
Functional Decomposition
An Approach to Reduce the Approval Effort for Highly Automated Driving

Christian Amersbach, Hermann Winner

Institute of Automotive Engineering

Technische Universität Darmstadt

Darmstadt, Germany

{amersbach, winner}@fzd.tu.darmstadt.de

Abstract—It is not economically feasible to statistically prove

that an automated driving function is safer than a human driver

with current test methods such as field operation tests. Therefore,

new methods and tools are needed for the release of automated

vehicles. The approach of functional decomposition is broadly

used in informatics, mathematics and robotics to split complex

functions into sub functions. Functional decomposition is also

used to analyze human failures that lead to traffic accidents.

Assuming that the absence of accidents is the approval criterion

for highly automated driving and that accidents can be traced

back to failures, the decomposition approach can be used for

approval. Within the research project PEGASUS, a scenario-

based decomposition approach for approval of the “Autobahn-

Chauffer” is developed. This approach is presented here for the

first time and proposes a six-layer decomposition of the

automated driving function. Based on the functional

decomposition and identification of relevant scenarios, particular

test cases and corresponding fail criteria can be derived. By

eliminating redundant test cases and aggregating test cases that

are subsets of each other, the method promises to reduce testing

effort.

Keywords—automated driving; safety assessment; test case

generation; decomposition; PEGASUS

I. INTRODUCTION

The technical development of autonomous vehicles is
almost finished. Prototypes of automated vehicles exist among
OEMs, suppliers and research facilities. The technology has
been successfully demonstrated in public, e.g. with the
autonomous Bertha Benz Drive by Mercedes [1], the project
“Stadtpilot” of TU Braunschweig [2] and many more.
However, there is no autonomous vehicle available on the
market yet. One reason for that are the high safety requirements
for automated driving and the challenge to approve that such a
system is safe enough.

A. Current Test Concepts in the Automobile Industry

For driver-only vehicles (i.e. level 0 according to SAE [3]),
it is assumed that all components are designed and approved
according to industrial standards such as ISO 26262 [4] and
therefore do not exceed maximum failure rates. Additionally, it
is relied on the abilities of the driver to maneuver the vehicle
reliably in traffic, which are proven with test drivers. Over the
last decades, this has been shown to be a successful proof of
safety. For advanced driver assistance systems (ADAS), the
Code of Practice assumes that the responsibility for the
vehicle’s behavior still remains with the human driver that is
always in the loop and can overwrite or deactivate the system
at any time. Therefore, the results of conducted tests with test
drivers can be transferred to future users, similar to driver-only
vehicles. [5, 428 ff.]

The standard ISO 26262 [4] is state of the art regarding
functional safety for safety-critical E/E systems in road
vehicles. All current ADAS are developed according to ISO
26262. However, it cannot be used for the development of
highly automated driving (HAD) functions (i.e. level 3 and
higher according to SAE [3]) without adaption. For example,
when assigning automotive safety integrity levels (ASIL), the
controllability of a situation by the driver has to be considered.
However, as the driver is not responsible to permanently
monitor the system, this controllability is not given. [6]

If the driver is not responsible for the vehicle behavior at
any time anymore, which is already the case for intervening
emergency functions (operation mode C according to the
classification of driver assistance systems and vehicle
automation from Gasser et al. [7, p. 37], e.g. automatic
emergency braking), tests that only focus on the driver’s
controllability are not sufficient. It must also be proven that the
false-positive rate is adequately low. Even if a lot of testing in
the development phase is shifted to simulations, the final
approval for any kind of driver assistance systems is still
carried out in real driving tests. According to Christiansen [8],
the approval of current level 2 systems requires up to 12
million test kilometers.

This study was founded by the Federal Ministry for Economic Affairs and

Energy (BMWi) based on a decision by the German Bundestag within the

project PEGASUS - Project for the establishment of generally accepted
quality criteria, tools and methods as well as scenarios and situations for the

release of highly-automated driving functions.

