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Abstract— A crucial capability of autonomous road vehicles
is the ability to cope with the unknown future behavior
of surrounding traffic participants. This requires using non-
deterministic models for prediction. While stochastic models
are useful for long-term planning, we use set-valued non-
determinism capturing all possible behaviors in order to verify
the safety of planned maneuvers. To reduce the set of solutions,
our earlier work considers traffic rules; however, it neglects mu-
tual influences between traffic participants. This work presents
the first solution for establishing interaction within set-based
prediction of traffic participants. Instead of explicitly modeling
dependencies between vehicles, we trim reachable occupancy
regions to consider interaction, which is computationally much
more efficient. The usefulness of our approach is demonstrated
by experiments from the CommonRoad benchmark repository.

I. INTRODUCTION

It is commonly agreed that purely reactive controllers for

collision avoidance only considering the current situation are

insufficient for avoiding collisions in road traffic. Integrating

a prediction of other traffic participants facilitates much

better solutions [1].

Depending on the purpose of the vehicle motion planner

or driving assistant system, different types of prediction are

appropriate. For driving assistant systems, simple predictions

only producing a single behavior are sufficient [2]–[6], since

warnings are not necessarily safety-critical. However, for

long-term planning of automated vehicles, simple predic-

tions are insufficient, since they do not explicitly consider

the growing uncertainty when one increases the prediction

horizon. Stochastic approaches account for this shortcoming

[7]–[11]. To guarantee safe movement, however, one cannot

rely on stochastic approaches, since ensuring safety or a very

small crash probability (around 10−10 for a 5 s prediction

horizon) is necessary in order to obtain motions which

are superior to those of humans. Such small probabilities

are difficult to verify, so we propose set-based predictions

as developed in our previous work [12], [13]. Set-based

prediction, based on models with uncertain yet bounded

inputs and parameters, contains all possible movements of

traffic participants.

Clearly, set-based prediction considering all possible be-

haviors can block unnecessarily large sections of a road net-

work for the motion planner. To manage this issue, we predict

behaviors that comply with traffic rules only, which can be

individually deactivated in case of violation. In addition, one

can restrict the prediction horizon by computing fail-safe
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(a) Planned trajectory is unsafe without considering interaction.
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Fig. 1. Occupancies of interacting vehicles for a selected time interval.

maneuvers [14]. However, we have not yet exploited mutual

influences between traffic participants to improve the quality

of the prediction.

One possibility for considering interaction would be to use

a concrete model of dependencies. However, such models

are typically unknown [15] and result in large combined

systems, which are hard to analyze. Instead, we consider

interaction between traffic participants on a more abstract

level: e.g. when two cars drive in a lane as shown in Fig. 1,

the maximum reachable position of the following vehicle 1

can never be greater than the maximum reachable position

of the leading vehicle 2. Fig. 1(a) shows the occupancies

of both vehicles, i.e. the region they can occupy in the

selected time interval (see Def. 9 later), without considering

their interaction. When taking this into account, the region

occupied by vehicle 1 can be shortened for all consecutive

time intervals such that it no longer reaches in front of the

occupancy of vehicle 2, as shown in Fig. 1(b).

There is only very little work considering interactions

between traffic participants for prediction, as pointed out in

[1]. For single behavior prediction, one can assume that other

vehicles avoid collisions and thus penalize the trajectories

which result in a collision [16], [17]. In terms of stochastic

prediction, the work in [18] considers interaction by adjust-

ing the acceleration and lane-change behavior of following

vehicles. Since modeling the pairwise dependencies between

traffic participants grows with the number of entities, one can

reduce the complexity by assuming unidirectional influence

[19], [20]. Instead of considering the dependencies pairwise,

the authors of [21] model mutual influences as a function

of the local situational context. Based on [21], a fully

probabilistic model is presented in [22]. The work in [23]

presents experience-based data on the interaction between the

ego and surrounding vehicles during lane changes. In order to



consider interaction in situation assessment, one can compute

an interaction-aware joint probability distribution [24] or

detect conflicting intentions at intersections by comparing

what vehicles intend to do with what they are expected to

do [25].

