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Abstract—It is not economically feasible to statistically prove 

that an automated driving function is safer than a human driver 

with current test methods such as field operation tests. Therefore, 

new methods and tools are needed for the release of automated 

vehicles. The approach of functional decomposition is broadly 

used in informatics, mathematics and robotics to split complex 

functions into sub functions. Functional decomposition is also 

used to analyze human failures that lead to traffic accidents. 

Assuming that the absence of accidents is the approval criterion 

for highly automated driving and that accidents can be traced 

back to failures, the decomposition approach can be used for 

approval. Within the research project PEGASUS, a scenario-

based decomposition approach for approval of the “Autobahn-

Chauffer” is developed. This approach is presented here for the 

first time and proposes a six-layer decomposition of the 

automated driving function. Based on the functional 

decomposition and identification of relevant scenarios, particular 

test cases and corresponding fail criteria can be derived. By 

eliminating redundant test cases and aggregating test cases that 

are subsets of each other, the method promises to reduce testing 

effort.   

Keywords—automated driving; safety assessment; test case 

generation; decomposition; PEGASUS 

I.  INTRODUCTION  

The technical development of autonomous vehicles is 
almost finished. Prototypes of automated vehicles exist among 
OEMs, suppliers and research facilities. The technology has 
been successfully demonstrated in public, e.g. with the 
autonomous Bertha Benz Drive by Mercedes [1], the project 
“Stadtpilot” of TU Braunschweig [2] and many more. 
However, there is no autonomous vehicle available on the 
market yet. One reason for that are the high safety requirements 
for automated driving and the challenge to approve that such a 
system is safe enough. 

A. Current Test Concepts in the Automobile Industry 

For driver-only vehicles (i.e. level 0 according to SAE [3]), 
it is assumed that all components are designed and approved 
according to industrial standards such as ISO 26262 [4] and 
therefore do not exceed maximum failure rates. Additionally, it 
is relied on the abilities of the driver to maneuver the vehicle 
reliably in traffic, which are proven with test drivers. Over the 
last decades, this has been shown to be a successful proof of 
safety. For advanced driver assistance systems (ADAS), the 
Code of Practice assumes that the responsibility for the 
vehicle’s behavior still remains with the human driver that is 
always in the loop and can overwrite or deactivate the system 
at any time. Therefore, the results of conducted tests with test 
drivers can be transferred to future users, similar to driver-only 
vehicles. [5, 428 ff.] 

The standard ISO 26262 [4] is state of the art regarding 
functional safety for safety-critical E/E systems in road 
vehicles. All current ADAS are developed according to ISO 
26262. However, it cannot be used for the development of 
highly automated driving (HAD) functions (i.e. level 3 and 
higher according to SAE [3]) without adaption. For example, 
when assigning automotive safety integrity levels (ASIL), the 
controllability of a situation by the driver has to be considered. 
However, as the driver is not responsible to permanently 
monitor the system, this controllability is not given. [6] 

If the driver is not responsible for the vehicle behavior at 
any time anymore, which is already the case for intervening 
emergency functions (operation mode C according to the 
classification of driver assistance systems and vehicle 
automation from Gasser et al. [7, p. 37], e.g. automatic 
emergency braking), tests that only focus on the driver’s 
controllability are not sufficient. It must also be proven that the 
false-positive rate is adequately low. Even if a lot of testing in 
the development phase is shifted to simulations, the final 
approval for any kind of driver assistance systems is still 
carried out in real driving tests. According to Christiansen [8], 
the approval of current level 2 systems requires up to 12 
million test kilometers. 

This study was founded by the Federal Ministry for Economic Affairs and 

Energy (BMWi) based on a decision by the German Bundestag within the 

project PEGASUS - Project for the establishment of generally accepted 
quality criteria, tools and methods as well as scenarios and situations for the 

release of highly-automated driving functions.  