B. Billions of Kilometers until the Release of Vehicles with

unsupervised Automated Driving

If one wants to retain the current test concepts for HAD, the
required test distances in real traffic will increase dramatically.
Assuming that the automated driving function is twice as safe
as a human driver and using the number of fatal accidents as a
metric for safety, according to Wachenfeld and Winner [5]
around 6.6 billion test kilometers have to be driven in real
traffic under representative conditions for a safety assessment
of an “Autobahn Chauffeur”. Kalra and Paddock [9] calculate
required distances up to 11 billion miles for the safety
assessment of a level 5 system (according to [3]), based on
statistical data from the USA with a similar approach. As can
be seen from the mentioned examples, a statistical safety
assessment for automated driving functions is not feasible in
practice before introduction. Therefore, alternative safety
assessment methods are required. For example, so-called
ability and skill graphs that are based on ISO 26262 are
proposed by Reschka et al. [6] for the development and online
monitoring of vehicle guidance systems and are used within the
projects “aFAS” and “Stadtpilot”.

C. The research project PEGASUS

To develop new standards and methods for the approval of
automated driving functions, the “project for the establishment
of generally accepted quality criteria, tools and methods as
well as scenarios and situations for the release of highly-
automated driving functions” (PEGASUS) was launched in
2016. In this joint project, 17 partners from the science and
industry field define a state-of-the-art technology for the
safeguarding of HAD. The project is promoted by the Federal
Ministry for Economic Affairs and Energy (BMWi) and will be
finished by the middle of 2019 [10].

D. Scenario-based approach

Within the project PEGASUS, a so-called scenario-based
approach is applied to reduce the approval effort for highly
automated driving. It is assumed that the major part of mileage
on the Autobahn goes well without any special events, while
critical scenarios are quite rare and randomly distributed in real
traffic. Testing of the first mentioned ordinary scenarios is
without relevant contribution for the approval process.
Therefore, the identification of critical scenarios that can be
reproduced in simulation or on test fields should significantly
reduce the long driving test distances needed for a statistical
approval [11].

II. FUNCTIONAL DECOMPOSITION FOR TEST CASE GENERATION

The approach of decomposing the driving task for test case
generation that is presented here for the first time is based on
the scenario-based approach and has the potential to reduce the
approval effort even more. Within PEGASUS, this new
approach is developed for an “Autobahn Chauffeur” as
example of use.

A. The basic concept of functional decomposition

The concept of functional decomposition is not entirely
new. It is used in various domains as for example in robotics,

informatics, or accident analysis to segment complex functions
or problems into sub functions or sub problems respectively.
Functional decomposition is also used to create layer-based,
so-called sequential system architectures for ADAS whilst test
case generation is not the main reason for decomposing the
system [12, 45 ff.].

A five-level decomposition of the human driving task is
used by Graab et al. [13] to analyze failures that lead to traffic
accidents. Here, the failure chain is decomposed into the
following layers:

(1) Information access

(2) Information reception

(3) Information processing

(4) Behavioral decision

(5) Action

As the pass criterion for testing HAD is the absence of
accidents and as it is here assumed that accidents can be traced
back to failures, this approach can be transferred to test case
generation for HAD. In analogy, the driving function is first
split into independent functional layers. Hereby not all HAD
functions can be split into all of the proposed layers, i.e. if the
interfaces between the layers are not accessible, two or more
layers need to be combined. In a next step, test cases that are
deduced from critical scenarios are decomposed into particular
tests, which cover one or more functional layers. This will be
handled in detail in sections II D and II E.

B. Benefits

Identifying critical scenarios can reduce the approval effort
significantly. However, on some functional layers, the same
abilities and requirements will be tested for several test cases.
For instance, in the scenario “driving past a static object”, it is
assumed that the type of object is only relevant for the
perception and information processing layers. For the decision
and action layers it does not matter if the object is a hedge or a
guardrail. Furthermore, if a particular test fails, in contraire to a
test of the complete system, the tests of the subsequent layers
can be postponed until the failed test is finally passed.

If parts of existing HAD functions are used for new
functions, the new method requires no or less re-testing in case
of unchanged functional modules. This also applies to different
variants of the object under test (OUT), which need individual
approval with current test methods. To approve the electronic
stability control (ESC) of the Mercedes Sprinter for example,
around 4500 different combinations of base vehicle,
suspension, and load variants have been investigated according
to Baake et al. [14]. Additional to the huge number of variants
for the OUT, combinations of different parameters for a single
scenario lead to high numbers of corresponding test cases. Lu
[15, p. 88] derives that around 43700 test cases for the scenario
“lane change“ would be required if the parameters “initial
speed” and “speed on the target lane” are discretized in steps of
5 km/h within the parameter space and a “pair-wise” coverage
as proposed by Schuldt et al. [16, p. 15] is assumed. Variations
of the environment (e.g weather conditions) which are not
considered by Lu would lead to even higher numbers.