This work is the first which incorporates interaction into

set-based prediction of other traffic participants. Our paper is

organized as follows: After providing relevant definitions in

Sec. II, we introduce set-based prediction in Sec. III. Sec. IV

defines our concept for considering interaction and describes

our algorithm for removing unreachable occupancy regions.

Numerical experiments are presented in Sec. V and discussed

in Sec. VI.

II. PRELIMINARIES

A. Road Network

Our road network model is composed by lanelets [26],

which are atomic, interconnected, and drivable road seg-

ments:

Definition 1 (Lanelets [26]): A lanelet is defined by its

left and right bound, where each bound is represented by an

array of points (a polyline), as shown in Fig. 2. The driving

direction of a lanelet is implicitly defined by its left and right

bound.

To represent the road network as a directed graph, we

introduce relations between two lanelets: successor, left, and

right.

Definition 2 (Lanes): We define lanes as the union of

lanelets which are longitudinally adjacent, i.e. are successors

of each other.

Note that a lanelet which has multiple successors, as in

the case of road forks, becomes an element of multiple lanes

(e.g. see lanelet2 in Fig. 2).

Definition 3 (Merging Lanes): Two lanes are merging

into one lane, if they are constructed from distinct lanelets

which eventually have a common successor lanelet (e.g. see

Fig. 5). The geometric condition for merging lanes is that

the start points of the two lanes must be different and their

end points must be equal (see Fig. 2 for the definition of

these points).

Definition 4 (Current Lanes of a Vehicle): The current

lanes of a vehicle are defined as all lanes in which the
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Fig. 2. Our road network is modeled by lanelets and lanes.

vehicle is currently positioned (e.g. in Fig. 2, lane2 and

lane3 are the current lanes of the vehicle).

In addition to the Cartesian space in world coordinates xy,

we require a lane coordinate system uw:

Definition 5 (Curvilinear Lane Coordinate System): A

curvilinear lane coordinate system uw is defined for each

lane such that the u-axis is parallel to the center line of

the lane and the w-axis is perpendicular to u, as shown in

Fig. 2. The origin of the lane coordinate system is in the

start point of each center line, and the positive u-axis points

in the driving direction. The u-coordinate of a point p in

lane li is denoted by ulip .

Definition 6 (Front-Most and Rear-Most Point): For a set

of points P , the point with the maximum u-coordinate in lane

li is defined as

max(uli
P
) := max(ulip |p ∈ P).

The rear-most point of P in li, min(uli
P
), is defined analo-

gously.

For the sake of clarity, we omit the lane’s notation by using

only up or uP if the point or the set of points is defined in

only one lane.

B. Occupancy of a Vehicle

The dynamics of a vehicle can be described by the

differential equation

ẋ(t) = f
(

x(t), u(t)
)

, (1)

where x ∈ R
n is the state and u ∈ R

m is the input. The

possible initial states and the possible inputs are bounded by

sets: x(0) ∈ X0, ∀t : u(t) ∈ U .

Definition 7 (Reachable Set): The reachable set R ⊆ X
of (1) is the set of states which are reachable at a certain

point in time r from a set of initial states X 0 at time t0 and

subject to the set of inputs U :

R(r) =

{
∫ r

0

f(x(t), u(t))dt

∣

∣

∣

∣

x(0) ∈ X 0, ∀t : u(t) ∈ U

}

.

Furthermore, we introduce a relation from a state vector

x to the Cartesian coordinate system xy:

Definition 8 (Relation to Cartesian Space): The operator

state2occ(x) relates the state of a vehicle to the set of points

in Cartesian space occupied by the vehicle (including its

dimensions) as

state2occ(x) : X → P(R2),

where P(R2) is the power set of R
2. Given a set of

states X , the relation is defined as state2occ(X ) :=
{state2occ(x)|x ∈ X}.