B. Billions of Kilometers until the Release of Vehicles with 

unsupervised Automated Driving 

If one wants to retain the current test concepts for HAD, the 
required test distances in real traffic will increase dramatically. 
Assuming that the automated driving function is twice as safe 
as a human driver and using the number of fatal accidents as a 
metric for safety, according to Wachenfeld and Winner [5] 
around 6.6 billion test kilometers have to be driven in real 
traffic under representative conditions for a safety assessment 
of an “Autobahn Chauffeur”. Kalra and Paddock [9] calculate 
required distances up to 11 billion miles for the safety 
assessment of a level 5 system (according to [3]), based on 
statistical data from the USA with a similar approach. As can 
be seen from the mentioned examples, a statistical safety 
assessment for automated driving functions is not feasible in 
practice before introduction. Therefore, alternative safety 
assessment methods are required. For example, so-called 
ability and skill graphs that are based on ISO 26262 are 
proposed by Reschka et al. [6] for the development and online 
monitoring of vehicle guidance systems and are used within the 
projects “aFAS” and “Stadtpilot”.    

C. The research project PEGASUS 

To develop new standards and methods for the approval of 
automated driving functions, the “project for the establishment 
of generally accepted quality criteria, tools and methods as 
well as scenarios and situations for the release of highly-
automated driving functions” (PEGASUS) was launched in 
2016. In this joint project, 17 partners from the science and 
industry field define a state-of-the-art technology for the 
safeguarding of HAD. The project is promoted by the Federal 
Ministry for Economic Affairs and Energy (BMWi) and will be 
finished by the middle of 2019 [10]. 

D. Scenario-based approach 

Within the project PEGASUS, a so-called scenario-based 
approach is applied to reduce the approval effort for highly 
automated driving. It is assumed that the major part of mileage 
on the Autobahn goes well without any special events, while 
critical scenarios are quite rare and randomly distributed in real 
traffic. Testing of the first mentioned ordinary scenarios is 
without relevant contribution for the approval process. 
Therefore, the identification of critical scenarios that can be 
reproduced in simulation or on test fields should significantly 
reduce the long driving test distances needed for a statistical 
approval [11]. 

II. FUNCTIONAL DECOMPOSITION FOR TEST CASE GENERATION 

The  approach of decomposing the driving task for test case 
generation that is presented here for the first time is based on 
the scenario-based approach and has the potential to reduce the 
approval effort even more. Within PEGASUS, this new 
approach is developed for an “Autobahn Chauffeur” as 
example of use. 

A. The basic concept of functional decomposition 

The concept of functional decomposition is not entirely 
new. It is used in various domains as for example in robotics, 

informatics, or accident analysis to segment complex functions 
or problems into sub functions or sub problems respectively. 
Functional decomposition is also used to create layer-based, 
so-called sequential system architectures for ADAS whilst test 
case generation is not the main reason for decomposing the 
system [12, 45 ff.].  

A five-level decomposition of the human driving task is 
used by Graab et al. [13] to analyze failures that lead to traffic 
accidents. Here, the failure chain is decomposed into the 
following layers: 

(1) Information access 

(2) Information reception 

(3) Information processing 

(4) Behavioral decision 

(5) Action 

As the pass criterion for testing HAD is the absence of 
accidents and as it is here assumed that accidents can be traced 
back to failures, this approach can be transferred to test case 
generation for HAD. In analogy, the driving function is first 
split into independent functional layers. Hereby not all HAD 
functions can be split into all of the proposed layers, i.e. if the 
interfaces between the layers are not accessible, two or more 
layers need to be combined. In a next step, test cases that are 
deduced from critical scenarios are decomposed into particular 
tests, which cover one or more functional layers. This will be 
handled in detail in sections II D and II E.  

B. Benefits  

Identifying critical scenarios can reduce the approval effort 
significantly. However, on some functional layers, the same 
abilities and requirements will be tested for several test cases. 
For instance, in the scenario “driving past a static object”, it is 
assumed that the type of object is only relevant for the 
perception and information processing layers. For the decision 
and action layers it does not matter if the object is a hedge or a 
guardrail. Furthermore, if a particular test fails, in contraire to a 
test of the complete system, the tests of the subsequent layers 
can be postponed until the failed test is finally passed.  