When testing the functional layers of the OUT separately as
it is done with the new method, particular tests from different
scenarios can be aggregated if the test criteria/parameters are
identical or subsets of the criteria/parameter from another
particular test. Furthermore, the most suitable test tool (e.g.
Simulation, XiL, test drive, etc.), depending on its validity, can
be selected for each particular test, which also helps to reduce
the approval effort.

C. Requirements for the decomposition of HAD functions

To be able to develop a functional decomposition method
for HAD functions, requirements on such a method have to be
defined. Wachenfeld and Winner [5, p. 433] state general
requirements on a test case generation for the safety assessment
of HAD functions:

1) “Representative-valid“

“The requirement for representativeness has two
aspects: On the one hand, the test case generation must
ensure that the test coverage required is achieved. For example,
a vehicle should not only be tested at 20 °C and sunshine, as it
will be exposed to snow, rain and temperatures under 0 °C in
real situations. Additionally, vehicle limit samples (tolerances
during production) should be considered in the test case
generation. On the other hand, the test execution must
encompass the minimum degree of reality required. This means
that the simplification in the representation of reality must not
influence the behavior of the object under test (OUT) nor the
behavior and properties of the environment with respect to real
behavior.”

2) “Economical”
“There are two parts to the requirement for the economical

test concept: On the one hand, the test execution should be
prepared and carried out as quickly as possible in order to be
able to provide the persons involved in the development with
feedback on the test object immediately. On the other hand, it
must be ensured that the test execution is prepared and carried
out at the lowest cost possible.”

3) “Reproducible”
“Reproducibility greatly reduces the work required for

regression tests. For example, if an error has been detected and
the test object modified accordingly, the goal is to subject the
OUT to a test in the same scenario as before.”

4) “In good time”
“The earlier in the development process that a product can

be tested informatively, the fewer the development steps that
need to be repeated in the case of an error.”

In additional to the general requirements on a test case
generation, there are requirements that are specific for the
functional decomposition method, which will be defined
below:

5) Independent and generic decomposition layers
In order to carry out the particular tests on different

functional layers independently from each other, the functional
layers have to be independent as well. Furthermore, the method
should be applicable for different HAD functions and not be

limited to functions that use a specific system architecture.
Therefore, the defined decomposition layers have to be generic.

6) Generic and observable interfaces between the

functional layers
Generic interfaces between the single functional layers are

necessary to define the respective in- and output data for each
layer. Those interfaces have to be observable to evaluate the
particular tests.

7) Explicit pass/fail criteria for all particular tests
When carrying out a complete system test, it is

straightforward to define pass/fail criteria. If for example an
automated vehicle crashes into a static obstacle in a test case,
this crash will be a fail criterion. However, if functional layers
of the system are tested separately from each other it is not that
obvious anymore which criteria can be used to determine a
pass or fail of the test. Therefore, explicit pass/fail criteria are
prerequisites for every test case.

D. Decomposition layers and interfaces for HAD functions

In this section, the proposed functional layers for the
decomposition of HAD functions and the appropriate interfaces
are defined.

In this work, a decomposition of the HAD function into six
layers is proposed. Decomposing the function into more layers
would lead to function-specific layers and therefore result in a
function-specific decomposition that is not generally applicable
on various HAD functions. Another problem with a high
number of decomposition layers would be to define explicit
pass/fail criteria for each layer. On the other hand when using
fewer layers as for example the classic three-layer
decomposition “sense-plan-act”, which is common in robotics
[cp. 17, p. 321], the potential reduction of the approval effort
will be less. The proposed decomposition is based on the five-
layer decomposition by Graab et al. [13]. However, the layer
information processing is split into the layers information
processing and situational understanding.

1) Layer 0: Information access
This basic layer is mainly influenced by the infrastructure,

weather, and objects. It is applicable for all kinds of driving
functions and all levels of automation. It describes which
information is generally accessible. Exemplary, missing or
defective information from a digital map or traffic signs that
are hidden by parking cars would rank among layer 0. As can
be seen in the last example, the mounting positions of the
environment perception sensors have an influence on their field
of view, which has an influence on the information access. It
can be assumed that the best achievable mounting position has
already been chosen before functional testing. Nevertheless, to
ensure a safe functionality of the HAD function, the
information access has to be taken into account even if it is not
part of the HAD function itself as failures in layer 0 have to be
detected and compensated by the OUT. The interface between
layer 0 and layer 1 is all the information that would be
accessible for an ideal HAD system or human.