Definition 9 (Over-approximative Occupancy Set):

Based on Def. 7 and Def. 8, the occupancy set O(t)
over-approximates the set of occupied points in Cartesian

space which are reachable by the vehicle:

∀t : O(t) ⊇ state2occ
(

R(t)
)

.

We can use over-approximative occupancy sets to describe

the unknown future behavior of vehicles.



III. SET-BASED PREDICTION

The set of future occupancies according to Def. 9 can

be obtained with set-based prediction [12]. Using reacha-

bility analysis, we predict occupancies for consecutive time

intervals as shown in Fig. 3, where we use polygons as

set representation. Given the predicted occupancies of other

vehicles and the occupancy of the ego vehicle along its

planned trajectory, the planned trajectory can be verified as

safe [27]: If none of the computed occupancies intersects

with the occupancy of the ego vehicle for all points in time,

one can guarantee that the ego vehicle does not cause a

collision.

obstacle

obstacle

obstacle

other vehicle

ego vehicle
planned trajectory

t ∈ [t0, t1]:

t ∈ [t1, t2]:

t ∈ [t2, t3]:

Fig. 3. Snapshots of the predicted occupancy of the other vehicle for
selected consecutive time intervals.

Set-based prediction is designed to verify motion plans of

short time horizons. Due to the full consideration of uncer-

tainties, the future occupancy of other vehicles grows over

time and thus limits the solution space for the ego vehicle.

For this reason, we suggest performing trajectory planning

for two time horizons in parallel [12]: While non-formal

prediction techniques help to find long-term motion plans,

set-based occupancy prediction can be used to guarantee the

safety of short-term motion plans.

We compute over-approximative occupancies including all

possible behaviors under given constraints, which are listed

in Tab. I. All assumptions are taken from [13] and are either

physical constraints (Camax
and Cengine) or a formalization

of the Vienna Convention on Road Traffic [28], [29]. Please

note that we deactivate constraints individually during online

execution if traffic rules are violated. For more details on our

constraint management, please see [13].

IV. INTERACTIONS BETWEEN VEHICLES

Since vehicles share the same road, their presence and

actions constantly influence other vehicles. As an example,

Fig. 1 shows a traffic scenario in which considering interac-

tion is important. While the ego vehicle plans an overtaking

maneuver similar to the situation in Fig. 3, it has to con-

sider two oncoming vehicles with different initial velocities.

TABLE I

VEHICLE CONSTRAINTS.

Constraint Description

Camax Maximum absolute acceleration is limited by amax.

Cvmax Positive longitudinal acceleration is stopped when

a parameterized speed vmax is reached.

Cengine Above a parameterized speed vS , acceleration in

the driving direction is along = amax
vS
v

, which

models limited engine power.

Cback Driving backwards in a lane is not allowed.

Clane Leaving the lane is forbidden. Changing lanes is

only allowed if the new lane has the same

driving direction as the previous one.

The following vehicle 1 moves faster than the preceding

vehicle 2. Hence, the independently predicted occupancy of

vehicle 1 is larger than the occupancy of vehicle 2, as shown

in Fig. 1(a). For a certain time interval, the ego vehicle might

crash into vehicle 1 when following its planned trajectory.

However, vehicle 1 cannot reach the part of its occupancy

where it ranges in front of the occupancy of vehicle 2, since it

cannot surpass vehicle 2. When considering the interactions,

we can remove the unreachable region and thus the plan of

the ego vehicle can be verified as safe (see Fig. 1(b)).

Set-based occupancy prediction has neglected dependen-

cies between traffic participants so far. In this section, we

describe our extension to consider the interactions between

vehicles. Our rule-based approach focuses on two-lane roads

with only one lane per driving direction. We do not include

roads with multiple lanes per driving direction, since vehicles

can easily overtake others in the left and right lanes, as

demonstrated later in Sec. V. Thus, only small regions

are not reachable. For set-based prediction, which must

include all reachable occupancies (see Def. 9), considering

interactions in multi-lane scenarios is not beneficial. Instead,

we incorporate dependencies between vehicles which are in

the same lane of two-lane roads, i.e. the considered vehicles

are either in the same current lane or in merging lanes, as

described later in Sec. IV-B. Since we only handle vehicles

in the same lane, it is sufficient to compare vehicles pairwise

to consider their interaction.