If parts of existing HAD functions are used for new 
functions, the new method requires no or less re-testing in case 
of unchanged functional modules. This also applies to different 
variants of the object under test (OUT), which need individual 
approval with current test methods. To approve the electronic 
stability control (ESC) of the Mercedes Sprinter for example, 
around 4500 different combinations of base vehicle, 
suspension, and load variants have been investigated according 
to Baake et al. [14]. Additional to the huge number of variants 
for the OUT, combinations of different parameters for a single 
scenario lead to high numbers of corresponding test cases. Lu 
[15, p. 88] derives that around 43700 test cases for the scenario 
“lane change“ would be required if the parameters “initial 
speed” and “speed on the target lane” are discretized in steps of 
5 km/h within the parameter space and a “pair-wise” coverage 
as proposed by Schuldt et al. [16, p. 15] is assumed. Variations 
of the environment (e.g weather conditions) which are not 
considered by Lu would lead to even higher numbers. 



When testing the functional layers of the OUT separately as 
it is done with the new method, particular tests from different 
scenarios can be aggregated if the test criteria/parameters are 
identical or subsets of the criteria/parameter from another 
particular test. Furthermore, the most suitable test tool (e.g. 
Simulation, XiL, test drive, etc.), depending on its validity, can 
be selected for each particular test, which also helps to reduce 
the approval effort. 

C. Requirements for the decomposition of HAD functions 

To be able to develop a functional decomposition method 
for HAD functions, requirements on such a method have to be 
defined. Wachenfeld and Winner [5, p. 433] state general 
requirements on a test case generation for the safety assessment 
of HAD functions: 

1) “Representative-valid“ 

“The requirement for representativeness has two 
aspects: On the one hand, the test case generation must 
ensure that the test coverage required is achieved. For example, 
a vehicle should not only be tested at 20 °C and sunshine, as it 
will be exposed to snow, rain and temperatures under 0 °C in 
real situations. Additionally, vehicle limit samples (tolerances 
during production) should be considered in the test case 
generation. On the other hand, the test execution must 
encompass the minimum degree of reality required. This means 
that the simplification in the representation of reality must not 
influence the behavior of the object under test (OUT) nor the 
behavior and properties of the environment with respect to real 
behavior.” 

2) “Economical” 
“There are two parts to the requirement for the economical 

test concept: On the one hand, the test execution should be 
prepared and carried out as quickly as possible in order to be 
able to provide the persons involved in the development with 
feedback on the test object immediately. On the other hand, it 
must be ensured that the test execution is prepared and carried 
out at the lowest cost possible.” 

3) “Reproducible” 
“Reproducibility greatly reduces the work required for 

regression tests. For example, if an error has been detected and 
the test object modified accordingly, the goal is to subject the 
OUT to a test in the same scenario as before.” 

4) “In good time” 
“The earlier in the development process that a product can 

be tested informatively, the fewer the development steps that 
need to be repeated in the case of an error.” 

In additional to the general requirements on a test case 
generation, there are requirements that are specific for the 
functional decomposition method, which will be defined 
below: 

5) Independent and generic decomposition layers 
In order to carry out the particular tests on different 

functional layers independently from each other, the functional 
layers have to be independent as well. Furthermore, the method 
should be applicable for different HAD functions and not be 

limited to functions that use a specific system architecture. 
Therefore, the defined decomposition layers have to be generic. 

6) Generic and observable interfaces between the 

functional layers 
Generic interfaces between the single functional layers are 

necessary to define the respective in- and output data for each 
layer. Those interfaces have to be observable to evaluate the 
particular tests. 

7) Explicit pass/fail criteria for all particular tests 
When carrying out a complete system test, it is 

straightforward to define pass/fail criteria. If for example an 
automated vehicle crashes into a static obstacle in a test case, 
this crash will be a fail criterion. However, if functional layers 
of the system are tested separately from each other it is not that 
obvious anymore which criteria can be used to determine a 
pass or fail of the test. Therefore, explicit pass/fail criteria are 
prerequisites for every test case. 

D. Decomposition layers and interfaces for HAD functions 

In this section, the proposed functional layers for the 
decomposition of HAD functions and the appropriate interfaces 
are defined.  

In this work, a decomposition of the HAD function into six 
layers is proposed. Decomposing the function into more layers 
would lead to function-specific layers and therefore result in a 
function-specific decomposition that is not generally applicable 
on various HAD functions. Another problem with a high 
number of decomposition layers would be to define explicit 
pass/fail criteria for each layer. On the other hand when using 
fewer layers as for example the classic three-layer 
decomposition “sense-plan-act”, which is common in robotics 
[cp. 17, p. 321], the potential reduction of the approval effort 
will be less. The proposed decomposition is based on the five-
layer decomposition by Graab et al. [13]. However, the layer 
information processing is split into the layers information 
processing and situational understanding. 