2) Layer 1: Information reception
The information reception layer contains all environment

perception sensors of the OUT as well as car2x or backend

communication channels. An exemplary error to occur in layer
1 would be a dirty camera that cannot receive all accessible
information. The interface between layer 1 and layer 2 are the
sensor raw data or the information received via car2x or
backend communication.

3) Layer 2: Information processing
Sensor fusion, object classification, and generation of an

environment model are contained in the information processing
layer. Typical failures in this layer would be false negative
objects or object classification errors. The interface between
layer 2 and layer 3 is a scene as defined by Ulbrich et al. [18].

4) Layer 3: Situational understanding
In this layer, the scene from layer 2 is extended with goal-

and value-specific information selection and augmentation.
Failures like wrong predicted trajectories of object vehicles can
occur in layer 3. The interface to layer 4 is a situation
according to [18].

5) Layer 4: Behavioral decision
This layer contains the algorithms that based on the

situation model decide about the behavior of the HAD
function. An exemplary failure would be an error in the
maneuver planning that leads to a collision with another
vehicle. The interface to the action layer is the target trajectory.

6) Layer 5: Action
The final layer transforms the trajectory from level 4 into

the actual vehicle movement. It includes the vehicle’s motion
control algorithms as well as the necessary actuators. An
exemplary failure for level 5 would be an unstable motion
control algorithm.

Figure 1 gives an overview of the proposed decomposition
layers and their interfaces:

Layer 0: Information Access

Layer 1: Information Reception

Layer 2: Information Processing

Layer 3: Situational Understanding

Layer 4: Behavioral Decision

Layer 5: Action

Accessible Information

Sensor Raw Data

Scene

Situation Model

Trajectory

Vehicle Motion

Information

Fig. 1. Decomposition Layers

E. Defining particular test cases

To use the presented approach for the generation of test
cases, following steps have to be carried out:

1) Identification of functional scenarios
As a first step, relevant scenarios to derive the test cases

have to be identified. Within the project PEGASUS, relevant
scenarios for the “Autobahn-Chauffeur” are identified and
saved to a central scenario database [19]. Hereby it is
differentiated between functional, logic, and concrete scenarios
that are defined by Bagschik et al. [20] as follows:

a) Functional scenarios

“Functional scenarios describe operation scenarios […] on
a semantic level. The entities and relations between the entities
of the application domain are expressed in linguistic stated
scenarios. […]”

b) Logic scenarios

 “Logic scenarios describe operation scenarios with entities
and relations between this entities based on parameter ranges in
the state space.[…] Logic scenarios contain a formal
description of scenarios.”

c) Concrete scenarios

“Concrete scenarios describe operation scenarios explicit
with entities and relations between this entities based on fix
values in the state space.”

2) Creation of an overview matrix
In a second step, an overview matrix is generated based on

the used decomposition layers and functional scenarios for the
test case generation. The decomposition layers are represented
by rows and the scenarios are represented by columns. Each
cell then represents a set of test cases for each allocation of
scenarios and layers.

3) Definition of fail criteria
In this important step, fail criteria for each cell of the

overview matrix are defined. Therefore a fault tree analysis
(FTA) according to [21] with an accident as top event is
conducted for each functional scenario. The base effects, which
are described on a general level in this step, are then allocated
to the decomposition layers and inserted in the overview matrix
as fail criteria.

4) Elimination and aggregation of fail criteria
A prerequisite for this step is the conversion from

functional scenarios into concrete scenarios by allocating
specific parameters from the parameter space. Hereby one
functional scenario can be converted to multiple concrete
scenarios [20]. For each concrete scenario, the fail criteria have
to be transformed into concrete fail criteria by allocating
specific parameters as well. Subsequently, redundant fail
criteria can be eliminated or aggregated based on an
equivalence or subset analysis.

5) Selection of suitable test environments and test cases

for the remaining fail criteria
For all of the remaining fail criteria, the most suitable test

environment has to be selected and specific test cases have to
be defined that approve the absence of the allocated fail

criteria. If it is possible to approve the nonfulfillment of all fail
criteria that are deducted from all causing effects of an FTA,
the absence of the top event is approved as well.