A. Overall Algorithm

Alg. 1 gives an overview of the computation steps to

consider interaction. From the set-based prediction, we re-

quire the independently computed occupancies of all vehicles

for all time intervals τk from the initial time t0 until the

prediction horizon tf , where τk = [tk, tk+1] with a time

step size of ∆t = tk+1− tk. First, we sort all vehicles which

are in the same lane based on their initial position (see line 1

of Alg. 1 and Sec. IV-B). The returned list [v] contains the

pairwise sorted vehicles as a tuple (vi, vi+1)
[tsi ,tei ], which

represents the fact that vi is behind vi+1 in the time interval

[tsi , tei ]. Please note that due to road forks and merging

lanes, the order of the vehicles in each tuple is only valid



from the specified start time tsi to the end time tei , as

explained in more detail later. An example of the list [v]

is

[v] = [(v1, v2)
[ts1 ,te1 ], (v3, v4)

[ts3 ,te3 ], . . . ,

(vn, vn+1)
[tsn ,ten ]].

Second, we consider the interaction of all vehicle pairs

(vi, vi+1)
[tsi ,tei ] from front to back in each lane (see line 2

to 4 of Alg. 1). The occupancy of all following vehicles

vi is trimmed ∀τk ⊆ [tsi , tei ] such that unreachable areas

are removed, as described in Sec. IV-C. In the following,

we denote an element of [v] without loss of generality by

(v1, v2)
[ts,te] and omit further indices for the sake of clarity.

Algorithm 1 Consider Interaction in Two-Lane Roads

Require: vehicles (incl. their occupancies O(τk)), lanes

1: [v] ← SORTVEHICLESINLANES(vehicles, lanes)

2: for all (vi, vi+1)
[tsi ,tei ] ∈ [v] do

3: for all τk ⊆ [tsi , tei ] do

4: Ovi(τk) ← TRIMREACHABLE(Ovi
(τk), Ovi+1

(τk))
5: end for

6: end for

B. Sort Vehicles in the Same Lane

Through a pairwise comparison of all vehicles, the func-

tion SORTVEHICLESINLANES() of Alg. 1 sorts vehicles in

their lanes in ascending u-coordinates and returns them in the

list [v]. If we cannot guarantee that one vehicle will precede

another due to the growing uncertainty in the prediction, this

vehicle pair is omitted in [v]. When sorting, we distinguish

three different cases:

1) Sort Vehicles in the Same Current Lane: Two vehi-

cles are in the same current lane if they are in only one

current lane (see Def. 4) and this lane is the same for both

vehicles. Then, their order is unambiguously given by their

u-coordinates in the lane coordinate system (see Def. 5). As

an example, Fig. 1 shows the sorted vehicles 1 and 2, which

can be added to [v] as (v1, v2)
[t0,tf ] since uv1 < uv2

.

2) Sort Vehicles in Forking Lanes: In the case of road

forks, where more than one current lane is identical, we

can also sort two vehicles until their reachable occupancies

split onto two different lanes after the road fork. Since the

assumption of one lane per driving direction is invalid after

road forks, we can no longer guarantee that one vehicle

will precede another. To determine the time until we can

sort vehicles in forking lanes, we introduce the point pfork

as the intersection of the corresponding lane bounds of the

bifurcating lanes, as shown in Fig. 4.

Definition 10 (Not Passed the Lane Fork): We formulate

the predicate NOT PASSED FORK(Ov2 , pfork, t) using first-

order logic:

NOT PASSED FORK(Ov2 , pfork, t)⇔

max
(

ul1
Ov2

(t)
)

≤ ul1pfork
∧max

(

ul2
Ov2

(t)
)

≤ ul2pfork
.

v1 v2

pfork

Ov1(t
′)

Ov2(t
′)

l1

l2

Fig. 4. The vehicles v1 and v2 cannot be unambiguously sorted for t ≥ t′,
since Ov2(t

′) splits after the road fork.