1) Layer 0: Information access 
This basic layer is mainly influenced by the infrastructure, 

weather, and objects. It is applicable for all kinds of driving 
functions and all levels of automation. It describes which 
information is generally accessible. Exemplary, missing or 
defective information from a digital map or traffic signs that 
are hidden by parking cars would rank among layer 0. As can 
be seen in the last example, the mounting positions of the 
environment perception sensors have an influence on their field 
of view, which has an influence on the information access. It 
can be assumed that the best achievable mounting position has 
already been chosen before functional testing. Nevertheless, to 
ensure a safe functionality of the HAD function, the 
information access has to be taken into account even if it is not 
part of the HAD function itself as failures in layer 0 have to be 
detected and compensated by the OUT. The interface between 
layer 0 and layer 1 is all the information that would be 
accessible for an ideal HAD system or human. 

2) Layer 1: Information reception 
The information reception layer contains all environment 

perception sensors of the OUT as well as car2x or backend 



communication channels. An exemplary error to occur in layer 
1 would be a dirty camera that cannot receive all accessible 
information. The interface between layer 1 and layer 2 are the 
sensor raw data or the information received via car2x or 
backend communication. 

3) Layer 2: Information processing 
Sensor fusion, object classification, and generation of an 

environment model are contained in the information processing 
layer. Typical failures in this layer would be false negative 
objects or object classification errors. The interface between 
layer 2 and layer 3 is a scene as defined by Ulbrich et al. [18]. 

4) Layer 3: Situational understanding 
In this layer, the scene from layer 2 is extended with goal- 

and value-specific information selection and augmentation. 
Failures like wrong predicted trajectories of object vehicles can 
occur in layer 3. The interface to layer 4 is a situation 
according to [18]. 

5) Layer 4: Behavioral decision 
This layer contains the algorithms that based on the 

situation model decide about the behavior of the HAD 
function. An exemplary failure would be an error in the 
maneuver planning that leads to a collision with another 
vehicle. The interface to the action layer is the target trajectory.  

6) Layer 5: Action 
The final layer transforms the trajectory from level 4 into 

the actual vehicle movement. It includes the vehicle’s motion 
control algorithms as well as the necessary actuators. An 
exemplary failure for level 5 would be an unstable motion 
control algorithm. 

Figure 1 gives an overview of the proposed decomposition 
layers and their interfaces: 

Layer 0: Information Access

Layer 1: Information Reception

Layer 2: Information Processing

Layer 3: Situational Understanding

Layer 4: Behavioral Decision

Layer 5: Action

Accessible Information

Sensor Raw Data

Scene

Situation Model

Trajectory

Vehicle Motion

Information

 

Fig. 1. Decomposition Layers 

E. Defining particular test cases 

To use the presented approach for the generation of test 
cases, following steps have to be carried out: 

1) Identification of functional scenarios 
As a first step, relevant scenarios to derive the test cases 

have to be identified. Within the project PEGASUS, relevant 
scenarios for the “Autobahn-Chauffeur” are identified and 
saved to a central scenario database [19]. Hereby it is 
differentiated between functional, logic, and concrete scenarios 
that are defined by Bagschik et al. [20] as follows: 

a) Functional scenarios 

“Functional scenarios describe operation scenarios […] on 
a semantic level. The entities and relations between the entities 
of the application domain are expressed in linguistic stated 
scenarios. […]” 

b) Logic scenarios 

 “Logic scenarios describe operation scenarios with entities 
and relations between this entities based on parameter ranges in 
the state space.[…] Logic scenarios contain a formal 
description of scenarios.” 

c) Concrete scenarios 

“Concrete scenarios describe operation scenarios explicit 
with entities and relations between this entities based on fix 
values in the state space.” 

2) Creation of an overview matrix  
In a second step, an overview matrix is generated based on 

the used decomposition layers and functional scenarios for the 
test case generation. The decomposition layers are represented 
by rows and the scenarios are represented by columns. Each 
cell then represents a set of test cases for each allocation of 
scenarios and layers. 

