To this end, Straussman et al100 reported that primary
human diploid fibroblasts suppressed the response of PDA cell
lines to chemotherapy when co-cultured in vitro, but did not
identify the molecular pathways involved. Only recently,
Sherman et al have provided further evidence that regulation of
activated PSCs via vitamin D receptor (VDR) is an important
determinant for the reactive pancreatic cancer stroma. This
study showed that VDR activation reduces PSCs activation and
fibrosis, thus reprogramming the tumour microenvironment to a
more quiescent, non-inflammatory and physiological state.
Treatment with standard chemotherapies such as gemcitabine
resulted in improved delivery and antitumour response in
GEMMs, suggesting that reprogramming the tumour stroma
instead of ablating it might evolve as a new paradigm and prom-
ising perspective for patients with PDA.101

IMMUNE CELLS AND FIBROBLASTS
The fibroblast compartment of the tumour microenvironment
has been mainly the research interest of cancer biologist rather
than cancer immunologists.102 However, the close proximity of
inflammatory and immune cell infiltrations to cancer-associated
fibroblasts (CAFs) may imply certain regulatory functions and
interactions between those compartments. And indeed, increas-
ing evidence suggests that CAFs and myofibroblasts not only
shape the soluble and solid stromal environment in PDA, but also
control and mediate local immune suppression, thus promoting
tumour progression, invasion and distant metastasis.103–106 For
instance, fibroblast activation protein-α (FAP) expressing fibro-
blasts govern immune suppression by CXCL12, the chemokine
that signals via the CXCL12 receptor CXCR4. CXCL12 binds to

tumour cells and excludes T cells, and conditional depletion of
the FAP-positive CAFs permits immune control in various trans-
planted and autochthonous models of PDA.107 Pharmacological
inhibition of CXCR4 thus leads to killing of tumour cells
through the rapid, intratumoural accumulation of PDA-specific
CD8-positive T cells, and shows the therapeutic efficacy of the
T cell checkpoint antagonist anti-PD-L1 that otherwise fails in
PDA (figure 4).107 These data elegantly demonstrate that the
immune-suppressive environment is controlled by CAFs and
accounts for the failure of T cell checkpoint antagonists.
Moreover, compelling data have provided insights into additional
functions of FAP expressing CAFs being involved in cachexia and
anaemia, symptoms that are most relevant for patients with
cancer.108 Very recently, Oezdemir et al provided further evi-
dence of the complex interaction of myofibroblasts and immune
cells in PDA. The authors genetically depleted α-smooth muscle
actin (α-SMA)-positive fibroblasts in KrasG12D/+;Tgfbr2fl/fl mice
by intercrossing them with α-SMA-tk transgenic mice. In line
with Rhim et al, depletion of myofibroblasts resulted in highly
undifferentiated, invasive and necrotic murine carcinomas that
exhibited EMT and stemness features (figure 3).109 Moreover,
stromal depletion was also paralleled by a profound alteration in
IICs that was characterised by decreased CD4+ effector cells and
cytotoxic CD8+ cells while regulatory T cells CD3+/Foxp3+

(Tregs) were increased. Upon myofibroblast depletion, cytotoxic
T-lymphocyte-associated protein-4 (CTLA-4) expression was ele-
vated and CTLA-4-blocking antibodies attenuated tumour pro-
gression and prolonged survival in mice (figure 4).109

CONCLUSIONS
In conclusion, recent data have provided novel and fascinating
insights into the role of the tumour microenvironment in pan-
creatic cancer development, progression and therapeutic resist-
ance. (1) In contrast to the previous notion that tumour stroma
is solely tumour promoting, certain components such as myofi-
broblasts may operate as tumour suppressor in preneoplastic
and neoplastic pancreas tissue. However, this function may be
highly dependent on the tumour stage, the specific tissue
context and also variable for certain components of the micro-
environment. For instance, while fibroblast depletion may
promote tumour progression and invasiveness, blockade of
stroma-derived soluble growth factors may result in opposite
effects. Therefore, a detailed understanding of the different
components involved is crucial for the development of future
therapies. (2) Bearing the potential risks in mind, stromal deple-
tion and/or reprogramming might still be a very promising
therapeutic strategy in PDA as this approach may open small
therapeutic windows to sensitise for targeted therapeutic inter-
ventions such as immunological checkpoint blockade or antian-
giogenic therapy that otherwise fail in patients with PDA.
Accumulating knowledge suggests intensive fibroblast-immune
cell crosstalk that could provide a novel and much needed
vantage point of attack. (3) The prognostic role of the activated
stroma in human PDA tissue is conflicting. Unbiased and joint
efforts need to be undertaken to resolve the current discrepan-
cies. While past investigations mainly described a poor prognos-
tic role for stroma-rich PDA,110 recent data contradict these
findings and propose that high α-SMA content correlates with
increased survival in patients with PDA.98 109 111 One might
even imagine a scenario where chemotherapy that targets prolif-
erating cells might be deleterious for tumours with a high
mitotic rate in fibroblasts. Thus, stromal density and prolifer-
ation should be carefully considered for both prognostic and

Stromal reprogramming

Immunological or biochemical
sensitization

Targeted and cytotoxic agents

+

Clinical response

•   PSC silencing (Vit D analogues)
•   FAP+ fibroblast depletion
•   CTGF inhibition
•   Myofibroblast depletion
•   CD40 agonists
•   MDSC depletion

•   anti-VEGFR
•   anti-CTLA-4
•   anti-PD-L1
•   chemotherapy

Figure 4 Stromal reprogramming: potential future two-tiered
therapeutic strategy for patients with pancreatic ductal
adenocarcinoma. Initial biochemical and/or immunological sensitisation
of tumours via various targets. Subsequent treatment with
immunological checkpoint antagonists, targeted agents or
chemotherapy may achieve robust clinical responses. CTGF, connective
tissue growth factor; CTLA-4, cytotoxic T-lymphocyte-associated
protein-4; FAP, fibroblast activation protein-α; MDSC, myeloid-derived
suppressor cell; PSC, pancreatic stellate cell; VEGFR, vascular
endothelial growth factor receptor.
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therapeutic classifications as the biological behaviour, differenti-
ation and tumour vasculature might be profoundly different.
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