It evaluates to true at time t if the front-most point of Ov2(t)
(see Def. 6) has not passed pfork in both bifurcating lanes l1
and l2.

Definition 11 (Time until the Lane Fork): We define

tfork as the latest time at which the predicate

NOT PASSED FORK(Ov2
, pfork, t) still evaluates to true:

tfork := max
T∈R

(

∀t : t ≤ T : NOT PASSED FORK(Ov2
, pfork, t)

)

.

Proposition 1 (Precedence in Forking Lanes): ∀t : t̃ ≤
t ≤ tfork, vehicle v1 cannot precede vehicle v2 no matter what

vehicle v2 is doing, where t̃ is some time within [t0, tfork[.
Proof: If NOT PASSED FORK(Ov2 , pfork, t) evaluates to

true (see Def. 10), vehicle v1 cannot precede vehicle v2

at time t, since they are still in the same current lane. In

combination with Def. 11, Prop. 1 follows. The uncertainty

of t̃ originates from the unspecified road network traversed

before reaching the road fork.

Thus, we can sort vehicles in forking lanes analogously to

vehicles in the same current lane (see previous paragraph),

but only in the time interval ts = t̃ to te = tfork.

3) Sort Vehicles in Merging Lanes: If two vehicles are

not yet in the same current lane, but their current lanes

are merging (see Fig. 5), we also consider their interaction.

All merging lanes can be detected by evaluating all pairs

of lanes according to Def. 3. In order to argue about the

order of vehicles in merging lanes, we must first define some

distances, which are shown in Fig. 5. The distance along the

u-axis of lane l2 between the rear-most point of Ov2(t) and

the intersection point of the merging lanes pmerge is defined

as

dmerge(t) = ul2pmerge
−min

(

ul2
Ov2

(t)
)

. (2)

After describing the intersection of the occupancy of v1 with

the lane l2 in which the other vehicle v2 is positioned as

Ol2
v1
(t) := Ov1(t) ∩ l2, (3)

the distance between the front-most point of Ol2
v1
(t) and the

rear-most point of Ov2
(t) in l2 can be defined as

dbounds(t) = max
(

ul2
O

l2
v1

(t)
)

−min
(

ul2
Ov2

(t)
)

. (4)

Please note that both dmerge(t) and dbounds(t) can be negative.
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Fig. 5. The vehicles v1 and v2 in the merging lanes can be sorted at t′,
since v1 cannot precede v2 no matter what v2 is doing.

Definition 12 (Passed the Lane Merge): We define the

predicate PASSED MERGE(Ov1 ,Ov2 , pmerge, t) as

PASSED MERGE(Ov1 ,Ov2 , pmerge, t)⇔

dmerge(t) < lengthv2
∧

(

Ol2
v1
(t) = ∅ ∨ dbounds(t) < lengthv2

)

,

where lengthv2
denotes the length of the vehicle’s enclosing

rectangle.

Definition 13 (Time after the Lane Merge): We

introduce tmerge as the earliest time at which

PASSED MERGE(Ov1 ,Ov2 , pmerge, t) evaluates to true:

tmerge := min
T∈R

(

∀t : t ≥ T :

PASSED MERGE(Ov1
,Ov2 , pmerge, t)

)

.

Proposition 2 (Precedence in Merging Lanes):

∀t : tmerge ≤ t ≤ t̂, vehicle v1 cannot precede vehicle

v2 no matter what v2 is doing; t̂ ∈ ]tmerge, tf ].

Proof: Vehicle v1 can precede v2 at time t, either if v2

has not passed pmerge but v1 has, or if dbounds(t) ≥ lengthv2
.