3) Definition of fail criteria 
In this important step, fail criteria for each cell of the 

overview matrix are defined. Therefore a fault tree analysis 
(FTA) according to [21] with an accident as top event is 
conducted for each functional scenario. The base effects, which 
are described on a general level in this step, are then allocated 
to the decomposition layers and inserted in the overview matrix 
as fail criteria. 

4) Elimination and aggregation of fail criteria 
A prerequisite for this step is the conversion from 

functional scenarios into concrete scenarios by allocating 
specific parameters from the parameter space. Hereby one 
functional scenario can be converted to multiple concrete 
scenarios [20]. For each concrete scenario, the fail criteria have 
to be transformed into concrete fail criteria by allocating 
specific parameters as well. Subsequently, redundant fail 
criteria can be eliminated or aggregated based on an 
equivalence or subset analysis.  

5) Selection of suitable test environments and test cases 

for the remaining fail criteria 
For all of the remaining fail criteria, the most suitable test 

environment has to be selected and specific test cases have to 
be defined that approve the absence of the allocated fail 



criteria. If it is possible to approve the nonfulfillment of all fail 
criteria that are deducted from all causing effects of an FTA, 
the absence of the top event is approved as well. 

F. Exemplary application  

For an exemplary application of the here presented 
methodology, the functional scenario that led to a real world 
accident of an Tesla Model S in Switzerland in May 2016 [22] 
is used. The scenario is visualized in figure 2: 

OUT
Obstacle

Obj2

Obj3Obj1

OUT
Obstacle

Obj1

OUT
Obstacle

Obj2

Obj1

t= -3 s

t= -1 s

t=  0 s

 

Fig. 2. Exemplary Scenario 

Initially the OUT is driving in the left lane of a two-lane 
highway in dense traffic. A van (Obstacle) is standing on the 
left side of the left lane. The vehicle in front of the OUT (Obj2) 
is performing a lane change to the right lane to avoid the 
obstacle while the OUT doesn’t attempt to avoid the obstacle 
and is crashing into it. In this example it is assumed, that the 
OUT is a level 3 vehicle (according to [3]) instead of a level 2 
vehicle as in the real accident. 

The accident is used as a top event for an FTA to derive fail 
criteria for this functional scenario. Figure 3 shows an extract 
from the exemplary failure tree. Starting with the collision as 
top event, the responsible effects would be a failure in the 
collision avoidance or that a collision avoidance is not planned 
at all. Following the branch of the faulty collision avoidance, 
one of the base events that could lead to a collision over several 
intermediate steps is that the sensor range is lower than the 
physically required brake distance. This would be allocated to 
layer 1. As this examples shows, the base events are describe 
on a very general level in this step.  

After collecting all base events for all relevant functional 
scenarios as functional fail criteria in an overview matrix (see 
step 2) in section II E), the functional fail criteria are 
transformed into concrete fail criteria by allocating specific 
parameters, e.g. initial velocity, friction coefficient, etc. The 
concrete fail criterion in this example would then be: “The 
sensor range is lower than x m“. After transferring all 
functional fail criteria into concrete fail criteria, steps 4) and 5) 
as described in section II E are performed to derive particular 
test cases. 
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Fig. 3. Exemplary Failure Tree 

III. CONCLUSION AND OUTLOOK 

Test methods that are currently used to approve ADAS 
cannot be transferred to HAD while keeping testing effort on 
an acceptable level. The scenario-based approach that is 
developed within the research project PEGASUS promises to 
reduce the approval effort for HAD significantly. The 
decomposition approach, which is presented here for the first 
time, goes a step further and has the potential to reduce the 
approval effort even more. 

By combining the scenario-based approach with a 
functional decomposition of the HAD function to be approved, 
particular test cases can be specified based on an FTA. Some of 
the resulting test cases can be eliminated or aggregated. 
Additional to this reduction of test cases, the decomposition 
approach can be used to reduce the approval effort for variants 
or updated functions. 

In this paper, a generic six-layer decomposition for HAD 
functions is proposed based on a requirement definition. 
Furthermore, the potential to reduce the approval effort is 
outlined. Finally, a methodology to create test cases and to 
define corresponding fail criteria based on this decomposition 
and relevant scenarios is shown and applied to one exemplary 
scenario.  

However, it still must be shown that the decomposition 
approach is generally applicable and not only for selected 
examples. This and a quantification of the potential reduction 
of approval effort have to be investigated in following studies.  
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