F. Exemplary application

For an exemplary application of the here presented
methodology, the functional scenario that led to a real world
accident of an Tesla Model S in Switzerland in May 2016 [22]
is used. The scenario is visualized in figure 2:

OUT
Obstacle

Obj2

Obj3Obj1

OUT
Obstacle

Obj1

OUT
Obstacle

Obj2

Obj1

t= -3 s

t= -1 s

t= 0 s

Fig. 2. Exemplary Scenario

Initially the OUT is driving in the left lane of a two-lane
highway in dense traffic. A van (Obstacle) is standing on the
left side of the left lane. The vehicle in front of the OUT (Obj2)
is performing a lane change to the right lane to avoid the
obstacle while the OUT doesn’t attempt to avoid the obstacle
and is crashing into it. In this example it is assumed, that the
OUT is a level 3 vehicle (according to [3]) instead of a level 2
vehicle as in the real accident.

The accident is used as a top event for an FTA to derive fail
criteria for this functional scenario. Figure 3 shows an extract
from the exemplary failure tree. Starting with the collision as
top event, the responsible effects would be a failure in the
collision avoidance or that a collision avoidance is not planned
at all. Following the branch of the faulty collision avoidance,
one of the base events that could lead to a collision over several
intermediate steps is that the sensor range is lower than the
physically required brake distance. This would be allocated to
layer 1. As this examples shows, the base events are describe
on a very general level in this step.

After collecting all base events for all relevant functional
scenarios as functional fail criteria in an overview matrix (see
step 2) in section II E), the functional fail criteria are
transformed into concrete fail criteria by allocating specific
parameters, e.g. initial velocity, friction coefficient, etc. The
concrete fail criterion in this example would then be: “The
sensor range is lower than x m“. After transferring all
functional fail criteria into concrete fail criteria, steps 4) and 5)
as described in section II E are performed to derive particular
test cases.

OR

collision

collision avoidance
fails

collision avoidance
not planed

OR

evasion
fails

braking fails

AND

sensor range
lower than

required
braking
distance

obstacle not
detected

wrong object
classification

faulty
trajectory
generated

OR

Fig. 3. Exemplary Failure Tree

III. CONCLUSION AND OUTLOOK

Test methods that are currently used to approve ADAS
cannot be transferred to HAD while keeping testing effort on
an acceptable level. The scenario-based approach that is
developed within the research project PEGASUS promises to
reduce the approval effort for HAD significantly. The
decomposition approach, which is presented here for the first
time, goes a step further and has the potential to reduce the
approval effort even more.

By combining the scenario-based approach with a
functional decomposition of the HAD function to be approved,
particular test cases can be specified based on an FTA. Some of
the resulting test cases can be eliminated or aggregated.
Additional to this reduction of test cases, the decomposition
approach can be used to reduce the approval effort for variants
or updated functions.

In this paper, a generic six-layer decomposition for HAD
functions is proposed based on a requirement definition.
Furthermore, the potential to reduce the approval effort is
outlined. Finally, a methodology to create test cases and to
define corresponding fail criteria based on this decomposition
and relevant scenarios is shown and applied to one exemplary
scenario.

However, it still must be shown that the decomposition
approach is generally applicable and not only for selected
examples. This and a quantification of the potential reduction
of approval effort have to be investigated in following studies.

REFERENCES

[1] J. Ziegler et al., “Making Bertha Drive—An Autonomous Journey on a
Historic Route,” IEEE Intell. Transport. Syst. Mag., vol. 6, no. 2, pp.
8–20, 2014.

[2] J. M. Wille, F. Saust, and M. Maurer, “Stadtpilot: Driving
autonomously on Braunschweig's inner ring road,” in 2010 IEEE
Intelligent Vehicles Symposium (IV), pp. 506–511.

[3] SAE J3016: Taxonomy and Definitions for Terms Related to On-Road
Motor Vehicle Automated Driving Systems, 2014.

[4] ISO 26262: Road vehicles – Functional safety, 2011.
[5] W. Wachenfeld and H. Winner, “The Release of Autonomous

Vehicles,” in Autonomous Driving: Technical, Legal and Social
Aspects, H. Winner, M. Maurer, J. C. Gerdes, and B. Lenz, Eds.,
Berlin, Heidelberg: Springer, 2016, pp. 425–449.