Thus at t′, if dmerge(t
′) < lengthv2

, v2 certainly passed the

intersection point pmerge. If, in addition, either Ol2
v1
(t′) = ∅

(i.e. v1 has not passed pmerge) or dbounds(t
′) < lengthv2

,

the predicate PASSED MERGE(Ov1
,Ov2 , pmerge, t

′) evaluates

to true (see Def. 12), and it is not possible to shift v1 in

Ov1(t
′) so that it is in front of v2 in Ov2(t

′). Since v2

certainly precedes v1 at time t′, v2 is the preceding vehicle

∀t : t′ ≤ t ≤ t̂. Using Def. 13, Prop. 2 follows. The

uncertainty of t̂ originates from the unspecified road network

after the lane merge.

Consequently, at tmerge, we can formally guarantee for the

first time that v1 cannot precede v2 in the merging lanes,

no matter what vehicle v2 is doing (see Fig. 5). Note that

before tmerge, we cannot eliminate the possibility that v1 can

precede v2 in the future.

We sort vehicles in merging lanes by determining tmerge

by evaluating PASSED MERGE(Ov1 ,Ov2 , pmerge, τk) for all

vehicles pairwise and for all τk ⊆ [t0, tf ]. If the time tmerge

exists, the vehicles v1 and v2 can be included in the list [v] as

(v1, v2)
[tmerge,t̂]. Otherwise, we omit the currently compared

vehicles in [v], since it is not possible to determine that v1

cannot precede v2 for any τk ⊆ [t0, tf ].
Please note that we do not include lengthv2

in Def. 10

to determine whether vehicle v1 can precede v2 in forking

lanes (unlike Def. 12 for merging lanes), since the earliest

point where v1 can possibly pass v2 on its left or right side

depends much on the lane geometry. To obtain a simple and

provable over-approximative solution, we choose pfork.

C. Remove Unreachable Occupancies

After sorting the vehicles in the same lane (for the

vehicles where an order can be determined), we remove the

occupancy regions of each following vehicle v1 which are

not reachable due to the preceding vehicle v2. The function

TRIMREACHABLE() of Alg. 1 trims the reachable occupancy

as shown in Fig. 6: The occupancy Ov1(t) is shortened such

that it is not ahead of the trim line, i.e. after trimming it

holds that max
(

uOv1
(t)

)

= max
(

uOv2
(t)

)

− lengthv2
.

v1v2

Ov1 (t)Ov2 (t)
trim line

lengthv2

front bound of Ov1(t)

after TRIMREACHABLE()

front bound of Ov2 (t)

Fig. 6. Removing unreachable occupancies of the following vehicle v1.

V. NUMERICAL EXAMPLES

We demonstrate our interaction-aware occupancy pre-

diction in hand-crafted scenarios from the CommonRoad

benchmarks1 [30]. Each benchmark has a unique ID, which

are mentioned later. For the sake of clarity, we have so far

extracted only two other vehicles, v1 and v2, besides the ego

vehicle (and a static obstacle in Scenario I). All results are

obtained first by independently predicting the occupancies of

v1 and v2 using our tool SPOT2 [13] and then by considering

their dependencies as described in Alg. 1. In order to evaluate

the benefit for the ego vehicle, we compute its drivable area

as presented in [31] for the occupancies without consid-

ering interaction (case A) and with considering interaction

(case B). The drivable area is the area which a vehicle can

reach without causing a collision.

Tab. II lists the parameters of the numerical examples, in

which we use different initial velocities for the following

and preceding vehicle (i.e. vv1,0
6= vv2,0

). To evaluate dif-

ferent road conditions, we vary the values for the maximum

acceleration amax, which are obtained by choosing a friction

coefficient of µ = 1.0 and µ = 0.82 for a dry, good road,

and µ = 0.25 for a road covered with snow (and a gravity

constant of g = 9.81m/s2) [32]. We use a time step size

of ∆t = 0.1 s and a prediction horizon of tf = 2.3 s for

Scenario III and tf = 5.0 s for the other scenarios.

1commonroad.in.tum.de
2spot.in.tum.de



In all following figures, the following vehicle v1 and

the preceding vehicle v2 are depicted in blue and green,

respectively. Their predicted occupancies are plotted in their

vehicle color and such that the shorter occupancy region is on

top of the other one. For Scenarios I and II, the occupancies

Ov(t) are shown for the entire prediction interval, i.e. t ∈
[t0, tf ], while we set t ∈ [(tf −∆t), tf ] for Scenarios III and

IV. We mark the initial state of the ego vehicle at t = t0
with a red circle and its drivable area at t = tf with a red

region.

TABLE II

PARAMETERS FOR THE SCENARIOS (S.) I TO IV

Parameter S. Ia S. Ib S. II S. III S. IV

vv1,0 28m/s 28m/s 14.0m/s 14.0m/s 14.0m/s

vv2,0 8.3m/s 8.3m/s 0m/s 10.0m/s 6.0m/s

vvego,0 18.0m/s 18.0m/s 14.0m/s — 14.0m/s

vv1,max 28.0m/s 28.0m/s 14.0m/s 28.0m/s 14.0m/s

vv2,max 17.0m/s 17.0m/s 14.0m/s 28.0m/s 14.0m/s

vvego,max 28.0m/s 28.0m/s 14.0m/s — 14.0m/s

amax 8.0m/s2 2.5m/s2 2.5m/s2 10.0m/s2 2.5m/s2

A. Two-Lane Road (Scenario I)

Scenario I (CommonRoad ID: S=GER B471 1a) features

a rural road with one lane per driving direction and a static

obstacle (displayed as a gray box) in the lane of the ego

vehicle, as shown in Fig. 7. Thus, the ego vehicle requires

an overtaking maneuver but also has to avoid a collision

with the two oncoming vehicles. Fig. 8 shows the predicted

occupancies of v1 and v2 in Scenario Ia. The occupancies of

the following vehicle v1 (shown in blue) reach in front of the

slower preceding truck v2 (shown in green) (see Fig. 8(a)).

As mentioned before, we plot the occupancy sets such that

the shorter occupancy is on top of the other one. The result of

removing the unreachable occupancy regions after sorting the

two vehicles in the same current lane is shown in Fig. 8(b).

It can be seen that the difference is not much more than

the length of the preceding truck. In Scenario Ib, we use

amax = 2.5m/s2 and plot the occupancy sets in Fig. 9. When

comparing case A in Fig. 9(a) and case B in Fig. 9(b), it can

be observed that the effect of the interaction is significant

and greater than in Scenario Ia.

In Fig. 10, the benefit for the ego vehicle from the

interaction-aware prediction is evaluated using the drivable

area of the ego vehicle under the given velocity and accel-

eration limits (see Tab. II). Since no drivable area exists in

front of the static obstacle in case A, overtaking is only safely

possible when removing unreachable occupancies (case B).

Fig. 7. Initial configuration of Scenario I.

(a) Case A: not considering interaction.

(b) Case B: considering interaction.

Fig. 8. Occupancies in Scenario Ia (amax = 8.0m/s2).

(a) Case A: not considering interaction.

(b) Case B: considering interaction.

Fig. 9. Occupancies in Scenario Ib (amax = 2.5m/s2).

(a) Case A: not considering interaction.

(b) Case B: considering interaction.

Fig. 10. Drivable area of the ego vehicle in Scenario Ib.

B. Intersection of Multiple Two-Lane Roads (Scenario II)

Scenario II presents an urban intersection, where four two-

lane roads cross (CommonRoad ID: S=GER Ffb 1b). As

depicted in Fig. 11, the two vehicles v1 and v2 are driving

south, while the ego vehicle is approaching the intersection

from east. The independently predicted occupancy sets are

plotted in Fig. 12(a) together with the drivable area of the

ego vehicle. Fig. 12(b) shows the trimmed occupancies after

removing the unreachable area of v1. It can be seen that

when considering interaction in the occupancy prediction,

the ego vehicle can safely cross the intersection. At time tf ,

the difference of the drivable area between cases A and B

is larger than 100m2. Please note that in this intersection

scenario, which consists of multiple road forks, we can sort

the vehicles to consider their interaction, since the occupancy

of the preceding vehicle v2 does not split onto several lanes

yet, i.e. NOT PASSED FORK(Ov2 , pfork, tf) evaluates to true.