[6] A. Reschka, G. Bagschik, S. Ulbrich, M. Nolte, and M. Maurer,
“Ability and skill graphs for system modeling, online monitoring, and
decision support for vehicle guidance systems,” in Intelligent Vehicles
Symposium (IV), 2015 IEEE, 2015, pp. 933–939.

[7] T. M. Gasser, A. Seeck, and B. W. Smith, “Framework Conditions for
the Development of Driver Assistance Systems,” in Handbook of
Driver Assistance Systems, H. Winner, S. Hakuli, F. Lotz, and C.
Singer, Eds., Cham: Springer International Publishing, 2016, pp. 35–
68.

[8] M. Christiansen, In geheimer Mission: auf Abnahmefahrt mit der
neuen Mercedes E-Klasse, W213. [Online] Available:
http://5komma6.mercedes-benz-passion.com/in-geheimer-mission-auf-
abnahmefahrt-mit-der-neuen-mercedes-e-klasse-w213/. Accessed on:
Jul. 12 2017.

[9] N. Kalra and S. M. Paddock, “Driving to Safety: How Many Miles of
Driving Would It Take to Demonstrate Autonomous Vehicle
Reliability?,” 2016. [Online] Available:
http://www.rand.org/pubs/research_reports/RR1478.html.

[10] German Aerospace Center (DLR), "PEGASUS RESEARCH
PROJECT". [Online] Available: http://pegasus-projekt.info/en/home.
Accessed on: Jun. 11 2017.

[11] P. Junietz, J. Schneider, and H. Winner, “Metrik zur Bewertung der
Kritikalität von Verkehrssituationen und - szenarien,” in Workshop
Fahrerassistenz und automatisiertes Fahren, 2017.

[12] F. G. O. Lotz, “Eine Referenzarchitektur für die assistierte und
automatisierte Fahrzeugführung mit Fahrereinbindung,” Dissertation,
Technische Universität Darmstadt, 2017.

[13] B. Graab, E. Donner, U. Chiellino, and M. Hoppe, “Analyse von
Verkehrsunfällen hinsichtlich unterschiedlicher Fahrerpopulationen
und daraus ableitbarer Ergebnisse für die Entwicklung adaptiver
Fahrerassistenzsysteme,” in TU München & TÜV Süd Akademie GmbH
(Eds.), Conference: Active Safety Through Driver Assistance.
München, 2008.

[14] U. Baake, K. Wüst, M. Maurer, and A. Lutz, “Versuchs-und
simulationsbasierte Absicherung von ESP-Systemen für Transporter,”
ATZ-Automobiltechnische Zeitschrift, vol. 116, no. 2, pp. 46–51, 2014.

[15] Y. Lu, “Trajektorienplanung und Fehlerursachenanalyse für die
automatisierte Autobahnfahrt in der Simulation,” Masterthesis, TU
Darmstadt, Fachgebiet Fahrzeugtechnik, 2015.

[16] F. Schuldt, F. Saust, B. Lichte, M. Maurer, and S. Scholz, “Effiziente
systematische Testgenerierung für Fahrerassistenzsysteme in virtuellen
Umgebungen,” in Automatisierungssysteme, Assistenzsysteme und
eingebettete Systeme für Transportmittel (AAET), Braunschweig, 2013.

[17] J. Hertzberg, K. Lingemann, and A. Nüchter, Mobile Roboter: Springer
Berlin Heidelberg, 2012.

[18] S. Ulbrich, T. Menzel, A. Reschka, F. Schuldt, and M. Maurer,
“Defining and substantiating the terms scene, situation, and scenario
for automated driving,” in Intelligent Transportation Systems (ITSC),
2015 IEEE 18th International Conference on, 2015, pp. 982–988.

[19] A. Pütz, A. Zlocki, J. Bock, and L. Eckstein, “System validation of
highly automated vehicles with a database of relevant traffic
scenarios,” in 12th ITS European Congress, 2017.

[20] G. Bagschik, T. Menzel, A. Reschka, and M. Maurer, “Szenarien für
Entwicklung, Absicherung und Test von automatisierten Fahrzeugen,”
in Workshop Fahrerassistenz und automatisiertes Fahren, 2017.

[21] IEC 61025, Fault Tree Analysis (FTA), 2006.
[22] F. Lambert, Tesla Model S driver crashes into a van while on Autopilot

[Video]. [Online] Available: https://electrek.co/2016/05/26/tesla-
model-s-crash-autopilot-video/. Accessed on: Aug. 31 2017.