Fig. 11. Initial configuration of Scenario II.

(a) Case A: not considering interaction.

(b) Case B: considering interaction.

Fig. 12. Drivable area of the ego vehicle in Scenario II.

C. Road with Merging Lanes (Scenario III)

In Scenario III, we demonstrate the sorting of vehicles in

merging lanes (CommonRoad ID: S=Z Merge 1a). As shown

in Fig. 13, one vehicle is driving in each of the merging

lanes. Their occupancy sets are plotted for t ∈ [(tf−∆t), tf ],
where tf = 2.3 s. Since the green vehicle v2 will definitely

precede the blue vehicle v1 (as t ≥ tmerge), we can remove

the unreachable occupancy region of v1 (see Fig. 13(b)).

D. Multi-Lane Road (Scenario IV)

As mentioned in Sec. IV, considering interaction is not

beneficial in multi-lane roads, which we illustrate with

the following example (CommonRoad ID: S=GER Muc 2b).

Fig. 14 shows two lanes with the same driving direction,

where two vehicles v1 and v2 are driving in the right lane and

the ego vehicle in the left lane. It can be seen that considering

the vehicles pairwise for determining the interactions is not

sufficient, since the following vehicle v1 might be blocked

by two vehicles at once: the preceding vehicle v2 and the

ego vehicle. One might be able to remove small unreachable

regions of the following vehicle’s occupancies, yet that

region is also occupied by the preceding vehicle. Thus, we

gain no benefit for the drivable area of the ego vehicle.

Moreover, in contrast to two-lane roads, vehicles can easily

overtake each other on multi-lane roads and hence almost all

occupancy regions are reachable. For this reason, we have

not extended our method to multi-lane roads.

VI. DISCUSSION

The numerical examples show that considering interaction

between vehicles in the same lane increases the solution

space of the ego vehicle. However, removing unreachable

occupancies only shows substantial benefit in some cases,

e.g. only for bad weather conditions (i.e. low values of

amax) or certain configurations of initial states. Thus, we

suggest applying our approach selectively. The occupancy

sets of all surrounding vehicles should always be predicted

independently first. In the remaining computation time dur-

ing online execution, one can refine the over-approximative

prediction by trimming reachable occupancy regions. Due to

the anytime property of our algorithm, one can terminate it

when computation time is required elsewhere.

We remove unreachable occupancy regions under the

assumption that a vehicle does not change to a lane with

(a) Case A: not considering interaction.

(b) Case B: considering interaction.

Fig. 13. Initial configuration and occupancies for t ∈ [(tf − ∆t), tf ] in
Scenario III.

Fig. 14. Initial configuration and occupancies for t ∈ [(tf − ∆t), tf ] in
Scenario IV.



the opposite driving direction (constraint Clane of Tab. I).

However, as described in the constraint management in

[13], we immediately remove Clane if it becomes violated.

Thus, the set-based prediction considers the occupancy of

the vehicle in its new lane, as well as in front of a preceding

vehicle, which might have been removed by our interaction-

aware method before the lane change.

VII. CONCLUSION AND FUTURE WORK

For the first time, we consider interaction between vehi-

cles in set-based prediction. Our formal approach removes

unreachable occupancy regions of vehicles in the same

lane by sorting all vehicles and determining unreachable

areas. The benefits of our anytime algorithm are demon-

strated in numerical experiments based on scenarios from the

CommonRoad benchmark repository. Since the drivable area

of the ego vehicle is larger in all scenarios when interaction

is considered, this work improves the quality of the over-

approximative occupancy prediction and increases the safe

solution space for the ego vehicle.

Future work contains further experiments on different

scenarios. In addition, we wish to include interaction be-

tween traffic participants at intersections when considering

applicable traffic rules.
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